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Fiber Meta l Laminates have been increasingly used i n aerospace appl ica t ions due to 

the i r l igh t we igh t a n d super ior fa t igue propert ies . One such ma te r i a l is GLARE, consist

i n g o f a l u m i n u m and glass f ibers embedded i n epoxy adhesive w h i c h is cu r ren t ly be ing 

used i n a i rcraf t such as the Ai rbus A340 and A380. This gave rise to the need to per

f o r m in-service and non-schedu led main tenance inspect ions o n such materials i n order 

to ensure the i r safe ope ra t ion w h i l s t m i n i m i z i n g the d o w n t i m e o f the a ircraft . Answer

i n g the market 's cal l f o r a qu ick a n d reliable Non-Des t ruc t ive Testing (NDT) m e t h o d , a 

m u l t i - f r e q u e n c y approach to pulse-echo Phased Ar ray Ul t rasonic in spec t ion was sug

gested. The Phased Ar ray Ul t rason ic (PAUT) m e t h o d works o n the same pr inc ip les as 

conven t iona l u l t rasonic i n spec t i on b u t benefi ts f r o m the f l e x i b i l i t y of hav ing several i n 

d i v i d u a l piezoelectr ic crystals capable o f focus ing and steering the u l t rasonic b e a m as 

w e l l as a l l owing f o r a quicker scan. 

This thesis aims to investigate and unders tand the effects tha t the f r equency o f PAUT 

transducers has o n the de tec t ion and character izat ion o f de lamina t ions i n GLARE l a m 

inates i n order to assess the po t en t i a l usefulness of app ly ing a m u l t i - f r e q u e n c y pulse-

echo PAUT inspec t ion m e t h o d f o r GLARE laminates . I t was expected that d i f f e ren t f r e 

quencies w o u l d be capable o f exclusively detect ing defects t ha t the other frequencies 

c o u l d n o t detect, m a k i n g a m u l t i - f r e q u e n c y approach an at tract ive o p t i o n to detect a l l 

defects tha t m i g h t be present i n a s t ructure. 

To de te rmine the effects tha t the f r equency o f PAUT transducers h a d o n the de tec t ion 

a n d character iza t ion o f de lamina t ions i n GLARE, three d i f f e r en t GLARE test samples 

were inspected u t i l i z i n g c o m m e r c i a l PAUT transducers opera t ing at 2 .25MHz, 5 M H z and 

l O M H z frequencies . Fur the rmore , an u l t rasonic m o d e l used to calculate the a t t enua t ion 

o f u l t rasonic waves i n th rough- t r ansmiss ion was adapted to calculate the a t t enua t ion o f 

u l t rasonic waves i n a pulse-echo m e t h o d i n order to p rov ide a bet ter unders t and ing o f 

the f r equency in t e r ac t ion w i t h GLARE. This m o d e l was t h e n va l ida ted w i t h real test re

sults. 

F r o m the tes t ing i t was conc luded tha t the 5 M H z f requency c o u l d detect defects o f 3 m m 

a n d 6 m m i n d iameter bet ter t h a n b o t h the 2 .25MHz and l O M H z f requencies i n a l l the 

test samples. I t was also d e t e r m i n e d tha t b o t h the 2 .25MHz and 5 M H z frequencies were 

capable o f 100% defect de tec t ion i n a l l tests samples and the 5 M H z f r equency p r o v i d e d 

bet ter v i s i b i l i t y o f these defects. Testing also revealed tha t the 2 .25MHz f r equency per

f o r m e d bet ter at s iz ing 3 m m and 6 m m defects i n GLARE panels t h i n n e r t h a n 0 .875mm 

w h i l s t the l O M H z p e r f o r m e d better at s iz ing defects at depths greater t h a n 0 .875mm. 

However, the 5 M H z f r equency h a d the best overall pe r fo rmance across a l l types o f de

fects and samples. Nevertheless, the inaccuracies i n the s iz ing o f 3 m m defects was f o u n d 
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to be unacceptably h igh , whUst the size dev ia t ion of the 6 m m defects was o n average 

lower t han 40%. I t was however de te rmined tha t these h i g h deviat ions were caused by 

the fact that the transducers h a d elevation sizes of 7 m m . 

Testing showed tha t the l O M H z f requency p e r f o r m e d better t han the other f requencies 

at measur ing the dep th o f defects at depths greater Ü i a n 0 .875mm. However, the 5 M H z 

transducer again p e r f o r m e d bet ter o n average across a l l a l l types of defects and samples. 

Lastly, I t was f o u n d tha t the 5 M H z f requency h a d the best Signal-to-Noise Ratio (SNR) 

o n GLARE panels t h i rmer t h a n 0 .875mm whi l s t the 2 .25MHz f r equency h a d the best SNR 

o n panels vdth thicknesses grater t h a n 0 .875mm. 

I t was finally conc luded tha t a m u l t i - f r e q u e n c y approach w o u l d provide very l i t t l e bene

fit over app ly ing a s ingle-f requency approach w i t h a carefu l ly selected frequency. I t was 

conc luded tha t Üie best f requency to detect de lamina t ions i n GLARE panels w i t h th ick

nesses be tween 0 .875mm and 5 .15mm was 5 M H z . 

Lasfiy, i t was s h o w n that the m o d e l adapted to de te rmine the a t t enua t ion of u l t rasonic 

waves i n GLARE panels was excessively sensitive to var ia t ions i n parameters such as den

sity o f t h e materials , thicknesses and velocities of the layers, causing i t to be too inaccu 

rate. Fur thermore , unexp la ined p h e n o m e n o n also occurred, w h i c h cou ld be a t t r i bu t ed 

to inappropr i a t e assumpfions . I t was therefore conc luded that a better m o d e l h a d to 

be developed to predic t the behavior of ul t rasonic waves i n GLARE d u r i n g pulse-echo 

inspections. 
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GLARE is a glass fiber a l u m i n u m Fiber M e t a l Lamina te (FML) that has been i m p l e m e n t e d 

i n d i f f e r en t a i rcraf t such as the A i rbus A340 a n d A380 and is ga in ing p o p u l a r i t y due to its 

l i g h t w e i g h t and superior fa t igue proper t ies [ i ] . However, due to the inhe ren t d i f fe rence 

i n ma t e r i a l proper t ies o f l a m i n a t e d materials , Non-Des t ruc t ive Testing (NDT) o f GLARE 

has p r o v e n to pose a challenge. Several i n spec t ion me thods such as u l t rasonic C-scan 

i n s p e c f i o n [ / ] , Eddy current tes t ing [3], X-ray rad iography [^!], t h e r m o g r a p h y [5, 6] and 

shearography [ /] have a l l p roven to be able to detect d i f f e ren t defects and damages i n 

GLARE. These methods have several l i m i t a t i o n s tha t ei ther h inders or l i m i t s the i r i n -

service use. These issues have given rise f o r the need to find a suitable and rel iable N D T 

m e t h o d tha t can p e r f o r m in-service inspect ions o f GLARE. 

One m e t h o d tha t c o i d d be used f o r in-service in spec t ion o f GLARE is the pulse-echo 

m e t h o d w i t h Phased Arrays Ul t rasonics (PAUT) [H]. This m e t h o d can p e r f o r m inspec

t ions w i t h a re laf ive ly smal l m o b i l e u n i t r e q u i r i n g o n l y one-side access to the ma te r i a l 

a n d offers the operator more c o n t r o l and flexibility t h a n conven t iona l id t rasonic inspec

t ions . The f r equency o f ul t rasonic waves is an i m p o r t a n t parameter tha t in f luences the 

r e so lu t ion o f the image at d e t e r m i n e d depths as w e l l as the size o f the defects tha t can 

be detected. A lower f r equency w i l l have the ab ih ty o f pene t ra t ing the ma te r i a l deeper 

a n d have reduced noise whUst a h igher f r equency wiU be capable o f de tec t ing smaller 

defects a n d wiU a h igher reso lu t ion . 

The goal o f this MSc thesis is to evaluate the effects o f f r equency o n the de tec t ion o f 

defects a n d damages i n GLARE i n order to evaluate the benefi ts of a m u l t i - f r e q u e n c y 

PAUT approach capable o f re l iab ly p e r f o r m i n g in-service inspect ions o f GLARE i n a near 

f u t u r e . A m u l f i - f r e q u e n c y PAUT transducer c o u l d c o m b i n e d i f f e ren t u l t rasonic f r equen 

cies i n t o one t ransducer hous ing , m a k i n g use o f the benefi ts o f each u l t rasonic f r equency 

to detect a l l defects a n d damages i n GLARE, regardless of size and loca t ion . This c o u l d 

p rov ide a n added level o f ce r t a in ly d u r i n g inspect ions tha t c o u l d a id i n the pass / fa i l de

c i s ion m a k i n g process. The knowledge col lected d u r i n g this research p ro jec t w i l l ensure 
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2 R E F E R E N C E S 

tha t there is a clear' unders tand ing o f the effects o f f r equency o n defect and damage de

t ec t i on f o r GLARE, w h i c h can be app l i ed i n a f u t u r e to develop a m u l t i - f r e q u e n c y PAUT 

transducer capable of detect ing mos t defects and damages re l iably d u r i n g in-service i n 

spections of GLARE. 

This thesis wUl be d iv ided i n t o 7 parts: 

1. The first par t of this thesis w i U in t roduce the reader to GLARE a n d w i l l p roceed to 

describe the defects and damages tha t can occur i n GLARE, as w e l l as the d i f fe ren t 

N o n Destruct ive Testing (NDT) me thods tha t have been apphed i n order to detect 

t h e m . 

2. The second par t w i l l discuss Ul t rasonic a n d Phased Ar ray Ul t rasonic (PAUT) the

o r y to gain a better unde r s t and ing o n the physics b e h i n d i t . This w i l l p rovide a 

so l id basis o n w h i c h to p l a n and p e r f o r m the tests as w e l l as a id i n the in terpre ta

t i o n o f results. 

3. The t h i r d par t w i l l expla in the e q u i p m e n t used d u r i n g tes t ing i n this thesis. The 

propert ies o f the e q u i p m e n t as w e h as its l i m i t a t i o n s w i l l be explored w i t h i n the 

context o f this thesis. 

4. The f o u r t h par t w i l l w a l k the reader t h r o u g h the process o f selecting the test sam

ples, the test ing m e t h o d o l o g y used as w e l l as the cr i ter ia used to evaluate the re

sults. Lastly, the results wiU be presented and discussed. 

5. The fiffii par t of the thesis w i l l a t t empt to adapt k n o w n models f o r the p r e d i c t i o n 

o f the a t tenua t ion o f u l t rasonic waves i n GLARE f o r use w i t h i n the context o f this 

thesis. The results w i l l t h e n be analyzed and discussed. 

6. Lastly, conclusions w i l l be d r a w n a n d recommenda t ions f o r f u r t h e r research w i U 

be made. 

REFERENCES 
[1] A. V l o t and J. W. Gunn ink , eds., Fibre Metal Laminates: An Introduction (Kluwer Aca

demic Publishers, Dordrecht , 2001). 

[2] R. A. M . Coenen, Design of a Quality Assurance System for Structural Laminates, Ph.D. 

thesis. D e l f t Univers i ty o f Technology (1998). 

[3] J. Sinke, Some Inspection Methods for Quality Control and In-service Inspection of 

GLARE, A p p h e d Composhe Mater ia ls 10, 277 (2003). 

[4] A. Fahr, C. E. Chapman , D. S. Forsyth, C. Poon, a n d J. F. Lal iber t , Nondestructive 

evaluation methods for damage assessment in fiber-metal laminates, Polyiuer C o m 

posites 2 1 , 568 (2000). 

[5] C. Ibarra-Castanedo, N . E Avdel idis , E. G. Grinzato, P G. Bison, and S. M a r i n e t t i , 

Delamination detection and impact damage assessment of GLARE by active thermog

raphy, I n t e rna t iona l Jou rna l o f Mater ia ls and Product Technology 41 (2011). 



RnFERCNCES 3 

[6] K. Dragan, A. Leski, A. Czulak, and W. Hufenbach , Inspection Methods for Quality 

Control of Fihre Metal Laminates (FML) in Aerospace Components, Composhes The

ory and Practice 4, 272 (2012). 

[7] W. Steinchen, L. Yang, G. Kupfer , and P Macke l , Non-destructive testing of aerospace 

composite materials using digital shearography Proceedings o f t h e In s t i t u t i on of Me-

chtmical Engineers, Part G: Jomnal of Aerospace Engineer ing 212, 21 (1998). 

[8] W. Bisle, T. Meier, S. Mueller , and S. Rueckert, In-Service Inspection Concept for 

GLARE - An Example for the Use of New UT Array Inspection Systems, E C N D T , 1 

(2006). 





2 
-•' l i j l i I L J V' h J i I j ) 

Vi f\ A\ ii'"^ Ï J C / I IVT 
li 11 I 

This chapter presents a hterature review o n GLARE and the d i f f e ren t types o f damages 

and defects tha t can occur d u r i n g the m a n u f a c m r i n g , assembly and in-service l i fe o f 

GLARE. Fur thermore , a s tudy of the d i f fe ren t N D T techniques tha t can detect such de

fects and damages is also presented i n order to under s t and the i r approach and the i r 

l i m i t a t i o n s w h e n inspec t ing GLARE. 

2 . 1 . G L A R E 
Fiber M e t a l Laminates (FMLs) are composi te materials composed o f stacked t h i n lay

ers o f m e t a l b o n d e d together by a fiber r e in fo rced adhesive system. FMLs combine the 

bet ter fa t igue pe r fo rmance o f fiber r e in fo rced composi tes w i t h the good i m p a c t d a m 

age proper t ies o f metals to p rov ide a ma te r i a l w i t h t a i lo red proper t ies [1]. One of the 

m o s t w i d e l y used F M L i n the aerospace i n d u s t r y is GLARE, consis t ing o f layers o f S-glass 

fibers embedded i n F M 94 epoxy adhesive and a l u m i n u m . I t has f o u n d apphcat ions i n 

the Ai rbus A340 as a b u l k h e a d sect ion i n the fuselage, as pa r t o f the fuselage sk in of the 

Ai rbus A380 and as the cons t i tuen t ma te r i a l of the EC0S3 U m t L o a d Device, capable o f 

con t a in ing the explos ion o f a b o m b [1]. 

2 . 1 . 1 . C O M P O S I T I O N OF GLARE 
GLARE is composed o f a l u m i n u m 7475-T761 or 2024-T3 and S-glass fibers embedded 

i n the F M 94 epoxy adhesive as dep ic ted i n figme 2 .1 . The a l u m i n u m layers are s i m p l y 

sheets w i t h a thickness be tween 0.2-0.5 m m wh i l s t the fibers embedded i n the F M 94 

epoxy adhesive are prepregs w i t h a thickness o f 0.127 m m . The fibers themselves are 

about 10 [im t h i ck a n d are present i n a fiber v o l u m e fracfion of 59%. [1 ] 

As w i t h any fiber compos i te system, the fibers have bet ter mechan ica l propert ies t h a n 

the epoxy adhesive system. This is ref lec ted i n the s t rength a n d st iffness o f each since 

5 
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Figure 2.1: G L A R E [ ' ] 

the fibers have a s t rength o f 4000 MPa and a st iffness o f 88 GPa whi l s t the epoxy has a 

s t rengdi of 50 MPa a n d a st iffness o f 1.7 GPa. [1] 

2 . 1 . 2 . T Y P E S O F G L A R E 

There are 6 d i f f e r en t grades of GLARE, categorized based o n the fiber o r i e n t a d o n a n d 

stacking order. These are summar i zed i n table 2 .1 . I t is i m p o r t a n t to not ice tha t a l l 

GLARE laminates have symmet r i ca l layups i n order to avoid b e n d i n g effects caused by 

the i n t e rna l stresses tha t arise from u n s y m m e t r i c a l layups. [3] 

Table 2.1: G L A R E grades [)] 

GLARE sub A l u m i n u m Meta l AUoy Prepreg M a i n benef ic ia l 

grade Thickness or ienta characteristics 

[ m m ] t i o n 

GLARE - 0.3-0.4 7475-T761 0/0 fat igue, s trength, 

1 y i e ld stress 

GLARE GLARE 0.2-0.5 2024-T3 0/0 fat igue, s t rength 

2 2A 

GLARE 0.2-0.5 2024-T3 90/90 fat igue, s t rength 

2B 

GLARE 
Q 

- 0.2-0.5 2024-T3 0/90 fat igue, i m p a c t 

O 
GLARE GLARE 0.2-0.5 2024-T3 0/90/0 fat igue, s t rength i n 

4 4A 0° d i r ec t ion 

GLARE 0.2-0.5 2024-T3 90/0 /90 fat igue, s t rength i n 

4B 90° d i r ec t ion 

GLARE - 0.2-0.5 2024-T3 0 /90 /90 /0 i m p a c t 

GLARE GLARE 0.2-0.5 2024-T3 -F45/-45 shear, off-axis p r o p 

6 6A erties 

GLARE 0.2-0.5 2024-T3 -45/+45 shear, off -axis 

6B propert ies 
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GLARE laminates f o l l o w a cer ta in s tandardized cod ing system w h i c h allows anyone to 

qu ick ly k n o w its propert ies . The s tandardized cod ing system is de f ined as fo l lows: 

GLAREX-A/G-T (2.1) 

I n equat ion i , X defines fire grade (1 , 2A, 2B, etc), the A def ines fiie n u m b e r of a lu

m i n u m layers, the G defines the n u m b e r of glass fibers layers a n d T defines the thickness 

o f the a l u m i n u m layer i n m m . [ 1 ] 

2 . 1 . 3 . P R O P E R T I E S O F GLARE 
GLARE has m a n y advantages over odier t h i n sheet materials . One o f fire properf ies fiiat 

stands out the m o s t is the super ior fa t igue properdes o f GLARE w h e n compared to con

ven t iona l a l u m i n u m . I t has been s h o w n fiiat GLARE has a relat ively l o w a n d constant 

crack p ropaga f ion rate due to the fac t tha t the fibers take par t o f the l oad over the crack 

w h e n a l u m i n u m cracks f o r m , thus resu l t ing i n longer fa t igue l i f e w h e n compar ed to s i m 

i lar a l u m i n u m parts (up to x lO longer) . Fur thermore , due to the slower crack g r o w f i i rate, 

the loss of res idual s t rength o f GLARE is m u c h slower t h a n f o r a comparable a l u m i n u m 

plate [;')]. This proves to be a very u s e f u l p rope r ty f o r a i rcraf t where fa t igue is an i m p o r 

tan t issue. 

A n o t h e r i m p o r t a n t p r o p e r t y o f GLARE is its damage tolerance to i m p a c t damage. The 

i m p a c t damage proper t ies o f GLARE are bet ter t h a n those o f a l u m i n u m a n d glass fiber 

composhes [ 1 , 4, 5] . Fu rd i e rmore , GLARE w i l l present dents o n the surface after i m p a c t 

damages, a l l owing f o r v i sua l de t ec f ion o f the damage. This is p a r f i c u l a r l y a p r o b l e m i n 

fiber r e in fo rced composi tes where this is n o t the case. 

GLARE also has been s h o w n to have good cor ros ion proper f ies since the t h i n 2024-T3 

a l u m i n u m sheets a l low f o r a m u c h faster quench ing after ro l l i ng , resu l t ing i n fewer al loy 

elements i n the crystal boundar ies , thus creaf ing better co r ros ion proper f ies [5]. 

W h e n compared to other glass composites, the mois tu re abso rp t ion rate of GLARE is 

very l o w and fiius the effect o n its p roperf ies is m i n i m a l [b, 'o]. This is due to tiie a lu

m i n u m layers ac t ing as a barr ier against h u m i d i t y . 

A n o t h e r notable advantages o f GLARE is its lower specif ic w e i g h t (10% lower fiian a lu

m i n u m ) , the ab i l i ty to f o r m single and double curved panels w i t h relative ease and the 

fac t tha t fire tensile s t rength is h igher t h a n 1.5 x y i e l d stress. GLARE can also be m a c h i n e d 

a n d repaired w i t h s imi la r me thods and e q u i p m e n t used to repair a l u m i n u m . GLARE 

also has superior fire resistance to a l u m i n u m since the glass fibers can w i t h s t a n d t e m 

peratures of u p to 1 1 0 0 ° C ac t ing as a fire barrier, fiius p ro t ec t i ng the a l u m i n u m layers 

be tween the fibers f r o m m e l t i n g . [1] 

2 . 2 . DEFECTS AND DAMAGE I N G L A R E 
AU mater ia ls t ha t are m a n u f a c t u r e d and used i n s t ruc tura l componen t s are exposed to 

the r isk o f su f f e r ing defects d u r i n g m a n u f a c t u r i n g or damage d u r i n g fiie ope ra f iona l l i f e . 
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GLARE is n o except ion. Ti ierefore, this sect ion w i l l explore the d i f fe ren t defects tha t can 

occur i n GLARE d u r i n g m a n u f a c t u r i n g and assembly as weU as the damages tha t can 

occur d u r i n g the opera t ional l i fe . 

2 . 2 . 1 . M A N U F A C T U R I N G D E F E C T S I N GLARE 
The m a n u f a c t u r i n g o f GLARE is relat ively complex b y nature as i t has m a n y steps a n d 

m a n y variables w h i c h can aU in t roduce defects d u r i n g the m a n u f a c t u r i n g . The degree o f 

severity o f tiiese defects depends o n t h e h nature, size and tiie consequences tiiey m i g h t 

have o n tiie finished structure. Therefore i t is i m p o r t a n t to unders tand the types o f de

fects tha t can be enco imte red w h e n m a n u f a c t u r i n g GLARE. I t is i m p o r t a n t to no te tha t 

file defects covered here are o n l y tiie ones ar is ing f r o m the m a n u f a c t m i n g , m e a n i n g tha t 

tire defects i n tiie r a w mater ia ls such as voids i n tiie ' raw' prepreg or the processes tha t 

GLARE is subjected to after cu r ing are n o t covered. 

D E L A M I N A T I O N S 

Delamina t ions are d ie separat ion of the phes w i t i i i n tiie l amina te . I n GLARE this type o f 

defect occurs on ly w i t h i n one layer un l ike other compos i te laminates . There are m a n y 

causes tiiat can lead to de lamina t ions d u r i n g m a n u f a c t u r i n g , such as p o o r surface treat

m e n t o f the a l u m i n u m sheets or inclus ions [1]. Other causes f o r de lamina t ions w i U be 

explored i n the f o l l o w i n g sections. 

I N C L U S I O N S 

Inclus ions are u n w a n t e d f o r e i g n materials or objects tha t have been embedded i n tiie 

layup. M o s t o f these inclus ions are d i f f e ren t k inds o f sheets used d u r i n g the m a n u f a c 

t u r i n g process tiiat accidental ly get stuck i n be tween layers. Te f ion sheets are used to 

faci l i ta te remova l o f d i e v a c u u m bag. However, they c o u l d u n i n t e n t i o n a l l y get caught 

be tween layers if a t t en t ion is n o t p a i d d u r i n g layup . h is i m p o r t a n t to m e n t i o n tha t the 

location o f these inc lus ions is i m p o r t a n t f o r detec t ion. I f tire i n c l u s i o n is be tween the 

a l u m i n u m - p r e p r e g layer, tiie Te f lon w i l l n o t b o n d to tiie a l u m i n u m and w i l l show u p i n 

a C-scan. I f the i n c l u s i o n is be tween t w o prepreg layers, tiie Te f lon w i l l p a r t i y b o n d to 

b o t i i prepreg layers, tiius m a k i n g i t s l ight iy m o r e d i f f i c u l t to detect w i t h C-scan. This is 

represented i n figme 2.2. Similar things can occur w i t h the tape or bleeder sheets.! /'] 

Ano the r i m p o r t a n t k i n d of inser t that can occm- is back ing or cover sheets o f prepregs. 

These types o f sheets are used to protec t fire prepreg d u r i n g t ranspor t and storage and 

shou ld be r emoved before the prepreg is l a id . It can occur fiiat this sheet is n o t r emoved 

at aU because o f operator error or tha t tiie sheet is n o t removed p rope r ly a n d a piece 

remains at tached to tire prepreg. One of tire biggest p rob lems w i t h these types o f i n c l u 

sions is tiiat i f they are present d u r i n g the l ayup a n d are tiien cured, tiiey w i l l m e l t i n the 

autoclave a n d fuse w i t h the prepreg. This is especially dangerous because it can create 

kissing bonds be tween the insert and tire prepreg, w h i c h are d i f f i c u l t to detect. [ / ] 

There are ot i ier mater ia ls tiiat c o u l d also be classified as inc lus ions such as scissors or 

b o d y hair. However, al l these inclus ions m a y cause de lamina t ions be tween the layers 
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Figure 2.2: C-scan of Teflon inclusions in GLARE. Left side: Teflon insert between aluminum-prepreg layer. 
Right side: Teflon insert between prepreg-prepreg layer. [7] 

w h i c h w i l l greatly reduce the s t rength propert ies of the mate r ia l . I t is therefore i m p o r t a n t 

to be able to detect t h e m . 

V O I D S A N D P O R O S I T Y 

Voids and poros i ty are de f ined i n the A S M f l a n d b o o k [0] as: " [Voids are] air or gas tha t 

has been t r apped a n d cured i n t o a lamina te . Porosity is an aggregation o f mic rovo ids" . 

Voids and poros i ty are usual ly r emoved by app ly ing a v a c u u m to the l a m i n a t e d struc

ture and t hen sub jec t ing i t to h i g h pressures to f u r t h e r remove voids and avoid porosity. 

These voids and pores can be as smal l as 1 -2 / i / n [ / ] . A n example of voids i n glare is g iven 

i n figure 2.3. 

Figure 2.3: Voids between aluminum and glass fiber layers [ 1 ] 

One o f the m a i n factors tha t causes voids is process con t ro l , as i t has been s h o w n tha t the 

c o n t r o l o f the c u r i n g cycle gready affects the v o i d conten t o f the finished GLARE panels 

[ 1 , 9 ] . Other c o m m o n causes f o r voids and poros i ty are i m p r o p e r storage of the prepregs 

as they can absorb h u m i d i t y w h i c h wiU t hen cause voids w h e n the prepreg is cured, over-

aging of the adhesive layer, or i n s u f f i c i e n t thickness i n the adhesive f i l m used [1]. 
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These voids cause an increase i n mois tu re abso rp t ion w h i c h wUl eventual ly cause a sig

n i f i c a n t r e d u c d o n i n the du rab i l i t y of the GLARE panel [ i ] . Fmthe rmore , these smal l 

voids act as stress concentrat ions, m a k i n g t h e m weak spots f o r either de lamina t ions 

and /o r crack f o r m a t i o n [1 ,8 , 9] . 

D I S B O N D S 

Disbonds are defects tha t o c c m because there is a lack o f b o n d i n g be tween t w o surfaces 

or layers. These can occur at sphces where a lack o f adhesive at the sphce l o c a t i o n m i g h t 

prevent p roper b o n d i n g f r o m occur r ing . Poor fitting o f parts as w e l l as poo r process con

t r o l can also cause disbonds. [1] 

One special type o f d i sbond are the so cal led 'kissing bonds'. These types o f disbonds oc

cur w h e n t w o surfaces are i n close contact b u t w i t h o u t any actual b o n d i n g . Since there 

is n o b o n d i n g , they cannot transfer loads. However, due to the close p r o x i m i t y of the 

surfaces, these defects are d i f f i c u l t to find w i t h conven f iona l u l t rasonic methods , mak

i n g t h e m very dangerous defects [10]. N e w U T inspec t ion methods , such as those used 

by Yan et al., have proven to be able to detect kiss ing bonds i n b o n d e d a l u m i n u m pieces 

w i t h conven t iona l ul trasonics by examin ing the n o n l i n e a r i t y of the u l t rasonic s ignal [11]. 

Other techniques such as Dig i t a l Image Cor re la t ion (DIC) have also been successful i n 

detect ing kissing bonds i n composi te mater ia ls i n l abora tory e n v h o n m e n t [12]. H o w 

ever, al l these methods are exper imenta l a n d are n o t used i n the field [11, 12] This type 

o f d i sbond can occur due to inc lus ions (as expla ined previously) , or poo r process con

t ro l . 

R E S I N V A R I A T I O N S 

One of the defects tha t can occur d u r i n g m a n u f a c t u r i n g o f GLARE is h a v i n g an uneven 

d i s t r i b u t i o n of resin t h r o u g h o u t the panel . I f the prepreg has d ry spots or u n e v e n dis

t r i b u t i o n o f the resin, i t m a y cause voids or resin r i c h areas, b o t h of w h i c h are p rone to 

de laminat ions . Other causes f o r such defects can be the i m p r o p e r use o f autoclave tools 

as weU as w r o n g cure cycles [ 1 , 7] . 

S U R F A C E D E F E C T S 

As the n a m e explains, surface defects are defects tha t occur at the surface o f the l a m i 

nate. These defects usual ly are smaU dents or smaU scratches tha t usual ly occur due to 

poo r c leaning o f either the m o l d or the a l u m i n u m sheets. They are re la t ively c o m m o n 

and do n o t usual ly pose a mechan ica l p r o b l e m to the l amina te b u t m i g h t become p r o b 

lemat ic f o r uses where s m o o t h surfaces are required, such as f o r ae rodynamic parts. [7] 

C O N F I G U R A T I O N D E F E C T S 

C o n f i g u r a t i o n errors are those made d u r i n g the lay-up process. These are m a i n l y errors 

i n t r o d u c e d by the operator and can inc lude : 

W r o n g p l y a l ignmen t or o r i e n t a f i o n - Phes are pos i t ioned i n the w r o n g d i r e c t i o n or 

are m o v e d d m i n g cu r ing o f the l amina te 

W r o n g p l y s tacking - The order of the s tacking is n o t foUowed, l ead ing to w r o n g 

or ien ta t ions at the w r o n g p l y layer or an excess or shortage i n the n u m b e r or plies 
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Incorrec t pos i t i on ing - Plies are n o t p rope r ly pos i t ioned i n d ie m o l d or at sp l i c ing 

locat ions . Very i m p o r t a n t f o r sp l ic ing 

W r o n g s iz ing - s izing of p l i es / l amina te /d i i ckness is n o t according to requi rements 

A l l these types of defects w i l l p roduce parts w i t h undes i red mechan ica l propert ies . As 

m e n t i o n e d , there are systems to a id i n this par t o f the m a n u f a c t u r i n g process, b u t m o s t l y 

depend o n the sk i l l a n d concen t i a t i on o f tiie pe rson m a k i n g the layup. [ 7] 

2 . 2 . 2 . P O S Ï - M A N U I - A C T U R I N G A N D A S S E M B L Y D A M A G E I N G L A R E 

Af te r tiie panels o f GLARE have been cured i n d ie autoclave, tiie end produc ts are flat or 

curved panels tha t m i g h t s t i l l require add i t i ona l w o r k i n order f o r tiiem to enter service. 

Usual ly they require p o s t - m a n u f a c t u r i n g processing techniques such as f o r m i n g or hole 

d r i l l i n g f o r the par t to be usable i n a s tructure. The damage tiiat these processes m i g h t 

in t roduce to the mate r i a l w i l l be reviewed below. 

D E L A M I N A T I O N S 

Delamina t ions are very c o m m o n damages tha t are i n t r o d u c e d d u r i n g p o s t - m a n u f a c t u r i n g 

processes. O n m a n y occasions GLARE panels have to be m i l l e d to the r igh t shape and 

size and holes have to be d r i l l ed to a l low f o r tiie assembly of (sub)parts. W h e n GLARE is 

m a c h i n e d or d r i l l ed , the l amina te is subjec ted to forces perpendicu la r to tire lamina te , 

po ten t i a l l y causing de lamina t ions as s h o w n i n figure 7.A. These types o f de lamina t ions 

are usual ly caused by tire excessive wear o f tools or w h e n d ie w r o n g process c o n t r o l pa

rameters such as f eed force are used [13]. I t is therefore i m p o r t a n t to inspect tiie edges 

of panels or d r i l l ed holes to ensure there are n o de laminat ions . 

Figure 2.4: Delamination occuring during milling (left) and drilling (right) of GLARE [13] 

GLARE can also be f o r m e d i n s imi la r manners to tiiose of conven t iona l metals i n order 

to p roduce parts such as stringers or cu rved panels. However, GLARE'S f o r m a b i l i t y is 

l i m i t e d b y m a n y factors such as the l o w fa i lure s t ra in of d ie fibers. I f n o t p e r f o r m e d 

p r o p e r l y , the shear stresses be tween the m e t a l a n d composhe layers i n t r o d u c e d d u r i n g 

these f o r m i n g processes w i l l be too h i g h , causing de lamina t ions and disbonds. [13] 
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B U C K L I N G 

I f t f ie m e t a l sheets used i n GLARE are very t h i n (<0 .3mm) , d i e n they can experience 

b u c k l i n g d u r i n g die bend ing par t o f d ie f o r m i n g process. [13] 

M A T R I X C R A C K S 

Micro -c r ack ing m a y occur d u r i n g d ie f o r m i n g process o f GLARE. It is i m p o r t a n t to no t ice 

tiiat m ic ro -c r ack ing i n the matrbc does n o t lead to to ta l fa i lure of the l amina te . [13] 

S U R F A C E D A M A G E 

D u r i n g the p o s t - m a n u f a c t u r i n g processes, GLARE panels are s t ih exposed to surface 

damage such as scratches, cuts or indenta t ions . Aga in , scratches a n d inden ta t ions can 

occur i f tire panels are n o t h a n d l e d w i t h care d m i n g t ranspor t or w h e n be ing set up f o r 

these p o s t - m a n u f a c t u r i n g processes. [7] 

2 . 2 . 3 . I N - S E R V I C E D A M A G E I N G L A R E 

D E L A M L N A T I O N 

Delamina t ions are one o f tiie mos t c o m m o n damage types tha t can occur d u r m g oper

a t iona l l i f e t i m e o f GLARE. De lamina t ions can occur due to c o m m o n damage types such 

as i m p a c t damage [4] and fa t igue damage [,S]. GLARE can also suffer from de lamina

tion due to d i e r m a l effects such as l o n g time exposure to h i g h temperatures (depending 

o n resin, b u t as l o w ' as 188°C) [ i 4], f r eeze / t i i aw stressing due to mois tu re expansion or 

t h e r m a l spikes [1]. 

S U R F A C E D A M A G E 

Surface damage such as cuts, scratches a n d dents are c o m m o n damages tha t GLARE 

can suffer w h e n in-service. Cuts and scratches m a y occur due to m i s h a n d l i n g or f r o m 

flying debris. Dents m a y occur due to i m p a c t damage or m i s h a n d h n g (such as personne l 

s tepping i n no-step regions). Abras ion o f the surface m a y also occur due to eros ion from 

p r o l o n g e d exposed to r a i n and /o r gr i t . Surface ox ida t ion and cor ros ion m a y also occur 

i n GLARE i f d ie ma te r i a l is s t ruck by l i g h t n i n g , overheated or exposed to mois tu re . [ 1, 3] 

P E N E T R A T I O N D A M A G E 

Penet ra t ion i n GLARE can occur due h i g h ve loc i ty impacts or batt ie damage. Furd ie r 

more , pene t ra t ion c o u l d also occur due to m i s h a n d l i n g o f g r o u n d or ma in t enance oper

ators, where i m p r o p e r opera t ion o f e q u i p m e n t such as f o r k l i f t s c o u l d cause pene t r a t i on 

damage. These can also cause edge de lamina t ions i n the same m a n n e r as d r i h i n g [ I ] . 

M A T R I X C R A C K 

Cracking o f d i e cured resin matrbc m a y occur i n GLARE h h is exposed to repeated l o w -

veloc i ty impacts [4] as w e l l as fa t igue l o a d i n g [3]. These o f t e n o c c m before tire c racking 

o f d i e a l u m i n u m layers and m a y occur parahel or perpendicu la r to tire flber d h e c t i o n . 

Mois tu re absorp t ion by tiie m a t r k w i h also cause h to degrade faster and s t imula te crack 

g r o w t h [3] . 
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A L U M I N U M C R A C K 

Cracks i n t l i e a l u m i n u m layer m a y o c c m d u r i n g die operadona l l i f e - t i m e o f GLARE due 

to fadgue effects [3] as w e l l as repeated i m p a c t damages [ ! ] • A n example o f a l u m i n u m 

cracking due to impac t damages can be seen i n f igure ? .;). These type o f cracks w ü l ex

pose the m a t r i x to mois ture , degrading i t faster. 

Figure 2.5: Aluminum cracking in GLARE due to repeated impact damage as seen from the front (left), side 
(middle) and back (right) sides [1 ] 

H O L E E L O N G A T I O N 

Hole e longadon can occur w h e n holes are overloaded. This usual ly occurs at b o l t e d or 

r ive ted j o in t s and can cause bear ing fai lures, loca l buck l ing , de fo rmadons , a n d exposure 

o f the m a t r i x mater ia ls to mois tu re . [ 1 ] 

2 . 2 . 4 . ( 3 V E R V I E W O F D E F E C T S A N D D A M A G E I N G L A R E 
A l l the d i f f e r en t defects and damages present Ü i r o u g h d ie m a n u f a c t u r i n g , p o s t - m a n u f a c t u r i n g 

a n d assembly a n d the in-service l i f e of GLARE are presented i n table 2.2. 
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Table 2.2: Defects and damage overview 

Defects & Cause Consequence 
Damages 

M a n u f a c t u r i n g 

Delamina t ions Poor surface t rea tment , i n  Reduct ion o f mechan ica l 

clusions, voids, res in varia propert ies 

t ions 

Inclusions Poor l ayup process con t ro l Delamina t ions , k iss ing bonds 
Voids and Poor process con t ro l (cur Increase mois tu re absorp t ion , de
poros i ty ing) , poo r prepreg storage crease dmab i l i t y , de laminat ions . 

cond i t ions cracks 

Disbonds Poor fitting o f parts, poo r Kissing bonds, s t rength r e d u c d o n 

process c o n t r o l 

Resin varia Prepreg d ry spots, i m  De lamina t ions 
t ions p roper autoclave tools. 

w r o n g cure cycle 

Surface de Poor c leaning o f a l u m i n u m SmaU dents, scratches, u n s m o o t h 
fects layer or m o l d surface 

Conf igu ra t i on Poor l ayup process con t ro l W r o n g p l y a l ignment , or ienta
defects t i o n , stacking, incorrec t p o s i t i o n 

ing , s izing. Undes i red mechan ica l 

propert ies 

Assembly 

Delamina t ions I m p r o p e r m i l l i n g , d r i l l i ng , Reduc t ion o f mechan ica l 
f o r m i n g propert ies 

Buck l ing I m p r o p e r f o r m i n g Failure 
M a t r i x cracks I m p r o p e r f o r m i n g Reduct ion o f mechan ica l proper

ties 

In-Service 

Surface d a m  M i s h a n d l i n g SmaU dents, scratches, u n s m o o t h 
age surface 

De lamina t ions I m p a c t damage, fa t igue Reduct ion o f mechan ica l proper

damage, t h e r m a l effects ties 
Surface d a m  Mishandhng , i m p a c t SmaU dents, scratches, u n s m o o t h 
age damage, l i g h t n i n g strike, surface, ox ida t ion , cor ros ion , 

r a i n / g r i t erosion, mois tu re holes 

Penetra t ion H i g h ve loc i ty i m p a c t d a m  Holes, r e d u c t i o n of mechan ica l 
damage age, mishancUing propert ies 
M a t r i x cracks I m p a c t damage, fa t igue Reduct ion o f mechan ica l proper

load ing , mois tu re absorp ties 

t i o n 

A l u m i n u m I m p a c t damage, fa t igue Increase mois tu re absorp t ion , de
crack l o a d i n g crease durabUity, r e d u c t i o n o f m e 

chanical proper t ies 
Hole elonga Over load Bear ing fa i lure , loca l buck l ing , de
t i o n fo rma t ions , exposure o f m a t r i x 

ma te r i a l to mois tu re 
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2 . 3 . NON-DESTRUCTIVE TESTING OF G L A R E 

Fiber M e t a l Laminates l ike GLARE pose a special chaUenge f o r Non-Des t ruc t ive Testing 

(NDT) due to their h igh ly anisot ropic nature and d ie very d i f f e ren t properdes of each 

layer. Various methods such as active t h e r m o g r a p h y Eddy currents, shearography and 

ul t rasonic (UT) t h r o u g h transmissions are used to inspect GLARE panels. AU diese m e d i 

ods wiU be reviewed and discussed i n this secdon. The d i s t i n c d o n shou ld be made tha t 

the m e d i o d s discussed here are N D T methods used to inspect the final GLARE p r o d u c t 

(after cur ing) , and n o t to m o n i t o r processes such as d ie c m i n g process. 

2 . 3 . 1 . U L T R A S O N I C T H R O U G L I T R A N S M I S S I O N 

Ult rasonic inspec t ion consists of sending ul t rasonic waves ( w i t i i f r equency f > 5 0 kHz) 

t h r o u g h a mate r ia l . W h e n tiiese waves encounter a change i n the ma te r i a l (de lamina

t i o n , en t rapped air, d i f fe ren t mater ia l ) , pa r t of d i e acoustic wave wiU be ref lected. Due 

to the re la t ively smaU wavelengdis of U T waves, smaU defects can be f o u n d us ing u l 

trasonic inspec t ion . I n the Pulse-Echo (PE) m e t h o d , tiie ref lec ted sound (echo) w i h be 

detected by the same U T transducer tiiat p r o d u c e d the sound [15], as s h o w n i n the l e f t 

side of flgure I f there is a d iscont inui ty , d i e s o u n d wUl ref lec t 'sooner' tiian expected. 

Pulse-echo u l t i a son ic inspect ions can create A-scans (ampl i tude o f re f lec ted U T signal 

vs. t i m e or distance traveled), B-scans (cross-sectional representa t ion of re f lec ted U T 

signals crossing a de f lned gate) a n d C-scans. 

I n tiirough t ransmiss ion ( k n o w n as C-scan), the ul t rasonic wave is sent by one trans

ducer and received by a second t ransducer o n the other side o f the spec imen as s h o w n 

i n figure 2.6. As m e n t i o n e d , the changes i n ma te r i a l w i U reflect tire sound, w h i c h i n 

through transmission w iU result i n tiie a t t enua t ion or even blockage o f d i e u l t rasonic 

wave received by the second transducer [ / ] . Typical ly an a t t enua t ion o f tiie u l t rasonic 

wave be low -6dB is considered as a damage/defec t [16]. 

Pulse Echo Transmission 

A f 

Tims 

Figure 2.6: Left: Pulse-echo. Right: Through transmission 117] 
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Ult rasonic (UT) t h r o u g h t ransmiss ion is the mos t c o m m o n m e t h o d o f i n spec t ion o f 

GLARE [J] . To create a C-scan, the w h o l e pane l has to be inspected and tire attenua

tions f o r each pos i t i on recorded. These at tenuat ions can then be ma tched to a color 

scale to make an image showing the locat ions o f damage as seen from a top view. 

One o f d ie biggest differences be tween FMLs such as GLARE and metals or even compos

ites is tire requ i rement f o r a d i f f e r en t type of reference system w h e n p e r f o r m i n g Quahty 

Assurance. I n metals and some composites, the in t e rac t ion o f t h e acoustic wave w i t h the 

ma te r i a l is a f u n c t i o n of tiie dep t i i . However, due to tiie ref lect ions tha t occur w h e n the 

wave crosses f r o m the a l u m i n u m to the fiber/epoxy composi te i n GLARE, in ter ference 

m a y occur and d ie signal is d i f f i c u l t to in te rpre t . [7,17] 

Coenen [ / ] developed a reference system to be apphed w i t h d ie U T C-scan at T U De l f t . 

This reference system u t i l i z ed 5 d i f f e r en t reference panels caUed the Master Reference 

Lamina te (MRL), the Batch Witness Panel (BAA'P), tire C o m p o n e n t Witness Lamina te (CWL) 

a n d a C o m p o n e n t Reference Panel (CRP) and a Batch C o m p o n e n t Panel (BCP). The M R L 

is a par t o f the ma te r i a l used f o r q u a l i f i c a f i o n and is the reference to w h i c h other refer

ence laminates are compared to. The f u l l desc r ip t ion o f tire reference system can be 

f o u n d i n [7]. 

Ul t rasonic C-scan can detect m a n y types o f damages such as de lamina t ions , v o i d s / -

porosity, inclusions , c o n f i g u r a f i o n defects (ply or ienta t ion) and cracks [ / ] . A measme

m e n t accuracy o f 2 m m square has been achieved i n F M L w i t i i U T C-scan [iH]. It h o w 

ever cannot provide i n f o r m a t i o n regarding the d e p t i i at w h i c h tiie damage is located. 

One o f t h e disadvantages o f C-scan is tiiat it is n o t mobUe and is therefore m o s t l y used to 

detect defects i n m a n u f a c t u r i n g f o r qua l i ty assurance ra t i ier tiian in-service inspect ions. 

The reason i t cannot be used f o r in-service in spec t ion is tha t h requires two-s ide access 

to d i e ma te r i a l and this is n o t always possible d m i n g inspect ions. 

Dragan et al . [16] successfiiUy inspec ted F M L us ing o t i ie r u l t rasonic in spec t ion me thods 

such as single transducer pulse-echo inspect ions and a h coup led ul t rasonic inspect ions . 

The pane l tested was an F M L compos i te consis t ing o f 3 layers o f 2024T3 a l u m i n u m lay

ers a n d 2 T700GC-carbon fiber/epoxy prepregs w i t i i po ly te t ra f iuoroe thy lene (PTFE) a n d 

a l u m i n u m inserts. The thicknesses va r ied be tween 0.02 m m - 0.125 m m a n d were l o 

cated be tween fiie a l u m i n u m and epoxy layers as weU as d ie i n the m i d d l e o f the epoxy. 

The size of the defects was va r ied be tween 2 . 5 m m a n d 9 . 5 m m i n diameter. Pulse-echo 

ul t rasonic inspec t ion p roved to be bet ter at finding defects i n F M L as h was able to find 

70% o f tire damages whUst air coup l ed was o n l y able to find 50% o f the damages. The 

investigators conc luded tiiat the lower pe r fo rmance o f a i r -coup led U T was due to the 

lower reso lu t ion o f the ah -coup led U T inspec t ion . However, b o t h me t i iods were inca

pable o f accurately finding a l u m i n u m inserts. 

Las t iy BUse et al. [ J'i] invest igated the use o f PAUT transducers f o r in-service n o n -

scheduled inspect ions f o r GLARE. They de t e rmined tha t f requencies be tween I M H z a n d 
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2 .25MHz were to be used f o r u n d i s t u r b e d plates wh i l s t I M H z was to be used f o r b o n d e d 

doublers . They were capable o f inspec t ing disbonds i n b o n d e d stringers, de lamina t ions 

i n dents and defects i n sphced areas. However, n o m e n t i o n was made o n m i n i m u m de

tectable size or accuracy o f the measurements . 

2 . 3 . 2 . E D D Y C U R R E N T S 

Eddy cur ren t test ing uses electromagnet ic i n d u c t i o n to detect defects i n a conduct ive 

mate r i a l . This m e t h o d consists o n p lac ing a c o ü w i t h a l te rna t ing cur ren t near the con

duct ive surface ( w i t h the w i n d i n g s of the c o i l parahel to the surface) o f an objec t i n order 

to create chang ing magnet ic fields. These changing magnet ic fields w i l l cause the cur

ren t to fiow i n circular loops pe rpend icu la r to the magnet ic field. These currents, k n o w n 

as eddy currents, w ü l p roduce the i r o w n magne t ic field oppos ing the magnet ic field f r o m 

the c o ü . [ 1 7 ] 

W h e n the eddy currents encounter an anoma ly tha t obstructs t h e m , the p r i m a r y mag

net ic field w ü l change, causing a change i n the eddy currents and the i r magne t ic field. 

These changes w i l l cause a change i n the impedance of the c o ü w h i c h w ü l cause an elec

t r i c po ten t i a l , w h i c h can be seen as a change i n voltage. [ 1 7 ] 

Eddy currents t e n d to have the highest densi ty at the surface and the i r pene t r a t ion i n 

F M L is p rob lema t i c as the compos i te layers are n o t conduc t ing . Fur the rmore , there is a 

phase and amph tude lag be tween the surface layers and the deeper layers w h i c h allows 

the inspector to de te rmine the defect depths ( in layers, n o t m m ) and sizes [ 1 7 ] . 

I t has been shown that eddy cur ren t tes t ing can find cracks o f 3 m m i n the a l u m i n u m 

(not i n the composi te) layers o f GLARE of lap jo in t s of 3/2 layups w i t h a P robab i l i ty o f 

De t ec t i on (POD) o f 90% a n d practicaUy 100% f o r bigger cracks [ 1 7 ] . I t has also been 

f o u n d to be able to detect cracks i n the second layer of a l u m i n u m w i t h an accuracy of 

1 m m [ 18]. Eddy cmren t s have p roven to be unsuccessful at finding de lamina t ions b u t 

capable o f m a p p i n g cor ros ion be tween the layers [ 1 8 ] . 

One of the advantages of the eddy cur ren t tes t ing is tha t i t can be used f o r in-service 

i n sp ec t i on since the e q u i p m e n t is mobUe and on ly requires single s ided access to the 

mate r i a l . The types of defects they can detect are however very h m i t e d . 

2 . 3 . 3 . X - R A Y R A D I O G R A P H Y 

Radiography is a technique i n w h i c h a ma te r i a l is exposed to X-rays w h i c h wiU pene

trate the ma te r i a l and strike a rad iographic fihn or camera. The pho tons i n these X-rays 

w i U in terac t w i t h the mater ia ls particles, w h i c h wiU absorb or scatter some o f the p h o 

tons energy. This loss o f energy is measured as an a t t enua t ion and is dependent o n the 

geomet ry of the ma te r i a l as w e l l as the material 's propert ies , such as thickness a n d den

sity. The a t t enua t ion wiU cause p h o t o n s to strike the radiographic f U m w i t h d i f fe ren t 

energies depend ing o n the ma te r i a l they traveled th rough , creat ing an image w h i c h can 

dep ic t changes i n the mate r ia l . [ 8 ] 



18 2. D E F E C T S , D A M A G E S A N D N D T O F G L A R E 

W h e n a d i scon t inu i ty such as a d e l a m i n a t i o n is encountered, the a t t enua t ion o f t h e p h o 

tons at the loca t ion of the d i s c o n t i n u i t y wiU change, causing the energy o f the p h o t o n to 

change. W h e n these pho tons i m p a c t the radiographic f i l m , they w i h do i t w i t h a d i f fe ren t 

energy that wiU then be s h o w n as a d i f f e ren t color i n the film, showing the l oca t ion and 

size o f t h e damage, as can be seen i n figure '? :i. Penetrants can be used to o b t a i n better 

contrast i n images. [8] 

[(•'•. . '. • ^ 1 -

V 

if-

Figure 2.7: X-ray image of a GI^RE-3 panel sliowing fatigue cracks and corrosion [18] 

Test conduc ted us ing p rop r i e t a ry penet ran t enhanced X-ray rad iography i n GLARE 3 

showed that penet rant enhanced X-ray rad iography c o u l d be suitable f o r i m a g i n g o f de

l amina t ions caused by impacts or fa t igue i n l abora to ry env i ronments . I t was also de

t e r m i n e d tha t penetrant enhanced X-ray rad iography underes t imated the size o f these 

de lamina t ions by as m u c h as 35% due to the penet ran t n o t cover ing al l the crack. X- ray 

rad iography also p roved to be able to detect cracks near r ivet holes as weU as corros ion . 

[18] 

2 . 3 . 4 . A C T I V E T H E R M O G R A P H Y 

Active t he rmography consists o f s d m u l a d n g a ma te r i a l sample w i t h energy, such as op 

t ical , mechan ica l or e lectromagnet ic energy, and record ing the resul t ing t h e r m a l sig

natures w i t h an i n f r a r e d camera at d i f f e ren t intervals to create a t h e r m o g r a m ( the rmal 

m a p ) . W h e n opt ica l energy is used to s t imidate the mater ia l , the heat w i h be p r o d u c e d 

at the surface and w ü l t ravel t h r o u g h the spec imen b u t wUl ref lec t w h e n i t encounters a 

defect. Mechan ica l energy o n the other h a n d w ü l create heat at the defect interface, f r o m 

where i t w ü l travel to the surface. Lasdy, e lectromagnet ic energy can be app l i ed to the 

in t e rna l e lectro-conduct ive layers, w h i c h w i h i n t u r n create eddy currents at the surface. 

A n example of de lamina t ions caused inserts i n GLARE detected by means o f the rmogra 

p h y can be seen i n flgure 2.8. [20] 

Ibarra-Castanedo et al . [?0] have s h o w n tha t t h e r m o g r a p h y (PT) can successfuUy de

tect ( i n a qual i ta t ive manner ) de lamina t ions caused by inserts (as smah as 2.5x2.5mm) 

as w e ü as indicate the severity o f damage i n i m p a c t damage i n GLARE. PT also p roved 

use fu l f o r detect ing pa in t surface scratches. This was done by p a i n t i n g the surface to 

increase its emissivi ty and us ing the rmograph ic signal r econs t rucdon (TSR) since the 
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(a) (b) (c) 

Figure 2.8: Delamination caused by inserts in GLARE as detected by (a) pulsed thermography (b) vibrother-
morgraphy (c) ultrasonic C-scan (15 MHz) [20] 

i n f r a r e d signature was af fec ted by n o n - u n i f o r m hea t ing as weU as e n v i r o n m e n t a l reflec

tions and emiss ivi ty var ia t ions at the surface. They also showed tiiat v i b r o t h e r m o g r a p h y 

(VT) c o u l d be used to detect de lamina t ions caused by inserts b u t h a d l i m i t e d de tec t ion 

of i m p a c t damage i n GLARE. 

Dragan et al . [16] f o u n d tiiat flash d i e r m o g r a p h y us ing T ime Signal Recons t ruc t ion was 

less successful at detect ing inserts t h a n X-ray compute r t o m o g r a p h y (100% damages 

detected) pulse-echo ul trasonics (70% damages detected) and a h coup led ul trasonics 

(50% damages detected) i n FIVIL since h c o i h d o n l y detect 30% o f the damages, h is 

w o r t h n o t i n g tha t ca rbon fiber-aluminum F M L were used i n tiieir tes t ing a n d tiiat on ly 

the po ly te t ra f iuoroe thy lene f h m inc lus ions were detected, whhs t the a l u m i n u m inserts 

w e n t undetected. The poo r results were a t t r i bu t ed to fiie h i g h d i e r m a l emiss iv i ty o f the 

a l u m i n u m layers as weh as the h i g h d i rec t iona l t h e r m a l expansion o f t h e ca rbon fibers. 

2 . 3 . 5 . D I G I T A L S H E A R O G R A P H Y 

I n d igha l shearography, an objec t is i l l u m i n a t e d by an expanded laser b e a m f r o m w h i c h 

the hght w h l ref lect on to an image plane o f an image shearing CCD (Charge-Coupled 

Device) camera. The in tens i ty pa t t e rn o f the hght fleld is recorded as an i n t e r f e r o g r a m 

o f t h e ma te r i a l surface i n an imstressed a n d a stressed state after w h i c h the intensi t ies o f 

b o t h states can t h e n be compared . I f there is a ma te r i a l defect, the stressed ma te r i a l w i h 

have qui te a d i f f e ren t i n t e r f e rogram, causing h to show discont inui t ies a n d ' b u t t e r f l y ' 

pat terns w h e n the images are compared . 

Steinchen et al. [21] d e t e r m i n e d tha t cracks o f a dep th o f about 0.3 m m a n d a l e n g t i i o f 45 

m m created o n tire top a n d b o t t o m a l u m i n u m layers c o u l d be detected by shearography 

w h e n a t h e r m a l l oad ing caused by a tempera ture change of 30° C or 40° C was apphed 

o n GLARE 3/2. They d e t e r m i n e d tiiat w h e n the smface observed was reduced i n size, 

a fugher reso lu t ion was ob t a ined and de lamina t ions c o u l d be d i s t ingu ished f r o m the 

cracks. 
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2 . 3 . 6 . OVERVIEW AND DISCUSSION OF N D T METHODS FOR G L A R E 

The d i f fe ren t Non-Des t ruc t ive Inspec t ion methods tiiat have been used to inspect GLARE 

and tiie defects and damages they can detect are presented i n table ' i 5. I t is i m p o r t a n t 

to not ice tiiat mos t of tiiese inspec t ion methods are n o t used to inspect GLARE by the 

i n d u s t r y and are mere ly a sc ient i f ic e f fo r t to de termine thei r v iabi l i ty . 

Table 2.3: NDT methods to inspect GLARE and the types of defects/damages they can detect 

N D T Method Damage/Defects Detected 

Ultrasonic C-scan Delamina t ions , voids, porosity, inclus ions , con

figuration defects, cracks 

Ul t rasonic Pulse-

Echo 
Delamina t ions , voids, porosity, inclusions , 

cracks 

Eddy Current Cracks i n a l u m i n u m layers and cor ros ion be

tween layers 

X-ray Radiography Delamina t ions , inclus ions , cor ros ion , cracks 

Active thermogra

p h y 
Delamina t ions , inclus ions , surface scratches 

Dig i t a l Shearogra

p h y 
Cracks i n a l u m i n u m layers and de lamina t ions 

a r o u n d a l u m i n u m cracks 

O f t h e N D T methods capable o f inspec t ing GLARE, the ul t rasonic C-scan seems to be the 

mos t w i d e l y used and the o n l y one used by the i n d u s t r y since h is d ie N D T m e t h o d used 

f o r Qual i ty Assmance o f m a n u f a c t m e d GLARE panels [ 1 , 7 ] . This system is however n o t 

suhable f o r in-service inspect ions due to the need f o r two-s ide access to the s t ructure 

and precise pos i t i on ing o f the transducers. 

Eddy currents are very l i m i t e d i n tiieir de tec t ion since they can o n l y detect cracks i n 

a l u m i n u m layers and cor ros ion be tween layers o f GLARE. D i g i t a l shearography has a 

s imhar drawback since i t can o n l y detect cracks i n the a l u m i n u m layers and de lamina

tions a r o i m d those a l u m i n u m cracks. Eddy current however offers the advantage of a 

smah por tab le system, aUowing h to p e r f o r m i n service inspect ions i n GLARE. Portable 

shearography systems are also avaUable b u t are typicaUy larger i n size. 

X-ray rad iography i n GLARE requires penetrants to o b t a i n a g o o d contrast and be able to 

detect damage. This cou ld pose several p rob lems since the pene t ran t has to reach and 

f u l l y cover the damaged areas i n order f o r tiiese damages to show, m a k i n g h a shght ly less 

rehable m e t h o d . Fur thermore , i f d i e penet rant cannot be removed , i t c o u l d adversely af

fect the mechan ica l proper t ies o f GLARE. Act ive t he rmography has simUar shor tcomings 

since h requires p a i n t i n g o f tiie surface to increase the emiss iv i ty o f the a l u m i n u m sur

face. This c o u l d be p rob lema t i c f o r N D T in-service inspect ions i f the p a i n t c o u l d n o t be 

easily removed. 
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I t can be conc luded tha t u l t rasonic C-scan offers d ie best results f o r N D T o f GLARE, h 

therefore offers d ie best way to val idate results d u r i n g the course o f t h e diesis. 

2 . 4 . CONCLUSION 
This chapter presented d ie defects and damages d i a t can occur i n GLARE and the m e d i 

ods tha t have been used to detect t h e m . I t can be conc luded d i a t d iere is cur ren t ly n o 

suhable m e t h o d to p e r f o r m in-service inspecdons of GLARE, leav ing a gap tha t c o u l d be 

filled by PAUT. However, a bet ter unders t and ing o f d i e effects o f the frequencies o f PAUT 

i n the de tec t ion of d i f f e ren t defects and damages is essential to a l low f o r its app l i ca t ion 

by the industry. 

h was also f o u n d tha t m a n y d i f f e r en t N D T met i iods c o u l d be used to detect defects i n 

GLARE. The on ly N D T m e t h o d tha t was f o u n d to be used by d ie i n d u s t r y to detect d a m 

age i n GLARE panels was u l t rasonic tiirough-transmission C-scans. I t is therefore wise 

to use such a m e t h o d to vahdate the results. 
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This chapter w i h present ul t rasonic theory w i t h the i n t e n t i o n o f p r o v i d i n g a so l id basis 

o f under s t and ing to a id i n the course o f this thesis. I t is i m p o r t a n t however to realize tha t 

PAUT is a va r i a t i on o f conven t iona l U T and therefore PAUT a n d convendona l ul trasonics 

are essentially governed by the same phys ica l pr inc ip les . Therefore basic theory tha t 

apphes to b o t h convendona l U T and PAUT w i h be presented first, whhs t PAUT specific 

theory w i h be presented after. 

3 . 1 . PHYSICAL PRINCIPLES 

As explained i n sec t ion 2.3,J, id t rasonic inspec t ion me thods make use of mechan ica l 

waves t ravel ing t h r o u g h a m e d i u m i n order to non-des t ruc t ive ly detect changes a n d i r 

regularit ies w i t h i n the m e d i u m . W h e n waves encounter an anoma ly or d iscont inui ty , 

such as a change i n ma te r i a l propert ies , the wave w h l ref lect sooner t h a n expected, i n d i 

ca t ing tha t there is a change i n mate r i a l propert ies . 

3 . 2 . ULTRASONIC WAVE GENERATION 

Ult rasonic waves are created by piezoelectr ic crystals cased ins ide an ul t rasonic trans

ducer. Us ing the reverse piezoelectr ic effect, the piezoelectr ic ma te r i a l can be excited 

w i t h an electr ical charge o f voltage to mechan ica l ly s t ra in i t , w h i c h i n t m n w i h cre

ate mechan ica l strains (waves) F/, as can be seen i n figme 3 , la . Conversely, the sensing 

o f these mechan ica l waves uses the direct piezoelectr ic effect o f the piezoelectr ic crystal, 

where mechan ica l strains o n the piezoelectr ic e lement are conver ted to electr ical en

ergy (voltage) V to recover i n f o r m a t i o n o n the i n t e r ac t ion of the mechan ica l wave w i t h 

the mater ia l , as seen i n figure 3,1b. 
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Figure 3.1: Generation and reception of ultrasonic waves [ 1 ] 

3 .3 . ULTRASONIC WAVES 
Waves are disturbances tha t occur i n space and can transfer energy [ ] . Waves are char

acterized by several i m p o r t a n t parameters such as the the wavelength A and the a m p h 

tude A, as dep ic ted b e l o w i n figure 3.2. 

Figure 3.2: Wave properties 

One p rope r ty c o m m o n l y used to describe waves is the f requency f , w h i c h defines the 

n u m b e r of comple te oscUlations tha t the wave can p e r f o r m i n one u n i t o f t ime . The 

f requency is re la ted to the wavelength A as foUows: 

f - { (3.1) 

Where c is ve loc i ty o f the wave. The p ropaga t ion o f u l t rasonic signals is done by means 

o f several d i f f e r en t types o f u l t rasonic waves [3]. Two o f the m o s t c o m m o n types o f w a v e s 

are the l o n g i t u d i n a l (compression) wave a n d the transverse (shear) wave [3]. I n l o n g i t u 

d ina l waves, the par t ic le m o t i o n is paral le l to the waves p ropaga t ion d i r ec t i on whhs t i n 

transverse waves, the par t ic le m o t i o n s occur pe rpend icu la r to the p ropaga t ion d i r ec t ion 

o f the wave, as s h o w n i n figure 3.3. 
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Figure 3.3: Longitudinal wave (top) and transverse wave (bottom) [ i] 

L o n g i t u d i n a l waves m a y travel t h r o u g h solids, l i qu ids and gasses, whhs t transverse waves 

can on ly t ravel t h r o u g h solids since they require a ma te r i a l tha t has a shear s t rength [3]. 

I n 0° i nc iden t wave inspect ions, on ly l o n g i t u d i n a l waves occur. However, w h e n p e r f o r m 

i n g inspect ions at an angle, there w h l be a wave m o d e convers ion a n d b o t h l o n g i t u d i n a l 

and transverse waves w i h occur s imultaneously. I f the angle is increased even fur ther , 

first on ly transverse waves are present t h e n surface waves can also occur, as shown i n fig

ure ;i.4. I n tiiinner plates, special types o f transverse waves m a y occur, such as Rayleigh 

and L a m b waves. For the inspec t ion o f GLARE, o n l y l o n g i t u d i n a l waves and 0° inspec

tions w h l be conduc ted , and therefore on ly l o n g i t u d i n a l waves w i h be used. 

0 5 10 15 20 25 / 3 0 35 40 45 50 55 ^ 60 65 70 75 80 

/ Incident angle \ 
1st Critical 2nd Critical 

angle angle 

Figure 3.4: Relative amplitude of different wave types as a function of the angle of incidence [4] 

Ult rasonic waves are a special type o f waves tha t have f requencies be tween 20kHz and 

IGHz [2]. 

The ve loc i ty o f acoustic l o n g i t u d i n a l waves c; i n a ma te r i a l is a f u n c t i o n of var ious mate 

r i a l propert ies such as tire densi ty p , the m o d u l u s o f elast ici ty E and the Poisson's ra t io p 
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and can be expressed as [5]: 

(3.2) 
p ( l + iU ) ( l - 2 / z ) 

Equadon 3.2 can be used to de te rmine d i e ve loc i ty o f sound i n materials o f w h i c h the 

mechan ica l properdes are k n o w n w i t h certainty. 

3 .4 . FREQUENCY 
The frequency o f the acousdc wave generated by U T and PAUT transducers have a great 

i m p a c t o n the i n specdon and is therefore c ruc ia l to select the o p t i m u m f requency w h e n 

p e r f o r m i n g an i n specdon [6]. The f r equency ƒ is d i recdy related to the wave length A o f 

the acoustic wave by the f o h o w i n g re la t ion: 

^=J (3.3) 

Where c is the ve loc i ty o f sound i n the ma te r i a l be ing tested. 

Higher f requencies result i n smaller wavelengths and therefore t e n d to prov ide h igher 

sensi t ivi ty (abi l i ty to detect smah discont inuides) and better axial r e so ludon (abhi ty to 

d i s t inguish be tween t w o discont inui t ies d i a t are close together) due to the smaher wave

lengths hav ing an increased chance o f co lhd ing w i d i a defect and d ierefore finding h . 

However, h igher frequencies m i g h t have such a smah wave lengd i d i a t they are re f lec ted 

a n d scattered at d i e grahi boundaries , thus m a k i n g pene t ra t ion i n t o tiie m a t e r i a l a n d 

in spec t ion very d i f f i c u l t due to h i g h a t tenua t ion . The f r equency o f a t ransducer is essen

t ia l ly de t e rmined by tire ma te r i a l and the tiiickness o f the crystal, where the thickness is 

selected so the crystal resonates at the desired f r e q u e n c y [6] 

It is i m p o r t a n t to note tiiat U T a n d PAUT transducers do n o t create acoustic waves at 

one single f r e q u e n c y b u t create v ibra t ions w i t i i i n a b a n d w i d t i i w i t i i lower a n d uppe r 

f r equency l i m h s , as shown i n figure 3.5. The lower and upper l i m i t s are measured at 

-6dB (50% signal ampl i tude) and expressed as a percentage o f the center f r e q u e n c y 

The center f r equency fc and the b a n d w i d t h are d e f i n e d as [7]: 

(3.4, 

B W = f a - f k (3.5) 
fc 

Where fu and f i are the upper and lower frequency l i m h s measured a t - 6 d B . The b a n d 

w i d t h o f a t ransducer is m a i n l y af fec ted b y the ma te r i a l o f the piezoelectr ic crystal , the 

d a m p i n g ma te r i a l p laced b e h i n d the crystal to d a m p e n v ibra t ions a n d the electr ical net 

w o r k connec t ing the transducer w i t h the i n s t r u m e n t [5]. 
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Figure 3.5: Narrow and broad bandwidth [,>] 

A n a r r o w (smaller) b a n d w i d t h , as shown i n figure 3.5, usual ly has a better sensi t ivi ty 

t han b r o a d b a n d w i d t h s and are usual ly better f o r the de tec t ion o f smaller defects. H o w 

ever, b r o a d b a n d w i d t h s generahy have better axial r e so lu t ion and has p roven to have 

h igher s ignal- to-noise ratios i n anisot ropic mater ia ls such as welds. This occurs due to 

the ma te r i a l ac t ing as a na tu ra l f r equency fhter , f h t e r i n g out undes i red frequencies [5]. 

I t is w o r t h m e n t i o n i n g tha t PAUT transducers t e n d to have relat ively b r o a d b a n d w i d t h s 

(> 60%) due to the nature o f the i r design [8]. 

Due to the an iso t ropic nature o f GLARE, PAUT transducers w i t h relat ively b r o a d b a n d -

w i d t h s shou ld be benef ic ia l w h e n p e r f o r m i n g PAUT inspect ions. 

3 . 5 . ATTENUATION 
A t t e n u a t i o n i n l ü t r a s o n i c s is d e f i n e d as the loss o f signal due to various physica l effects 

caused b y abso rp t ion and scat ter ing [ü]. M a n y factors such as the in spec t ion f r equency 

ƒ , f he wave type and ma te r i a l propert ies such as the the elasticity m o d i d u s E, densi ty 

p, la t t ice a n d g ra in size O have a great ef fect o n the overal l a t t enua t ion o f the U T signal 

[9, ] 0 ] . I t is therefore very i m p o r t a n t to unde r s t and a t t enua t ion and its effects i n U T and 

PAUT inspect ions . 

A b s o r p t i o n is a p h e n o m e n o n i n w h i c h energy is lost due to f r i c t i o n . F r i c t i o n is created 

be tween a toms w h e n they start v ib ra t ing , causing the mechan ica l energy of the v ib ra t 

i n g atoms to be p a r t i y conver ted i n t o t h e r m a l energy (heat), thus los ing some energy. 

I t is log ica l t h e n tha t abso rp t ion is greatly dependent o n frequency since atoms w i h v i 

brate d i f f e r e n d y at d i f f e r en t frequencies. The h igher the frequency, the faster the a toms 

vibrate, thus the h igher the energy lost due to f r i c t i o n . [ 1 0 ] 

Scat ter ing o n the other h a n d is caused b y the r e f i e c f i o n and de f l ec t ion o f acoustic waves 

at g ra in boundar ies a n d crystal faces as s h o w n i n flgme 3.6, causing the acoustic wave to 

scatter, thus los ing energy. 

The t w o parameters tha t have the biggest i n f luence regarding scat ter ing are the f r e 

quency ƒ a n d the gra in size O o f the ma te r i a l . I t is the re la t ionship be tween the wave-
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Figure 3.6: Scattering of an acoustic wave at tlie grain boundaries [10] 

l e n g t h A and the gra in size O tha t determines the type o f scat ter ing tha t occurs. These 

are classif ied as [ 9 ] : 

Rayleigh scat ter ing w h e n O < A 

Stochasdc scattering w h e n O « A 

D i f f u s e scattering w h e n <!) > A 

Rayleigh scattering is a type of scat ter ing that occms w h e n the the wave leng th is m u c h 

bigger t h a n that o f the grains i n the ma te r i a l be ing inspected, whhs t stochastic scatter

i n g is caused by a resonance effect and occurs w h e n the wave length o f the acoustic wave 

is s imhar to tha t o f the part icles [ 1J ] . D i f f u s e scat ter ing occms w h e n the wave leng th is 

m u c h smaller t h a n the grains, causing the acousdc wave to cohide w i t h the gra in b o u n d 

aries a n d ref lect i n m a n y d i f f e r en t d i recdons [!)]. A general ru le o f t h u m b states tha t the 

wave leng th A shou ld be grater t h a n 6 0 i n order to avoid excessive a t t enua t ion [9] . 

There are d i f f e ren t ways i n w h i c h to express a t t enua t ion [ 9 , ] 0 ] . The a t t enua t ion can be 

expressed as a f u n c t i o n of the f r equency ƒ , an absorp t ion constant Ca and a scat ter ing 

constant Cs as fohows [ 9 ] : 

L o o k i n g at equa t ion 3.r,, i t can be seen tha t the a t t enua t ion w i h always increase f o r i n 

creasing frequency. I n pracdce however, the a t t enuadon of an id t rasonic signal can be 

m e a s m e d by l o o k i n g at the flrst and second back w a h ref lecdons o f the u l t rasonic signal. 

M e a s m i n g the amp l i t ude i n the flrst back w a h Ai a n d the a m p l i t u d e o f the second back 

w a h A2, the a t t enua t ion can be expressed as [2]: 

Attenuation = Ca/ + Cs/'^ (3.6) 
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Attenuation = 20 • logw 
A2. 

(3.7) 

3 .6 . REFLECTION AND TRANSMISSION COEFFICIENTS 
One i m p o r t a n t aspect o f ul t rasonic waves is the r e f l ec t ion and t ransmiss ion coeff ic ients 

[12]. The r e f l e c f i o n and t ransmiss ion coeff ic ients essendally express h o w m u c h o f the 

ul t rasonic wave's energy (ampl i tude) w h l be ref lec ted and t r ansmi t t ed at an in terface 

due to the inhe ren t mismatches i n acousdc impedance o f materials . The r e f l ecdon a n d 

t ransmiss ion coeff ic ients are b o t h f u n c t i o n s o f the acousdc impedance of the mater ia l , 

w h i c h can be d e f i n e d as: 

Zn = PnCn (3-8) 

Where p is the densi ty of the mater ia l , c is the ve loc i ty o f sound i n tha t ma te r i a l a n d n 

denotes the mate r ia l . Us ing equadon 3.8, the r e f l ec t ion coef f i c ien t R can be expressed 

as: 

fl=|^ (3.9, 
Z l + Z2 

Where Z i is the acoustic impedance of the first ma te r i a l whhs t Zz is the acousfic impedance 

o f t h e second mater ia l . The t ransmiss ion coef f ic ien t T can t h e n be expressed as: 

T = ^ ^ (3.10) 
Z1 + Z2 

I t is i m p o r t a n t to r emember tha t u l t rasonic transducers require couplants to t r ansmi t the 

signal. The coup lan t w h l also have an effect o n the t ransmiss ion and i t can be expressed 

as [ 9 ] : 

^ ' ^ ^ ' ^ ^ ^ (3.11) 
Icouplant ^^ZilZ^ + D'^COS^e + {Z^i Z2 + Z2I Z^)sinm 

Where 0 = Intcouplantl ^couplanf Tcoupiant> ^1 IS the acousfic impedance o f d i e wedge 

o f t h e probe, Z2 is the acoustic impedance of the test piece and last ly Z3 is the acousdc 

impedance o f the couplant . 

H a v i n g a t ransmiss ion coef f i c ien t T > 1 is possible because the t i m e rate o f flow o f energy 

(power) is de t e rmined by b o t h the a m p l i t u d e and ve loc i ty o f the wave, a n d the power 

shou ld be i n balance at the in ter face (i.e. the a m p l i t u d e increases b u t the ve loc i ty de

creases). [12] 

3 . 7 . VIEWS I N ULTRASONIC TESTING 
The data cohected by u l t rasonic tes t ing can be displayed i n a var ie ty o f d i f f e r en t views 

i n t e n d e d to facihta te the i n t e rp r e t a t i on o f the results. These w h l be expla ined i n the 

f o h o w i n g sections. 
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3 . 7 . 1 . A - S C A M 

A n A-scan is t l ie ' raw' data col lected by d ie ul t rasonic i n s t r u m e n t and plots the a m p l i 

tude o f die acousdc signal received on die y-axis and t ime o n the x-axis o f a local ized 

p o i n t . D u r i n g inspecdon, the U T i n s t r u m e n t can represent distance i n d ie x-axis instead 

o f t i m e by either cahbrat ing the U T i n s t r u m e n t or by i n p u t t i n g the ve loc i ty o f acous

dc waves i n the ma te r i a l be ing inspected. A typ ica l representadon o f an A-scan o f an 

i so t ropic ma te r i a l (epoxy) can be seen i n figure 3.7. 

Figure 3.7: Example of a typical A-scan of Epoxy 

A-scans show d ie ref lect ions o f the acoustic waves i n the mater ia l , and hence can give 

i n f o r m a t i o n o n tire presence o f defects a n d o n tire dep th o f such defects as w e h as m f o r 

m a t i o n o n the thickness o f the mate r ia l . W h e n p e r f o r m i n g an A-scan, a gate is t yp ica l ly 

p laced be tween the interphase echo (f irst peak) and the first back-wah echo (second 

peak), as shown b y tiie r ed l ine i n figure 3.7, to act as an a l a r m to detect defects and as a 

reference p o i n t to create C-scans. 

D u r i n g inspect ions of GLARE, the conven t iona l A-scan is ve ry d i f f i c u l t to in te rp re t since 

there are various ref lect ions caused by the anisot ropy o f the mater ia l , m a k i n g the dis

t i n c t i o n be tween defects and echos occu r r ing w h e n the signal travels f r o m one layer to 

d ie other d i f f i c u l t . A typ ica l scan o f an isot ropic ma te r i a l (epoxy) a n d GLARE can be 

compared i n figure 3.8. 
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3 . 7 . 2 . B - S C A N 

B-scans are i n essence a c o m b i n a t i o n o f staclced A-scans t h r o u g h the l eng th o f a speci

m e n , creat ing a cross sect ion o f the specimen as shown i n figure 3.9. The a m p l i t u d e of 

the signal is represented i n B-scans as a color, where the color palette uses the highest 

a m p l i t u d e o f the A-scans as a reference p o i n t . The y-axis represents ei ther t i m e or dep th 

(distance) whhs t the x-axis represents distance l eng th wise. 

Figure 3.9: Example of a typical B-scan of GLARE 

I n contrast to A-scans, a I D encoder is r equ i red to make a B-scan due to the need to stack 

the A-scans together. B-scans can show the same i n f o r m a t i o n as anA-scan regard ing the 

presence of defects and depth / th ickness i n f o r m a t i o n b u t can of fe r m o r e i n f o r m a t i o n of 

the l o c a t i o n and the size o f the defect due to the use o f an encoder. Due to the use o f 

a color palet te us ing the highest a m p l i t u d e as a reference po in t , B-scans are very u se fu l 

presentat ions o f i n f o r m a t i o n w h e n inspec t ing GLARE. D u e to the data be ing presented 

relative to the highest ampl i tude , i t becomes easy to find deviat ions. 

3 . 7 . 3 . C - S C A N 
C-scans of fe r a top v i e w representa t ion o f the spec imen be ing inspected, as s h o w n i n 

figure 3 .10 . The x- a n d y-axis i n a C-scan represent distance, whhs t the amp l i t ude is rep

resented by the color palette. I n contrast to B-scans where the a m p l i t u d e is s h o w n as 

relative to the m a x i m u m ampl i tude , the amph tude representa t ion i n a C-scan is i n ref

erence to the gate set i n the A-scan. Therefore, C-scans are greatly dependent o n the 

gate set i n the A-scan. This also gives great flexibihty and ahows f o r C-scans to be made 

tha t represent d i f f e r en t i n f o r m a t i o n such as changes i n thickness or defects. 

C-scans requhe the use o f a 2 D encoder i n order to track the p o s i t i o n o f the t ransducer 

a n d create the f i rU C-scan, ahowing the loca t ion , shape a n d size i n the x- a n d y-axis o f 

the defect to be f o u n d . C-scans however do n o t provide i n f o r m a t i o n o n the d e p t h o f the 

defect . 

3 . 7 . 4 . S -SCAN 
A n S-scan is a special type o f v i e w u n i q u e to Phased Ar ray Ul t rasonic (PAUT) inspect ions 

w h i c h makes use o f the wave steering ab i l i t y of PAUT transducers. This v i ew is a s tacking 
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Figure 3.10: Example of a typical C-scan of GLARE 

of A-scans p e r f o r m e d over a range of angles, as can be seen i n f igure 3 . 1 J. I t is therefore 

very s imilar to a B-scan, b u t p e r f o r m e d at various angles. The advantage o f such type o f 

v i ew is that i t can provide a w i d e v i e w w i t h o u t the need to move the transducers as w e h 

as penetrate be low corners where inspec t ion is n o r m a h y d i f f i c u l t to conduct . S-scans 

w i h n o t be used i n this thesis since the inspect ions p e r f o r m e d w h l be 0° inspect ions. 

t 

Figure 3.11: Example of a typical S-scan [9] 

3 .8 . P A U T 
The m a i n di f ference be tween Phased Array Ultrasonics (PAUT) a n d c o n v e n d o n a l u l t ra 

sonics (UT) is the use o f an array o f independen t piezoelectr ic crystals i n PAUT ins tead 

o f the i n d i v i d u a l piezoelectr ic monoc rys t a l u t i l i z ed i n conven t iona l UT. U t h i z i n g an ar

ray of i n d i v i d u a l piezoelectr ic crystals allows f o r several advantages over the m o n o c r y s 

ta l approach, i n c l u d i n g greater flexibihty i n the u l t rasonic b e a m steering a n d focus ing . 

These elements can be con f igu red i n a linear, 2D or even rad ia l array, as s h o w n i n figure 

3 . 1 2 . 

The m a i n character iz ing factors i n a PAUT transducer are the f r equency ƒ a n d the geo-
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*-* 

Figure 3.12: Linear ID array conflguration (left) and2D array configuration (right) 

m e t r i c a l parameters s h o w n i n hgure 3 .12, such as the n u m b e r o f elements, the e lement 

p h c h Sx, the e lement gap gx, the e lement w i d t h lx and the e lement l e n g d i ly (also re

f e r r ed to as elevation) [ 1 ] . Two other very i m p o r t a n t parameters tha t derive f r o m tiiose 

previous ly m e n t i o n e d are tire aperture A, d e f ined as the distance f r o m the first e lement 

to the last e lement and d ie active aperture Aa, d e f ined as the distance f r o m the first ac

tive e lement to the last active e lement used i n a specif ic l a w [ ] ] . Hence if a 64 e lement 

PAUT transducer is used b u t o n l y 16 elements are active, tiien tiie aperture is measured 

as tire distance f r o m e lement 1 to 64, whhs t the active aper tme is tiie distance measured 

f r o m element 1 to 16. The effects o f these w h l be discussed i n the f o h o w i n g sections. 

3 . 8 . 1 . B E A M P R O F I L E 

A n ul t rasonic b e a m p ro f i l e is usual ly d iv ided i n t o 3 d i f f e ren t 'zones': The dead zone, the 

near field and the far field, a l l of w h i c h are s h o w n i n figure 3 . 1 3 . The dead zone is a par t o f 

the b e a m closest to the transducers surface where n o i n f o r m a t i o n can be coUected due 

to the fac t t ha t the piezoelectr ic elements are stUl v ib ra t i ng f r o m tiie piUse. This par t is 

usual ly very smal l and depends o n d ie d a m p i n g proper t ies of the transducer. The near 

field, also re fe r red to as the Fresnel zone, is a par t of d ie u l t rasonic b e a m where there 

are considerable amounts of const ruct ive a n d destruct ive wave in te rac t ion . The energy 

b u h d u p b y these waves becomes the highest at the end o f d i e near field, re fe r red to 

as the focus po in t , where the const ruct ive effects of wave i n t e r ac t i on create tiie highest 

sound pressure i n tiie u l t rasonic beam. Since the acoustic pressure (energy) is the h i g h 

est at the focus po in t , h is where the best sensi t ivi ty and reso lu t ion can a t ta ined. Las t iy 

the far field, also refer red to as d ie Fraunhofer zone, is d i e area after tiie near field where 

the acoustic waves behave as one c o m b i n e d wave f r o n t . A t the far field, the s o u n d pres

sure starts to decrease as the beam's p ro f i l e s lowly diverges. [ 1 0 ] 

The b e a m p ro f i l e o f a conven t iona l U T transducer is dec ided before m a n u f a c t u r i n g a n d 

is based o n the apphca t ion h has to f u l f i l l since i t is fixed and can o n l y be shghtiy m o d 

i f i e d by the use of wedges. O n the other hand . Phased Ar ray Ul t rason ic (PAUT) trans

ducers have the abhi ty to m o d i f y d ie b e a m p ro f i l e by electr icahy pu l s i ng each i n d i v i d u a l 

e lement at d i f f e r en t t imes. As s h o w n i n figure 3 .1 . ' , PAUT transducers can change d i e 
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Figure 3.13: Ultrasonic beam profile [10] 

beam's focus p o i n t as w e l l as the beam's angle by app ly ing d i f f e ren t pulses. 

Applied delays 

Figure 3.14: PAUT focusing (left) and steering (right) capabilities [M] 

B E A M F O C U S I N G 

Beam focus ing is m a d e possible i n PAUT transducers because each piezoelectr ic crystal 

e lement i n a PAUT transducer is i ndependen t so they can be t r iggered i ndependen t l y 

at d i f f e ren t t imes a n d w i h create independen t acoustic waves. As the waves t ravel away 

f r o m the source, tiie wave f r o n t s o f each e lement w i h interact , creat ing const ruct ive a n d 

destructive interference. By con t roh ing tire times at w h i c h each i n d i v i d u a l e lement is 

tr iggered, these effects can be cont rohed, creat ing the highest const ruct ive in ter ference 

i n the desired d i r ec t ion a n d at the desired depth , as dep ic ted i n flgme 3.14. 

Even tiiough PAUT transducers have tiie abUity to focus the u l t rasonic beam, they st ih 

posses a near fleld l e n g t i i tha t l i m i t s tiie foca l distance. PAUT transducer can o n l y focus 



3.8. P A U T 35 

at distance closer t h a n the near f i e l d l eng th Nq o f d ie transducer, w h i c h can be approxi 

m a t e d as [ 1 3 ] : 

No = ^ (3T2) 

Where A is the wave length o f the acousdc waves i n the ma te r i a l inspec ted and Aact is 

the active aperture o f t h e transducer, de f ined as [ 1 4 ] : 

Aact = sANact-l) + lx (3T3) 

Where Nact is the n u m b e r o f active elements. I t can be seen f r o m equa t ion 3 . 1 2 tha t the 

near field l eng th of a PAUT increases w h e n the active aper tme increases. However, i t can 

also be seen tha t d i e e lement w i d t h has very l i t de i n f luence i n d ie near fleld length . 

I t has been shown d i a t e lement w i d t h lx w h l increase d ie pressure i n the f a r - f i e l d w i t h 

increasing e lement w i d t h [ 1 4 ] . Therefore d ie biggest effect o n d ie near field l eng th rehes 

o n the n u m b e r of elements used a n d i n the t ransducer p i t c h . 

The near field l eng th i n d ie cons f i tuen t mater ia ls o f GLARE, as d e f i n e d b y equadon 3 . 1 2 

f o r the transducers used f o r test ing d u r i n g this thesis, can be seen i n table 3 . 1 . I t is w o r d i 

n o t i n g that d ie PAUT i n s t r u m e n t used f o r tes t ing d u r i n g this thesis was l i m i t e d to f h -

i n g 16 elements at once, hence h m i t i n g the active aperture o f the transducers to o n l y 16 

elements, h is also w o r t h m e n f i o n i n g tha t these Near F ie ld Lengths are larger t h a n the 

thicknesses of the plates tha t w i h be tested d u r i n g this thesis. 

Table 3.1: Near field length of the transducers in aluminum and epoxy 

Transducer 2.25L32 5L64 10L32 

Aper ture [ m m ] 64 64 9.9 

Act ive Aper ture [ m m ] 32 16 4.95 

No A l u m i n u m [ m m ] 98.8 50.6 9.7 

No Epoxy [ m m ] 271.6 139.1 26.6 

W h e n a PAUT b e a m is focused b e y o n d its near field l engd i , d i e PAUT w i h s i m p l y be 

unfocused , l ead ing to a b e a m p ro f i l e s inhlar to the one presented o n the l e f t side of fig

ure 3 . 1 5 . However, w h e n d ie b e a m is focused at a focus p o i n t closer d i a n the near field 

l eng th , the PAUT b e a m w i h converge u n t h h reaches d ie focus p o i n t and t h e n diverge i n 

the far field, as s h o w n o n the r i gh t side o f figure 3 . 1 5 . [ 9 ] 

The n u m b e r o f elements used w h e n focus ing the PAUT b e a m w i h have a great effect 

i n the b e a m p r o f i l e a n d the focus ing o f the beam. Us ing a greater n u m b e r o f elements 

improves the f o c u s i n g o f d ie b e a m since a larger n u m b e r o f elements allows f o r m o r e 

fiexible t i m e delays a n d m o r e precise c o n t r o l o f the beam, l ead ing to a s l i m m e r b e a m 

p r o f i l e as w e h as a h igher acoustic pressure i n d ie focus area. Increasing d ie w i d t i i w i h 

give a h igher acoustic pressure as w e h as a bet ter signal-to-noise ra t io b u t w i h n o t affect 

the b e a m p r o f i l e [14]. 
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B E A M S T E E R I N G 

W h e n f o r m i n g of a beam, the m a x i m u m angle at w h i c h the b e a m can be steered is 

m a i n l y de t e rmined by the wave lengd i of the acoustic wave i n the ma te r i a l A, the ele

m e n t p i t c h Sx and the n u m b e r o f active elements Nact- The steering angle {6s)max can 

be expressed as: [15] 

i.6s)max = sin ^ 
'A{Nact-l) 

SxN, 
I 

act 
(3T4) 

F r o m equa t ion 3 . J I i t becomes clear t ha t the smaher the e lement p i t c h Sx, the larger 

the steering can be. Small e lement p i t c h however reduces the near field l e n g t h of the 

transducer and can cause excessive gra t ing lobes, as w i h be discussed i n the next sect ion. 

[15] 

S I D E L O B E S A N D G R A T I N G L O B E S 

Even t h o u g h PAUT transducers can con t ro l the b e a m prof i l e , some undes i red effects 

such as side lobes and grat ing lobes occur. 

Side Lobes 

Side lobes are pressme d is t r ibu t ions tha t s t em at d i f f e r en t angles f r o m the m a i n acoustic 

pressme b e a m and are a consequence o f pressme leak ing f r o m the t ransducer elements 

at d i f f e ren t angles f r o m the m a i n acoustic pressme beam, as s h o w n i n figure 3 T 6 . 

The rat io o f t h e peak side lobe to the m a i n acoustic lobe ^ can be calculated as a f u n c t i o n 

o f the n u m b e r of active elements Nact as [14]: 

3n/2Na ct (3.15) 
sini3nl2Nact)) 

The side lobe's amp l i t ude is o n l y dependent o n the n u m b e r o f elements used, where i n 

creasing the n u m b e r of elements decreases the effect o f side lobes. I t is w o r t h y n o t i c i n g 

tiiat as Nact — oo, ^ — 2/37r, w h i c h equates to -l3.5dB d i f ference be tween the m a i n 
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Figure 3.16: Main lobe (beam), side lobes and grating lobes occurring in a30° steered beam [15] 

lobe and the m a i n side lobe. This theoret ica l l i m i t f o r the suppress ion o f side lobes is 

achieved w i t h 16 elements, above w h i c h n o not iceable suppress ion o f side lobes occms. 

[ 1 4 , 1 3 ] 

I t can therefore be conc luded tha t to avoid the effect o f side lobes 16 elements shou ld 

be used w h e n f o r m i n g the beam. This is at tainable since the PAUT i n s t r u m e n t used f o r 

tes t ing d u r i n g the tiiesis can actual ly excite up to 16 elements. 

Grat ing Lobes 

Whhs t side lobes occur i n b o t h conven t iona l U T and PAUT transducers, gra t ing lobes 

o n l y occur i n PAUT transducers a n d are caused by the even constant spacing be tween 

the t ransducer elements. The angle o f these gra t ing lobes Pg can be calculated as: [ 1 5 ] 

Pg = sin'^lsinOs ^]ll_\ where m = ±1,±2±3... (3.16) 

Increas ing the e lement w i d t h tends to reduce the gra t ing lobe a m p l i t u d e [ 1 4 ] . 

Ideally, to avoid gra t ing lobes, the p i t c h s.v < A / 2 [ 1 5 ] . 

The a m p l i t u d e o f tiiese gra t ing lobes m a i n l y depend o n transducer proper t ies such as 

f r equency ƒ , b a n d w i d t h BW, p i t c h size % and n u m b e r a n d size o f elements [?>]. W h e n 

the PAUT transducer's p i t c h size is large, the effect o f b o t h side lobes and gra t ing lobes 

w i h become bigger. Therefore r educ ing the size o f the elements as w e h as the p i t c h w i h 

reduce the effect o f side lobes and gra t ing lobes i n the PAUT beam. Furd ie rmore , reduc

i n g the frequency a n d increasing the b a n d w i d t h can reduce the a m p l i t u d e o f the side 

lobes and gra t ing lobes, as shown i n figure 3 . 1 6 . 
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3 . 8 . 2 . D E L A Y L A W S 

The set o f t imes at w h i c h each i n d i v i d u a l e lement is t r iggered are cahed delay laws [ I ] . 

These delay laws can be calculated f o r b o t h linear- and 2D arrays. However, the research 

i n this thesis was conduc ted w i t h on ly l inear array PAUT transducers, and therefore on ly 

this type w i h be f u r t h e r explored. 

L o o k i n g at figure 3.17, f h e foca l laws requ i red to focus a specif ic PAUT transducer at a 

depth /d is tance F and at a steering angle O can be de te rmine based o n the PAUT trans

ducer propert ies . A variable M can be d e f i n e d f o r convenience and ease o f ca lcu la t ion 

as: 

- M - l 
M = — ^ (3.17) 

W h i c h t h e n ahows f o r the distance to the cen t ro id o f the m'^'' e lement e,„ to be d e f i n e d 

as: 

e,n = [im-l)-M]s (3.18) 

Where M is the n u m b e r o f active elements i n the t ransducer a n d s is the distance f r o m 

the edge o f one e lement to the edge o f the next, as d e f i n e d i n figure 3.12. 

Figure 3.17: PAUT focusing and steering when $ > 0 (left) and Phi < 0 (right) [1] 

The delay laws can t hen be expressed as: 

Ata = n/c-rm/c (3.19) 

L o o k i n g at figure 3 . 1 / , n and ?-,„ can be de f ined as: 

n = \ J f ^ + [Msf + ZFMssin^ (3.20) 

/-,„ = ^F^ + {e„,)^-2Fe,nSin(^ (3.21) 

Lasdy, c o m b i n i n g equadons 3.19,3.20 a n d 3 ..̂  1, the delay l a w can be expressed as: 
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Afrf = - + [Msf + IFMssin^ - \ / + {e^f - IFemsin^ 

For the case where O > 0, and as: 

Afrf = i \/F2 + [Msf ^IFMssinm - \lF^ + (e,„)2 + 2 F e , „ 5 m | 0 | 

(3.22) 

(3.23) 

For the case where 0 < 0. 

3 .9 . THEORETICAL DEFECT DETECTION 
As a general ru le o f t h u m b , the theorehcal m i n i m u m defect size D „ j / „ tha t can be de

tected i n a ma te r i a l can be expressed as [ 6 ] : 

D min > (3.24) 

h is however i m p o r t a n t to no t ice tiiat U T and PAUT transducers do n o t operate at a s in

gle f r equency b u t w i t h i n a specific b a n d w i d t h w i t h a center f r e q u e n c y Therefore, the 

size o f t h e defects tha t can be detected can possibly be smaher since f requencies h igher 

and lower t h a n d ie center f r equency w h l also occur. Neverdieless, d ie m i n i m u m defect 

size tha t can be f o u n d i n b o t i i the a l u m i n u m a n d epoxy layers h i GLARE can be seen m 

figure 3 4 8 . 

4 5 6 7 
Frequency [MHz] 

Figure 3.18: Theoretical minimum defect size detectable in aluminum and epoxy 

F r o m figure 3 .18 , h can be clearly seen tha t fiiere is a relat ively b i g d i f fe rence i n the size 

of the defects tha t can be detected i n epoxy a n d a l u m i n u m . Due to the lower acous

tic ve loc i ty i n epoxy, the defects tha t can be f o u n d are rough ly twice as smal l . I t is also 



40 R E F E R E N C E S 

i m p o r t a n t to not ice that as t l ie f r equency increases, the size o f the defects tha t can be 

f o u n d changes very s l ighdy I t is therefore i m p o r t a n t to chose d ie f r equency wise ly as an 

increase i n f r equency m i g h t give h tde bene f i t to d ie m i n i m u m size o f defects tha t can be 

f o u n d whhs t excessively increasing the a t tenua t ion . 

As m e n t i o n e d i n section ;].[ . , the size o f tiie grains can cause great a t t enua t ion o f the 

ul t rasonic signal, h i n d e r i n g d ie inspec t ion . I t is therefore in teres t ing to de te rmine w h a t 

g ra in size w i h cause excessive a t t enua t ion w h e n p e r f o r m i n g PAUT inspect ions o f GLARE. 

U t h i z i n g the ru le o f t h u m b m e n t i o n e d i n sect ion 3 .5 be tween the wave length a n d the 

gra in size, A > 6 0 , tire gra in size above w h i c h excessive a t t enua t ion w i h occur can be 

p l o t t e d f o r b o t h the a l u m i n u m layers a n d the epoxy layers o f GLARE, as s h o w n i n figure 

3 . 1 9 . 

Figure 3.19: Tiieoretical maximum grain size in aluminum and epoxy 

As can be seen i n figure 3 . 1 9 , the highest f requencies are d ie mos t susceptible to smah 

gra in size i n the mater ia l . The smaUest gra in size tha t w h l cause excessive a t t enua t ion 

is 38fim and occms i n the epoxy layers w i t i i l O M H z frequencies. Cons ider ing tiiat the 

fibers embedded i n the epoxy prepreg are 10pm, it s hou ld become clear tiiat n o exces

sive a t t enua t ion shou ld be encountered due to the gra in size o f t h e mater ia ls . 
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The mos t basic phased array ih t r a sound system consists o f a PAUT i n s t r u m e n t and a 

PAUT transducer. The PAUT i n s t r u m e n t is a piece of e q u i p m e n t w h i c h excites the PAUT 

transducer and receives the i n f o r m a t i o n f r o m the PAUT transducer. These systems w i h 

c o n t r o l the voltage, foca l laws, f requencies a n d other i m p o r t a n t parameters as w e h as 

process a n d analyze data. The system setup o f the N D T labora tory of the Aerospace 

Faculty at T U D e l f t used f o r test ing i n this thesis can be seen i n figme 4 T . 

Computer 
• 

< 
PAUT instrument Motion Control 

Unit 

• 

\ 
Test Sample 

-i 
• 

Phased array probe < Encoder 
Test Sample 

Figure 4.1: PAUT system setup of the NDT laboratory of the Aerospace Faculty at TU Delft 

As seen i n figure 4 , 1 , the PAUT i n s t r u m e n t (Olympus OmniScan SX) interacts w i t h the 

PAUT transducer by exci t ing the elements o f the transducer w i t h d i f f e ren t delay t imes. 

The transducer w i h t h e n create an ul t rasonic signal tha t w h l penetrate the test sample 

a n d ref lect back to the PAUT transducer. The t ransducer w h l receive the signal and send 

i t to the PAUT ins t rumen t , w h i c h can t h e n recons t ruc t the data and display i t i n d i f f e r en t 

modes (A-scan, B-scan, etc). This i n f o r m a t i o n can be f u r t h e r processed a n d analyzed by 

a c o m p u t e r w i t h the O l y m p u s T o m o V i e w software. 

For au toma ted inspec t ion , the compu te r can be used to c o n t r o l a M o t i o n C o n t r o l U n i t 

w h i c h w i h con t ro l the transducers pos i t i on ing . The encoder w i h t hen t r ansmi t the pos i 

t i o n coordinates to the PAUT i n s t r u m e n t so tha t the PAUT i n s t r u m e n t can create B - a n d 
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C- scans of the sample. 

4 . 1 . P A U T INSTRUMENT 
The PAUT i n s t r u m e n t used f o r test ing was an O lympus OmniScan SX c o m m e r c i a l u n i t 

r i m n i n g the OmniScan M X U 4.1R8 software. This i n s t r u m e n t is a por tab le PAUT i n 

s t rumen t mean t f o r remote PAUT inspect ions capable of b o t h data cohec t ion as w e h as 

s imple analysis a n d repor t ing . I t is therefore n o t capable o f connec t ing to a compu te r 

d i recdy and a l l data has to be expor ted v ia an SD card or a USB storage device. The 

Olympus OmniScan SX can pulse PAUT transducers w i t h an adjustable negative square 

pulse o f 40V, 80V or 115V. The m a x i m u m active aperture tha t can be used is o f 16 ele

ments , a l lowing 16 elements ou t of the to ta l a m o u n t of elements i n the t ransducer to be 

used simultaneously. The OmniScan SX is h m i t e d to one group of foca l laws at a t ime , 

and therefore does n o t a l low the pe r fo rmance o f tests w i t h va ry ing foca l laws. 

Figure 4.2: Olympus OmniScan SX PAUT instrument [I] 

The Olympus OmniScan SX also has an adjustable ga in f o r the i n p u t signal r ang ing f r o m 

0 dB to 80 dB, ahowing the user to increase or decrease the a m p l i t u d e o f the received 

signal i f the signal is too h i g h or too low. I t has a d ig i t i z ing f r equency of 4 0 0 M H z (12 

bi ts) , ahowing f o r a measurement to be taken every 2.5ns. The OmniScan SX also allows 

f o r the signal received to be averaged i n real t i m e u p to 16 t imes. I t also has the ab i l i ty 

to use 3 low-pass, 3 band-pass a n d 5 high-pass fUters as w e h as a f r equency dependent 

s m o o t h i n g filter f o r better v isua l iza t ion . 

External encoders can be connec ted to the O lympus OmniScan SX via a L E M O 16-p in fe 

male c i r c iüa r i n p u t , a l l owing f o r 2-axis quadrature or c l ock /d i r ec t i on signals to be read 

by the OmniScan SX. This ahows f o r C-scans to be p e r f o r m e d by means o f a raster scan 

w i t h a fhe size of u p to 300MB. 
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4 . 2 . P A U T TRANSDUCERS 
Three d i f fe ren t transducers w id r center f requencies of 2 .25MHz, 5 M H z a n d l O M H z were 

used f o r test ing i n d i i s thesis. These transducers were selected to provide a 'wide ' range 

o f frequencies and from diose commerc iahy avahable. The properdes o f d i e i n d i v i d u a l 

t ransducers can be seen i n table 4 , 1 . 

Table 4.1: Transducer properties 

Transducer 2.25L32 5L64 10L32 

Serial N u m b e r N2350 K1997 N1728 

Average Center Frequency [ M H z ] 2.44 5.00 9.97 

Average -6dB B a n d w i d t h [%] 71 79 62 

N u m b e r o f Elements 32 64 32 

Aper ture [ m m ] 64.00 64.00 9.90 

Elevat ion [ m m ] 7.00 7.00 7.00 

P i t ch [ m m ] 2.00 1.00 0.31 

Type N W N W A n g l e d 

Index reso lu t ion [ m m ] 2 1 0.3 

As can be n o t e d f r o m table 4 . 1 , ah d ie transducers h a d rela t ively large b a n d w i d d i s h igher 

t h a n 60%, w h i c h is a c o m m o n t r a h o f PAUT transducers, h can also be observed d i a t 

ah o f the transducers h a d m o r e t h a n 16 elements, m e a n i n g d i a t the effects o f the side 

lobes due to d ie a m o u n t o f elements used can be suppressed. However, none of the 

transducers can ideal ly remove the gra t ing lobes since, as m e n d o n e d i n chapter 3 . 8 , a 

p i t c h Sx < A.12 is required, w h i c h does n o t occur o n mos t cases. This is s h o w n i n table 

4 . 2 , where one can observe tha t the o n l y t ransducer tha t can avoid gra t ing lobes is the 

lOMHz t ransducer w h e n inspec t ing a l u m i n u m . 

O n average h can be observed drat the lOMHz t ransducer w h l m o s t l i ke ly be the least 

a f fec ted by gra t ing lobes whhs t d i e 5MHz w i h be the t ransducer a f fec ted the m o s t by 

gra t ing lobes. 

The transducers used f o r tes t ing were not contact transducers and therefore r equ i red 

wedges, such as the one s h o w n i n figure 4 , 3 , f o r the i n s p e c f i o n of the relat ively t h i n 

GLARE panels. These wedges were also m a n u f a c t u r e d by O l y m p u s a n d were made ou t o f 

Rexolite, a t ransparent thermose t po lymer . A h d ie transducers h a d a m a t c h i n g m e d i u m 

(mater ia l be tween the piezoelectr ic elements and the smface o f the t ransducer) m a t c h e d 

to the acousfic impedance o f Rexohte. This ensures a better t ransmiss ion o f the acoustic 

wave f r o m the t ransducer to the wedge. 
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Table 4.2: Add caption 

Transducer 2.25L32 5L64 10L32 

Cal [m/s ] 6320 6320 6320 

Cep [m/s] 2300 2300 2300 

Xai [ m m ] 2.809 1.264 0.632 

Aep [ m m ] L022 0.460 0.230 

Sx [ m m ] 2.000 1.000 0.310 
Aa/ /2 [ m m ] L404 0.632 0.316 
Aep/2 [ m m ] 0.511 0.230 0.115 
^al 
2 s, 0.702 0.632 1.019 

^ep 0.256 0.230 0.371 

Average 0.479 0.431 0.695 

Figure 4.3: 2.25MHz PAUT transducer mounted on a Rexolite wedge 

For d ie 2.25iy[Hz and d ie BMHz transducers, d i e wedges were m a n u f a c t m e d w i t h water 

channels that co idd be connec ted to a water p u m p i n order to p rov ide c o u p l i n g w h e n 

p e r f o r m i n g the inspec t ion . O n the o t i ie r h a n d , the lOlMHz transducer was m o u n t e d o n 

a wedge tha t d i d n o t have any water channels b u t was ins tead m o u n t e d o n a bracket 

w h i c h was equ ipped w i t i i water channels to p rov ide couphng f o r d i e inspec t ion . 

4 . 3 . AUTOMATED X Y STAGE ENCODER 
The m o t i o n c o n t r o l u n i t a n d the encoders responsible f o r d i e au toma ted i n spec t ion o f 

panels were b o t i i m o u n t e d o n a cus tom r i g capable o f p e r f o r m i n g 2 D inspect ions o f flat 

surfaces. This au toma ted u n h u t i l i z ed t w o L I D A 17C q u a d encoders to track the p o s i t i o n 

of the t ransducer m o u n t e d o n the r i g w h h e t w o independen t electr ical m o t o r s were re

sponsible f o r the m o v e m e n t o f d ie transducer. The au toma ted X Y stage was a feedback 
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c o n t r o l system (or a closed l oop system) con t ro l l ed by a computer , where the encoder i n 

f o r m a t i o n was f e d back to the compu te r to con t ro l the independen t e lectr ical mo to r s i n 

order to be able to accurately con t ro l speed a n d pos i t ion ing . The encoder signal was spht 

before i t was f e d back to the computer , a l l owing fo r the signal to be sent to the O lympus 

OmniScan SX a n d d ie compu te r s imul t aneous ly I n such a m a n n e r tire signal was n o t 

i n t e r r u p t e d a n d ahowed f o r the p roper f u n c t i o n i n g o f the XY stage's feedback con t ro l 

system as w e h as the p roper t ransmiss ion o f the encoder data to the PAUT in s t rumen t . 

The encoder r e so lu t ion o n the O m n i S c a n SX was o f 1000 s t eps /mm. The sof tware used 

to con t ro l the au tomated XY stage was PEWIN32 by Deha Tau Data Systems Inc . 

Figure 4.4: Automated XY stage setup 

As can be seen i n figure 4.4, the w h o l e system is m o u n t e d o n a water tank, w h i c h can 

be used as a source o f water to p rov ide c o u p l i n g to the transducers a n d as a water reser

vo i r where water is cohected d u r i n g inspec t ion . D u r i n g test ing, the water was p u m p e d 

to the t ransducer w i t h a smah water p u m p , w h i c h cohected the water f r o m the t ank and 

p u m p e d it to the transducer. The test panels were p laced o n top of an a l u m i n u m plat

f o r m w h i c h was suspended above the water. The water t ank also ahowed f o r the possi

b i h t y of p e r f o r m i n g submerged tests. 

4 . 4 . OLYMPUS TOMOVIEW ANALYSIS TOOL 
Tomov iew Analysis is a sof tware t o o l f r o m O l y m p u s a i m e d at p e r f o r m i n g detahed analy

sis o f U T a n d PAUT data. T o m o v i e w offers various analysis tools to m a n i p u l a t e the data 

cohected f o r bet ter analysis. T o m o v i e w provides the abhi ty to create sof tware C-scans, 

where a C-scan can be created based o n a gate drat is apphed after the inspec t ion . Otirer 

tools i nc lude tire m e r g i n g of d i f f e r en t C-scans to provide var ious i n f o r m a t i o n i n one file 

or signal-to-noise analysis tools a i m e d at objec t ive ly detect ing defects i n accordance to 

specif ied signal- to-noise ratios. 
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Tomoview software w i l l be the p r i m a r y software used f o r the analysis o f the data co l 

lected d u r i n g the thesis. Fur ther explanations of the tools w i h be g iven w h e n pe r t inen t 

d u r i n g the analysis. 
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5 . 1 . TEST SAMPLES 
A to ta l of three d i f f e ren t flat GLARE test panels were used f o r d i e the tes t ing o f GLARE 

w i t h PAUT. The objecdve of these test samples was to s imihate d e l a m i n a t i o n defects and 

damages at d i f fe ren t depths a n d i n d i f f e ren t types of GLARE. I n this sect ion the selecdon 

o f damage to be recreated as w e h as the m e t h o d chosen to do so w i h be expla ined and 

jus t ihed . Fur thermore , the flnal GLARE samples used f o r tes t ing w h l be described. 

5 . 1 . 1 . D A M A G E T Y P E S E L E C T I O N 

Delaminadons were chosen as the defect /damage to recreate due to the fac t tha t they 

are dangerous types of damages tha t can o c c m d u r i n g the opera t iona l l i f e t i m e of an 

a i rcraf t and are n o t eashy detectable by visual inspecdon . As expla ined i n chapter 2.2, 

de laminadons have a great i m p a c t i n the mechan ica l pe r fo rmance of d i e pa r t a n d i t was 

therefore deemed i m p o r t a n t to be able to detect t h e m d u r i n g the ope ra t ion lhe o f an 

aircraft . 

5 . 1 . 2 . F J A M A G E T Y P E R E C R E A T I O N 

W h e n a d e l a m i n a t i o n occurs, the space be tween tiie t w o separated laminates is f h l e d by 

air, hquids or a v a c u u m [ 1 ] . As expla ined i n chapter 3, the ref lec t ions tha t indica te i r reg

ulari t ies i n the ma te r i a l are caused b y the change i n acoustic impedance o f t h e mater ia l , 

w h i c h i n t u r n is caused by an i r regu la r i ty i n the mate r ia l . I t is therefore i m p o r t a n t f o r 

u l t rasonic inspect ions to recreate the in terface be tween the test ma te r i a l and the loca

t i o n where the damage occurs i n order to evaluate the in t e rac t ion be tween the ul t rasonic 

wave and the damage/defect . 

I n the case o f a d e l a m i n a t i o n i n GLARE, h was considered tha t h w o u l d m o s t l ike ly con

t a i n en t rapped air ins tead o f l iqu ids or a v a c u u m . I n the hypo the t i ca l case a v a c u u m 

w o i ü d occur, the t w o de lamina ted layers w o i d d be p u h e d toget i ier b y the v a c u u m , hence 

causing a type o f 'kissing b o n d ' s i tua t ion , m a k i n g in spec t ion very d i f f l c u l t . Fur thermore , 
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due to the m a i n use of GLARE as a s t ruc tura l sk in i n an aircraft , l i qu ids w i t h i n the de lam

inadons are n o t as l ike ly to occur as air. Water co idd be a possible fluid to perhaps ingress 

i n to the de l amina t i on b u t i t w o u l d most l ike ly evaporate, leaving an air v o i d . Keeping 

such observations i n m i n d , i t became evident that recreat ing a de l amina t i on w i t h en

t rapped air was preferable as i t w i h be the mos t l ike ly case to occur i n a real l i f e scenario. 

A r t i h c i a l de lamina t ions are conven t iona l ly created i n GLARE by inser t ing fo re ign m a 

ter ia l such as Te f lon be tween layers, h i n d e r i n g the adhesion be tween layers a n d hence 

causing a d e l a m i n a t i o n [ l j . There were however several drawbacks to app ly ing such a 

m e t h o d w h e n p e r f o r m i n g PAUT invest igat ions i n GLARE. One o f the m a i n drawbacks 

w o u l d be the fact tha t w h e n p e r f o r m i n g the inspec t ion i t w o u l d be d i f f i c u l t to deter

m i n e whe ther the i r regula r i ty detected w o u l d be caused by the f o r e i g n ma te r i a l or the 

actual de l amina t ion . I n some cases the fo re ign ma te r i a l m i g h t n o t create comple te de

l amina t ions and hence create kissing bonds [ I ] , w h i c h c o u l d either n o t show d u r i n g the 

inspec t ion or appear as a r e f i e c f i o n due to the acoustic m i s m a t c h be tween the inser ted 

ma te r i a l and GLARE ins tead of tire acoustic m i s m a t c h be tween GLARE a n d the air, h q 

u i d or v a c u u m w i t h i n the de l amina t ion . I t was therefore considered necessary, i f g iven 

the possibihty, to recreate de lamina t ions i n GLARE i n a m o r e suitable m a n n e r f o r PAUT 

testing. 

One o f t h e opt ions considered was creat ing air pockets w i t h i n GLARE layers tha t w o u l d 

r e m a i n i n GLARE d u r i n g the cu r ing process and hence cause de laminat ions . This p r o 

cess however, d i d n o t of fe r accmate con t ro l over the size, shape or layer i n w h i c h the 

d e l a m i n a t i o n occurred, hence n o t be ing a viable m e t h o d to recreate de laminat ions . 

I t was finahy decided tha t creaf ing fiat b o t t o m holes w o u l d be the best viable m e t h o d to 

recreate de lamina t ions f o r ul t rasonic pulse-echo inspect ions i n a con t rohed m a n n e r i n 

GLARE. As the name suggests, fiat b o t t o m holes are holes w i t h a fiat surface a r t i f i c i a l ly 

created i n the mater ia l . These types of holes create the same type o f in terface tha t w o u l d 

be encountered i n a de lamina t ion , w i t h the except ion o f the h o t t o m side' o f the de lam

i n a t i o n . The in terface exposes a layer of GLARE to air, thus ahowing f o r the same type 

o f change i n acoustic impedances as w o u l d be expected i n a de l amina t i on . I t is w o r t h y 

of n o t i c i n g tha t these types o f defects appear as a change i n thickness i n a C-scan rather 

t h a n a defect. This is caused by the fac t tha t a C-scan has water jets o n b o t h sides o f the 

sample, and thus the signal w h l n o t be comple te ly ref lec ted as i t w i h encounter water 

ins tead o f ah. Therefore i t w i h s i m p l y suffer less a t t enua t ion i n the defect t h a n i n the 

actual mater ia l , a n d hence appear as a change i n thickness. 

5 . 1 . 3 . T E S T S A M P L E P R O P E R T I E S A N D G E O M E T R Y 

Three GLARE panels w i t h d i f fe ren t thicknesses and conf lgura t ions were chosen to be i n 

vestigated. Three d i f f e ren t thicknesses were chosen i n order to ga in an unde r s t and ing 

o n the effects o f thickness i n the de tec t ion o f de lamina t ions w i t h d i f f e r en t f requencies 

since i n an aircraft , the thickness o f the parts is n o t always constant . Eur thermore , d i f 

fe ren t types o f GLARE w i t h d i f f e ren t types o f layups are used i n aircraft , and hence tha t 
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also h a d to be taken i n t o cons ideradon d u r i n g the invest igat ion. These three panels were 

scanned by the u l t rasonic C-scan at T U D e l f t i n order to ensure tha t n o u n i n t e n d e d de

fects were present. 

Due to the avahabhity of GLARE 3 (GL3) and GLARE 4 (GL4) panels h a v i n g passed qua l 

i t y con t ro l tests, these t w o types of GLARE were chosen as t w o o f the test panels. The 

last sample to be used f o r tes t ing was the Master Reference Panel (made o f GLARE 3 and 

referred to as MRP) used to calibrate the C-scan at T U D e l f t . This sample was chosen 

due to the fact tha t creat ing flat b o t t o m holes i n t h i n GLARE samples was p rob lemat i c as 

the qua l i ty c o u l d n o t be ensured. Therefore, the MRP was chosen as the t h i r d tests pane l 

since i t is used as a w e h k n o w n s tandard f o r id t rasonic C-scan tes t ing o f GLARE panels. A 

s u m m a r y o f the general proper t ies of the three d i f f e ren t test samples are s h o w n i n table 

5 T . 

Table 5.1: Test sample panel properties 

Panel G L 3 G L 4 IVIRP 

G L A R E Type GLARE 3 GLARE4B GLARE 3 

Configuration 8/7 6/5 3/2 

Layup 0 ° / 9 0 ° 9 0 ° / 0 ° / 9 0 ° 0 ° / 9 0 ° 

Average Panel Thickness [mm] 5.208 4.361 0.875 

Average A l u m i n u m Thickness [mm] 0.470 0.423 0.219 

Average Epoxy Thickness [mm] 0.207 0.364 0.109 

Test sample panels GL3 a n d GL4 were b o t h prepared w i t h flat b o t t o m holes w i t h d iame

ters rang ing f r o m 37?2m i n size to 2\mm and at d i f f e ren t thicknesses. The loca t ion , dep th 

a n d size of the holes is dep ic ted i n flgure 5 . 1 . 

The MRP pane l o n the other h a n d was m a n u f a c t u r e d w i t h 0.07mm t h i c k Te f lon (PTFE) 

inserts i n order to cause de lamina t ions . The d iameter o f these Te f lon inserts va r ied f r o m 

3 m m u p to 2 5 m m , as can be seen i n flgure b Thei r posi t ions and sizes are s h o w n i n 

the C-scan presented i n flgure l:>.2. The layer at w h i c h the PTFE insets were loca ted is 

s h o w n by the co lored boxes i n figure 5 . 2 , where the defects i n the r ed box were located 

be tween the first t w o prepreg layers, the defects i n the green box were loca ted w i t h i n 

the first a l u m i n u m layer and the first prepreg layer, a n d last iy the defects i n the b lue box 

were loca ted i n be tween the first prepreg layer and a l u m i n u m . 

The n o m e n c l a t m e used to refer to the holes d u r i n g this thesis is as fohows: 

Hole = TestSample D Diameter R Row 

Where TestSample is the test sample i n w h i c h the hole is, where Row is the r o w i n w h i c h 

i t is as g iven i n flgures .5.1 a n d 5 . 2 a n d Diameter is the d iameter o f the hole . I n the case o f 

the M R P an extra parameter C is added s ta t ing the c o l u m n i n w h i c h the defect is located. 



5. E X P E R I M E N T A L A N A L Y S I S 

3 . 3 3 , 8 3 . 3 3 , 8 3 . 3 3 , 8 3 . 3 3 , 8 3 . 3 3 , 8 3 . 3 4 

-6 

-G • " 

- G ' o-

-o ' * -o-

•o - O — "5 

Front view GL3 
Scale: 1:3 

ni=3.65iriin R4=1.15rr»n 
R2=2.65rrm R5=0.65nini 
R3=1.85m[n 

(a) GL3 test sample geometry 

1 0 0 1 0 0 1 0 0 

Ó 

O 

1 0 0 1 0 0 

w e 

."6 

^'9 'I'6 

O o 

•i9 •'••15 

O O 

1 0 0 

Rl 

R2 

R3 

6 0 0 

F r o n t v i e w GL4 

S c a l e : 1:3 

R1 = 0.85nilll 

R2=1.85mm 

R3=3.35mm 

(b) GL4 test sample geometry 

Figure 5.1: GL3 and GL4 test sample geometry 

W h e n p e r f o r m i n g the inspect ions, taclcy tape was p laced o n the b o t t o m o f the plate a n d 

smal l w o o d e n pieces were p laced i n the corners and sides i n order to avoid water f r o m 

pene t ra t ing the back o f the plate and causing weaker ref lect ions . 
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Figure 5.2: MRP test sample geometry 
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5 .2 . TESTING 

This sect ion w h l describe the test ing m e t i i o d o l o g y used to test the effects o f tire PAUT 

transducer f r equency i n the de tec t ion of d e l a m i n a t i o n defects i n GLARE as w e h as the 

settings used i n each par t i cu la r tests. 

5 . 2 . 1 . T E S T I N G M E T H O D O L O G Y 

I n order to investigate the effects of PAUT transducer f r e q u e n c y i n d ie de tec t ion o f de

l amina t ions i n GLARE, the three test samples descr ibed i n sect ion 5.1 were each tested 

us ing the three transducers descr ibed i n sect ion A.'A i n a f ac to r i a l approach. The trans

ducers rang ing f r o m 2 .25MHz to l O M H z gave a good range o f u se fu l f requencies wh i l s t 

the GLARE 3 a n d GLARE 4 samples gave a good va r i a t i on i n ma t e r i a l propert ies . 

D u r i n g p r e h m i n a r y tes t ing i t was de t e rmined tha t the focus ing d e p t h o f t h e PAUT trans

ducer h a d a great ef fect i n the qua l i ty o f the results. Therefore the focus ing of each 

PAUT transducer h a d to be tested w i t h each test sample i n order to e l imina te d ie f o 

cus ing fac tor and asses the effect o f f r equency o n the de tec t ion of damage i n GLARE. 

Therefore , each test sample was tested w i t i i each PAUT transducer u t i l i z i n g five d i f f e ren t 

focus depths. A flow chart o f the tes t ing p e r f o r m e d is presented i n figure 5.3. As can be 

seen f r o m figure 5.3, the focus ing tests f o r a specif ic t ransducer-test sample c o m b i n a f i o n 

were averaged a n d t h e n compared to the other PAUT transducers i n that same sample, 

ahowing f o r conclusions to be d r a w n regarding the i n f l uence o f f r e q u e n c y Las t iy obser

vat ions o n the three test samples aUowed f o r flnal conclusions to be d r a w n . 
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Figure 5.3: GLARE PAUT testing flow chart 

The focus ing tests were p e r f o r m e d at depths oflmm, 2.5mm, 5mm, 10mm and 2 5 m m . 

These depths p r o v i d e d a reasonable range of focus ing depths w i t h smaher intervals i n 

the thickness range o f the test samples. 

The steps p e r f o r m e d f o r each test are g iven as: 

1. De t e rmine plate coordinates and inser t t h e m i n t o the M o d o n Con t ro l U n i t 

2. Set s tandard settings such as plate d imensions , t ransducer propert ies , n u m b e r o f 

active elements, fhters, signal averaging, axial reso lu t ion , etc to s tandard values 

3. A d j u s t any parameters tha t con f l i c t w i t h each other 

4. Retrieve m a x i m u m veloc i ty f r o m PAUT i n s t r u m e n t a n d inser t i n t o M o t i o n C o n t r o l 

U n i t 

5. Set focus ing d e p t h a n d adjus t the gain o f d i e PAUT i n s t r u m e n t 

6. P e r f o r m au toma ted scan 

5 . 2 . 2 . PiELEVANT T E S T S E T T I N G S 

There are several i m p o r t a n t settings tha t have to be taken i n t o cons idera t ion w h e n per

f o r m i n g PUAT inspect ions. This sect ion w i h cover the the relevant settings a n d h o w they 

were set /chosen d u r i n g test ing. 

F I L T E R S 

Filters are sof tware f u n c t i o n s tha t o f fe r the ab i l i t y to remove (hher out) specif lc f r e q u e n 

cies or f r equency ranges. This allows f o r noise r e d u c t i o n w h e n the f r equency at w h i c h 

the noise occurs is w e h k n o w n . D u r i n g the tes t ing o f the GLARE panels no fh ters were 

apphed as i m p o r t a n t i n f o r m a t i o n c o u l d have been r emoved by app ly ing fllters. 
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F o c u s D E P T H 

The focus dep th F is t f i e d e p d i at w l i i c h d i e PAUT transducer w i l l have the highest pres

sure concent radon . This was a parameter that had to be set i n the PAUT ins t rumen t , 

w h i c h d i e n au tomadcahy calculate the t ime delay laws to focus d ie def ined PAUT b e a m 

at the desired dep th i n the de f ined mater ia l . I t is however w o r t h y o f note that the de

lay laws are calculated f o r homogeneous materials , hence n o t be ing f u h y applicable to 

layered mater ia ls such as GLARE. This parameter was set to 1mm, 2.5mm, 5mm, 1 0 m m 

and 2 5 m m i n d i f f e ren t tests. 

A C T I V E E L E M E N T S I N P A U T T R A N S D U C E R 

The n u m b e r of active elements i n a PAUT transducer M determines the n u m b e r o f el

ements tha t are used s imul taneous ly i n one foca l l a w to focus and receive i n f o r m a d o n . 

As m e n d o n e d i n secdon 3.8, the higher the n u m b e r o f elements, the better focus ing a n d 

the better suppression o f side lobes. However, the OmniScan SX h a d a m a x i m u m of 16 

active elements, l i m i t i n g the n u m b e r of active elements tha t c o u l d be used i n one f o 

cal law. However, as expla ined i n sect ion 3.8, increasing the n u m b e r of elements above 

16 on ly p r o v i d e d ve ry m i n o r improvements . Therefore, 16 active elements were always 

used d u r i n g tes t ing to get better focus ing as w e h as bet ter suppression of side lobes. 

S I G N A L A V E R A G I N G 

Signal averaging {Avg) is an o p t i o n avahable i n the O m n i S c a n SX w h i c h allows the send

i n g and re t r ieval of a s ignal var ious t imes and t ak ing d ie a r i t i ime t i c m e a n o f tiiose signals 

as the final signal. This f u n c t i o n ahows f o r a r e d u c t i o n o f noise at the cost o f a reduced 

scanning velocity. D u r i n g tes t ing the signal averaging was set to average 16 signals w h e n 

possible, as tha t was the m a x i m u m capabhi ty of tiie OmniScan SX. I t is w o r d i y n o t i c i n g 

tha t i n m a n y tests the averaging h a d to be reduced due to ve loc i ty constraints, as w i h be 

f u r t h e r expla ined later. 

S C A N R E S O L U T I O N 

The scan r e so lu t ion Axyes is the in te rva l at w h i c h a m e a s m e m e n t can be recorded i n the 

scanning dhec t i on . The scanning reso lu t ion was h m i t e d by the m a x i m u m file size tha t 

the PAUT i n s t r u m e n t c o u l d store (300Mb i n tiie OmniScan SX). Therefore tire scanning 

r e so lu t ion was d e f i n e d af ter d i e test sample d imens ions a n d probe characteristics were 

i n p u t t e d i n t o the PAUT i n s t r u m e n t . The scanning r e so lu t ion was t hen selected to be as 

smah as a l lowed by the fhe size constraints. 

S C A N N I N G V E L O C I T Y 

The scanning ve loc i ty Vs is d ie ve loc i ty at w h i c h d ie t ransducer moves w h e n p e r f o r m i n g 

the scan. The m a x i m u m scan ve loc i ty is dependent o n the scan reso lu t ion , the Pulse 

Repe t i t ion Frequency (PRF), a n d the signal averaging a n d is calculated by m u l t i p l y i n g 

the PRF b y the scan reso lu t ion . I n some cases, the ve loc i ty requ i red f o r scanning was 

too l o w ( in d ie order o f 2-5 m m / s ) a n d d ie mo to r s c o u l d n o t keep the ve loc i ty constant 

a n d w o u l d go over the m a x i m u m veloc i ty l i m i t , causing patches of missed data. I n such 

cases, the averaging was reduced to be able to increase d ie scanning ve loc i ty a n d avo id 

the patches o f mi s s ing data. 
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G A I N 

The ga in is the a m p l i f i c a t i o n of the receiving signal. Due to the d i f f e ren t focus depths 

and PAUT transducer frequencies used, the gain had to be adjus ted d i f f e r endy i n d i f fe r 

ent tests. D u r i n g the tesdng, the gain was adjus ted to a dB level where the back w a h 

became clearly visible i n the B-scan view. This was however n o t always possible due to 

h i g h a t t enua f ion i n cer ta in tests (where the signal c o u l d n o t penetrate as deep as the 

back wal l ) or due to excessive a m p l i f i c a t i o n o f noise i n the signal w h e n increas ing f h e 

gain. I n such cases the gain was set to a value where noise w i t h i n the ma te r i a l was n o t 

excessively a m p l i f i e d . 

5 . 2 . 3 . T E S T S 

The tests p e r f o r m e d were n a m e d according the the f o h o w i n g nomencla ture : 

tes t name = TestSample T TransducerFrequency F FocusDepth 

Where TestSample is the test sample o n w h i c h the test was p e r f o r m e d , TransducerFre

quency is the PAUT transducer f r equency used f o r the test and FocusDepth is the focus 

dep th at w h i c h test was conduc ted . Therefore, test MRPT2.25F5 is the test p e r f o r m e d 

o n test sample MRP, w i t h t ransducer 2.25L32 and a focus dep th of 5mm. The setdngs 

used f o r the tests p e r f o r m e d i n the GL3 sample can be seen i n table : . whhs t d ie set

tings used f o r the test p e r f o r m e d o n the GL4 and MRP samples are shown rn table 5.3 a n d 

table . ' ) . i respect ively It is w o r t h y n o f i c i n g tha t there is n o data avahable f o r d i e l O M H z 

transducer i n the GL3 sample due to c o r r u p t i o n o f these data files. 

Table 5.2: GL3 test settings 

Transducer F [mm] M[- ] Avg [-] G a m [dB] Test Name 
[MHz] [mm] [mm/s] 

1 16 4 0.2 22 19 GL3T2.25F1 
2.5 16 4 0.2 22 19 GL3T2.25F2.5 

2.25 5 16 4 0.2 22 19 GL3T2.25F5 
10 16 4 0.2 22 19 GL3T2.25F10 
25 16 4 0.2 22 19 GL3T2.25F25 

1 16 4 0.3 22 23 GL3T2.25F1 
2.5 16 4 0.3 22 23 GL3T5F2.5 

5 5 16 4 0.3 22 23 GL3T5F5 
10 16 4 0.3 22 23 GL3T5F10 
25 16 4 0.3 22 23 GL3T5F25 

1 N / A N / A N / A N / A N / A GL3T10F1 

2.5 N / A N / A N / A N / A N / A GL3T10F2.5 
10 5 N / A N / A N / A N / A N / A GL3T10F5 

10 N / A N / A N / A N / A N / A GL3T10F10 
25 N / A N / A N / A N / A N / A GL3T10F25 
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Table 5.3: GL4 test settings 

Transducer F [mm] M[- ] Avg [-] AXfgs Gain [dB] Test Name 

[MHz] [mm] [mm/s] 

1 16 4 0.1 10 25 GL4T2.25F1 

2.5 16 4 0.1 10 25 GL4T2.25F2.5 

2.25 5 16 4 0.1 10 25 GL4T2.25F5 

10 16 4 0.1 10 25 GL4T2.25F10 

25 16 4 0.1 10 25 GL4T2.25F25 

1 16 8 0.2 5 27 GL4T2.25F1 

2.5 16 8 0.2 5 27 GL4T5F2.5 

5 5 16 8 0.2 5 27 GL4T5F5 

10 16 8 0.2 5 23 GL4T5F10 

25 16 8 0.2 5 23 GL4T5F25 

1 16 16 0.6 30 27 GL4T10F1 

2.5 16 16 0.6 30 27 GL4T10F2.5 

10 5 16 16 0.6 30 27 GL4T10F5 

10 16 16 0.6 30 27 GL4T10F10 

25 16 16 0.6 30 27 GL4T10F25 

Table 5.4: MRP test settings 

Transducer F [mm] M[- ] Avg [-] AXfgs Vs Gain [dB] Test Name 

[MHz] [mm] [mm/s] 

1 16 8 0.2 10 10 MRPT2.25F1 

2.5 16 8 0.2 10 10 MRPT2.25F2.5 

2.25 5 16 8 0.2 10 12 MRPT2.25F5 

10 16 8 0.2 10 15 MRPT2.25F10 

25 16 8 0.2 10 21 MRPT2.25F25 

1 16 8 0.2 7 20 MRPT2.25F1 

2.5 16 8 0.2 7 20 MRPT5F2.5 

5 5 16 8 0.2 7 20 MRPT5F5 

10 16 8 0.2 7 23 MRPT5F10 

25 16 8 0.2 7 23 MRPT5F25 

1 16 16 0.65 30 19 M R P T I O F I 

2.5 16 16 0.65 30 19 MRPT10F2.5 

10 5 16 16 0.65 30 19 MRPT10F5 

10 16 16 0.65 30 21 MRPTIOFIO 

25 16 16 0.65 30 21 MRPT10F25 
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5 .3 . RESULTS AND DISCUSSION 

This sect ion w ü l describe the cr i ter ia used to evaluate the results and w i h proceed by 

present ing the results and discussing t h e m . 

5 . 3 . 1 . C R I T E R I A 

Object ive cr i ter ia are i m p o r t a n t i n order to objec t ive ly de te rmine the p e r f o r m a n c e o f 

the PAUT transducer frequencies w h e n detect ing defects. E o m cr i ter ia were chosen to 

evaluate the pe r fo rmance of the PAUT transducers: d e t e c t a b ü i t y of defects, s iz ing o f de

fects, dep th d e t e r m i n a t i o n of the defects a n d lasdy the signal-to-noise rat io. These w i h 

be f u r t h e r discussed below. 

D E T E C T A B I L I T Y O F t ) E F E C T S 

W i t h i n the context o f this thesis, d e t e c t a b ü i t y is de f ined as the ab i l i ty of the PAUT trans

ducer to detect the a r t i f i c i a l defects created i n the test samples. This cr i ter ia was based 

o n the visual inspec t ion of the A- , B- a n d C-scans cohected d u r i n g each i n d i v i d u a l test 

and h a d three outcomes based o n the 'detectabhity ' o f the defect: the defect was vis ib le 

(V) , the defect was bai-ely v i s ib ly (BV) a n d the defect was n o n visible (NV) . 

A vis ible defect was de f ined as tha t w h i c h is clearly vis ible i n any o f the A- , B - a n d / o r C-

scans and c o i ü d be sized u t ü i z i n g the 6dB d rop m e t h o d , as expla ined later. This type of 

defect w o u l d be clearly qua l i f i ed as a defect d u r i n g a rou t ine in spec t ion due to its clarity. 

A bar^ely vis ible (BV) defect was de f ined as a defect tha t was n o t eashy iden t i f i ab l e a n d 

hence barely visible. These defects were not v is ible i n a l l the views and were c o m m o n l y 

on ly visible i n the B-scan, where they appeared as a d i s tmbance i n the back w a l l . Even 

t h o u g h they c o u l d usuahy be sized by m a n u a l measurement , they were n o t measurable 

w i t h the 6dB d rop m e t h o d . The d i f ference be tween a V a n d a BV defect can be seen i n 

figure 5 . 4 . Lastly, n o n visible (NV) defects were the ones tha t c o i ü d n o t be seen by v i sua l 

i n spec t ion of any o f the views. 

(a) Example of visible defect (V) (b) Example of barely visible defect (BV) 

Figure 5.4: Difference betvvreen a visible and barely visible defects (test GL4T5F10) 

The detectabhi ty cr i ter ia was apphed to ah defects i n ah the tests i n order to ga in an 

unders t and ing of the defect de tec t ion capabil i t ies of each transducer. 
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S I Z I N G O F D E F E C T S 

The sizing cr i ter ia was used to de termine h o w accurate the PAUT transducers c o i h d de

t e rmine the d imens ions of the defects w h e n u t i l i z i n g a w e h k n o w n defect s izing m e t h o d , 

w h i c h as previous ly m e n t i o n e d , was chosen as 6dB d rop m e d i o d . The 6dB m e t h o d 

consisted o f m e a s m i n g the edges (beginning a n d end) o f the defects w h e n the highest 

ampl i tude of the signal created b y d ie defect d r o p p e d by 6dB, w h i c h corresponds to a 

decrease to ha l f o f the signal amphtude . [ 2 ] 

To measme d ie size o f the defects, the amph tude d rop s iz ing u th i t y f u n c d o n i n To

m o v i e w was u th ized . This sof tware f u n c t i o n d e t e r m i n e d tiie m a x i m u m ampl i t ude w i t i i i n 

a user speci f ied reg ion and t h e n de t e rmined where h d r o p p e d be low a user spec i f ied dB 

level, g iv ing the l o c a f i o n and size i n f o r m a t i o n of the defect. The measmed d imens ions 

o f t h e defect were tiien compared to the k n o w n d imens ions of tiie holes. Smce tiie a r t i f i 

c ia l defect's geomet ry was circular, the d imens ions o f d i e defects were measured i n b o t h 

the scan a n d index d i rec t ion . 

h is i m p o r t a n t to not ice tha t defects nearest to the surface c o i d d appear as an a t tenu

a t ion rather t h a n a r e f l ec t ion due to d ie fac t tha t the r e f l ec t i on occurs very near to the 

surface, causing h to have a very h i g h ampl i t ude and become mdis t inguishable f r o m the 

surface re f l ec t ion . I n such cases, the 6dB d rop m e t i i o d was used i n the opposi te m a n n e r 

by measur ing the locat ions where the signal increased above 6dB, p r o v i d i n g the same 

i n f o r m a t i o n . 

Due to the large a m o u n t of a r t i f l c i a l defects created a n d the large a m o u n t of tests per

f o r m e d , the s iz ing crher ia was p e r f o r m e d o n ah d ie 6 m m diameter defects since tiiey 

were the smahest size defects tiiat were m o s t l y vis ible d u r i n g d ie tests. A h the vis ible 

3 m m defects were also sized u t i l i z i n g the 6dB d rop m e t i i o d . However, tire bai'ely vis ib le 

3 m m defects were sized m a n u a h y u t i l i z i n g cursors and best i n t e rp re t a t ion o f t h e v i s i 

ble defect geome t ry I t is i m p o r t a n t to not ice tiiat cur ren t Qual i ty Assurance procedures 

such as Fokker's C-scanning of the l ead ing edge of the A380's ho r i zon t a l and ver t i ca l 

ta i lp lane o n l y reject pieces w i t h defects bigger t h a n 6 m m . Hence detect ing defects o f 

6 m m or greater is o f great impor t ance . 

D E P T H O F D E F E C T S 

The depths of defects cr i ter ia was used to de te rmine h o w accurately d ie depths o f the 

defects c o u l d be d e t e r m i n e d us ing d ie d i f f e ren t PAUT frequencies . The d e p t i i o f d i e de

fects was m a n u a l l y measured by measur ing the distance be tween the surface r e f l ec t i on 

a n d the center of the r e f l ec t ion w i t h the highest amph tude o f the defect. The d e p t h was 

d e t e r m i n e d f o r the 6 m m defect at each depth . The m e a s m e d results were c o m p a r e d to 

the k n o w n depths o f the defects. 

S l G N A L - T O - N O I S E 

The signal- to-noise ra t io cr i ter ia was used to de te rmine tiie qua l i ty of d i e signal. The 

signal- to-noise is conven t ionahy d e t e r m i n e d by c o m p a r i n g the amp l i t ude o f t h e s ignal 
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at the defect w i t h d ie signal where n o defect was present. The signal to noise rado can 
be expressed as: 

5 A ^ ^ = | (5.1) 

Where S is the signal amphtude over d ie defect and N is the signal a m p l i t u d e at a refer

ence p o i n t where n o defect is present. 

For d i e de t e rnhnadon o f SNR i n d i i s thesis, d i e defects GL3D9R1, GL3D9R3 a n d GL3D9R4 

i n GL3, the defects GL4D9R1, GL4D9R2, GL4D9R3 i n GL4 and defects MRPD12R2C2, 

MRPD12R3C2 and MRPD12R3C3 i n M R P were used as the reference defect po in t s to 

record d ie ampl i tude . These defects were chosen f o r hav ing a size b i g enough to always 

be detected as w e h as f o r t h e h d i f f e ren t depths (h i d i e case o f t h e GL3 and GL4 defects). 

The reference noise-signal where n o defect was present was chosen h a l f w a y be tween d ie 

defect be ing used as a reference f o r d ie signal amph tude and d ie defect to hs l e f t (as seen 

f r o m a C-scan). 

5 . 3 . 2 . R E S U L T S 

D E T E C T A B I L I T Y O F I J E F E C T S 

The results f o r the tests o n the detectabi l i ty o f defects conduc ted o n each i n d i v i d u a l 

pane l can be seen i n figure 5.5. These graphs show w h a t percentage o f defects were 

vis ible defects (V) , barely visible defects (BV) a n d n o n visible defects (NV) u t i l i z i n g ah 

three d i f fe ren t f r equency transducers. 

The graphs reveal d i a t b o d i the 2.25MHz and 5MHz fi-equencies have a 100% p roba 

b f i i t y o f de tec f ion across al l test samples, wh i l s t d ie lOMHz f r equency o n l y h a d 100% 

p r o b a b h i t y o f de tec f ion o n the GL4 test sample (note fiiat fiiere was n o avahable data f o r 

the lOMHz f r equency o n the GL3 sample), h can also be seen t h a t d i e 5MHz t ransducer 

has a better detectabi l i ty fiian the 2.25MHz t ransducer since h has a h igher percentage 

o f vis ible defects o n the GL3 and M R P test samples and the same percentage o f vis ible 

defects o n the GL4 test sample. 

Testing also showed tha t i n d ie GL3 a n d GL4 test samples, ah f requencies were able to 

always detect d i e defects w i t h 6mrn d iameter or bigger as V defects, and o n l y the 3mm 

diameter defects were occasionally detected as B V However, i n the M R P test sample, 

o n l y d ie 2.25MHz and 5MHz frequencies were capable o f always detec t ing the defects 

w i f i i 6mm d iameter or bigger as V defects w h i l s t s thl detect ing the 3 m m diameter de

fects as V or BV W h e n inspec t ing d ie MRR d ie lOMHz f r equency detected some 6 m m 

defects as BV wh i l s t ah 3 m m defects were either f o u n d to be BV or N V 

The detectabihty o f defects showed tha t d i e 5MHz t ransducer p e r f o r m e d the best at de

tec t ing defects o n ah test samples whhs t the lOMHz t ransducer p e r f o r m e d d ie wors t . 

C o m b i n i n g the results presented i n figure 5.5, h is possible to v i e w w h a t fiie g loba l per

fo rmance o f each frequency was i n detect ing defects, as shown i n figure 5 .(i. 
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(a) Probability of detection in GL3 test sample (b) Probability of detection in GL4 test sample 

Probability of Detection MRP 

(c) Probability of detection in MRP test sample 

Figure 5.5: Probability of detection of each individual test sample 
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Figure 5.6: Probability of detection of visible defects (V), barely visible defects (BV) and non visible defects 
(NV) 

F r o m f igure 5.6 i t becomes evident drat b o t h d ie 2.25MHz a n d the 5MHz f requencies 

are capable o f detect ing 100% o f the defects across ah panels b u t tha t the 5MHz f r e 

quency is capable o f the greatest n u m b e r o f vis ible detections. O n the other hand , the 

lOMHz frequency h a d a p robabh i ty o f de t ecdon o f 97.14%. h is also apparent tha t d i e 

l O M i ï z f r equency p e r f o r m e d m u c h worse at de tec t ing vis ible damage t h a n ihe2.25MHz 

a n d the 5MHz f requencies since i t was o n l y able to detect 61.9% of the defects as vis ible . 
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The poo r pe r fo rmance o f the lOMHz f r equency o n a t h i n test sample such as the MRP 

can be expla ined by its h i g h noise level at the wedge-test sample in ter face and its h i g h 

a t t enuadon properdes. As previous ly explained, due to die smal l wave leng th of h i g h 

frequencies, h igher f requency signals are more eashy d is turbed t h a n lower frequencies, 

f f e n c e at the in terface be tween the transducer and the test sample, i t w h l have a bigger 

par t o f its s ignal ref lec ted back, causing l o t o f noise near the surface. Therefore i f a defect 

is near the surface i t w i h get lost w i t h i n the noise o f the wedge-test sample in terface 

and w i h n o t appear. I n such cases one has to re ly o n the echoes of the signal, where 

the back w a l l disappears as shown i n flgure b. lb. However, due to the h i g h a t t enuadon 

o f the signal, the back w a l l echoes are weak i n compar i son to the o r ig ina l s ignal and 

disturbances are d i f f l c u l t to detect. This can be exemphf l ed by l o o k i n g at the B-scans o f 

Row 4 i n tests MRPT5F2.5 a n d MRPT10F2.5, as s h o w n i n flgure 5.7. 

(a) B-scan of Row 4 of MRP test sample using 5MHz (b) B-scan of Row 4 of MRP test sample using 
lOMHz 

Figure 5.7; B-scan of Row4 of tests MRPT5F2.5 and MRPT10F2.5 

As can be seen i n flgure I). / , the signal echoes of the lOMHz f r equency are considerably 

lower t h a n those o f the 5MHz at the same depth . Due to the stronger echoes a n d re

duced noise i n the 5MHz f requency, the back w a h echoes show clear d iscont inui t ies , 

tha t w h e n measured, give a r e d u c d o n i n signal amp l i t ude greater to 6dB. Therefore fig

m e 5.7a is capable of d i sp lay ing the t w o 3mm defects clearly. However, w h e n l o o k i n g 

at figure 5.7b defect 1 is apparent b u t defect 2 is very d i f f i c u l t to see since i t c o i d d very 

w e h be noise. Measur ing the r e d u c t i o n i n signal s t rength at defect 2 shows a r e d u c t i o n 

i n signal a m p l i t u d e o f 2.5dB, w h i c h w o u l d n o t be considered a defect. 

The dep th o f the defects seemed to have an effect o n the detectabi l i ty i n b o t h the 2.25MHz 

and the 5MHz f requencies i n the GL4 and GL3 tests. I n the tests conduc ted o n the GL3 

test sample, ah the BV de tec t ion o f b o t h f requencies occurred at the 3 m m deeper defects, 

f n the GL3 sample, 9 o f the 14 BV detect ions occurred o n the deepest defect at 3.65mm 

deep w h i l s t 5 o f the 14 BV de tec t ion occur red o n the 2.65mm defect. Eur thermore , 9 

o u t of 12 BV defects detected by d ie 2.25MHz and d ie 5MHz f requencies o n the GL4 

test sample occurred at the 3.35m772 depth , f u r t h e r showing tha t as dep th increases, the 

detectabihty becomes m o r e d i f f i c u l t . This is caused by the a t t enua t ion o f the u l t rasonic 

signal as i t travels t h r o u g h the dep th of the mater ia l , where the signal b e i n g re f iec ted 

w i h be weaker the f u r t h e r away i t is ref iected, hence m a k i n g the de tec t ion m o r e d i f f i c u l t . 

This agrees w i t h the theory presented i n chapter 3. 
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Interes t ingly enough the lOMHz f r equency d i d n o t show such behavior i n the GL4 test 

sample since h detected al l the 3 m m defects as BV defects regardless o f d e p d i w h i l s t ah 

other defects above 3 m m diameter were detected as V defects. I t is however i m p o r t a n t 

to nodce tha t the lOMHz f r equency shou ld behave i n a s imilar manne r to the 2.25MHz 

and the 5MHz even d i o u g h i t sho ihd d ieore t icahy have a greater a t t enua t ion d i r o u g h 

the thickness o f the mate r i a l due to its smaher wavelength . Hence the de tec t ion o f the 

defects shou ld be expected to be m o r e dependent o n d e p t h f o r d ie h igher f requencies 

since they are m o r e vulnerable to a t t enua t ion . However, i t is n o t e w o r t h y to m e n t i o n tha t 

the data cohected f r o m the lOMHz is l i m h e d since n o tests results were ob ta ined f r o m 

the GL3 tes t ing and hence f m t h e r tes t ing shou ld be conduc ted to v e r i f y the theory w i t h 

the practice. 

Conclusions 

5MHz f r equency provides the best de tec tabi l i ty i n ah test samples w i t h 94.3% vis

ible de tec t ion 

lOMHz f r equency pe r fo rms ve ry p o o r l y o n t h i n test samples ( t<0.875mm) 

6 m m or greater diameter defects have a 100% p robabh i ty o f vis ible de tec t ion w i t h 

the 2.25MHz and 5MHz f requencies 

3 m m defects have 100% p r o b a b h i t y o f de tecdon w i d i the 2.25MHz a n d 5MHz 

frequencies 

° The detectabhi ty o f defects worsens as d ie d e p t h of d i e defect increases 

S I Z I N G O F D E F E C T S 

The results f o r the tests o n the s iz ing of defects conduc ted o n each i n d i v i d u a l pane l can 

be seen i n figure b a. These graphs depic t the average dev ia f ion be tween the measured 

size of the defect and the actual size o f the defect f o r b o t h d ie 3mm defects and the 

6 m m defects i n b o t h the scanning d i r e c d o n x a n d the index d i r ec t ion y i n each i n d i v i d 

ua l panel . 

The graphs presented i n figure 5 .8 show var ious in teres t ing trends. One o f t h e m o s t ob

vious occurrences is the fac t tha t the 3 m m defects measurements have great deviat ions 

f r o m the actual size o f t h e defect, especiahy i n the scanning d i r e c f i o n where d ie devia

t i o n can be as h i g h as 130%. The deviaf ions i n size measurement f o r the 3 m m defects 

are also consis tendy h igher t h a n diose f o r the 6 m m defects, regardless of d i e f r equency 

a n d the test sample. I t also becomes apparent tha t the di f ference i n size deviat ions be

tween the scanning and index di rect ions o f the 6 m m defects are relat ively smah i n ah 

the tests conducted . This is however n o t t rue f o r the 3 m m defects where the d i f fe rence 

i n deviat ions be tween the scanning d i r ec t ion a n d the index d i r ec t ion are consis tent ly 

s ign i f i can t iy higher. 
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Size Deviation GL3 size Deviation GL4 

(a) Defect size deviation in GL3 test sample (b) Defect size deviation in GL4 test sample 

Size Deviation MRP 

5mm, X 

!5rvri', V 

2.25 MHl 5 MHz 10 MHz 

(c) Defect size deviation in MRP test sample 

Figure 5.8: Defect size deviation of each individual test sample 

I t is i m p o r t a n t to present the s tandard dev ia t ion of size devia t ion . These s tandard devia

tions have been tabula ted i n table I t can be observed that i n the case o f t h e 2.25MHz 

and 5MHz f requencies, the s tandard dev ia t ion was smaher o n the GL3 test sample t h a n 

o n the GL4 test sample. Eur thermore , b o t h transducers h a d the lowest s tandard devi 

ations o n d ie MRP. O n tire other hand , the lOMHz f r equency h a d considerably h igher 

s tandard deviat ions o n the M R P w h i c h ref lec ted the poo r pe r fo rmance of the lOMHz 

f r equency o n t h i n samples. Cons ider ing tha t the lowest s tandard dev ia t ion o c c m r e d o n 

d i e th innes t panels f o r the 2.25MHz a n d 5MHz f requencies, h appears there m i g h t be 

a t r e n d where smaher s tandard deviat ions occur o n smaller thicknesses. However, the 

fac t that b o t h the 2.25MHz and 5MHz f requencies h a d smaller s tandard deviat ions i n 

the GL4 t h a n tiiey d i d i n tire GL3 test sample, i t appears tha t tiie type o f GLARE m i g h t 

also affect the s tandard dev ia t ion o f measurements . Therefore n o de f in i t e conclusions 

can be d r a w n o n such matter . I t can however be conc luded that , except the lOMHz 

f r equency o n the M R P the differences i n s tandard deviat ions be tween f requencies are 

re la t ively smah. I t is w o r t h m e n t i o n i n g tha t the s tandard deviat ions are n o t excessively 

h i g h and r e m a i n w i t h i n reasonable l i m i t s . 

I t is also in teres t ing to l o o k at the resul tant s iz ing dev ia t ion ob ta ined w h e n c o m b i n i n g 

the deviat ions i n the scanning d i r ec t ion as weh as the index d i rec t ion . By t ak ing the 

square roo t o f t h e deviat ions i n the scanning a n d index d i r ec t ion squared, one can de-
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Table 5.5: Standard deviation [%] of defect size deviation 

2.25MHz 5 M H z l O M H z 

GL3 GL4 MRP GL3 GL4 MRP GL4 MRP 

3 m m , X 

3 m m , y 

3 m m , av 

9.073 

9.428 

9.250 

16.362 

15.592 

15.977 

12.389 

7.698 

10.043 

16.810 

12.872 

14.841 

19.152 

16.826 

17.989 

12.673 

7.698 

10.185 

16.764 

7.191 

11.977 

50.676 

3.536 

27.106 

6 m m , X 

6 m m , y 

6 m m , av 

15.251 

7.303 

11.277 

19.109 

7.890 

13.500 

0.000 

3.849 

1.925 

10.224 

9.250 

9.737 

12.317 

8.592 

10.454 

4.538 

7.698 

6.118 

7.767 

6.692 

7.230 

31.872 

14.222 

23.047 

t e rmine t f i e resul tant deviat ions i n size measurements . These are presented i n f igure 

5.9, where the r e s i ü t a n t deviat ions i n s iz ing f o r b o t h the 3mm and the 6mm defects are 

shown. 

Size Deviation 3mm Defects 

(a) 3mm defect size deviation 

Size Deviation 6mm Defects 

(b) 6mm defect size deviation 

Figure 5.9: Defect size deviation of each individual test sample 

Figure 5.9 c o n f i r m s that there is i n d e e d a great d i f ference be tween the size dev ia t ion of 

the 3mm defects and the 6 m m defects. The lowest average dev ia t ion i n the s iz ing o f the 

3mm defects occurs w i t h the 5MHz f r equency and has a dev ia t ion o f 79.8%, whhs t the 

smahest average dev ia t ion i n the s iz ing o f the 6 m m defects also occurs w i t h the 5MHz 

f r equency and has a dev ia t ion o f 34.5%, w h i c h again demonstrates tha t the s iz ing of the 

3 m m defects is considerably worse t h a n tha t o f the 6 m m defects. 

The considerable di f ference i n s iz ing dev ia t ion be tween the 3 m m and 6 m m defects ob

served i n a l l the frequencies a n d is m o s t hkely due to the e levat ion size o f t h e t ransduc

ers. As m e n t i o n e d i n chapter 4. ?, ah three transducers h a d an elevat ion o f 7 m m , w h i c h is 

m o r e t h a n twice the size o f the 3 m m defect. W h e n p erf o r m i n g the scans, the d i r ec t ion o f 

the transducers e levat ion was parahel to the scanning d i rec t ion , causing the great devia

t ions i n s izing i n the scanning d i r e c t i o n x i n the 3 m m . To showth i s , one can assume tha t 

the id t rasonic signal sent by the t ransducer is a perfec t square signal w i t h a he igh t o f 1 

(ampl i tude) and a l e n g t h o f 7 m m (corresponding to the e levat ion of the transducer) and 

the signal caused by the 3 m m defect is a perfec t square signal w h i c h sends a signal of 0.5 



66 5. E X P E R 1 M E N T A L A N A L Y SIS 

(reflects the signal of the transducer w i t h h a l f ampl i tude) and a l eng th o f 3 m m . Pe r fo rm

i n g a c o n v o l u t i o n of these t w o square waves simulates the m o v e m e n t o f t h e transducer 

over the defect, w h i c h i n t u r n produces the graph shown i n flgure 5 . 1 0 . 
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X-axis [mm] 

Figure 5.10: Convolution of the transducer square signal and the defect square signal 

L o o k i n g at figure 5 . 1 0 , one can see tha t the distance measured w h e n the m a x i m u m sig

na l drops to ha l f (6dB drop cri teria) is o f 7mm. I t is w o r t h y m e n d o n i n g tha t w h e n per

f o r m i n g the same c o n v o l u t i o n o n a defect w i t h any size smaller t h a n 7mm, the same 

residts are obta ined. Hence i t can be s h o w n tha t theoredcahy, the t ransducer w i h mea

sure about 7mm, hence showing w h y the dev ia t ion i n measurement i n the x -d i r ec t ion 

was so h igh . 

L o o k i n g at figure 5 ,9 , i t becomes evident tha t the 5MHz f r equency p e r f o r m s the best at 

s iz ing b o t h 3m 777 and 6mm defects i n m o s t test samples. Therefore, w h e n l o o l d n g at the 

averaged results across a l l test samples, the 5MHz f r equency evident ly p e r f o r m e d better 

at s iz ing b o t h 3mm and 6mm defects. 

L o o k i n g at the s iz ing dev ia t ion i n the 3mm defects o f the averaged test samples, the 

2.25MHz f r equency h a d 5.6% less dev ia t ion i n s iz ing t h a n the lOMHz f requency, whhs t 

i n the 6mm defect s iz ing of the averaged test samples, the lOMHz f r e q u e n c y h a d 0.7% 

less dev ia t ion i n s izing t h a n the 2.25MHz f requency. However, i t can be seen tha t this 

is caused by the poo r pe r fo rmance of the lOMHz f r equency o n the MRP. L o o k i n g back 

at figure ;'..9, i t can be seen tha t the lOMHz f r equency h a d 22% less dev ia t ion t h a n the 

2.25MHz f r equency w h e n s iz ing 3mm defects i n f he GL4 test sample a n d 8.9% less de

v i a t i o n t h a n the 5MHz w h e n m e a s m i n g the 6mm defects i n the GL4 panel . 

I t is w o r t h y n o t i c i n g tha t the 5MHz f r equency h a d o n l y 2% less dev ia t ion t h a n the lOMHz 

f r equency w h e n measur ing 3mm i n the GL4 test sample, leading one to beheve tha t the 

lOMHz f r equency is perhaps as accurate or perhaps even more accmate t h a n the 5MHz 

f r equency w h e n measur ing defects i n th icker panels. The poor s iz ing p e r f o r m a n c e o f the 
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lOMHz frequency o n the MRP sample can again b e j u s t i f i e d by the h i g h noise level at the 

wedge-test sample interface and its h i g h a t t enua t ion propert ies , as previous ly explained. 

The fact tha t the bMHz f r equency p e r f o r m e d better t han the 2.25MHz f r equency at 

s iz ing is as expected. As explained i n chapter h igher frequencies have smaller wave

lengths w h i c h ahow t h e m to detect smaher defects and have a better reso lu t ion . I t ap

pears tha t the 5MHz f r equency h a d the best balance be tween noise a n d r e so lu t ion and 

therefore p e r f o r m e d the best at m o s t tests. 

I t is also in teres t ing however to see h o w the s iz ing is a f fec ted by the d e p t h o f the defects. 

For such reason the deviat ions at d i f f e r en t depths o f f he the 3 m m and 6 m m defects i n 

b o t h the GL3 a n d GL4 test samples are s h o w n i n figure 5 . 1 1 . 

Sizing Deviation GL3 3mm 

(a) 3mm defect size deviation in GL3 

[ j 3 65 

• 2 65 

Sizing Deviation GL3 6mm 

U3.65 

• 2.65 

a.s5 

• 1.15 

0.65 

(b) 6mm defect size deviation in GL3 

100 

yï 80 

Sizing Deviation GL4 3mm 

1-J3.35 

• 1.85 

, 0.85 

(c) 3mm defect size deviation in GL4 

Sizing Deviation GL4 6mm 

(d) 6mm defect size deviation in GL4 

Figure 5.11: Defect size deviation at different depths 

F r o m figure 5. ] I i t becomes apparent tha t i n mos t cases the s iz ing becomes worse as the 

d e p t h of the defect increases. This again is as expected due to the fac t tha t the deeper the 

defect, the m o r e a t tenuated the signal w h l be, hence g iv ing a weaker r e f i ec t ion . There are 

exceptions occu r r i ng at the shahower 6mm defects i n the GL3 sample, where the devia

t ions become greater. This type o f dev ia t ion c o u l d be caused by the noise be tween the 

wedge-test sample in terface . However, this does n o t occur i n the 3 m m defects i n GL3, 

l ead ing to the behef tha t i t c o u l d be a measurement error. 
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Conclusions 

L o o k i n g at the results from hgure 5 .9 h s t ih appears that the s iz ing deviat ions are gen

erahy h igh , even f o r the 6 m m defects. The best ob ta ined residt st ih had a dev ia t ion o f 

20%, w l h c h c o u l d st ih be considered an unacceptably h i g h dev ia t ion w h e n sizing crh ica l 

parts. A transducer w i t h a shorter e levat ion c o u l d prove a viable so lu t i on to i m p r o v e the 

reso lu t ion i n the scanning d i rec t ion , hence i m p r o v i n g the measurement results. Eurther 

conclusions are: 

5MHz frequency is the m o s t accurate at s izing defects i n d i f f e r en t panels 

2.25MHz f r equency appears to p e r f o r m the best o n th inne r panels ( t<0.875mm) 

lOMHz frequency appears to be the m o s t accurate w h e n measu r ing defects at 

depths greater t h a n 0 . 8 5 m m b u t f u r t h e r test ing shou ld be conduc ted to de te rmine 

dep th l im i t a t i ons 

Sizing deviat ions o f 3 m m diameter defects are m o r e t h a n 2x greater t h a n defects 

o f 6 m m diameter 

Sizing o f 3 m m defects is unacceptably inaccurate 

Sizing dev ia t ion o f 6 m m defects is o n average lower t h a n 40% 

The sizing becomes less accurate f o r ah frequencies as the d e p t h increases , w i t h 

as m u c h as a 29% dif ference i n defects w i t h 2 . 5 m m dif ference i n d e p t h 

Transducers w i t h smaller elevations c o u l d po ten t i ahy i m p r o v e the s iz ing o f defects 

D E P T H O F T J E F E C T S 

The results f o r the tests o n the measurement of the dep th of defects c o n d u c t e d o n each 

i n d i v i d u a l pane l can be seen i n figure 5 .12. These graphs depic t the d e p t h dev ia t ion o f 

the 6 m m defect at each dep th i n b o t h the GL3 a n d GL4 panels. 

Depth Deviation GL3 

• 3-S5 

12.65 

Depth Deviation GL4 

(a) Defect depth deviation in GL3 test sample (b) Defect depth deviation in GL4 test sample 

Figure 5.12: Defect depth deviation of each individual test sample 
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As can be seen f r o m f igure 5.1 '/a, there seems to be t r end where the dev ia t ion i n the 

dep th measurement increases as the d e p t h of the defect becomes shallower. This co idd 

be caused by the interference be tween the signal caused by the defect a n d the 'entrapped ' 

signals re f lec t ing w i d i i n the upper layers of GLARE. Due to d ie acousdc d i f ference be

tween the prepreg layers and the a l u m i n u m layers, signals m i g h t encounter a h i g h re

flecdon coef f i c ien t (of about 0.7) w h e n go ing f r o m a l u m i n u m to prepreg. This h i g h co

e f f i c i en t means the signal w i h be be pa r t l y ref lec ted and w i h re ta in a n amph tude o f 70% 

the o r ig ina l ampl i tude , w h i c h w i h t h e n keep re f lec t ing w i t h i n the a l u m i n u m layer u n t h i t 

is a t tenuated. The presence of these signals c o u l d cause interference w i t h the the defect 

signal w h e n such a defect is close to the surface, hence causing greater deviat ions i n the 

d e p t h measurements . For defects f u r t i i e r f r o m the surface, tills in ter ference w o u l d be 

less p rob lemat i c as the 'entrapped ' signals w o u l d already be at tenuated. 

F r o m flgure ;.. i 7 h also becomes apparent tha t o n d ie averaged results the lOMHz f r e 

quency pe r fo rms the best at d e t e r m i n i n g the d e p t i i o f the defects, f o h o w e d by the 5MHz 

frequency, leaving the 2.25MHz as the wor s t p e r f o r m i n g w h e n de t e rnhn ing the dep th 

of defects. However, d i e lOMHz f r equency again suffers f r o m the wedge-test sample 

in ter face noise issue, w h i c h greatiy negat ively affects its abhi ty to p e r f o r m dep th mea

surements of defects near the surface. This is h lus t ra ted i n flgure 5 T 3 . 

(a) 5MHz (b) lOMHz 

Figure 5.13: Defect depth comparison for hole GMR1D9 between 5MHz and lOMHz 

As can be seen i n figure b. l 3, the same defect appears more d i s t inc t ive ly separated f r o m 

the in terface noise i n figure 5,13a w i t h the 5 M H z f requency t h a n i n figme 5.13b w i t i i the 

lOMHz f r e q u e n c y where the defect appears r i g h t after tiie noise, i m p l y i n g tha t d i e de

fec t p robab ly occurs i n the no i sy pa r t of the signal, hence n o t ahowing f o r proper detec

tion. Nevertiieless, the fac t tha t tiie lOMHz has more accurate de tec t ion o n the deeper 

defects is as w o u l d be expected since the h igher frequencies provide bet ter sensitivity. I t 

w o u l d however be expected tiiat due to the greater a t t enua t ion of the lOMHz it w o u l d 

have lesser pene t rabh i ty a n d hence n o t be able to detect defects at greater depths i n 

GLARE. 
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I t is w o r t h m e n t i o n i n g tha t i t was n o t possible to de te rmine the depths o f t h e defects i n 

the MRP due to the defects be ing too close to the interface noise o f the transducers. 

Conclusions 

5MHz f r equency is the mos t accurate at d e t e r m i n i n g the d e p t h o f defects i n d i f 

ferent panels 

2.25MHz f r equency p e r f o r m s ve ry p o o r l y at d e t e r m i n i n g the d e p t h o f defects 

lOMHz f r equency appears to be the m o s t accurate w h e n measur ing d e p d i o f de

fects o n defects at depths greater t han 0 .85mm b u t f u r t h e r tes t ing shou ld be con

ducted to de te rmine dep th hmi t a t i ons 

Near surface defects have greater deviat ions i n d e p t h measurement t h a n deeper 

defects (up to 3 .65mm depth) 

D e p t h cannot be de t e rmined i n t h i n panels ( t<0.85mm) or defects at depths smaher 

t han 0 .85mm 

S I G N A L T O N O I S E R A T I O 

The results f o r the tests o n the signal to noise ra t io conduc ted o n each i n d i v i d u a l pane l 

can be seen i n figure 5.14. 

SNR 

2.25 MHz 5 MHz 10 MHz 

Figure 5.14: Signal to Noise Ratio (SNR) ofthe different test samples 

L o o k i n g at figure 5.14, h can be seen tha t d i e 2.25MHz f r equency h a d the highest signal 

to noise ra t io o n b o t h the GL3 a n d GL4 test samples. However, the SNR o n the MRP test 

sample was considerably h igher f o r tire 5MHz f r e q u e n c y The signal to noise ra t io o f 

the lOMHz was consis tent ly worse t h a n the other t w o frequencies . These residts are as 

expected since h igher f requencies have h igher noise levels due to tiieir h igher sensitivity. 

I t is in te res t ing to note that the f requencies o f the noise ƒ„ were i n m o s t cases at f r equen 

cies lower tiian the centra l f r equency fc o f the transducers. This can be seen i n table 5.6, 

where the average frequencies o f the noise are s h o w n f o r each transducer. The f r equency 
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of the noise h a d to be m a n u a l l y m e a s m e d because the signal o f the A-scan was a rec t i 

fied wave signal and hence a Fourier analysis was n o t possible. The noise was therefore 

m e a s m e d by d e t e r m i n i n g the t ime di f ference between two a m p l i t u d e peaks o f t h e signal 

at a l oca t ion where no defects were present o n the MRP. 

Table 5.6: Signal to noise ratio of the different frequencies 

2 .25MHz 5 M H z l O M H z 

fc [ M H z ] 2.44 5 9.97 

fn [ M H z ] 1.9665 3.6699 8.5801 

K n o w i n g tha t the noise occurs w i t h i n specif ic ranges allows f o r the use of f requency 

fh ters tha t cou ld remove the imdes i r ed noise, thus i m p r o v i n g the qua l i t y of the signal. 

However, f u r t h e r test ing shou ld be p e r f o r m e d to v e r i f y the benef i ts o f f r equency fhters. 

Conclus ions 

» 2 .25MHz has a better SNR i n th icker test samples 

5 M H z has best SNR o n t h i n n e r panels 

l O M H z has very poor SNRs 

The noise f r equency occurs at s l ight ly lower frequencies t h a n the center f r equen

cies 

5 .4 . GENERAL DISCUSSION 
The results ob t a ined f o r the tests showed tha t the bMHz f r equency h a d the best de

tec tabhi ty i n ah test samples and the best s izing o f t h i n panels, whhs t the lOMHz f r e 

quency excehed at the s iz ing o f defects i n panels greater t h a n 0 . 8 5 m m i n thickness and 

the 2.25MHz o f fe red the best SNR. O n average however, the 5MHz f r equency p e r f o r m e d 

the best o n m o s t tests. The reason w h y the 5MHz p e r f o r m e d so w e h m o s t l ike ly hes i n 

the b a n d w i d t h of the transducer. Figure 5.15 shows an a p p r o x i m a d o n of the f r equency 

s p e c t r m n o f each i n d i v i d u a l transducer, where i t can be seen tha t the 5MHz f r equency 

has a pa r t i n c o m m o n w i t h the 2.25MHz frequency and a smah p o r t i o n i n c o m m o n w i t h 

the lOMHz f requency. This is m o s t l ike ly w h a t makes the 5MHz f r equency the mos t 

po lyva len t f r equency o f al l since i t already acts as a 'mu l t i - f r equency ' transducer, where 

the best balance be tween sensi t iv i ty a n d no i se /a t t enua t ion is a t ta ined. 

The tes t ing showed tha t w i t h i n the speci f ied l i m i t s of this thesis, the 2.25MHz and 5MHz 

f requencies c o i d d detect al l defects, w h h s t the WMHz c o u l d n o t detect smaher defects 

i n t h i n panels ( t=0.87mm).However , n o f r equency c o u l d 'exclusively' detect one type of 

defect tha t c o u l d n o t be detected by others. Hence, f r o m the results i t becomes apparent 

tha t there is n o real benef i t at a p p l y i n g a m u l t i - f r e q u e n c y approach to PAUT inspec t ion 
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Figure 5.15: Transducer bandwidtiis 

of GLARE laminates . 

I t is i m p o r t a n t to ref lect o n fhe fac t tha t a m u l t i - f r e q u e n c y approach system c o u l d be jus 

t i f i ab le w h e n d i f fe ren t f requencies were exclusively capable o f de tec t ing a specif ic type 

of defect w i t h i n GLARE. However, w h e n one frequency detects aU types o f defects tha t 

other frequencies can detect, there is no real bene f i t i n des igning a complex and expen

sive system that operates at d i f f e ren t frequencies. 

I t has also been shown that PAUT transducers can re l iably detect de lamina t ions of d i f fe r 

ent sizes i n d i f f e ren t types a n d thicknesses o f GLARE at d i f f e r en t depths. The 2.25MHz 

and 5MHz f r equency were b o t h capable of detect ing al l types o f defects i n aU the tests 

samples, i n c l u d i n g t h e 3mm defects. This is i m p o r t a n t since some componen t s of GLARE 

such as the D-noses of the A380 are a l lowed to have m a n u f a c t u r i n g defects smaller t h a n 

6 m m , m e a n i n g tha t PAUT can detect defects smaher t h a n are necessary. However, f u r 

ther o p t i m i z a t i o n of t ransducer selection (transducers w i t h smaher elevations) and /o r 

s tandardized tes t ing procedures are requ i red to o b t a i n more accurate s iz ing of smaher 

defects i n GLARE. 

W h e n p e r f o r m i n g a b l i n d in spec t ion where the exact geomet ry o f the par t is n o t k n o w n , 

the 5MHz t ransducer w o u l d prove to be the mos t use fu l t ransducer since i t has the best 

detectabhi ty and the best s iz ing across d i f f e ren t tjpes o f GLARE a n d essentially acts as 

a m i d t i - f r e q u e n c y transducer. One s i tua t ion where a second f r equency c o u l d be u se fu l 

w o u l d be i n the case tha t an accmate s iz ing of a defect was necessary, f o r example o n a 

defect loca ted i n a c r i t i ca l pa r t o f an aircraft . I n such a case a h igher f r equency such as 

lOMHz c o u l d prov ide up to 10% less dev ia t ion i n the measur ing o f the defect (assuming 

the thickness is h igher t h a n t=0 .87mm) . Therefore, the 5MHz f r equency c o i d d act as 

the defect detector and the lOMHz c o u l d be used f o r the sizing. However, this benef i t 

w o u l d be m i n i m a l i f cal ibrat ions or compar isons w i t h k n o w n hole sizes were p e r f o r m e d . 
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Deve lop ing a m o d e l of the behavior of PAUT waves i n GLARE can a l low f o r a deeper u n 

ders tanding o n the effect of f r equency i n PAUT inspec t ion of GLARE. Phased Ar ray U l t r a 

sonic m o d e l i n g has been successfully p e r f o r m e d w i t i i analyt ical me thods based o n tiie 

Huygens-Eresnel superpos i t ion p r i n c i p l e and the Rayle igh-Sommerfe ld in tegra l (RSI), 

semi-analy t ica l models based o n the D i s t r i b u t e d Po in t Somce M e t i i o d (DPSM) and n u 

mer i ca l me thods based o n the F in i te E lement M e t h o d (FEM) [1]. These were however 

d e t e r m i n e d to be unsuhable f o r m o d e l i n g GLARE since tiiese models h a d been apphed 

f o r homogeneous i so t ropic materials a n d were too complex f o r d ie scope o f tills thesis 

[2] . 

M o d e l i n g o f u l t rasonic waves i n GLARE h a d been p e r f o r m e d by Coenen [ 3 ] to deter

m i n e the m o s t suhable f requency f o r a C-scan qua l i ty assurance system at T U Deht . 

The t ransfer f u n c t i o n de t e rmined by such a m o d e l was c o n f i r m e d to be ve ry s imhar to 

the measured transfer f u n c t i o n of a GLARE 3 3/2 layup. The m o d e l u th i zed by Coenen 

was developed f o r a Ü i r o u g h - t r a n s m i s s i o n m e t h o d u t i l i z i n g conven t iona l U T transduc

ers and where a water j e t was used f o r u l t rasonic coup l ing . I n this sect ion the m o d e l 

u t ihzed b y Coenen w i h be explained, a n d an adapted vers ion of such m o d e l w i h be p ro 

posed f o r the de t e rnhnadon of a t t enua t ion i n tire pulse-echo m e t i i o d . The results w i h 

t h e n be presented a n d discussed. 

6 . 1 . COENEN'S MODEL 
The t h r o u g h t ransmiss ion m o d e l u th i zed by Coenen was based o n sound-wave propaga

t i o n i n discretely layered m e d i a t heo ry presented b y Brekhovskikh [4]. The m o d e l makes 

var ious assumptions tha t s i m p l i f y the m o d e l b u t s thl provide accurate results. The as

sumpt ions were as fohow: 

1. N o a t t enua t ion o f any layer 

75 
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2. Layers have a homogeneous thickness and constant ve loc i ty w i t h i n the layer 

3. B a n d w i d t h of t ransducer is n o t taken i n t o account, o n l y center f r equency 

4. No measurement errors or a m p l i f i c a d o n dis tor t ions 

5. No f requency-dependent ve loc i ty effects 

6. Flat wave was assumed 

A s s u m i n g pe r fecdy homogeneous ma te r i a l layers, tire transfer m a t r k o f a l a m i n a t e d 

layer was described as tire m u l t i p h c a t i o n o f d ie t ransmiss ion matr ices o f each i n d i v i d u a l 

layer o f the l amina te as fohows: 

^laminate — cos{ö{f,d,c)) P—sin{Öif,d,c)) (6.1) 
iziayersin{,ö{f,d,c)) cos{5[f,d,c)) 

Where 5(ƒ, d, c) was the advance i n d ie phase of d ie wave w i t h i n d ie layer's thickness as 

a f u n c t i o n of: tire f r equency ƒ , tire layer's thickness d and the ve loc i ty w i t h i n d ie layer 

c. Assuming tiiese tiiree variables are constant (as stated i n the assumptions) , ö { f , d, c) 

c o i d d be de f ined as: 

0{f,d,c] = — ~ (6.2) 

The to ta l acoustic impedance o f the l amina te Ziaminate was tiien d e f i n e d as: 

Zlaminateif) = ~ (6.3) 
Vz 

Where p is d ie pressure and is tire ve loc i ty o f the acoustic wave i n the m e d i u m i n tiie 

z -d i rec t ion (across the thiclcness). These values can be de f ined i n a vector u t h i z i n g the 

f o h o w i n g re la t ion: 

P V [ f ) = Mstaek{f) (6.4) 
1 

[^luater ^ 

Where fire first value of P F defines p and the second value defines v^. Us ing equat ions 

6.1 a n d 6.4, Ziaminate c o u l d be f o u n d . The ampl i t ude r e f i e c f i o n coe f f i c i en t R was t hen 

de f ined by assuming d ie change be tween m e d i a to be be tween the water j e t c o u p l i n g 

and the GLARE laminate , thus becoming : 

pr / - i _ Zwater ~ Zi„,„j„„fg{f) 
^U) - ^ ~ 77- (6.5) 

^water •^laminateyj J 

Last iy tiie to ta l t ransmiss ion coef f i c ien t o f the lanhnate was d e t e r m i n e d to be as fohows: 

T i f ) = ^Jl~R(f).R{f] (6.6) 

F r o m e q u a f i o n 6 .6, h was possible to de te rmine d i e a t t enua t ion tha t the u l t rasonic signal 

undergoes w h e n pene t ra t ing GLARE. Coenen u th i zed tins p red ic ted a t t enua t ion to guide 

i n the select ion o f the best f r equency f o r t h r o u g h t ransmiss ion in spec t ion i n a C-scan 

qua l i ty assurance system f o r GLARE. 
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6 .2 . ADAPTED COENEN'S MODEL FOR PULSE-ECHO 
The m o d e l m i l i z e d by Coenen was adapted i n order to predic t the a t t enua t ion of the 

id t rasonic signal w i t h i n GLARE w h e n us ing the pulse-echo m e t h o d w i t h PAUT. There 

were however several f u r f h e r assumptions tha t had to be considered. These were: 

1. PAUT b e a m was at 0° and thus creat ing a perfec t flat wave 

2. There were n o interact ions be tween the scattered signals w i t h i n layers caused by 

the 'pulse' s ignal and the 'echo' s ignal 

3. N o signal loss or p e r t u r b a t i o n occur red w h e n the acoustic s ignal was ref lec ted 

back i n the pulse-echo m e t h o d 

4. The t ransducer was coup led w i t h water a n d the opposi te side was kep t d r y and i n 

contact w i t h air 

Coenen's m o d e l was adapted to be used w i t h pulse-echo by s imu la t i ng the equivalent of 

a u l t rasonic signal's p a t h i n pulse-echo i n a t h r o u g h t ransmiss ion manner . The concept 

is clearly dep ic ted i n flgure 6,1. 

t 
: 
2t 

Figure 6.1: Pulse-echo signal (left) adapted to through transmission (right) 

I n the pulse-echo m e t h o d , the signal travels twice the thickness of the ma te r i a l , cover

i n g one f u l l thickness i n the 'pulse' s ignal (represented as red i n figure 6.1) a n d cover ing 

another f u h thickness i n the 'echo' s ignal (represented as b lue i n figure 6.1). This can 

be considered equivalent to a single t h r o u g h t ransmiss ion signal t rave l ing t h r o u g h the 

same pane l w i t h twice the thickness/layers, as can be seen i n figure 6 .1 . 

I n reahty, w h e n the signal is ref iec ted i n pulse-echo, par t of the signal w i h be t r ansmi t t ed 

a n d pa r t w i h be ref lec ted back. However, w h e n the signal is t ravel ing from a l u m i n u m 

to air, the signal w i h have a r e f l ec t ion coef f ic ien t o f 0.999, m e a n i n g tha t v i r t u a l l y ah the 

s ignal w i h be ref iec ted back and very l i t t l e t r ansmi t t ed to air. I f the s ignal t raveled f r o m 

a l u m i n u m to water, the r e f i ec t ion coef f i c ien t w o u l d t h e n be 0.84, m a k i n g this adap ta t ion 
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i nva l id . 

Therefore, the m o d e l u th ized by Coenen was adapted to take i n t o cons idera t ion the m i d 

dle layer w i t h double thickness as w e l l as the doub l ed thickness o f t h e panel . The second 

m o d i f i c a t i o n p e r f o r m e d o n the m o d e l was mean t to provide the a t t enua t ion o f the signal 

i n r e l a f i o n to the f h s t r e f i e c f i o n that w o u l d occur at the smface . This last m o d i f i c a f i o n 

was p e r f o r m e d by calc idat ing the r e f i ec t ion at the surface u t i l i z i n g the same m e t h o d o l 

ogy as expla ined i n secf ion (i. 1 b u t u t h i z i n g a single a l u m i n u m layer. 

6 . 3 . RESULTS 
The m o d e l u th ized by Coenen was ve r i f i ed f o r a GLARE 3 3/2 l ayup sample. Therefore, 

the adapted m o d e l was ve r i f i ed w i t h the MRP test sample since i t is a GLARE 3 3/2 panel . 

The results as ob ta ined f r o m the m o d e l can be observed i n figure 6.2. 
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Figure 6.2: Pulse-eclio signal (left) adapted to through transmission (right) 

L o o k i n g at the results of the adapted m o d e l of figure 6.7, one can observe tha t the at ten

u a t i o n at lAAMHz is lower t h a n tha t o f the 9.97MHz, w h i c h w o u l d be as expected since 

h igher frequencies have greater a t tenuat ions. However, the 5MHz f r equency shows an 

extremely h i g h a t t enua t ion o f u p to -70dB. 

I n order to take f h e b a n d w i d t h i n t o considerat ion, the a t t enua t ion was scaled accord

i n g to the f r equency d i s t r i b u t i o n of each transducer as presented i n figure 5.15. Hence, 

the a t t enua t ion occu r r ing at the center f r equency was m i d t i p l i e d by a fac tor o f 1 whhs t 

the a t t enua t ion at the -6dB f r equency was m u l t i p l i e d by a 0.5 factor . P e r f o r m i n g this 

scaling f o r the f u h b a n d w i d t h of each transducer and t h e n s u m m i n g u p ah the scaled 

at tenuat ions a l lowed f o r the d e t e r m i n a t i o n o f an average a t t enua t ion t h r o u g h the fidl 

b a n d w i d t h . 

The results of the p red ic ted a t tenuat ions were compared to the measured a t tenuat ions 

at the center f r equency and those averaged t h r o u g h the f u l l b a n d w i d t h o f each trans

ducer, where f h e results were t ab ida ted i n t o table (i. J. I t can be clearly seen tha t the 
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m o d e l has great deviations f r o m the actual measured values i n b o t h the center f requency 

pred ic ted a t t enua t ion and the b a n d w i d t h corrected a t tenuat ion . This was m o r e p ro 

n o u n c e d o n the 5MHz frequency, where the signal a t t enuadon was p red ic ted to be 

seven t imes higher t han the actual recorded value. The b a n d w i d t h corrected a t t enua t ion 

seemed to reduce the dif ference be tween the calculated a t t enua t ion and the measured 

a t t enua t ion f o r b o t h the 2 .44MHz and the 5 M H z frequencies. However, i t worsened that 

of the 9 .97MHz frequency. I t c o u l d however n o t correct or expla in the considerable de

v i a t i o n i n a t t enua t ion o f the 5 M H z frequency. 

Table 6.1: Predicted attenuations and measured attenuations in the MRP 

2.44Mhz 5 M H z 9 .97MHz 

Center Frequency Predicted A t t e n u a t i o n [dB] -0.9 -70.9 -16.8 

B a n d w i d t h Corrected A t t e n u a t i o n [dB] -12.5 -54.0 -33.2 

Ac tua l A t t e n u a t i o n [dB] -7 -9.5 -11.2 

L o o k i n g again at figure ( i . / , i t c o u l d also be seen tha t the a t t enua t ion was ve ry sensi

t ive to the frequency, where a change i n 0.25MHz cou ld cause an a t t enua t ion d i f ference 

oiedB. One o f the model 's a s sumpt ion was tha t the transducers o n l y v ib ra t ed at thei r 

center f r e q u e n c y However, as has been previous ly shown, the transducers used d u r i n g 

the test ing o f t h i s thesis h a d relat ively large bandwid ths , w h i c h c o u l d poss ibly cause the 

discrepancies f o u n d be tween the actual a t t enua t ion of each transducers and tha t deter

m i n e d by the m o d e l . 

I n order to shed some hght o n the possible reasons causing the differences be tween the 

m o d e l and the actual m e a s m e d values, a sensi t ivi ty analysis o n var ious parameters af

f ec t i ng the m o d e l was p e r f o r m e d . L o o k i n g at sect ion 6.1, i t seemed apparent tha t the 

density, thickness and sound ve loc i ty i n the d i f f e r en t layers of GLARE c o u l d ah have great 

effects o n the ou tcome o f the m o d e l . Therefore, the density, thickness and s o u n d veloc

i t y f o r b o t h the a l u m i n u m and prepreg layers were var ied be tween +10% o f the k n o w n 

values. The residts f o r the densi ty sensi t iv i ty test are presented i n figure 6.3. 

Figure 6.3 showed tha t the 9.97MHz frequency h a d very ht t ie sensi t ivi ty to changes i n 

density, whhs t the 2A4MHz a n d 5MHz f requencies h a d considerably smah sensi t ivi

ties as weh . Whhs t the densi ty o f the a l u m i n u m shou ld be expected to r e m a i n constant, 

the prepreg (epoxy) dens i ty c o u l d be expected to variate t h r o u g h the pane l . However, 

the MRP h a d been inspec ted repeatedly w i t h an ul t rasonic C-scan a n d n o s ign i f ican t 

changes i n dens i ty c o u l d be observed. I t was therefore conc luded tha t the model 's sensi

t i v i t y to densi ty var ia t ions was n o t responsible f o r the differences be tween the m o d e l and 

the actual measmements . Therefore, the thickness sensi t ivi ty analysis was p e r f o r m e d , 

as s h o w n i n figme 6.4. 

F r o m figure 6.4, one c o u l d observe tha t the 5MHz f r equency is very insensi t ive to the 
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Aluminum density kg/m3 

(c) 9.97MHz 

Figure 6.3: Density sensitivity analysis 

thickness changes, leading one to beheve d i a t the di ickness var iadons c o i d d n o t expla in 

the 60db d i f ference i n a t t enua t ion be tween the adapted m o d e l a n d the actual measure

ments . O n the o t i ie r hand , d i e Z.MMHz frequency was relat ively sensitive to the th i ck 

ness variat ions, where a change of 10% cou ld cause a 6dB change i n a t tenua t ion . Con

s ider ing tha t the s tandard deviat ions of the thickness o f b o t h a l u m i n u m and prepreg 

layers i n the MRP were o f 13%, the dev ia t ion be tween the model 's results and the actual 

results i n tiie ZAAMHz c o u l d be due to the var ia t ions i n thickness. Lastiy, the 9.97Mhz 

f r equency was very sensitive to tiie thickness variat ions, where a change i n 10% th i ck 

ness c o u l d cause as m u c h as 15dB change i n a t tenua t ion . Again , cons ider ing tha t the 

s tandard deviat ions o f the thickness i n the MRP were o f 13%, i t was very probable tha t 

tiie d i f ference be tween tire actual results and d ie m o d e l i n the 9.97MHz f r equency were 

due to the var ia t ions i n tiiickness. 

Figure fi.b last iy showed the ve loc i ty sensi t ivi ty analysis o f the adapted m o d e l f o r the 

MRP As can be observed, b o t h tire Z.UMHz and the 5MHz f requencies were re la t ively 

sensitive to d ie velocity, where changes i n the acoustic ve loc i ty o f 10% c o u l d cause changes 
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Aljnrirufi llixkrteii rr.in 

(c) 9.97MHz 

Figure 6.4: Tliiclcness sensitivity analysis 

i n a t t enua t ion o f u p to MB. This c o i h d expla in d ie d i f ference i n va r i a t i on be tween the 

m o d e l a n d the measured a t t enua t ion i n tiie 2.44MHz since the acoustic ve loc i ty i n the 

prepreg ma te r i a l m i g h t n o t be as constant due to the presence of fibers. This however 

does n o t expla in the differences o n d ie 5MHz. Lastly, the lOMHz f r equency was v e i y 

sensitive to changes i n velocity, where a t t enua t ion differences of u p 30dB c o u l d occur 

due to changes o f as l i t t i e as 5% h i the material 's velocity. This c o u l d again exp la in the 

dev ia t ion be tween the m o d e l and the deviat ions. 

6 . 4 . DISCUSSION 
The results showed tha t the adapted m o d e l c o u l d n o t p red ic t very accurately tire a t tenu

ations tha t occur red i n the MRP. I t was s h o w n tiiat the factors such as tire thickness a n d 

acoustic ve loc i ty var ia t ions w i t h i n tire a l u m i n u m a n d prepreg layers c o u l d have a sig

n i f i c a n t i m p a c t o n d ie p red ic t ed a t tenuadons a n d c o u l d expla in d ie deviat ions be tween 

the model 's results a n d the actual measured results. Fu rd i e rmore , o n m a n y occasions, 

the deviat ions tha t c o u l d occur due to i n d i v i d u a l parameters d i d n o t have a great effect 
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Alumiritjm velocity m/s 

(c) 9.97MHz 

Figure 6.5: Velocity sensitivity analysis 

o n the results. However, the s u m o f ah these together c o u l d have s ign i f ican t effects o n 

file results o f t h e m o d e l . Nevertheless, i t is i m p o r t a n t to realize firat these c o m b i n e d de

v ia f ions c o u l d n o t expla in the extreme di f ference i n d ie model 's p red ic ted a t t e n u a f i o n 

a n d file actual measure a t t enua f ion o f the 5MHz frequency. No reasonable exp lana t ion 

was f o u n d f o r such devia t ion . 

h is i m p o r t a n t to state drat d ie adapted m o d e l was also tested o n the GL3 a n d GL4 test 

samples, where the a t t enua t ion was p red ic ted to be as h i g h as -160dB (the model 's 

l i m i t ) o n a w i d e var ie ty o f frequencies . Needless to say d ie a t t enua t ion was excessively 

overest imated. Hence i t was conc luded tha t the m o d e l was n o t apphcable f o r panels 

w i t h layups of 5/4 or higher. 

The adapted m o d e l seems to have the po t en t i a l to predic t the f r equency a t t enua t ion i n 

GLARE samples w i t i i layups o f 3/2. However, tiie sensi t ivi ty o f tiie m o d e l n h g h t be too 

h i g h to make i t a viable m o d e l f o r GLARE since d ie ma te r i a l proper t ies such as tiiickness 

seem to vary too m u c h f o r tiie adapted m o d e l to give accurate results. Fu rd i e rmore , the 
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m o d e l h a d an inexpl icable inaccuracy at the 5MHz f requency, w h i c h requires f u r t h e r 

research. 

I n order to make the m o d e l a useful too l f o r pulse-echo ultrasonics i n GLARE, i t w o u l d 

be i m p o r t a n t to i m p r o v e the m o d e l so that tha t i t took i n t o cons idera t ion factors such 

as pu l sed and echoed signal interference a n d b a n d w i d t h considerations. Nevertheless, 

i t was conc luded tha t the adapted m o d e l i n its cur ren t state d i d n o t accurately p red ic t 

the a t t enua t ion i n GLARE samples and hence was n o t a use f id t o o l to de te rmine the 

f requency a t t enua t ion i n GLARE. 
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7 
The object ive o f this thesis was to investigate the effects o f the f r equency o f ul t rasonic 

waves o f Phased Ar ray Ul t rasonic (PAUT) transducers o n the de tec t ion o f defects and 

damages i n GLARE i n order to evaluate the benef i ts o f a m u l d - f r e q u e n c y PAUT approach 

capable o f rehably p e r f o r m i n g in-service inspect ions o f GLARE i n a near fu tu re . To a t ta in 

this goal, a comprehensive review o n the defects a n d damage o c c m r i n g i n GLARE as w e h 

as o n the physics o f PAUT was presented. This knowledge was used to create a tes t ing 

m e t h o d u t i l i z i n g three d i f f e ren t test samples compr i sed o f d i f f e ren t types of GLARE w i t h 

d i f fe ren t types o f thicknesses, w i t h defects be ing m o d e l e d by d rh led flat b o t t o m holes 

and Te f lon inserts. The results were t hen j u d g e d o n the cr i te r ia o f detectabili ty, s iz ing o f 

defects, d e p t h d e t e r m i n a t i o n of defects a n d Signal to Noise Rado. Lastly, a m o d e l was 

p roposed w h i c h c o u l d be capable o f d e t e r m i n i n g the a t t enua t ion i n ul t rasonic waves i n 

GLARE i n the pulse-echo m o d e . These results were t h e n compared to actual expe r imen

ta l data. 

Testing showed tha t the 5MHz f r equency was the best f r equency to use to detect de

l amina t ions i n flat GLARE panels o f thicknesses be tween 0 .875mm and 5 .2mm, w i t h a 

p r o b a b i l i t y o f de tec t ion o f 100%, where 94.3% o f these defects were visible defects. The 

5MHz was also de t e rmined to have the best pe r fo rmance w h e n sizing defects across 

d i f f e r en t panels. However, the lOMHz f r equency appeared to p e r f o r m bet ter s iz ing o n 

panels th icker t h a n 0 .875mm. A s imhar t r end occur red o n the dep th de tec t ion where the 

5MHz f r e q u e n c y p e r f o r m e d the best across d i f f e r en t panels and defect depths whhs t the 

lOMHz p e r f o r m e d better at defects at depths bigger t h a n 0 .85mm. Lastly, the 2.25MHz 

f r equency h a d the best SNR o n t h i c k panels ( t>0.85mm) whhs t the 5MHz h a d bet ter 

SNR o n t h i n n e r panels ( t<0 .85mm). 

The results o f t h e tes t ing showed tha t a m u l t i - f r e q u e n c y approach to PAUT inspec t ion o f 

GLARE panels w o u l d prov ide negl ig ib le benefi ts to a s ingle-f requency approach where 

85 
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the f r equency has been selected though t fu l ly . The 5MHz consis tendy p e r f o r m e d better 

across the d i f fe ren t test samples and d i f f e r en t cr i ter ia . The benefi ts of a p p l y i n g a d i f 

ferent f requency to 5MHz p rov ided very l i t t l e benef i t . In the case o f s iz ing the benef i ts 

never exceeded a m a r g i n o f 15% less dev ia t ion i n measurement w h ü s t the same he ld t rue 

f o r the dep th de t e rmina t ion . 

I t was therefore conc luded that a m u l t i - f r e q u e n c y approach to PAUT inspec t ion o f GLARE 

panels d i d n o t provide s igni f icant benefi ts to us ing a 5MHz t ransducer w h e n inspect

i n g fiat panels of thicknesses be tween 0 .875mm a n d 5 .2mm. The reason the 5MHz 

f r equency pe r fo rms so w e l l mos t l ike ly lies i n the fac t tha t the b a n d w i d t h o f the trans

ducer was very h i g h (79%), m e a n i n g that i t v ib ra t ed at f requencies be tween 2.5MHz and 

l.bMHz, w i t h a center f r equency at 5MHz. This i n essence made i t a m u l t i - f r e q u e n c y 

transducer. 

The m o d e l p roposed d u r i n g the thesis showed po t en t i a l f o r the d e t e r m i n a t i o n o f the at

t enua t ion o f u l t rasonic waves i n pulse-echo b u t was deemed unsat is fac tory i n its cur ren t 

state since i t c o u l d n o t accurately predic t the a t t enua t ion i n the MRP. I t was d e t e r m i n e d 

to be excessively sensitive to parameters such as thickness, densi ty and id t rasonic wave 

velocity, causing s igni f icant errors. Eur thermore , inexphcable a t t enua t ion was p red ic t ed 

at 5MHz several orders o f magn i tude h igher t h a n measured. I t was also deemed unsat

i s fac tory f o r plates hav ing a layup h igher t h a n 3/2. 

7 . 1 . RECOMMENDATIONS 
Several r ecommenda t ions can be made f o r f u t u r e w o r k . These are as fo l lows : 

Develop models to create accurate foca l laws f o r l a m i n a t e d mater ia ls such as G I A R E 

i n order to have a better con t ro l and unders t and ing o f the focus ing w i t h i n GLARE. 

Develop a m o d e l to de te rmine the a t t enua t ion of ul t rasonic signals i n GLARE w i t h 

PAUT ultrasonics, t ak ing i n t o cons idera t ion factors such as pu l sed and echoed sig

na l interference, b a n d w i d t h considerat ions and angles of inc idence greater t h a n 

0° . 

Uthize a PAUT i n s t r u m e n t w i t h h igher m e m o r y capacity to avo id l i m i t s i n resolu

t i o n and w i t h the capabhi ty to p e r f o r m D y n a m i c s D e p t h Eocusing tests. 

Investigate n e w geometries such as curved panels, splices and str inger a t tach

ments . 

I f possible, p e r f o r m tests w i t h transducers w i t h smaher elevations a n d d i f f e r en t 

conf igura t ions i n order to de te rmine the l i m i t a t i o n s of size de tec t ion o f f r e q u e n 

cies and n o t transducers. 






