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Abstract—Fully actuated robots may be controlled using well-
understood techniques, such as computed torque control, which
override natural system dynamics. For underactuated robots
these dynamics cannot be fully cancelled out, and must instead
be leveraged, complicating the control problem. We present a
classification of underactuated robotic systems based on the
degree to which their dynamics can be decoupled. Finding
coordinates that decouple the system dynamics simplifies control
for two classes of robots, which we identify as partially- and fully
decouplable robotic systems. In these decoupling coordinates,
the Euler-Lagrange system representation has a block-diagonal
inertia matrix and decoupled input matrix. After delving into
the fundamentals of this proposed classification, this work im-
plements an autoencoder as a first ML-based framework to learn
these decoupling coordinates for the 2 degrees of freedom (DOF)
case. Furthermore, we demonstrate how such representations
simplify control. Input decoupling allows for collocated control
using a straightforward PD + gravity compensation controller.
Inertial decoupling enables non-collocated control through feed-
back linearization within a small set of states. To demonstrate
the theory, decoupling coordinates are learned for a 2-DOF
toy system. Performance of the learned coordinate transform
is analysed, and controllers on learned and analytic decoupling
coordinates are compared.

Index Terms—underactuated robots; classification; control;
machine learning coordinates; decoupling

I. INTRODUCTION

Fully actuated robots are mechanical systems with as many
independent actuators as degrees of freedom. This allows for
the use of standard control techniques (e.g. computed torque
control) which effectively cancel the natural system dynamics
[1]. Fully actuated robots have been the industry standard for
decades. Their stiffness and strength mean they are reliable,
and comparatively easy to model and control [2]-[4]. Common
examples are articulated robots for tasks like pick-and-place,
assembly and welding [5], [6].

In contrast, underactuated robots possess fewer independent
actuators than degrees of freedom. Underactuation may be the
result of intentional inclusion of soft or flexible components,
or an unactuated base [7]. It may also be caused by actuator
failure, lightweight components or the omission of actuators
to save cost. There are many advantages of underactuated
designs. Soft components, for example, are beneficial when
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Fig. 1: An intelligent choice of coordinates simplifies con-
trol of underactuated robots. An autoencoder framework is
presented which learns a coordinate transformation, leading
to an input decoupled and inertially decoupled system. This
facilitates design of collocated and non-collocated controllers.

handling delicate objects [8], and for safety in human-robot
interaction [9]. Flexibility may improve robustness to unmod-
elled environmental effects [10], and greatly improve energy
efficiency in repetitive motion [11]. Omission of actuators can
also reduce robot cost and mass, which is critical for example
in space applications [12], [13].

Underactuation, however, also greatly complicates the con-
trol problem. The lack of full control authority means that
the natural system dynamics cannot be fully overwritten,
and must instead be leveraged for control performance [14].
Arbitrary accelerations cannot be imposed on every degree of
freedom, which limits the reachable states of such systems
[15], [16]. Moreover, many underactuated systems are non-
minimum phase, so that non-collocated input-output inversion
introduces unstable zero dynamics [17], [18].



Despite the difficulty of the underactuated control challenge,
controllers have been designed for a wide range of underactu-
ated systems. One commonly used strategy for underactuated
robot control is to rely on the property of strong inertial cou-
pling for feedback linearization [19]-[22]. However, inertial
coupling is configuration dependent, and many robots (such
as series elastic actuators) are not strongly inertially coupled
[23], [24]. If such coupling does not exist, it is favourable to
have no inertial coupling at all.

A cornerstone work in the field of underactuated robotics
control is the paper by M. Spong on modelling and control
of elastic joint robots [25]. There, Spong presents controllers
based on an inertially decoupled and input decoupled system
description. Inertial decoupling has since been used for con-
troller design of floating (and flexible) base robots [26]—[28],
elastic manipulators [29] and soft robots [30], [31], among
others. This decoupled representation is coordinate-dependent,
and is often obtained through some coordinate transformation.
Finding such a transformation requires expert knowledge, and
the methodology is rarely applicable to other types of robots.
This means that every control engineer has to effectively
“reinvent the wheel” when writing a model-based controller
for a new kind of robot.

Machine learning may be able to offer a solution, approx-
imating decoupling coordinates where an analytic solution
cannot be found. Autoencoders are commonly used for di-
mensionality reduction, but are also suited for this problem,
since they are able to approximate a deterministic change of
coordinates and its inverse [32]-[34].

Our work presents a first step towards systematically defin-
ing and then discovering these decoupling coordinates of
underactuated robots, which simplifies and unifies controller
design. Concretely, the contributions of this thesis are as
follows:

o A novel classification of underactuated robots based on
the extent to which their inertial- and input matrices may
be decoupled. The three identified classes are “generic
inertially coupled”, “partially decouplable” and “fully
decouplable”.

e A new 2-DOF “toy” system which serves as an example
of the partially decouplable systems class.

e A machine learning framework which can learn decou-
pling coordinates for decouplable underactuated mechan-
ical systems.

o Design and performance analysis of collocated and non-
collocated controllers on the toy system.

Section II describes the kinds of systems considered in this
thesis. Section III explains how inertial and input decoupling
affect controller design, and presents a classification based
on decouplability. A machine learning approach to find such
decoupling coordinates is presented in Section IV. Controllers
based on these coordinates are explained in Section V, and
simulation results are presented in Section VI. Section VII
provides a discussion of the methodology, results and potential
future work, and Section VIII concludes this report.

II. PRELIMINARIES

The scope of this thesis is limited to underactuated mechanical
systems whose trajectories follow the Euler-Lagrange equa-
tions of motion. For a system with generalized coordinates
g € R™ and Lagrangian L(q, q), the multibody dynamics may
be written as:

d (9L(¢,4)\ _9L(a.9) _,
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where O indicates a partial derivative and % indicates the
time derivative. The symbol ¢ € R" is a shorthand for
the time derivative of q. Besides the internal dynamics, we
consider three more contributions to the dynamics. These are
the damping forces, spring forces and actuator input forces.
Damping is modelled by a Rayleigh dissipation function
as Dy(q)g = 81;—(9) € R". Elastic forces are captured
in the vector Kq(q € R”, and actuation is modelled by
Ag(q) € R™™. Including these terms, the dynamics can be
written in matrix form as:

M,(a)4+Cq(q,4)4+Gq(a)+Dy(q)d+Ky(q) = Ay(q)u.
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Here, the internal dynamics contributions are split into the
inertia matrix M,(q) € R™*", Coriolis- & centrifugal matrix
C,(g,q) € R™™ and gravity force vector G4(q) € R".
Control inputs © € R™ are mapped to generalized forces by
the input matrix A,(q).

ITI. PROPOSED CLASSIFICATION
A. Inertial and input decoupling

A new set of coordinates & = h(q) may be defined. With an
appropriate choice of transformation function h(q) : R* —
R™, this results in properties of the dynamical matrices that
can be exploited for controller design. The two properties
that are central to this thesis are input decoupling and inertial
decoupling. For an input decoupled system, the control input
u must only affect m degrees of freedom 6, € R™, leaving
the other | = n — m degrees of freedom 8, € R! unactuated
[35]. In matrix form, such an input matrix can be written as:

AQ:[Im} 3)
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The second important property is inertial decoupling. This re-
quires that there are no inertial couplings between actuated (or
active, collocated) and unactuated (or passive, non-collocated)
degrees of freedom. In matrix form, the requirement is for the
inertia matrix to be block-diagonal:

M,6) 0 } .

0 M0 “)

My(0) = [
In the above formulation, the active and passive inertia blocks
may still be a function of the full state 6, and this will
therefore be referred to as partial inertial decoupling. This
cross-dependency results in coupling terms in the Coriolis-
& centrifugal matrix. A stricter requirement may be imposed,



namely full inertial decoupling. In this case, each block in the
inertia matrix must only be a function of its corresponding
degrees of freedom, i.e:

My(0) = ' . 5
Such an inertia matrix does not result in cross-couplings from
the Coriolis- & centrifugal matrix.
B. Decoupled dynamics for 2-DOF systems

Analysis is simplified when the 2-DOF case is considered. The
decoupled input matrix straightforwardly becomes:

1

a1, ®

Partial inertial decoupling can be formulated as:
_[M.6) 0
Me(e) - |: 0 Mu(o):| ) (7)
with the corresponding Coriolis- & centrifugal matrix:
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where individual terms may be computed using standard
methods (e.g. Christoffel symbol derivation). When damping is
neglected, the equations of motion may be written as follows:

M, (8)0a + Ca(6,0)04 + Can(8,0)0, + Gu(8) + K. (6)
—u,

(92)
M, (8)0, + Cua(6,0)8, + C,(0,0)8, + G.u(0) + K. (6)
=0.

(9b)

The absence of control input » in Equation (9b) clearly shows
that arbitrary accelerations of the unactuated DOF cannot be
imposed through control inputs. Moreover, it can be seen that
although the two degrees of freedom do not affect each other
at the acceleration level, there are coupling effects through
velocity. The ignored damping forces may introduce similar
velocity cross-couplings. If instead, the 2-DOF system is fully
inertially decoupled, the inertia matrix is as follows:

| Mg a(6,) 0

Mo (8) = [ 0 Mu,uwu)] (1o

The Coriolis- & centrifugal matrix simplifies to:

o [Caal8a,0,) 0
C = i ’ . 11
q(q7 q) |: 0 Cu7u(9u, eu):| ) ( )
resulting in the following equations of motion:

Mo (8)0, + Cuo(04,00)00 + Ga(0) + Ko(0) = u, (122)
M, (0)0, + Coy(0u,0,)0, + Gu(8) + K, (6) = 0. (12b)

In this case, neither accelerations nor velocities in one DOF
affect the other. Since we can again not affect d,, through the
control input u, we must rely on potential couplings from
gravity or spring forces to affect the unactuated degree of
freedom. These properties may be leveraged for controller
design.

C. Proposed classification

Current classifications of underactuated robots often focus
on the cause of underactuation, but neglect the effect of
underactuation on system dynamics [37]-[39]. This makes
it difficult to generalise control methods between systems.
We propose three classes of systems, which are separated
based on “decouplability”, i.e. the degree to which their
inertia- and input matrix can be decoupled. The classes are
“Generic underactuated”, “Partially decouplable” and “Fully
decouplable” (see Figure 2).

1) Generic underactuated systems: Generic robotics sys-
tems which possess fewer actuators than degrees of free-
dom are called generic underactuated systems. Depending on
the type of actuation, input decoupling coordinates may be
obtained. An example system is an adapted version of the
Pendubot [36]. Namely, a double pendulum with point masses
on the elbow and end-effector, and an actuator at the base (see
Figure 2, system 1). A standard choice of coordinates, namely
the absolute joint angles, reveals an input decoupled form:

a-]

The mass matrix, however, contains off-diagonal elements:

13)

12(mo +myq)
lolimy cos (go — q1)

_ lolima cos (g0 — q1)
Mq(q) - |: l%ml
(14)
As is shown in Appendix A, no choice of coordinates leads

to inertial decoupling for this system.

2) Partially decouplable systems: Systems are called par-
tially decouplable when they can be described in input de-
coupled and partially inertially decoupled form. To provide an
example, we introduce a toy system, which is an adaptation
of the well-understood double pendulum.

This new system is a double pendulum with no inertial
components apart from a point mass at the end-effector. For
this reason, we will call it by the shorthand of single-mass
double pendulum (SMDP). Its only actuator is a rod-like
actuator which is attached from a set location (z,,¥,) to the
end-effector of the robot (see Figure 2, system 2). This rod is
able to push and pull on the point mass.

An analytic coordinate transformation has been determined
which describes the system in input decoupled and partially
inertially decoupled form. The collocated DOF, namely the rod
length, has been determined for input decoupling following
methodology described in [35]. The resulting input matrix of
the system is:
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Fig. 2: The proposed classification of underactuated robots based on their degree of decouplability. An example system for
each class is provided. System (1) is a two-mass version of the Pendubot [36], which cannot be simultaneously input decoupled
and inertially decoupled. System (2) is the newly presented SMDP which may be input- and partially inertially decoupled.
System (3) is a series elastic actuator, which may be input- and fully inertially decoupled.

Ap = Ll)] . (15)

This leaves the non-collocated coordinate free. When the rod
angle (i.e. the angle of the vector from end-effector to rod
attachment point) is chosen as the second degree of freedom,
the inertia matrix is as follows:

(16)

My(6.) = {’” 0 }

0 mb?
This is exactly the partial inertial decoupling as described
above. A proof that there is no possible choice of coordinates
to achieve full decoupling is provided in Appendix B.

Despite its similarity to a fully actuated generic double
pendulum, control is significantly more difficult, as will be
demonstrated in following sections. This in-between class
presents an interesting control challenge. Section V shows
that for a controller applied to the SMDP, cross-dependency
in the inertia matrix can be neglected, and the system can be
treated as fully decouplable.

3) Fully decouplable systems: When a choice of coordi-
nates exists for which the system is both input and fully
inertially decoupled, the system is fully decouplable. An
example system is the Series Elastic Actuator, which is fully
decoupled for the standard choice of coordinates, namely the
motor and link angle (see Figure 2, system 3). This results in
the input matrix of (15). The mass matrix is as follows:

amn

This clearly shows that the system is input decoupled and fully
inertially decoupled.

Controllers based on this decoupling can then be applied.
For example, a non-collocated controller based on feedback
linearization of the normal form representation may be used.
Such a controller is described in Section V. Alternatively,
existing controllers such as those discussed in Section I may
be applied.

To the authors’ best knowledge, a classification of underac-
tuated robots based on the degree to which their dynamics may
be decoupled has not been described in the existing literature.
We believe that this provides a step towards unifying the
control problem of fully- and partially decouplable robots.

IV. MACHINE LEARNING DECOUPLING COORDINATES

Certain systems cannot be decoupled fully, or finding such
coordinates is prohibitively difficult. In this case, machine
learning solutions may be able to find decoupling coordinates.

To this end, an autoencoder framework is proposed for
the task of learning decoupling coordinates (see Figure 3).
Autoencoders naturally learn both a forward- and inverse
mapping, and physically meaningful transformations can be
obtained through an appropriate selection of loss terms. This
makes them particularly suitable for learning of decoupling
coordinates 67,.
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Fig. 3: The autoencoder framework, consisting of an encoder
and decoder. Decoupling properties in the latent space are
obtained through a combination of loss terms.

A. Loss Function

To ensure that the autoencoder learns a meaningful transfor-
mation, loss terms have been added which impose physical
constraints on the encoder, latent space and decoder. The loss
function is composed of seven terms in three categories. These
categories are: reconstruction, input decoupling and inertial
decoupling. All loss terms are mean squared error (MSE)
across each training batch, to ensure batch size independence.
In the following definitions, the loss calculation for a single
sample is shown. In the case of matrix results, the loss is then
computed using the Frobenius norm.

1) Reconstruction: The first category of loss term ensures
that the autoencoder learns a proper coordinate transforma-
tion. To this end, a standard reconstruction loss is imposed.
Reconstruction loss can be calculated as:

Lrecon =q— Q, (18)

where g is the reconstructed state. A second loss term requires
that the encoder and decoder Jacobian are each other’s inverse.
This is important, because a valid coordinate transformation
must be invertible, with a well-defined derivative. Any non-
singular square matrix multiplied by its inverse results in the
identity matrix. We leverage this property to calculate the
Jacobian inverse loss:

Jenc(q)']dec(q) - Iv

where Jenc(q) and Jyec(q) are the encoder and decoder
Jacobian, respectively.

LJinv = (19)

2) Input decoupling: The second category of loss terms
concerns input decoupling of the system. This is based on an
input decoupling formulation on the actuated coordinate and
forward Jacobian [35], and is imposed using three loss terms.
The first straightforwardly requires the active coordinates 6,
to equal their analytic counterparts.

Ly, = 0o, —6q,4. (20)

Here, 0,1 and 6, 4 are the learned and analytic actuated
coordinates, respectively. To compute the second term derived
from [35] it is useful to first partition the forward Jacobian as:

Jenc(q) = [Ja(q)] :

Ju(q) @D

Here, J,(q) € R™*™ is the Jacobian component related to
active DOFs, and J,(q) € R'*™ is the component related to
passive DOFs. The second input decoupling term then requires
J.(q) to equal the transpose of the input matrix in g-space,
Ag(q). This can be computed as:

Ljacy = Ja(‘]) - Aq(Q)T~

The control input u should have no effect on the passive
DOFs. To this end, the third term penalises non-zero values
on the unactuated coordinates of the input matrix in 8-space,
Ag’u(e L)Z

(22)

Lay., = Aou(0r). (23)

One could alternatively bypass all these loss terms and
use the analytically computed input decoupling coordinate
0,, 4 directly, while only learning the unactuated coordinate
0,.r. This would reduce computational complexity and
provide an exact solution. During testing, however, it was
found that providing the autoencoder with freedom of both
coordinates increased the convergence rate and improved final
performance significantly.

3) Inertial decoupling: The last category of loss terms
enforces inertial decoupling, which requires the off-diagonal
entries of the mass matrix to be significantly smaller than the
block-diagonal ones. A simple ratio between these two was
considered, but this often caused poor learning and numerical
instability. Instead, inertial decoupling loss through two terms
is proposed. The first term requires that the off-diagonal value
of the mass matrix in 8-space, M, (0L), be zero:

0 M, (01)

LM,off—dia = Mau(eL) 0 (24)

The second term forces the diagonal elements, M, (€) and
M,,(0), to be non-zero. To compute this in the 2-DOF case,
first the block-diagonal matrix entries are truncated to some
value o. The value of o should be chosen to match system
masses. The matrix terms are truncated because we do not
want to reward large inertias, so long as they are sufficiently
greater than zero. The truncation can be computed as:

M, (0) = min(My(0),0), (25)

and

M, (0) = min(M,(8),0), (26)

where min(a,b) indicates the minimum between a and b.
M,(0) and M,(0) are the truncated inertia matrix compo-
nents. These terms are then compared to the parameter o:

M,(0.) 0

0 M, (0,)
In the higher-dimensional case, the minimum values of the
block-diagonal components M, (6) and M, (6) should be
considered carefully. Multiple parameters o; may be required
to set lower bounds for inertias and inertial couplings.

Lpsaia = —ol. 27)



TABLE I: Loss terms and their weights as used for training the autoencoder

Category H Reconstruction Input Decoupling Inertial Decoupling
Loss term recon | Jinv | 0, | Jact | Ag, | M,dia | M,off —dia
Weight 4 1 1 0.8 1 1.25 1.25

The loss components and their weights are summarized in
Table 1. Besides the loss terms, a number of hyperparameters
needed to be selected. More information about the hyperpa-
rameter tuning process is given in Appendix C.

B. Simulated System

In order to test the performance of the designed machine
learning framework, the autoencoder has been used to learn the
partial decoupling coordinates of the SMDP. For this system, a
set of partial decoupling coordinates are known, which serves
as a baseline for analysis of learned coordinates, and related
controller performance.

The analytic decoupling coordinates 84 are the length of
the rod and its angle (see Figure 2, system 2). For every
end effector position, there are two valid inverse kinematic
solutions to g. To ensure that the coordinate transform be-
tween joint angles and decoupling coordinates is bijective, the
configuration space of the robot must be limited to contain
either only “arm-up” or “arm-down” configurations, such as
qo € [—m,m) and q1 € [qo,qo + m) for the “arm-down” case.

In practice, the configuration space is limited further to
improve performance of the autoencoder. Two parameters,
£ = 0 and A = 0.2 were chosen to limit the configuration
space to qo € [—m, k) and ¢1 € [qo + X\, g0 + 7 — N).

The remaining parameters used for numerical simulations
are indicated in Table II, including link lengths /;, end-effector
mass m and gravitational acceleration g.

TABLE II: Simulation parameters

lo[m] | l1[m] | m[kg] 2]

2.5 2.5 3

g[m/s”] | xa[m] | ya[m]
9.81 2 5

V. CONTROLLER DESIGN

Describing a robot system in decoupling coordinates allows
the use of controllers that depend on this decoupling. To
illustrate this, two kinds of controllers have been designed
for the SMDP. The first is a collocated controller, which aims
to drive the collocated degree of freedom, #,, to a desired
value. The second controller is a non-collocated controller,
which instead has its system output as the unactuated degree
of freedom 6,,.

A. Collocated control

For the case of collocated control, the SMDP without springs,
and with varying degrees of joint damping was considered. By
choosing as system output the actuated degree of freedom, the
SMDP can be controlled using a simple proportional-derivative
controller with gravity compensation (PD+). This results in the
following control law:

U =Fky(0a —0a) + ka(Ba — 0.) + Goa(8).  (28)

Here, k, and k; are gains that may be chosen for example
through pole placement or LQR optimization. , and 0,
indicate the desired position and velocity of the active DOF,
and Gy ,(0) is the active component of the potential force
vector. The obtained control input u is then applied to the real
system in g-space, where the system dynamics are simulated.
The control loop, including coordinate transformations is
shown in Figure 4. There, Vh indicates the computation of
6 from {q,q}. The proportional and derivative control term
are indicated with P and D, respectively, and the simulated
system is represented by the SMDP icon. Note that this
controller relies on the property of input decoupling, but does
not leverage the inertially decoupled description.

Fig. 4: Block diagram of the PD + gravity compensation
controller in #-space.

In order to analyse controller performance, a baseline con-
troller in the “naive” joint space coordinates was developed for
comparison. For this controller in g-space, there is no direct
mapping between input and output. Because of this, the system
cannot be controlled by treating it as an output regulation
problem. Instead, a combination of feedforward regulation to
the desired state and feedback control of the linearized state
may be used in the neighbourhood of the linearization point.

For the SMDP system without springs, the feedforward term
only needs to compensate gravity. For more complex systems,
numerical solvers may be used to determine the required
feedforward control term. The set of desired states is limited
to those directly below the actuator, so that the feedforward
term may be written as:

Ufp = —mg. 29)

The feedback control term assumes small deviation from the
linearization point. This deviation is defined as:

_la—4a
e, = L_.l_q] (30)



A feedback control input, uy;, proportional to the error steers
the system to the desired location. A set of gains K 4ive €
R'*4 can be chosen based on performance requirements. The
complete control law is then:

u:uff+Knai1Jeeq- (31)

B. Non-collocated control

The abovementioned collocated controller does not consider
the unactuated DOF, which leaves oscillatory zero dynamics.
Without damping, a non-collocated controller may be pre-
ferred. A feedback linearizing controller on the non-collocated
DOF is able to regulate the full state to a steady value, as will
be described below.

For non-collocated control of the SMDP, the unactuated
DOF is chosen as system output:

y = 0,. (32)

A linear system can be obtained through a coordinate change
from the state @ and velocity 6, to the system output y and
its derivatives. For the partially decoupled SMDP, this leads
to the following formulation:

y =0, (33)
§ = 0., (34)
L 1 B W

y—%—Mw@(ch&mecmmy (35)
¥ =f(6,6,u). (36)

Here, f(6,6,u) is some non-linear function that describes the
jerk of the unactuated degree of freedom. The dependency of
the jerk on control input u shows that this choice of output
leads to a system of relative degree 3. If instead, the system
is assumed to be fully inertially decoupled, the lack of inertial
cross-couplings simplifies the Coriolis- & centrifugal matrix,
resulting in a system of relative degree 4. The neglected terms
are a function of 9a9u, which may destabilize the system for
large velocities. In practice however, this effect is limited, as
is shown in Section VI-C.

Using the fully decoupled representation, we can describe
the passive DOF and its derivatives as a linear system. The full
state Y € R* can be written as a column vector as follows:

)" (37)

Y=[y 4§ ¥
The dynamics in this Y -space can be represented in compan-
ion form as:

J 0 1 0 0][y] [0
il oo 1 ollg| o
g | =10 0o 1f[g| Tt ol ©¥
o oo o olly| |1

where v = g% is a virtual control input used to control the
system. This is a linear time-invariant (LTI) system, namely a
chain of integrators. As a result, standard controllers for LTI

systems such as pole placement or LQR may be applied. In
order to relate this virtual control v input to the real system
input u we need a description of 3. This term can be written
in normal form as:

¥ =a(Y)+ B(Y)u, (39)

where «(Y) indicates the internal dynamics contribution, and
B(Y) is the control effectiveness of control input u. Any
virtual control input determined based on the dynamics in Y -
space, can then be linked to a corresponding input u based on
(39).

In order to control the system towards the desired state, the
virtual control input is defined as

v=Ky(Y -Y), (40)

where Y is the desired state in linearized coordinates. Cor-
responding control gains Ky € R'** are determined using
Ackermann’s formula for pole placement [40]. Figure 5 shows
a block diagram of the used control scheme. There, r is a
shorthand for the mapping from 6 to the linearized state Y,
K indicates the calculation of the virtual control input v and
s indicates the calculation of the final control input u. This
input is applied to the real system, after which the dynamics
are simulated, as indicated by the SMDP icon.

Fig. 5: Block diagram of the non-collocated controller in Y -
space.

VI. RESULTS
A. Learning of coordinates

The autoencoder has been trained to learn the partial decou-
pling coordinates of the non-collocated single mass double
pendulum (SMDP). The following section analyses the au-
toencoder performance based on reconstruction, the degree of
inertial- and input decoupling, and dynamics prediction of the
system.

A comparison between the learned and analytic 6-
coordinates, as a function of initial coordinates g, is shown
in Figure 6. The learned collocated coordinate 6, ; closely
matches its analytical counterpart 6, 4. The second coordinate
6.,r does not exactly match 6, 4, but the two are related
through an affine transformation. This discrepancy is expected,
since the loss function does not directly impose any constraints
on 0, 1. Instead, requirements on the Jacobian ensure that the
system is inertially decoupled in 8. An affine scaling of the



unactuated coordinate does not affect this decoupling, which
explains the discrepancy.
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Fig. 6: Comparison between learned and analytic 8. Note that
the 6,-range is different between the analytic and learned
transformation.

Jacobian invertibility

Another important measure of learned coordinate performance
is whether the encoder and decoder Jacobian are each other’s
inverse, to ensure that the learned transformation is invertible.
Figure 7 shows the Jacobian identity error, calculated equally
to the loss term of Equation (19). The Frobenius norm is
indicated as ||...||r. This clearly shows that although there
are some points of poor invertibility along the edge of the
training set, the encoder and decoder Jacobians generally
match well.
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Fig. 7: Error between the encoder and decoder Jacobian
product (JepcJgec) and identity.

Dynamical matrices

The goal of the autoencoder is to learn a set of coordinates
for which the system is both input decoupled and inertially
decoupled. This can directly be illustrated through the values
of Ay and My across the configuration space of gq.

Input decoupling was achieved, with the first term of
Ap(07,) being between 0.8 and 1.2 for 94% of samples. The
second term of Ay(01) was between -0.2 and 0.2 for 96%
of samples. However, deviations do occur especially for the
actuated DOF, mostly along the edge of the domain. The input
decoupling error is shown for different g in Figure 8. This
shows a similar pattern to that of the Jacobian invertibility.

Ay(0) error

N g
] N | |
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Fig. 8: Input decoupling error of Ay(07) as a function of q.

The second goal is inertial decoupling, which requires
maximising diagonal elements of My (60;,) while minimising
its off-diagonal elements. This was achieved with the diagonal
terms of Mpy(01) being greater than 1 in 98% of cases, and
95% of the off-diagonal terms being smaller than 0.1. Figure 9
shows the inertial decoupling error. For this computation, the
inertia matrix entries were first truncated to be no greater than
one, similarly to Equation (25). This truncated inertia matrix,
M,(81), was then compared to the desired identity matrix.
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Fig. 9: Inertial decoupling error of My(0y,)
as a function of q.

Dynamics prediction

Although the previously described metrics indicate good per-
formance of the autoencoder, the model’s physical accuracy
can be understood better by simulating the system dynamics
in the learned coordinates. As a measure of physical accuracy,
trajectories with varying starting coordinates and control input
were simulated. For each starting condition, a trajectory was
simulated both using the real dynamics in g-space, as well
as using the learned dynamics in @p-space. The trajectory
in learned coordinates was then transformed to g-space for
comparison with the real trajectory. For more information on
trajectory generation, see Appendix F.



The root-mean-square error (RMSE) of the learned joint
angles compared to their analytic counterpart is shown in
Figure 10. This shows how the approximated trajectories start
at a small deviation, which increases with time. However,
the error is very small, as after three seconds, the RMSE is
less than 0.05 radians, or less than 3 degrees, for both joints.
The standard deviation is quite large compared to the RMSE.
This shows that the autoencoder performance varies across its
trained domain. The coordinate prediction error is larger at the
edge of the training set, which explains why simulation error
increases as simulations drift from the centre.

Learned dynamics prediction error, joint angles ¢q
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Fig. 10: Root mean square error of learned coordinates versus
time. One standard deviation shown in shaded colour. n = 207

The combination of good performance in reconstruction,
decoupling and dynamics simulation shows that the autoen-
coder framework is able to successfully learn a decoupling
coordinate transformation.

B. Collocated controller

Three collocated controllers were compared on the SMDP
system: the PD+ controllers in analytic coordinates 84 and
learned coordinates O, and the controller on the linearized
state in “naive” coordinates q. With properly tuned gains, all
three controllers locally stabilise the system.

Controller performance was compared based on four per-
formance metrics: configuration error, control effort, settling
time and overshoot (see Appendix E for details). Control gains
were optimised for each controller type using a grid search
weighing these four metrics. Dynamics were then simulated
with varying joint damping. The first set of simulations has no
joint damping in g-space, the second has equal joint damping
of 10 Nms/rad on each joint, and the last similarly has joint
damping of 50 Nms/rad.

An example 15 second trajectory of the undamped case is
shown in Figure 11. This clearly shows that all controllers
converge to oscillatory behaviour. However, the controllers on
decoupled coordinates very closely reach the desired tendon
length 6,, whereas the controller on naive coordinates oscil-
lates for all degrees of freedom, both in g-space as well as in
O-space.

Since the undamped system does not converge to a steady
state, the rod length 6, is chosen for performance measures.
Figure 12 shows controller performance of the undamped

case for 46 trajectories. This clearly shows that controller
performance is very similar between the learned and analytic
decoupling coordinates. Furthermore, the controller on naive
coordinates has significantly larger average positional error,
often does not settle within bounds and overshoots more.
Control effort is similar between controllers, with the g-space
controller showing slightly more conservative control input.

Collocated control trajectories, undamped
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Fig. 11: Example simulation using collocated controllers
(orange and blue), as well g-space controller (green) on
undamped system. The 6-space trajectory shows the true
(i.e. analytic) values of the rod length and angle for each
simulation.
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are defined on the tendon length 0, 4.

Similar analysis was performed in the damped case. The tra-
jectories in Figure 13 show how oscillations for each controller
type gradually die out with time. This causes performance of
the three controllers to become more similar.



Performance metrics on the joint angles paint a different
picture from the undamped case, as can be seen in Figure 14.
Error on the joint angles is slightly larger for the controller
on naive coordinates, but overall very small. Control effort
remains similar to the undamped case. Settling time and over-
shoot increase significantly for the controllers on decoupling
coordinates, because their control objective is not defined on
the joint angles. However, they are still comparable to the
results achieved by the controller on naive coordinates.

Collocated control trajectories, damping = 10 Nms/rad
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Fig. 13: Example simulation using collocated controllers on
lightly damped system. The oscillations of all three trajectories
converge over time.
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As damping is increased, different controller trajectories
converge and become nearly indistinguishable. This is shown
clearly in the example of Figure 15.
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The similarity between trajectories is also visible in the
performance metrics presented in Figure 16. Joint error angle
decreases to less than 10~* radians, revealing error in the
learned coordinate mapping. Control effort, settling time and
overshoot do not vary with any significance between con-
trollers.

Collocated control trajectories, damping = 50 Nms/rad
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strongly damped system. The trajectories converge quickly.
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C. Non-collocated controller

For non-collocated simulation, no joint damping was applied.
Instead, two torsional springs with a constant stiffness of 4
Nm/rad were included in the system. These springs shape
the potential function of the system, which allows the use of
the previously described non-collocated controller.

The non-collocated controller is able to drive the system to
a stable desired state, for a specific set of starting and desired



conditions. An example trajectory is shown in Figure 17, for
the controller applied to the analytic coordinates. This shows
that although the controller is able to drive the passive DOF to
its desired value, there is steady-state error in the active DOF.
This error highlights a limitation of the applied methodology,
specifically with the linearizing transform Y = n(6, 0) This
mapping is only a true coordinate transformation locally, and
for a sufficiently large domain the transform is not one-to-one.
As a result, the state in Y'-space may be equal to the desired
state, while the same is not true in O-space. For application
of this controller it is therefore imperative to limit the set of
permissible states accordingly.

Non-collocated control trajectory, analytic coordinates
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Fig. 17: Example trajectory of non-collocated controller ap-
plied to analytic coordinates 6 4.

For the same starting and desired state, the trajectory follow-
ing from control on learned coordinates is shown in Figure 18.
Although the general trend is similar to the analytic trajectory,
there are two key differences. Firstly, the final state differs, and
secondly, the trajectory oscillates. Both properties are a result
of the inaccuracy of the learned transform, which influences
the feedback linearizing parameters a(Y") and S(Y'). Error
in these parameters causes a mismatched between the real
dynamics and those cancelled by the controller. This results
in the observed oscillations, as well as in steady state offset.

These results show that for a small set of states, a non-
collocated controller can drive the SMDP system exactly to a
desired state without relying on damping. However, implemen-
tation is significantly limited by loss of controllability and the
shape of the potential function. A discussion of non-collocated
controller limitations is provided in the following section.

VII. DISCUSSION

The results presented in this report show that the control
problem for certain classes of underactuated robots may be
simplified using an appropriate choice of coordinates. Further-
more, the feasibility of obtaining a coordinate transformation
using machine learning is demonstrated. In this section we
highlight a number of interesting findings, limitations of the
current methodology, and avenues for future work.
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Non-collocated control trajectory, learned coordinates
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Fig. 18: Example trajectory of non-collocated controller ap-
plied to learned coordinates 6.

A. Autoencoder

1) Higher-dimensional systems: The autoencoder frame-
work has been developed for 2-DOF systems, and was tuned
for the SMDP. Performance on the series elastic actuator
decoupling coordinates, without retuning hyperparameters,
shows promising results for generalisability of the framework
(see Appendix D). However, further testing must be performed
to verify if the methodology can be extended to higher
dimensions. A more expressive hidden architecture, or even a
different architecture, may be required to handle more complex
problems.

2) Alternative ML frameworks: In this work, a simple
autoencoder architecture was used, and required physical
properties were imposed through loss terms. The choice of
autoencoder was based on their straightforward implementa-
tion and ease of loss function definition. A regular autoencoder
was selected rather than a variational autoencoder (VAE), since
there was no need to generate new data from the latent space.
A VAE could potentially improve smoothness of the learned
transformation, but this was not found to be a problem for the
considered systems. It would be interesting to experiment with
alternative machine learning frameworks, such as invertible
neural networks, symbolic regression or VAEs, to compare
their results.

3) Effects of model uncertainty: The autoencoder training,
control input calculation and dynamics simulation were all
performed on the same model, without any noise. This is a
very optimistic scenario, and model uncertainty and sensor
error in real applications would affect the quality of the learned
transformation. This would be particularly important for per-
formance of the feedback linearizing controller, since such a
controller relies on exact cancellation of system dynamics.

4) Reliance on analytic input decoupling: A number of loss
terms for the machine learning setup are based on an analytic
expression of the input decoupling coordinate. These terms
are applicable for systems which are classified as collocated



in [35], and improve the autoencoder performance. It may be
interesting to attempt learning decoupling coordinates without
these explicit terms, to make the methodology less reliant on
analytic methods. In this case, the loss function would need
to be amended, to ensure that input decoupling is imposed
properly.

5) Learning full inertial decoupling: The current autoen-
coder loss function is designed to learn a well-defined mapping
that results in an input decoupled and partially inertial decou-
pled system. There is, however, no loss term that requires full
inertial decoupling. This could be implemented with a loss
term on the inertia matrix gradients, which can be computed
efficiently using modern automatic differentiation tools.

B. Non-collocated control

1) Loss of control authority: The presented feedback lin-
earizing non-collocated controller leverages potential cou-
plings. Well-defined-ness of the potential function for a double
pendulum can be guaranteed in joint space with sufficiently
large springs on each joint. However, when transforming
to decoupling coordinates, this property is not necessarily
preserved. In parts of the SMDP state space, the poten-
tial force becomes aligned with the actuator, in which case
control authority of the passive DOF 6, is lost. This can
be understood by looking at the linearizing control input
u = ﬁ(—a(Y) + v). Exactly at those points 5(Y") tends
to zero. This represents a loss of control authority, and the
resulting control input u will destabilise the system. (At other
points in the state space, the internal dynamics term a(Y") may
tend to infinity, causing the same issue.) This greatly reduces
the number of stable trajectories, and limits the application
of such a non-collocated controller. Clever tricks, such as
using a constant «(Y) and 3(Y), or clamping the control
input ¥ may allow for more robust control. However, more
fundamentally this problem may be alleviated by shaping the
potential function.

2) Non-uniqueness of non-collocated mapping: Depending
on the potential function of the system, the mapping from
decoupled coordinates to linearized state Y may not be
bijective. In particular, a single state in Y -space may map
to multiple states in @-space. Practically, this means that the
controller may steer the system towards the wrong state. To
alleviate this problem, the controller can be used locally.
Again, shaping of the potential function (through intelligent
placement of springs) may expand the usable region of the
controller.

C. Future work

The above-mentioned shortcomings present opportunities for
future work in order to better judge the application potential of
the presented classification and learned coordinate methodol-
ogy. In particular, we think that validation of the autoencoder
framework to more complex systems is vital for real-world
application of this methodology.

A rigorously tested autoencoder framework could be used as
a tool to better understand complex underactuated systems. Re-
sults from the learned coordinate transformation could guide
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researchers to derive analytic coordinate transformations, or
find underlying structure between robots that at first glance
seem unrelated.

VIII. CONCLUSION

In this thesis, we investigated how inertial and input decou-
pling through a change of coordinate can be used for control
of underactuated robotic systems. The first contribution of this
thesis is an identification of three classes of underactuated
systems based on the degree to which their dynamics can be
decoupled, and an analysis of how such decoupling affects
controller design. Afterwards, an autoencoder framework was
developed with a loss function designed to find such coordi-
nates. Results of the learned coordinates show that the autoen-
coder is able to find a decoupling coordinate transformation
for a 2-DOF toy system. A collocated and non-collocated
controller were developed to demonstrate the benefit of de-
coupling coordinates on this system. Performance of different
controllers was presented, which showed the benefits of input
decoupling for collocated control, and full decoupling for
non-collocated control. The results were discussed, and future
work was identified. Such work should focus on extending the
learned coordinate methodology to more complex systems, and
researching the applicability of the presented non-collocated
controller to systems with different potential energy functions.
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APPENDIX
A. Dynamic coupling of double mass double pendulum

Lemma 1. The double mass Pendubot system following the
dynamics of Equation (12), with input matrix as Equation (13)
and inertia matrix as Equation (14), can be written in input
decoupled form, but not in partially decoupled or fully decou-
pled form.

Proof. Consider the dynamics when absolute joint angles are
chosen as system coordinates, and spring- and damping forces
are ignored, namely:

My(q)G + Cy(q.4)d + G4(q) = Ag(q)u. 41)

The corresponding inertia matrix is:

12(mo +my) lolimq cos (go — q1)
M, = 0
o(9) lolym cos (qo — q1) 1Fmy ’
(42)
and the input matrix is simply:

1

Ayq) = M - (43)

We look for a new set of coordinates ¢ = f(q) that result
in input decoupling and (partial) inertial decoupling. From the
findings of [35], we know that we must have ¢y = qo, since
the system is already input decoupled in initial coordinates.
This leads to the following Jacobian:

1
a(q)

b((zl)} ’

where the parameters a(g) and b(q) are free to choose. The
inertia matrix in ¢-space is given by:

Ji(q) = [ (44)

My(¢) = J; " My(q)J; " (45)
From Equation (44) we know that:
1 1 0
Jp = _ae 1 (46)
blq) b(q)
For readability, we may define ¢(q) = ﬁ, such that Equa-

tion (46) can be written as:

1 1 0
Is ‘{—am)c(q) c<q>]’ @7
nd
‘ JfT — 1 —CL(q)C(q) (48)
f 0 c(q)



For an invertible mapping, the inverse Jacobian and inverse
transpose Jacobian are as follows:

To simplify analysis, write the inertia matrix in original
coordinates as follows:

Moo Mo
M,(q) = { . (49) B 00y 9 B 90 801
Moy M TN e) =08 |, JiT() = |98 9
Then, the resulting inertia matrix in proposed coordinates ¢ 0o 91 o1 9 (57)

1s: As such, the input matrix in ¢-coordinates is as follows:

My(¢) =

c(q) Mo — G(Q)Cz(Q)Mn} _ (58)

M¢0,0
L(Q)Mm —a(g)c*(g)Mn My, |
(50)
The key requirement that follows from this equation is that the
off-diagonal component must be zero. Writing out the matrix l (aoo) m -+ (ael ) 202 9% 900 80, 96, mezl

90y
Ay(p) = l%’é’]

and the inertia matrix in ¢-coordinates is:

m +
blocks we find: My () = aeo¢390 G0 a¢§ R agela¢1

00, 00 2 2
a6 gaem + 5abge-mby  (552)*m + (55-)*mo

c(q@)lolymy cos (g0 — q1) — a(q)c?(q)1?my = 0. (51

For this condition to hold for all g, the two terms of this
equation must each equal zero. From:

c(q)lolimy cos (go — q1) =0 (52)

with non-zero Iy, I; and m;, we find that ¢(q) must be zero.
If ¢(q) = 0, the Jacobian devolves into:

Js(p) = [é 8]~

This would require the second coordinate ¢; to be constant,
which is means the coordinate change would not be valid.
Therefore, no choice of coordinates exists for which the two
mass Pendubot system is input- and inertially decoupled. [

(53)

B. Inertial coupling of single mass double pendulum

Lemma 2. The SMDP system following the dynamics of
Equation (12), with input matrix as Equation (15) and inertia
matrix as Equation (16), can be written in partially decoupled
form, but not in fully decoupled form.

Proof. Tt can be shown that no smooth and invertible mapping
exists for which the SMDP system is both input decoupled and
fully inertially decoupled. To show that such a mapping does
do not exist, one can show that these requirements lead to
conflicting terms in the transformation Jacobian.

In trying to find these new coordinates, we look for a new
set of coordinates ¢ = f(0). The requirements on this new
coordinate can be made clear through the Jacobian:

999 Odo
Ji(0)= |50 5% (54)
00o 00,

The inertia- and input matrix in these new coordinates can be
calculated as follows:

My(¢p) = J;7(0)My(6)J;(6) (55)

(56)

Ay() = J;7(8)Ag(6)

'(59)
Following from requirement 2.(b) we must have g%‘i = 0. This
results in mass matrix:

(g ) m+(801) meg 2 9% 2
M (¢ — o ) 0o Ob1 (60)
o [ gty (B mey

Following from requirement 1.(b) we must have ‘991 # 0.
Since requirement 1.(a) states that the off- diagonal entries
must be zero, it naturally follows that - 901 _ ),

%)27” 0

9o
My(¢) = (G
0 (§)mb

Again, following from requirement 1.(b) we know that the
bottom-right entry must not be a function of 6y, and so we
must have (29)2m2 = g(6,)*m

As such, the matrix simplifies to:

(61)

o1
This can be rearranged to (g%i)z = g(z(%) or gzll = j:g(eil),
where g(61) # 0.
We can thus construct the Jacobian as follows:
o [
I (@) = | %% (62)
;@) 0 =+ g(al)é
oo
Jp(0) = [ 0 46 ] (63)
0Va <91)

Following Schwarz’s theorem on mixed partial derivatives,
we know that for ¢ f(@) to be a valid coordinate
transformation, we must have:

9 0¢ 0 0¢1
It S WLk 4
001 " 06, 00y " 001 (64)
From the Jacobian we know that:
Op1 01 1
— =0, — = +lyj—m—, 65
890 801 0 9(01) ( )
0 ,0¢1 0 091 1
(Yo —(===) = 66
01(890) 7 90(801) g(61) (66)



Meaning that there is no selection of coordinates ¢ which
leads to full inertial and input decoupling. O

C. Hyperparameter tuning

In order to achieve good learning performance, a number of
hyperparameters needed to be selected. The most important of
these are as follows:

The encoder and decoder equally consist of 2 hidden layers
of 32 neurons. These are fully connected, and a sigmoid
activation function was used (see Figure 19). The Adam
optimizer was used with a learning rate of 1073, A training
set of 4200 samples and validation set of 1800 samples was
used to train for 5000 epochs.

OS50,

OR oS0
@ @ 0O

Y |

@ O O @ O O @
@ ® ® ®
Fig. 19: The autoencoder framework, consisting of an identical

encoder and decoder, which both contain two fully connected
hidden layers and sigmoid activation functions.

G

In order to improve learning performance, the weights of
the loss terms was optimized. Each loss term was initialized
at a weight of 1, with the reconstruction loss weighed more
heavily at a value of 4. Independently, each term was then
increased or decreased by a factor 1.25, after which the model
was trained. The performance of the learned and the optimal
combination of these terms was selected, based on the mean
squared error (MSE) of reconstruction, inertial decoupling
and input decoupling. Performance varied only slightly with
varying loss weights, so this crude optimization was only
performed once for each term to result at the final loss weights.

D. Learning decoupling coordinates of series elastic actuator

In order to test the generalizability of the machine learning
framework, the autoencoder has also been used to learn de-
coupling coordinates of the series elastic actuator (SEA). The
standard choice of SEA coordinates, namely the motor angle
0, and link angle 6,, results in an input- and fully inertially
decoupled system. Therefore, another set of coordinates must
be chosen as “naive” coordinates.

To this end, the motor angle ¢y = 6, and relative angle ¢;
are chosen as naive coordinates. With motor and link inertias
I, and I, spring stiffness k and control input u, the system
dynamics are:

M,G+ Gy(q) = Agu. 67)
Here, the inertia matrix is:
o+ L
M, = { M Il] (68)

and the input matrix is:

15

(69)

-]

The standard, fully decoupling coordinates can be obtained
through a linear transformation. After all, the equations of
motion in decoupled coordinates @ are:

My6 + Gy(0) = Agu (70)
with inertia matrix:
_do O
Mq - [O Il] (71)
and input matrix:
Ay = 1 (72)
o= 1ol

The analytic and learned decoupling coordinates of the
series elastic actuator are shown in Figure 20. Here, a very
similar pattern to the SMDP case is visible. The learned
actuated coordinate agrees very with the analytic solution. For
the unactuated coordinate, the learned and analytic coordinate
are again related through an affine transformation.

6y - analytic

0, - analytic

w

S

-2.5 2.5

&%

0, - learned

QI((J) 2.5

Fig. 20: Analytic and learned @ for the series elastic actuator.
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The learned coordinates provide incredibly good results for
both reconstruction and decoupling. Figure 21 shows that the
reconstruction error of this transform is in the order of 10~
radians.



q reconstruction error le=6
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Fig. 21: Reconstruction error of SEA

Jacobian invertibility error, calculated as the difference
between the product of encoder and decoder Jacobian with the
identity matrix, is similarly small, as can be seen in Figure 22.

Jacobian identity error
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Fig. 22: Jacobian identity error of SEA

Input decoupling performance is also outstanding, with
similarly negligible losses (see Figure 23).

Ap(0) error le—6

A6 — 11, 017

Fig. 23: Input matrix error of SEA

Lastly, inertial decoupling performance is shown in Fig-
ure 24. This paints the same picture of errors in the order of
magnitude of 10~° radians.
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Fig. 24: Inertia matrix error of SEA

It can be concluded that at least for a simple case such
as the series elastic actuator, the autoencoder framework is
also successful at learning decoupling coordinates. This is a
promising result, since no hyperparameters had to be altered
from the SMDP learning case.

E. Collocated control performance metrics

In order to compare performance of the three collocated
controllers, some metrics were selected. Their calculation is
described below. Some variables are written explicitly as a
function of time for clarity.

In the undamped case, the variable of interest is the rod
length 6y. Average error of the steady state oscillation can
then be calculated as:

et (6o — 90)

B
RMSEg = \/ O

Where t.,q is the time at the end of the simulation, and dt
is the discrete time step. This was defined as such because
a single measurement at the end of the simulation may not
represent the average error behaviour, and because after 2
seconds simulations had mostly settled to their steady-state
behaviour. Control effort was straightforwardly defined as:

(73)

tend

Control ef fort = Z u?

t=0

(74)

Settling time was then measured as the time it took for a
trajectory to reach and stay within a 5% of the desired rod
length. This percentage is compared to the distance between
desired and starting configuration. Similarly, overshoot com-
putes the percentage that the trajectory exceeds the desired rod
length, compared to this distance.

For the damped simulations, performance was measured
based on the joint angles. Calculation of control effort, set-
tling time and overshoot were identically to the undamped
case. Configuration error was calculated differently, since the
damped simulations reach a single steady value. This final
value was compared to the desired value to determine the
configuration error.



F. Learned coordinate trajectory generation

In order to test the performance of the learned coordinate
mapping in practice, SMDP trajectories were simulated on the
learned coordinates, and compared to ground truth trajectories.
The robot starting and desired conditions were varied within
the trained configuration space of the autoencoder. Every
trajectory was simulated for 3 seconds. A trajectory was
included in the analysis if it met three criteria: stayed within
learned coordinates, arm did not fold out fully and arm did
not fold in fully. In those cases, simulations destabilized and
caused noisy data.

An example trajectory is shown in Figure 25. Here, the
learned and ground truth trajectory are shown in orange and
blue, respectively. Darker colours indicate a later moment in
the simulation. As can be seen, the simulations are close for
certain parts of the configuration space, and further apart for
others.

Trajectory in (go, g1) colored by time

Trajectories
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2.5
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Fig. 25: Example trajectory showing the end-effector location
in g-space as a function of time..

Corresponding to the trajectory in Figure 25, movement of
the end-effector can also be visualized as in Figure 26. This
illustrates how the simulations diverge more as the end-effector
moves towards the edge of the trained domain. This is in line
with the results presented in Section VI.

Trajectory in (x, ¥) colored by time
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Fig. 26: Trajectory of end-effector in Cartesian space.

17



	Introduction
	Preliminaries
	Proposed Classification
	Inertial and input decoupling
	Decoupled dynamics for 2-DOF systems
	Proposed classification
	Generic underactuated systems
	Partially decouplable systems
	Fully decouplable systems


	Machine Learning Decoupling Coordinates
	Loss Function
	Reconstruction
	Input decoupling
	Inertial decoupling

	Simulated System

	Controller Design
	Collocated control
	Non-collocated control

	Results
	Learning of coordinates
	Collocated controller
	Non-collocated controller

	Discussion
	Autoencoder
	Higher-dimensional systems
	Alternative ML frameworks
	Effects of model uncertainty
	Reliance on analytic input decoupling
	Learning full inertial decoupling

	Non-collocated control
	Loss of control authority
	Non-uniqueness of non-collocated mapping

	Future work

	Conclusion
	References
	Appendix
	Dynamic coupling of double mass double pendulum
	Inertial coupling of single mass double pendulum
	Hyperparameter tuning
	Learning decoupling coordinates of series elastic actuator
	Collocated control performance metrics
	Learned coordinate trajectory generation


