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Summary 
According to the report by the United Nations in 2015, the global population of older 
persons aged 60 years or over is predicted to grow to 1.4 billion by 2030. A rapidly aging 
population poses a challenging problem for human beings, i.e. supply shortage of 
working-age people. To solve this problem, increasing research efforts are poured into the 
field of robotics, especially in service robotics. Service robots are believed to be a solid 
solution to the challenging problem of an aging population. The Strategic Research Agenda 
(SRA) for Robotics in Europe, a development guideline for European robotics from 2014 to 
2020, classifies robots’ functions into eight basic categories, i.e., assembly, surface process, 
interaction, exploration, transporting, inspection, grasping and manipulation. From SRA, we 
can find that grasping is an important basic function for robots. Combining grasping with 
other basic functions, robots can perform many service tasks to free humans from tedious 
housework, for example, cleaning rooms, cooking and washing dishes. 

According to the existing literature, grasping approaches of objects can be classified into 
three categories: known object grasping, familiar object grasping and unknown object 
grasping. Grasping of unknown objects with neither appearance data nor object models 
given in advance is a challenging task for service robots that work in an unfamiliar 
environment. This thesis focuses on the challenging problem of unknown object grasping for 
service robots. According to analysis of existing literature, the challenging problem of 
unknown object grasping can be divided into four subquestions, i.e. how to increase grasp 
speed, how to enhance grasp stability, how to raise grasp security and how to increase grasp 
generality. These four subquestions are ranked according to the number of corresponding 
literature. Most literature concerns how to increase grasp speed, and then it is how to 
enhance grasp stability, followed by how to raise grasp security and how to increase grasp 
generality. To enable service robot as agile as possible, the overall goal of this thesis is to 
design a fast, stable, secure and general grasping algorithm for unknown objects to answer 
above four subquestions to thus solve the challenging problem of unknown object grasping. 

To answer the subquestion of how to increase grasp speed, this thesis proposes to employ the 
features (features of target objects and features of grippers) to accelerate grasp searching 
process. Grasp configurations in 3D space means countless possibilities. To reduce useless 
grasp candidates, object features including principal axis, boundary and concavity are 
utilized to accelerate grasp searching. As to the subquestion of how to enhance grasp stability, 
the optimized approximate force closure grasp is returned as final grasp to ensure the grasp 
stability. The geometric shape of the two grasp sides are fit into two straight lines, and the 
angle between the two straight lines is used to evaluate force closure quality of a grasp. In 
such a way, the optimized grasp with best approximate force closure is chosen as final grasp 
to enhance grasp stability. For the subquestion of how to raise grasp security, we propose 
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two methods to deal with occlusions resulted in by using partial point cloud. The first 
method is to constrain grasp configurations on the seen part of the target object. The second 
method is to add manmade obstacles for the target object. Using the two methods, the robot 
can avoid unexpected contact with target object to thus raise grasp security. As to the 
subquestion of how to increase grasp generality, we propose to simplify the gripper into a 
C-shape, which is used to match with the partial point cloud of the target object to find 
suitable grasps. All grippers including parallel grippers, under-actuated grippers and 
dexterous hands can be simplified as C-shapes, therefore, the algorithms based on C-shape 
can be widely used by various grippers to thus increase grasp generality. 

To achieve the overall goal aforementioned, the four subquestions need to be answered. 
However, it is significantly difficult to design a grasping algorithm that can answer all of the 
four subquestions. Therefore, Chapter 3 to Chapter 5 shows three grasp algorithms that can 
solve part of the four subquestions. In Chapter 6, a grasping algorithm that can answer all of 
the four subquestions is presented. 

Chapter 3 uses the principal axis of a single-view partial point cloud to direct the grasp 
configurations. Grasp candidates are allocated along the principal axis such that the 
possibility of useless grasp candidates can be greatly decreased. Approximation of force 
balance on the two grasp sides is used to evaluate the quality of a grasp. The stable grasp with 
the best force balance is chosen as the final grasp. To minimize grasping uncertainty resulted 
in by occlusions, robots with two 3D cameras are utilized to help to construct a “big” partial 
point cloud. Then grasp candidates are constrained on the seen part of the object to ensure the 
security of the final grasp. Overall, the designed grasping algorithm in Chapter 3 can fast 
achieve stable and secure grasp on a single-view partial point cloud within one second. 
However, we did not consider grasp generality among different grippers in this chapter. 

Chapter 4 utilizes the boundary of the target object to guide the grasp configurations to 
accelerate the grasp searching process. The boundary is obtained using the oriented bounding 
box of the partial point cloud of the target object. Inspired by the idea that caging grasping 
that generates finger points along the object’s boundary, we allocate finger candidates along 
the boundary of the object. Differing from caging grasping, we did not simplify the robot 
finger as a point. On the contrary, we considered the geometric property of the grippers to 
achieve more stable grasps than caging. After finger candidates are allocated along the 
object’s boundary, any two of the finger candidates can form a grasp candidate, which is 
analyzed by using approximate force closure to choose the best grasp to execute. Meanwhile, 
grasp stability during manipulation of the object is guaranteed by considering the gravity of 
the object. To sum up, Chapter 4 presents a fast and stable grasping algorithm that can 
quickly work out stable grasps for the target unknown object within one second, however, we 
did not consider security and generality in this chapter. 
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Chapter 5 employs the concavity of the target object to achieve a fast grasp. Shortest path 
concavity is employed to work out the concavity value for every vertex of the unknown 
object followed by concavity extraction to obtain the most salient concave areas. Grasp 
candidates are generated at the most salient concave areas and evaluated by using force 
balance computation. Grasp candidates are ranked according to the results of force balance 
computation and the manipulability of every grasp candidate. The grasp with the best force 
balance and manipulability is chosen as the final grasp. In summary, Chapter 5 presents a fast 
and stable grasping algorithm for unknown objects. However, we did not consider generality 
in this chapter. 

Differing from the previous three grasping approaches, Chapter 6 starts from the feature of 
the grippers. The geometric shapes of the grippers are approximated as a C-shape, which is 
used to fit the single-view partial point cloud of the target unknown object along the normal 
lines to find a suitable grasp. The number of grasp candidates is significantly reduced by 
using the normal lines to direct configuration of grasp candidates. Then a random searching 
process is utilized to quickly locate suitable grasps for the target object. Meanwhile, local 
geometry analysis and force balance analysis are utilized to ensure the stability of the final 
grasp. To eliminate the occlusion uncertainty resulted in by using a partial point cloud, 
manmade obstacles are added to the single-view partial point cloud to avoid unexpected 
contacts to thus enhance grasp security. More importantly, the grasping algorithm in Chapter 
6 does not rely on object features so that this grasping algorithm can be widely used by 
various grippers. Overall, Chapter 6 presents a fast and general grasping algorithm for 
unknown objects that can quickly work out stable and secure grasp on a single-view partial 
point cloud within one second. 

Overall, simulations and experiments of the grasping approaches presented in this thesis show 
significant improvements of time efficiency, stability, security and generality over the 
existing grasping approaches in the literature. We believe that the presented approaches can 
have significant contribution for solving the challenging problem of unknown object 
grasping.  
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In 2015, according to the report [1] by the United Nations, the global population of older 
persons aged 60 years or over is 901 million, accounting for about one in eight people. By 
2030, the aged population is predicted to grow by 56 percent to 1.4 billion [2], which means 
around one in every six people will be aged 60 years or over. By the middle of this century, 
the aged population will double its size in 2015 to reach almost 2.1 billion [3], approximately 
one old in every five people. A rapidly aging population poses a challenging problem for all 
countries in the world. Fewer working-age people result in supply shortage of qualified labors 
for our society. Therefore, fewer people can be available to take care of old citizens. The 
ageing process first appears in high-income countries. By the end of 2015, Japan had more 
aged population than any other countries in the world (around 33% of Japan’s population was 
aged 60 years or over). Japan was closely followed by Germany (28%), Italy (28%) and 
Finland (27%) [1]. Supply shortage of working-age people in high-income countries leads to 
the rapid advancement of the service robot technology. These high-income countries with 
aged population have both demand and financial ability for service robots. For the 
challenging problem of the globaly-aged population, it is believed that service robots will be a 
solid solution. 

 

  (a) 

 

 (b)  (c) 

 

  (d) 

 

 (e) 

 

  (f) 

Figure 1.1: Several well-known service robots: the first row shows three famous service robots from 
research institutes; the second row shows three brilliant service robots from companies. (a) Amigo [4] 
by Eindhoven University of Technology, (b) Armar III [5] by Karlsruhe Institute of Technology, (c) 
Cosero [6] by University of Bonn, (d) Asimo [7] by Honda. (e) Care-o-bot 4 [8] by Fraunhofer IPA, (f) 
Pepper [9] by Aldebaran Robotics. 
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Figure 1.1 presents the most dominant service robots that can perform complex service tasks, 
for example, cleaning the room, cooking, serving coffee, washing dishes, etc. Before service 
robots can agilely work as human servants in our homes, offices and shopping malls, there is 
a long scientific way to go. Many key problems are waiting for us to solve. In order to enable 
a service robot to be as agile as humans, many fundamental crucial functions are necessary 
for service robots. The Strategic Research Agenda for Robotics in Europe [10] classifies 
robots’ functions into eight basic categories, i.e., assembly [11-13], surface process [14-16], 
interaction [17-19], exploration [20-22], transporting [23-25], inspection [26-28],    
grasping [29-31] and manipulation [32-34]. Grasping is an important basic function for robots. 
Combining grasping with other basic functions, robots can perform many complex service 
tasks to free humans from tedious housework, for example, cleaning rooms, cooking and 
washing dishes. All service robots shown in Figure 1.1 are capable of an essential function, 
that is object grasping.  

Existing approaches of object grasping can be classified into three categories: known object 
grasping, familiar object grasping and unknown object grasping [35]. The concepts of 
“known object”, “familiar object” and “unknown object” are related to the amount of prior 
information of the target object. Known object grasping approaches [36-47] rely on the 
available prior information of the object to perform stable grasps. Familiar object grasping 
approaches [48-60] also rely on available prior object information. However, they are able to 
grasp an object when it is similar to the known ones. Unknown object grasping    
approaches [61-72] do not need any prior information of the object to perform grasps.  

For the grasping problem of known and familiar objects, 3D models or 2D images of the 
target objects are stored in a database in advance. Using the geometry information of the 3D 
models or 2D images, the grasping problem of known objects and familiar objects is usually 
formulated into optimization problem of locations of grasping points or grasping regions, 
many grasping algorithms can provide excellent solutions to this kind of optimization 
problems. They can work out stable grasps in a very short amount of time. However, in our 
daily environments, it is impossible to create a database to store 3D models or 2D images for 
huge variety of objects. Therefore, grasping algorithms for unknown objects are necessary. 
Existing algorithms [74, 75, 78, 120] of unknown object grasping are usually slow, which 
may take from one minute to several hours [116] to form a suitable grasp. In order to enable 
service robots as agile as possible, fast grasping algorithms for unknown objects are in crucial 
demand. Therefore, this thesis is focused on the design of fast grasping algorithms for 
unknown objects. 

1.1 Motivation 

Comparing with known object grasping and familiar object grasping, unknown object 
grasping is still a quite difficult problem because unknown objects widely exist in our daily 
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environments that are usually unstructured and dynamic. An unknown object means an item 
that has neither geometric model nor appearance information. Grasping of unknown objects is 
highly challenging for service robots working at unfamiliar environments [73]. According to 
existing literature, the challenging problem of unknown object grasping can be divided into 
four subproblems, i.e. how to increase grasp speed, how to raise grasp security, how to 
enhance grasp stability and how to increase grasp generality. The first subproblem is actually 
that time efficient grasping algorithms of unknown objects are scarce. The second 
subproblem is lacking of efficient methods to deal with grasp uncertainty resulted in by using 
partial information of the target unknown object. The third subproblem is how to utilize the 
metrics of force balance on a partial model to quickly achieve a stable grasp. The last 
subproblem is lacking of cheap and general fast grasping algorithms for unknown objects. 
The motivation of the thesis is to find answers to the above four subproblems to thus solve the 
challenging problem of unknown object grasping. 

Subproblem 1: How to improve the time efficiency of unknown 
object grasping? 

From the perspective of the data used by existing grasping algorithms, there are mainly two 
methods to solve the problem of unknown object grasping. The first method is building a full 
3D model using many images or point clouds of the target unknown object. The full 3D 
model is then used to compute suitable grasps for the target object. [74-79] are benchmark 
papers that employ full 3D model to work out proper grasps. The second method is directly 
utilizing partial information of an object to realize grasping [55, 80-82]. Comparing with 
suing full 3D model, utilizing partial information can significantly reduce computational load 
to thus accelerate grasp searching process for unknown objects. 

Building 3D model is time-consuming and many robotic applications require real time 
grasping. In some cases, it is even impossible to get all necessary information to construct a 
full 3D model, for example, an object in the fridge, where the robot cannot see the other side 
of the target object. Meanwhile, many grasping algorithms require accurate 3D model, it 
means grasping algorithms may fail when the 3D model has some errors or noise. Overall, 
using partial information of unknown objects to achieve a grasp is usually faster and more 
practical than using full 3D models.  

Normally, the fast grasping approaches employ geometric properties (e.g. symmetries [83], 
surface [77], edges [84], boundary [85], silhouette [86] and saliency [87]) of the target 
unknown object to accelerate the grasp searching process. This is because using geometric 
properties of unknown objects can determine the geometry contours. Using geometric 
properties can account for much information of the target object for constructing the 
geometry contour, which can significantly reduce computational load and thus accelerate the 
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grasp searching process. Therefore, this thesis proposes to utilize both partial information and 
geometric features of unknown objects to accelerate the grasp searching process. Object 
features including principal axis (Chapter 3), boundary (Chapter 4) and concavity (Chapter 5) 
are employed to achieve fast grasping of unknown objects. In addition to object features, 
Chapter 6 utilizes geometric feature (C-shape) of grippers to accomplish a fast grasping 
approach for unknown objects. 

Subproblem 2: How to deal with grasp uncertainties resulted in 
by occlusions? 

Using partial information of the target unknown object is a double-edged sword, it can 
definitely accelerate the process of grasp searching, however, it also inevitably introduces 
occlusions that may lead to grasp uncertainty and result in grasp failure. In general, two 
methods are used to deal with the uncertainties introduced by using partial information, i.e. 
tactile sensor based exploration and vision based exploration.  

The first method is to utilize tactile sensors to explore the unseen part of the target object, as 
tactile sensors enable direct sensing of aspects such as contact force or relative velocity at 
contact points, without being affected by the occlusions. [88-92] are benchmark papers that 
utilize partial object data and tactile feedback from fingers to achieve secure grasps for the 
target objects. These attempts can help to overcome the occlusions resulting from the 
uncompleted data of the unknown objects. Tactile sensors can help to modify the robot’s 
behavior when unexpected contact is made during the grasp execution or the fingertip 
contacts appear less stable than expected. However, tactile sensor based exploration requires a 
large amount of computation.  

The other method to explore the unseen part of the target object is to use a robot arm carrying 
a camera to move around the target object to do active exploration. [93] utilizes a camera at 
the end of the robot arm to move around the target object to actively explore the unseen part 
of the object. The maximum curvature of Elliptic Fourier Descriptors silhouette is explored to 
work as the final grasp. [94] simplifies the shape of Barrett Hand as pre-shapes (spherical, 
cylindrical, box and disk). An eye in hand system with a 3D camera moves around the target 
object to explore it. Shape matching between pre-shapes of Barrett Hand and the point cloud 
of the target object is then carried out to find suitable grasps. Similarly, [95] utilizes a mobile 
robot to carry three range sensors to move around the target object to explore the unseen part. 
Then two parallel planes on the boundary of the object are selected out as final grasp.  

Tactile sensors will send continuous feedback to control system to help to do reactive 
grasping planning which is fairly time consuming. A robot arm carrying a camera to move 
around the target object to do active exploration is also time expensive. These two methods 
take dozens of seconds to find a suitable grasp. Therefore, it leads to the necessity of new fast 
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and secure approaches to deal with grasp uncertainty resulted in by using partial information 
of the target unknown object. This thesis proposes two methods to minizie grasp uncertainty 
resulted in by using partial information, i.e., virtual exploration on a “big” partial point cloud 
(Chapter 3) and manmade unseen parts for target unknown objects (Chapter 6). 

Subproblem 3: How to quickly achieve a force closure grasp on a 
partial point cloud? 

Force closure and form closure are the most common two methods to analyze the property of 
forces and motions of a grasp candidate. Force closure is widely utilized to analyze balance of 
forces and torques that the robot hand applies on the target object to achieve a stable    
grasp [96-101]. Form closure is another significant alternative way to attain a stable grasp by 
immobilizing the target object without depending on the contact surface friction [102-107]. 
Force closure grasps stand for that the object’s motion is restrained by suitable contact forces 
and torques on the base of considering contact constraints between the robot hand and the 
target object. The force closure grasp can resist any arbitrary forces and torques. Form closure 
grasp mean immobilizing a target object using several frictionless point contacts. Form 
closure is more difficult to achieve because it can be understood as force closure without 
considering friction [93]. 

GraspIt! [108] is the most renowned and prominent grasp simulation tool to achieve a force 
closure grasp. However, GraspIt! is not based on modular architecture, which makes it hard to 
improve, add functionality and integrate with other tools and frameworks. Therefore, 
OpenRAVE [109] (the Open Robotics and Animation Virtual Environment) is designed to 
work as an improved version of GraspIt!. OpenRAVE has a modular design, which allows 
extension and further development by other users. Both GraspIt! and OpenRAVE requires 
full 3D meshed model of the target object to work out a force closure grasp. However, it is 
hard to construct the full 3D model of the target unknown object and it is also difficult to 
know the physical properties of the target unknown object, for example, the friction 
coefficient. 

In real environments, precise computation of force closure requires the full 3D model and the 
friction coefficient of the object surface. It is rather difficult to meet the two requirements for 
robots working in the unpredictable environments where grasping unknown objects is in 
demand. Therefore, approximation of force closure like [110, 95] becomes necessary, [110] 
utilize Hough transformation to gain the edges of objects in a 2D image. Two parallel edges 
suiting the gripper’s width are chosen to work as the final grasp. Similarly, [95] utilizes a 
mobile robot carrying three range sensors to move around the target object to construct a 3D 
model. The flat parallel surfaces are used to work as final grasp. [110] and [95] inspired us to 
think about a question, i.e., how to use such approximation of force closure on a partial mode 
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(for example, a partial point cloud) of the target unknown object to achieve a fast grasp. 
Therefore, this thesis proposes to fit the two grasp sides of the target object into two straight 
lines and the angle between the two fit lines is used to approximately evaluate the force 
clousure quality of the grasp candidate. In such way, Chapter 3 to Chapter 6 can quickly 
achieve approximate force closure grasps for target unknown objects. 

Subproblem 4: How to achieve a cheap and general grasping 
algorithm? 

In the past, many searches focused on the problem of unknown object grasping using 
dexterous hands, for example, Shadow Hand [111], iCub Hand [112] and Barrett Hand [94]. 
Even though dexterous hands are very good at flexibility, the high complexity and high price 
stop them to become popular in the research field of fast grasping of unknown objects. 

For the existing fast grasping algorithm [84, 110, 113, 114], all of them are specially designed 
for parallel grippers, which is much cheaper than dexterous hands. However, these fast 
grasping algorithms are not general enough. Specifically, [84] and [110] try to find two 
parallel edges to work as final grasp; [113] tries to fit the shape of the parallel gripper on the 
point cloud of the objects to obtain a grasp for robots; [114] grasps the gravity center along 
the principal axis of the target unknown object. All these fast grasping algorithms did great 
contributions to solve the problem of fast grasping of unknown objects. However, they have 
inevitable shortcomings. [84] and [110] rely on two parallel edges ignoring those objects 
without parallel edges, for instance, balls. [113] uses the shape of parallel gripper to match 
with point cloud of the objects ignoring the local geometry property and force balance of the 
grasp candidate. [114] grasps the object at the gravity center ignoring that many object cannot 
be grasped by gravity center, for example, the table tennis racket. 

The above two facts lead us to think of a question, i.e., can we find a cheap and general 
solution to the problem of fast grasping of unknown objects. The solution should be based on 
cheap grippers and not rely on geometric properties of the target objects. To achieve cheap 
and general grasping of unknown objects, Chapter 6 proposes to utilize geometric feature 
(C-shape) of under-actuated grippers to achieve cheap and general grasping for unknown 
objects, which does not depend on object features. 

The above four subproblems bring the necessity of new grasping algorithms for unknown 
objects by considering time efficiency (subproblem 1), grasp uncertainty (subproblem 2), 
force balance (subproblem 3) and generality (subproblem 4). Therefore, the overall goal of 
this thesis is to design new grasping algorithms for unknown objects and these new grasping 
algorithms should have high time efficiency, low grasp uncertainty, superb force balance and 
wide generality. 
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1.2 Thesis goals 

This thesis aims to create fast, secure, stable and general grasping algorithms of unknown 
objects for the cheap grippers shown in Figure 1.2. Fast means reducing computing time of 
the searching process of grasping unknown objects. Secure means the unseen part of target 
unknown objects can be safely handled to avoid grasp failure. Stable means the force balance 
needs to be considered under the situation of using partial data of the target unknown object 
to obtain suitable grasps. General means the created algorithms do not rely on the geometric 
features of the target unknown objects so that they can be widely used. Three subgoals and 
one general goal are set as follows: 

Subgoal 1: Improve the time efficiency for unknown object grasping 

Subgoal 2: Enhance the grasping security of using partial point cloud 

Subgoal 3: Ensure the grasp stability when friction coefficient is unknown 

General goal: Create a general fast grasping algorithm 

      

          (a)                         (b)                           (c) 

                 

             (d)                         (e)                         (f) 

Figure 1.2: Some cheap grippers (comparing with dexterous hands): (a) under-actuated gripper by 
Delft University of Technology; (b) under-actuated gripper by Lacquey Company; (c), (d), (e) and (f) 
are parallel grippers respectively from Makeblock, ROBOTIQ, SCHUNK and Rethink Robotics.  
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1.3 Proposed approaches 

The core idea of the proposed approaches in this thesis is to employ the features (features of 
target objects and features of grippers) to achieve fast grasping for unknown objects. The fast 
grasping algorithms based on object features are similar to [83-86], but faster than them. The 
fast grasping algorithm based on grippers’ features is designed to achieve a general grasping 
algorithm without relying on objects’ features. Object features are significantly useful clues 
for grasp finding. In this work, object features (principal axis, boundary and concavity) are 
utilized to assist grasp finding. In order to enable robots to grasp various unknown objects, we 
employ the geometric feature of cheap grippers of Figure 1.2 to design a general grasping 
algorithm without depending on object features. 

Grasp configurations in 3D space means many possibilities. To reduce the possibilities to 
accelerate grasp searching, the principal axis of a single-view partial point cloud is used to 
direct the grasp configurations. Our first fast grasping approach is to allocate grasp candidates 
along the principal axis such that the possibility of useless grasp candidates can be greatly 
decreased. Approximation of force balance on the two grasp sides is used to evaluate the 
quality of a grasp. The grasp with the best force balance is chosen as the final grasp. To 
minimize the grasping uncertainty, the merits of the robot hardware with two 3D cameras can 
be utilized to suffice the partial point cloud. After that, virtual exploration is carried out on the 
“big” partial point cloud. Graspable candidates are allocated between the two camera sensor 
points, which can ensure the grasp candidates are allocated on the seen part of the target 
object. In such a way, grasp security is enhanced. 

The second fast grasping approach for unknown objects is to utilize the boundary of the target 
object to quickly synthesize a grasp. Inspired by the idea that caging grasping generates finger 
points along the object’s boundary, we also allocate finger candidates along the boundary of 
the object. However, differing from caging grasping, we did not simplify robot fingers as 
points. On the contrary, we considered the geometric property of the grippers. After a discrete 
set of finger candidates are allocated along the object’s boundary, any two of the finger 
candidates can form a grasp candidate, which is analyzed by using force closure to choose the 
best grasp candidate as the final grasp execution. The grasp quality during the manipulation 
of the object is guaranteed by considering the gravity of the object. 

The third approach of achieving a fast grasp is to utilize the concavity feature of the target 
objects. Shortest path concavity is first employed to work out the concavity value for every 
vertex of the unknown objects followed by concavity extraction to obtain the most salient 
concave areas. Grasp candidates are generated at the most salient concave areas and evaluated 
by using force balance computation. Grasp candidates are ranked according to the results of 
force balance computation and the manipulability of every grasp candidate. The grasp with 
the best force balance and manipulability is chosen as the final grasp.  
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The fourth grasping approach is differing from the previous three grasping approaches. We 
start from the feature of the grippers shown in Figure 1.2. The geometric shapes of the 
grippers are approximated as a C-shape, which is used to fit the single-view partial point 
cloud of the target unknown object along the normal lines to find a suitable grasp. The 
number of grasp candidates is greatly reduced by using the normal lines to direct the 
configuration of grasp candidates. A novel method is designed to eliminate the occlusion 
uncertainty resulted in by using a sing-view partial point cloud to achieve a secure grasp. 
Meanwhile, local geometry analysis and force balance analysis are utilized to ensure the 
stability of the final grasp. 

1.4 Thesis structure 

The structure of this thesis is visualized in Figure 1.3. In Chapter 2, a comprehensive survey 
about unknown object grasping is presented. Existing literatures about unknown object 
grasping are classified and compared. Chapter 3, 4, and 5 present three fast grasping 
algorithms based on using the features of the target unknown objects. Specifically, Chapter 3 
shows the algorithm of utilizing the principal axis of the unknown object to achieve a fast, 
stable and secure grasp. Chapter 3 addresses the aforementioned subproblem 1, 2 and 3; 
Chapter 4 elaborates the algorithm of using boundary of the target object to accomplish a fast 
and stable grasp. Chapter 4 handles the subproblem 1 and 3; Chapter 5 demonstrates the 
algorithm of employing the concavity of the target object to realize a fast and stable grasp. 
Chapter 5 deales with the subproblem 1 and 3. In Chapter 6, an elaborate fast grasping 
approach using the feature of grippers is presented. All of the grippers in Figure 1.2 can be 
simplified as a C-shape, which is used to fit the single-view partial point cloud of the target 
unknown object to achieve a fast, stable, secure and general grasp. Chapter 6 provides a 
solution to subproblem 1, 2, 3 and 4. Chapter 7 finalizes this thesis with conclusions, 
discussions and future directions. 
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Figure 1.3: Visual outline of this thesis. 
 

  



12  |  Chapter 1 

 

 

 

  



A survey of unknown object grasping  |  13 

 

 

2  
A survey of unknown object grasping 

This Chapter was published at the 2017 ICCAR conference: 

Qujiang Lei, Jonathan Meijer, Martijn Wisse. 2017 IEEE 3rd International Conference on 

Control, Automation and Robotics (ICCAR), pp. 150-157, Nagoya, Japan. 
  



14  |  Chapter 2 

 

 

Abstract 
Grasping of unknown objects with neither appearance data nor object models 
given in advance is very important for robots that work in an unfamiliar 
environment. In recent years, extensive researches have been conducted in the 
domain of unknown object grasping and many successful grasping algorithms for 
unknown objects are created. However, so far there is not a very general fast 
grasping algorithm that suits various kinds of unknown objects. Therefore, choice 
among different grasping algorithms becomes necessary for users. In order to 
make it more convenient for users to quickly understand and choose a suitable 
grasping algorithm, a survey about the latest research results of unknown object 
grasping is made in this chapter. We compared different grasping algorithms with 
each other and obtained a table to clearly show the result of comparison. The 
comparison could give researchers meaningful information in order to quickly 
pick a grasping approach with their requirements. 

2.1 Introduction 

In 2015, the number of professional service robots sold increased by 25% than that in 2014. It 
has been forecasted that this increase will continue for the upcoming years [115]. To help 
people with household tasks, grasping and manipulation are key functions for service robots. 
However, finding a suitable grasp is a complex task. Grasping approaches are designed to find 
meaningful grasp on a target object. However, due to the amount of researches of the past 
decade in this field, there is an abundance of different grasping approaches. 

As explained by Bohg et al. [116], empirical grasping methodologies rely on sampling grasp 
candidates for an object and ranking these candidates with the use of a metric. In the study of 
Bohg et al. [35], the empirical grasping methodologies are divided into three categories: 
known, familiar and unknown object grasping approaches. Known object grasping approaches 
rely on the available information of the object to perform stable grasps. Familiar object 
grasping approaches also rely on available object information. However, they are able to grasp 
an object when the object is similar to the known ones. Unknown object grasping approaches 
do not need any prior information of the object to perform grasps.  

In human environments, a great variety of different kinds of objects exist. Providing detailed 
information about all these objects would be a time-consuming task. The use of familiar object 
grasping approaches could help simplifying the aforementioned task. However, if these 
approaches pick a wrong similar object, grasps can become unreliable or imprecise. Since 
unknown object grasping approaches do not rely on available information, they are suitable to 
grasp a great variety of objects.  
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The survey by Bohg et al. [35] already focuses on the use of different unknown object 
grasping approaches. However, this survey did not compare the different approaches. 
Moreover, after the publication of this survey, more grasping approaches have been 
developed. For the survey part in this chapter, we aim to give an updated overview on the 
existing unknown object grasping approaches and provide a simple comparison. This will be 
done by collecting meaningful data found in the corresponding literatures, for example success 
rate and execution time.  

In this chapter, we divide the existing unknown object grasping approaches into two groups, 
namely global and local grasping approaches. Global grasping approaches try to represent the 
full 3D model of the unknown object to find suitable grasps, which can be done by recreating 
the model with the use of multiple views of the object, symmetries, decomposition into 3D 
shapes or by closing the surface area of the retrieved data. Local grasping approaches only use 
the data available to work out suitable grasps, which use information in particular like edges, 
boundaries or silhouettes of the unknown object. 

In above paragraphs, we explained what is unknown object grasping and why we do the 
survey about the existing approaches of unknown object grasping.  

2.2 Survey about unknown object grasping 

Grasping of unknown objects can be done in a variety of ways. In this section, the existing 
grasping approaches are classified and shortly explained.  

Existing unknown object grasping approaches can be categorized into two groups: global 
grasping approaches and local grasping approaches. Global grasping approaches consider the 
whole object in order to find the best grasp. Local grasping approaches only work with partial 
data of the object to find a suitable grasp. 

To segment the unknown object from the scene, grasping approaches usually only consider 
objects placed on flat surfaces. In a point cloud representation of the scene, a RANSAC 
(Random Sample Consensus) can help to distinguish flat surfaces. Isolating a point cloud 
cluster that represents the unknown object is done by removing all the points on the found flat 
surface. 

2.2.1 Global grasping approaches 

A. Multiple views 

A way to consider the whole object is to look at the unknown object from multiple locations. 
From these locations, either 2D or 3D data can be retrieved in order to get accurate 
information of the model to successfully grasp the object.  
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In the work by Bone et al. [75], 2D images and structured-light data from multiple views are 
being used to create a 3D model of the unknown object. From the 2D images, silhouettes are 
extracted to create a 3D visual hull, which is merged with the more precise 3D shape data 
retrieved from the structured light technique. The approach in turn analyzes the model and 
generates a robust force closure grasp. 

Dune et al. [117] determine the quadric that best resembles the shape of the object, which is 
done by using multiple view measurements. The quadric is estimated in each 2D view. The 
robot arm will already start moving towards the unknown object after the first quadric 
estimation is obtained, which results in a fast real-time grasping algorithm. 

Similar work is presented by Yamazaki et al. [78]. In this approach, the 3D model of the 
unknown object is retrieved through SFM, which stands for ‘structure from motion’. By 
considering the gripper’s width, a good grasp is said to be found in a short amount of time.  

Lippiello et al. [68] place a virtual elastic surface around the point cloud of the object, then 
this surface is shrunk at every iteration step (new image acquisition) until this intercepts with 
some points of the object. Attractive forces of points on the object will make an equilibrium 
with the elastic forces of the virtual surface in order to present the 3D model. During the 
construction of the virtual surface, the grasp planner is already active thus moving the end 
effector towards the unknown object. 

B. Symmetries 

When working with one 3D camera and without changing the angle on a specific object, the 
obtained point cloud contains occlusions. For instance, when the camera is in front of an 
object, no information of the back of the object can be given. The approach [116] by Bohg 
overcomes this problem by considering symmetries found in human-made objects. Their 
algorithm first tries to determine the planar symmetry on which the detected point cloud of the 
object will be mirrored about. After the mirroring of the points, a surface approximation is 
applied, this closes the object in order to find grasping locations on the object. 

C. Decomposition 

The decomposition with respect to the object, it means that the object is factorized into 
different parts. Factorizing into simple parts will decrease computation times when trying to 
grasp complex models. 

Miller et al. [79] and Goldfeder et al. [118] use shape primitives to simplify the object, 
however they consider knowing the model before. The principle can still be implemented to 
use it for unknown objects as shown in the work of Eppner and Brock [94]. The grasping 
approach transforms the point cloud into shape primitives and a grasp is chosen depending on 
these shapes. 
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Huebner and Kragic [74] also use shape primitives to represent an unknown object. The point 
cloud of the object is transformed into a minimum volume bounding box (MVBB). This 
MVBB is split into multiple MVBBs and fitted in order to get more resolution of the actual 
model. The splitting is continued until more splits are not beneficial. 

In the work of Hsiao et al. [92], a bounding box is placed around the available point cloud of 
an unknown object. Heuristics are applied to find the most suitable grasp. This approach also 
incorporates a local grasping approach. 

D. Surface 

A more straightforward approach to grasp an unknown object is to look at the available point 
cloud of the object and reconstruct a fitting surface of the object using those points. 

In the work of Lee et al. [77], a 3D model is retrieved by using stereo matching. From the 
matching, a dense map is created. A three-dimensional interpolation (the triangular mesh 
method) is applied on the dense map. Suitable grasps can be located on the triangular mesh of 
the target object. 

2.2.2 Local grasping approaches 

A. Edges 

A grasping approach with the use of edges of an object has been used by Jiang et al. [119]. 
The algorithm finds grasping locations by fitting a so-called “grasping rectangle” on an image 
plane. The rectangle describes the configuration of the gripper. The grasping approach also 
includes a learning algorithm in order to select the best grasping location depending on the 
object shape. The use of the learning algorithm increases the success rate of the grasp but 
increases the computation time. 

Lin et al. [84] extends the principle of the grasping rectangle by looking at the contact area of 
the grasping rectangle. For instance, if the contact area is too small, the grasp is likely to fail 
and a better grasp can be picked. The success-rate when incorporating this technique is higher 
than Jiang et al. [119]. 

In Popovic et al. [65], grasps are generated based on edge and texture information of the 
unknown object. Baumgartl and Henrich [110] use Hough transformation to find edges in a 
2D image. A check has been done to verify if the edges are long enough to be grabbed by the 
gripper. Another check is done to verify if the parallel edges fit into the gripper’s width. The 
two quick checks result in a fast grasping approach. 

Richtsfeld and Vincze [120] detect grasp points on top surfaces of unknown objects. Firstly, a 
3D mesh generation is applied on the segmented point cloud, and then the top surface can be 
extracted using a 2D DeLauney triangulation. Only information of the rim points and feature 
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edges are left. One grasp point is found by finding the minimum distance from the center of 
mass to the edge. The second grasping point can be selected by extending the line of the first 
grasp point to the center of mass to the edge on the other side. 

Similarly, Bodenhagen et al. [121] use machine learning to find suitable grasp on 3D edges of 
the unknown object. They refine an initial grasping behavior based on the 3D edge 
information by learning. A prediction function is used to compute likelihood for the success of 
a grasp using either an offline or an online learning scheme. 

B. Boundary 

The proposed grasping approach of Ala et al. [85] retrieves graspable boundaries and convex 
segments of an unknown object. From a 3D camera, the scene is segmented and a point cloud 
of the unknown object is left. With the use of blob detection, the boundaries of the object are 
retrieved. These boundary lines are then transformed into straight lines. The grasp planner 
tries to find parallel contact points in order to execute an envelope grasp. When an unknown 
object has a desirable thickness, then one contact point can be retrieved in order to execute a 
boundary grasp. 

Maldonado et al. [122], ten Pas and Platt [113] try to fit the shape of the gripper on the 
available point cloud of the object(s). The latter uses a detailed segmentation to be able to pick 
objects from dense scenes and incorporates learning that significantly improves the grasp 
success rate.  

In the grasping approach of Navarro [47], the unknown object center is estimated with the 
available point cloud cluster. Only round objects are considered with this approach and the 
objects are tracked on a conveyer belt. The gripper is aligned above the object to grasp it.  

The work of Suzuki and Oka [114] estimate the principal axis and centroid of the unknown 
object on the retrieved point cloud to produce a stable grasp. The approach is shown to 
produce a high success rate for a set of household objects. 

C. Silhouette 

In the work of Calli et al. [86], the grasping algorithm uses curvature information of the 
silhouette of an unknown object. Using Elliptic Fourier Descriptors (EFD), the silhouette of 
the object can be modeled from a 2D image. To find grasping points, local minima and 
maxima curves of the silhouette are evaluated. Force closure tests are applied onto the 
grasping points to get the final, likely stable, grasping points. The grasping points are 2D 
points to help align the gripper.  

Lei and Wisse [123] perform a force balance calculation in order to find suitable grasping 
points. Once a point cloud cluster of an unknown object is retrieved with the use of one or two 
3D cameras, the coordination system of the object is created. After that the cloud points are 
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projected on the XOY plane and a concave hull method is applied to extract the contours of 
the object. A graspable zone is calculated from this contour and then the force balance is 
computed on the XOY plane to find the maximum force balance. In order to match the 
gripper’s angle with the angle of the object, a force balance is also computed on the XOZ 
plane. This is a robust grasping approach which is faster than for example [94]. 

The work of Lei and Wisse [124] which is based on [123] utilizes data from two 3D cameras 
to build virtual object coordination systems (VOCS) from different virtual viewpoints. From 
these coordination systems, multiple XOY and XOZ planes can be created. Force balance can 
be computed on all these planes. The maximum force balance resembles the best possible 
grasp. This grasping approach is robust and finds favorable grasps. 

D. Saliency 

In the work of Bao et al. [87], saliency is being used to segment the scene and find unknown 
objects. The algorithm is mainly useful for dealing with multiple unknown objects. 

E. Tactile feedback 

As for global grasping approaches, there can also be local grasping approaches that use tactile 
sensory data to find a suitable grasp. This is shown by the work of Haschke [125] where with 
the use of tactile servoing, it can, for example, establish and maintain grasping.  

The approach of Hsiao et al. [92] also includes a local grasping approach part. The grippers in 
this approach are fitted with tactile sensors to help to adjust the grasp when collisions are 
found during the execution of the grasp found by the global grasping approach part. 

2.3 Comparison 

In this section, we will make comparisons about the different grasping approaches investigated 
in section 2.2. The different approaches will be compared with each other by looking at 
characteristics that the approaches have in common. In the end of this section, the comparison 
outcome is discussed. 

2.3.1 Comparison table 

The approaches described in section 2.2 have been added to Table 2.1. This aids in comparing 
the different approaches by highlighting chosen approach characteristics. The following 
characteristics are chosen: 

• Object-grasp representation: as explained in the beginning of section 2.2, existing 
unknown object grasping approaches can be categorized into two groups: global and 
local grasping approaches. This can show if one group in particular is better performing 
than the other. 
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       Table 2.1: Comparison of existing unknown object grasping approaches (‘NA’= Not Applicable) 

Literature 
Object 

 

Object features Vision 
based 
only 

Camera position Multi-fi
ngered 

Grasp closure Non-grasping 
movement of 

arm 

Cluttered 
scene 

handling 

Rate of 
success 

Execution 
time Local Global 2D 3D multi Overhead Eye in 

hand 
Form Force 

Bohg et al. [116]  √  √  √ √  √  √   + - 
Bone et al. [75]  √   √   √   √ √  ++ -- 

Dune et al. [117]  √ √   √  √   √ √  - + 
Eppner and Brock [94]  √  √  √ √  √ √ √  √ - ? 

Huebner et al. [74]  √  √  √ √  √  √   - - 
Lee et al. [77]  √  √  √ √  √  √   -- ? 

Lippiello et al. [68]  √  √  √  √ √  √ √  ++ + 
Yamazaki et al. [78]  √  √  √  √   √ √  ++ - 

Ala et al.[85] √   √  √ √    √  √ ++ + 
Bao et al. [87] √   √  √ √    √  √ + ? 

Baumgartl et al. [110] √  √   √ √    √  √ ++ +++ 
Bodenhagen et al. [121] √   √  √ √    √  √ -- ? 

Calli et al. [86] √  √   √  √  √    ? ? 
Haschke [125] √   √   NA NA √  √ √  ++ ? 

Jiang et al. [119] √   √  √ √    √  √ ++ ? 
Lei and Wisse [123] √   √  √  √  √ √ √  ++ +++ 
Lei and Wisse [124] √   √  √  √  √ √   ++ +++ 

Lin et al. [84] √   √  √  √   √  √ ++ +++ 
Maldonado et al. [122] √   √  √ √  √  √  √ ++ ? 

Navarro [47] √   √  √ √    √   ? ? 
Ten Pas and Platt [113] √   √  √ √    √  √ ++ +++ 

Popovic et al. [65] √   √  √ √    √  √ -- ? 
Richtsfeld et al. [120] √   √  √ √    √  √ + -- 
Suzuki and Oka [114] √   √  √ √    √   + ++ 

Hsiao et al. [92] √ √   √  √    √   ++ ? 

 
• Object features: the data given to the approach can be 2D, 3D or a combination called 

‘multi’ in the table. This information helps determining which data is most suitable for 
grasping. 

• Vision-based only: if an approach is not using vision data only, the approach can be 
more difficult to implement and likely more expensive since more hardware are needed. 
A good example of this is the approach of Hsiao et al. [92] in which tactile sensors are 
mounted on the gripper. 

• Camera-position: the camera-position can be of great importance for retrieving valuable 
information about the object. Approaches using an eye-in-hand camera can view the 
objects from multiple viewpoints [75, 117].  

• Multi-fingered: when using approaches with multiple fingers (more than two), a grasp 
can be more stable since there are more places the object is grasped. This assumption 
can be checked with this comparison. 



A survey of unknown object grasping  |  21 

 

 

• Grasp closure: there can be two kinds of grasp closures: form and force closures. Form 
closures depend on the shape of the target object, these grasps usually place the fingers 
of the gripper in such a way that the object cannot fall out of the hand easily. This 
closure is for instance being used by Calli et al. [86]. Force closures press the fingers of 
the grippers (using force) on the object in order to keep it in the gripper. 

• Non-grasping movement of arm: some approaches have to perform an extra motion of 
the arm to get more data of the unknown object. This can be time consuming. 

• Cluttered-scene handling: this means that the approach is able to distinguish multiple 
unknown objects and is able to grasp them separately. 

• Rate of success: from the literature, an estimate can be given on the success rate of the 
grasping approach. Lower than 70%, between 70% - 80%, between 80% - 90% and 
higher than 90% success rate is marked with --, -, + and ++ respectively. When no 
information about the success rate is given it is marked with ?. 

• Execution time: to identify fast performing approaches we looked in the literature to 
find meaningful information about execution times. Since different processing power is 
used in the approaches, we limit ourselves to the presented execution times in the 
corresponding paper. Approaches in the literature which can finish the grasping process 
within 4 seconds are marked with +++. Between 4-8 seconds with ++, between 8-12 
seconds with +, between 12-16 seconds with - and approaches that take longer than 12 
seconds are marked with a --. When no information is given in the literature, a ? has 
been given instead. 

2.3.2 Comparison discussion 

From Table 2.1, it can be noted that among the eight global grasping approaches, five of them 
are designed for multi-fingered grippers (62.5%). Comparing this to the 2 of the 16 local 
grasping approaches (12.5%), it can be noticed that global grasping approaches are more 
suitable for multi-fingered grippers. Grasps found by Global grasping approaches are mostly 
with a force closure. 

Once multiple object features are used for grasping, then the approach is not vision-based 
only. These approaches use for instance tactile sensor data. Except for Calli et al. [86], all the 
approaches use a force closure.  

For approaches of non-grasping movements of the arm, all have an eye-in-hand camera 
position. When the camera is fixed, movement of the arm will not result in any change with 
respect to the data of the unknown object. When a movement is made with the arm 
incorporating eye-in-hand camera position, there will be change in the data. Cluttered-scene 
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handling is usually connected to an overhead camera position. This is to be expected since 
multiple unknown objects can then be identified. 

When looking at the rate of success, two things can be noticed. Firstly the overall performance 
of the global grasping approaches is less than the local grasping approaches. Since global 
grasping approaches try to represent a full 3D model, resulting in a lot of details of the 
unknown object are lost, a good example of this is the decomposition of the unknown object 
into blocks [74]. Secondly an eye-in-hand camera position performs better, likely because the 
unknown object data obtained by eye-in-hand system is more detailed to perform stable 
grasps.  

From the available information in the literature, local grasping approaches have the lowest 
execution times. Not all approach literatures include information on execution time. As we 
mentioned before, the characteristic of execution time is dependent on the computing power.  

Some approaches perform well in all the specified areas, which are all local grasping 
approaches. Take for instance the work of ten Pas and Platt [113], this planner is able to use 
3D vision data to perform stable grasps for unknown objects from a cluttered-scene in a short 
amount of time. The work from Lei and Wisse [124] also shows favorable results like [114] 
though it does not work in cluttered scenes. 

2.4 Conclusion 

This chapter presented an overview on the existing unknown object grasping approaches. The 
approaches were sorted in groups and a short description of each approach was given. With 
the use of a comparison table that included all the approaches, remarks were given on common 
grasping characteristics. The comparison table clearly shows the advantage and disadvantage 
of every grasping algorithm to help the future researchers quickly picking a suitable grasping 
approach with their requirements. 
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Abstract 

Fast grasping of unknown objects has crucial impact on the efficiency of robot 
manipulation especially subjected to unfamiliar environments. In order to 
accelerate grasping speed of unknown objects, principal component analysis is 
utilized to direct the grasping process. In particular, a single-view partial point 
cloud is constructed and grasp candidates are allocated along the principal axis. 
Force balance optimization is employed to analyze possible graspable areas. The 
obtained graspable area with the minimal resultant force is the best zone for the 
final grasping execution. It is shown that an unknown object can be grasped more 
quickly provided that the component analysis principle axis is determined using 
single-view partial point cloud. To cope with the grasp uncertainty, robot motion 
is assisted to obtain a new viewpoint. Virtual exploration and experimental tests 
are carried out to verify this fast gasping algorithm. Both simulation and 
experimental tests demonstrated excellent performances based on the results of 
grasping a series of unknown objects. To minimize the grasping uncertainty, the 
merits of the robot hardware with two 3D cameras can be utilized to suffice the 
partial point cloud. As a result of utilizing the robot hardware, the grasping 
reliance is highly enhanced. Therefore, this research demonstrates practical 
significance for increasing grasping speed and thus increasing robot efficiency 
under unpredictable environments. 

3.1 Introduction 

Unknown object means an item that has neither geometric model nor appearance information. 
Grasping unknown objects is highly challenging for the robots working in unfamiliar 
environments [126]. With the increasing demand of various robots that are being used in 
contemporary society, increasing grasping speed becomes one of the primary tasks for 
improving the efficiency of robots manipulation [35]. 

A vast amount of research has been conducted on grasping unknown objects over the past few 
decades, and many achievements have been attained. To grasp an unknown object, geometric 
properties (i.e. symmetries [116], surface [77], edges [119-121], boundary [47, 85, 114], 
silhouette [86], saliency [87]) are generally used to construct contours of the target object. For 
instance, Maldonado et al. [122], ten Pas and Platt [113] fitted the shape of the gripper on the 
boundary of partial point cloud of the target unknown object. To obtain geometric contours of 
the unknown object, two methods are commonly used. One is to use tactile sensors to detect 
the geometric properties of unknown target object [127-131]. The other is to use a camera to 
move around to explore the unseen part [86, 94, 95]. Both methods have high grasp security 
but are very time expensive. The reason for the first method is that it requires long time to 
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carry out sufficient contacts with the object. For the second method, much time is used 
because of the movement of the camera.  

To save time, several fast grasping approaches have been proposed, which can be found in 
[84, 94, 110, 113, 114]. Among these approaches, Johannes Baumgartl [110] uses RGB 
images as input, which can quickly provide 2D geometric information of an unknown object. 
However, using this approach cannot always promote successful grasping because an 
unknown object can have no parallel edges. By contrast, the other researchers [84, 94, 113, 
114] employ a partial point cloud, which can formulate more realistic geometric model. 
Because the geometry contour is approximated based on partial point cloud, it can 
significantly reduce computational load and thus accelerating grasping speed. Nevertheless, 
ignoring other information, such as occlusions, may introduce grasp uncertainty and result in 
grasp failure. To deal with the uncertainty with the usage of partial point cloud, a new method 
for reducing geometric information for grasping unknown objects can be explored.  

The goal of this chapter is to reduce grasping time for unknown objects whilst the grasping 
security is maintained. In this chapter, we propose a novel approach to guide the grasping 
procedures of unknown objects based on the principal component analysis. Based on this, a 
single-view point cloud is used to reduce the data for formulating geometric contour to save 
the computational time. The feature of our grasping approach is to allocate grasp candidates 
along the principal axis such that the possibility of useless grasp candidates can be greatly 
decreased. This algorithm is shown to be successful on the base of both simulation and 
experimental tests. By taking the advantage of robot hardware, the grasping uncertainty is 
minimized. Therefore, this research demonstrates practical significance for increasing 
grasping speed. 

This chapter is organized in this way: section 3.2 introduces our fast grasping algorithm; 
section 3.3 shows the simulation results; section 3.4 gives the experiment validation; section 
3.5 outlooks an approach on enhancing the grasp security using two 3D cameras. Finally, the 
conclusion of this research is provided in section 3.6. 

3.2 A fast grasping approach 

This section presents a detailed explanation of our fast grasping approach for unknown 
objects. This approach adopts a grasping algorithm which utilizes a single-view partial point 
cloud. Furthermore, the solutions for tackling exceptional cases of grasping failure by 
applying this algorithm are elaborated. 

3.2.1 Algorithm 

Because the configuration of the robot hand follows a Special Euclidean group SE (3) in 
practice, it implies many possibilities when locating a robot hand in three-dimensional (3D) 
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space. In our approach, the principal axis of the target unknown object is used to find out 
proper positions for executing a successful grasping action. Figure 3.1 outlines our fast 
grasping algorithm, in which it shows a single-view partial point cloud of the target object is 
used as input. For general case of grasping unknown objects, seven steps are required, the 
details of which are described in section 3.2.2. For the exceptional case to achieve a successful 
grasping, the solution is illustrated in section 3.2.3. 

 
Figure 3.1: Overview of our fast grasping algorithm 

3.2.2 Grasping unknown object based on the single-view partial point cloud 

Figure 3.2 presents the procedure to grasp the target unknown objet based on the single-view 
partial point cloud.  Figure 3.2 (a) shows a simulation setup in which a spray bottle is used as 
the target unknown object. An eye-in-hand system is composed of a 3D camera sensor and a 
UR5 robot. The 3D camera sensor is used to acquire the raw point cloud for the given 
environment. In order to accelerate computing speed, distance filtering is initially applied on 
the raw point cloud to remove those points that are out of the reach of the robot arm, as shown 
in Figure 3.2 (b). Figure 3.2 (c) shows the transformation of the partial point cloud to the 
world frame. Figure 3.2 (d) illustrates the transformation of the partial point cloud to the object 
frame. Figure 3.2 (e) gives the projected point cloud in the object frame. Figure 3.2 (f) 
presents the concave hull contour of the projected point cloud. Figure 3.2 (g) depicts all the 
crossing points. Figure 3.2 (h) shows possible grasp zone within grasping range of the gripper. 
Figure 3.2 (i) points the method to obtain the best grasp on the graspable zone. Finally,  
Figure 3.2 (j) provides an example of grasp execution. The detailed seven steps for conducting 
grasping an unknown object are presented as follows. 
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Step 1: Obtaining the single-view partial point cloud of the target unknown object 

Figure 3.2 (a) shows a simulation setup in which a spray bottle is used as the target unknown 
object. An eye-in-hand system is composed of a 3D camera sensor and a UR5 robot. The 3D 
camera sensor is used to acquire the raw point cloud for the given environment. In order to 
accelerate computing speed, distance filtering is initially applied on the raw point cloud to 
remove those points that are out of the reach of the robot arm, as shown in Figure 3.2 (b). 
Then down sampling is used to reduce the density of the points. After that, Random Sample 
Consensus (RANSAC) method is employed to remove the table plane. The determination of 
principal axis is given as follows. 

 
          (a)                       (b)                     (c)            (d)       (e) 

 

 (f)           (g)            (h)                (i)                       (j) 

Figure 3.2: The procedure to process the single-view partial point cloud. (a) simulation setup; (b) the 
filtered distance and down-sampled point cloud. (c) transformation of the partial point cloud to the 
world frame; (d) transformation of the partial point cloud to the object frame; (e) projected point cloud 
in the object frame; (f) concave hull contour of the projected point cloud. (g) all the crossing points; (h)  
possible grasp zone within grasping range of the gripper. (i) the method to obtain the best grasp on the 
graspable zone. (j) an example of successful grasp execution. 

After the single-view partial point cloud is obtained by a 3D camera, Principal Component 
Analysis (PCA) is performed to approximate the centroid and the principal axis of the object. 
PCA is a statistical technique for analyzing correlation between observed data. Let 

1 2( , ,..., )nX χ χ χ= be the object point set, where iχ  is a point in the 3D space R3. The 
centroid of the point set centroidP is calculated by the following equation: 
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Giving the values of a point cloud ),...,,( 21 nX χχχ= , the covariance matrix s can be 
calculated by using Equation (3.2):  
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in which the nine elements are the values of covariance for the 3D coordinates. The 
eigenvalues 1 2 3λ λ λ> > ( i Rλ ∈  and i =1, 2, 3), and the corresponding eigenvectors 1µ , 2µ , 3µ  
( 3

i Rµ ∈ and i =1, 2 ,3) can be obtained. The eigenvector 1µ corresponds to the largest 
eigenvalue 1λ , which approximates the direction of the principal axis. Using the centroid     
( centroidP ) of the single-view partial point cloud and the direction of the principal axis, the 
principal axis can be obtained. 

Step 2: Transforming single-view partial point cloud from camera sensor frame to 
world frame 

The obtained single-view partial point cloud in step 1 is retained in the camera frame. To carry 
out the analysis using coordinate system, the single-view partial point cloud must be 
transformed into the world frame. Feedbacks from the joint encoders of the robot arm are used 
to construct the transformation matrix from the end effector of the robot to the base link of the 
robot. The transformed single-view partial point cloud in the world frame can be seen in 
Figure 3.2 (c). The transformed single-view partial point cloud in the object frame is shown in 
Figure 3.2 (d). 

Step 3: Constructing object frame 

Figure 3.3 (a) displays three coordinate systems from the eye-in-hand system and the target 
unknown object, namely, the world frame (XworldYworldZworld), the 3D camera frame 
(X3DsenorY3DsenorZ3Dsenor) and the object frame (XobjYobj Zobj). The principle axis and the mass 
center of the partial point cloud are used to build the object frame. As shown in Figure 3.3 (b), 
the mass center of the target object is used as the origin point of the object frame.  

     
                    (a)                                               (b) 

Figure 3.3: Establishment of the coordinate systems. (a) world frame, the 3D sensor frame and the 
object frame. (b) illustration of building the object frame of the target unknown object. 
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The principal axis is used as the Y axis of the object frame. The X axis and the Z axis of the 
object frame can be determined by applying Equation (3.3). 

c c s c P
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in which Pp and Ps respectively stand for a random point on the principal axis and the position 
of the 3D camera sensor. 

Step 4: Acquiring concave hull contour of the single-view partial point cloud 

After we obtained the partial point cloud in the object frame, the contour of the partial point 
cloud will be abstracted. Specifically, the partial point cloud is firstly projected to the XOY 
(XobjOobjYobj) plane of the object frame. Figure 3.2 (e) shows the projected point cloud. There 
are two methods to obtain the contour of the projected point cloud, namely, the concave hull 
contour and the convex hull contour. For this scenario, concave hull contour can better 
represent the geometric shape of the target unknown object. Concave hull contour of the target 
object is extracted as shown in Figure 3.2 (f).  

Step 5: Calculating graspable zones 

To figure out all graspable area within grasping range on the contour of the target object, grasp 
candidates are allocated along the principal axis (the Y axis of the object frame). The 
minimum Y value ( miny ) of all the points on the concave hull contour is firstly decided. 
Subsequently, a straight line parallel to the X axis is used during the search process from the 
top to the bottom. In this manner, the most left and most right crossing points between the 
straight line and the concave hull contour can be determined. An appropriate step ( y∆ shown 
in Figure 3.4) is added to miny  such that the searching process can apply to the whole concave 
hull contour from the top to the bottom.  

         

Figure 3.4: The method to determine the graspable zone of the target unknown object. 

The straight line parallel to the X axis can be obtained according to Equation (3.4). All 
crossing points can construct a point cloud as shown in Figure 3.2 (g). For each straight line, 
when the distance between the most left point and the most right is smaller than the grasping 
range of the robot hand, the most left point and the most right point will be saved to construct 
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a point cloud, which is shown in Figure 3.2 (h). The graspable zone of the target unknown 
object is represented by the point cloud in Figure 3.2 (h).  

ynyy ∆+= min                                     (3.4) 

Step 6: Optimizing total force on the XOY plane of the object frame 

In the step 5, the graspable zone is extracted out by considering the grasp range of the robot 
hand. To obtain the best grasp on the graspable zone, Figure 3.5 illustrates the evaluation 
process to allocate grasp candidates along the principal axis from the top to the bottom. As 
shown in Figure 3.5 (a), the green, blue and red rectangles stand for three example grasp 
candidates. In order to achieve a stable final grasp, force balance computation is carried out for 
every grasp candidate. The blue points in Figure 3.5 (b) stand for a grasp candidate. Points on 
the two grasp sides are used to fit two straight lines, and the angle between the two straight 
lines is used to evaluate the stability of this grasp. The bigger the angle is, the less stable the 
grasp is.  

                   
          (a)                    (b)                              (c) 

Figure 3.5: Evaluation of the grasping candidates within grasp range (a) green, blue and red rectangles 
of grasp candidates; (b) blue points of a grasping candidate; (c) two fitting lines. 

The straight line can be expressed as y kx b= + , in which the coefficients k and b can be 
determined using Equation (3.5). The two red lines in Figure 3.5 (c) stand for the two fitting 
lines. Figure 3.6 demonstrates the results of force balance computation of the graspable zone. 
We can observe that force balance reaches the minimum value when the number comes to 
search index 33, which corresponds to the best force balance. 
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Figure 3.6: The results of force balance computation on the XOY plane. 

Step 7: Force balance evaluation on the XOZ plane of the object frame. 

In the previous step, we explained the method to determine the best grasp using force balance 
computation on the XOY plane of the object frame. Next, the effect of force balance on the 
XOZ plane on the stability must be also studied. Figure 3.7 (a) shows an initial configuration 
of the robot and the target unknown object. Figure 3.7 (b) shows that the robot is approaching 
the grasp point. Figure 3.7 (c) shows the force balance analysis of this grasp candidate on the 
XOZ plane. 1F  and 2F  respectively stand for the force that the gripper imposes on the target 
object. 

 

                 (a)                    (b)                 (c)   

Figure 3.7: Evaluation of the grasp candidates on the XOZ plane (a) initial configuration of the robot 
and the target unknown object. (b) the robot becomes contact with the grasp point. (c) the force balance 
analysis of this grasp candidate on the XOZ plane. 

The point cloud covered by the grasp candidate is extracted to be used for force balance 
analysis on the XOZ plane, which is illustrated in Figure 3.8. The green points in Figure 3.8(a) 
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stand for the area covered by a grasp candidate. Figure 3.8 (b) shows the point cloud covered 
by grasp candidate is extracted and the two grasp sides are visualized as the red points in 
Figure 3.8 (b). The average Z values of the left and the right grasp sides are worked out shown 
as the 1Z  and 2Z  in Figure 3.8 (c). The difference between 1Z  and 2Z  is used to evaluate 
the stability of the grasp candidate on the XOZ plane. A threshold ( maxdifZ ) can be set by this 

system, thus, when max21 || difZZZ <− , the grasp candidate is saved, otherwise the grasp 

candidate is removed. 

 
         (a)                       (b)                          (c) 

Figure 3.8: Evaluation of grasping an object on the XOZ plane. (a) the green area of point cloud 
covered by a grasp candidate. (b) extracted grasping areas and the two grasp sides of the red points. (c) 
The average values for Z of the left and the right grasping sides. 

The above seven steps illustrate the fast grasping strategy of using principal component 
analysis based on the obtained single-view point cloud. However, there are four risks that can 
lead to grasping failures. Firstly, a grasping failure can occur when the principle axis cannot be 
obtained using single-view point. Figure 3.9 illustrates three successful grasps from the three 
perspectives of left, middle and right by rotating the robot arm. It also includes a grasping 
failure due to the fact that principle axis was not determined because of the point data loss.  

Secondly, a graspable zone is not possible to be obtained when the gripper cannot cover the 
target object, which can be deduced in step 5. Thirdly, the angle (δ) corresponding to the force 
balance calculation can be too large (as shown in step 6), which infers that the object will be 
squeezed out when the robot tries to perform the grasping action. In addition, grasping failure 
can be triggered because of the resultant unbalanced force when the range between 1Z  and 

2Z for all grasp candidates are greater than the threshold (step 7).    

Nevertheless, the grasping failure that is caused by the unbalanced force on the XOZ in step 7 
can be resolved by using changing viewpoint. The solution for this exceptional case was 
already pointed out in Figure 3.1 of this algorithm. In the following subsection, the detailed 
explanation of the solution to the exceptional case is provided. 
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Figure 3.9: Grasping the same object from four different perspectives (left, middle, right and bottom) 
using a single-view point cloud by following the seven steps. 

3.2.3 Solution for the exceptional case 

To deal with the exceptional case that grasping positions cannot be achieved at one viewpoint, 
the main plane to guide the robot arm can be employed to activate another motion of the robot 
arm. In this way, a robot can move to another viewpoint to calculate to search for an 
executable grasp by following the above seven steps. 

Figure 3.10 illustrates the activation of another motion of the robot arm, in which      
Figure 3.10 (a) and (d) provides two scenarios of two possible graspable areas obtained by the 
grasp algorithm. The green points in Figure 3.10 (b) and Figure 3.10 (e) respectively stand for 
the corresponding best grasping areas returned from the grasping algorithm at this viewpoint. 
The blue points in Figure 3.10 (c) and (f) respectively stand for the main plane of the grasp in 
Figure 3.10 (b) and (e). For the scenario as seen in Figure 3.10 (a), the shortest distance of 
movement of the robot arm is to move to the perpendicular direction of the main plane as 
shown in Figure 3.11 (a). For the other scenario shown in Figure 3.10 (d), the shortest distance 
of movement of the robot arm is to move to the tangent direction of the main plane as shown 
in Figure 3.11 (b). 
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    (a)          (b)               (c)              (d)           (e)             (f) 

Figure 3.10: The method to deal with the exceptions that no suitable grasp is found at a viewpoint 
plane. (a) and (d) two cases of best grasp found by the grasp algorithm; (b) and (e) the corresponding 
best grasping areas; (c) and (f) the main plane. 

Referring to Figure 3.1, when the width of the main plane (Wm) is smaller than the graspable 
range of the gripper (Gr), then the robot will move to the perpendicular of the main plane. This 
situation corresponds to for the Figure 3.11 (a) which is obtained from Figure 3.10 (a). The 
angle ( β ) of the movement between the initial sensor point to the target sensor point should 
be a−= 2/πβ . Figure 3.11(b) shows the other situation which is that the width (d) of the 
main plane (Wm) is bigger than the grasp range of the gripper (Gr). The angle ( β ) of the 
movement between the initial sensor point to the target sensor point should be αβ = . The 
specific rotation can be worked out using Equation (3.6). Figure 3.11 (c) and (d) shows the 
robot arm arrives at the target sensor point corresponding to Figure 3.10 (a) and (d). When the 
robot arm arrives at the target viewpoint, the steps from step 1 to step 7 are repeated to search 
a suitable grasping area for the target object. 
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            (a)                                (b)                     (c)           (d) 

Figure 3.11: Strategies of moving the robot arm when no suitable grasp is found at one viewpoint, in 
which (a) and (b) are the obtained projected main plane (two purples lines), (c) and (d) are illustrations 
of the robot arm approaching the target sensor point. 
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To sum up, the application of our algorithm of using principal component analysis has been 
elaborated based on the seven steps. To solve the grasping failure of an exceptional case, robot 
motion is used to obtain single-view point data from another perspective. It can be inferred 
that our novel algorithm of using single-view partial point cloud can save time compared to 
other algorithms that used partial point cloud data. To verify and validate the efficiency and 
applicability of our approach, simulation and experimental tests are presented in the 
subsequent two sections. 

3.3 Simulation test 

In this section, our grasping algorithm is verified in a simulation environment. First, the 
structure of the simulation setup are illustrated. Next, the simulations for grasping unknown 
objects with different geometric shapes are performed using a single-view partial point cloud. 

3.3.1 Structure of simulation setup 

Figure 3.12 illustrates the simulation setup that consists of ROS, Gazebo and MoveIt!.    
ROS [186] (an open source robot operating system) is widely used in the community of 
robotics due to the simply operations. Gazebo (an Open Dynamics Engine simulator) is the 
state of art simulator that offers the ability to efficiently and accurately simulate complex task 
for robots. MoveIt! (a cutting edge software for robot motion planning) incorporates the latest 
achievements in navigation, manipulation and kinetics. The first and foremost part is 
simulation for a single-view partial point cloud obtained using a 3D camera, which is 
illustrated below. 

 

Figure 3.12: Illustration of simulation setup consisting of ROS, Gazebo and MoveIt!. 

3.3.2 Simulations based on a single-view partial point cloud using a 3D camera 

The simulations of using a single-view partial point cloud as input are conducted to obtain 
suitable grasp. In the simulations, a spray bottle, a cup, a water bottle and an oatmeal box 
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which have varying geometries are employed. The first column shows the simulation setup of 
the robot and the target object. The first three rows of Figure 3.13 illustrate the simulations to 
determine suitable grasp on a single-view partial point cloud. The last row of Figure 3.13 
shows the method of using the main plane of the single-view partial point cloud to guide the 
robot to the second viewpoint. For the first three rows, the second column shows concave hull 
boundary of the single-view partial point acquired using one 3D camera. The blue points in the 
third column stand for the region with grasping range of the robot hand and this region is 
graspable zone. The grasp candidates are allocated from the top to the bottom of the graspable 
zone. Force balance computation on the XOY plane is conducted on these grasp candidates 
and the forth column shows the results of force balance computation. The corresponding best 
grasping areas are shown as green points in the fifth column. The last column demonstrates 
successful grasp execution for the target unknown objects. The last row demonstrates how to 
use the main plane of the single-view partial point cloud of the target object to guide the robot 
to the second viewpoint to achieve a suitable grasp.  

 

Figure 3.13: Simulation results of using a single-view partial point cloud as input. 

Table 3.1 presents the detailed results of force balance computation on both the XOY plane 
and The XOZ plane. Based on force balance on the XOY plane, our grasping algorithm can be 
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used to achieve stable grasping results for Spay bottle, Water bottle and Oatmeal box. For the 
selected cup, the force balance coefficient of the cup on the XOY plane is much larger due to 
its own geometrical character of no parallel sides. For force balance on the XOZ plane, results 
for all objects are quite satisfying. The maximum difference is 2.185 millimeter which cannot 
lead to massive movement of the target object when the robot tries to grasp it. As for the 
computing time, time spent to process a single-view partial point cloud is within one second.  

 

In summary, using the principle axis can reasonably determine the essential feature of an 
unknown target. It demonstrated that this grasping algorithm can achieve a greater grasping 
speed to obtain a suitable grasping areas compared to others, thus the proposed algorithm is 
numerically verified. In order to validate this novel algorithm in practice, the experimental 
tests are conducted as follows. 

3.4 Experimental validation 

In order to demonstrate the applicability of our proposed algorithm in reality, experimental 
tests are carried out using four different unknown objects of different shapes. The 
experimental tests are designed based on the references of the simulations and the availability 
of unknown objects.  

3.4.1 Experimental description 

An eye-in-hand system consisting of a Universal Robot arm UR5, an under-actuated Lacquey 
Fetch gripper and an Xtion pro live sensor is used to conduct experiment tests. The Xtion pro 
live sensor and the under-actuated gripper are installed at the end of the robot arm. With the 
reference of simulation models, four experimental tests are carried out as shown below as 
shown in Figure 3.14.  

In the Figure 3.14, the first column presents the whole experiment setup. The second and third 
columns of Figure 3.14 show the single-view partial point cloud. The second column 
corresponds to the single-view partial point cloud obtained from the perspective of the front 
direction and the third column corresponds to the single-view partial point cloud from the back 
direction. The final grasps returned from our grasping algorithm of using a single-view partial 
point cloud as input are shown as the fourth column of Figure 3.14.  

 

Table 3.1: Simulation results of force balance computation using a single-view partial point cloud as input  

 Spray bottle Cup Water bottle Oatmeal box 

XOY (radian) 0.108467 0.797198 0.0446418 0.000365332 

XOZ (mm) 2.185 0.4709 0.01 1.56499 
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Figure 3.14: Snapshots from the experimental tests. 

3.4.2 Results 

Table 3.2 shows the experiment results of force balance computation on the XOY plane and 
the XOZ plane. We can find all final grasps are with a good force balance which can ensure 
the grasp stability. The fifth column of Figure 3.14 shows the under-actuated Lacquey Fetch 
gripper arrives at the grasping point. The last column demonstrates the successful grasp 
execution of the target unknown objects. Our grasping algorithm can quickly process the 
single-view partial point cloud of the target unknown object to output the final grasp within 
one second. 

 Table 3.2: Experiment results of force balance computation on the XOY plane and the XOZ plane 

 Spray bottle Wine glass Beer bottle Mayonnaise bottle 

XOY(radian) 0.117 0.218 0.017 0.326 

XOZ(mm) 2.635 0.504 0.363 0.002 
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Thus far, our algorithm has been validated using experimental tests. It demonstrated that our 
fast grasping algorithm can promote successful grasping results using a single-view partial 
point cloud as input. In order to facilitate this novel algorithm to practice, solutions for 
minimizing grasping uncertainty is illustrated in the next section. 

3.5 Minimizing grasping uncertainty by using two 3D cameras 

As was illustrated in section 3.2, using geometric properties of the target unknown object to 
obtain suitable grasps may bring about the risk of grasping failure as a result of the 
uncertainties induced from occlusions. For these scenarios, the robot has to move to obtain 
new perspective to obtain single-view point cloud data. In practice, the robots that have two 
cameras can be used to overcome grasp uncertainty resulting from occlusions. This can be 
achieved by following the six (A-F) procedures. 

3.5.1 Building a “big” partial point cloud using two 3D cameras 

Figure 3.15 shows a Baxter robot and PR2 robot which have two camera sensors separately 
installed at the robot head and robot hand. Using these types of robots, more completed 
contour of the target unknown object can be formed compared to single-view partial point 
cloud. After that, virtual exploration is carried out on the “big” partial point cloud to carry out 
searching of principle axis. Graspable candidates are allocated between the two camera sensor 
points, which can ensure the grasp candidates are allocated on the seen part of the target 
object. While constructing the “big” partial point cloud cannot result in much computing time, 
the increase of grasp security is achieved. 

    

Figure 3.15: Two example robots which use two camera sensors. 

The PR2 and Baxter robots in Figure 3.15 can be simplified as a head sensor and a hand 
sensor. The two 3D sensors are used to obtain the “big” partial point cloud. The green and 
blue point cloud in Figure 3.16 (b) respectively stand for a single-view partial point cloud 
acquired from the head sensor and the hand sensor. Next, the two single-view partial point 
clouds are fused together to obtain the “big” partial point cloud (shown as the brown point 
cloud in Figure 3.16 (b)). When we obtained the “big” partial point cloud, virtual viewpoints 
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(shown as the black points in Figure 3.16 (c)) can be incrementally allocated around the 
principal axis between the head sensor point and the hand sensor point. Figure 3.16 (d) shows 
the corresponding point clouds for all virtual viewpoints. 

             
                    (a)                               (b)                  (c) 

         
                   (d)                                           (e) 

Figure 3.16: The method to overcome grasp uncertainty resulting from occlusions. (a) PR2 and Baxter 
robots are simplified as a head sensor and a hand sensor (b) two single-view partial point cloud from 
the two 3D sensors fused together (c) Virtual viewpoints incrementally allocated around the principal 
axis of the “big” partial point cloud. (d) the corresponding point clouds for all virtual viewpoints (e) an 
example of successful grasp execution. 

Figure 3.17 illustrates the distribution of the camera sensors of the Baxter robot and the PR2 
robot to obtain “big” partial point cloud. The green cuboid stands for the camera on the robot 
head and the black cuboid at the end of the robot arm represent the camera on the robot arm. 
The coordinate transformation between the head sensor coordinate system (HESCS) and the 
base link coordinate system (BCS) is defined as ( headT ). The coordinate transformation 
between the hand sensor coordinate system (HASCS) and the base link coordinate system 
(BCS) is defined as ( handT ). headT and handT can be obtained by Equation (3.7). 

 

Figure 3.17: Coordinate transformation between two camera sensors and the word coordinate system 
(WCS).  
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Figure 3.18: Acquisition of the “big” partial point cloud and transfer it from the world coordinate 
system (WCS) to the Object coordinate system (OCS). (a) and (d) are the single-view partial point 
cloud obtained from the head camera sensor and hand camera sensor. (b) and (e) are the two 
single-view partial point clouds of the target object in the camera coordinate system after removing the 
table plane. (c) and (f) are the two single-view partial point clouds transferred into world coordinate 
system (WCS). (g) is the registered “big” partial point cloud in the WCS. (h) is a “big” partial point 
cloud transferred from WCS to object coordinate system (OBS). 

Figure 3.18 shows the procedures to acquire the “big” partial point cloud and transfer it from 
the world coordinate system (WCS) to the Object coordinate system (OCS). Figure 3.18 (a) 
and (d) respectively stand for the single-view partial point cloud obtained from the head 
camera sensor and hand camera sensor. Figure 3.18 (b) and (e) stands for the two single-view 
partial point clouds of the target object in the camera coordinate system after removing the 
table plane. Figure 3.18 (c) and (f) stand for the two single-view partial point cloud transferred 
into the world coordinate system (WCS). Figure 3.18 (g) is the registered “big” partial point 
cloud in the WCS. Figure 3.18 (h) shows the “big” partial point cloud transferred from WCS 
to object coordinate system (OBS). 

3.5.2 Grasp allocation between the two camera sensor points 

Figure 3.19 illustrates the searching strategies between the two camera sensor points. In this 

figure, each black point stands for a virtual viewpoint to carry out virtual exploration. The 

virtual viewpoints are allocated around the principal axis with a searching step ( θ∆ ). 0qq  and 

1qq  stand for the hand and the head camera viewpoints, respectively. iqq means the thi  virtual 

viewpoint and 0iq q iqq  q= + ∗∆ .  
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Figure 3.19: Searching strategies between the two camera sensor points.  

3.5.3 Constructing virtual object coordinate systems 

At each virtual viewpoint, a virtual object coordinate system (VOCS) is constructed for further 
analysis. Figure 3.20 illustrates the construction of the virtual object coordinate system. 
Specifically, the principal axis of the “big” partial point cloud in WCS is used to work as the 
Y axis of the object coordinate system (OCS). In Figure 3.20, Rp stands for a random point on 
the principal axis and Vp means a random virtual viewpoint. The X and Z axis can be obtained 
using Equation (3.8). 









×=
×=

=

YOXOZO
RpOVpOXO

RpOYO

ccc

ccc

cc

                        (3.8) 

Using the above method to go through every virtual viewpoint of Figure 3.19, we can obtain 
all VOCSs for all virtual viewpoints. Then the “big” partial point cloud in WCS is transferred 
to every local VOCS, all the transferred point clouds can be seen in Figure 3.21. Each color in 
Figure 3.21 corresponds to a transferred point cloud at the local virtual object coordinate 
system. 

 

Figure 3.20: Schematical illustration of constructing a virtual object coordinate system (VOCS).  
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Figure 3.21: Transferred point clouds for all the virtual coordinate system (VOCSs).  

3.5.4 Grasp allocation for a virtual viewpoint 

The grasp configurations in the SE(3) group means many possibilities. To reduce grasp 
possibility to accelerate grasp searching, principal axis of the “big” partial point cloud is used 
to direct the grasp configurations. In Figure 3.22, the grasp configurations in the SE(2) group 
is simply a rotation around the principal axis. Each configuration can be expressed as 

]|[
i

qqyi qΓ , in which iy  denotes grasp searching from the top of the “big” partial point cloud 

to the bottom of the “big” partial point cloud; iθ  means grasp searching between the two 
camera sensor points. 

 

Figure 3.22: Grasping configuration in the SE(2) group. 

All transferred point clouds for all VOCSs were already obtained shown in Figure 3.21. For 
each transferred point cloud ][ θθΟ , grasp candidates are allocated from the top to the bottom, as 

can be seen in Figure 3.23. Let ]|[ θθθyiΟ  ( ni ,...,2,1= ) stand for the point cloud covered by 

thi  hand configuration, such that the red, blue and green rectangles respectively stand for three 
hand configurations. The corresponding point cloud covered by the three hand configurations 
can be expressed as ]|[ θθθyiΟ , ]|[ 1 θθθyi+Ο  and ]|[ 2 θθθyi+Ο . 
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Figure 3.23: Hand configuration for a virtual viewpoint.  

3.5.5 Force balance computation 

For the point cloud ][ θθΟ which corresponds to a virtual viewpoint, force balance computation 

can be divided into two parts, namely, force balance computation on the XOY plane ( xoyF ) and 

on the XOZ plane ( xozF ). The application of using force balance to obtain the best grasping 
areas consisting of the following two steps.  

The first step is using force balance computation on the XOY plane to select the best grasp for 
each virtual point cloud ][ hqqΟ  from top to bottom, i.e., 

]}}[]|[]|[{{ θθθ θθθθθFMAXF yiyiXOYXOY O∈O∧O= . For every virtual viewpoint θ , force 

balance computation on the XOY plane is used to find the best grasp, and yi ( ni ...,3,2,1= ) 
stands for the ith grasp candidate allocated along the Y axis.  

Next step is using force balance computation on the XOZ plane to compare the best grasping 
areas deduced from the first step from left to right, i.e., ]}}|[{{ hymXOZXOZ qqFMAXF qO= , in which 

hθ ( nh ...,3,2,1= ) stands for the hth virtual viewpoint. ]|[ hym qq qΟ  stands for the best grasp 

candidate of the hth virtual viewpoint. Force balance computation on the XOZ plane is carried 
out on the best grasping areas of every virtual viewpoint to choose the best grasp as final grasp 
execution. 

A. Force balance computation on the XOY plane for each virtual viewpoint 

As explained previously, force balance computation is firstly carried out to determine the best 
grasping areas for each virtual viewpoint. For a virtual viewpoint, the parameter ( θ ) 
corresponds to a virtual point cloud ][ θθΟ . The method in the step 6 of section 3.2 is used to find 
the best grasp for the virtual point cloud ][ θθΟ  on the XOY plane. Using the above method for 
going through all the virtual viewpoints, we can obtain all the best grasping areas for all virtual 



Fast grasping of unknown objects using principal component analysis  |  45 

 

 

viewpoints. These best grasping areas can construct a grasp vector )...,( 21 ngggG = , and ng stand 
for the best grasp for the nth virtual viewpoint, and n  means the total number of virtual 
viewpoints. Best grasping areas for all virtual viewpoints are shown as Figure 3.24. In the next 
subsection, the selection of the final grasp from the grasp vector )...,( 21 ngggG =  is illustrated. 

 

Figure 3.24: Results of force balance computation on the XOY plane for all virtual viewpoints. (a)  
best grasping areas for all virtual viewpoints (b) partial enlarged image. 

B. Force balance computation on the XOZ plane for every virtual viewpoint 

In order to choose the final grasp from the grasp vector )...,( 21 ngggG = , the best grasping areas 
for every virtual viewpoint are extracted shown as Figure 3.25 (a) and (b). The colorful points 
in the black circle stand for all the grasps in the vector )...,( 21 ngggG = . Figure 3.25 (c) shows an 
example grasp ig ( ni ≤≤1 ) in the vector jG . The green points in Figure 3.25 (c) stand for 

points covered the ig . To evaluate the grasp quality of ig , force balance computation on the 
XOZ plane can be used. In order to compute force balance on the XOZ plane, the grasp ig is 
first projected to the XOY plane to obtain the most left and most right contact area shown as 
the red points in Figure 3.25 (d). The left red points is numbered as lmll ppp ,...,, 21 (m is the 
total number of left red points). The right red points is numbered as rnrr ppp ,...,, 21  (n is the 
total number of right red points). 

   
        (a)                    (b)                  (c)                      (d) 

Figure 3.25: Best grasping areas for every virtual viewpoint are extracted to do force balance 
computation on the XOZ plane. (a) and (b) are the best grasping areas of all virtual viewpoints are 
extracted. Green points in (c) and (d) stand for an example of the achieved grasping area.  
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Using Equation (3.9), we can obtain the left and right contact area between the robot hand and 
the target object. By so doing a point of the grasp ig is extracted when the X value of this point 
is located between two adjacent red points as shown in Figure 3.25 (d). The extracted left and 
right contact regions between the robot hand and the target object are shown as green points 
and purple points in Figure 3.26 (a) and (b). Then average Z values of the left and right contact 
region are worked out shown as 1Z and 2Z  shown as Figure 3.26 (c). The difference ( Z∆ ) 
between 1Z and 2Z  is used to evaluate the stability of this grasp (shown as Equation (3.10)). 
It is obvious to find that large difference ( Z∆ ) will lead to rotation of the object around the Y 
axis, which may lead to grasp failure. Using above method goes through all the grasp of vector

1 2( , ... )nG g g g= , we can obtain the force balance on the XOZ plane for all grasp candidates of 

vectorG , that is vector )...,( 21 nZZZZ ∆∆∆=∆ . A line graph (Figure 3.27) is drawn according to 
the vector )...,( 21 nZZZZ ∆∆∆=∆ . We can predict that force balance on the XOZ plane reaches the 
best when virtual viewpoint iθ comes to 4θ . Therefore, the fourth grasp 4g of the vector

1 2( , ... )nG g g g=  is chosen as final grasp execution. 
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Figure 3.26: The difference between the left and the right contact region of the grasp is used to evaluate 
the grasp stability. (a) and (b) extracted left and right contact regions. (c) the average Z values of the left 
and right contact region.  

3.5.6 Simulation for the “big” partial point cloud obtained by using two 3D sensors 

In this subsection, simulations of using two 3D cameras to construct a “big” partial point cloud 
are conducted to obtain suitable grasping areas. Inspired by the Baxter and PR2 robots, we set 
two 3D cameras in the simulation setup. The black and green cuboids in the first column of 
Figure 3.28 respectively stand for the hand camera and head camera. Objects used to conduct 
simulations can be seen in the first column of Figure 3.28. Two single-view partial point cloud 
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of the target object from the two 3D cameras are used to construct a “big” partial point cloud. 
Force balance computation is conducted on the “big” partial point cloud and the results of 
force balance computation are visualized as the second column and the third column of  
Figure 3.28. 

 

Figure 3.27: Results of force balance computation on the XOZ plane for all best grasping areas of 
every virtual viewpoint.  

     

     

    
 

 
   

 

    
 

Figure 3.28: Simulation results of “big” partial point cloud obtained using two 3D cameras. 
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Detailed results of force balance computation can be seen in Table 3.3. It demonstrates that 
appropriate force balances for all tested objects are obtained on both the XOY plane and the 
XOZ plane. The fourth column of Figure 3.28 shows the final grasp returned from our 
grasping algorithm. The last column demonstrates successful grasp execution for all target 
unknown objects. The fourth row of Table 3.3 shows the final grasps for all tested unknown 
objects. The third row of Table 3.3 shows the simulation results of force balance computation 
on both the XOY plane and the XOZ plane. We can find all the final grasps of the target 
unknown objects show expected force balance performances on box the XOY plane and XOZ 
plane. Thus, it ensures the stability of final grasp execution for all the tested unknown objects. 

Table 3.3: Final grasp configuration and the corresponding force balance coefficient for the “big” partial 
point cloud obtained by using two 3D cameras. 

Force balance 1 Force balance 2 Force balance 3 Force balance 4 Force balance 5 

XOY XOZ XOY XOZ XOY XOZ XOY XOZ XOY XOZ 
0.3576 0.0002 0.0618

 
0.0021

 
0.0034 0.0005 0.0003 0.0054 8.5e-6 0.0021 

 
    

Table 3.4 shows the grasp computing time of our grasping algorithm using a “big” partial 
point cloud. Even though the point cloud is based on a large number of points, our grasping 
algorithm can quickly process the “big” partial point cloud and output the final grasp within 
two seconds. This result demonstrates a faster grasping speed compared to the other 
researchers that use multi cameras [62] ore multi views [132-134]. 

 

To sum up, the simulation tests to predict the grasping effectiveness in realistic situations are 
carried out using two 3D cameras. It demonstrated that the risk of grasping failures can be 
highly reduced in comparison with the application of single-view partial point cloud. While 
the grasping efficiency is maintained, our algorithm shows the improvements for robots to fast 
grasp unknown objects under unpredictable environments. 

Table 3.4: Grasp computing time of using two 3D cameras to construct a “big” partial point cloud. 

Unknown 
Objects 

Spray 
bottle 

Table tennis 
racket 

Vase 
Shampoo 

bottle 
Oatmeal box 

points 9801 1358 19583 7059 11214 
Time (s) 1.068 0.515 1.653 0.994 1.198 
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3.6 Conclusion 

A novel algorithm of using principal component analysis for fast grasping unknown objects is 
proposed. For a single-view partial point cloud, graspable candidates are allocated along the 
principal axis from the top of the target object to the bottom of the target object. Force balance 
computation on both the XOY plane and the XOZ plane ensures the stability of the final 
grasping action. To illustrate the efficiency of our grasping algorithm, objects with different 
geometric shapes are used to conduct simulations and experiments. Both simulation and 
experimental tests demonstrated favorable performances of applying the algorithm. In 
addition, it shows that using our grasping algorithm the speed of grasping is greater than other 
algorithms for steady grasping.  

In order to facilitate this algorithm in practice, the grasping uncertainty is minimized by taking 
the advantage of two cameras of the robot hardware. Virtual exploration on the “big” partial 
point cloud is carried out to determine the final grasp with the best force balance. The 
simulation results demonstrated that our grasping algorithm can quickly accomplish virtual 
exploration with steady grasping result. Therefore, this research demonstrates practical 
significance for increasing grasping speed and thus increasing robot efficiency under 
unpredictable environments. 
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Abstract 
The current research trends of object grasping can be summarized as caging 
grasping and force closure grasping. The motivation of this chapter is to combine 
the advantage of caging grasping and force closure grasping to enable 
under-actuated grippers like the Lacquey gripper and the parallel grippers like the 
PR2 gripper to quickly grasp the flat unknown objects. Inspired by the idea that 
caging grasping generates finger points along the object’s boundary and 
considering the geometry property of the grippers, we propose to allocate a 
discrete set of finger candidates along the object’s boundary. Any two of the 
finger candidates can form a grasp candidate, which is analyzed by using force 
closure to choose the best grasp candidate as the final grasp execution. The grasp 
quality during the manipulation of the object is guaranteed by considering the 
gravity of the object. Simulations and experiments on an Universal arm UR5 and 
an under-actuated Lacquey Fetch gripper are used to examine the performance of 
this algorithm, and successful results are obtained. 

4.1 Motivation 

The motivation of this chapter is to quickly find suitable grasp for flat objects (shown as the 
Figure 4.1 (a)), specifically, this grasping algorithm is specially designed for under actuated 
grippers like the Lacquey gripper (shown as the Figure 4.1 (b)) or parallel grippers like the 
PR2 gripper (shown as the Figure 4.1 (c)). In order to enhance grasping stability, force balance 
and torque balance are taken into consideration. The stability is divided into two parts: one is 
the stability when the grasp action is being executed; the other is the stability while the object 
is being transported. These two parts of stability can ensure that the object is securely grasped 
during the whole process when the object is being grasped and manipulated. Inspired by [135] 
and [136], a novel grasping algorithm is proposed for flat unknown objects. [135] and [136] 
only concentrate on the objects themselves without considering the geometry property of the 
gripper. We are illuminated to combine the force closure grasping and caging grasping. In this 
chapter, we propose to consider both force and torque balance, as well as the geometry 
property of the robot gripper, for example, hand width and grasping range, when the robot 
tries to execute the grasp. Then the gravity of the object is considered when the robot tries to 
manipulate the object after it is grasped. This grasping algorithm has several advantages. First, 
it is simple to implement, which can lead to sound computational efficiency. Second, 
considering both force balance and torque balance and the geometry property of the gripper 
can ensure the grasp is executed successfully. Third, the grasping quality during the 
manipulation of the object is also guaranteed by considering the gravity of the object. 
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                 (a)                         (b)                    (c) 

Figure 4.1: The motivation of this chapter, (a) shows an example of a flat object, (b) and (c) show the 
Lacquey gripper and the PR2 gripper respectively. The motivation of this chapter is to quickly find 
suitable grasp on flat objects for under-actuated grippers like the Lacquey gripper or parallel grippers 
like the PR2 gripper.  

4.2 Introduction 

Caging grasping is becoming increasingly popular in recent years. Since caging grasping was 
first introduced by [137] and [138], the analysis and synthesis of caging grasps has become an 
active research area. The basic idea of caging grasping is that the manipulators or fingers 
constitute a set of constraints in the object’s configuration space that prevent it from escaping 
arbitrarily far. [139] proposed the first two-finger caging grasping for polygonal objects. Since 
the early works, many algorithms have been invented for finding two or three finger caging 
grasp for polygonal planar objects. [140] and [141] present comprehensive two-finger caging 
synthesis algorithms by formulating the caging grasping problem in the four dimensional 
configuration space of the two-finger hand. Afterwards, [135] formulates the caging set 
synthesis problem in two dimensional contact space which parameterizes the finger locations 
along the object’s boundary. Several papers go further to consider the problem of planning and 
controlling the caging manipulation of an object by a team of mobile disc robots [142, 143, 
144]. All above caging grasping algorithms by two/three-finger hand or by a team of mobile 
disc robots illuminate us to use a discrete of finger candidates allocating along the object’s 
boundary to generate the grasp candidates. Figure 4.2 (a) and (b) show our inspiration of using 
caging grasping to generate grasp candidates. 

Force closure grasping is a popular approach in the field of robotic grasping. Vast amount of 
research has been conducted in the domain of force closure grasping [99, 145]. Given the 3D 
meshed model of the target object and the friction coefficients, force closure grasping employs 
a grasp quality scoring function defined in terms of contact points and surface normal on the 
object to generate force stable grasp candidates [108, 146]. Force closure grasping confirms 
well with human’s grasping synthesis. If given the 3D model of the target object, human can 
synthesize suitable grasp candidates by using the geometry information of the 3D model and 
the force closure requirement. Therefore, force closure grasping is a very promising method to 
solve the problem of unknown object grasping. Our previous works [123, 124] create a new 
method to compute force balance grasp directly on the partial point cloud of the target object. 
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[123, 124] do not require the 3D meshed model and the friction coefficients of the target 
object, which makes it more practical for unknown object grasping. The advantage of force 
closure grasping sheds illumination on using force balance and torque balance on robot 
grasping. Figure 4.2 (c) shows the inspiration of using force balance analysis on object 
grasping, and the idea of force balance searching from [123, 124] will be used in this chapter. 

                                                                        
              (a)                   (b)                    (c)                    (d)           

Figure 4.2: Inspiration of this chapter, (a) shows an image cited from [135] which uses caging method 
by introducing a discrete set of finger points allocating along the object’s boundary to grasp the target 
object. (b) shows our inspiration. Inspiration from [135] promotes us to generate finger candidates (the 
purple lines) along the object boundary. (c) shows the result of force balance computation for all grasp 
candidates (one grasp candidate can be obtained by combining any two finger candidates in (b)). (d) 
shows the final grasp execution. 

Inspired by the advantage of caging grasping and force closure grasping, we propose to use the 
method that caging grasping adopts to generate finger candidates along the object’s boundary. 
After that, force closure analysis is employed to do force balance and torque balance 
computation. Specifically, force and torque balance computation is divided into two parts: one 
is the balance during the grasping execution; the other is the balance during the object 
manipulation after it is grasped. The purpose of the force balance and torque balance during 
the grasp execution is to assure that big movement and rotation will not occur. The aim of 
considering the force balance and torque balance during the manipulation of the object is to 
ensure that the possibility of the object sliding from the gripper is minimized. Grasping quality 
during the manipulation of the object is guaranteed by considering the gravity of the object. 

This chapter is organized as following: section 4.3 contains a detailed explanation of our 
algorithm, section 4.4 shows the simulation results, section 4.5 demonstrates the experiment 
results, section 4.6 discusses the comparison between our algorithm and [135], section 4.7 is a 
conclusion of this chapter. 

4.3 Detailed algorithm 

This section contains a detailed explanation of the whole grasp algorithm. Subsection 4.3.1 
shows how to borrow the idea from caging grasping to generate finger candidates. Subsection 
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4.3.2 demonstrates the details about how to use force closure analysis to work out good grasp 
candidates. Subsection 4.3.3 shows the gravity analysis. 

4.3.1 Grasp candidates generation 

The existing work about flat polygonal object grasping usually have a hypothesis, that is, the 
polygonal object is on the desk. In this chapter, we make a progress to enable the robot to find 
the main plain by employing the oriented bounding box (OBB), which can ensure that the 
robot finds the main plane on which to project the point cloud of the object. Even if the object 
is held in the air, the robot can find the polygonal contour of the object. 

A. Construct the oriented bounding box  

A teddy bear is used to explain our algorithm. Figure 4.3 (a) shows a virtual setup in a 
simulation environment. An eye-in-hand system is established by installing an Asus Xtion 
sensor at the end of the robot arm, which is used to capture the point cloud of the target object. 
After the point cloud of the target object (shown as Figure 4.3 (b)) is obtained, the Oriented 
Bounding Box (OBB) algorithm is used to find the main plane to project the point cloud.  

                  

             (a)                        (b)                          (c)                           

Figure 4.3: Construction of the oriented bounding box (OBB), (a) shows the virtual setup in simulation 
environment, an Asus Xtion sensor is installed at the end of the robot arm. (b) shows the point cloud 
acquired by the Asus Xtion sensor. (c) shows the OBB box, the red rectangular frame stands for the 
OBB box, the blue rectangular frame represents the axis-aligned bounding box (AABB). 

There are two ways to obtain a bounding box, that is the axis-aligned bounding box (AABB) 
and the oriented bounding box (OBB). The axis-aligned bounding box for a given point set is 
its bounding box subject to the constraint that the edges of the box are parallel to the Cartesian 
coordinate axes. The oriented bounding box is the bounding box calculated subject to no 
constraints as to the orientation of the result. By using the eccentricity and moment of inertia, 
a position vector and a rotation transform matrix can be obtained. And then, each vertex of the 
given AABB must be rotated with the given rotation transform matrix and then positioned to 
get the OBB. The blue and the red rectangular frames in Figure 4.3 (c) respectively stand for 



56  |  Chapter 4 

 

 

the Oriented Bounding Box and the axis-aligned bounding box. We can easily find that the 
oriented bounding box is more generous and better suitable for the grasping purpose. 

B. Project the point cloud to the main plane of the OBB 

A local object coordinate system can be established by using the Oriented Bounding Box 
shown in the Figure 4.4 (a). The red, green and blue lines respectively stand for the X, Y and 
Z axis of the local object coordinate system. Then the point cloud is projected to the XOY 
plane (the main plane) to obtain the main silhouette of the object shown as Figure 4.4 (b). The 
concave hull (Figure 4.4 (c)) of the projected point cloud is extracted to work as the main 
silhouette of the target object. The points making up the concave hull are conveniently stored 
in serial order for later processing. As can be seen from Figure 4.5 (b), which is an enlarged 
image of the red rectangle in Figure 4.5 (a), the points are stored in serial order. 

C. Finger candidate generation 

After the main silhouette of the target object is obtained, finger candidates need to be first 
generated to do further analysis. The specific procedures to generate finger candidates are as 
follows.  

                    

               (a)                           (b)                         (c)                           

Figure 4.4: Abstraction of the object contour. (a) shows the point cloud in the OBB box. (b) shows the 
point cloud projected to the main plane of the OBB. (c) shows the object boundary acquired by 
abstracting the concave hull of (b).  

                             
                       (a)                               (b)                                  

Figure 4.5: The points on the concave hull of the object is stored in serial order. 
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C.1 Search step points 

Employing the property that all the boundary points are in serial order, two adjacent boundary 
points can be connected to form a polygon. Figure 4.6 (a) shows the corresponding partial 
polygon for the boundary points in Figure 4.5 (b). Two adjacent points in Figure 4.6 (a) are 
connected by an orange line. As it is can be seen from Figure 4.6 (b), a step distance (r) is used 
to work as the search radius. The distance between point 1 to point n is defined as nd _1 , the 
distance between point 1 to point n+1 is defined as 1_1 +nd . if nd _1  and 1_1 +nd  satisfy one of 
the Equation (4.1), an intersection point can be found to work as the step point. If several 
intersection points are found at the same time, the point with the minimum serial number is 
chosen as the step point. In another word, if there are m intersection points, the 

),...,,min( 21 mnnn will be chosen as the step point. Figure 4.7 shows the result of step point 
searching. The blue and red points respectively stand for the boundary points and step points. 
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                          (a)                                (b)                                  

Figure 4.6: The step point searching process. (a) shows the orange polygon formed by connecting two 
adjacent boundary points. (b) shows how to compute the step points. 

              

                         (a)                             (b) 

Figure 4.7: The result of step point searching. The blue points are the boundary points and the red 
points are the step points. (a) shows all the step points and (b) is an enlarged image of (a).  
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C.2 Obtain the finger candidates 

After all the step points are obtained, the finger width is taken into consideration. In subsection 
C.1, if the step point is located on the line between point n ( nP ) and point n+1 ( 1+nP ), a point 
cloud Ω  can be constructed by adding nP , 1+nP  until the last point of the concave hull 
boundary in Figure 4.5 (a). fw is used to describe the width of the finger, and the method of 
finding step points in Figure 4.6 can be employed to find the end point of the finger candidate. 
The step point works as the start point of the finger candidate and fw works as the searching 
radius. An intersection point can be found on Ω  by using the start point and the searching 
radius fw . The line between the start point and the end point stands for a finger candidate. 
Figure 4.8 shows all the finger candidates. Every purple line in Figure 4.8 represents a finger 
candidate.  

      

                              (a)                     (b)                                  
Figure 4.8: The result of finger candidate computation, every purple line stands for a finger candidate. 
(a) shows all the finger candidates, (b) is an enlarged image of (a). 

C.3 Obtain the grasping direction for finger candidates 

After the finger candidates are obtained, the first thing need to be done is to find the grasping 
direction. For every finger candidate, there are two possible grasping directions shown as 
Figure 4.9 (a). The blue line and the orange line respectively demonstrate the inside and 
outside grasping direction. Figure 4.9 (b) shows random grasping directions for all finger 
candidates, some lines are toward inside the object, some others are toward outside the object. 
How to find all the inside grasping direction? 

      
                            (a)                              (b)                                  

Figure 4.9: There are two possible grasping directions for a finger candidate. (a) shows two grasping 
direction (the orange line and the blue line) for a finger candidate. (b) shows all the random grasping 
direction for all the finger candidates. 
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In order to solve the problem of finding correct grasping direction, let’s first look at how to 

judge whether a given point is inside or outside the contour of the object. First, the contour of 

the target object is used to construct a polygon (Φ ). An effective way to find whether a given 

point is inside or outside a polygon is to cast many random rays from the given point to any 

direction. The intersects between the casting ray and the polygon are used to judge whether the 

given point is inside or outside the polygon. If the number of intersects is an odd number, the 

given point lies inside the polygon, otherwise, it lies outside the polygon. Figure 4.10 shows 

the idea of how to judge whether a give point is inside or outside of a polygon. The red point 

and the orange point are two given points. The green and the purple points are two random 

points. The line between the red point and the green point has two (even number) intersects 

with the polygon. The line between the orange point and the purple point has three (odd 

number) intersects with the polygon. Specifically, a given point ( gP ) is first given, and then, a 

controlled number of random points ( rnP , mn ,...,2,1= ). m is the total number of the random 

points) are generated by system, A straight line ( 1_ rgl ) can be constructed by connecting the 

given point ( gP ) and the first random point ( 1rP ). Φl  is used to represent one side of the 

polygon (Φ ). The intersect point between 1_ rgl  and the Φl  will be found. If the intersect 

point is on the polygon, it means there is a real intersect point. A for-loop is used to go through 

all the sides of the polygon (Φ ) to find all the intersection points. The number of the intersects 

between 1_ rgl  and the polygon (Φ ) is defined as 1n . Then, the second line 2_ rgl  can be 

constructed by connecting another random point ( 2rP ) and the given point ( gP ). The number 

of intersects between 2_ rgl  and the polygon (Φ ) is defined as 2n . The line between gP  and 

rmP  is defined as rmgl _ , the number of intersects between rmgl _  and the polygon (Φ ) is 

defined as mn . If all the numbers ( 1n , 2n … mn ) are odd numbers (that is, 12)%,...,,( 21 =mnnn ), 

the given point is inside the polygon (Φ ), otherwise it is outside the polygon.  

After we known how to judge whether a given point is inside or outside of a polygon, we can 
use it to find the grasping direction for the first finger candidate. As shown in Figure 4.11 (a), 
a step value (δ ) is used to do step searching along the middle vertical line of the first finger 
candidate. A pair of step points are set along the green arrow and the black arrow with the step 
of δ . Then, above method can be used to judges whether the two step points are inside or 
outside of the object contour. If the two step points are both inside the object boundary, then 
the algorithm continues to search along the direction of the green arrow and the black arrow. 
The step searching process stops until one step point is inside the object boundary and the 
other step point is outside the object boundary. The direction from the middle point of the first 
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finger candidate to the step point inside the object boundary is used to work as the grasping 
direction. 

 

Figure 4.10: The method to judge whether a given point is inside or outside a polygon. If a given point 
is outside a polygon, the line between the given point and the random point has even number of 
intersects with the polygon. If a given point is inside a polygon, the line between the given point and the 
random point has odd number of intersects with the polygon. 

After the grasping direction of the first finger candidate is obtained, a coordinate system can 
be established (seen as Figure 4.11 (b)). The middle point of the finger candidate works as the 
origin, the direction from the start point of the finger candidate to the end point of the finger 
candidate works as the X axis. The Z axis is vertical to the main plane. If 1Y is the grasping 
direction, the grasping direction is the cross product of X and Z, that is, ZXY ×=1 . If 2Y  is 
the grasping direction, the grasping direction is the cross product of Z and X, that is, 

XZY ×=2 . The grasping direction of other finger candidates can be worked out by using the 
same cross product. Figure 4.11 (c) shows inside grasping directions for all finger candidates. 

            

               (a)                         (b)                           (c)                           

Figure 4.11: Grasping direction searching process. (a) shows how to find the grasping direction for the 
first finger candidate. (b) shows how to use the grasping direction of the first finger candidate to build a 
cross product, which can be used to work out the grasping direction of the rest finger candidates. (c) 
shows grasping direction for all the finger candidates. 
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4.3.2 Force closure analysis 

After the grasping directions for all finger candidates are worked out, any two finger 
candidates can form a grasp candidate. Force closure analysis is used to do further analysis. 
Specifically, force balance and torque balance are used to do balance computation to choose 
the stable grasp candidates. Then, grasping range is considered to remove grasp candidates of 
which the distances between the two grasp sides are bigger than grasping range. Afterwards, 
the local geometry property of the grasp candidates is considered to remove those grasp 
candidates with big variance, which may lead to grasp failure. Then, the operability analysis is 
used to remove those grasp candidates of which the robot gripper may collide with the object 
when the robot tries to grasp it. 

A. Force balance computation 

After the grasping directions for all finger candidates are worked out, any two finger 

candidates can form a grasp candidate. For every grasp candidate, force balance computation 

is used to analyze the resultant force applied on the object. If the total number of the finger 

candidates is m , if  ( mi ,...,2,1= ) is used to represent the thi finger candidate and iF  is used 

to stand for the force applied on the object by if . If the force along the grasping direction for 

every finger candidate is a unite force, the angle between the two unite forces can represent the 

intensity of the resultant force. In Figure 4.12, the orange line and the red line respectively 

stand for the grasping direction for two example finger candidates ( if and jf ). The angle ( ijγ ) 

is used to describe the intensity of the resultant force of iF and jF . ijγ  is used to evaluate the 

stability of the grasp candidate consisting of if and jf . If i and j go from 1 to m , the results 

of force balance computation for every grasp candidate can be obtained (as Figure 4.13 (a) 

shows). The red and blue areas of Figure 4.13 (a) respectively represent the maximum 

resultant force and the minimum resultant force. Figure 4.13 (b) is the projected image of 

Figure 4.13 (a), where we can clearly see that the resultant force is maximum when it satisfies

ji = , that is the area between the two green parallel lines. The bigger the resultant force is, the 

more unstable the grasp is. The centers of the blue circles in Figure 4.13 (b) stand for the 

minimum resultant force. At these center points, the resultant force is almost zero, which 

means these center points correspond to the most stable grasp candidates. 
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Figure 4.12: Force balance computation, the orange line and the red line respectively stand for the 
grasping direction for the finger candidate if and jf . The angle ( ijγ ) is used to describe the intensity 

of the resultant force of iF  and jF . The smaller ijγ  is, the more stable the grasp is. 

      

                          (a)                                 (b)                                  

Figure 4.13: The result of force balance computation. (a) shows the result of force balance 
computation, the red areas mean the maximum resultant force and the blue areas stand for the minimum 
resultant force. (b) is the projected image of (a). 

B. Torque balance computation 

After the above steps, the grasps candidates jig ,  (consisting of if and jf ) satisfying the force 

balance requirement set by the system are chosen out. However, only use of force balance 

cannot make sure the grasp stability. Figure 4.14 shows an example grasp on the bear’s head, 

which satisfies the force balance requirement. However, if the robot tries to grasp the bear 

using this grasp configuration, the bear would rotate around the green point, which may lead 

to grasp failure. Therefore, the torque of every grasp jig ,  should be taken into consideration. 

jiT ,  is used to stand for the torque of a grasp candidate jig , . A function is used to represent 

the relation between jiT ,  and jig , , that is )( ,, jiji gfT = . If jiT , is bigger than the threshold ( sT ) 

set by the system, then the grasp jig , is removed, otherwise, jig , is kept. All the grasp 

candidates left are used to do following analysis. 
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                           (a)                                (b)                                  

Figure 4.14: Torque balance analysis. (a) shows a possible grasp candidate satisfying the force balance 
requirement. (b) shows the torque balance analysis. Big torque may lead to big rotation of the object, 
which may result in grasping failure. 

C. Grasping range computation 

After the force balance and torque balance computation, grasping range of robot hand should 
be considered. If the distance jid ,  between the two grasp sides of a grasp candidate jig ,  is 

bigger than the grasp range, the robot cannot grasp the object. Therefore, if the distance jid ,  

of the two grasp sides of every grasp jig ,  is smaller than the grasping range, the grasp is 

remained, otherwise it is removed.  

      

 

 

Figure 4.15: Variance analysis. The left image shows a possible grasp candidate. The right images are 
enlarged images of the two grasp sides. Variance of the points of the two grasp sides is used to evaluate 
the grapping quality. 

D. Variance analysis 

After finishing all steps mentioned above, the grasps left satisfy the force requirement, torque 
requirement and grasping range requirement. However, the local geometry property of grasp 
candidates is not yet considered. Figure 4.15 shows a grasp candidate, right up and right down 
are the enlarged images of the two grasp sides (the green points). The distance between one 
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green point to the purple line is defined as id , ni ≤<0 , n  is the total number of the green 

points. All the distances are added together to get the variance ν  of the grasp, ∑
=

=

=
ni

i
id

1

n . The 

bigger the variance is, the larger possibility of grasp failure is. If the variance is smaller than 
the threshold set by the system, the grasp is saved, otherwise, it is removed. 

E. Operability analysis 

Operability in this subsection means whether the grasps found in above subsection can be 
executed or not. Not all grasp candidates obtained by above steps can be executed 
successfully, Figure 4.16 shows an example, the two purples lines stand for a grasp candidate, 
the two orange lines represent the biggest open width of the robot hand. For the example grasp 
candidate, the robot finger will collide with the bear at the red circle. Therefore, it is necessary 
to analyze the operability of grasp candidates. In order to simplify computation, a local 
coordinate system is established and the concave hull boundary of the object is transferred into 
the local coordinate system. The biggest open width of the robot hand is defined as 0w and the 
hand width is defined as hw , the distance between the two grasp sides is defined as d . If the 
points on the concave hull boundary satisfy Equation (4.2), then it means there is collision 
when the robot try to execute this grasp, otherwise, there is no collision. Using the above steps 
repeatedly, we can find all the grasp candidates satisfying the operability requirement. 

0.5* 0.5*
0.5* || 0.5*

h h

o o

w x w
w y d d y w

− ≤ ≤
− ≤ ≤ − ≤ ≤

                 (4.2) 

       
                              (a)                           (b)                                  

Figure 4.16: Grasping operability analysis. (a) shows an example grasp candidate that the robot finger 
will collide with the object. (b) shows the local coordinate system which is used to do point cloud 
transformation.  

4.3.3 Gravity analysis 

When an object is under manipulation after it is grasped, its gravity inevitably brings 
instability to the grasp. How to take the gravity of the object into consideration is a key 
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problem which can decide whether a grasp action is reliable or not. In this chapter, we propose 
to use the distance between the gravity center and the grasping line (between the two grasping 
points) to evaluate the grasp candidates. For example, if the robot already grasped the teddy 
bear and the robot wants to move the bear in the air. At this moment, the gravity needs to be 
considered to prevent the object falling from the robot gripper. Figure 4.17 (a) shows an 
example grasp, specifically, the two purple lines stand for the grasp and the red point 
represents the gravity center. If the robot grasps the teddy bear and moves in the air, the object 
may rotate around the red line, the corresponding torque is defined asT , T  can lead to 
instability which may result in grasp failure. The distance ( d ) between the gravity center and 
the grasping line is used to evaluate the grasp quality after the object is grasped. The shorter 
the distance is, the smaller the torque is. The smaller the torque is, the more stable the grasp is. 
Figure 4.17 (b) shows the result of gravity analysis, the grasp with the smallest gravity torque 
is chosen as the final grasp (shown as the two bold red lines in Figure 4.17 (b)). 

        

                           (a)                             (b)                                  

Figure 4.17: Gravity analysis. (a) the distance ( d ) between the gravity center and the grasping line is 
used to evaluate the effect of the object’s gravity. (b) the final grasp obtained. 

4.4 Simulation 

In order to test the algorithm, various objects are chosen to conduct simulation to determine 
the grasping performance. The simulation system consists of Robot Operating System (ROS), 
Gazebo (a Standalone Open Dynamics Engine based simulator) and MoveIt! (a state of art 
software for mobile manipulation, incorporating the latest advances in motion planning, 
manipulation, 3D perception, kinematics, control and navigation). In the Gazebo simulation 
environment, A Lacquey under-actuated gripper and an Asus Pro Live sensor are installed at 
the end of the Universal arm (UR5). The Asus Pro Live sensor is used to acquire the point 
cloud of the target object in the simulation environment. The Lacquey under-actuated gripper 
is used to execute the final grasp found by the algorithm.  
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Five objects with different geometry shapes are used to do simulations. These objects are a 
teddy bear, an electric drill, a pistol, a spray bottle and a pan. Figure 4.18 shows the simulation 
results. The first column shows the simulation setup. The second column shows the OBB box 
to process the point cloud. The third column shows the finger candidates and the grasping 
directions. The fourth column shows the final grasp found by the algorithm. The two bold red 
lines stand for the final grasp. The fifth column shows the grasp area on the point cloud of the 
target object.  The sixth column shows the grasp execution. The algorithm can find good 
grasp for all these tested objects, which proved the effectiveness of this algorithm. 

       

       

           

                

              

Figure 4.18: Simulation results. 
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4.5 Experiment 

The experiments are conducted using a six degrees of freedom Universal arm UR5 and an 
under-actuated Lacquey Fetch gripper. An Xtion pro live sensor is installed on the tool tip of 
the robot. The whole experiment setup can be seen in Figure 4.19. Five objects with different 
geometry shapes are used to do experiment. These objects include an electric drill, a spray 
bottle, a hammer, a pan and a juice box. Figure 4.20 shows some snapshots of the grasping 
process of these objects. The first column is the initial state of the robot and the target objects. 
The second column is result of grasping computation, the two red lines stand for the final 
grasp found by this algorithm. The third column shows the grasp area on the point cloud of the 
target object. The fourth column shows the gripper arriving at grasping point. The fifth column 
shows objects grasped by the gripper. 

       

Figure 4.19: Experiment setup. A Lacquey under-actuated gripper and an Asus Pro Live sensor are 
installed at the end of the Universal arm (UR5). 

From this experiment, authors can safely draw three conclusions. The first is that this grasping 
algorithm is very fast. Grasping computation for the tested objects can finish within one 
second. The second one is that this grasping algorithm is reliable. All the grasps found for 
these objects have good force balance and torque balance, as well as the gravity optimization. 
The third is that this grasping algorithm has a good tolerance. Point clouds of the electric drill, 
the spray bottle and the pan missed a lot of pixels because of the restriction of the Asus Xtion 
pro live sensor. However, the grasping algorithm can still work out good grasps for the target 
objects. The experiment also proved the effectiveness of our algorithm. 

4.6 Comparison 

As mentioned in the first part of motivation, inspiration of this chapter comes from [135]. 
Let’s look at the outcomes of [135] and our algorithm. Figure 4.21 shows the comparison 
between [135] and our algorithm. We made several improvements over [135]. The first one is 
[135] did not tell how they get the boundary of the object. We propose to use Oriented 
Bounding Box to obtain the boundary of the object, which is proved to be efficient in our 
experiments. The second is [135] did not consider the geometry property of the gripper. 
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Actually, the grasps found by [135] in the red circle are impossible to be executed by grippers 
like the PR2 gripper, because [135] did not consider the geometry property of the gripper. 
[135] just uses one single point to represent the finger. On the contrary, we consider the 
geometry shape of the finger from the beginning of our algorithm. The third is [135] did not 
consider gravity of the object, which plays an important role in object grasping. On the 
contrary, we choose the nearest grasp to the gravity center to work as the final grasp. This 
grasp can not only make sure the grasp can be executed successfully, but also ensure the grasp 
quality during the manipulation of the object after it is grasped. To sum up, our algorithm 
combines the advantage of caging grasping and force closure grasping, which is much more 
practical for flat object grasping than [135]. 

                        

                                  

                                

                            

                                

Figure 4.20: Snapshots from the experiments: Fist column is the initial state of the robot and the target 
objects. Second column is the result of grasping computation. Third column shows the grasp area on 
the point cloud of the target object. Fourth column shows the gripper arriving at grasping point. Fifth 
column shows objects grasped by gripper. 
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No details about how to 

project the point cloud 

  

    

Figure 4.21: Comparison between [135] and our algorithm. The top is the algorithm form [135]. The 
bottom is our algorithm. Three improvements are made. The first is that [135] did not give details about 
how to project the point cloud. We use to OBB to find main plane to project point cloud. The second is 
that some grasps found by [135] are not practical for two-finger gripper because [135] did not consider 
the geometry property of the robot hand. We consider the geometry property of robot hand like the 
hand width, grasp range and the local geometry of every finger candidate on the boundary. The third is 
that [135] did not consider gravity of the object. Our algorithm considers gravity to make it more 
reliable. 

4.7 Conclusion 

In this chapter, a novel grasping algorithm is presented for flat object grasping by combining 
the merits of caging grasping and force balance grasping. The idea of caging points is 
borrowed to generating grasp candidates. After that, force balance computation is carried out 
to find out suitable grasps by considering the gripper geometry properties, for example, the 
grasping range and the hand width. Gravity of the target object is also considered to ensure the 
grasping quality during the manipulation of the object after it is grasped. This algorithm can 
quickly work out the best grasp with good force balance and torque balance. In order to prove 
the validity of our grasping algorithm, several objects with different geometry shapes are used 
to do simulations and experiments. And good results are obtained. 
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Abstract 
Reducing the grasp candidates for unknown object grasping while maintaining 
grasp stability is the goal of this chapter. In this chapter, we propose an efficient 
and straight forward unknown object grasping method by using concavities of the 
unknown objects to significantly reduce the grasp candidates. Shortest path 
concavity is first employed to work out the concavity value for every vertex of 
the unknown objects followed by concavity extraction to obtain the most salient 
concave areas. Grasp candidates are then generated on the most salient concave 
areas and evaluated by using force balance computation. Grasp candidates are 
ranked according to the result of force balance computation and the 
manipulability of every grasp candidate. The grasp with the best force balance 
and manipulability is chosen as the final grasp. In order to verify the 
effectiveness of our algorithm, some unknown objects commonly used by other 
papers about unknown object grasping are used to do simulations and favorable 
performance is obtained. 

5.1 Introduction 

Grasping of unknown objects with neither appearance data nor object models given in advance 
is very important for robots that work in an unfamiliar environment. Vast research has been 
conducted on the problem of unknown object grasping and many achievements have been 
obtained in the previous years. However, unknown object grasping is still a challenging task 
that has not yet been solved in a general manner.  

[35] gives a profound survey about unknown object grasping. The existing unknown object 
grasping algorithms can be divided into two main categories, that is, using partial model and 
using full model.  

In order to accelerate the grasping process of unknown objects, partial information of an 
object may be used to realize the grasping. [55] uses partial object geometry to achieve a 
semantic grasp. This algorithm needs predefined example grasps and cannot deal with the 
grasping task of symmetric objects since multiple views of a symmetric object could have the 
same depth images. [80] proposes a data-driven grasp planner that requires partial sensor data. 
Matching and alignment methods were used for grasping after obtaining the Columbia Grasp 
Database. [82] uses local descriptors from several images to construct the 3D model of an 
object. Object registration was conducted by using a set of training images. [147] installs a 2D 
range sensor on the robot at an inclined angle to acquire partial shape information of the 
unknown objects. Two straight lines are extracted directly from this partial shape information 
as the two grasp sides for a parallel jaw gripper. [148] uses binocular vision to recover the 
partial 3D structure of unknown objects. Then process the incomplete 3D point clouds 
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searching for good grasp candidate for a three finger robot hand according to a function that 
accounts for both the feasibility and the stability.  

The second method is building a full 3D model using many images or point clouds of the 
target object. In [74], the full 3D model is fit and split into many minimum volume bounding 
boxes and a grasp is found on these bounding boxes. In [75], two flat, parallel surfaces are 
found on the 3D model to realize the grasping task with a gripper. In [76], the center of mass 
and axes of inertia of the target object are calculated from the 3D model, and then a grasp on 
the center or along the axes is found. [77] uses a genetic algorithm to search for grasping 
points on a 3D model of the target object. [78] uses a cost function to analyze the 3D model to 
obtain grasping points. In [79], the 3D model is simplified into some shape primitives (boxes 
or cylinders). Then grasping points which are assigned offline to these shape primitives are 
selected for the corresponding shape. 

The best way to find a good grasp is said to use full 3D model to do grasp candidate 
simulation [108]. GraspIt which was first introduced in [108] established a benchmark for the 
object grasping community. However, there is a big problem we must face if we want to use 
GraspIt on unknown object grasping, that is how to deal with large number of grasp candidates 
promptly. After GraspIt, OpenGRASP [146] is invented on the base of the OpenRAVE [149], 
which made a progress comparing with GraspIt. OpenGRASP uses the normal of the object as 
the approaching vector of the robot hand, which can greatly reduce the number of grasp 
candidates. However, [116] states that depending on the choice of the parameters, the time of 
using OpenGRASP to simulate all the corresponding grasp candidates for a common object 
can vary from a few minutes to more than an hour. And then [116] uses [120] to do sampling 
to further reduce the grasp candidates. However, it still needs about one minute to find a good 
grasp for the unknown object, which is pretty time consuming. That is why the above 3D 
model based grasping algorithms try to use shape primitive or boxes to simplify the unknown 
objects.  

The reason that using partial information for unknown object grasping is becoming popular is 
that it requires less data comparing with using full 3D model. In another word, using partial 
model can be quicker than using full 3D model. However using full 3D model can achieve a 
better stable grasp, especially when GraspIt or OpenGRASP is used even though it is time 
consuming. Can we combine the merits of these two methods together? What if we have a 3D 
model first and then we just use part of the 3D model to synthesize a stable grasp.  

In our previous works [123, 124], we employed the principal axis of the unknown object to 
accelerate the grasp searching process and good results are obtained. In this chapter, inspired 
by using curvature on unknown object grasping in [86] and using downsampling to reduce the 
number of grasp candidates in [116], we propose to use concavity of the unknown object to 
reduce grasp candidates to accelerate the generation of grasp candidates for the unknown 
objects. The concavity we said is different from the 2D curvature used in [86]. There is a 
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significant difference between 2D curvature and 3D curvature regarding geometry properties. 
As can be seen from Figure 5.1 (a), the two blue points mean the maximum curvatures of the 
green silhouette of the spray bottle. Apparently, 2D curvature has a good performance to help 
searching a good grasp for robots. However, the situation for 3D curvature is different. As can 
be seen from Figure 5.1 (b), the blue in the red circles stands for the Gaussian curvature (3D 
curvature), which actually cannot give much clue for robot grasping. Fortunately, [150] and 
[151] give us inspiration about using concavity on unknown object grasping. Figure 5.1 (c) 
shows an example of the concavity that we mentioned. Specifically, the red area of the bunny 
represents the most concave area. Obviously, the concavities of the unknown object have a 
higher possibility to form a more stable force closure grasp. Our motivation is to generate 
grasp candidates on concavities and choose the best grasp by evaluating every grasp candidate. 

  
           (a)                         (b)                         (c) 

Figure 5.1: Curvature versus concavity: (a) 2D curvature (the two blue points stands for the maximum 
curvature of the silhouette of the spray bottle ), (b) 3D curvature (the blue in the red circles mean the 
Gaussian curvature of the bunny), (c) an example of concavity (the red represents the most salient 
concavity). 

The overview of our grasping algorithm is as follows. First, the 3D model (point cloud or 
meshed model) is input and the concavity of the unknown object is worked out as Figure 5.2 
shows. Then the most salient concavities are extracted according to the concavity intensity. 
After that, grasp candidates are generated followed by the evaluation of every grasp candidate. 
Finally, the grasp with best force balance and manipulability will be chosen as the final grasp 
to execute.   

This chapter is organized as follows. Section 5.2 contains a detailed explanation of our 
algorithm, Sections 5.3 shows the simulation results, and Section 5.4 is the conclusion of this 
chapter. 
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                 (a)                          (b)                     (c) 

              

                (d)                       (e)                         (f) 

Figure 5.2: An over view of our algorithm: (a) the input model, (b) concavity computation, (c) the 
most salient concavities are extracted (the red stands for the most salient concavities), (d) concavity 
analysis, (e) the returned best grasp, (f) the execution of the best grasp.  

5.2 Detailed algorithm 

5.2.1 Concavity calculation 

Concavity calculation is carried out directly on the meshed model of the target object. The 
meshed model can be obtained by fast triangulating the full point cloud of the target object. 
Take the bear as example, Figure 5.3 (a) is its full point cloud and Figure 5.3 (b) is its meshed 
model. Then a proper outer convex hull is computed (shown as the Figure 5.3 (c)). The free 
space between the meshed model and the proper outer convex hull is used to compute the 
concavity. First, the stable Constrained Delaunay Tetrahedralization is used to discretize the 
free space. The corresponding discretized space is shown as Figure 5.3 (d). Then Fast 
Marching Method is employed to compute the shortest path distance by using the discretized 
free space. The shortest path distance between the meshed model and the convex hull is 
returned as the concavity value of every vertex of the meshed model. Figure 5.3 (e) shows the 
concavity computation result, as can be seen, the original concavity value is in disorder. In 
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order to have a better view of the concavity computation result, the concavity value is 
rendered by color according to its intensity from the maximum concavity value to the 
minimum concavity value (the red means the maximum concavity and the blue means the 
minimum concavity). Figure 5.3 (f) shows the result of the rendered concavity.  

    
               (a)                 (b)                       (c) 

     
                 (d)                (e)                       (f) 

Figure 5.3: The process to compute the concavity for a bear, (a) The point cloud of the bear, (b) the 
meshed model of the bear, (c) the convex hull of the bear, (d) discretization of the free space between 
the bear and the convex hull, (e) the original concavity computation result for every point in (a), (f) the 
result of the rendered concavity.  

5.2.2 Concavity extraction 

As can be seen from Figure 5.3 (f), the red stands for the most concave areas and the blue 
represents the least concave areas. In order to make it convenient to do further analysis on the 
point cloud with the concavity value of every point, the most concave areas are extracted. The 
red in Figure 5.4 (a) means the most concave areas. It is extracted out from the whole point 
cloud to be shown as the Figure 5.4 (b). After that, the Euclidean cluster extraction is 
employed to separate the concavity with each other (shown as the Figure 5.4 (c)). Further 
grasping analysis will carried out on the separated concavity point clouds. Specifically, the 
separated point clouds of the concavity will be used to generate grasp candidates. 
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      (a)                           (b)                          (c) 

Figure 5.4: The extraction and separation of the bear concavity. (a) and (b) demonstrate the extraction 
of the most salient concavities  (the red areas), (c) the most salient concavities are separated into every 
single concavity.  

5.2.3 Construct the concavity coordinate system 

The concavity in the red dashed circle in Figure 5.4 (c) is used to explain our following 
algorithm. After we get the point cloud of the every single concavity, we can use the principle 
of OpenGRASP. The grasp candidates can be generated by using the normal of the point 
cloud. But one important fact we must notice is that there are still a lot of grasp candidates 
even though we downsampled the normal of the point cloud. The reason is that the normal can 
only decide the approaching direction of the robot hand. The robot hand can rotate around the 
normal, which means a lot of grasp candidates can be generated. In order to effectively 
decrease the number of grasp candidates. We propose to use oriented bounding box to reduce 
the grasp searching, which will be explained later. 

Let’s first look at what the oriented bounding box is and how to get the oriented bounding box. 
There are two common ways to obtain a bounding box, that is the axis-aligned bounding box 
(AABB) and the oriented bounding box (OBB). The axis-aligned bounding box for a given 
point set is its bounding box subject to the constraint that the edges of the box are parallel to 
the Cartesian coordinate axes. It is simply the Cartesian product of N intervals each of which 
is defined by the minimal and maximal value of the corresponding coordinate for the points. 
The oriented bounding box is the bounding box calculated subject to no constraints as to the 
orientation of the result. By using the eccentricity and moment of inertia, a position vector and 
a rotation transform matrix can be obtained. And then, each vertex of the given AABB must 
be rotated with the given rotation transform matrix and then positioned to get the OBB. 
Therefore, the OBB is much more generous and better suitable for concavities analysis. The 
green and red rectangular parallelepiped frames in Figure 5.5 respectively demonstrate the 
axis-aligned bounding box and the oriented bounding box. The blue, green and red straight 
lines in Figure 5.5 (b) respectively stand for the X, Y and Z axis of the concavity coordinate 
system. 
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After the oriented bounding box is obtained, the algorithm will analyze which two parallel 
planes of the rectangular parallelepiped frames have the higher possibility to be grasped by 
robot hand without collision with the object. For the concavity shown in Figure 5.5 (a), an 
oriented bounding box is obtained as Figure 5.5 (b) shows. The oriented bounding box can be 
divided into three pairs of parallel planes. The pair of the front and the back planes has the less 
possibility to collide with the bear. Therefore, the following grasp analysis will be carried out 
in XOY plan of the concavity coordinate system. 

        
                   (a)                                     (b) 

Figure 5.5: The oriented bounding box and its corresponding Cartesian coordinate system. The blue 
and the red rectangular parallelepiped frames respectively stand for the axis-aligned bounding box and 
the oriented bounding box. 

5.2.4 Analyze concavity and generate grasp candidates 

In the above subsection, the oriented bounding box and its corresponding Cartesian coordinate 
system have been obtained. Actually, the three axis of the Cartesian coordinate system 
respectively sand for the major eigenvector, the middle eigenvector and the minor eigenvector. 
According to the analysis in subsection 5.2.3, the major and middle vector will be used to 
generate the grasp candidates. First, the point cloud of the concavity is projected to the XOY 
plane of the OBB coordinate system (shown as the Figure 5.6). 

   

                 (a)                                        (b) 

Figure 5.6: The point cloud of concavity in the OBB coordinate system and the projected point cloud, 
(a) the point cloud of the concavity in the OBB coordinate system, (b) the projected point cloud of the 
concavity.  
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After that, we need to extract the concavity outer layer on the projected point cloud. The outer 
layer boundary (shown as the purple points in Figure 5.6 (b)) of the projected point cloud will 
be used to configure the grasp candidates. We first obtain the concave hull of the projected 
point cloud (shown as the Figure 5.7). The concave hull can be divided into two parts, one part 
is inside the object, and the other part is on the boundary. Usually, the point density is 
employed to judge whether a two dimensional point is on the boundary or not, therefore, an 
enlarged point cloud is extracted by adding more less concave areas (which are shown as the 
red points in the Figure 5.8 (a)). Then the enlarged point cloud is down-sampled shown as the 
red points in the Figure 5.8 (b). 

 

Figure 5.7: Concave hull of the projected point cloud of the concavity. 

 
                      (a)                                       (b) 

Figure 5.8: An enlarged point cloud and its projected point cloud, (a) the blue points mean the 
concavity point cloud shown in Figure 5.6 (a), the red points mean the enlarged point cloud by add 
more less concavity areas, (b) the enlarged point cloud is projected and down-sampled shown as the red 
points. 

Originally, we tried to compare the point density of every point (the blue points in Figure 5.9) 
on the concave hull of the concavity point cloud. By introducing a circle with the radius of R 
(the green and the black circle in Figure 5.9), we can get the number of the points within the 
circle. Apparently, the point on the boundary will have a low point density. However, all the 
blue points are pretty close to the boundary and the down-sampled enlarged point cloud is 
sparse, comparing the density of every point on the concave hull of the projected concavity 
point cloud is not robust, especially for the blue points in the green rectangular.    
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Figure 5.9: Extract the boundary points by compare the point density of every blue point. 

Considering the instability of comparing point density, we come up with a method to extract 
boundary point more stably. Specifically, two concave hulls of the concavity point cloud and 
the enlarged point cloud are used. Through observing the two concave hulls visualized in 
Figure 5.10 (a), it is pretty obvious that the boundary points on the concave hull of the 
concavity point cloud are almost the same or pretty near to the points on the concave hull of 
the enlarged point cloud. Therefore, the distance between every blue point and the green line 
(shown as the Figure 5.10 (b)) is used to judge whether a point is on the boundary or not. One 
important fact we can use is that points on concave hull is generated in sequential order, as can 
be seen, the blue point on the upper red line of Figure 5.10 (b) is in order as n-1, n and n+1. A 
vector can be used to store all the straight lines between the two adjacent red points of the 
concave hull of the enlarged point cloud. For every blue point, a vertical straight line to the 
straight lines constructed by the two adjacent red points can be obtained. If the intersection 
point between the vertical line and the straight line is lying between the two red points, then 
that intersection point is recorded. The orange point in Figure 5.10 (b) is an example of the 
intersection point and it satisfies the Equation (5.1). A distance threshold ( thresholdd ) is given by 
the system to decide whether the blue point (point n) is on the boundary or not, if the distance

thresholddd < , the point is considered as the boundary point. Using above method to go through 
all blue points can get the boundary point cloud shown as the orange points in Figure 5.11. 

     
                       (a)                                    (b) 

Figure 5.10: (a) is the two concave hulls of the projected concavity point cloud and the enlarged point 
cloud, (b) is the enlarged image of the points in the purple rectangular in (a). 
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Figure 5.11: Orange points mean the boundary points of the concavity point cloud. 

5.2.5 Generate grasp candidates 

After we get the boundary point cloud, the points are not in order. The first thing to do is to 
make all the boundary points into order. We first find the point with minx  and store it into a 
vector ( orderinboundaryV __ ). Then sequentially find the closest point and add it into the vector. 
Figure 5.12 shows an example of the boundary points, which are in sequential order as 0, 1, 2, 
3, 4, 5, until 8. 

After the boundary point cloud in order is obtained, the next to do is to calculate a series step 
points. Step points are used to configure the grasp candidates. It means the robot will search 
along the boundary with a step. Search process of the step points will start from the point 0 (

orderinboundaryV __ [0]). And then search along the boundary to find any two adjacent points, which 
can construct a straight line and have intersection point with a circle with a radius equal the 
searching step. If the step is given as r and the two adjacent points are point n  and point 

1+n , the distance between the point 0 and point n  is defined as nd _0  and the distance 
between the point 0 and point 1+n is defined as 1_0 +nd . 

If the distance between the start point and the two adjacent points satisfies any of the  
Equation (5.2), there must be an intersection point between the boundary and the step circle. 
Figure 5.12 shows an example of searching the step points. The purple curve stands for the 
searching circle with the radius equaling the searching step. The purple curve has an 
intersection point with the straight line between point 4 and point 5. Giving the coordinate 
value of point 0, point n , point 1+n  and the step length (r), using Equation (5.3) can get the 
coordinate value of the intersection point P (shown as the red point in Figure 5.12 (b)). After 
we get the first step point, all the points from the point 0 to point n  will be removed from the 
current boundary point cloud to form a new point cloud. The new point cloud is shown as the 
Figure 5.13 (b). Then, the maxd  is checked to see whether it is bigger than the robot hand 
width. If yes, then the algorithm will repeat the way of finding the first step point to find the 
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second step point. The above steps are repeated until maxd  is smaller than the robot hand 
width (shown as the Figure 5.13 (a)).  
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                      (a)                                    (b) 

Figure 5.12: The step point searching. 

   
              (a)                                            (b) 

Figure 5.13: The way to find all the step points, if a step point is found, the points out of the searching 
circle will form a new point cloud as (b).  

Figure 5.14 shows the step searching result with different step length. The blue points stands 
for the boundary point cloud of the concavity. The red points represent all the step points. 
Figure 5.14 (a) and (b) respectively show the result of step searching with a small and a big 
step length. 



Unknown object grasping by using concavity  |  83 

 

 

 

  

                 (a)                                            (b) 

Figure 5.14: The step points obtained by using different steps length. The blue points are the boundary 
points of the concavity. Every green line stands for a step. Every red point represents a step point. (a) 
shows the result of step searching with a small step. (b) demonstrates the result of step searching with a 
big step. 

After all the step points are obtained, the way to work out the step point can be used to work 
out the hand configuration. In Figure 5.12, if point 0 is a step point and the length of the brown 
line equals the robot hand width, using method shown in Figure 5.12 (b) can work out the 
intersection point Q. A grasp candidate can be configured between point 0 and point Q (in 
Figure 5.12 (a)). The purple lines in Figure 5.15 stand for all the grasp candidates. 
Specifically, Figure 5.15 (a) and (b) respectively show all the grasp candidates corresponding 
to Figure 5.14 (a) and (b). 

   

                    (a)                                          (b) 

Figure 5.15: The grasp candidates obtained by using a small step and a big step. The purple lines stand 
for the grasp candidates. Blue points, green lines and red points are the same as Figure 5.14. 

After all the grasp candidates are obtained, middle vertical lines to every grasp candidate are 
work out shown as blue lines in the Figure 5.16. On every grasp candidate, a local Cartesian 
coordinate system is established by using purple lines as the X axis and the blue lines as the Z 
axis. Using cross product of the Z axis and the X axis can get the Y axis. Then point cloud for 
every grasp candidate is extracted and transformed to the local coordinate system. Figure 5.17 
shows 3 example grasp candidates in their own local coordinate system. 
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Figure 5.16: The construction of local coordinate system, the purple lines represent the grasp 
candidates and work as the X axis of the local coordinate system. The middle vertical lines (blue lines) 
work as the Z axis. 

             

Figure 5.17: Three grasp candidates and their coordinate system. 

5.2.6 Force balance computation and manipulability analysis 

Force balance analysis is carried out on every grasp candidate to evaluate the stability of the 
grasp candidate. Figure 5.18 is one grasp candidate from the 16 grasp candidates shown in 
Figure 5.15 (a). This grasp candidate will be used to explain the way of doing force balance 
analysis. 

 

Figure 5.18: One example grasp candidate. 

At first, the point cloud of the grasp candidate is projected to the XOY plane (made of the red 
and green lines in Figure 5.18). The projected point cloud can be seen as the green points in 
Figure 5.19 (a). Then the concave hull (the blue points in Figure 5.19 (a)) of the projected 
point cloud is abstracted. The two grasp sides are extracted shown as the red points and the 
green points in the Figure 5.19 (b). After we get the points of the two grasp sides, a straight 
line fitting method is employed to do line fitting for the two grasp sides. If a straight line is 
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defined as bkxy += , Equation (5.4) can be used to work out k  and b . The purple line on the 
left in Figure 5.19 (b) stands for the fitting line for the red points. Correspondingly, the red 
line on the right side of Figure 5.19 (b) represents the fitting line for the green points. The 
angle ( β ) between the purple line and the red line is used to evaluate the grasping stability of 
this grasp candidate. Figure 5.20 shows the result of force balance computation of the 16 grasp 
candidates. 

   

               (a)                                          (b) 

Figure 5.19: (a) shows the projected point cloud (green points) of the grasp candidate, the blue points 
mean the concave hull of the projected point cloud. (b) is force balance analysis of the two grasp sides 
by using line fitting. 
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Figure 5.20: The result of force balance computation of the 16 grasp candidates shown in Figure 5.15 (a). 

As can be seen from Figure 5.20, both grasp 1 and 7 have good force balance performance. 
How to select the best one for this concavity? Because all grasp candidates are generated on 
the concavity of the target object, the robot may collide with the target object when the robot 
tries to execute the grasp action. Therefore, it is necessary to analyze the manipulability of 
every grasp candidate that has good force balance. Figure 5.21 shows the grasp 1 and grasp 7. 
When the robot executes these two grasps, the gripper will approach the object along the red 
arrow. The length and the width of the gripper are considered to do collision check. As 
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visualized in Figure 5.21, if a grasp leads to no collision between the gripper and the target 
object, this grasp is saved; otherwise, this grasp is abandoned. Among all grasp candidates that 
passed collision check, the grasp candidate with the best force balance is chosen as the best 
grasp for this concavity. Here, grasp 7 is chosen as the best grasp for this concavity because 
there is no collison between grasp 7 and the bear. After finishing the grasping analysis of the 
example concavity shown in dashed circle in Figure 5.4 (c), the algorithm repeats the above 
concavity analysis on other four concavities shown in Figure 5.4 (c) to acquire the best grasp 
for every concavity. Then, the best grasps from every concavity are further compared with 
each other in the aspects of force balance, the best one is chosen as the final grasp execution.  

         

                        (a)                               (b) 
Figure 5.21: The comparison of two grasps with good force balance. 

          

Figure 5.23: Execution of the best grasp returned from the algorithm. 

5.3 Simulation 

In order to verify our grasping algorithm, several objects in different geometry shapes are 
chosen to do simulations. All the tested objects can be seen in the first column in Figure 5.22. 
The second and third column shows the results of concavity computation and concavity 
extraction. The fourth column is the results of force balance computation of grasp candidates 
on one concavity of the object. The best grasps for the objects of the first column is shown in 
the fifth column. Figure 5.23 shows the execution of the best grasp returned from the 
algorithm. The returned best grasp for each object has good force balance and manipulability. 
The concavity computation for these objects can be finished within ten seconds. Concavity 
analysis, grasp candidate generation and force balance analysis can be completed within 2 
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seconds. Therefore, the whole grasping computation from computing the concavity to 
obtaining the best grasp is within 12 seconds, which is much faster than [116]. [116] uses 
OpenGRASP and down-sampling of the grasp candidates, but the time for an common object 
still needs about one minute. In summary, the simulations demonstrated our improvement over 
other grasping algorithms that also use full 3D model.  

 

   
 

 

    
 

   

 

 

     

   

 

 

Figure 5.22: Simulation results 
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5.4 Conclusion 

In this chapter, a novel grasping algorithm for unknown objects is presented. Concavity is first 
introduced to unknown object grasping in this chapter. Oriented bounding box is used to 
construct the coordinate system for every concavity followed by grasp candidate generation on 
every concavity. Force balance analysis and manipulability analysis are employed to evaluate 
every grasp candidate and the grasp with best force balance and manipulability is returned as 
the final grasp. In order to verify the effectiveness of our algorithm, several objects commonly 
used by other grasping algorithms with different geometric shapes are used to do simulations 
and successful results are obtained. Our algorithm can quickly finish the whole grasping 
computation from calculating concavity to obtaining the best grasp within 12 seconds, which 
is much faster than [116]. [116] uses OpenGRASP and downsampling of the grasp candidates, 
however, the time for a common object grasping needs about one minute. In summary, our 
algorithm shows improvement over other grasping algorithms which also use full 3D model. 
Our algorithm has a much better performance in time efficiency and grasping stability. 
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Abstract 
Increasing the grasping efficiency is very important for robots to grasp unknown 
objects especially subjected to unfamiliar environments. To increase grasping 
efficiency, a new algorithm for fast grasping of unknown objects is proposed 
based on the usage of C-shape configuration. Specifically, the geometric model 
of the used under-actuated gripper is approximated as a C-shape. To obtain an 
appropriate graspable position, this C-shape configuration is applied to fit 
geometric model of an unknown object. The geometric model of an unknown 
object is constructed by using a single-view partial point cloud. To test the 
algorithm using simulations, a comparison of the commonly used motion 
planners is made. The motion planner with the highest number of solved runs, 
lowest computing time and the shortest path length is chosen to execute grasps 
found by the grasping algorithm. The simulation results demonstrate that 
excellent grasping efficiency is achieved by adopting our algorithm. To validate 
this algorithm, experiment tests are carried out using a UR5 robot arm and an 
under-actuated gripper. The experimental results show that steady grasping 
actions are obtained. Hence, this research provides a novel algorithm for fast 
grasping of unknown objects. 

6.1 Introduction 

An unknown object can be defined as an item that has neither apparent information nor 
geometric model. Fast grasping of unknown objects is quite important for robots efficiently 
perform missions especially under unfamiliar environments. Due to the fact that various 
robots are increasingly dependent in contemporary society, improving grasping speed 
emerges as one essential challenge to achieve fast grasping of unknown objects. 

A literature study reports five dominant fast grasping algorithms [84, 94, 100, 113, 114]. 
Among them [110] is a well acknowledged fast grasping algorithm using Hough 
transformation to visualize the edges of objects in a 2D image. It can detect whether the 
edges are sufficiently long and whether the parallel edges suit the width of the used grippers. 
In the work of Eppner and Brock [94], the point cloud is transformed into shape primitives 
(cylinder, disk, sphere and box). A pre-grasp (configuration of the hand) is chosen according 
to their shape primitives. This type of shape primitive can significantly reduce the scope of 
grasp searching to achieve a fast grasping algorithm. However, this may result in lots of grasp 
uncertainty, which may lead to grasp failure.  

[84] applies the contact area of the grasping rectangle to determine the suitable grasps. When 
the contact area is too small, the grasp is likely to fail, and thus has to be replaced by another 
one. [114] utilizes principal axis and centroid of the object to synthesize a grasping action. 
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Pas [113] tries to fit the shape of the parallel gripper on the point cloud of the objects. They 
use a detailed segmentation to be able to pick objects from dense clutters. This algorithm 
promotes quite efficient grasping action, however, the parallel gripper is not advocated on the 
respect of flexibility comparing with dexterous hands and under-actuated grippers. These 
three fast grasping algorithms have a common character of using the normal of the table 
plane as the grasp approaching direction, which can accelerate grasp searching. However, due 
to the limitation that grasping from top is inapplicable for many objects that are placed in 
enclosed spaces, e.g., fridges and shelves, this type of simplification cannot be widely 
accepted.  

In summary, it shows that except [94], the other four fast grasping algorithms [84, 110, 113, 
114] are designed for parallel grippers. In addition, excluding [110] that uses RGB images as 
input of the grasping algorithm, the rest four grasping algorithms employ a partial point cloud 
as input. To design a faster grasping algorithm than the above five fast grasping algorithms, it 
is necessary to create a more general and faster grasping algorithm for simple grippers by 
using a partial point cloud.  

In fact, four of the five dominant fast grasping algorithms choose to use parallel grippers, 
because parallel grippers have simpler geometry shape and are easier to control. In addition, 
the parallel grippers are cheap such that the grasping algorithms specially designed for 
parallel grippers can be widely used. Nevertheless, all of them ignore a kind of excellent 
robot hands, that is, under-actuated grippers. 

The under-actuated gripper is one of the three kinds of popular robot hands. Other two kinds 
of robot hands are, dexterous hands and parallel grippers. Even though dexterous hands are 
very good at flexibility, the high complexity and high price stop them from being widely used 
in the research field of fast grasping of unknown objects. However, between the dexterous 
hands and the parallel grippers, there is a kind of grippers with high flexibility, low 
complexity and low price, which is under-actuated gripper. Under-actuated grippers are a 
very good tradeoff between dexterous hands and parallel grippers. Figure 6.1(a-c) shows 
three popular cheap under-actuated grippers. In order to achieve a cheap and general grasping 
algorithm, we will adopt the under-actuated grippers shown as Figure 6.1. All the three types 
of under-actuated grippers can be described as a C-shape with radii and as particularly shown 
in Figure 6.1(d). 

Typically not a lot of grasping algorithms give details about the actual motion planning of the 
robotic arm towards the object. Grasping algorithms seem to only focus on finding grasps on 
the object itself. Researchers and users that want to implement grasping algorithms have to 
fill the gap of motion planning. They have to study on many different available motion 
planning methods before implementing it, which is time consuming. In order to help future 
researchers and users quickly choose a suitable motion planner to execute grasp action, we 
will make a comparison of different online motion planners available in Moveit!. The motion 
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planner with the highest number of solved runs, lowest computing time and the shortest path 
length will be chosen to execute grasps found our grasping algorithm. 

 
(a) 

 
(b) 

 
(c) 

 
 

(d) 

Figure 6.1: Three widely used commercial under-actuated grippers and the approximation of C-shape. 

The goal of this chapter is to design a fast and general grasping algorithm for unknown 
objects. To achieve this goal, the rest of this chapter is organized as follows: Section 6.2 
illustrates our fast grasping algorithm. Section 6.3 compares different online motion planners. 
Section 6.4 presents the simulation results. Section 6.5 gives the experimental results and 
Section 6.6 gives a discussion about our fast grasping algorithm and the other aforementioned 
five popular fast grasping algorithms. Finally, the conclusions are provided in Section 6.7. 

6.2 Fast C-shape grasping for unknown objects 

This section firstly presents the mathematical description of the C-shape configuration. 
Furthermore, our fast grasping algorithm is illustrated, which consists of eight steps. 

6.2.1 Mathematical description of the C-shape configuration 

The algorithm will direct C-shape searching on the single point cloud of the target object to 
quickly synthesize an executable grasp. Figure 6.2 (a) shows the C-shape of the under-actuated 
grippers in Figure 6.1, w is the width of the griper. From Figure 6.2 (b), we can find the space 
of the C-shape ( cC ) equals the outer cylinder space ( outC ) minus the inner cylinder space ( inC ) 
and the red space ( redC ), shown as Equation (6.1). redC  can be approximated as 

}{ )0()()5.05.0( 211 ≤≤−∧≤≤−∧≤≤−= zrryrwxwCred . 

redinoutc CCCC −−=                                     (6.1) 

In order to calculate the outer cylinder space ( outC ) and the inner cylinder space ( inC ), we must 

know how to obtain the parametric equation of an arbitrary circle on an arbitrary plane in 3D 

space. If P ( 0x , 0y , 0z ) is the center of an arbitrary circle, the radius is r and its unit normal 

vector is N =( xn , yn , zn ) shown as the red arrow in Figure 6.2 (c). If the normal vector is 
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projected to the XOY plane, XOZ plane and YOZ plane, we can obtain three project lines 

(shown as the three green lines). γ , β and a are used to respectively stand for the angles 

between the projected lines and the coordinate axes. Then the arbitrary plane can be obtained 

by transforming the XOY plane through the following transformation: rotating around the X 

axis by a ; rotating around the Y axis by β , then moving along the vector N to P  ( 0x , 0y , 0z ). 

The whole transformation can be expressed as Equation (6.2). 

 

(a) (b) 

 

(c) 

Figure 6.2: Mathematical description of the C-shape. 
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  (6.2)                                 

Assuming that ( )(tx , )(ty , )(tz ) are used to stand for an arbitrary points on the arbitrary circle, 
then the parametric equation of the circle can be obtained by the Equation (6.3). 
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Where t  should satisfy π20 ≤≤ t . If{ }),(),,(),,( tsztsytsx  is an arbitrary point on the cylinder, 
and the axis vector of the cylinder is )cos,cos,(cos γβ ′′′= aN , then parametric equations for an 
arbitrary cylinder in 3D space can be obtained using Equation (6.4). 
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In which ws ≤≤0 , w is the width of the griper. Using Equation (6.4), we can derive equations 
for outC  and inC , then we can obtain the math description of the C-shape using Equation (6.1).  
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6.2.2 Outline of our fast grasping algorithm 

This subsection presents a detailed explanation of our fast grasping algorithm for unknown 
objects. The outline of our fast grasping algorithm is shown in Figure 6.3. It can be seen that 
eight steps are required to execute fast grasping using our algorithm. 

 

Figure 6.3: The outline of our fast C-shape grasping for unknown objects. 

Step 1: Obtaining the point cloud of the target object 

Figure 6.4 (a) shows a setup consisting of a robot arm, a 3D sensor and a target unknown 
object. The raw point cloud obtained from the 3D sensor contains the environment (for 
example the table plane). In order to quickly extract the point cloud of the target object, 
down-sampling and distance filtering are firstly applied on the raw point cloud from the 3D 
camera to reduce the computing time and remove the points out of the reach of the robot arm. 
Then Random Sample Consensus (RANSAC) method is applied to remove the table plane, 
resulting in the isolated point cloud of the target object (visualized as the green points in 
Figure 6.4 (b)). 
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                                        (a)                      (b)                                                                                                                        

Figure 6.4: Obtaining the point cloud of the target object.  

Step 2: Generation of normals 

Surface normals are important properties of a geometric surface, and are widely used in many 
areas such as computer graphics applications. In this chapter, normals are used to guide the 
configuration of the C-shape to accelerate grasp searching. 

The problem of determining the normal to a point on the surface is approximated by the 
problem of estimating the normal of a plane tangent to the surface, which in turn becomes a 
least-square plane fitting estimation problem. The solution for estimating the surface normal 
is therefore reduced to an analysis of the eigenvectors and eigenvalues of a covariance matrix 
created from the nearest neighbors of the query point. Specifically, for each point iP , we 
assemble the covariance matrix C as follows: 

T
i

k

i
i PPPP

k
C )()(1

1

−⋅−= ∑
=

jjj VVC


⋅=⋅ λ   }2,1,0{∈j                (6.5)                                                                      

Where k is the number of points in the neighborhood of iP , P  represents the 3D centroid 

of the nearest neighbors, jλ  is the j-th eigenvalue of the covariance matrix, and jV


is the 

j-th eigenvector. The first eigenvector corresponding to least eigenvalue will be the normal at 
each neighborhood.  

As one normal has two possible directions (the red and blue arrow lines) shown in Figure 6.5, 
it must be figured out which is the right direction of the normal. Since the point cloud datasets 
are acquired from a single viewpoint, the camera view point cp  is used to solve the problem 
of the sign of the normal. The vector from the point ip to the camera view point cp is

ici ppV −= , To orient all normals in consistently towards the viewpoint, it must satisfy the 
equation: 0>⋅ ii Vn . Using this equation, we can constrain all the normals towards the camera 
viewpoint to obtain right normals (shown as all the red lines in Figure 6.5) of the target object. 
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Figure 6.5: Generation of normals of the target object. 

Step 3: Down-sampling of point cloud 

Normals in Figure 6.5 are too dense. In order to accelerate the speed of grasp searching, the 
normals are required to be down-sampled. A K-d tree is used to down-sample the normals. 
The green points in Figure 6.6 (a) stand for the original point cloud (Ω ) that is used to 
compute the normal,Ω is first down-sampled to obtain the down-sampled point cloud dΩ
(shown as the red points in Figure 6.6 (a)). At each red point ( diP ) of dΩ , we use KNN 
search to find the nearest neighbor point ( iP ) in Ω  (shown as Figure 6.6 (b)). Then the 
corresponding normal ( in ) of iP can be looked up in the dense normals obtained in step 2. 
Eventually, all the corresponding normals are put together to form the down-sampled normals 
shown as Figure 6.6 (c). 

 

Step 4: Effective configuration of a C-shape 

In this step, we will explain how to configure the C-shape to find a suitable grasp and how to 
handle the unseen part of object because we cannot see the back side of the object when we 
only use a single-view point cloud to search grasps.  

 
(a) 

 
(b) 

 
(c) 

Figure 6.6: Down-sampling of normals of the target object. 
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Problem of grasping unknown objects can be understood as finding a proper grasping 

configuration for the robot hand. From the perspective of motion planning, the grasping 

problem can be formulated as motion planning under the work space of the robot and the 

configuration space of the target object. In the 3D world, the configuration space (C space) of 

the target object ( objC ) actually follows a SE (3) group. If the object configuration in objC is q , 
},,,,,{ 321 θθθ θθθθθθθ zyx=  where xq , yq , zq  and 1θθ , 2θθ , 3θθ  correspond to coordinates of 

position in the Cartesian frame and coordinates along the rotational orientation. ][qΟ  ( ][ xyzqΟ  

and ][ θθΟ ) is the corresponding target objects at configuration q . 

Grasping could be regarded as the configuration of the fingers ( nii ,...,2,1, =Γ , n is the number of 
fingers) of the robot in the objC . iΓ  is formed by independent fingers and corresponds to

nifi ,...,2,1, =  in the work space (W space). The configuration of fingers iΓ can be considered as 
configuration of obstacles in objC .  

From the perspective of motion planning, the grasping algorithm needs to calculate a 
pre-grasp. The robot tries to approach the target object by using the pre-grasp. Usually, for 
grippers without tactile sensors, the grasping algorithm needs to work out the final grasp state. 
After obtaining this state, what the robot needs to do is just to close its gripper. This is the 
whole procedure of the unknown object grasping by using under-actuated gripper. The 
Equation (6.6) shows the final grasp configuration. This equation means the finger 
configuration belongs to the target object configuration and fingers should have intersection so 
that the gripper can grasp the target object. 

)}][(|{ φ≠Ο∧∈=Γ iobji φqCqq                              (6.6) 

After obtaining the final grasp configuration, the robot will work out a collision free trajectory 
to drive the robot arriving at the grasping point. The trajectory planning is carried out in the 
configuration free space freeC  (seen in Equation (6.7)). 

}|{
1

i

n

i
objfree qCqqC Γ∉∧∈=

=
Γ                             (6.7) 

According to the above analysis, the configuration of the C-shape actually follows a SE (3) 
group. If we want to locate a C-shape in 3D space, it means many possibilities. In order to 
reduce the possibilities to accelerate grasping searching, normals of the target object are used 
to work as the approaching direction of the C-shape. Then the configuration of the C-shape 
can be simplified from SE(3) to SE(2). Figure 6.7 shows how to configure the C-shape. (a) 
shows a random normal (the blue line). (b) is an enlarged image of (a). If a normal is chosen 
as the approaching direction of the C-shape, it means that the Z axis of the C-shape will align 
with the blue line in (a) and (b). Then the C-shape can only rotate around the normal, therefore 
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the C-shapes are configured around the normal with an incremental angleδ (visualized as 
Figure 6.7 (b)). Every red line in (a) and (b) represents a possible axis for the C-shape. The X 
axis of the C-shape will match with every red line to construct a potential grasp candidate. 
Figure 6.7 (c) shows an example of a potential grasp candidate corresponding to the black axis 
in (b). The red points in (c) mean the points of the object covered by the C-shape.  

          

As mentioned before, the C-shape axis is allocated around the normal with an incremental 
angleδ . Then a question comes out, i.e., how to decide the first axis of the C-shape to increase 
the possibility to find a suitable grasp? 

If δ is a big angle, for example o60  in Figure 6.8 (a) and (b), we may get two totally 
different allocations of C-shape axis. In Figure 6.8 (a), the three cylinder axis will lead to no 
grasp found, because all the three C-shapes will collide with the object. However, the C-shape 
axis 1 in Figure 6.8 (b) corresponds to a very good grasp candidate (shown as Figure 6.8 (c)). 
The difference is generated because of the position of the first axis. In this chapter, we propose 
to use the principal axis of the local point cloud to work as the first C-shape axis.  

           
Figure 6.8: How to determine the first configuration of the C-shape. 

 (a) 

 

    (b) (c) 

Figure 6.7: Configuration of the C-shape. 

 
(a) 

 
(b) 

 
(c) 
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If the C-shape is configured as Figure 6.9 (a), the gripper will collide with the target object. 
Because we simply use a single-view partial point cloud of the object in this chapter, the 
unseen part of the target object will inevitably result in grasp uncertainty. To overcome this, 
the boundary of the object is employed to eliminate the uncertainty. Specifically, the point 
cloud in the camera frame is utilized to work out the boundary points bΩ (visualized in  
Figure 6.9 (b)). Figure 6.9 (c) shows our idea to deal with the unseen part. In detail, the two 
red points are on bΩ , the two orange lines are obtained by connecting the origin point of 
camera frame and the two red points. The two orange dashed lines are obtained by extending 
the two orange lines. Using this method goes through all the points on the boundary, we can 
obtain a point cloud shown as Figure 6.9 (d). Then the configuration space ( C space) of the 
target object ( objC ) is divided into two parts. '

objC  (the green points in (d)) and unseenC  (the 

orange points in (d)) are used to describe the configuration space after the unseen part is 
generated. It is shown as Equation (6.8). 

    unseenobjobj CCC += '                                   (6.8) 

Step 5: Determination of the center point of the C-shape 

As mentioned in step 4, the under-actuated gripper will approach the target object along the 
normal direction. Then a question comes out, that is, where to stop?  

  
Figure 6.9: Illustration of the solution to deal with the unseen part of the target object to eliminate the 
grasp uncertainty. 

Figure 6.10 illustrates how to determine the center point of the C-shape. Figure 6.10 (a) shows 
a possible grasp candidate, the green points stand for the points covered by the C-shape. 
Figure 6.10 (b) is the abstracted point cloud, and the red arrow stands for the approaching 
direction of the C-shape. The two red points in Figure 6.10 (b) are two example center points 
of the C-shape. The two blue circles stand for the corresponding C-shape. It is obvious to find 
that the two example center points of the C-shape are not the best ones. The center point can 

 

(a) 
 

(b) 
 

(c) 
 

(d) 
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go down further. (c), (d) and (e) elaborate how to determine the center point of the C-shape. 
Specifically, the abstracted point cloud in (b) is first projected to the YOZ plane to get the 
projected point cloud (orange points shown as (c)). Then the convex hull of the projected point 
cloud is extracted shown as the green points in (c). The green point in Figure 6.10 (d) means 
one point of the convex hull obtained in (c). If we draw a circle with 1r as radius (shown as the 
green circle), we can obtain two intersects with the Z axis (shown as the two purple points 1P  
and 2P ). ),min( 21 ZZZ =  will work as the C-shape center. Using the method goes through all 
the green points in (c), we can get all the center points ),,,( 21 cnccc ZZZZ ⋅⋅⋅=  (shown as (e)). The 
maximal cZ is used as the final C-shape center (shown as the Equation (6.9)). The maximal 

cZ  means the earliest contact point with the object when the C-shape tries to approach the 
object.  

),,,(max 21max_ cnccc ZZZZ ⋅⋅⋅=                                  (6.9) 

   

Figure 6.10: How to determine the center point of the C-shape. 

Step 6: Collision analysis of the C-shape 

Figure 6.11 (a) shows an example of C-shape configuration. After the configuration of the 
C-shape is obtained, we need to judge whether this configuration will collide with the object 
or not? If the C-shape will not collide with the object, then it means this configuration is 
possible to be an executable grasp candidate, otherwise this configuration should be 
abandoned.  

In order to judge whether one configuration will collide with the object or not, points with X 
axis value between w5.0− and w5.0 are abstracted to form a point cloud ]5.0,5.0[ ww −−Ω  (shown as the 

red points in Figure 6.11 (a), w is the width of the gripper). If any points ip of ]5.0,5.0[ ww −−Ω  
falls inside of the C-shape space, it means the C-shape will collide with the target object, then 
the grasp candidate ig should be removed, otherwise ig is reserved for following analysis. 
Applying this method to all the C-shape configurations, it leads to a vector )...,( 21 ngggG =  
which is used to store all grasp candidates without collision with the target object.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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Figure 6.11: Analyzing one grasp formed by a C-shape. 

Step 7: Local geometry analysis 

After finishing all above steps, the grasps left can ensure that the C-shape will not collide with 
the object, it means that the C-shape can envelope the object at this configuration. In this step, 
we will consider the local geometry of the points enveloped by the C-shape. Specifically, a 
grasp candidate is shown as Figure 6.11 (b), the local geometry shape may lead to grasp 
uncertainty. Two grasp sides are abstracted shown as the red points in (c), then, the distance 
between one red point and the blue line is defined as id , ni ≤<0 , n  is the total number of 
the red points. All the distances are added together to get the variance v  of the grasp, 

∑
=

=

=
ni

i
idv

1
. If the variance is smaller than the threshold set by the system, the grasp is saved, 

otherwise, it is removed. 

Step 8: Force balance optimization 

All grasp candidates passed previous steps can form a new vector 1 2( , ... )j j j jnG g g g= , all the 

grasps in this vector can be executed without collision with the target object. If the lines 1, 2, 
3, 4, 5, 6 and 7 in Figure 6.12 (a) stand for the C-shape axis of the grasps in vector jG , we can 

find that all the grasps from 1jg to 7jg  can be executed. How to choose the best grasp as the 

final grasp? 

We propose to use force balance optimization to select out the best grasp. Usually, the existing 
grasping approaches will employ the physical property to do force balance computation, for 
example, the friction coefficient. But in our case, we cannot know the physic property, 
because the objects for this chapter are unknown. We propose to use the local geometry shape 
to do approximate force balance computation. The blue points in Figure 6.12 (b) stand for the 
grasp candidate 1 ( 1jg ). It is projected to the XOY plane to get the projected point cloud 

shown as (c). The two grasp sides are abstracted to shown as the red points in (d). Two orange 
lines ( bkxy += ) can be fit out for the tow grasp sides. The two angles between the two fit 
lines and X axis are defined as ξ  and θ . (e) shows three cases of allocation of ξ and θ . 

 
(a) 

 
(b) 

 
(c) 
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The sum (σ ) of ξ and θ is used to evaluate the force balance quality of this grasp. σ can be 
obtained using ))(arctan())(arctan( ξθσ kfabσkfabσ += . The bigger σ is, the higher possibility that 
the grasp forces are vertical to the grasp sides, correspondingly more stable the grasp is. The 
vector )...,( 721 ψψψψ = is used to stand for all the force balance coefficients for the grasp vector

)...,( 721 jjjj gggG = . Figure 6.12 (f) is a line graph of the vectorψ , the grasp with the largest ψ is 

chosen as the final grasp. Figure 6.12 (g) shows the best grasp returned, which corresponds to 
the 4th grasp in (a) and (f). 

 

Figure 6.12: Choose the best grasp using force balance optimization. 

The above steps from step 1 to step 8 illustrate how the grasping algorithm work to find a 
suitable grasp at one normal of the target object. If the grasping algorithm cannot find a 
suitable grasp at one normal, another random normal will be used to repeat above steps until a 
suitable grasp is found.  

6.3 Selection of motion planners for grasping execution 

Typically not a lot of grasping algorithms give details about the actual motion planning of the 
robotic arm towards the object. Grasping algorithms seem to only focus on finding grasps on 
the object itself. Researchers and users that want to implement grasping algorithms have to fill 
the gap of motion planning. They have to study on many different available motion planning 
methods before implementing it, which is time consuming. In order to help future researchers 
and users quickly choose a suitable motion planner to execute grasp action, we will conduct a 
comparison of different available online motion planners. 

Motion planning is a very important part for grasp execution. However, typically not a lot of 
grasping algorithms give details about the actual motion planning of the robotic arm. MoveIt! 

 
  (a) 

 
(b) 

 
(c) 

 

(d) 

  

(e) 
 

(f) 
 

(g) 
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[152], a motion planning interface in ROS, is easy to use and therefor widely used for robot 
manipulation. In this section, we will discuss the choice of motion planner by looking at the 
available motion planning methods in MoveIt! and by evaluating benchmark data. 

6.3.1 Motion planning using MoveIt! 

Performance of motion planning depends on the chosen motion planner. MoveIt! itself does 
not provide motion planning, but instead it is designed to work with planners or planning 
libraries. Currently four main planners/planning libraries can be configured to use. 

OMPL (Open Motion Planning Library) [153] is a popular choice to solve a motion problem. 
It is an open-source motion planning library that houses many state-of-the-art sampling based 
motion planners. OMPL is configured as the default set of planners for MoveIt!. Currently 23 
sampling-based motion planners can be selected for use.  

STOMP (Stochastic Trajectory Optimization for Motion Planning) [154] is an 
optimization-based motion planner. It is designed to plan smooth trajectories for robotic arms. 
The planner is currently partially supported in MoveIt! 

CHOMP (Covariant Hamiltonian Optimization for Motion Planning) [155] mainly operates by 
using two terms. The dynamical quantity term describes the smoothness of the trajectory. The 
obstacle term is similar to potential fields. The planner is not yet configured in the latest 
version of MoveIt!. 

Search-Based Planning Library (SBPL) [156] consists of a set of planners using search-based 
planning that discretize the space. The library is not yet configured in the latest version of 
MoveIt!. 

Among these four, OMPL is chosen to perform motion planning in MoveIt! to compare the 
different motion planners. OMPL gives us a wide variety of choice to solve a motion planning 
problem since it contains 23 planners. 

6.3.2 Overview of OMPL planners available in MoveIt! 

Sampling-based motion planners in OMPL work by constructing roadmaps in the 
configuration space of the robot. This is done by connecting sampled configuration states with 
each other. The planners are widely used due to their success in finding feasible paths in high 
dimensional and geometrically constraint environments. Moreover, they are proven to be 
probabilistically complete [165]. Asymptotically optimal planners can refrain from potential 
high-cost paths and rough motions [166]. However, computational effort for finding an 
optimal path is increased. 

The planners from Table 6.1 can be divided into multi-query and single-query planning 
methods. A well-known multi-query method is the Probabilistic Road Map (PRM) [165]. The 
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planner attempts to find a path by using a roadmap in the configuration space of the robot. The 
construction of the roadmap is done by sampling valid nodes which resemble configuration 
states and connect these nodes to other nearby nodes by edges. Once the roadmap construction 
is finished a simple graph search is performed to find a motion plan in the roadmap from start 
node to goal node. Because the algorithm covers the total configuration space with a roadmap, 
it can be used again to find a different start-goal motion plan, this is why this planner is a 
multi-query method. Variants of PRM exist for use in MoveIt!. The LazyPRM [160] initially 
does not check for valid states when sampling states for roadmap construction in the 
configuration space. Once a path has been found from start to goal state, collision checking is 
performed along the nodes and edges of the roadmap. Invalid nodes and edges are removed 
and a new search is attempted. This process is repeated until a feasible path is found.   
PRM* [166] is the asymptotically optimal algorithm of the PRM planner. It rewires nodes to 
other nearby nodes if this is beneficial to the cost towards the node. LazyPRMstar [166] is a 
combination of the LazyPRM and PRM* algorithms. 

 

The SPARS which is similar to PRM* but adds another sparse subgraph. This subgraph is an 
asymptotically optimal roadmap that houses nodes which resemble multiple nodes in a dense 
graph. SPARStwo is a variant of this algorithm that has an infinite iteration loop. 

Single-query methods create a new roadmap every time a new planning query has to be 
determined. The most common single-query planner is the Rapidly Exploring Random Tree 
(RRT) method [161]. It creates a tree from the initial configuration state in the direction of the 
unexplored areas of the bounded free space. This is done by picking a valid random node, the 

Table 6.1: Available planners of OMPL in MoveIt! 

Planner name Reference Asymptotically optimal Time-invariant goal 
SBL [157]  √ 
EST [158]  √ 

BiEST Based on [158]  √ 
ProjEST Based on [158]  √ 
KPIECE [159]  √ 

BKPIECE Based on [159]  √ 
LBKPIECE Based on [159][160]  √ 

RRT [161]  √ 
RRTConnect [162]  √ 

PDST [163]  √ 
STRIDE [164]  √ 

PRM [165]   
LazyPRM [160]   
RRTstar [166] √  
PRMstar Based on [165][166] √  

LazyPRMstar Based on [160][166] √  
FMT [167] √ √ 

BFMT [168] √ √ 
LBTRRT [169] √ √ 

TRRT [170] √ √ 
BiTRRT [171] √ √ 
SPARS [172] √  

SPARStwo [173] √  
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algorithm in turn checks if this node can be added to the tree by determining if the nearest 
node of the tree is within a specified distance. This process is done at every iteration until a 
tree is grown that reaches the goal node. The RRTConnect method [162] is a bi-directional 
version of the RRT method, meaning that two trees are grown. One tree is grown from the 
start node and one from the goal node when the two trees can be connected a path is found that 
solves the motion problem. The near-optimal variant of RRT called RRT* [166] checks 
whether the new sampled node can be connected to other nearby nodes so that the state space 
is more locally refined. The RRT* removes the connections of the new sample that are not 
beneficial towards the cost of the path. When the number of random samples is big enough it 
would result in a near-optimal path from the start-to-goal state. The RRT* planner 
implementation in within OMPL and MoveIt! keeps trying to optimize the trees by adding 
new nodes until specified time limit is met. Lower Bound Tree-RRT (LBT-RRT) [169] is a 
near-optimal planner, it uses a so-called lower bound graph which is an auxiliary graph and it 
uses a similar to RRT* method to maintain the tree. Transition-based RRT or TRRT [170] is a 
combination of the RRT method with a stochastic optimization method for global minima. It 
computes transition tests to accept new states to the tree. The algorithm computes a 
near-optimal path that is not tied to a user specified time limit like RRT*, meaning that the 
planner stops as soon as it found a connection between start and goal node. The     
Bi-TRRT [171] is a bi-directional version of this planner. 

The EST method [158] stands for Expansive Space Trees, it was developed in the same period 
as RRT. Other than RRT the EST algorithm tries to determine the direction of the tree by 
looking at neighboring nodes and then grow in the less explored area in the configuration 
space. Bi-directional EST (BiEST), based on [158], grows two trees from the start and goal 
state respectively. The algorithm tries to connect the trees at every iteration such that a path 
between start and goal state can be established. Projection EST (ProjEST), based on [158], 
detects the less explored area of the configuration space by using a grid, this grid is served as a 
projection of the state space. Single-query Bi-directional probabilistic roadmap planner with 
Lazy collision checking, also called SBL that grows two trees. The trees expand in the same 
manner as the EST planner. Due to its lazy collision checking it will determine if a path is 
valid after the two trees are connected, like LazyPRM. 

KPIECE (Kinodynamic motion Planning by Interior-Exterior Cell Exploration) [159] is a 
tree-based planner that uses layers of discretization to help estimate the coverage of the state 
space. The OMPL implementation uses only one layer. OMPL incorporates a bi-directional 
variant called BKPIECE and a variant which builds on the latter by incorporating lazy 
collision checking, this variant is called the LBKPIECE. 

Fast Marching Tree (FMT) [167] is an asymptotically optimal planner which marches a tree 
forward in the cost-to-come space on a specified amount of samples. The BFMT [168] planner 
is a bi-directional variant of this planner. 
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PDST (Path-Directed Subdivision Tree) [163] represents samples as parts of a path instead of 
configuration states and uses non-uniform subdivisions to explore the unexplored state space. 

STRIDE (Search Tree with Resolution Independent Density Estimation) [164] uses a 
Geometric Near-neighbor Access Tree (GNAT) to sample the density of the configuration 
space. This information helps to guide the planner into the less explored area. 

6.3.3 Methodologies of comparing motion planners in MoveIt! 

In order to compare the performance of the 23 motion planners available in MoveIt!, we 
created two benchmarks shown in Figure 6.13. The first benchmark resembles a grasp among 
dense obstacles. The second benchmark resembles a long motion grasp. 

     
                      (a)                                    (b) 

Figure 6.13: Simulation setting for comparison of different motion planners in MoveIt!. (a): 
Benchmark 1: Grasp among dense obstacles. (b): Benchmark 2: The robot arm needs long motion path 
for grasping. 

The planners are analyzed on the three respects of the solved runs, computing time and path 
length. Solved runs, computing time and path length are used as metric in our experiments. 
We analyze the measures individually to provide the best performing planners in each one of 
the measures. Solved runs is analyzed by terms of percentage of total runs of the planner 
resulting in feasible paths, higher performance is considered for higher solved runs. Total 
computing time is measured for the time it takes for planners to produce feasible or optimal 
paths with path simplification, a shorter time is considered as higher performance. Moreover, 
planners with a small standard deviation from the average computing time and small 
interquartile range are considered as better performance. Path length is measured by the length 
of the sum of motions for a produced path. Shorter lengths are considered as higher 
performance. Again, planners with a small standard deviation from the average path length 
and small interquartile range are considered as better performance. 

The benchmarking experiments are performed using one thread on a system with an Intel i5 
2.70 GHz processor and 8GB of memory. In order to obtain reliable data on the solved runs, 
computing time and path length, each algorithm was run 30 times for the given motion 
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planning problem. The algorithms were given a maximum computing time of 3s and 10s to 
show the effect of time on different motion planners. The times are kept low since most 
robotics applications need to operate quickly.  

6.3.4 Parameter selection 

Parameters can be set to improve the performance of the motion planners. In this subsection, 
the parameter selection is presented as shown in Table 6.2. While conducting parameter 
selections for LBTRRT, we found that this planner is behaving unreliable in our setup. We 
tested all parameter combinations for this planner when conducting motion planning, however, 
all parameter combinations resulted in crashes. So we are unable to provide benchmark data 
for this particular planner.  

Table 6.2: Specified planner parameters 

SBL EST BiEST ProjEST RRT RRTConnect PRM LazyPRM RRTstar  
range: .3125 range: .625 

goal bias: .05 
range: 0 range: .625 

goal bias: .05 
range: 0 
goal bias: .05 

range: .3125 max n.n.: 10 range: .3125 range: 0 
goal bias: .05 
delay c.c.: 0 

 

KPIECE BKPIECE LBKPIECE STRIDE FMT BFMT TRRT BiTRRT SPARS SPARStwo 
range: .625 
goal bias: .05 
border frac.: .9 
failed e.s.f.: .5 
min.v.p.frac.: .5 
 

range: .3125 
border frac.: .9 
failed e.s.f.: .5 
min.v.p.frac.: .5 
 

range: .3125 
border frac.: .9 
min.v.p.frac.: .5 
 

range: .625 
goal bias: .05 
use proj.dist.: 0 
degree: 8 
max degree: 12 
min degree: 6 
max p.p. leaf: 3 
est. dim.: 0 
min.v.p.frac.: .1 

samples: 1000 
rad. mult.: 1.05 
nearest k: 1 
cache cc: 1 
heuristics: 1 
extended fmt: 1 
 

samples: 1000 
rad. mult.: 1.05 
nearest k: 1 
balanced: 1 
optimality: 0 
cache cc: 1 
heuristics: 1 
extended fmt: 1 
 

range: 1.25 
goal bias: .05 
max s. f.: 10 
temp c. fact.: 2 
m.temp.: 1e-10 
i.temp.: 1e-6 
f. threshold: 0 
f.NodeRatio: .1 
k constant: 0 

range: 1.25 
temp c. fact.: .2 
init temp.: 50 
f. threshold: 0 
f. n. ratio: .1 
cost.thres.: 5e4 

str. factor: 2.6 
sp. d. frac.: .25 
d. d. frac.: .001 
max fails: 1000 
 

str. factor: 3 
sp. d. frac.: .25 
d. d. frac.: .001 
max fails: 5000 
 

Global planner parameter: There is one parameter that affects all planners. That is the 
distance parameter (longest_valid_segment_fraction). This parameter is called when the 
planner checks for collisions between two nodes. Collision detection is not checked for the 
motion if the distance between the nodes is within the parameter value. In narrow passages 
and corners, this parameter can be critical. The parameter is set in meters and by default has a 
value of 0.005m. After conducting experiments with lower values, we found that reducing this 
parameter did not have an immediate effect on the solved runs for both of these two 
benchmark problems in Figure 6.13. 

Specific parameters for planners: The majority of planners (20 of 23) have their own 
parameters. For the two benchmarks, each parameter was set to values that benefit one or 
more performance measures, these values are listed in Table 6.2. 

Robot: The UR5 robot that will be used has two joint limit settings for each joint,π and π2 . 
Validating by means of simple motion planning experiments, we found that setting the joint 
limits to π  resulted in favorable performance for all the performance measures. 
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6.3.5 Comparison results 

Results of benchmark 1 are shown in Figure 6.14 and Table 6.3. The motion problem affects 
planners EST, RRT, RRTstar, TRRT and SPARStwo since they were not able to solve all the 
runs with a percentage higher than 50% with a maximum computing time of 3s. For 10s of 
computing time, more solved runs were retrieved. SBL, BiEST, KPIECE, BKPIECE and 
LBKPIECE compute valid paths in a computing time shorter than 1 s. RRTConnect is the 
fastest planner and BiTRRT is the fastest asymptotically optimal planner. RRTConnect paths 
have the lowest median. However, the average is higher due to significant outliers. SBL has 
the lowest average path length with a small standard deviation. Planners SBL, KPIECE, 
LBKPIECE, FMT, and TRRT are able to plan paths of similar median and average lengths. 
For asymptotically optimal planners, BiTRRT has the lowest median path length. TRRT has 
the lowest average path length and standard deviation. Selecting a higher limit of computing 
time did not result in significant changes. 

Results of benchmark 2 are shown in Figure 6.15 and Table 6.4. RRTstar, TRRT and 
SPARStwo have a lower solved runs compared to the other planner algorithms. SBL, BiEST, 
BKPIECE, LBKPIECE, RRTConnect and BiTRRT compute paths in under 0.1s, SBL is the 
fastest planner. Planners that have a time invariant stopping goal, except for FMT and TRRT, 
are producing valid paths within 1s. BiTRRT is the fastest asymptotically optimal planner. 
Bi-directional planner variants compute valid paths faster. SBL and BiTRRT have the shortest 
paths. The planners that keep sampling the configuration space or optimizing the path until the 
maximum computing time is reached see improved performance with respect to path length. 

 
Figure 6.14: Comparison results of 23 motion planners in MoveIt! for benchmark 1. 
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To summarize, we can find that SBL, BKPIECE, LBKPIECE, RRTConnect and BiTRRT 
achieve better performance than the other planners from the comparison results of  
benchmark 1 and benchmark 2. These five planners can work better in the both circumstances 
of grasp in dense obstacles and grasp in a long motion. However, among these five planners, 
only BiTRRT is asymptotically optimal. Asymptotically optimal planners are able to exclude 
potential high-cost paths and rough motions, which can help to achieve a smoother path of the 
manipulator. Taking all factors into consideration, we will adopt BiTRRT to work as the 
motion planner for the UR5 manipulator to execute the final grasp in this chapter. 

Table 6.3: Average values for benchmark 1 
Planner name Max. 3s computing time Max. 10s computing time 
 Time (s) Path length Time (s) Path length 
SBL 0.29 (0.11) 10.07 (0.74) 0.37 (0.18) 9.90 (0.63) 
EST 2.18 (0.31) 10.58 (0.77) 4.65 (2.55) 11.03 (1.01) 
BiEST 0.21 (0.10) 14.81 (5.19) 0.18 (0.07) 13.32 (3.14) 
ProjEST 1.83 (0.86) 11.82 (1.81) 2.37 (1.57) 12.13 (2.19) 
KPIECE 0.20 (0.09) 10.89 (1.80) 0.22 (0.10) 10.55 (1.28) 
BKPIECE 0.42 (0.21) 10.94 (1.86) 0.42 (0.21) 10.56 (1.82) 
LBKPIECE 0.30 (0.08) 10.41 (1.53) 0.26 (0.11) 12.30 (7.16) 
RRT 0.54 (0.84) 11.93 (1.41) 1.48 (2.71) 11.62 (1.14) 
RRTConnect 0.11 (0.08) 12.52 (15.68) 0.09 (0.03) 11.89 (9.10) 
PDST 1.37 (0.87) 11.96 (2.35) 1.68 (1.61) 12.37 (2.15) 
STRIDE 0.59 (0.57) 11.97 (5.35) 1.12 (1.58) 11.20 (2.24) 
PRM* 3.01 (0.01) 15.60 (2.26) 10.01 (0.01) 14.49 (1.65) 
LazyPRM 3.02 (0.00) 12.13 (1.17) 10.02 (0.01) 12.48 (1.96) 
RRTstar* 3.01 (0.01) 12.76 (0.93) 10.02 (0.02) 11.47 (1.03) 
PRMstar* 3.02 (0.01) 14.43 (1.90) 10.02 (0.01) 12.99 (1.67) 
LazyPRMstar 3.02 (0.00) 11.53 (1.23) 10.03 (0.01) 10.95 (1.59) 
FMT 2.07 (0.45) 10.49 (0.99) 1.78 (0.21) 10.33 (0.64) 
BFMT 1.17 (0.36) 11.74 (2.65) 0.89 (0.09) 10.88 (1.06) 
TRRT 0.57 (0.58) 10.21 (0.52) 2.41 (2.82) 10.12 (0.45) 
BiTRRT 0.13 (0.08) 15.56 (16.75) 0.13 (0.10) 11.03 (5.22) 
SPARS* 3.04 (0.04) 23.63 (4.74) 10.07 (0.07) 23.87 (5.57) 
SPARStwo* 3.00 (0.00) 22.98 (3.97) 10.00 (0.00) 26.34 (10.01) 

 

Table 6.4: Average values for benchmark 2 
Planner name Max. 3s computing time Max. 10s computing time 
 Time (s) Path length Time (s) Path length 
SBL 0.05 (0.01) 9.48 (7.86) 0.04 (0.01) 7.76 (1.76) 
EST 0.20 (0.13) 9.53 (2.58) 0.16 (0.11) 9.38 (4.00) 
BiEST 0.09 (0.04) 11.36 (1.96) 0.08 (0.03) 12.71 (3.57) 
ProjEST 0.18 (0.11) 9.86 (2.51) 0.15 (0.09) 8.99 (1.32) 
KPIECE 0.18 (0.09) 9.10 (1.50) 0.14 (0.08) 9.49 (1.68) 
BKPIECE 0.11 (0.11) 9.71 (5.83) 0.13 (0.16) 8.17 (2.79) 
LBKPIECE 0.09 (0.06) 9.33 (5.53) 0.08 (0.03) 9.23 (3.80) 
RRT 0.53 (0.62) 12.03 (7.08) 0.44 (1.10) 10.15 (1.99) 
RRTConnect 0.09 (0.04) 13.90 (10.39) 0.06 (0.02) 9.65 (4.05) 
PDST 0.24 (0.16) 11.71 (3.56) 0.24 (0.16) 12.27 (4.00) 
STRIDE 0.19 (0.21) 9.42 (3.26) 0.14 (0.09) 8.98 (1.17) 
PRM* 3.02 (0.01) 12.91 (3.41) 10.01 (0.00) 11.56 (1.56) 
LazyPRM 3.02 (0.00) 9.80 (1.88) 10.02 (0.00) 9.58 (1.27) 
RRTstar* 3.01 (0.02) 8.78 (0.00) 10.01 (0.01) 8.21 (0.94) 
PRMstar* 3.03 (0.01) 12.30 (1.81) 10.02 (0.01) 11.11 (1.65) 
LazyPRMstar 3.02 (0.00) 8.62 (0.98) 10.02 (0.01) 7.88 (0.72) 
FMT 1.23 (0.16) 9.64 (6.44) 1.10 (0.15) 7.92 (1.15) 
BFMT 0.79 (0.06) 8.24 (0.69) 0.73 (0.06) 8.35 (1.64) 
TRRT 0.78 (1.00) 7.82 (0.91) 2.05 (2.43) 8.55 (2.17) 
BiTRRT 0.08 (0.02) 8.39 (3.00) 0.07 (0.02) 7.75 (1.11) 
SPARS* 3.05 (0.04) 19.38 (8.05) 10.07 (0.06) 16.22 (5.38) 
SPARStwo* 3.00 (0.01) 14.98 (5.37) 10.00 (0.00) 20.10 (9.43) 
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Figure 6.15: Comparison results of 23 motion planners in MoveIt! for benchmark 2. 

6.4 Simulation 

In order to verify our grasping algorithm, simulations are performed using a personal 
computer (2 cores, 2.9 GHz). Several objects with different geometry shapes are used in the 
simulation. All the tested objects can be seen in the second row of Table 6.5. The third row 
shows an example grasp found by the grasping algorithm. The fourth row shows the robot arm 
arrived at the grasp point by using BiTRRT as motion planner. The fifth row shows the 
number of points of the input partial point cloud. The last row shows the average computing 
time (10 trials for each object). From the simulation, we can find that the algorithm can 
quickly work out a suitable grasp within 2 seconds for each object. 
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Table 6.5: Simulation results 

Object 
name 

Cleaner spray 
bottle Pistol Electric drill Table tennis 

racket Water bottle Telephone horn Milk carton Kinect Shampoo 
bottle 
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Points 8154 4394 7678 6384 7270 12458 4710 4965 5274 

Time (s) 1.95 0.89 1.83 1.31 0.87 1.86 0.73 0.92 0.58 

6.5 Experiments 

The experiments are conducted using a robot arm UR5 and an under-actuated Lacquey Fetch 
gripper. An Xtion pro live sensor is used to acquire the partial point cloud of the target object. 
The whole experiment setup and the objects chosen to do experiments are visualized as  
Figure 6.16. The results of experiments are shown as Table 6.6. The second row shows the 
experiment setup for every object. The third row shows the example grasp found by the 
grasping algorithm. The fourth row shows the robot arm arrives ate the grasp position by using 
BiTRRT as motion planner. The fifth row shows the grasp being executed. The sixth row 
shows the number of points of the input partial point cloud. The last row shows the computing 
time (10 trials for each object). The experiments proved the validation of our grasping 
algorithm. The main difference between the simulations and the experiments is that the point 
cloud in experiments may lose some points. For example, the coffee jar in the sixth column of 
Table 6.6 lost some points because the Xtion pro live sensor cannot detect transparent part. 
The neck of the coffee jar is transparent, so we cannot find the points for neck of the coffee jar. 
That is why we paint the wineglass in ninth column into white color. From Table 6.6, we can 
see that even though the partial point cloud of the object has large number of points, our 
algorithm can quickly work out a suitable grasp within 2 seconds. Comparing with the five 
fast grasping algorithms [84, 94, 110, 113, 114], our algorithm shows much improvement at 
the speed of grasp searching.  
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Figure 6.16: Experiments setup and objects used for experiments. 

Table 6.6: Experiment results 

Object 
name 

Cleaner spray 
bottle Electric drill Spray can Elephant Coffee jar Teddy bear Milk carton Wineglass Shampoo 

bottle 
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Points 10596 9929 7127 8044 4345 4857 5589 3503 5267 

Time (s) 1.74 1.56 0.91 1.96 0.68 1.82 0.64 0.53 0.67 

6.6 Discussion 

In this section, we will discuss the characteristics of our grasping algorithm compared with 
the existing fast grasping algorithms [84, 94, 110, 113, 114] for unknown objects. 
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Grasp adaptiveness: Our grasping algorithm is specially designed for under-actuated grippers. 
Under-actuated grippers add compliance and dexterity without the need of adding additional 
actuators and sensors. Through the careful design of the end effector’s mechanical makeup, 
under-actuated grippers have great advantages over parallel grippers. Therefore, our grasping 
algorithm is more adaptive than [84, 110, 113, 114]. Meanwhile, the price of the 
under-actuated gripper is much cheaper than [94] which uses a barrett hand. 

Object complexity: The presented grasping approach is able to find grasp for complex objects 
like, teddy bear, elephant, electric drill and the cleaner spray bottle. This makes it better than 
[84, 110, 114], which only considers simple objects. [94] transforms the objects into simple 
shapes (cylinder, disk, sphere and box), which may result in loss of details of objects. 

Computing time: Our algorithm finds a suitable grasp for complex object within 2 seconds. 
This is similar to [84, 94, 113, 114]. [110] is able to find a grasp faster since it only uses an 
RGB image at the cost of losing depth information of the object.  

Grasping direction: [84, 110, 114] only consider grasping from top, which can result in 
unreliable grasp, for example, picking up the wineglass. And in some cases, it is not allowed 
to grasp the target object from top, for example, objects in fridges or shelves. Our grasping 
algorithm considers the local geometry property of the object. We use the normal of the object 
to work as the approaching direction, which resembles a human-like grasp. 

Grasp execution: From the five fast grasp algorithms, only [113] considers grasp execution. 
However, no information was given about motion planning. We showed by performing a 
comparison that using BiTRRT for grasp execution would result in high solved runs, low 
computing time and short path length.  

6.7 Conclusion 

In this chapter, a novel algorithm of unknown object grasping is presented for under-actuated 
grippers. For the grasping algorithm, the gripper is simplified as a C-shape. In order to find 
suitable grasp, C-shape searching is performed on the partial point cloud of the target object. 
To accelerate the computing speed, this algorithm only uses a single view partial point cloud 
as input. Grasp candidates can be greatly reduced by using the normal line of the target object 
to guide the configuration of the C-shape. Moreover, we propose an original method to deal 
with the unseen part of the target object to enhance the grasp security. In order to make the 
robot arm quickly execute the grasp found by the grasping algorithm, a suitable motion 
planner has to be selected. We compared all the motion planners available in MoveIt!. The 
planner, BiTRRT, is chosen for motion planning for the UR5 robot arm due to its high solved 
runs, low computing time and short path length. Furthermore, the effectiveness of our grasping 
algorithm is verified using available objects by simulations and experiments. Our grasping 
algorithm can quickly work out a suitable grasp within two seconds for a test unknown object. 
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Comparing with the five dominant fast grasping algorithms [84, 94, 110, 113, 114], our 
algorithm shows much improvement at the speed of grasp searching. 
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7.1 Conclusions 

Grasping of unknown objects with neither appearance data nor object models given in 
advance is very important for service robots that work in unfamiliar environments. To enable 
service robots as agile as possible to execute various service tasks, the topic of this thesis is 
designing fast grasping algorithms of unknown objects for service robots. To achieve this 
target, this thesis sets out to reach three subgoals and one general goal: 

Subgoal 1: Improve the time efficiency for unknown object grasping 

The simplest and most straightforward way to accelerate grasp searching process is to reduce 
computational load of grasping algorithms. Computational load can be decreased by using 
less data for computation and configuring less grasp candidates. Partial point cloud 
comparing with full 3D model is naturally better at cutting down data used for grasp 
computation. Configuration of grasp candidates in 3D space means many possibilities. 
Features (principal axis, boundary and concavity, normals) of unknown objects are excellent 
clues to decrease useless grasp candidates. Using less data for grasp computing and 
configuring less grasp candidates, searching process of unknown object grasping can 
definitely be accelerated, which is validated by fast computing (Chapter 3 to Chapter 6) of 
suitable grasps for the tested household objects. Using principal axis and boundary to 
separately guide grasp configurations, the proposed grasping algorithms in Chapter 3 and 
Chapter 4 can work out suitable grasp on a single-view partial point cloud within 1s. 
Comparing with dominant fast grasping algorithms [84, 113, 114], the grasping algorithms in 
Chapter 3 and Chapter 4 are 153% faster than [84], 205% faster than [113] and 275% faster 
than [114]. In Chapter 5, grasp computation on the concavity of a tested target object can be 
completed within 2s to output suitable grasps; and the proposed grasping approach in  
Chapter 6 using C-shape configuration on a single-view partial point cloud can also work out 
a suitable grasp within 2s for a test unknown object. The computing speed of grasping 
algorithms in Chapter 5 and Chapter 6 are 20% faster than [84], 42% faster than [113] and 95% 
faster than [114]. 

Subgoal 2: Enhance the grasping security of using partial point cloud 

Using partial point cloud comparing with full 3D model means less data, which can 
undoubtedly speed grasp searching. However, utilizing partial point cloud inevitably 
introduces occlusions resulted in by the unseen parts of target unknown objects. Unseen parts 
of target unknown objects inevitably lead to fake collision-free configuration of grasp 
candidates, for example, grasp configurations from side direction and back direction, which 
may lead to grasp failure. In this thesis, we proposed two methods to deal with unseen parts 
when using partial point cloud. The first approach is to constrain grasp configurations on the 
seen part that is actually a “big” partial point cloud constructed by using two 3D cameras, 
which is validated in Chapter 3. The second way is to add manmade unseen parts for target 
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unknown objects and effectiveness of this method is proven in Chapter 6. Using above two 
approaches, the proposed grasping methods in Chapter 3 and Chapter 6 can reach 100% 
percent of success to avoid unexpected contact with the target object to ensure the security of 
using partial point cloud. 

Subgoal 3: Ensure the grasp stability when friction coefficient is unknown 

To obtain stable grasps for unknown objects, force closure is a widely used criterion. 
However, for unknown objects, it is hard to know friction coefficient that is necessary to 
compute force closure grasp. Existing literature employ approximate methods to achieve 
rough force closure grasps when friction coefficient is unknwon. For example, two parallel 
straight lines [110] or two parallel planes [95] are utilized to work as an approximate force 
closure grasp. Inspired by the above two approximate methods, we propose to fit the two 
grasp sides into two straight lines. The angle between the two fit lines is used to evaluate the 
force closure quality of a grasp. Larger angle infers higher possibility that the target object 
will be squeezed out when the robot tries to perform the grasping action. Therefore, the grasp 
candidate with minimal angle is chosen as final grasp to ensure the grasp stability during 
grasp execution. Using such a way, the optimized grasp with the best approximate force 
closure is selected to work as final grasp, which is validated by Chapter 3 to Chapter 6. The 
final grasps output from Chapter 3 to Chapter 6 are with locally best force balance. In 
Chapter 3, force balance angle of final grasp for the tested household objects are within 0.326 
radian, i.e. 18.6°, which can ensure that the two grasp sides are almost two parallel lines to 
thus asure the stability of final grasp. Chapter 4 to Chapter 6 obtained the similar force 
stability results of the final grasps of the tested objects as Chapter 3.   

General goal: Create a general fast grasping algorithm 

The general goal of this thesis is to create a fast and general grasping algorithm that can 
utilize incomplete data to achieve 100% success-rate grasp for any object shape within 2 
seconds.  

As stated in Chapter 6, [84, 113, 114] are the dominant fastest grasping algorithms that using 
incomplete data to achieve fast grasps for unknown objects. Among these three fast grasping 
algorithms, [84] is the fastest one using a partial point cloud as input, the average time of 
grasp searching for a target object is 2.352s on a computer with an Intel Xeon E3 CPU   
3.30 GHz. [113] is the second fastest algorithm using a incomplete point cloud as input, the 
average computing time for grasping a target object is 2.7s on an Intel i7 3.5 GHz system 
(four CPU cores) with 16 GB of system memory. [114] can also obtain fast grasp on a partial 
point cloud of the target object, the average computing time is 4.22s on computer (Intel ® 
Core ™ i7-4710MQ CPU 2.50 GHz, 16.0GB RAM). Except for the computing speed, 
another important factor that the grasping community concerns a lot is generality of the 
designed grasping algorithm. The above fast grasping algorithms are specially designed for 
parallel grippers because parallel grippers are easy to control. Overall, our goal in this thesis 
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is to design a faster and more general grasping approach for unknown objects than [84, 113, 
114]. 

To design a fast and general grasping algorithm, differing from Chapter 3, 4 and 5 that utilize 
object features of principal axis, boundary and concavity to achieve fast grasping of unknown 
objects, a grasping algorithm independent on object features is designed in Chapter 6, in 
which the geometric shapes of grippers are simplified into C-shapes. The C-shape is then 
used to match the singe-view partial point cloud of the target object along its normals. After 
that, collision check, local geometry analysis and force balance computation are used to 
evaluate the grasp candidate to select out the final grasp. Experiments of nine common 
household objects on a personal computer (2 cores, Intel i5 2.9 GHz, 8GB RAM) are used to 
evaluate the designed grasping algorithm. Even though the single-view partial point cloud of 
the object has large number of points, our algorithm can quickly work out a suitable grasp 
within 2 seconds. Comparing with [84, 113, 114], our grasping algorithm shows much 
improvement on time efficacy. Considering the computing time and computing ability of 
CPU, the proposed grasping algorithm in Chapter 6 is 20% faster than [84], 42% faster than 
[113] and 95% faster than [114]. As to the success rate of grasping, the proposed grasping 
algorithm in Chapter 6 showed 100% success rate for the tested objects on the desk, all the 
tested objects can be successfully grasped without any unexpected falling out of hands. 
However, after the tested objects are successfully grasped, we did not test the grasping 
performance when the tested objects are lifted up and stay in the air. Meanwhile, the 
proposed C-shape grasping approach is not only applicable for under-actuated grippers used 
in experiments, but also applicable for parallel grippers and dexterous hands, both of which 
are easily formed into C-shapes. In such a way, our designed fast grasping algorithm can be 
widely used by different types of robot hands. 

Overall, this thesis solved the problem of unknown object grasping step by step. Chapter 3, 
Chapter 4 and Chapter 5 proposed fast grasping algorithms that rely on object features of 
principal axis, boundary and concavity. Using object features can definitely accelerate grasp 
searching, but at the cost of generality of the designed algorithms. To achieve a fast and 
general grasping algorithm, Chapter 6 started to analyze from the geometric feature of 
grippers. A C-shape fast grasping algorithm is designed to achieve a fast, secure, stable and 
general grasping algorithm for unknown objects. 

7.2 Discussions 

A. Discussions about machine learning based grasping approaches 

One of the most frequent questions is how our work compares with machine learning based 
grasping approaches. Proposed grasping approaches for unknown objects in this thesis are 
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analytical approaches. In addition to analytical grasping approaches, there is another kind of 
grasping approaches for unknown objects, i.e. machine learning based grasping approaches. 

Machine learning approaches show effectiveness for a wide range of perception problems by 
enabling the perception system to learn a mapping from the feature set to various visual 
properties. [174] is the first literature to show the potential of using learning approaches to 
solve the problem of grasping from vision, in which a learning component is introduced to 
evaluate grasp quality. Richer features and learning methods in recent literature allow robots 
to grasp known objects that are partially occluded [175] or objects in an unknown pose [176] 
as well as totally unknown objects [177] that the robot has not seen before. 

Recent highly citied literature that using machine learning to achieve grasps for unknown 
objects are of high scientific value. The work of [178] focuses on detecting a single grasping 
point from 2D partial-view data, and then heuristic methods are utilized to determine a griper 
pose based on the grasping point. [179] computes a number of features of grasp quality using 
the features of both 2D images and 3D point clouds. Using such features, a supervised 
learning algorithm is applied to estimate which configuration of fingers reflect good grasp. 
[180] and [181] utilize the shape based approximations as bases for learning algorithms to 
directly compute an approaching vector for grasping. [182] simplifies grasp detection as a 
ranking problem of sets of contact points in image space. Supervised learning of Support 
Vector Machines is used to learn grasping concepts that suit well for novel objects. [183] 
represents a grasp as a 2D oriented rectangle in image space. SVM is utilized to detect more 
exactly the gripper pose which should be used for grasping. Due to the availability of 
inexpensive depth sensors, RGB-D data has been a significant research focus in recent years 
for various applications. [184] uses an RGB-D view of a scene containing objects to detect 
robotic grasps. To make detection fast and robust, two deep learning networks are used. The 
first network has fewer features, which can quickly and efficiently prune out unlikely grasp 
candidates. The second network with more features is then used to select suitable grasp for 
final execution. Most recent learning based grasping approach [113] detects grasp poses on a 
single-view partial point cloud of novel objects presented in a cluttered scenario. The 
geometric shape of a parallel gripper is used to generate labeled datasets to train the machine 
learning algorithm. This approach can quickly work out suitable grasp on a single-view 
partial point cloud. 

Overall, grasping approaches based on machine learning shows great potential to solve the 
problem of unknown object grasping. According to the types of inputs, grasping algorithms 
based on machine learning can be divided into three types, i.e., 2D image based, RGB-D data 
and point cloud. Grasping approaches use machine learning on 2D image is not very reliable, 
because it is easily affected by the brightness of light. Due to the availability of inexpensive 
depth sensors, RGB-D data [184] and partial point cloud [113] have been significant research 
trend in recent years for machine learning based grasping approaches of unknown objects. 
However, [184] did not mention the hardware they use and the time efficiency of the grasp 
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algorithm. [113] is a benchmark of fast grasping using machine learning. In which the 
average time spent for grasp detection only takes about 2.7 seconds on an Intel i7 3.5 GHz 
system (four cores) with 16GB of system memory.  

Advantages of using machine learning to solve the problem of unknown object grasping are: 

(a) Adaptive: comparing with analytical methods directly applied on 2D images or 3D point 
clouds, machine learning based grasping approaches are more adaptive, because machine 
learning is actually a classification process using the similarity between the trained data and 
query data. Comparing with analytical approaches proposed in this thesis, such similarity 
leaves the grasping methods based machine learning more adaption. For example, Chapter 3 
utilizes an analytical way to grasp the target unknown object along the principal axis. If the 
principal axis cannot be computed correctly because of occasions resulted in by using a 
single-view partial point cloud, the grasping algorithm may lead to grasp failure. 

(b) Self-learning. Robots can acquire new skills when using by combine different learning 
methods to work together. AlphaGo is the first computer program that uses machine learning 
to defeat a professional human Go player, which shed light on using machine learning to 
solve the problem of unknown object grasping. In the future, robots may perform better 
grasps for unknown objects than humans. Using analytical grasping approaches is impossible 
to achieve such a goal because no new skills can be acquired by robots. 

Disadvantages of using machine learning on unknown object grasping are:  

(a) Hard to design good features. The aforementioned approaches based on machine learning 
require a significant degree of hand-engineering in the form of designing good input features, 
which is very trivial. For example, 4032 hand-crafted features are used for the learning 
network in [184]. More importantly, designed features valid for one kind of objects or one 
type of robot hand may be invalid for other objects or other robot hands. Using the proposed 
analytic approaches in thesis is much easier than deigning trivial features. 

(b) Difficult to be general at present. For the time being, it is hard for a specific machine 
learning to generalize its skill to different situations to determine suitable grasps for various 
unknown objects. For example, the learned skills from one grasping algorithm work for 
bottles, but not for cups. The robot needs to relearn by trial-and-error to autonomously 
acquire new skills, which can adapt the learning algorithms to suit various grasp occasions. 
To enable robots acquire versatile grasping skills, a learning architecture that can combine 
different learning approaches is necessary. Such architecture can enable different learning 
methods to work together. However, there is not yet such a learning architecture, and it is 
very difficult to build such architecture. The analytical general grasping approaches in 
Chapter 6 is useful before the future versatile grasping approaches based on self-learning 
appears.  
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To sum up, according to current literature, it is hard to judge which is better between machine 
learning based grasping approaches and analytical grasping methods. But in the future, 
unknown object grasping based on machine learning is the scientific direction of the 
community of grasping field. Future grasping approaches based on machine learning may 
have better grasping ability than humans if the aforementioned architecture that combines 
different learning approaches becomes reality. 

B. Discussions about different approaches to achieve force closure grasps 

How to choose suitable approach to achieve force closure grasp is one of the frequent 
questions for users of grasping algorithms. According to existing literature, there are three 
types of methods that can achieve force closure grasp, i.e. analytical simulation approaches, 
tactile sensor based approaches and approximate force closure approaches. The proposed 
approaches of achieving force closure can be included in approximate force closure 
approaches. 

(a) Analytical simulation approaches: When the friction coefficient of the target object is 
known and the full 3D model of the target object is available, GraspIt! and Opengrasp are 
excellent analytical tools to simulate suitable grasps for unknown objects. Through 
analytically simulating contact force and torque that the robot hand imposes on the target 
object, the robot can obtain final grasp with superb force closure. However, the time 
efficiency of using such simulation tools is not apparent. Time spent for grasp simulation 
varies from several minutes to several hours depending on the complexity of target objects 
and the complexity of robot hands.  

(b) Tactile sensor based approaches: When tactile sensors are available, continuous force and 
torque feedback from tactile sensors can help to real-timely adjust the action of fingers and 
the force imposed on the target object. In such a way, favrable force closure grasps can be 
obtained. However, such continuous adjustment under the help of unceasing tactile feedback 
is significantly time-consuming. Meanwhile, financial cost for tactile sensors are pretty 
higher than using analytical simulation tools. 

(c) Approximate force closure approaches: when the above two methods are not applicable, 
for example, using partial point cloud and a parallel gripper without tactile sensors to achieve 
force closure grasps, approximate force closure approaches are the best tool in such a 
situation. Approximate force closure approaches including using parallel lines, employing 
parallel planes and untilizing the angle based approximate force closure (proposed in this 
thesis) are valuable to try. The advantage of using such kind of approximate force closure 
approaches is that they are usually with high time efficiency. However, using approximate 
force closure approaches may introcude grasp uncertainty to thus lead to grasp failure. 

In summary, analytical simulation approaches, tactile sensor based approaches and 
approximate force closure approaches have their own merits and drawbacks. Users need to 
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make choice according to their grasp occasions. If the friction coefficient and the full 3D 
model are available, analytical simulation approaches are better, however, at the cost of time 
efficiency. If the tactile sensors are availbe, tactile sensor based approaches are better, 
however, also at the cost of time efficiency. If the above two approaches are not applicable, 
approximate force closure approaches can be utilized, however, at the risk of grasp 
uncertainty. 

C. Discussions about different approaches to deal with occlusions. 

When using partial point cloud to accelerate searching process of unknown object grasping, 
there are two commonly used methods to deal with occlusions, i.e. tactile sensor based 
exploration and active vision based exploration. These two methods are absolutely safe ways 
to detect the unseen parts of the target objects, but at the cost of time efficiency. In this thesis, 
we propose two approaches to solve the problem of occlusions, i.e. virtual exploration in 
Chapter 3 and manmade unseen part in Chapter 6. Here, we will discuss the merits and 
drawbacks of different approaches to deal with occlusions. 

(a) Tactile sensor based exploration. [185] utilizes feedbacks from tactile sensor arrays to 
explore the surface of unknown objects. A tactile sensor pad with 16×16 tactels is mounted at 
the end of a 7-dof Kuka lightweight robot arm. A control framework for tactile servoing is 
designed to drive the robot to explore the surface of unknown objects. This kind of 
exploration is with high scientific value, especially for occasions that vision based 
exploration are not applicable, for example, an object in the fridge. However, the financial 
cost of tactile sensors is high and the time efficiency for tactile exploration is low. 

(b) Vision based exploration. In [93], a camera is installed at the end of the robot arm that 
will move around the target unknown object. Continuous inputs from the camera are used to 
explore the unseen part of the target object. Such kind of vision based explorations makes full 
use of the arm’s ability to move around the target object. Actually, vision based exploration 
confirms well with human’s action. If humans cannot see the backside of the object, humans 
usually move around it to explore it. However, this kind of exploration is similar as the 
construction of full 3D model of the object, which is time-consuming. 

(c) Virtual exploration and manmade unseen part. Virtual exploration in this thesis is actually 
to constrain the grasp configurations on the seen part of the target unknown object. In such a 
way, the security of the final executable grasp is ensured. Comparing with genuine vision 
exploration, virtual exploration in this thesis is with less flexibility, but high time efficiency. 
Manmade unseen part means filling the unseen parts with artificial obstacles. In such a way, 
the robot cannot grasp the target object from the side direction or back direction. It is a quite 
safe way to deal with occlusions, but at the cost of ignoring many potential grasps. 

To sum up, the above three approaches have their own advantages and drawbacks. Users need 
to make choice depdent on their own grasping conditions.  
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D. Success rate of the proposed grasping approaches 

Unfortunately, we could not test the success rate of the proposed grasping approaches 
because of malfunction of our gripper. According to current literature, the most acceptable 
way to evaluate whether a grasp is successful or not is as following steps:  

(a) Successfully reach the target object. The robot arm must move to the desired grasping 
location without hitting the target object and obstacles. The work of arm movement can be 
done using motion planners to do path planning for robots. In order to enable users quickly 
select suitable motion planners for their grasping purpose, a profound comparison of all 
available motion planners in MoveIt! is conducted using two benchmarks in Chapter 6. 

(b) Successfully grasp the target object. After the robot hand arrives at the grasping point, 
robot hand will close to grasp the target object, which is the most important part to see the 
grasp is successful or not. For example, during the execution of the grasp in Figure 3.7, forces 
that fingers impose on the target object will lead to movement of the object. If such 
movement is magnitude, the target object may fall out of the robot hand, which will lead to 
grasp failure. 

(c) Successfully pick the target object up and hold it for a period. For example, a grasp is 
judged to be successful in [183] if the robot can lift a tested object up and hold it for 30 
seconds. 

Our proposed grasping approaches of unknown objects present excellent performance for 
reaching and grasping target object. Unfortunately, we did not successfully lift the tested 
objects and hold them for a period due to the problem of our gripper. The maximum grasping 
force of our gripper is too weak to lift the tested objects. That is why we did not include the 
success rate of our grasping algorithms. We strongly suggest future researchers to strictly 
follow the aforementioned three steps to test the success rate of their grasping algorithms. 
The above three steps are of significant importance to test the success rate of a grasping 
algorithm. 

7.3 Future directions 

All proposed grasping approaches in this thesis are analytical grasping approaches. As 
discussed in the section of 7.2, for the time being, it is hard to judge which is better between 
analytical grasping methods and machine learning based grasping approaches. However, in 
the future, we firmly believe that unknown object grasping based on machine learning is the 
scientific direction of the community of grasping field.  

A. Short-term future direction: Integration of multiple geometric features 
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Existing machine learning based grasping approaches utilizing simple geometric features 
suffer from a limited generality. It is hard for a specific machine learning based grasping 
approach that utilizes a simple geometric feature to generalize its skill to different situations 
to determine a suitable grasp for various unknown objects. For example, machine learning 
based grasping approach using boundary features may not suit unknown objects with 
apparent concavity feature. Therefore, multiple cues of geometric features are predicted to be 
integrated to achieve more robust grasping approaches for unknown objects in the future. 

B. Long-term future direction: Architecture for self-learning 

In the future, the robot need learn by trial-and-error to autonomously acquire new skills to 
grasp unknown objects, which is the long-term scientific direction of machine learning based 
grasping. For example, the learned skill from one grasping algorithm works for cups, but not 
for bottles, then the robot needs to relearn to obtain new skills. Autonomous acquiring of new 
skills can adapt the learning algorithms to suit various grasp occasions. To enable robots 
acquire versatile grasping skills, a learning architecture that can combine different learning 
approaches is in crucial demand. Such architecture can enable different learning methods to 
work together to provide better grasping solutions for unknown objects. 
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Appendix 
Comparison of motion planners in Chapter 6 is conducted by Jonathan Meijer under my 
supervision. In order to make it easier for readers to quickly choose suitable motion 
planner(s), two conference papers are included in the appendix, in which 23 motion planners 
available in MoveIt! are compared for the purpose of grasp execution.  

 
[1] Jonathan Meijer, Qujiang Lei, Martijn Wisse, “An Empirical Study of Single-Query 

Motion Planning for Grasp Execution”, 2017 IEEE International Conference on 
Advanced Intelligent Mechatronic (AIM 2017), Pages: 1234-1241, Munich, Germany. 

 
[2] Jonathan Meijer, Qujiang Lei, Martijn Wisse, “Performance Study of Single-Query 

Motion Planning for Grasp Execution Using Various Manipulators”, 2017 18th 
International Conference on Advanced Robotics (ICAR 2017), Pages: 450-457, Hong 
Kong. 
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An Empirical Study of Single-Query Motion
Planning for Grasp Execution

Jonathan Meijer, Qujiang Lei, Martijn Wisse

Abstract—This paper identifies high-performing OMPL plan-
ners, available in MoveIt!, when carrying out several grasp
executions with a UR5 manipulator. Simultaneously, this paper
presents useful benchmark data. The single-query performance
of the planners was measured by means of solved runs, computing
time and path length. Based on the results, recommendations are
made for planner choice that shows high performance.

I. INTRODUCTION

MoveIt! [1] is widely used for robot manipulation within
ROS (Robot Operating System). MoveIt! comes with the Open
Motion Planning Library (OMPL) [2] plugin. This lets the user
easily choose state-of-the-art sampling-based motion planners
from the OMPL library. Currently, 23 motion planning algo-
rithms of OMPL are configured to use in MoveIt!. Recommen-
dations for picking a motion planning algorithm is not given.
The Planner Arena [3] is created to help users determine which
planner suits a given motion planning problem. However, none
of the problems resemble the use of a manipulator performing
a grasp execution.

This paper aims to provide insight in choosing the right
planner(s) for performing grasp executions by conducting an
empirical study on the available motion planners of OMPL
in MoveIt!. We choose to only investigate the single-query
performance of the available sampling-based motion planners,
included multi-query planners are being used as single-query
planners. The performance of such planners depends on the
configuration space of the robot, in particular, motion planning
through narrow passages can cause issues [4]. For this paper,
four grasp execution motions are defined in the MoveIt!
Benchmark environment to discover the behavior of the plan-
ners. The manipulator that will be used in the benchmarking
is the UR5 robot due to its universal use. To resemble the
real-world grasping problem, we fitted the manipulator with a
virtual camera and gripper.

The performance of the planners is measured in terms of
solved runs, computing time and path length. Solved runs can
be noted as a percentage of the total motion planning runs that
finish correctly, barplots are used to visualize the difference.
For every run, the total computing time and path length can
change due to the randomization in sampling-based motion
planners. Boxplots and tables are used to analyze the planners

*The work leading to these results has received funding from the European
Communitys Seventh Framework Programme (FP7/2007-2013) under grant
agreement n 609206.

All authors are with the TU Delft Robotics Institute, Delft University of
Technology, 2628 CD, Delft, The Netherlands. Email address of Jonathan
Meijer is J.G.J.Meijer@student.tudelft.nl. Email addresses of Qujiang Lei and
Martijn Wisse are q.lei, m.wisse@tudelft.nl.

TABLE I: Summary of available planners of OMPL in MoveIt!
Planner name Optimizing

planners
Time-invariant
goal

SBL [5] X
EST [6] X
BiEST [6] X
ProjEST [6] X
KPIECE [7] X
BKPIECE [7] X
LBKPIECE [7][8] X
RRT [9] X
RRTConnect [10] X
PDST [11] X
STRIDE [12] X
PRM [13]
LazyPRM [8]
RRTstar [14] X
PRMstar [13][14] X
LazyPRMstar
[8][14]

X

FMT [15] X X
BFMT [16] X X
LBTRRT [17] X X
TRRT [18] X X
BiTRRT [19] X X
SPARS [20] X
SPARStwo [21] X

with respect to computing time and path length. Performance
depends on the users need, right planners for one performance
measure can be wrong planners for a different performance
measure. By looking at each measure, we can discuss on the
preferred planner choice.

Through a quick survey of the available planners of OMPL
in MoveIt!, several observations can be made on how they
handle motion problems. The comparison (Tab. I) shows that
the promise of using FMT, BFMT, LBTRRT, TRRT and
BiTRRT. These planners have an optimizing step and stop
once an optimized path is found.

II. BACKGROUND

A. Software

The open-source Robot Operation System is a suite of
software libraries that help create robot applications. ROS
was created to encourage collaborative robotics software de-
velopment. MoveIt! serves as a framework in ROS to help
with the manipulation of robotic hardware. Within MoveIt!
several motion planner libraries can be added to perform
motion planning for the specified robot. OMPL is a well-
integrated motion planner library and is the default library
for MoveIt!. It houses state-of-the-art sampling-based motion
planners. OMPL itself only implements the basic primitives of
sampling-based motion planning. MoveIt! configures OMPL
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and provides the back-end for OMPL to work with motion
planning problems.

When executed through MoveIt!, OMPL creates a path to
solve the motion planning problem. By default, OMPL tries
to perform path simplification. These are routines that shorten
the path. The smoothness of the path may not be affected by
this simplification.

B. Overview planning algorithms

Sampling-based motion planners are proven to be proba-
bilistically complete [13], which implicates that the proba-
bility of not finding a feasible path in an unbounded setting
approaches zero. For this reason, sampling-based motion plan-
ners are widely used to find feasible paths in high-dimensional
and geometrically constraint environments. Optimizing plan-
ners can refrain from potential high-cost paths and rough
motions [14]. However, computational effort for finding an
optimized path is increased.

Among the 23 motion planners in Tab. I, six can be consid-
ered as multi-query planning methods. A common multi-query
planning method is the Probabilistic RoadMap (PRM) [13].
The planner attempts to find a path in a constructed roadmap.
The construction of the roadmap is executed by sampling valid
nodes (configuration states) in the configuration space. These
nodes are connected to other nearby nodes by edges (path
segments). In OMPL, the roadmap construction is finished
when a certain time limit is reached. Afterward, a simple graph
search (query) can be performed on the roadmap to find a path
between the start and goal node. Because the algorithm covers
the total configuration space with a roadmap, multiple queries
can be started to find a path with different a start and goal
node.

In MoveIt!, three variants of the PRM planner are available
for use. The LazyPRM [8] planner initially does not check for
valid states when sampling nodes for roadmap construction.
Once a path has been found from between start and goal node,
collision checking is performed along the nodes and edges
of the roadmap. Invalid nodes and edges are removed and a
new graph search is attempted. This process is repeated until
a feasible path is found. PRMstar [14] is the asymptotically
optimal variant of the PRM planner. It rewires nodes to other
near nodes if this is beneficial to the cost towards the node.
An asymptotically optimal path is found if there is a great
number of nodes. LazyPRMstar [14] combines the LazyPRM
and PRMstar.

In addition to the PRM planner and its variants, OMPL
has two more multi-query planners, SPARS and SPARStwo.
They are similar to PRMstar but adds another sparse subgraph.
This subgraph is an asymptotically optimal roadmap that
houses nodes which resemble multiple nodes in a dense graph.
Therefore less computing memory is needed to store the
asymptotically optimal roadmap. SPARStwo is different since
it has an infinite iteration loop.

The remaining 17 planners in Tab. I are considered as
single-query planning methods. These create a roadmap every
time a new planning query has to be determined. A common

single-query planner is the Rapidly Exploring Random Tree
(RRT) method [9]. It grows one tree (mono-directional) from
the initial configuration state in the direction of the unexplored
areas of the bounded free space. This is realized by randomly
sampling nodes in the free space, sampled nodes that can be
are within a certain distance of tree nodes are added to the tree
by edges. The process of adding nodes and edges is repeated
until the tree reaches the goal node. The goal bias parameter
in this planner specifies the probability of choosing the goal
configuration as a sample rather than a random sample.

The RRTConnect method [10] is a bi-directional version
of the RRT method, meaning that two trees are grown. Two
processes of RRT are started, one in the start node and one
in the goal node. At every iteration or edge addition, it is
checked whether the trees can be connected to each other.
A path that solves the motion planning problem, is found if
these trees can be connected. The near-optimal variant of RRT,
RRTstar [14], checks whether the new sampled node can be
connected to other near nodes so that the state space is more
locally refined. The RRTstar removes the connections of the
new sample that are not beneficial towards the cost of the path,
like PRMstar. When the number of nodes is big enough, it can
result in an asymptotically optimal path from the start-to-goal
node. As shown in Tab. I, the RRTstar goal is time-invariant.
It keeps trying to optimize the trees by adding new nodes until
specified time limit is met.

Lower Bound Tree-RRT (LBT-RRT) [17] is an asymptoti-
cally optimal planner and uses a so-called lower bound graph
which is an auxiliary graph. To maintain the tree, a similar
method as RRTstar is used. Transition-based RRT or TRRT
[18] is a combination of the RRT method and a stochastic
optimization method for global minima. It performs transition
tests to accept new states to the tree. The algorithm computes
an optimized path that is not tied to a time limit, unlike
RRTstar. The Bi-TRRT [19] is a bi-directional version of this
planner.

The EST method [6] stands for Expansive Space Trees.
Other than RRT, EST tries to determine the direction of the
tree by looking at neighboring nodes. The tree will grow in
the direction of the less explored space. Bi-directional EST
(BiEST), based on [6], grows two trees like RRTConnect.
Projection EST (ProjEST), also based on [6], detects the less
explored area of the configuration space by using a grid. This
grid serves as a projection of the state space. Single-query Bi-
directional probabilistic roadmap planner with Lazy collision
checking, also called SBL, grows two trees. The trees expand
in the same manner as EST. Due to its lazy collision checking
it will determine if a path is valid after the two trees are
connected. It deletes nodes and edges of the path that are not
valid, similar to LazyPRM.

KPIECE (Kinodynamic motion Planning by Interior-
Exterior Cell Exploration) [7] is a tree-based planner that uses
layers of discretization to help estimate the coverage of the
state space. The OMPL implementation only uses one layer.
OMPL incorporates a bi-directional variant called BKPIECE
and a variant which incorporates lazy collision checking, this

144



is the LBKPIECE.
Fast Marching Tree (FMT) [15] is an asymptotically optimal

planner which marches a tree forward in the cost-to-come
space on a specified amount of samples. The BFMT [16]
planner is a bi-directional variant of this planner.

PDST (Path-Directed Subdivision Tree) [11] represents
samples as path segments instead of configuration states. It
uses non-uniform subdivisions to explore the state space.

STRIDE (Search Tree with Resolution Independent Density
Estimation) [12] uses a Geometric Nearneighbor Access Tree
(GNAT) to sample the density of the configuration space. This
information helps to guide the planner into the less explored
area.

III. PROBLEM FORMULATION

The available planners consist of non-optimizing and opti-
mizing planners. The problem formulation follows the work
of Karaman and Frazzoli [14]. Non-optimizing planners at-
tempt to find a feasible path in the bounded d-dimensional
configuration space C = [0, 1]d. The free configuration space
is defined by Cfree = cl(C \ Cobs), in which cl(·) denotes the
closure of a set and in which Cobs denotes the obstacle space.
A path p is called feasible when:

p(0) = xinit, p(1) = xgoal (1)
p(x) ∈ Cfree for all x ∈ [0, 1]

Optimizing planners that are given a motion planning prob-
lem (Cfree, xinit, xgoal) and a cost function c, find a optimized
path p∗ such that:

c(p∗) = min{c(p) : p is feasible } (2)

Problem implementation. Non-optimizing planners are
asked to produce feasible paths with a maximum computing
time of 3s and 10s. Optimizing planners are asked to produce
an optimized path within a maximum computing time of 3s
and 10s. Path simplification by OMPL is turned on.

Performance metric. Solved runs, computing time and path
length are used as metric in our experiments. We analyze the
measures individually to provide the best performing planners
in each one of the measures. Solved runs is analyzed in terms
of percentage of total runs of the planner resulting in feasible
paths, higher performance is considered for higher solved runs.
Total computing time is measured for the time it takes for
planners to produce feasible or optimized paths with path
simplification, a shorter time is considered as higher perfor-
mance. Moreover, planners with a small standard deviation
from the average computing time and small interquartile range
are considered as better performance. Path length is measured
by the length of the sum of motions for a produced path.
Shorter lengths are considered as higher performance. Again,
planners with a small standard deviation from the average path
length and small interquartile range are considered as better
performance.

Parameters. In MoveIt! and OMPL parameters can be set
to increase the performance of the planners. To choose them,

Fig. 1: Benchmark 1: Grasp between obstacles

Fig. 2: Benchmark 2: Long motion

we conducted an iterative process in which we investigated the
different parameter settings for each planner by increasing and
decreasing the default settings by a factor of two. Parameter
tuning was conducted again in the direction performance
increase was noticed until no better performance was achieved.
These new parameter values were then set before conducting
the benchmarks.

IV. DEFINED MOTION PLANNING PROBLEMS

Four grasp execution motions have been defined to measure
the performance of the planners.

A. Grasp between obstacles

Benchmark 1 has its end-effector goal placed in a such
a way that the manipulator has to move through a narrow
passage, shown in Fig. 1. This benchmark uses an environment
that resembles a table with obstacles. To be able to move
through the narrow passage the UR5 robot needs to be in
a specific configuration due to its geometry, this decreases the
free configuration space near the goal configuration.

B. Simple motion

Benchmark 2 has its end-effector goal placed at the other
side of the scene, shown in Fig. 2. It operates in the same
environment as benchmark 1. The end-effector has to be dis-
placed 1.5m in order to reach the goal. This motion planning
problem can be solved by mainly actuating the shoulder lift
joint. To actuate less joints, using optimizing planners could
be beneficial.

C. Place motion

In benchmark 3, initial end-effector position is located at
the end of a shelf box, shown in Fig. 3a. This benchmark
uses an environment that houses a simplified shelf box and
obstacles placed on a flat surface. The goal position is the
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(a) Place motion (b) Pick motion

Fig. 3: Benchmark 3 and 4: a, b respectively

initial configuration used in benchmark 1 and 2 (orange state
in figure). The motion problem starts in a narrow passage
(transparent state in figure), the goal is situated in a less
constrained space.

D. Pick motion

Benchmark 4 is attempting to resemble a picking motion
from a narrow shelf box, shown in Fig. 3b. The environment
is identical to benchmark 3. The goal of the problem is to be
in a specific gripper orientation at the end of this shelf. The
planner will have to produce a motion plan with high accuracy
to reach the end of the shelf. The motion problem starts in a
less constrained space (transparent state in figure), the goal is
situated in a narrow passage (orange state in figure).

V. PARAMETER SELECTION

Parameters can be set to improve the performance of the
planners. In this section, the parameter selection is presented.

While conducting parameter selections for LBTRRT it was
found that this planner is behaving unreliable in our setup.
We tested all parameter combinations for this planner when
conducting various motion planning which resulted in crashes.
So we are unable to provide benchmark data for this particular
planner.

A. Global planner parameter

There is one parameter that affects all planners. This is
the distance parameter longest valid segment fraction. The
parameter is called when the planner checks for collisions
between two nodes. Collision detection is not checked for
the motion if the distance between the nodes is within the
parameter value. In narrow passages and corners, this param-
eter can be critical. The parameter is set in meters and by
default has a value of 0.005m. After conducting experiments
with lower values, it was found that reducing this parameter
did not have an immediate effect on the solved runs for the
various benchmark problems.

B. Planner specific parameters

The majority of planners (20 of 23) have their own param-
eters. For the benchmarks, each parameter was set to values
that benefit one or more performance measures, these values
are noted in Tab. II.

C. Robot

The UR5 robot that will be used has two joint limit settings
for each joint, π and 2π. Validating by means of simple motion
planning experiments it was found that setting the joint limits
to π resulted in favorable performance for all the performance
measures.

VI. RESULTS

A. Methodology

The benchmarking experiments are performed using one
thread on a system with an Intel i5 2.70GHz processor and
8Gb of memory. To give reliable data on the solved runs,
computing time and path length, each algorithm was run 30
times for the given motion planning problem. The algorithms
were given a maximum computing time of 3s and 10s to show
the effect of time on the algorithms for which the goal is not
time-invariant (shown in Tab. I). The times are kept low since
for most robotics applications results are required quickly.
Specifically for grasping approaches that try to find grasps
in a short amount of time. Planners, where path simplification
was not performed by OMPL, have been marked with a *
behind the planner name.

B. Plots and Tables

Results of benchmark 1 are shown in Fig. 4 and Tab. III.
The motion planning problem affects planners EST, RRT,
RRTstar, TRRT and SPARStwo since they were not able to
solve all the runs with a percentage higher than 80% with a
maximum computing time of 3s and 10s. With exception of
SPARStwo, these are mono-directional planners. SBL, BiEST,
KPIECE, BKPIECE and LBKPIECE compute valid paths in
a computing time shorter than 0.5s. RRTConnect is the fastest
planner and BiTRRT is the fastest optimizing planner. SBL
has the lowest average path length with a small standard
deviation. For solved runs higher than 80%, planners SBL,
KPIECE, and LBKPIECE are able to plan paths of similar
lengths. For optimizing planners, BiTRRT has the lowest
median path length. TRRT has the lowest average path length
and standard deviation. Selecting a higher limit for computing
time showed shorter paths for planners RRTstar, PRMstar and
LazyPRMstar, due to the optimization step. Path simplification
contributes to shorter paths.

Results of benchmark 2 are shown in Fig. 5 and Tab. IV.
RRTstar, TRRT and SPARStwo have lower solved runs com-
pared to the other planner algorithms. SBL, BiEST, BKPIECE,
LBKPIECE, RRTConnect and BiTRRT compute paths in
under 0.1s, all being bi-directional planners. BiTRRT is the
fastest optimizing planner. SBL and BiTRRT have the shortest
paths. The planners that keep sampling the configuration space
or optimizing the path until the maximum computing time is
reached see improved performance with respect to path length.
However, compared to non-optimizing planners

Results of benchmark 3 are shown in Fig. 6 and Tab. V.
None of the multi-query planners are able to find feasible
paths. Increased computing effort is needed to cover the total
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TABLE II: Specified planner parameters
SBL EST BiEST ProjEST RRT RRTConnect PRM LazyPRM RRTstar
range: .3125 range: .625 range: 0 range: .625 range: 0 range: .3125 max n.n.: 10 range: .3125 range: 0

goal bias: .05 goal bias: .05 goal bias: .05 goal bias: .05
delay c.c.: 0

KPIECE BKPIECE LBKPIECE STRIDE FMT BFMT TRRT BiTRRT SPARS SPARStwo
range: .625 range: .3125 range: .3125 range: .625 samples: 1000 samples: 1000 range: 1.25 range: 1.25 str. factor: 2.6 str. factor: 3
goal bias: .05 border frac.: .9 border frac.: .9 goal bias: .05 rad. mult.: 1.05 rad. mult.: 1.05 goal bias: .05 temp c. fact.: .2 sp. d. frac.: .25 sp. d. frac.: .25
border frac.: .9 failed e.s.f.: .5 min.v.p.frac.: .5 use proj.dist.: 0 nearest k: 1 nearest k: 1 max s. f.: 10 init temp.: 50 d. d. frac.: .001 d. d. frac.: .001
failed e.s.f.: .5 min.v.p.frac.: .5 degree: 8 cache cc: 1 balanced: 1 temp c. fact.: 2 f. threshold: 0 max fails: 1000 max fails: 5000
min.v.p.frac.: .5 max degree: 12 heuristics: 1 optimality: 0 m.temp.: 1e-10 f. n. ratio: .1

min degree: 6 extended fmt: 1 cache cc: 1 i.temp.: 1e-6 cost.thres.: 5e4
max p.p. leaf: 3 heuristics: 1 f. threshold: 0
est. dim.: 0 extended fmt: 1 f.NodeRatio: .1
min.v.p.frac.: .1 k constant: 0

Fig. 4: Results for benchmark 1 for 3s and 10s maximum computing time. a. Solved runs (higher is better), b. Computing time (lower is better, small
interquartile range is better), c. Path length (lower is better, small interquartile range is better).

free configuration space with these planners. Of the single-
query planners BiEST, RRT, RRTstar and FMT are not able
to reach a high level of solved runs. Indicating that these
planners are not fast enough to have a proper coverage of the
free configuration space. BKPIECE and RRTConnect reach
100% solved runs for 3s maximum computing time. SBL, EST,
ProjEST, KPIECE, LBKPIECE, PDST, STRIDE, TRRT and
BiTRRT perform better with respect to solved runs when the

maximum computing time is set to 10s. RRTConnect is the
fastest planner, TRRT is the fastest optimizing planner with
solved runs higher than 50%. With exception of RRTConnect,
the single-directional planner variants are able to plan a shorter
path length compared to the bi-directional planner variant.
These planners propagate a path out of a narrow passage and
with the use of goal bias shorter paths can be obtained.

Results of benchmark 4 are shown in Fig. 7 and Tab. VI.
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Fig. 5: Results for benchmark 2 for 3s and 10s maximum computing time. a. Solved runs (higher is better), b. Computing time (lower is better, small
interquartile range is better), c. Path length (lower is better, small interquartile range is better).

5 of the 22 planners were able to compute paths with solved
runs higher than 50%. These are all bi-directional planners,
motion planning with these planners are also started in the
goal configuration. These planners provide high solved runs
for max 10s computing time. KPIECE and RRTConnect are
the fastest performing planners. BiTRRT has the shortest path
planning length. RRTConnect shows significant performance
increase for path length with a higher maximum computing
time.

C. Discussion
From the results, observations are made and discussed.
Solved runs. The planners RRTstar, TRRT and SPARStwo

show consistent lower solved runs for all the benchmarks,
making them less desirable to use for the grasp executions
we presented. SBL, LBKPIECE and BiTRRT have high
solved runs for a maximum computing time of 10s in all
benchmarks. When high solved runs has to be achieved in a
shorter time, BKPIECE and RRTConnect are the best choices
when performing varied grasp executions.

TABLE III: Average values for benchmark 1
Planner name Max. 3s computing time Max. 10s computing time

Time (s) Path length Time (s) Path length
SBL 0.29 (0.11) 10.07 (0.74) 0.37 (0.18) 9.90 (0.63)
EST 2.18 (0.31) 10.58 (0.77) 4.65 (2.55) 11.03 (1.01)
BiEST 0.21 (0.10) 14.81 (5.19) 0.18 (0.07) 13.32 (3.14)
ProjEST 1.83 (0.86) 11.82 (1.81) 2.37 (1.57) 12.13 (2.19)
KPIECE 0.20 (0.09) 10.89 (1.80) 0.22 (0.10) 10.55 (1.28)
BKPIECE 0.42 (0.21) 10.94 (1.86) 0.42 (0.21) 10.56 (1.82)
LBKPIECE 0.30 (0.08) 10.41 (1.53) 0.26 (0.11) 12.30 (7.16)
RRT 0.54 (0.84) 11.93 (1.41) 1.48 (2.71) 11.62 (1.14)
RRTConnect 0.11 (0.08) 12.52 (15.68) 0.09 (0.03) 11.89 (9.10)
PDST 1.37 (0.87) 11.96 (2.35) 1.68 (1.61) 12.37 (2.15)
STRIDE 0.59 (0.57) 11.97 (5.35) 1.12 (1.58) 11.20 (2.24)
PRM* 3.01 (0.01) 15.60 (2.26) 10.01 (0.01) 14.49 (1.65)
LazyPRM 3.02 (0.00) 12.13 (1.17) 10.02 (0.01) 12.48 (1.96)
RRTstar* 3.01 (0.01) 12.76 (0.93) 10.02 (0.02) 11.47 (1.03)
PRMstar* 3.02 (0.01) 14.43 (1.90) 10.02 (0.01) 12.99 (1.67)
LazyPRMstar 3.02 (0.00) 11.53 (1.23) 10.03 (0.01) 10.95 (1.59)
FMT 2.07 (0.45) 10.49 (0.99) 1.78 (0.21) 10.33 (0.64)
BFMT 1.17 (0.36) 11.74 (2.65) 0.89 (0.09) 10.88 (1.06)
TRRT 0.57 (0.58) 10.21 (0.52) 2.41 (2.82) 10.12 (0.45)
BiTRRT 0.13 (0.08) 15.56 (16.75) 0.13 (0.10) 11.03 (5.22)
SPARS* 3.04 (0.04) 23.63 (4.74) 10.07 (0.07) 23.87 (5.57)
SPARStwo* 3.00 (0.00) 22.98 (3.97) 10.00 (0.00) 26.34 (10.01)
Standard deviation in parentheses
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TABLE IV: Average values for benchmark 2
Planner name Max. 3s computing time Max. 10s computing time

Time (s) Path length Time (s) Path length
SBL 0.05 (0.01) 9.48 (7.86) 0.04 (0.01) 7.76 (1.76)
EST 0.20 (0.13) 9.53 (2.58) 0.16 (0.11) 9.38 (4.00)
BiEST 0.09 (0.04) 11.36 (1.96) 0.08 (0.03) 12.71 (3.57)
ProjEST 0.18 (0.11) 9.86 (2.51) 0.15 (0.09) 8.99 (1.32)
KPIECE 0.18 (0.09) 9.10 (1.50) 0.14 (0.08) 9.49 (1.68)
BKPIECE 0.11 (0.11) 9.71 (5.83) 0.13 (0.16) 8.17 (2.79)
LBKPIECE 0.09 (0.06) 9.33 (5.53) 0.08 (0.03) 9.23 (3.80)
RRT 0.53 (0.62) 12.03 (7.08) 0.44 (1.10) 10.15 (1.99)
RRTConnect 0.09 (0.04) 13.90 (10.39) 0.06 (0.02) 9.65 (4.05)
PDST 0.24 (0.16) 11.71 (3.56) 0.24 (0.16) 12.27 (4.00)
STRIDE 0.19 (0.21) 9.42 (3.26) 0.14 (0.09) 8.98 (1.17)
PRM* 3.02 (0.01) 12.91 (3.41) 10.01 (0.00) 11.56 (1.56)
LazyPRM 3.02 (0.00) 9.80 (1.88) 10.02 (0.00) 9.58 (1.27)
RRTstar 3.01 (0.02) 8.78 (0.00) 10.01 (0.01) 8.21 (0.94)
PRMstar* 3.03 (0.01) 12.30 (1.81) 10.02 (0.01) 11.11 (1.65)
LazyPRMstar 3.02 (0.00) 8.62 (0.98) 10.02 (0.01) 7.88 (0.72)
FMT 1.23 (0.16) 9.64 (6.44) 1.10 (0.15) 7.92 (1.15)
BFMT 0.79 (0.06) 8.24 (0.69) 0.73 (0.06) 8.35 (1.64)
TRRT 0.78 (1.00) 7.82 (0.91) 2.05 (2.43) 8.55 (2.17)
BiTRRT 0.08 (0.02) 8.39 (3.00) 0.07 (0.02) 7.75 (1.11)
SPARS* 3.05 (0.04) 19.38 (8.05) 10.07 (0.06) 16.22 (5.38)
SPARStwo* 3.00 (0.01) 14.98 (5.37) 10.00 (0.00) 20.10 (9.43)
Standard deviation in parentheses

TABLE V: Average values for benchmark 3
Planner name Max. 3s computing time Max. 10s computing time

Time (s) Path length Time (s) Path length
SBL 1.54 (0.69) 13.72 (5.89) 2.06 (1.56) 15.02 (6.16)
EST 1.06 (0.64) 12.91 (2.14) 1.03 (0.79) 12.84 (1.89)
BiEST 0.11 (0.00) 16.57 (0.00) 3.51 (3.03) 16.99 (4.03)
ProjEST 0.98 (0.74) 13.26 (2.44) 1.21 (1.03) 13.02 (1.87)
KPIECE 1.15 (0.86) 13.31 (3.07) 1.00 (0.90) 13.47 (6.05)
BKPIECE 1.32 (0.78) 21.42 (31.12) 1.19 (0.87) 17.10 (7.24)
LBKPIECE 1.50 (0.88) 14.37 (3.13) 1.34 (1.28) 14.82 (4.58)
RRT* - (-) - (-) 3.82 (2.87) 17.20 (2.46)
RRTConnect 0.62 (0.23) 16.13 (13.07) 0.68 (0.28) 14.17 (3.69)
PDST 1.27 (0.71) 13.21 (2.75) 2.07 (1.77) 14.96 (5.60)
STRIDE 0.89 (0.59) 14.76 (4.44) 1.08 (0.82) 13.00 (1.87)
RRTstar* 3.00 (0.00) 18.06 (0.00) 10.01 (0.00) 17.64 (0.00)
FMT 2.91 (0.15) 14.99 (3.77) 6.57 (1.23) 13.47 (0.03)
TRRT 0.90 (0.66) 12.47 (3.10) 1.74 (1.92) 13.07 (4.57)
BiTRRT 1.74 (0.62) 12.55 (2.59) 2.65 (1.63) 16.12 (10.42)
Standard deviation in parentheses

TABLE VI: Average values for benchmark 4
Planner name Max. 3s computing time Max. 10s computing time

Time (s) Path length Time (s) Path length
SBL 1.71 (0.73) 24.37 (51.46) 2.40 (1.67) 32.01 (83.89)
BKPIECE 1.00 (0.63) 20.15 (30.20) 1.23 (0.80) 20.14 (30.63)
LBKPIECE 1.21 (0.60) 22.68 (35.48) 1.49 (1.10) 21.29 (31.37)
RRTConnect 0.75 (0.32) 21.15 (30.21) 0.91 (0.54) 15.66 (14.27)
PRM* - (-) - (-) 10.01 (0.00) 18.22 (0.00)
BiTRRT 1.61 (0.65) 28.14 (35.93) 3.05 (2.02) 28.88 (62.82)
Standard deviation in parentheses

Computing time. When feasible paths need to be found
quickly, a bi-directional planner is recommended similar
motion planning problems to benchmark 1, 2 and 4. When
a path creation starts in a narrow passage as in benchmark
3, a single-directional planner can give improved computing
times, with exception of RRTConnect.

Path length. Picking an optimizing planner to find shorter
path lengths can not be justified from the benchmark data.
Only in benchmark 2, the TRRT and BiTRRT planners for
3s and 10s maximum computing time respectively compute
shorter paths compared to non-optimizing planners. Having
more computing time for time-variant goals decreases path
lengths, however, not drastically. The RRTConnect shows low
path length means in all benchmark problems.

Multi-query. For this paper, we only looked at single-query
motion planning problems, multi-query planners can also be

used as single-query planners. Though this paper fails to
show the potential benefit of using the same roadmap multiple
times and how this can affect computing time. Though we do
notice that RRTConnect and BiTRRT are able to give valid
paths in very short amounts of time that we argue the need
for multi-query planners for online grasp executions.

Parameter selection. Since parameter values have to be
set for a planner to operate, the aim was to achieve maximum
performance of the planners. By manually conducting the
iterative process explained before, a guarantee of maximum
performance can not be given. We executed the iterative
process to the best of our ability to achieve maximum
performance.

Combined metrics. When looking at all the benchmarks,
SBL, BKPIECE, LBKPIECE, RRTConnect and BiTRRT
show high performance in the metrics solved runs, computing
time and path length.

Optimization with a time-invariant goal. Planners FMT,
BFMT, LBTRRT, TRRT and BiTRRT stop once an optimized
path is found. Of these, BiTRRT is the fastest performing
planner. However, compared to not non-optimizing planners
the path length is not consistently shorter. More research has
to be done to see whether other metrics will make the use of
this planner more desirable.

Robot. The UR5 is used to compute the motion plans
though we have not investigated the change in the performance
measures for different types of manipulators. It needs to be
determined if the results hold for other types of manipulators.
For future work, multiple manipulators can be used to
perform the same benchmark to find a better answer on the
consistency of the planner’s performance.

Path constraints. The results presented do not give any
estimation on how the planners perform when implementing
hard path constraints.

VII. CONCLUSION

This paper presented benchmark data of available OMPL
planners in MoveIt! for geometrically constrained grasp ex-
ecutions using a 6-DOF manipulator. Planner performance
was studied by means of solved runs, computing time and
path length for two maximum computing time settings. From
the performance analysis remarks and recommendations were
made depending on the performance measure. For the defined
benchmarks, the bi-directional planners SBL, LBKPIECE,
RRTConnect and BiTRRT are high performing planners in
terms of all the studied metrics. For future work, we would
like to investigate the use of different manipulators to find
consistency in planner performance when performing grasp
executions.
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Abstract— This paper identifies high performing motion
planners among three manipulators when carrying out grasp
executions. Simultaneously, this paper presents useful bench-
marking data. Sampling-based motion planners of OMPL
available for use in MoveIt! are compared by performing
several grasping-related motion planning problems. The per-
formance of the planners is measured by means of solved
runs, computing time and path length. Based on the results,
recommendations are made for planner choice that shows
high performance for the used manipulators.

I. INTRODUCTION

Currently, 23 sampling-based motion planners of OMPL
(Open Motion Planning Library) [1] are available for
use in MoveIt! [2], a robot manipulation framework for
ROS. OMPL is the default and most supported motion
planning library in MoveIt!. Support for picking a planner
is not provided. In the literature, no research about planner
performance can be found when performing grasp execu-
tions. Moreover, performance information for 12 planners
is scarce, since they have just been released (Decemeber
2016). This leaves the user to perform time-consuming
benchmarks in order to find the right planner.

This paper aims to identify high performing OMPL
motion planners available in MoveIt! when carrying out
grasp executions. Simultaneously, it aims to present useful
benchmarking data for all the 23 planners. By conducting
several grasp executions for three different manipulators,
we hope to find planners that consistently show high
performance. We will use three manipulators that have
different geometry but have similar specifications. These
are Universal Robots UR5, KUKA LWR 4+ and Kinova
JACO. To resemble a real-world grasping problem, the
manipulators are fitted with a gripper. In this study, we
only consider sampling-based motion planners of OMPL
available in MoveIt!, listed in Tab. I. This includes so-called
multi-query planning methods. However, only single-query
performance is measured. We have designed a virtual
environment that resembles a shelf in which objects can
be picked or placed. Planner choice is investigated by
considering geometry constraints for two motion planning
problems. For the third problem we add a path constraint.

Due to randomization of sampling-based motion plan-
ners, motion planning problems have to be run multiple

∗The work leading to these results has received funding from the
European Communitys Seventh Framework Programme (FP7/2007-2013)
under grant agreement n 609206.

times to provide saturated results on the performance. The
performance of the planners is measured in terms of solved
runs, computing time and path length. The metric solved
runs can be expressed as a percentage of the total motion
planning runs that finish correctly. Barplots are used to
visualize the difference. For every run, computing time
and path length can change due to the randomization in
sampling-based motion planners. Boxplots and tables are
used to analyze the planners with respect to computing
time and path length. Performance depends on the need
of the user, high performance for one metric can result in
low performance for an other metric. By analyzing each
metric separately, we can elaborate on right planners for
each metric.

Tab. I shows there are optimizing OMPL planners avail-
able in MoveIt! that have a time-invariant goal. This means
they stop computing as soon as a path is found that is
considered to be more optimal. However, compared to non-
optimizing planners, computing effort is increased which
can result in an increase in computing time. For optimizing
planners is expected that they will produce shorter path
lengths. This study can clarify if extra computing time
of optimizing planners will considerably decrease the path
length compared to non-optimizing planners.

II. BACKGROUND

A. Manipulators

Universal Robots UR5 [3]: Universal Robots aims to
provide easily programmable, safe and flexible industrial
robots. The UR5 manipulator is designed to be lightweight,
flexible and collaborative. The manipulator has 6 degrees of
freedom (DOF). Joint limits are max 2π in both directions.
The manipulator has a maximum payload of 5kg and a
span of 850mm. A model of the UR5 fitted with a gripper
is shown in Fig. 1.

KUKA LWR 4+ [4]: KUKA supplies intelligent au-
tomation solutions and is currently one of the top brands
in this field. The 7-DOF LWR 4+ is a lightweight collab-
orative manipulator. Its furthest reach is 1178.5mm and it
can lift up to 7kg. The manipulator is made for universal
purpose, meaning it can be used for many applications. The
upper and lower limits are ±170 degrees for four joints
and ±120 degrees for the remaining joints. A model of the
LWR 4+ is shown in Fig. 2.
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TABLE I: SUMMARY OF AVAILABLE PLANNERS OF OMPL IN

MOVEIT!

Planner name & Reference Optimizing
planners

Multi-
query

Time-invariant
goal

SBL [6] X
EST Based on [7] X
BiEST [7] X
ProjEST Based on [7] X
KPIECE [8] X
BKPIECE Based on [8] X
LBKPIECE Based on [8][9] X
RRT [10] X
RRTConnect [11] X
PDST [12] X
STRIDE [13] X
PRM [14] X
LazyPRM [9] X
RRTstar [15] X
PRMstar Based on [14][15] X X
LazyPRMstar Based on [9][15] X X
FMT [16] X X
BFMT [17] X X
LBTRRT [18] X X
TRRT [19] X X
BiTRRT [20] X X
SPARS [21] X X
SPARStwo [22] X X

Kinova JACO1 and JACO2 [5]: Kinova has developed
two JACO versions, the JACO1 and the JACO2. They are
lightweight and geometrically identical. The manipulators
have a maximum reach of 900mm. Other than the UR5 and
LWR 4+, which have straight links, this manipulator has
two links which have a curve. Both versions have three
joints that can rotate continuously, remaining joints have
limits due to the geometry. The maximum payload is 1.5kg
for the JACO1 and 2.6kg for the JACO2. The manipulator
has 6 degrees of freedom. A model is shown in Fig. 3.

B. Software

The open-source Robot Operating System (ROS) is a
suite of software libraries and was created to encourage
collaborative robotics software development. Inside ROS,
the MoveIt! framework deals with the manipulation of
robotic hardware. Several motion planner libraries can be
configured with MoveIt! to help solve a motion planning
problem. OMPL (Open Motion Planning Library) is the
most supported motion planner library and is the default
library for MoveIt!. The library consists of state of the art
sampling-based motion planners.

Using MoveIt!, OMPL creates a path to solve the motion
planning problem. By default, OMPL tries to perform path
simplification. These are routines that shorten the path.
The smoothness of the path may not be affected by this
simplification.

C. Overview of planners

Sampling-based motion planners are proven to be proba-
bilistic complete [14], which implicates that the probability
of not finding a feasible path in an unbounded setting
approaches zero. Therefore, these planners are widely used
to find feasible paths in high-dimensional and geometri-
cally constraint environments. Optimizing sampling-based
motion planners can refrain from potential high-cost paths
and rough motions [15]. However, computing effort for
finding an optimized path is increased.

One of the most common is sampling-based motion
planner is the Probabilistic RoadMap (PRM) [14]. The
planner makes a roadmap by sampling random states in
the configuration space and mark them as nodes (vertices).
Nodes are connected to other nearby nodes if this path
segment (edge) is collision-free. Once the construction of
the roadmap is finished a graph search is performed in order
to find a connection from the initial state towards the goal
state. The roadmap of the PRM planner attempts to cover
the total free configuration space, making it suitable to
reuse the roadmap for a different motion planning problem
in the same configuration space. This is referred to as
a multi-query planning method. Among the 23 motion
planners in Tab. I, six can be considered as multi-query
planning methods.

The LazyPRM [9] planner is different from the PRM
method, since it initially accepts invalid configuration
states to construct a roadmap. After the graph search is
performed, the invalid parts of the candidate solution are
altered to make the path collision-free. PRMstar [15] is
the asymptotically optimal variant of the PRM planner.
It rewires nodes to other near nodes if this minimizes
cost towards the node. LazyPRMstar [15] combines the
LazyPRM and PRMstar.

The remaining planners in Tab. I are refered to as single-
query planning methods. These create a roadmap every
time a new planning query has to be solved. A common
single-query planner is the Rapidly-exploring Random Tree
(RRT) method [10]. It grows a tree structure from the initial
configuration state in the direction of the unexplored areas
of the bounded free space. This is realized by randomly
sampling nodes in the free configuration space, sampled
nodes that can be are within a certain distance of tree nodes
are added to the tree by edges. The process of adding nodes
and edges is repeated until the tree reaches the goal node.
The RRTConnect method [11] is a bi-directional version of
the RRT method, meaning that two trees are grown. Two
processes of RRT are started, one in the start node and one
in the goal node. At every iteration or edge addition, it is
checked whether the trees can be connected to each other,
which solves the the motion planning problem.

The RRT with an optimizing step is the RRTstar [15]
planner. This variant of RRT checks whether the new
sampled node can be connected to other near nodes so
that the state space is more locally refined, similar to
PRMstar. The Lower Bound Tree-RRT (LBT-RRT) [18]
planner is another optimizing planner. It uses a so-called
lower bound graph which is an auxiliary graph. To maintain
the tree, a similar method as RRTstar is used. Transition-
based RRT or TRRT [19] is a combination of the RRT
method and a stochastic optimization method for global
minima. It performs transition tests to accept new states to
the tree. The Bi-TRRT [20] is a bi-directional version of
this planner.

The EST method [7] stands for Expansive Space Trees.
The planner tries to determine the direction of the tree by
checking the density of nodes in the configuration space.
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The tree will expand towards the less explored space.
Bi-directional EST (BiEST) [7] grows two trees, similar
to RRTConnect. Projection EST (ProjEST), based on [7],
detects the less explored area of the configuration space
by using a grid. This grid serves as a projection of the
configuration space. Single-query Bi-directional probabilis-
tic roadmap planner with Lazy collision checking, also
called SBL [6], grows two trees, which expand in the same
manner as EST. The planner differentiates from EST by the
lazy collision-checking.

KPIECE (Kinodynamic motion Planning by Interior-
Exterior Cell Exploration) [8] is a tree-based planner that
uses layers of discretization to help estimate the coverage
of the state space. There also exists a bi-directional variant
called BKPIECE and a variant which incorporates lazy
collision checking, this is the LBKPIECE.

Fast Marching Tree (FMT) [16] is an asymptotically
optimal planner which marches a tree forward in the cost-
to-come space on a specified amount of samples. The
BFMT [17] planner is a bi-directional variant of this
planner.

PDST (Path-Directed Subdivision Tree) [12] represents
samples as path segments instead of configuration states. It
uses non-uniform subdivisions to explore the state space.

STRIDE (Search Tree with Resolution Independent Den-
sity Estimation) [13] uses a Geometric Nearneighbor Ac-
cess Tree (GNAT) to estimate the density of the config-
uration space. This helps to guide the tree into the less
explored area.

III. PROBLEM FORMULATION

The available planners consist of non-optimizing and
optimizing planners. The problem formulation follows the
work of Karaman and Frazzoli [15]. Non-optimizing plan-
ners attempt to find a feasible path in the bounded d-
dimensional configuration space C = [0, 1]d. The free
configuration space is defined by Cfree = cl(C \ Cobs),
in which cl(·) denotes the closure of a set and in which
Cobs denotes the obstacle space. A path p is called feasible
when:

p(0) = xinit, p(1) = xgoal (1)
p(x) ∈ Cfree for all x ∈ [0, 1]

Optimizing planners that are given a motion planning
problem (Cfree, xinit, xgoal) and a cost function c, find a
optimized path p∗ such that:

c(p∗) = min{c(p) : p is feasible } (2)

For the implementation of motion constraints, the free
configuration space is reduced. Only configurations that
satisfy the motion constraint can be valid configurations.
This can result increase the amount of narrow passages,
which are known to cause issues for sampling-based motion
planners [23].

Problem implementation. Grasp executions will be
simulated in geometry constrained scenes inside the

MoveIt! framework to retrieve data on planner perfor-
mance. Non-optimizing planners are instructed to produce
feasible paths. The optimizing planners are instructed to
produce optimized paths. The motion constraint problem
is defined to keep the gripper horizontal. Rotation of
the gripper in the horizontal plane is allowed (max 2π),
other rotations are limited to 0.1rad. Path simplification
by OMPL for all the motion planning problems is turned
on. Multi-query planners are being used as single-query
planners.

Performance metric. Solved runs, computing time and
path length are used as metrics in our experiments. We
analyze the metrics outcome individually to provide the
best performing planners in each of the metrics. Solved
runs is expressed in terms of the percentage of total runs
resulting in feasible or optimized paths. High solved runs
is considered as high performance. Computing time is
measured for the time it takes for planners to produce
feasible paths or optimized paths. Planners with a low
computing time are considered as high performance. Path
length is measured by the length of the sum of motions
for a produced path. Planners with short path length
are considered as high performance. Mean and standard
deviation values of computing time and path length can
provide extra information on the performance. Low mean
and small standard deviations values are considered as high
performance.

Parameters. For 20 of the 23 OMPL planners in
MoveIt!, parameters have to be set in order for the planner
to solve a motion planning problem. Choosing right param-
eter values can improve the performance of the planner.
To aim for maximum performance an extensive parameter
selection was conducted, since no automatic optimization
process is available to this date.

IV. DEFINED MOTION PLANNING PROBLEMS

Three grasp execution motions have been defined to
measure the performance of the planners. They are defined
in the same environment that consists of a simplified shelf
and obstacles.

A. Benchmark 1: Place grasp

Benchmark 1 initial end-effector position is located at
the end of a shelf, shown as the orange colored robot
state in Fig. 1,2,3. The goal position is a stretched arm
configuration in front of the shelf (gray robot state). The
motion planning problem starts a in a narrow passage, the
goal is situated in a less constrained space. This would
identify which planner is able to produce the best results
when moving out of a constrained space.

B. Benchmark 2: Pick grasp

Benchmark 2 is attempting to resemble a picking motion
from a narrow shelf, shown as the gray robot state in Fig.
1,2,3. The goal of the problem is to achieve a specific
gripper orientation at the end of this shelf (orange robot
state). The planner will have to produce a motion plan with
high accuracy to reach the end of the shelf. The motion
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Fig. 1. Pick and place benchmark for UR5.

Fig. 2. Pick and place benchmark for KUKA LWR 4+.

Fig. 3. Pick and place benchmark for Kinova JACO.

planning problem starts in a less constrained space, the goal
is situated in a narrow passage. This would identify which
planner is able to produce the best results when moving
into a constrained space.

C. Benchmark 3: Place grasp with motion constraints

For benchmark 3, the same motion planning problem as
benchmark 1 is defined. However, for this problem motion
constraints are added to keep the gripper horizontally
leveled within a small margin. This resembles placing a
glass of water from the shelf on the table, without spilling.
This would identify which planner is able to produce the
best results when having a constrained free configuration
space.

V. RESULTS

A. Methodology

The benchmarking experiments are performed using one
thread on a system with an Intel i5 2.70GHz processor
and 8Gb of memory. Parameter estimation for the plan-
ners is conducted using an extensive iterative process to

achieve maximum performance of the planners with re-
spect to the manipulator, these planner specific parameters
are presented in Tab. II. The global OMPL parameter
longest valid segment fraction is set to 0.005. To give
reliable data on the solved runs, computing time and
path length, each algorithm was run 50 times for the
given motion planning problem. The planners were given
a maximum computing time 10s for benchmarks 1 and 2.
Due to the increased limitation of the free configuration
space of motion constraint planning, benchmark 3 was
given 20s maximum computing time. The time is kept low
since most robotics applications need to operate quickly.

B. Simulation results
Results of benchmark 1 are shown in Fig. 4 and Tab.

III. Considering all manipulators, solved runs of 80% and
higher were found for all single-query planners, except for
FMT. Since multi-query planners do not focus on one spe-
cific motion planning problem, the roadmap construction
needs to cover the whole Cfree. A demerit of this is the extra
needed computing effort. Single-query planners do not
need to cover the total free configuration space. Heuristics
of these planners help propagating a path outwards of a
constrained space. Lowest computing times were retrieved
with EST, ProjEST, KPIECE and STRIDE, which are all
mono-directional planners with a goal bias property. Since
the goal configuration is located in a large free space, the
probability of finding a solution with the goal configuration
as sample increases. The fastest planners also use heuristics
to quickly cover the configuration space. EST and STRIDE
do this by looking at the density of present samples.
KPIECE uses a discretization layer which coarsely covers
the configuration space. With goal bias in an open space,
short paths can be found with EST, ProjEST and KPIECE.

When considering the results of manipulators in bench-
mark 1 separately, it can be noted that the JACO manipu-
lator was able to generate higher solved runs for multi-
query planners. This manipulator does not incorporate
any restrictions on joint limits, which helps to find more
connections in the free configuration space between nodes,
increasing the solved runs. Moreover, a solution faster is
found faster and with a shorter path length. Computing
times for the UR5 manipulator were lowest with KPIECE,
RRT and RRTConnect. Computing times for the LWR
4+ were lower than the UR5 with SBL, EST, KPIECE,
BKPIECE, LBKPIECE and STRIDE. In addition to those
planners, RRTConnect also had low computing times for
the JACO. For the UR5, short path lengths are found
with BiEST, ProjEST, KPIECE, RRTConnect, TRRT and
BiTRRT. For the LWR 4+, these are EST, KPIECE,
BKPIECE, LBKPIECE and LazyPRMstar. Planners EST,
BiEST, ProjEST, KPIECE, LazyPRMstar and BiTRRT
found short paths for the JACO manipulator.

Results of benchmark 2 are shown in Fig. 5 and Tab.
IV. Considering all manipulators, solved runs of 80% and
higher were retrieved with SBL, BKPIECE, LBKPIECE,
RRTConnect and BiTRRT. These are all bi-directional tree-
based planners. Because of this property path planning is
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TABLE II: PLANNER PARAMETERS FOR UR5 (U), LWR 4+ (L) AND JACO (J)

SBL U L J EST U L J BiEST U L J ProjEST U L J RRT U L J RRTConnect U L J
range 0.5250.6 0.6 range 0.6 0.6 0.6 range 0.6 0.6 0.6 range 0.45 0.6 0.6 range 0.75 1.2 1.8 range 0.2 0.6 0.6

goal bias 0.05 0.05 0.075 goal bias 0.075 0.025 0.075 goal bias 0.075 0.075 0.025

PRM U L J LazyPRM U L J RRTstar U L J KPIECE U L J BKPIECE U L J LBKPIECE U L J
max n.n. 10 10 10 range 0.525 0.6 0.6 range 0.75 1.2 0.6 range 0.525 0.3 0.225 range 0.525 0.3 0.225 range 0.6 0.225 0.3

goal bias 0.075 0.05 0.05 goal bias 0.075 0.05 0.075 border f. 0.9 0.9 0.8 border f. 0.9 0.8 0.8
delay c.c. 1 1 1 border f. 0.9 0.9 0.8 exp. s.f. 0.7 0.5 0.5 valid p.f. 0.5 1 0.5

exp. s.f. 0.7 0.5 0.5 valid p.f. 0.5 0.5 0.5
valid p.f. 0.5 0.5 0.5

STRIDE U L J FMT U L J TRRT U L J BiTRRT U L J SPARS U L J SPARStwo U L J
range 0.6 0.45 0.45 num samp. 1000 1000 1000 range 1.35 1.2 1.8 range 0.6 0.9 0.6 stretch f. 3 2.6 2.6 stretch f. 3 3 3
goal bias 0.05 0.05 0.075 rad. Mult. 1.15 1.15 1.15 goal bias 0.075 0.05 0.025 temp c.f. 0.3 0.3 0.3 sparse d.f. 0.25 0.25 0.25 sparse d.f. 0.25 0.25 0.25
use proj d. 0 0 0 Nearest k 1 1 1 max state f. 5 5 5 init temp 75 75 75 dense d.f. 0.001 0.001 0.001 dense d.f. 0.001 0.001 0.001
degree 24 8 8 cache cc 1 1 1 temp c.f. 2.5 2 2 frountier 1 1 1 max fail. 1000 1000 1000 max fail. 5000 5000 5000
max deg. 28 12 12 heuristics 1 1 1 min temp 1e-

9
1e-
9

1e-9 frountierN.r. 0.1 0.1 0.1

min deg. 12 6 6 ext. fmt 1 1 1 init temp 125 125 125 cost thres. 1000 1000 1000
max p.p.l. 6 3 3 frountier 2.25 2.5 2.5
est. dim. 0 0 0 frountierN.r. 0.1 0.1 0.1
valid p.f. 0.1 0.1 0.1 k constant 0 0 0

Fig. 4. Results for benchmark 1. (a) Solved runs; higher is better. (b) Computing time; lower is better, small interquartile range is better. (c) Path
length; lower is better, small interquartile range is better.

also started in the goal state, which acts similar to the
benchmark 1 moving out of a constrained space. SBL and
LBKPIECE showed the lowest computing times. These
planners use lazy collision-checking. Collision-checking is
only performed on a candidate path instead on all vertices,
which can lower the computing time. Shortest paths are
found with SBL and LBKPIECE, however, standard devia-

tions are higher for the SBL planner. Using a discretization
layer to cover the configuration space coarsely helps finding
more consistent results (lower standard deviations from the
mean).

When considering the results of manipulators in bench-
mark 2 separately, it can be noted that the UR5 and LWR
4+ also managed to produce solved runs of 80% and
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Fig. 5. Results for benchmark 2. (a) Solved runs; higher is better. (b) Computing time; lower is better, small interquartile range is better. (c) Path
length; lower is better, small interquartile range is better.

higher for the BiEST planner. This planner is also a bi-
directional planner. The expanded configuration space of
the JACO manipulator helps to produce solved runs of 80%
and higher for planners PRM, PRMstar and LazyPRMstar.
However, computing times are considerably higher since
these planners keep optimizing the roadmap until the time-
limit is reached. RRTConnect is the fastest planner for the
UR5 and LBKPIECE is the fastest for LWR 4+ and JACO.
For all three manipulators, LBKPIECE is able to compute
feasible paths within 1.5s. Considering high solved runs:
BiTRRT finds the shortest paths for the UR5, SBL for the
LWR 4+ and FMT for the JACO respectively.

Results of benchmark 3, incorporating motion con-
straints, are shown in Fig. 6 and Tab. V. The extra con-
straint limits the free configuration space. Considering all
manipulators, only the BiEST planner was able to produce
solved runs of 80% and higher. The planner looks at the
density of samples in its neighbourhood to help its expan-
sion. In the case of planning with motion constraints, this
shows to be effective compared to the other 20 planners.
The bi-directional property helps finding a solution within

the time limit, since the mono-directional EST planner is
not able to find a feasible path with a maximum computing
time of 20s.

Depending on the manipulator, the highest performing
planner differs, which indicates that there is less consis-
tency in planner performance when incorporating extra mo-
tion constraints. SBL, BKPIECE and RRTConnect also had
solved runs of 80% and higher for the UR5 manipulator.
For the JACO manipulator the KPIECE planner manages
to get solved runs of 100%.

C. Discussion

The motivation of this work is to help users pick high-
performing motion planners for grasp executions. Short-
comings of this work will be discussed.

Computing time. This paper only showed results for
motion planning with a time-constraint of 10s or 20s. This
was chosen to select high-performing motion planners that
find a solution in a timely manner. Selecting a higher time-
limit could show increased performance in solved runs and
path length. However, this is not covered in this work.
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TABLE III: MEAN VALUES FOR BENCHMARK 1

Planner name UR5 LWR 4+ JACO
Time (s) Path length Time (s) Path length Time (s) Path length

SBL 2.42 (1.68) 14.24 (4.11) 0.31 (0.11) 13.38 (3.23) 0.21 (0.09) 15.93 (19.85)
EST 1.54 (1.26) 14.57 (7.50) 0.12 (0.06) 11.82 (2.00) 0.16 (0.15) 10.55 (2.41)
BiEST 4.71 (2.25) 13.73 (4.93) 2.55 (1.77) 13.02 (3.21) 2.98 (2.04) 10.63 (5.47)
ProjEST 1.22 (0.89) 13.70 (3.73) 0.15 (0.08) 14.31 (9.77) 0.12 (0.07) 10.71 (5.77)
KPIECE 0.97 (0.73) 13.72 (3.07) 0.10 (0.03) 11.91 (2.86) 0.09 (0.06) 10.73 (3.62)
BKPIECE 2.31 (1.94) 16.55 (7.70) 0.21 (0.11) 11.92 (1.47) 0.23 (0.16) 11.22 (3.39)
LBKPIECE 1.51 (1.30) 14.45 (4.16) 0.23 (0.09) 11.48 (1.08) 0.13 (0.05) 12.17 (5.20)
RRT 1.59 (2.04) 14.39 (9.07) 1.94 (1.12) 18.68 (6.05) 0.83 (1.59) 12.14 (5.10)
RRTConnect 0.89 (0.35) 13.06 (3.98) 4.49 (2.06) 21.34 (10.20) 0.13 (0.06) 13.88 (12.11)
PDST 1.88 (1.62) 16.27 (17.34) 1.25 (0.61) 25.74 (36.23) 0.20 (0.11) 16.18 (5.22)
STRIDE 1.46 (1.13) 16.36 (15.01) 0.16 (0.14) 12.35 (2.51) 0.16 (0.13) 14.66 (20.43)
PRM 10.02 (0.00) 29.82 (0.00) 10.01 (0.00) 18.73 (4.55)
LazyPRM 10.05 (0.00) 23.66 (0.00) 10.02 (0.01) 10.11 (2.17)
RRTstar 10.02 (0.01) 14.32 (4.15) 10.03 (0.02) 19.06 (5.04) 10.02 (0.01) 10.66 (2.73)
PRMstar 10.04 (0.00) 24.11 (0.00) 10.02 (0.01) 16.65 (3.28)
LazyPRMstar 10.02 (0.00) 11.13 (0.50) 10.02 (0.01) 9.79 (1.86)
FMT 6.17 (2.57) 16.71 (2.88) 6.06 (1.92) 18.29 (4.32) 1.39 (0.25) 11.30 (2.98)
TRRT 1.76 (1.68) 13.40 (4.31) 1.63 (0.93) 20.47 (12.40) 0.41 (0.51) 13.48 (8.55)
BiTRRT 1.31 (0.60) 13.79 (11.02) 3.61 (1.84) 21.05 (8.62) 0.20 (0.10) 10.77 (3.19)
SPARS 10.04 (0.03) 25.52 (6.04)
SPARStwo 10.00 (0.00) 27.83 (1.84)
Standard deviation in parentheses
Gray cells → time within 2 · timemin and path length within 1.2 · path lengthmin, for solved runs > 80%

TABLE IV: MEAN VALUES FOR BENCHMARK 2

Planner name UR5 LWR 4+ JACO
Time (s) Path length Time (s) Path length Time (s) Path length

SBL 2.30 (1.36) 35.21 (99.24) 0.36 (0.22) 20.66 (37.57) 0.33 (0.16) 19.85 (18.23)
EST 4.40 (2.94) 12.41 (1.20)
BiEST 5.82 (2.52) 20.99 (39.61) 1.99 (0.95) 26.90 (35.64) 6.37 (2.26) 24.80 (20.19)
ProjEST 5.13 (3.25) 18.57 (10.76)
KPIECE 1.37 (1.38) 22.36 (20.44)
BKPIECE 2.83 (2.34) 16.55 (17.33) 0.29 (0.21) 37.36 (73.78) 0.45 (0.25) 24.45 (20.39)
LBKPIECE 1.34 (0.95) 19.01 (23.57) 0.28 (0.15) 21.24 (31.19) 0.20 (0.08) 21.46 (18.29)
RRT 0.24 (0.00) 61.77 (0.00)
RRTConnect 0.81 (0.36) 26.84 (63.29) 3.62 (1.89) 72.72 (112.46) 0.21 (0.14) 20.70 (30.91)
PDST 5.02 (3.42) 15.83 (4.94)
STRIDE 2.96 (0.24) 18.69 (9.38) 2.75 (2.54) 17.40 (10.26)
PRM 10.01 (0.00) 23.00 (0.00) 10.01 (0.00) 19.93 (2.99)
LazyPRM 10.03 (0.00) 13.43 (0.40) 10.02 (0.01) 13.97 (2.58)
RRTstar 10.02 (0.00) 10.48 (0.00)
PRMstar 10.02 (0.00) 18.28 (0.00) 10.03 (0.02) 20.68 (3.62)
LazyPRMstar 10.03 (0.05) 14.29 (3.88)
FMT 5.82 (2.92) 19.01 (4.71) 2.87 (0.83) 17.15 (12.78)
TRRT 1.11 (1.10) 22.31 (17.58)
BiTRRT 1.45 (0.70) 14.49 (13.19) 4.47 (2.57) 65.18 (125.80) 0.33 (0.17) 25.30 (23.12)
SPARS 10.15 (0.00) 23.39 (0.00) 10.03 (0.02) 23.24 (4.76)
SPARStwo 10.00 (0.00) 31.47 (7.23)
Standard deviation in parentheses
Gray cells → time within 2 · timemin and path length within 1.2 · path lengthmin, for solved runs > 80%

TABLE V: MEAN VALUES FOR BENCHMARK 3

Planner name UR5 LWR 4+ JACO
Time (s) Path length Time (s) Path length Time (s) Path length

SBL 8.88 (4.19) 20.66 (8.09) 12.44 (0.00) 13.55 (0.00)
EST 8.99 (7.49) 18.03 (4.03) 9.08 (0.00) 67.08 (0.00) 11.06 (4.46) 12.25 (1.48)
BiEST 2.81 (1.21) 21.18 (10.97) 8.77 (4.36) 35.71 (26.06) 8.72 (6.00) 27.84 (16.28)
ProjEST 10.06 (5.40) 13.41 (1.25)
KPIECE 9.08 (3.45) 26.58 (12.90) 9.50 (6.58) 41.99 (39.29) 3.84 (2.70) 15.10 (4.43)
BKPIECE 5.72 (4.82) 24.92 (13.76) 9.92 (4.51) 40.82 (30.96) 9.78 (7.12) 44.91 (24.50)
LBKPIECE 15.21 (4.39) 25.39 (13.22) 9.88 (0.00) 12.85 (0.00)
RRT 9.06 (5.63) 29.45 (24.11) 12.32 (5.71) 43.74 (42.21) 12.10 (5.65) 12.28 (1.80)
RRTConnect 4.86 (3.63) 27.92 (23.82) 13.03 (4.00) 65.97 (55.08) 10.74 (5.79) 26.76 (16.25)
PDST 9.23 (0.00) 11.77 (0.00) 12.42 (5.30) 41.06 (39.27) 8.86 (6.06) 51.48 (32.37)
STRIDE 9.98 (10.20) 58.23 (60.47) 12.64 (0.00) 13.15 (0.00) 12.45 (7.28) 23.87 (15.41)
PRM 20.12 (0.04) 65.88 (12.16) 20.14 (0.05) 43.60 (7.56) 20.09 (0.05) 55.03 (20.03)
RRTstar 20.07 (0.04) 22.89 (13.78) 20.03 (0.01) 25.18 (11.74) 20.05 (0.03) 14.97 (3.80)
PRMstar 20.15 (0.13) 41.66 (36.26) 20.18 (0.18) 41.76 (14.76) 20.09 (0.05) 48.12 (27.74)
LazyPRMstar 20.04 (0.01) 46.70 (7.36) 20.87 (1.52) 37.99 (12.06) 21.91 (6.20) 30.31 (13.98)
FMT 19.34 (1.27) 18.54 (8.12) 15.21 (2.42) 15.31 (8.70)
TRRT 13.14 (5.03) 33.26 (30.84) 7.21 (5.60) 17.36 (2.33) 8.27 (5.15) 13.00 (2.45)
BiTRRT 14.47 (5.82) 29.01 (18.58) 8.46 (8.52) 11.54 (0.48)
Standard deviation in parentheses
Gray cells → time within 2 · timemin and path length within 1.2 · path lengthmin, for solved runs > 80%

Parameter selection. Since parameter values have to
be set for a planner to operate, the aim was to achieve
maximum performance of the planners. By manually con-
ducting the iterative process explained before, a guarantee
of maximum performance cannot be given. We executed
the iterative process to the best of our abilities in order
to achieve maximum performance. For planners with an
exposed range parameter, the distance has to be low enough
to provide dense coverage of the configuration space.

Multi-query. For this paper, we only considered single-
query motion planning performance. This paper fails to
show the potential benefit of lower computing times when
using the same roadmap multiple times. For benchmark 1
and 2, we do notice that planners single-query planners
are able to compute feasible paths in short amount of time.
We therefore argue the need for multi-query planners for
online grasp executions similar to benchmarks 1 and 2. The

use of multi-query planners can be beneficial when motion
constraints have to be used all the time. Computing paths
for these motion planning problems can consume more
time, as shown in the results. Using the same roadmap
again will decrease computing time. However, this map
needs to be detailed and the environment needs to be static.

Optimization with time-invariant goal. BiTRRT is the
fastest optimizing planner. However, compared to non-
optimizing planners, the path length is not consistently
shorter. More research needs to be conducted to show the
real potential of optimizing planners.

Manipulators. The manipulators studied in this paper
have similar specifications. The effect of different manip-
ulator on planner performance cannot be verified with the
presented benchmark data. We believe similarly shaped
manipulators will yield a similar planner choice. Best
overall planner performance, with respect to solved runs,
can be obtained with a JACO manipulator.

BFMT and LBTRRT. These planners resulted in errors
for the defined motion planning problems. We were unable
to provide reliable results to present in this paper. More
effort is needed to make these planners work more reliable.

VI. CONCLUSION

This paper presented benchmark data for 21 of the
current 23 OMPL planners in MoveIt! for three different
manipulators. This data can be useful when performing
similar grasp executions. Simultaneously, this paper se-
lected high-performing planners for different motion plan-
ning problems, resembling a grasp execution. Planner per-
formance was studied by means of solved runs, computing
time and path length. The results showed that the mono-
directional KPIECE planner was highest performing when
initiating motion planning from a constrained configura-
tion towards a less constrained space. Bi-directional plan-
ners with lazy collision-checking (SBL and LBKPIECE)
showed fastest performance when the goal configuration
is located within a constrained space. Shorter paths were
found with LBKPIECE. For motion planning problems
incorporating a motion constraints, consistent high per-
formance over the three manipulators was retrieved with
BiEST. Considering all the grasp executions presented in
this work, RRTConnect was the most reliable planner due
to high solved runs. For future work, we would like to
investigate the option to implement a faster, easier and more
robust method to select parameter values for the planners
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