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Chapter 1

Introduction

1.1 Background and motivations

Railway transport systems constitute a significant part of the transportation network
and play an important role in addressing the ever-increasing mobility of people and
goods. A safe, fast, punctual, reliable, and energy-efficient railway system is of crucial
importance for the economic, environmental, and social objectives of a country.

Good performance of railway operations can help in attracting potential users and fur-
ther increasing the share of railways. In 2017, Boston Consulting Group reported the
European Railway Performance Index, as shown in Figure 1.1. This comprehensive
benchmarking study of European railway operations focused on the three critical com-
ponents of railway performance: intensity of use, quality of service, and safety. The
result shows that Switzerland with a score of 7.2 is ranked as the best in Europe, along-
side Denmark (6.8), Finland (6.6), etc. in tier 1, while a score of 5.3 for the Netherlands
in tier 2. The conclusion of this study highlights the significance of safety and service
quality (especially punctuality), i.e., they are the most important factors underlying
changes in the performance of a railway system.

In fact, railway systems continue to face the challenge of maintaining and improving
their service qualities. According to the survey of the European Commission (EC,
2018), only 59% of the rail passengers are satisfied with the railway services provided.
To increase the satisfaction of passengers, improvements relevant to operations include
making train services quicker, more frequent, more punctual, and more reliable for
passengers. Providing such train services has been set as a goal for 2019 by the Dutch
train operating company (Nederlandse Spoorwegen, NS).

A favorable market environment is the basis of providing high-quality services. Rail-
ways have developed as vertically-integrated (state-owned) organizations, which have
been the most common structure for the rail sector in most countries, with responsibil-
ity for both the railway infrastructure facilities and train operations (Kurosaki, 2008).
Since the 1990s, rail policy regulations in Europe (such as Directive 91/440/EC, 1991)
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2 TRAIL Thesis series

Figure 1.1: The 2017 European Railway Performance Index, courtesy of Boston
Consulting Group (2017)

have fostered competition into the railway transport market. This has led to a verti-
cal separation between infrastructure management and train operations. Such policies
consider competition among train operating companies as a key element to achieve
efficient operations. However, the common situation of a quasi-monopoly may result
in discriminatory treatment among train operating companies. With the promulgation
of Directive 2001/14/EC (EC, 2001), providing fair access to rail infrastructure for all
competing operators is requested. Since then, the requirement of non-discrimination
has been considered in both the tactical planning and the operational control process.
In such a process, the infrastructure manager plays a role of making infrastructure
available. With the growth of railway transport demand, the limited available capac-
ity of infrastructure poses the most severe limitation on improving service quality and
creates challenges to take non-discrimination actions.

Building or upgrading infrastructure can significantly increase the available capacity,
but it costs huge amounts of money and it takes a long time. In the past years, several
European countries have adopted ambitious investment plans for their railway sys-
tems. In 2016, Italy announced a ten-year program supported by planned investments
of e100 billion, including e73 billion designated for infrastructure improvements.
Belgium approved a e25 billion investment plan in 2013, and the project will be im-
plemented over 12 years. Alternatives are needed, especially when large investments
are impossible or where there are limited potentials of expansions. More promising so-
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lutions to make efficient use of existing infrastructure are, e.g., technological improve-
ments, advanced planning and management, and efficient operational procedures. In
addition, as advised by the European Commission (EU, 2015), potential infrastructure
capacity can be exploited by better deployment and coordination. This reveals one
promising direction, i.e., enhancing coordination among infrastructure users, in order
to avoid unnecessary waste of capacity caused by poor coordination.

With the increase of the available capacity, typically reflected by adding additional
train services, energy consumption will increase, leading to a higher cost and more
carbon dioxide (CO2) emissions. To foster sustainable development, the International
Union of Railways (UIC, 2012) has set goals to reduce the CO2 emissions and energy
consumption from train operations by 50% and 30% respectively by 2030. This leads
to a challenging research focus, achieving energy saving while at the same time main-
taining a high quality of service. Energy-efficient train operation is seen as the most
important strategy to reduce the environmental impacts and the costs used to power
trains.

In line with the above setting, this research is motivated by achieving better perfor-
mance of railway operations, in terms of punctuality, reliability, non-discrimination,
capacity utilization, and energy efficiency. To achieve this goal, this research develops
and implements optimization approaches. More specifically, the research is explored
from the following five aspects:

• reducing delays and limiting their propagation by means of optimizing train or-
ders, routes, and departure and arrival times at passing stations;

• dealing with conflicting requests of competing operators in a non-discriminatory
manner by taking equity into account in the decision process;

• exploiting potentials of existing infrastructure by better coordination between the
two single-problem decisions on traffic management and preventive maintenance
planning;

• investigating potentials of energy efficiency in train operations by incorporating
driving strategies into traffic management;

• promoting the application in practice of optimization approaches by developing
distributed optimization methods.

In the remainder of this chapter, Section 1.2 describes the problem statements and
discusses the challenges of the above five aspects. Section 1.3 proposes the research
objectives and research questions to be solved in this dissertation. Section 1.4 summa-
rizes the main contributions of this dissertation. Finally, Section 1.5 provides an outline
of this dissertation, as well as a brief introduction of each chapter in the remainder of
this dissertation.
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1.2 Problem statements and challenges

The five aspects that this dissertation investigates are all in the scope of traffic man-
agement. The problem statements and the existing challenges are briefly discussed as
follows, aspect-by-aspect:

• Railway traffic management

As tactical plans, railway timetables are programmed and updated every year or
every season to specify train routes, orders, and arrival and departure times at
passing stations, with the common objective of maximizing the efficient use of
the existing infrastructure. This is the so-called train timetabling problem or train
scheduling problem (see the survey by Turner et al., 2016). In daily operations,
perturbations unavoidably happen, which may affect the normal operations and
cause a primary delay to the planned timetable. Due to the high interdependency
between trains, the primary delay may further result in a snowball effect on other
trains with consecutive delays, i.e., delay propagation. In the presence of delays,
train dispatchers (controllers) are in charge of adjusting the affected schedules,
with the aim of keeping the operations feasible and reducing potential negative
consequences. This is the so-called real-time traffic management problem (also
called traffic control, train dispatching, or train rescheduling problem), and we
refer to the review paper by Cacchiani et al. (2014) and the book by Hansen
and Pachl (2014) for more information. Ineffective traffic control could signif-
icantly downgrade the punctuality and reliability of train services. Therefore,
in the presence of delays, how to efficiently generate effective train dispatching
solutions leads to one research challenge.

• Non-discriminatory traffic control

In daily operations, the available capacity can be reduced by delays and delay
propagation, which may cause infeasibility of the planned train timetables. Train
operating companies (TOCs) only look at maximizing their interests; however,
their interests suffer from the negative consequences of delays, in terms of re-
fund, penalties, and passenger dissatisfaction. In fact, the requirement of provid-
ing fair and non-discriminatory access to infrastructure for all TOCs has been
mainly reflected in the timetable planning process (see Directive 2001/14/EC,
2001). This process follows a sequence of actions, i.e., applications of TOCs
for infrastructure capacity, scheduling the requested applications, coordination
of the conflicting requests, (if conflicts still exist, then) declaring the infrastruc-
ture congested, and employing non-discriminatory priority criteria to allocate the
congested infrastructure. The rules for access and use of the infrastructure dur-
ing real-time traffic management mainly focus on restoring the normal situation
and do not require a special focus on non-discriminatory actions (see the review
paper by Corman and Meng, 2015). The challenge that we face is then how to
allocate this (reduced) capacity among competing TOCs without favoring any of
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them, i.e., how to provide non-discriminatory access to the limited capacity for
the competing TOCs during disruptions. Additionally, in operations, penalties
may be charged from TOCs for the actions that disrupt the normal operation,
compensation may be granted for TOCs that seriously suffer from disruption,
and TOCs may be rewarded for better than planned performance.

• Traffic control cooperating with a preventive maintenance planning

In railway operations, infrastructure needs to be well-utilized (in terms of a train
timetable) to meet passenger and goods transport demand; meanwhile, the in-
frastructure should be in a good shape (well-maintained by means of preventive
maintenance) for ensuring that tracks are in the appropriate states for running
trains. The former relates to the train scheduling problem (see the representative
studies by Caprara et al., 2002; Bešinović et al., 2016), and the latter concerns
a preventive maintenance time slots (PMTSs) planning problem (see the rep-
resentative studies by Budai et al., 2008; Boland et al., 2013), which answers
the question of in what time slots to perform the given preventive maintenance
tasks, aiming at supporting railway services by preventing infrastructure failures.
In practice, train schedules and PMTS plans are usually designed separately by
different departments/planners. However, when generating a train schedule (or
a PMTS plan), an unavoidable issue is to coordinate with PMTS plans (or train
schedules), in order to ensure that the integrated plan of trains and PMTSs is
conflict-free. Operating more trains leads to fewer time slots available for per-
forming maintenance, and vice versa. The challenge is then to generate effective
train schedules with joint consideration of PMTS plans, and more specifically,
how to integrate the two objectives (i.e., trains and PMTS) with different prop-
erties into one single optimization problem and how to optimize them simulta-
neously.

• Traffic control integrating with train control

In railway transport systems, the energy-efficiency is greatly influenced by the
train operation strategy, which consists of the operating train timetables and the
applied driving actions (Scheepmaker et al., 2017). The former relates to real-
time traffic management, and the latter concerns train control (see the represen-
tative studies by Howlett and Pudney, 2012; Albrecht et al., 2013b), i.e., opti-
mizing the sequence of driving regimes (maximum acceleration, cruising, coast-
ing, and maximum braking) and the switching points between the regimes, with
the aim of minimizing energy consumption. In fact, significant correlations ex-
ist between these two problems, as the traffic-related properties have an impact
on the train-related properties and vice versa. Energy-efficient train operation
(EETO) can be potentially achieved by jointly considering the two problems, i.e.,
(re-)constructing a timetable in a way that most effectively allows eco-driving
(resulting in better energy performance). However, such a joint consideration
leads to a very complex and difficult optimization problem, because not only the
timetable should be well-defined for synchronizing the accelerating and braking
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actions of trains in the same block section, but also the driving actions should
be controlled to reduce the tractive energy consumption under the speed limit,
travel time, and distance constraints (Tuyttens et al., 2013). The research chal-
lenge is thus to integrate a rescheduling optimization problem with microscopic
details with highly accurate real-time train speed trajectory optimization.

• Improvement in computation efficiency of the optimization approaches - inves-
tigation of distributed optimization approaches

Optimization approaches often lead to large and complex optimization problems,
especially when considering microscopic details or when integrating traffic man-
agement with other problems (e.g., train control). They mostly have excellent
performance on small-scale cases, where optimality can be achieved in a short
computation time. However, when enlarging the scale of the case, the compu-
tation time for finding a solution or for proving the optimality of a solution in-
creases exponentially in general. Therefore, how to improve the computational
efficiency of such optimization approaches for the real-time traffic management
problem leads to an other research challenge.

In this section, the problem and challenge of each topic has been briefly discussed. A
more detailed discussion will be presented in the corresponding chapter of each topic.

1.3 Research objectives and questions

One main research question and six sub-questions will be answered in this dissertation,
in order to achieve the research objectives. The main question is

Are there benefits of incorporating equity policy, preventive maintenance plan-
ning, or train control into railway traffic management by means of optimization
approaches?

Six sub-questions are given as follows:

(1) How to equitably deal with the conflicting requests of competing train operation
companies while dispatching trains?

(2) How to jointly schedule trains and preventive maintenance tasks at the same time?

(3) Can the joint consideration of train scheduling and preventive maintenance plan-
ning bring any potential capacity of the existing infrastructure?

(4) How to incorporate driving actions (train control) into traffic management?

(5) Is an improvement in energy efficiency of train operations possible by means of
integrating traffic management and train control?

(6) Which distributed optimization approaches can be used to reduce the computation
time of the integrated problem of traffic management and train control for large
railway networks?
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1.4 Thesis contributions

This section describes the main contributions of this dissertation. A distinction is made
between contributions that are of a scientific nature (either theoretical or methodolog-
ical) and contributions that are of a societal nature.

1.4.1 Scientific contributions

The main scientific contributions of this dissertation are as follows:

1. An optimization approach for the non-discriminatory traffic management prob-
lem

An optimization approach for the non-discriminatory traffic management prob-
lem will be developed in Chapter 3, where non-discrimination is quantified and
incorporated into the traffic management problem. The optimization approach
enables us to achieve an acceptable degree of equity while optimizing the train
departure and arrival times, orders, and routes, and to explore the aspects related
to delay equity, i.e., which controls the value of key performance indicators.

2. An integrated optimization approach for jointly considering the traffic manage-
ment problem and the preventive maintenance time slots planning problem

A formulation method to describe preventive maintenance tasks in train sched-
ules will be proposed. With this formulation method, an integrated optimization
approach will be further developed in Chapter 4, simultaneously determining
train routes, orders, departure and arrival times at passing stations, as well as
preventive maintenance time slots on relevant segments and stations.

3. Integrated optimization approaches for the integration of the traffic management
problem and the train control problem

An integrated modeling approach will be presented, and it incorporates the rep-
resentation of microscopic traffic regulations and speed trajectories into a single
optimization problem in Chapter 5. Three integrated optimization approaches
for real-time traffic management, while explicitly including train control, will be
developed, to deliver both a train dispatching solution (including train routes, or-
ders, departure and arrival times at passing stations) and a train control solution
(i.e., train speed trajectories). In these optimization approaches, train speed is
considered variable, and the blocking time of a train on a block section dynami-
cally depends on its real operating speed.

4. Approaches for introducing the minimization of energy consumption into the
integrated optimization problem of traffic management and train control
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Two approaches will be developed in Chapter 6 for including the minimization of
energy consumption into the integrated optimization problems of traffic manage-
ment and train control, with either nonlinear constraints or linearized constraints.
These enable us to assess and optimize energy consumption and train delay of
train operations simultaneously.

5. Distributed optimization approaches for the integrated optimization problem of
traffic management and train control

Three decomposition methods will be proposed to split the whole optimization
problem (proposed in Chapters 5 and 6) into several subroblems. In order to deal
with couplings among subproblems, three distributed optimization approaches
will be introduced in Chapter 7. The approaches are proposed to improve com-
putational efficiency of solving such optimization problems for large railway
networks.

1.4.2 Societal relevance

The main contributions to society of this dissertation are as follows, from the view-
points of passengers and operators respectively:

• From the passenger perspective,

(1) The investigation of the non-discriminatory traffic control problem has a
practical impact on providing a fair market environment to multiple com-
peting train operation companies (TOCs), so that they can gain fair access
to railway infrastructure. Such a non-discriminatory treatment can encour-
age TOCs to positively participate in the competition, e.g., improving pas-
sengers’ satisfaction by means of providing higher-quality services, with a
final purpose of increasing their ridership and raising their revenue.

(2) The study of the traffic management problem has practical relevance with
regards to providing more punctual and reliable services for passengers.
This can enhance the control of passengers on personal affairs and avoid
missed appointments caused by delays, while also reducing unexpected
dwell time in journeys.

(3) The exploitation of potential infrastructure capacity is practically relevant
to the frequency of train services. The increase of the available capacity can
bring more frequent train services to passengers, which can further lead to
more options in train connections and can reduce the total travel time of
passengers.
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• From the operational perspective,

(1) The approach developed for delivering non-discriminatory traffic control
solutions is practically relevance to setting up market regulation to protect
the rights of interests of TOCs and to guarantee the normal operation of the
railway transport market.

(2) The methods developed in this dissertation have (directly or indirectly)
practical relevance in terms of improving service quality, e.g., punctual-
ity, reliability, high frequency, flexible connections, and short travel time.
Providing a high-quality service can increase the attractiveness of railways
to potential users, which can further increase the share of railways and raise
revenue of the railway sector.

(3) The developed approach for improving the energy efficiency of train oper-
ations is practically relevant with regards to reducing energy consumption
and CO2 emissions of railway operations. The reduction of energy con-
sumption can lead to lower operating costs of the railway sector. The sav-
ing of energy and the reduction of CO2 emissions facilitate sustainability
of railway operations and also contribute to sustainable development of the
transportation system.

1.5 Thesis outline

This dissertation consists of 8 chapters. The outline of this dissertation is illustrated
in Figure 1.2 with a clarification of the connections between the chapters. The main
contents of Chapters 2-8 are briefly introduced as follows:

Chapter 2 presents the preliminaries of the following chapters and introduces the traffic
management problem and reviews the state-of-the-art on the relevant topics.

Chapter 3 focuses on generating non-discriminatory train dispatching solutions (i.e.,
achieving an satisfactory degree of equity while dispatching). An optimization ap-
proach is proposed to explicitly consider delay equity among multiple train operation
companies or trains, in addition to minimizing average (consecutive) train delay time.

Chapter 4 proposes an optimization approach to integrate the two processes of train
scheduling and preventive maintenance planning, by means of a novel virtual-train-
based modeling technique. A Lagrangian-relaxation-based solution framework is pro-
posed to deal with the complicating track capacity constraints, so that the original
complex optimization problem can be decomposed into a sequence of single-train-
based subproblems. A standard label correcting algorithm is employed for finding the
time-dependent least cost path of each train on a time-space network.

Chapter 5 addresses the integration of real-time traffic management and train con-
trol by using optimization methods, determining both traffic-related properties (i.e., a
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Figure 1.2: Thesis outline

set of times, orders, and routes to be followed by trains) and train-related properties
(i.e., speed trajectories) at once. A mixed-integer nonlinear programming approach
(MINLP) is first proposed and solved by a two-level solution approach. This MINLP
problem is then reformulated by approximating the nonlinear terms with piecewise
affine functions, resulting in a mixed-integer linear programming (MILP) problem. In
addition, a preprocessing method is further considered to generate the possible speed
profile options for each train on each block section, one of which is further selected by
a proposed MILP problem (i.e., the third optimization approach) with respect to safety,
capacity, and speed consistency constraints. A custom-designed two-step solution ap-
proach is proposed to solve this MILP problem.

Subsequently, Chapter 6 focuses on the train control part of the proposed integrated
optimization approaches while including energy-related formulations. A set of non-
linear constraints is proposed to calculate the energy consumption, which is further
reformulated as a set of linear constraints and approximated by using piecewise con-
stant functions. Moreover, formulations are presented to calculate the utilization of the
regenerative energy obtained through braking trains.

In Chapter 7, three decomposition methods, namely a geography-based decomposi-
tion, a train-based decomposition, and a time-interval-based decomposition, are pro-
posed to split the whole optimization problem (proposed in Chapters 5 and 6) into
several subproblems. Three distributed optimization approaches are further introduced
to handling the couplings among subproblems, i.e., solving subproblems sequentially
and iteratively through coordination with other subproblems or with respect to the
available solutions of other subproblems. The three algorithms under consideration
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include an alternating direction method of multipliers (ADMM) algorithm, a priority-
rule-based (PR) algorithm, and a cooperative distributed robust safe but knowledgeable
(CDRSBK) algorithm.

The conclusions of this dissertation and the promising directions for future work are
summarized in the final Chapter 8.
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Chapter 2

Railway traffic management

This chapter reviews the state-of-the-art in real-time railway traffic management, eq-
uitable capacity allocation in train timetabling and equitable control of air and road
traffic, joint scheduling of trains and preventive maintenance tasks, and interaction of
traffic management and train control. Then, a brief explanation on relevant terms, e.g.,
tracks, stations, nodes, and cells, is given, and two formulation methods for railway
traffic management, namely a time-instant formulation and flag-variable-based formu-
lation, are presented, which are the basis of the optimization problems proposed in the
later chapters.

2.1 Introduction

Railway timetables are programmed and updated every year or every season to spec-
ify train routes, orders, and arrival and departure times at passing stations, with the
objectives of maximizing the effective use of the existing infrastructure and of being
robust to small disturbances, in order to accommodate the railway transport demand
into attractive and highly safety and reliable services.

When a planned timetable is put into practice, perturbations, caused by bad weather, in-
frastructure failures, extra passenger flows, etc., unavoidably occur. Although timeta-
bles are designed with one objective of making operations robust and resilient to small
perturbations, perturbations still often result in primary delays that affect the normal
operations due to the high traffic density. The primary delays may further result in a
snowball effect on other trains with consecutive delays, i.e., delay propagation, due to
the high interdependency among trains. In the presence of delays, train dispatchers
(controllers) are in charge of adjusting the affected schedules, aiming at keeping the
operations feasible and reducing potential negative consequences.

13
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2.2 State-of-the-art

In this section, we present a detailed literature review. We first review the literature
on the real-time traffic management problem in Section 2.2.1. Then, we discuss the
literature on the equitable capacity allocation (of the train timetabling problem) and
on the equitable control of air traffic and road traffic in Section 2.2.2. Section 2.2.3
focuses on the joint scheduling of trains and preventive maintenance tasks in railway
systems. Section 2.2.4 further reviews the literature that considers the interaction or
integration of traffic and train control in some way.

2.2.1 Real-time traffic management: delay recovery

The real-time railway traffic management problem has been attracting much attention
in the last years. Advances in scheduling theory make it possible to solve real-life train
scheduling instances, in which not only departure/arrival times (Ginkel and Schöbel,
2007; D’Ariano et al., 2007a), but also train orders, routes, and further operational
freedom are considered as variables (e.g., Törnquist and Persson, 2007; Corman et al.,
2010, 2012; Meng and Zhou, 2014). For more information, we refer to the review
papers by Narayanaswami and Rangaraj (2011), Corman and Meng (2015), Cacchiani
et al. (2014), Fang et al. (2015), and the book by Hansen and Pachl (2014).

To formulate the railway network topology (infrastructure), traffic situation, and traffic
constraints, several approaches based on operations research techniques are available
in the scientific literature. A stream of studies considers the alternative graph model,
which uses a combination of job shop and alternative graph techniques (D’Ariano et al.,
2007a). In the alternative graph model, each block section is formulated as a single ca-
pacity server with further no-store constraints1 and blocking constraints relating to
the processing over multiple adjacent block sections (D’Ariano et al., 2007a). Some
studies employ the alternative graph based formulation to deal with the problem of
rerouting trains by developing meta-heuristics, e.g., a tabu search algorithm proposed
by Corman et al. (2010); considering multiple classes of running traffic (Corman et al.,
2011a); determining the Pareto frontier of the bi-objective problem of reducing delays
and maintaining as many passenger connections as possible (Corman et al., 2012);
investigating the impact of the levels of detail and the number of operational con-
straints on the applicability of models, in terms of solution quality and computational
efficiency (Kecman et al., 2013); and rescheduling high-speed traffic based on a quasi-
moving block system, which integrates the modeling of traffic management measures
and the supervision of speed, braking, and headway (Xu et al., 2017).

Another stream of studies focuses on developing macroscopic models based on an

1The no-store constraint requires that a train, having reached the end of a track segment, cannot
enter the subsequent segment if the latter is occupied by another train, thus preventing other trains from
entering the former segment.
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event-activity network2, which allows for faster resolution and larger geographical
scope. Schöbel (2007) proposed an event-activity based integer programming model
to solve the delay management problem3. The model was further extended to address
a discrete time/cost trade-off problem of maintaining service quality and reducing pas-
sengers’ inconvenience (Ginkel and Schöbel, 2007); and by including headways and
capacity constraints and testing multiple pre-processing heuristics in order to fix in-
teger variables and to speed up the computations (Schachtebeck and Schöbel, 2010).
In their proposed models, connections are decided to be maintained or dropped by
minimizing the number of missed connections, while minimizing the sum of all de-
lays of all events. Dollevoet et al. (2012) presented an event-activity based model to
address the problem of rerouting passengers in the delay management process. Zhan
et al. (2015) employed the event-activity network to reschedule the operations, when
a segment of a high speed railway was totally blocked without considering rerouting,
aiming to minimize the number of canceled and delayed trains.

Other approaches have also been proposed for solving the same problem. Rodriguez
(2007) presented two constraint programming models for the rescheduling and rerout-
ing of trains running through a junction, considering a fixed speed and a variable speed
respectively. The latter does not consider proper speed variation dynamics, but it con-
strains train running times to be coherent with train braking and acceleration in the
case of conflict. Törnquist and Persson (2007) described a mathematical model for
rescheduling traffic to minimize the consequences of a single disturbance, which can
be an infrastructure failure, a vehicle malfunction, or a personnel availability problem.
Different strategies to reschedule trains were considered, such as a change to the track
used by a train or a modified train order, in order to reduce computation time depend-
ing on the size of the instance. To improve the computational efficiency, a greedy
heuristic approach was further developed by Törnquist (2012), based on the same for-
mulation of the problem. The idea was to obtain reasonably good feasible solutions
in a very short time and to use the rest of the predefined computation time to improve
the obtained feasible solution by backtracking and reversing decisions made in the first
stage. In Mu and Dessouky (2011), a simultaneous freight train routing and schedul-
ing problem was formulated as a mixed-integer linear programming (MILP) model
with macroscopic details, which was solved via heuristic procedures based on clus-
tering trains according to their entrance time in the network. Meng and Zhou (2014)
investigated the benefits of simultaneous train rerouting and rescheduling compared to
sequential approaches in general rail networks. Network-wide cumulative flow vari-
ables were used to implicitly model capacity constraints, which enabled an easy prob-
lem decomposition mechanism. The decomposed subproblems were then solved by
an adapted time-dependent least-cost algorithm. Pellegrini et al. (2014) formulated an

2The event-activity network is a graph, comprised by a set of nodes and directed arcs. Each node
represents an arrival event or a departure event of a train, and each arc indicates a waiting, driving, or
changing activity.

3The delay management problem determines whether trains should wait for a delayed train in order
to maintain transfer connections of passengers, or should depart on time.
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MILP model to tackle the real-time railway traffic management problem, representing
the infrastructure with fine granularity, i.e., the route-lock route-release interlocking
system and the route-lock sectional-release system. They studied the problem in the
case of simple junctions and more complex areas, and used CPLEX to solve the model.
In Pellegrini et al. (2015), a heuristic algorithm, named RECIFE-MILP, was developed
based on an extended version of the MILP formulation proposed by Pellegrini et al.
(2014). Samà et al. (2016) further investigated how to select the most promising train
routes among all possible alternatives, through developing an ant colony optimization
meta-heuristic. The most promising subset of train routes was included in the large
and complex MILP determined by Pellegrini et al. (2014) and solved with the exact
and heuristic approaches presented by Pellegrini et al. (2015).

Table 2.1 summarizes some relevant studies on the real-time traffic management prob-
lem, in terms of problem description (i.e., the level of detail, rescheduling measure),
mathematical formulation (including model structure, objective, constraints, etc.), and
solution algorithm. The studies of the real-time traffic management problem mostly
focus on delay recovery only and neglect the equity among trains and train operat-
ing companies, the coordination with preventive maintenance, and the integration with
train control. Moreover, these studies mostly have a common assumption that a fixed
speed profile is used for each train, given a minimum running time and neglecting the
dynamic change in speed profile as a consequence of the dispatching actions. Thus,
any dynamics-related objectives, such as energy consumption, cannot be considered.

2.2.2 Equitable allocation of capacity in railway timetabling and
equitable control of air traffic and road traffic

A substantial amount of studies deal with offline capacity allocation, i.e., equitable
allocation of resources among competitors in the train timetabling stage. We next
discuss the studies where equity is a concern while allocating capacity offline.

An auction-based allocation mechanism for railway capacity has been considered in
many studies, in order to establish fair and non-discriminatory access to a railway net-
work. In this setting, train operating companies compete for the use of a shared railway
infrastructure by placing bids for trains that they intend to run. Such a mechanism is
desirable from an economic point of view, because it can be argued that it leads to the
most efficient use of the capacity. The main motivation and argumentation of that idea
can be found in Borndorfer et al. (2006). Harrod (2013) discussed the problem of pric-
ing the train paths for “open access” railway networks in the U.S. market. An approach
based on bidding and auctioning for time slot allocation was described, in which equity
is related to the possibility of handling all railway traffic in a transparent manner. As
stated by the author, “Looking back at the history of the Interstate Commerce Com-
mission in the United States, it would appear that the long and arduous investigations
of cost allocation was in essence a pursuit of fairness.” Schlechte (2011) used the same
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Table 2.1: Summary of the relevant studies on the real-time traffic management
problem

Publications Level of
detail

Rescheduling
measure

Model
structure

Objective(s) Solution
algorithm

D’Ariano
et al. (2007a)

micro rT, rO
AG-based

MILP
minimize the maximum secondary delay
for all trains at all visited stations

B&B, H
(FCFS, FLFS)

Ginkel and
Schöbel
(2007)

macro rT, rO
EA-based

IP

minimize the sum of train delays and
the weighted sum of all missed
connections

H (FSFS,
FRFS,

FRFS-fix,
FSFS-fix)

Rodriguez (2007) micro rT, rO, rR CPM minimize the total delays of all trains B&B

Törnquist and
Persson
(2007)

macro rT MILP
minimize the total final delays of all trains;
minimize the total cost associated with
delays

CS based on
four different
dispatching
strategies

Corman et al.
(2010)

micro rT, rO, rR
AG-based

MILP
minimize the maximum consecutive delays
in lexicographic order

B&B, H (tabu
search)

Schachtebeck
and Schöbel

(2010)
macro rT, rO

EA-based
IP

minimize the delays and the number of
missed connections

H (FSFS,
FRFS,

FRFS-fix,
FSFS-fix)

Corman et al.
(2011a)

micro rT, rO
AG-based

MILP
minimize the total delays of all trains along
other multiple objectives

B&B, H
(priority rule
based, FCFS)

Mu and
Dessouky

(2011)
macro rT, rO, rR MILP minimize the total delays of all trains GHA, NSA

Corman et al.
(2012)

micro rT, rO
AG-based

MILP
minimize the train delays and the number
of missed connections

B&B, H
(pareto

front based)

Dollevoet
et al. (2012)

macro rT, rO
EA-based

IP
minimize the average delay of all passengers

CS, a modified
Dijkstra’s
algorithm

Törnquist
(2012)

macro rT, rO MILP minimize the total final delays all trains GHA

Kecman et al.
(2013)

macro rT, rO
AG-based

MILP
minimize the maximum consecutive delay

B&B,
H (FIFO)

Meng and
Zhou (2014)

micro rT, rO, rR
CF-based

IP
minimize the total completion time of all
trains

CS, LR, H
(priority rule

based)
Pellegrini

et al. (2014,
2015)

micro rT, rO, rR MILP
minimize the maximum or total
consecutive delays

CS, H
(RECIFE-

MILP)
Zhan et al.

(2015)
macro rT, rO

EA-based
MILP

minimize the number of cancelled and
delayed trains

CS

Samà et al.
(2016)

micro rT, rO, rR MILP minimize the total consecutive delays
CS, ACO
meta-H

Xu et al.
(2017)

micro rT, rO
AG-based

MILP

minimize the total consecutive delays;
minimize the sum of the positive
consecutive delays

CS

∗ Symbol descriptions for Table 2.1: re-time (rT); re-order (rO); re-route (rR); Alternative graph (AG);
Cumulative flow (CF); Event-activity network (EA); Constraint programming model (CPM); Dis-
crete event model (DEM); Commercial solver (CS); Heuristics (H); Branch-and-bound (B&B); Greedy
heuristic algorithm (GHA); Neighborhood search algorithm (NSA); First-Leave-First-Served (FLFS);
First-Come-First-Served (FCFS); First-Scheduled-First-Served (FSFS); First-Rescheduled-First-Served
(FRFS); FSFS with early connection fixing (FSFS-fix); FRFS with early connection fixing (FRFS-fix);
Ant colony optimization (ACO); REcherche sur la Capacité des Infrastructures FErroviaires (RECIFE,
in French).



18 TRAIL Thesis series

basic assumption that optimization approaches considering all stakeholders provide a
more equitable allocation than an incremental or the current human assignment. The
idea is that the competing train operating companies can bid for any imaginable use
of the infrastructure. Possible conflicts will be resolved in favor of the party with the
higher willingness to pay.

Karsu and Morton (2015) reviewed the operational research literature on inequity-
averse optimization and focused on the cases where there is a trade-off between effi-
ciency and equity. The operational research approaches that incorporate equity con-
cerns alongside other concerns (mostly efficiency) were discussed in detail, for dif-
ferent problem types. Xu et al. (2014) considered the equity measure as the ratio
between the maximum delay encountered by a train and the total planned time without
delays. Genetic algorithms were used to solve the resulting problem for a small arti-
ficial railway line. In the urban subway traffic, Wu et al. (2015) proposed a timetable
synchronization optimization model to equitably optimize passengers’ waiting time
over all transfer stations, with the aim of improving the worst transfer by adjusting the
departure, running, and dwell times for all directions.

The approaches based on auctions and those based on scheduling are two common
ways to allocate capacity with some consideration of equity. Those latter appear to be
more applicable in case a solution is required in a very short computation time, as it is
the case in the real-time train dispatching problem.

Some studies focus on equitable control of air traffic and road traffic. Pellegrini and
Rodriguez (2013) analyzed in detail the similarities between railway and air transport
modes in the critical battle for improving efficiency. The key issues are the strategic
interaction of competitors for capacity allocation and the difficulty of the real-time
control. Air traffic controllers are in charge of movement safety on air segments, while
railway dispatchers are controlling traffic in a saturated infrastructure. For both situ-
ations, safety critical tasks are fulfilled by a safety system or mechanism. Only qual-
ity of the traffic control is at stake, and the worst consequence is a large-scale delay
propagation. A stream of studies focuses on the current fairness concept in air traffic
control. The FCFS (or FIFO, or Ration-by-delay) rule gives relatively equitable deci-
sions, while better operations could be achieved if delays are to be spread equally over
as many operations as possible.

For air traffic control problem, Manley and Sherry (2010) introduced a number of
metrics concerning the interaction of passenger delay, fuel burn, and equity. Current
regulations achieve high equity at the cost of a reduced throughput; equity and delay
are in general conflicting objectives. In Vossen et al. (2003), two problems were solved
in cascade, first the unconstrained problem of finding an equitable allocation, and then
improving its performance with a limited deviation from the equitable allocation deter-
mined before. A follow-up work by Glover and Ball (2013) introduced stochasticity in
the model, to find solutions that achieve higher levels of equity. Kuhn (2013) addressed
performance and equity as once, determining efficiently the Pareto front for those two
conflicting objectives. Zhong (2012) defined a bi-criteria optimization model to offload
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demand from a congested airspace. The Pareto frontier of efficiency and equity was
generated to allow decision makers identifying the best trade-off solutions, based on a
system view. Equity was considered as a set of additional side constraints. Lagrangian
relaxation was further used to relax those latter constraints, yielding a decomposition
in a series of single-flight scheduling problems.

Equity in air traffic operations was also considered by De Poza et al. (2009), providing
definitions and metrics for equitable air traffic control, combining the geometric and
the arithmetic mean of the delay of the different operations. Kim and Hansen (2013)
investigated the role of sharing information in achieving equitable and collaborative
resource allocation for air traffic flow control. A model was proposed by consider-
ing public and private information. Sharing such private information can achieve a
clear benefit in terms of efficiency. Hoffman and Davidson (2003) pointed out that
equity is a prerequisite for achieving efficient management of disturbances. Equity is
achieved when the welfare of each user of the air traffic network is increased to the
maximum extent possible, given limited resources, after taking proper account of in-
dividual claims and circumstances. They also used a two-stage approach, similar to
Vossen et al. (2003), which first determines an equitable allocation and then increases
its efficiency.

In air traffic control, there are many optimization models formulating equity from
different points of view, e.g., the proportion of the delayed flights, the total delay
time/cost, the delay time/cost per passenger, etc., by using different representations,
e.g., variance and absolute value. However, they have similar formulations, i.e., keep-
ing the individual values within a small range around the average value.

Furthermore, the issue of equity is also of concern to researchers in road traffic. Some
authors dealt with the problem of exploring the impact of existing strategies over equity
(Ahmed et al., 2008), evaluating the equity in road resources distribution (Litman,
2002), or designing transportation networks with consideration of equity (Santos et al.,
2008). In the context of congestion pricing, optimal pricing models were proposed with
social or spatial equity constraints (Yang and Zhang, 2002; Yin and Yang, 2004), and
a modeling framework was developed to design a more equitable pricing and tradable
credit schemes (Wu et al., 2012), in order to alleviate congestion or improve social
benefit on multi-modal networks. Those studies are mostly from the points of view
of policy, planning, and design, with an aim of suggesting better ways to incorporate
fairness in transportation decisions.

We can conclude that the investigation of equitable traffic control in railway transport
system is absent in the literature.

2.2.3 Joint scheduling of trains and preventive maintenance tasks

Preventive maintenance scheduling models in the railway transport field are generally
presented to introduce general cost parameters in various categories, with the aim of
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reducing those costs. In the literature, there are a few studies on the interaction between
train scheduling and preventive maintenance planning, and most of them schedule one
function by minimizing its impact on the other. In this section, we review those studies
that report an explicit interaction between train scheduling and preventive maintenance
planning in railway systems.

Budai et al. (2008) gave an overview of the relation between planning of maintenance
and production, identifying significant advantages that can be realized by taking into
account the impact on production when planning maintenance. The approaches to
achieve this goal can be categorized as either production planning subject to mainte-
nance requirements; or taking into account the production impact on maintenance in
maintenance planning; or taking into account resource implications (e.g., track and
manpower) in maintenance scheduling. Apart from describing the main ideas, ap-
proaches and results, a number of applications were provided.

Approaches considering both trains and maintenance possessions in the same model
are presented in Peng et al. (2011), Forsgren et al. (2013), and Vansteenwegen et al.
(2016). In all cases, a small number of preventive maintenance time slots is introduced
into an existing train timetable, allowing different types of adjustments to the trains.
The impact of preventive maintenance on train schedules is explored in those papers.

Peng et al. (2011) presented a time-space network model to solve the preventive main-
tenance scheduling problem. The objective is to minimize the total travel costs of the
maintenance teams, as well as the impact of maintenance projects on railroad opera-
tions, which were formulated by three types of side constraints: mutually exclusive,
time window and precedence constraints. An iterative heuristic solution approach was
proposed to solve the resulting large-scale problem, in which the scheduling problem
was decomposed into subproblems that were iteratively solved by using local search
on the time-space network. Forsgren et al. (2013) treated the tactical timetable revi-
sion planning case and handled a network with both single and multi-track segments.
A mixed-integer linear programming approach was developed to optimize a timetable
in a way that disturbs the traffic flow as little as possible. Trains can be rerouted or
canceled considering different running times, depending on their stopping patterns.
Vansteenwegen et al. (2016) updated a published timetable in case of the temporary
unavailability of some resources, with the aim of minimizing the number of canceled
trains. An algorithm was presented to solve maintenance conflicts step by step, in or-
der to obtain a robust schedule in case of planned maintenance interventions (typically
blocked tracks). The place and time of the maintenance works were considered as fixed
input and only small changes were allowed to the current timetable in order to obtain
a feasible and robust train service.

A meta-heuristic approach for scheduling both trains and maintenance possessions was
presented by Albrecht et al. (2013c). Problem Space Search was used to generate good
quality timetables, in which both train movements and scheduled track maintenance
were considered. This work is an extension from the technique originally described by
Pudney and Wardrop (2008), where train timetables were constructed by considering
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the set of trains not yet at their destination and selecting the next train movement based
on data such as the earliest possible starting time. Albrecht et al. (2013c) is one of few
papers that simultaneously schedule trains and maintenance tasks by a heuristic algo-
rithm based on Problem Space Search. However, integrated optimization approaches
that deal with train scheduling and preventive maintenance planning problem are ab-
sent in the existing studies.

Lidén and Joborn (2016) considered the minimization of maintenance costs and traffic
limitations when dimensioning maintenance windows. However, the planned timetable
are not revisable. The authors further addressed the integrated planning problem of
railway traffic services and network maintenance in Lidén and Joborn (2017), by means
of a mixed-integer programming approach developed based on cumulative flow vari-
ables with aggregated network and time. This is one of the few studies that make an
attempt to integrate train scheduling and maintenance planning.

2.2.4 Interaction of traffic management and train control

Many studies deal with controlling the train speed, with the aim of minimizing energy
consumption. In the literature, the approaches mostly identify train speed profiles using
very rough approximation, at least when optimizing the sequence of driving regimes
and the switching points between the regimes. A general overview of the studies can
be found in the review papers by Albrecht et al. (2011); Wang et al. (2011); Yang et al.
(2016), and Scheepmaker et al. (2017).

For operations according to the schedule, there is a large corpus of research available
that is able to compute the regimes to be used, and to optimally follow the path of min-
imal energy consumption, given a running time (see e.g., Howlett and Pudney, 2012;
Chevrier et al., 2013; Wang et al., 2013). Some studies focused on maximizing the re-
generative energy utilization, (e.g., Rodrigo et al., 2013; Yang et al., 2014). Since little
interaction with traffic management is considered in these studies, we do not elaborate
on them in this review. We next focus on the studies that address the interaction and
integration with traffic management in some way, e.g., in a decomposed, iterative, or
non-optimized manner.

A lot of inspiration comes from metro operations, which have a particular structure
of very high homogeneity (see e.g., Li and Lo, 2014a,b), basic autonomy from other
systems, and limited, predicted interaction along a line. The usage of Automatic Train
Operations and Communication-Based Train Control is the most common paradigm
to achieve precise control of running traffic (Albrecht et al., 2011). The approach im-
plemented in the Lötschberg tunnel system of Switzerland was described by Montigel
(2009), which simulated only a limited number of trains at a time. The approach yields
a very good performance, but it is limited to a well-defined small test case with a lim-
ited traffic volume. The optimal solution can be found by exhaustive search; however,
the scalability and applicability of the approach to different situations (e.g., larger net-
works and heterogeneous traffic) still need to be assessed. The approach proposed by
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Rao et al. (2016) aimed at pushing this concept further. Some heuristic extensions of
the previous work (Montigel, 2009) were proposed to address the open issues on the
scalability and applicability to general networks and heterogeneous traffic.

In the general case of delayed and rescheduled traffic, the most common approach
for integrating these two problems is the sequential adjustment of the speed profile,
based on a scheduling solution that approximates or neglects the train control problem,
see e.g. D’Ariano et al. (2007b, 2008). In this line of research, Albrecht (2009), and
D’Ariano and Albrecht (2010) focused on the energy minimization problem to deliver
a continuous speed profile, given a schedule. Albrecht et al. (2013a) used the time
windows at stations and relevant points to provide enough room for the rescheduling
problem to calculate energy-efficient speed profiles of trains. The result is optimal for
energy efficiency, given the solution to the scheduling part, i.e., the passing times of
trains at stations and relevant points.

Another stream of approaches includes iterative approaches that feed an optimized
speed trajectory back to the scheduling model to improve traffic performance. In gen-
eral, those approaches offer no guarantee of optimality in either traffic management or
train control. Such approaches include the method of Mazzarello and Ottaviani (2007)
for the EU project Combine, which involves a double feedback loop architecture to
determine both traffic-related and train-related properties by heuristics. A similar ap-
proach was later proposed by Lüthi (2009), which allowed the rescheduling of trains
in real time and provided dynamic schedule information to drivers, so that they can
adjust their speed in order to meet the required schedule. The positive feature of such
approaches is that the feedback loops keep the deviations (i.e., train delays from the
planned timetable) small. However, having the two models separated means a match
between the objectives of the two models has to be found; typically, this may lead
to extra delay introduced by speed management. Furthermore, stability, convergence,
and system quality under a closed-loop feedback control are even more difficult to
quantify than a corresponding sequential one. Quaglietta et al. (2013) and Corman and
Quaglietta (2015) investigated and analyzed the outcome for what concerns stability
and performance inherently introduced by closing control loops.

In a different research stream, Wang and Goverde (2016) presented a multiple-phase
train trajectory optimization method under real-time traffic management, where the
train trajectory is re-calculated to track the possibly adjusted timetable. This proposed
method was only applied to a case with two successive trains running on a corridor
with various delays. In such a case, train control interacts with traffic management
by identifying train speed profiles that match the schedule of minimal delays. Wang
and Goverde (2017) further proposed a multi-train trajectory optimization method to
find optimal meeting locations, arrival and departure times, and speed trajectories of
multiple trains within the time and speed windows. Three driving strategies, i.e., delay-
recovery, energy-efficient, and on-time driving, are considered in the optimization ob-
jective selection. A case with a maximum of four trains on a single-track corridor with
four stations was tested for different delay scenarios. Aiming at energy-efficient train
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timetabling, Wang and Goverde (2019) extended theses methods to optimize trajecto-
ries for multiple trains on a railway corridor composed of single and/or double tracks,
and implemented the trajectory optimization method adjust the running time allocation
of given timetables.

A radically different approach is to invert the hierarchy of the problems, i.e., first solv-
ing the problem of generating efficient speed profiles and then using only these in the
traffic management part. This has been operationally translated into a choice of speed
profiles from a finite set: a single speed profile in the case of Corman et al. (2009), apart
from retiming actions; and multiple speed profiles in the case of Caimi et al. (2012),
including retiming. Then those profiles were included in the optimization problem.
Two conflicting objectives of energy efficiency and delay minimization were consid-
ered in Corman et al. (2009), in which the first objective was used as a hard constraint.
Two policies were analyzed: 1) waiting in corridors, i.e., trains are allowed to wait in
stations and along the line; and 2) green wave, where trains can wait only at stations.
The retiming and rerouting decisions were combined through the definition of block-
ing stairways4 by Caimi et al. (2012), and a optimization approach was proposed to
choose a suitable blocking stairway for each train, out of the given set of alternative
blocking stairways.

In Zhou et al. (2017), a unified model was developed based on a space-time-speed grid
network to integrate the two problems of macroscopic train timetabling and micro-
scopic train trajectory calculations for high-speed rail lines. Most information regard-
ing traffic properties and train properties was pre-described in the space-time-speed
grid network, and the integrated problem was then simplified as a path finding prob-
lem. A dynamic programming solution algorithm was proposed to find the train speed
profile solutions with dualized train headway and power supply constraints.

In the literature, the available studies try to address their interaction and integration in
a decomposed, iterative, or non-optimized manner; however, few authors deal with the
integrated problem by employing mathematical optimization methods.

2.2.5 Summary of literature review

As reviewed in Sections 2.2.1 and 2.2.2, previous studies in control of train opera-
tions include negative equity approaches, which are actually discriminatory. These
include all kind of priority rules that differentiate trains based on their classes, e.g.,
a freight train should be held at a signal to allow a faster passenger train to go first.
Approaches that do not explicitly consider classes, do not lead to such discriminatory
situations, including the First-Come-First-Schedule (FCFS) rule and the vast majority

4A blocking of a critical railway infrastructure resource, i.e., a switch or a signal, consists of the
infrastructure resource and the blocking time interval during which the critical infrastructure resource is
blocked. A blocking stairway is then defined by a finite sequence of blockings, and each one combines
a route and a speed profile
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of the optimization approaches reported in Section 2.2.2. Those approaches are not
discriminatory, in the sense that they do not specify a hard ranking of train classes, but
all traffic cannot have a systematically guaranteed equity, by using those approaches.
In other terms, they achieve equity only in a statistical sense, i.e., averaging over all
possible situations of delays and traffic, assuming they all have equal probability, and
then the resulting average output will be non-discriminatory. For each and every re-
alization and case, instead, they might actually provide discriminatory solutions that
favor a particular train rather than another one. In case of systematic effects (related
to the planned operations, the train services, the delays faced, and the demand), which
cannot be ruled out so easily, the resulting solution will be discriminatory, as we will
quantify in Chapter 3.

The train scheduling problem and the preventive maintenance planning problem are
well studied separately in previous studies. As reviewed in Section 2.2.3, most ex-
isting studies on train scheduling focus on minimizing the total deviation times from
an ideal timetable with pre-defined preventive maintenance plans or without consid-
ering maintenance, while studies related to preventive maintenance mostly concern
minimizing total preventive maintenance costs and delays of preventive maintenance
tasks. The integration of these two problems has been pointed out as a future research,
in the conclusions of some review papers, e.g., Budai et al. (2008) and Hadidi et al.
(2012). Only a few explicit discussions on the integration of these two problems are
seen in the literature, and most of them schedule one function by minimizing its im-
pact on another function. In the general scheduling research field, there are a very
limited number of integrated models and algorithms developed for finding the opti-
mal production schedule and maintenance plan. In the railway transport field, only a
few integrated optimization models that simultaneously deal with train scheduling and
preventive maintenance planning are available, e.g., Forsgren et al. (2013).

In addition, the vast majority of the optimization-based train rescheduling approaches
has a common assumption that a fixed speed profile is used for each train, i.e., a pre-
determined (constant) minimum running time for each train is considered and train dy-
namics are neglected, as reviewed in Section 2.2.1. As a result, any dynamics-related
objectives, such as energy consumption, cannot be directly considered in the optimiza-
tion. The studies on train control mostly focus on trajectory optimization with a given
running time, i.e., determining the driving regimes and the switching points, with the
aim of minimizing energy consumption (see the review paper by Yang et al., 2016). As
significant correlations exist between these two problems, some studies try to address
their interaction and integration in a decomposed, iterative, or non-optimized manner,
as discussed in Section 2.2.4. However, few authors deal with the integrated problem
by employing mathematical optimization methods. When they do so, they typically ei-
ther address the energy-efficient management problem for urban transit systems (e.g.,
Li and Lo, 2014a,b) and the high-speed railway lines (e.g., Zhou et al., 2017) with high
homogeneity, classify speed into several levels and managing speed by indicating ad-
ditional travel time (e.g., Xu et al., 2017), or focus on one of these two problems with
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Figure 2.1: A simple railway network represented at macroscopic and micro-
scopic levels, and modeled by nodes and cells

some simplification of the other (e.g., Caimi et al., 2012). Moreover, train operations
require safety separation over block sections, in terms of time headway or space head-
way. The safety headway, either time headway or space headway, between two con-
secutive trains dynamically depends on their real speed and acceleration/deceleration
rate. In real operations, we cannot assume that all traffic runs in free-flow conditions.
Therefore, an integrated optimization approach with microscopic details is needed that
is able to consider variable running times and safety headways, according to the train
speed, accelerating or deceleration features.

2.3 Explanations of relevant terms

This section explains the terms used in this dissertation based on the description given
by Pachl (2009). In Figure 2.1(a), we present a simple railway network at a macro-
scopic level, which consists of five stations and eight segments. Part of Figure 2.1(a)
is further microscopically detailed in Figure 2.1(b). The explanations of relevant terms
concerning the physical railway network are given as follows:
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(i) Tracks are the roadways of a railway system. A track consists of the rails, ties,
plates between rails and ties, fasteners, ballast, etc. Main tracks can be used for
regular train movements, except for train stopping. Siding tracks are the tracks
other than main tracks, which can be used for regular train movements, e.g., train
stopping, passing, and overtaking. Figure 2.1(b) gives examples for main tracks
and siding tracks.

(ii) A station is a railway facility where trains may stop for boarding and alighting of
passengers or loading and unloading of goods. A station has main track(s) and
siding track(s) to facilitate passing or overtaking of trains.

(iii) A segment is the track between two stations, which can be divided into block
sections for the purpose of safe train separation. A block section (in a fixed block
system) is a section of track, which trains cannot enter when it is blocked (re-
served or occupied) by other trains. A segment may consist of one track (single-
track), two tracks (double-track), or more tracks. Figure 2.1(b) presents single-
track segments and double-track segments.

In order to model railway facilities, two concepts are introduced, i.e., nodes and cells,
as shown in Figure 2.1(c). The concept of cell is same to that of block proposed by
Brännlund et al. (1998) and Harrod (2011), and it was further adopted in many later
studies, e.g., Meng and Zhou (2014).

(i) A node represents a beginning or an ending point of a block section. Additionally,
it can also be viewed as a relevant point of a railway network, corresponding to a
main or a siding track in station, or a point of merging or diverging of tracks.

(ii) A cell is another corresponding concept on which nodes are connected in pairs. A
cell is directed from a starting node i to an ending node j, and represents a block
section (on a physical network) where only one train is allowed at any time. In
fact, the default value of cell capacity should be one at any given time.

2.4 Formulation methods for railway traffic manage-
ment

Two formulation methods are introduced in this section, i.e., the time-instant formula-
tion method and the flag-variable-based formulation method, which are adopted in the
later chapters of this dissertation.

2.4.1 The time-instant formulation method

Given a set F of trains and a set E of cells (i.e, block sections on a physical network),
we denote E f as the set of cells that train f ∈F may use. A cell that connects node i and
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Figure 2.2: The time-instant formulation method

node j is denoted as (i, j) ∈ E. In a time-instant formulation, namely time-continuous
formulation in the terminology of Cacchiani et al. (2014), for addressing the train
dispatching problem, we use arrival time variables a and departure time variables d to
describe train movements on block sections. These arrival and departure time variables
are positive real numbers and have subscripts f , i, and j to indicate the train and the
cell . More specifically, a f ,i, j indicates the arrival time of train f ∈ F at cell (i, j) ∈
E, and d f ,i, j indicates the departure time of train f from cell (i, j). The arrival and
departure safety headway time intervals g f ,i, j and h f ,i, j can be either pre-determined
as parameters (e.g., Luan et al., 2017a) or considered as variables. For determining
the section blocking time, the occupancy time of cell (i, j) for the arrival of train f is
formulated as

σ f ,i, j = a f ,i, j−g f ,i, j, ∀ f ∈ F,(i, j) ∈ E f , (2.1)

and the release time of cell (i, j) for the departure of train f is formulated as

δ f ,i, j = d f ,i, j +h f ,i, j, ∀ f ∈ F,(i, j) ∈ E f , (2.2)

where F is the set of trains, E f is the set of cells that train f may use, and σ f ,i, j and
δ f ,i, j indicate the occupancy and release time of cell (i, j) for train f .

Figure 2.2 illustrates the movement of train f on cell (i, j) by using arrival and depar-
ture time variables. More specifically, train f arrives at time a f ,i, j = 4 and departs at
time d f ,i, j = 7. As we have the safety headway times g f ,i, j = 2 and h f ,i, j = 1, cell (i, j)
is blocked for train f from time σ f ,i, j = 2 to time δ f ,i, j = 8.

For generating a conflict-free train dispatching solution, the cell capacity constraint is
proposed by avoiding the overlap between any pair of trains on the same block section,
formulated as follows:

σ f2,i, j +
(
1−θ f1, f2,i, j

)
·M ≥ δ f1,i, j, ∀ f1 ∈ F, f2 ∈ F,(i, j) ∈ E f1 ∩E f2, (2.3)

σ f2, j,i +
(
1−θ f1, f2,i, j

)
·M ≥ δ f1,i, j, ∀ f1 ∈ F, f2 ∈ F,(i, j) ∈ E f1 ,( j, i) ∈ E f2. (2.4)

where θ f1, f2,i, j is a binary train order variable, with θ f1, f2,i, j = 1 if train f2 arrives at
cell (i, j) or cell ( j, i) after train f1, and otherwise θ f1, f2,i, j = 0, and M is a sufficiently
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Figure 2.3: Illustration of the flag-variable-based formulation method

large positive number. Note that we indicate bi-directional block section on a single-
track segment as (i, j) and ( j, i), which refer to one physical block section in opposite
direction. Thus, this formulation method can be applied to single-track, double-track,
or N-track networks.

2.4.2 Flag-variable-based formulation method

The second formulation method results in a time-dependent model, and it has been ap-
plied to the train (re-)scheduling problem by Meng and Zhou (2014). In this method,
flag variables are used to describe the arrival and departure of trains on block sections.
These flag variables are binary and have subscripts f , i, j, and t to indicate the train,
the cell (i.e., block section), and the time instant. More specifically, a f ,i, j,t indicates
whether train f has arrived at cell (i, j) by time t, and d f ,i, j,t indicates whether train f
has departed from cell (i, j) by time t. Without loss of generality, the planning horizon
is discretized and denoted as integers from time index 1 to T , i.e., t ∈ [1,T ]. For each
train on each block section, the total number of flag variables strongly depends on the
planning horizon T and the time step interval tn, i.e., t ∈ {1,1+ tn,1+2tn, ...,T}. At
each time step t, each train has one flag variable to indicate the train arrival and another
one to indicate the train departure on each block section. The safety headway time in-
tervals g f ,i, j and h f ,i, j can be pre-determined as parameters (e.g., Luan et al., 2017b);
however, they can also be considered as variables by using this flag-variable-based for-
mulation method. Moreover, a set of shifted flag variables a f ,i, j,t+g f ,i, j and d f ,i, j,t−h f ,i, j

is further used to indicate whether train f starts and ends occupying cell (i, j) at time
t−g f ,i, j and t +h f ,i, j. Therefore, instead of the cell occupancy/release variables σ f ,i, j

and δ f ,i, j used in the time-instant formulation method, binary cell blockage variable
y f ,i, j,t is used here to indicate whether train f is occupying cell (i, j) at time t, formu-
lated as

y f ,i, j,t = a f ,i, j,t+g f ,i, j −d f ,i, j,t−h f ,i, j , ∀ f ∈ F,(i, j) ∈ E f , t ∈ {1,1+ tn, ...,T} . (2.5)

Figure 2.3 illustrates the same train movement as Figure 2.2 by using flag variables.
As train f arrives at cell (i, j) at time 4 and departs at time 7, the flag variables of train
arrival a f ,i, j,t and train departure d f ,i, j,t are changed from 0 to 1 at time 4 and time 7
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respectively. As we assume that the safety headway time intervals g f ,i, j and h f ,i, j are 2
and 1 respectively, cell (i, j) is blocked for train f from time 2 to time 8, i.e., y f ,i, j,t = 1
when t = 2, ...,7, and otherwise y f ,i, j,t = 0. The time step interval tn could also be one
second, ten seconds, or one minutes, which has great effect on both the accuracy of the
final solution and the computational efficiency (as this formulation method results in a
time-dependent optimization problem).

By using flag variables, the cell capacity constraint

∑ f∈F y f ,i, j,t +∑ f∈F y f , j,i,t ≤ 1, ∀(i, j) ∈ E f , t ∈ {1,1+ tn, ...,T} (2.6)

can be easily formulated without consideration of the train orders.

2.5 Summary

In this chapter, we have first reviewed the studies on the real-time traffic management
problem, the equitable capacity allocation problem in train timetabling and equitable
control of air and road traffic, the joint scheduling problem of trains and preventive
maintenance tasks, and the interaction of traffic management and train control. In spite
of the rich body of the existing train dispatching studies, there is a significant absence
in the literature with regards to the computation of optimal train dispatching solutions
with consideration of delay equity, to the integrated optimization of train scheduling
and preventive maintenance planning, and to the integration of traffic management and
train control. We have then introduced some relevant terms for the railway traffic man-
agement, including track, segment, station, node, and cell. Finally, two formulation
methods have been briefly introduced, namely the time-instant formulation and the
flag-variable-based formulation, which are the basis of the optimization approaches
proposed in the later chapters.
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Chapter 3

Non-discriminatory traffic control1

This chapter focuses on delivering non-discriminatory train dispatching solutions while
multiple TOCs are competing in a rail transport market and on investigating impacting
factors of the inequity of train dispatching solutions. The optimization problems adopt
the time-instant formulation method introduced in Section 2.4.1.

This chapter is organized as follows. Section 3.1 gives a detailed introduction of the
non-discriminatory traffic control problem. In Section 3.2, mathematical formulations
are proposed, including an MILP problem (P1) that represents equity in the constraints,
an MILP problem (P2) that represents equity in the objective function, and an MILP
problem (P3) that ignores equity as a benchmark, and an MILP problem (P4) where
only consecutive delay equity is considered. Section 3.3 presents a detailed descrip-
tion of the experimental settings, followed by the analysis of the experimental results,
which quantify the trade-off between train delays and delay equity and the key deter-
minants of delay equity. Finally, conclusions are given in Section 3.4.

3.1 Introduction

Railways have developed as vertically-integrated (state-owned) organizations, which
have been the most common structure for the rail sector in most countries, with re-
sponsibility for both the railway infrastructure facilities and train operations (Kurosaki,
2008). Since the 1990s, rail policy regulations in Europe have fostered competition into
the rail transport market. This has led to a vertical separation between infrastructure
management and train operations, the progressive opening up to the market for new op-
erating companies, and the rules regarding the allocation of slots and the pricing of in-
frastructure use, administered by an independent regulator (Nash and Rivera-Trujillo,
2004). Directive 91/440/EC (European Commission, 1991) is one of such policies,

1With minor updates, this chapter has been published in “Luan, X., Corman, F., Meng, L. (2017).
Non-discriminatory train dispatching in a rail transport market with multiple competing and collabora-
tive train operating companies. Transportation Research Part C: Emerging Technologies, 80, 148-174.”
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which forced separation of concerns in the railway transport field, by specifying the
roles of Infrastructure Manager (IM) and Train Operating Companies (TOCs). The
former is in charge of making infrastructure available for both tactical train timetabling
and operational train dispatching, and the latter have economic interests to strive for
increasing ridership. Such policies (e.g., Directive 91/440/EC, European Commission
(1991)) consider competition among TOCs as a key element to achieve efficient oper-
ations. Nevertheless, situations of quasi-monopoly are common, which may result in
discriminatory treatment among different TOCs, in both the tactical train timetabling
and the operational train dispatching. Similar situations exist in China, where passen-
ger trains are generally put in a higher priority in using tracks than freight trains. This
is a rather standard allocation approach, but it seriously affects the interests of freight
TOCs and downgrades the efficiency of the whole system, particularly during pertur-
bations. To protect the legitimate rights and interests of TOCs and to keep an orderly
market, providing non-discriminatory access to rail infrastructure for TOCs is of great
importance, in both planning and operational control levels.

The competitive interaction, concerning equity among multiple TOCs, has been stud-
ied so far mostly from a policy and financing point of view (see Borndorfer et al., 2006;
Harrod, 2013). Those are offline issues addressed during design and strategic planning,
including for instance the equitable allocation of timetable slots. As requested in Di-
rective 2001/14/EC (European Commission, 2001), the access to the rail infrastructure
for all TOCs should be provided in a fair and non-discriminatory manner. This re-
quirement is reflected in the timetable planning process, which follows a sequence of
applications of TOCs for infrastructure capacity, scheduling the requested applications,
coordination of the conflicting requests, (if conflicts still exist, then) declaring the in-
frastructure congested, and employing non-discriminatory priority criteria to allocate
the congested infrastructure. However, the rules for access and use of the infrastructure
during real-time traffic management mainly focus on restoring the normal situation and
do not require a special focus on non-discriminatory actions. Additionally, penalties
may be charged for the actions that disrupt the normal operation, compensation may
be granted for the TOCs that suffer from disruption, and TOCs may be rewarded for
better than planned performance. During online operations, the available capacity can
be reduced by delays and delay propagation, which may result in infeasibility of the
planned train timetables. TOCs only look at maximizing their interests; however, their
interests suffer from the negative consequences of delays, in terms of refund, penal-
ties, and passenger dissatisfaction. The problem we have is then how to allocate this
(reduced) capacity among competing TOCs without favoring any of them, i.e., how to
provide non-discriminatory access to the limited capacity for the competing TOCs.

In fact, few online (i.e., in relation with real operations) approaches are known to ad-
dress this problem. Most existing studies on the traffic control problem focus on min-
imizing the negative impacts of perturbations and pay little attention to discrimination
(which corresponds to delay inequity) among competing TOCs while generating dis-
patching solutions (see the reviews in Section 2.2.1). This brings about the motivation
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of this study, i.e., delivering non-discriminatory train dispatching solutions in order to
protect the rights and interests of TOCs during real-time train dispatching, and filling
the research gap in the literature.

In this chapter, we focus on generating non-discriminatory train dispatching solutions
(or achieving a satisfactory degree of equity while dispatching trains) and on exploring
the aspects related to delay equity (i.e., what impacts on the delay equity and how to
improve the equity of train dispatching). We address the train dispatching problem in
a non-discriminatory way: this means that we use an optimization approach to explic-
itly consider delay equity among multiple competing TOCs or trains, in addition to
minimizing the average (consecutive) train delay time. We consider delay equity as
the degree of homogeneity of the delays faced by different trains, or trains of different
TOCs. An inequitable (or discriminatory) situation occurs when some trains or some
TOCs face much larger delays than other trains or TOCs.

3.2 Mathematical formulation

3.2.1 Notation

Table 3.1 provides the general subscripts, input parameters, and decision variables used
in this chapter.

Table 3.1: General subscripts, sets, input parameters, and decision variables

Symbol Description

Subscripts and sets
V,E,F,U sets of nodes, cells, trains, and TOCs respectively
i, j,k node index, i, j,k ∈V
e cell index, generated by two adjacent nodes i and j, e = (i, j) ∈ E
f train index, f ∈ F , |F | is the total number of trains
u TOC index, u ∈U

Fu set of trains belonging to TOC u, Fu ⊆ F , |Fu| is the total number of trains
belonging to TOC u

E f set of cells train f may use, E f ⊆ E
Input parameters and sets

ϑ f ,i, j free flow running time of train f to drive through cell (i, j)
ε f planned departure time of train f at its origin node
δ

prm
f primary departure delay time1 of train f at its origin node

σ f planned arrival time of train f at its destination node

continued on next page
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continued from previous page

Symbol Description

β f delay cost of train f (per unit time)
wmin

f ,i, j the minimum dwell time for train f on cell (i, j)
g f ,i, j setup time of train f on cell (i, j) between start of cell occupancy and train

arrival (before a train operation)
h f ,i, j clearance time of train f on cell (i, j) between end of train departure and

cell release (after a train operation)
o f origin node of train f
s f destination node of train f
µu the maximum acceptable threshold for delay cost of TOC u

γu
threshold for the maximum allowed deviation between the delay of TOC u
and the average delay of all the TOCs

θ f the maximum tolerable delay time for train f
M a sufficiently large positive number

Decision variables
a f ,i, j arrival time of train f at cell (i, j)
d f ,i, j departure time of train f from cell (i, j)
x f ,i, j binary variable, x f ,i, j = 1, if train f occupies cell (i, j) at some time, and

otherwise x f = 0
y f , f ′,i, j binary variable, y f , f ′,i, j = 1, if train f ′ arrives at cell (i, j) after train f , and

otherwise y f , f ′,i, j = 0
τ f ,i, j travel time of train f on cell (i, j)
δdstn

f total delay time of train f at its destination
δdstnCsc

f consecutive delay time2 of train f at its destination
1. A primary delay is a delay resulting from an incident that directly delays a train.
2. A consecutive delay is a delay resulting from an incident that indirectly delays a train. Consecutive

delay is often seen as a consequence of primary delay.

j
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k

time
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ac
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f,i,ja
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f,j,ka
f,j,kd
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f,k,pd

f,i,jwmin

train f

f,j,kwmin= 0

f,k,pwmin = 0

Figure 3.1: An example to illustrate the arrival, dwell, and departure time vari-
ables of a train on three consecutive cells
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Four types of variables are used to formalize the rerouting and rescheduling decisions:
route selection variables x, train order variables y, arrival time variables a, and depar-
ture time variables d. Specifically, x f ,i, j captures the routing decisions in a rail network,
y f , f ′,i, j describes the detailed train orders, and a pair of variables a f ,i, j and d f ,i, j are in-
troduced to represent both temporal and spatial resource consumption of trains. The
travel time τ f ,i, j is then a consequence of the interaction of all those variables for all
trains in the network, as well as the train delay time, which is denoted as δdstn

f .

Figure 3.1 illustrates the arrival, dwell, and departure time variables of train f on three
consecutive cells (i, j), ( j,k), and (k, p). Train f is required to only stop on cell (i, j),
i.e., wmin

f ,i, j is set to non-zero and wmin
f , j,k and wmin

f ,k,p are zero. As illustrated in Figure 3.1,
the arrival time a f ,i, j is actually the time point when train f enters cell (i, j), and the
departure time d f ,i, j indicates the time point when train f leaves cell (i, j). Moreover,
the time point when train f leaves cell (i, j) should equal the time point when train f
enter the consecutive cell ( j,k), i.e., d f ,i, j=a f , j,k.

3.2.2 Optimization problems

An optimization problem (P1) that represents delay equity of competitors as a set of
constraints, is first presented. The objective function

min Z(P1) =

∑
f∈F

(
β f ·δdstn

f

)
|F |

(3.1)

minimizes the average train delay costs of all trains with respect to all operational and
safety requirements. For each train, the total train delays are considered, including
primary delays at the origin station and consecutive delays encountered by resolving
train conflicts.

The following three constraints:

∑
j:(o f , j)∈E f

x f ,o f , j = 1, ∀ f ∈ F (3.2)

∑
i:(i, j)∈E f

x f ,i, j = ∑
k:( j,k)∈E f

x f , j,k, ∀ f ∈ F, j ∈V\
{

o f ,s f
}

(3.3)

∑
j:(i,s f )∈E f

x f
(
i,s f
)
= 1, ∀ f ∈ F (3.4)

ensure the movement of a train on the network, from its origin node, via the interme-
diate stops, and to its destination node respectively.

The constraint

a f ,o f , j ≥
(

ε f+δ
prm
f

)
· x f ,o f , j, ∀ f ∈ F,

(
o f , j

)
∈ E f (3.5)

guarantees that trains do not leave their origins before the earliest departure time, i.e.,
the sum of the planned departure time and the primary delay time.
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To force the transition of a train within a cell, i.e., the train departure time from a cell
is greater (later) than its arrival time at the same cell, the constraint

d f ,i, j ≥ a f ,i, j, ∀ f ∈ F,(i, j) ∈ E f (3.6)

is proposed.

If two adjacent cells (i, j) and ( j,k) are consecutively used by train f , then we should
ensure that the departure time of train f from cell (i, j) equals its arrival time at cell
( j,k), i.e., d f ,i, j = a f , j,k, formulated as follows:

d f ,i, j = a f , j,k, ∀ f ∈ F, j ∈V\
{

o f ,s f
}
,(i, j) ∈ E f ,( j,k) ∈ E f . (3.7)

The train travel time constraint

τ f ,i, j = d f ,i, j−a f ,i, j, ∀ f ∈ F,(i, j) ∈ E f (3.8)

calculates the travel time of train f on cell (i, j), i.e., the sum of the actual running time
and the dwell time of train f on cell (i, j), denoted as τ f ,i, j. The train travel time here
is actually the time duration for a train staying on a cell.

We use the following constraint

τ f ,i, j ≥
[
ϑ f ,i, j +wmin

f ,i, j

]
· x f ,i, j, ∀ f ∈ F,(i, j) ∈ E f (3.9)

to enforce the required train free-flow running time, as well as the minimum dwell
times at stations. It is worth noting that the minimum dwell time is the time required
to complete the processes of passengers boarding and alighting, goods loading and
unloading, etc. Note that the minimum dwell times are set to zero for cells where train
stops are not required.

The train order variables y f , f ′,i, j and the cell usage variables x f ,i, j are linked by the
following two constraints:

y f , f ′,i, j + y f ′, f ,i, j ≥ x f ,i, j + x f ′,i, j−1,∀ f , f ′ ∈ F, f 6= f ′,(i, j) ∈ E f ∩E f ′, (3.10)

y f , f ′,i, j + y f ′, f ,i, j ≤ 3− x f ,i, j− x f ′,i, j,∀ f , f ′ ∈ F, f 6= f ′,(i, j) ∈ E f ∩E f ′. (3.11)

Specifically, constraints (3.10)-(3.11) make sure that if and only if both trains f and
f ′ traverse the cell (i, j), i.e., x f ,i, j = x f ′,i, j = 1, then both the inequalities reduce to
an equality: y f , f ′,i, j + y f ′, f ,i, j = 1. This equality further indicates that either train f ′

arrives at cell (i, j) after train f or train f arrives at cell (i, j) after train f ′.

For trains f and f ′ on cell (i, j), the train order variables y f , f ′,i, j and y f ′, f ,i, j should
always be smaller than the cell usage variables x f ,i, j and x f ′,i, j, which is formulated as
follows:

y f , f ′,i, j ≤ x f ,i, j, ∀ f ∈ F, f ′ ∈ F, f 6= f ′,(i, j) ∈ E f ∩E f ′, (3.12)

y f , f ′,i, j ≤ x f ′,i, j, ∀ f ∈ F, f ′ ∈ F, f 6= f ′,(i, j) ∈ E f ∩E f ′. (3.13)

With the following two constraints,

a f ′,i, j−g f ′,i, j +
[
3− x f ,i, j− x f ′,i, j− y f , f ′,i, j

]
·M ≥ d f ,i, j +h f ,i, j,

∀ f ∈ F, f ′ ∈ F, f 6= f ′,(i, j) ∈ E f ∩E f ′
(3.14)
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a f ′, j,i−g f ′, j,i +
[
3− x f ,i, j− x f ′,i, j− y f , f ′,i, j

]
·M ≥ d f ,i, j +h f ,i, j,

∀ f ∈ F, f ′ ∈ F, f 6= f ′,(i, j) ∈ E f ,( j, i) ∈ E f ′
(3.15)

we ensure that any pair of trains using one cell in the same or different direction re-
spectively are conflict-free. If two trains are running on the same cell, the successive
train can only access to the cell after the cell is released for the proceeding train.

The total delay time of each train is calculated according to its planned arrival time σ f ,
formulated as follows:

δ
dstn
f = d f ,i,s f −wmin

f ,i,s f
−σ f , ∀ f ∈ F,

(
i,s f
)
∈ E f (3.16)

Recall that the total delay time is the sum of the primary delay time at origin station
and the consecutive delays encountered by solving train conflicts. The consecutive
delay time is later formulated in equation (3.24).

Three parameters µu, γu, and θ f are used in the following two constraints,

∑
f∈Fu

(
β f ·δdstn

f

)
|Fu|

≤ (1+ γu)×
∑

f∈F

(
β f ·δdstn

f

)
|F |

+
µu

|Fu|
, ∀u ∈U (3.17)

δ
dstn
f ≤ θ f , ∀ f ∈ F (3.18)

to ensure that any TOC or train cannot incur too large deviations in delays, compared
with other TOCs or trains. The representations of equity in constraints (3.17) and
(3.18) are inspired from the typical air traffic control (Rios and Ross, 2007; Zhong,
2012). The parameter γu is given as a percentage, e.g., γu = 10% means that TOC u
can take 10% extra delays at most with respect to other TOCs. Parameter µu indicates
a typical punctuality threshold, which can be used to solve the problem on how to
equitably allocate a very small delay (e.g., only ten seconds) to TOCs. For instance,
µu = 10 implies that if the delay cost of TOC u is not greater than 10 seconds, TOC u
is always satisfied, even if other TOCs have no delay costs. In other words, the delay
equity constraints (3.17) will play a role when and only when the delay cost of TOC
u is greater than 10 seconds. For the equity of trains, constraint (3.18) simply requires
that the delay time of train f cannot be greater than θ f . It should be noted that the
input parameter θ f should not be too small to avoid infeasibility of the problem.

We next propose an MILP problem (P2), where the delay equity of the competitors is
represented in the objective function. Some additional parameters and variables used
by the P2 problem are given in Table 3.2.

Three weights λa, λb, and λc are respectively used to balance the importance among the
average delay costs, the equity of competing TOCs, and the equity of trains. The equity
of a TOC is indicated by the deviation of the delays and measured at the aggregated
level of TOCs without considering individual train delays, which can be regarded as
“macroscopic” equity. Instead, the equity of a train refers to the single deviation of
delay at the level of each train, which can be viewed as “microscopic” equity. The
delay cost deviations of TOC u and train f , denoted as ψu and φ f respectively, are
considered as equity indicators in the P2 problem. The maximum delay cost deviation
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variables Ψ and Φ are used to measure the quality of the overall system from the equity
point of view.

Three objectives are considered in the P2 problem, formulated as follows:

min Z(P2) = λa ·
∑

f∈F

(
β f ·δdstn

f

)
|F |

+λb ·Ψ+λc ·Φ (3.19)

to minimize the train delay costs in the first term, and to reduce the delay inequity of
competitors (i.e., TOCs and trains in the second and third terms respectively), while
respecting all operational and safety requirements. Regarding the equity, we consider
the equity of a train for a set of dispatching actions as the biggest (positive) difference
between the average delay cost and the delay cost of each train. Similarly, the equity
of a TOC is measured as the biggest (positive) difference between the average delay
cost at the level of the given TOC and the delay cost of each TOC.

The two constraints

ψu =

∑
f∈Fu

(
β f ·δdstn

f

)
|Fu|

−
∑

f∈F

(
β f ·δdstn

f

)
|F |

, ∀u ∈U (3.20)

φ f = β f ·δdstn
f −

∑
f∈F

(
β f ·δdstn

f

)
|F |

, ∀ f ∈ F (3.21)

calculate to the delay cost deviations of TOCs and trains respectively. The deviation
per competitor (i.e., TOC and train) is calculated by the difference between the delay
cost of each competitor and the average delay cost of all competitors.

Furthermore, the maximum delay cost deviations of TOCs and trains, denoted as Ψ

and Φ, are respectively computed by

Ψ≥ ψu, ∀u ∈U, (3.22)

Φ≥ φ f , ∀ f ∈ F, (3.23)

and they are then minimized in the objective function (3.19). It should be noted that
a same 10 minutes deviation from the original timetable could lead to quite different

Table 3.2: Additional parameters and variables for the P2 problem

Symbol Description

λa, λb, λc weights used in the objective function, for average delay cost of trains,
equity of TOCs, and equity of trains respectively

ψu deviation between the delay cost of TOC u and the average delay cost of
all the TOCs

Ψ the maximum delay cost deviation of all the TOCs
φ f deviation between the delay cost of train f and the average delay cost of

all the trains
Φ the maximum delay cost deviation of all the trains
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result of equity. Let us consider a case that a train arrives 10 minutes early and another
case that a train arrives 10 minutes late. The two cases both result in 10 minutes
deviation of the train from the original timetable, but in the latter case, the train has
less equity as it faces delays. Thus, we do not consider the expected delay time in the
objective function when measuring equity, and so do other optimization problems for
keeping consistency.

In order to provide a benchmark, we further consider an MILP problem (P3) in which
delay equity is completely neglected. The objective function of the P3 problem is
formulated in (3.1), subject to constraints (3.2)-(3.16).

Moreover, the above problems consider both primary delays and consecutive delays
along the routes, i.e., the total delays. As the consecutive delay is the only factor that
can actually be reduced by optimized dispatching, it would be interesting to explore
the impact of minimizing the consecutive delay only on the results. Therefore, we
formulate the consecutive delay δdstnCsc

f as follows:

δ
dstnCsc
f = d f

(
i,s f
)
−σ f −δ

prm
f ∀ f ∈ F,

(
i,s f
)
∈ E f (3.24)

Additionally, equation (3.16) should be replaced by equation (3.24), and the variable
δdstn

f in the objective function (i.e., (3.1) and (3.19)) and constraints (i.e., (3.17)-(3.18)
and (3.20)-(3.21)) should be changed to δdstnCsc

f . This results in an MILP problem
(P4) that includes the objective function (3.19) and constraints (3.2)-(3.15) and (3.20)-
(3.24), by considering consecutive delays only while generating an equitable train dis-
patching solution.

3.3 Case study

3.3.1 Setup

This section provides the description of the experimental settings based on the Dutch
railway network, the generation of train primary delays at their origins, and a scheme
to specify the configuration of each experiment corresponding to each subsection in
Section 3.3.2.

Description of the realistic dataset based on the Dutch railway network

The realistic dataset under consideration refers to a line of the Dutch railway network,
connecting Utrecht (Ut) to Den Bosch (Ht), about 50 kilometers long. The rail net-
work is sketched in Figure 3.2; it is composed of 40 nodes and 42 links, with two
main tracks, divided into one long corridor for each traffic direction and 9 stations.
The two tracks in different directions are independent, so only one direction is consid-
ered, i.e., from Utrecht (Ut) to Den Bosch (Ht). Free-flow running and clear times are
computed microscopically based on the typical speed profiles of trains as in Corman
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origin
destination
intermediate stop

Hto

Ut

Ht
HtnHtncClGdmZbm

Rerouting zone I

Rerouting zone II

Utl

4 intercity train

2 local train

1 freight train

1 freight train

2 local train

1 freight train

2 intercity train

2 local train

Figure 3.2: A realistic experimental network adapted from the Dutch railway
network

et al. (2011b), and rounded to seconds. Three categories of trains are considered: in-
tercity, local, and freight trains, and each of them is associated to a competing TOC:
TOC InterCity, TOC Local, and TOC Freight respectively.

Four global routes (i.e., from Ut to Ht, from Ut to Gdm, from Gdm to Ht, and from Hto
to Ht) are determined, which merge just before Den Bosch (Ht). The routes of intercity,
local, and freight trains are graphically presented in the lower part of Figure 3.2, in
terms of origin, intermediate stops, destination, and the number of trains per hour.
Trains can be overtaken when multiple tracks are present. We consider one hour of
traffic based on a regular-interval timetable, with 15 trains. Local trains stop at all
stations; intercity and freight trains stop only at the origin and destination stations.
The dotted line boxes in Figure 3.2 show two rerouting zones I and II, where trains can
change their usual/planned local routes (tracks).

Primary delays

Each train is given a randomly generated primary delay time δ
prm
f at its origin. We

consider 50 delay cases of the primary delays following a 3-parameter Weibull distri-
bution. We consider 2 options for the delay distribution: different distribution per train
category and same distribution for all trains. If trains have different delay distributions,
the parameters below are used:

• for intercity trains, scale=394, shape=2.27, shift=315;

• for local trains, scale=235, shape=3.00, shift=186;

• for freight trains, scale=1099, shape=2.62, shift=885.

If all trains have the same distribution, they follow the one given to the intercity trains.
The values come from fitting to real life data, as explained in Corman et al. (2011b).
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Experimental schemes

The experiments are denoted with a five-field code <A,B,C,D,E>, as described in
Table 3.3.

The detailed experimental scheme is illustrated in Table 3.4 and the property/parameters
investigated are highlighted. Each experiment corresponds to each subsection of Sec-
tion 3.3.2.

The proposed optimization problems are all solved by CPLEX optimization studio
12.3, on a computer with an Intel(R) Core(TM) i7 @ 2.00 GHz processor and 16GB
RAM. Recall that 50 delay cases of randomly generated primary delays are considered.
The total number of experimental cases equals to 6250.

3.3.2 Experimental results

In this section, we analyze the experimental results with different model and param-
eter settings, in order to identify the key factors that influence equity, followed by a
summary that provides a global view of the models’ performance and related findings.
Possible applications of the proposed optimization approaches in practice are further
discussed in Section 3.3.3.

We report the detailed analysis of the experiments as the average result of 50 delay
cases with randomly generated primary delays, in each row of Tables 3.5 to 3.10, as
well as in each point value of Figures 3.6 to 3.9. Figures 3.3 to 3.5 and 3.10 give
all results of those 50 delay cases, and then show the distribution of the delay cost
deviation for competitors (TOCs or trains), i.e., giving the number of trains with a
certain delay cost. TOCs or trains are identified by different colors in some figures,
i.e., blue for intercity, green for local, and red for freight.

We describe here the contents of the table, which has the same structure as most of the
subsequent tables. The weights vector (λa,λb,λc) represents the weights used in the
objective function of the P2 and P4 problems, e.g., weights vector (1,2,2) means λa=1,
λb=2, and λc=2. Each vector of weights is described by a single Weighting ratio κ

calculated as the equitable weight (the largest one of λb and λc) divided by delay cost
weight (λa). For example, weights vector (10,1,1) results in κ= 1

10=0.1. An increasing
weighting ratio reflects an increasing importance of equity. Computation time is the
required time to find an optimal solution. The average delay cost represents the ob-
jective value of the P1 and P3 problems, and also gives the value of the first objective
portion of the P2 and P4 problems. The delay cost deviation is disaggregated per train
and per TOC. This is the difference between the delay cost for each competitor (TOC
or train) and the average for all competitors (TOCs or trains). The maximum value of
those deviations is considered as equitable objective in the P2 and P4 problems, and
shown as Max deviation of TOCs’ delay cost and Max deviation of trains’ delay
cost in the following tables. A large deviation means less equity. The deviation of
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a competitor can be reduced by decreasing its own delay cost or increasing the delay
cost of others. The average number of delayed trains is the number of delayed trains on
average for the 50 delay cases. Each of the 50 instances considered has 4300 variables
and more than 14000 constraints.

(1) Solutions of scheduling algorithms and optimization methods: the P2 problem
vs. the P3 problem

This subsection quantifies the trade-off between equity and inequity. On top of the
optimization models, we also consider three other scheduling algorithms, i.e., the
well-known FIFO (First-In-First-Out) dispatching rule, common in railway practice,
which simply gives priority to the train arriving first at the current block section; the
FSFS (First-Scheduled-First-Served) rule that follows the train orders of the original
timetable; and the AMCC (Avoid Maximum Current Cmax) rule that consists of forbid-
ding the train orders causing the largest delay at a time, as described in D’Ariano et al.
(2007a). We consider the weights vector of the P2 problem with equity to be (2,3,3) in
this subsection. Moreover, while optimizing, two other objectives are also used, i.e.,
“Punctuality” that focuses on the train punctuality to maximize the amount of punctual
trains and “Min MaxDelay” that considers the severity of train delay to minimize the
maximum train delays.

The results for different scheduling algorithms are reported in Table 3.5. In column
3 of Table 3.5, the computation time is quite small, less than four seconds for all
solutions. Column 4 clearly shows that the average delay cost increases going from
inequitable solutions to “Min MaxDelay” solutions, FIFO solutions, AMCC solutions,
“Punctuality” solutions, FSFS solutions, and equitable solutions. Equity also results in
increasing delays, which can be viewed as a “price of equity” and quantified as (436.04
- 95.59)×15 = 5106.75 seconds for all traffic, in the case with weights vector (2,3,3).

Figure 3.3 shows the distribution of the delay cost per competitor. The X-axis repre-
sents the delay cost of trains and the Y-axis shows the number of trains. The vertical
lines indicate the average delay cost for different scheduling algorithms, viewed as the
reference for computing deviation (equity). When considering equity, the distribution
of the deviation results in a much sharper peak, i.e., all trains have similar delay; while
the other scheduling algorithms might result in smaller average values (i.e., the vertical
reference line) but with a much larger deviation, which reaches as far as 522 seconds
in the FSFS solutions at least and up to 3601 seconds in the “Punctuality” solutions at
most, marked as orange symbols in Figure 3.3. Focus on train punctuality results in
large spread of delays (less equity), as shown in Figure 3.3(d).

Figure 3.4 reports in a similar manner the distribution of the delay cost per TOC (with
intercity, local, and freight trains shown in blue, green, and red respectively), for six
solutions, as labelled. It is evident that the equitable model results in much less de-
viation for all TOCs, while the FIFO and FSFS rules result in a large spread, for all
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Figure 3.3: Distribution of the train delay cost

TOCs. In fact, the FSFS rule results in a slightly larger equity than the other rules,
while a much better (more equitable) solution is found by the equitable model. More-
over, the P2 problem always provides the highest quality of equity, but results in the
largest delay cost.

(2) Comparison of considering equity as a hard/soft constraint: the P1 problem
vs. the P2 problem

We here study the impact of having equity enforced by hard constraints in the P1 prob-
lem, rather than represented as an objective in the P2 problem. A strict requirement
of TOCs’ equity is used as a hard constraint with the following extra parameters: the
acceptable delay cost µu = 60, and the maximum allowed deviation γu = 1% for all
TOCs. Several options of the maximum tolerable delay time θ f for each train are
considered, as listed in the second column of Table 3.6. Unlike other tables, the third
column of Table 3.6 shows the number of feasible solutions among the 50 delay cases.

Table 3.6 reports the main results of the P1 and P2 problems. From the viewpoint of
equity, the solution quality of the P1 problem is not as good as that of the P2 problem,
especially for the trains’ equity in the last column. This mostly depends on the loose
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Figure 3.4: Distribution of the delay cost deviations of trains, shown separately
for different TOCs

setting of the parameters. Setting a more strict value for the maximum tolerable delay
time θ f reduces this problem, but the feasibility cannot be guaranteed for all instances,
as shown in the third column. As shown in column 3, by setting the maximum tolerable
delay time θ f to 600, 38 of the 50 cases are feasible; by setting θ f = 300, only 16
feasible cases can be obtained.

(3) Impact of distribution of primary delays: same distribution vs. different dis-
tribution

This subsection explores the impact of distribution of primary delays. As shown in Ta-
ble 3.7 and Figure 3.5, when primary delays follow the same distribution for all com-
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petitors, a greater equity can be achieved by optimization, even if equity is neglected.
Primary delays following the same distribution decrease the deviation to 36% (for the
TOC’s equity in the P3 problem) or 84% (for the train’s equity in the P2 problem).
This shows the significant effect of the primary delays on equitable operations.

Figure 3.5 reports graphically similar findings: the delay cases following different
distribution result in a larger maximum delay cost deviation (i.e., less equity), as shown
by the red circles. This justifies the intuition that traffic with very heterogeneous delay
dynamics leads to more complex situations and makes the equity more difficult to
achieve.

(4) Sensitivity of the solutions to the relative weights

Recall that we use three weights (λa,λb,λc) to balance the importance of the train delay
cost, the delay equity of competing TOCs, and the delay equity of trains. We here
analyze sensitivity of the solutions to those weights. Several combinations of weights
used in this subsection are reported in Tables 3.3 and 3.4. We basically consider three
cases:

1) considering both TOC’s and single train’s performance with the same value, which
is denoted as weights(,,);

2) considering only TOC’s performance and neglecting train equity, which is denoted
as weights(,,0);

3) considering equity of single train and neglecting equity of TOC, which is denoted
as weights(,0,).

Each vector of weights (λa,λb,λc) is described by a single weighting ratio κ, calculated
as κ = max(λb,λc)

λa
. An increasing weighting ratio reflects an increasing importance of

equity. The impact of the weighting ratio κ on the computation time, average delay
cost, maximum deviation of TOCs’ and trains’ delay cost is shown in Figures 3.6
and 3.7.
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Figure 3.6: Computation time with different weight vectors
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As shown in Figure 3.6, the computation time is quite small (less than half second for
all cases). In comparison, the cases with weights(,,) generally have longer computation
time. Looking at the plots of Figure 3.7(a), the delay cost of trains increases with
weighting ratio κ, and so does equity. When the weighting ratio κ is greater than
1.5, the requirements of equity can be fully satisfied (i.e., the maximum delay cost
deviation is zero). Specifically, when weighting ratio κ changes from 0.50 to 0.60, a
great reduction of the maximum deviation of competitors’ delay cost, i.e., 27% and
100% for trains’ and TOCs’ equity respectively, is achieved. Moreover, as shown in
the red box of Figure 3.7(a), “macroscopic” equity (TOC’s equity) is much easier and
faster to obtain than single train’s equity. When weighting ratio 0.60 ≤ κ < 1.50, the
maximum delay cost deviation of TOCs is zero (i.e., equity is fully achieved), and that
of trains remains anyway large. Considering only TOC’s equity allows to aggregate
over an increasingly large set of trains, and gives more freedom in rescheduling trains.

We next discuss the equity for a single train, or considering only TOC’s equity. To
do so, either weight λb or λc is set to be zero. As shown in Figure 3.7(b), if only
TOC’s performance is considered, the maximum delay cost deviation of trains remains
anyway large. In other words, there is still inequity among trains, but from a TOC point
of view solutions are equitable. When single train’s equity is considered, as reported
in Figure 3.7(c), both the delay cost deviations of TOCs and trains approach zero, i.e.,
the equity of TOCs and trains is both kept well. This means that equity at microscopic
level (i.e., the level of train) implies equity at macroscopic level (i.e., the aggregated
level of TOC).

(5) Comparison of solutions with and without rerouting

On the Dutch railway network that we use, the infrastructure offers a few possibilities
of train rerouting. For each train, a set of local rerouting options is considered that can
be exploited by the optimizer. Figure 3.8 shows that a longer computation time (still
compatible with real-time operations, as the computation time is always less than five
seconds) is needed to find optimized rerouting measures.

In general, train delays and delay equity are conflicting objectives. But if rerouting is
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considered, the delay cost and the maximum delay cost deviations of competitors can
be both reduced at the same time, by a small factor of 7% and 3% for the case with
weights (3,2,2), as shown in Table 3.8. This limited improvement probably depends on
the simple topology of the network (only two possible rerouting zones, see Figure 3.2).

(6) Impact of train delay cost per unit time

We now study the relative importance of mixed traffic by considering different delay
costs per unit time for intercity, local, and freight trains, e.g., equal to 2, 1 and 0.5
respectively. The computation results are shown in Table 3.9. Unlike other tables,
columns 3-5 in Table 3.9 show the average delay time (in purple) and cost (in orange)
for each TOC, and columns 6-7 give the maximum deviation of competitors’ delay
time (in purple) and cost (in orange) (for TOCs and trains respectively).

Figure 3.9 reports the distribution of deviations of competitors’ delay time and cost
respectively (on the X-axis). The Y-axis shows the number of trains. The vertical lines
(zero lines) indicate the average delay time/cost, viewed as the reference of deviation
(equity). The intercity, local, and freight are represented in blue, green, and red re-
spectively. Figure 3.9(a) and (c) show the total distribution, while Figure 3.9(b) and
(d) show the distribution per TOC (in different colors). Figure 3.9(a) and (b) report the
time deviation, while Figure 3.9(c) and (d) report the cost deviation.

TOC Freight faces longer delay time, as its delay cost per unit is the lowest. This is
evident in Figure 3.9(a) and (b). When considering delay cost (and not delay time), in
Figure 3.9(c) and (d), the deviations of trains’ delay cost are more concentrated to the
Y-axis, and the delay costs of three TOCs are quite similar.

(7) Solutions considering only consecutive delays

This subsection studies the P4 problem, which considers only consecutive delays (i.e.,
the sum of the delays encountered by solving train conflicts). Table 3.10 shows the
results with different scheduling algorithms and different weights. Figure 3.10 re-
ports the distribution of delay cost deviations of trains, considering all delay cases and
scheduling algorithms, in an analogous way to Figure 3.3.

Table 3.8: Comparison of solutions with and without rerouting, weights vector
(3,2,2)

Weights vector
(λa,λb,λc)

Computation time
(unit: second)

Average delay cost
(unit: second)

Max deviation of
TOCs’ delay cost

(unit: second)

Max deviation of
trains’ delay cost

(unit: second)

without
rerouting

(3,2,2) 0.36 200.41 0.00 235.63

with
rerouting

(3,2,2) 4.11 187.79 0.00 229.39
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Graphically, the solution of the P4 problem has a smaller spread compared to the other
scheduling algorithms. The average delay cost approaches the value of the FSFS solu-
tion, and is larger than the other scheduling algorithms, but a much smaller deviation is
found, i.e., the equity is improved greatly. What is also interesting is that this model re-
sults in better performances compared to the P2 problem , see Figure 3.3 and Table 3.5.
As marked in orange symbols of Figure 3.10, the maximum delay cost deviations in
this case for the FIFO, and FSFS are respectively 670 and 625 seconds; for the P3
problem the maximum delay cost deviation is 528 seconds, while for the P4 problem
considering equity it is as low as 16 seconds. This phenomenon can be explained by
the fact that consecutive delays are the only factors that can actually be reduced by op-
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timized dispatching. The P2 problem achieves uniform equitable delays for all trains,
but this might mean that if a train is delayed a lot, all other traffic will be delayed by
a similar amount. Focusing on the consecutive delay only, trains will face different
delays (which can be seen as a form of inequity), but the delay incurred in the control
process will be spread more uniformly, with overall smaller delays.

3.3.3 Discussion

(1) Summary of experimental results

We here derive the main conclusions, sketched qualitatively in Figure 3.11 from the
point of view of delay cost (Y-axis) and inequity among competitors (X-axis). The
original timetable (red dot) is assumed to have no delays, and it represents a reference
value for what concerns equity. When delays occur, the FSFS solution (purple dot)
results in high delay costs and large inequity, and so does the AMCC solution (orange
dot). The FIFO solution (associated to equity in air traffic control, pink dot) is relatively
bad for both equity and delays.

When using optimization approaches, the objectives of train delays and delay equity
are in conflict. Traditional “inequitable” optimized dispatching problem (P3, blue dot)
allows to greatly decrease delay costs at the expense of a large inequity (blue dot).
Similarly, the “Min MaxDelay” solution (light blue dot) attains a little higher delay
cost and a little improved equity. The “Punctuality” solution (dark green dot), which
gives priority to the punctual trains and makes the delayed trains face even more delays,
results in the largest inequity. The newly proposed equitable problem (P2) determines
and explores the trade-off between train delays and delay equity. This results in the
black line spanning the entire plot, depending on the weights used, defining the trade-
off between the two performance indicators. Equity of running traffic is improved at

the P2 problem
,

Inequity of 
competitors

Delay cost

FIFO 
solution 

rerouting 
measure is taken

original 
timetable
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Figure 3.11: Overview of solutions obtained by different approaches and schedul-
ing algorithms
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the only expense of larger delay costs, which could be identified a “price of equity”.
In our cases, a weighting ratio κ larger than 1.50 leads to the full satisfaction of equity,
represented as the black dot. The P2 optimization problem performs better than FSFS
(purple dot) and AMCC (orange dot) for both delays and equity: given an equity tar-
get, less delays are found (the vertical dotted line); given a delay target, higher equity
of operations is achieved (the horizontal dotted line). Rerouting (green dot) can im-
prove both performance indicators at once, at the only costs of increased computational
complexity.

Equity is also the result of primary delays faced by trains; similar distributions of
delays (for instance, TOCs competing in the same market, trains of the same category)
result in higher equity. Considering equity at the level of single train performs better
than considering equity aggregated at the level of TOC. The former implies the latter
in our experimental results. The choice for one or the other setting is an interesting
policy issue.

Results are consistently better if equity is considered as an objective in the P2 problem
and not as a constraint in the P1 problem. This latter setting depends on extra param-
eters (i.e., µu, γu, and θ f ) to keep solutions feasible and whose value has to be further
carefully chosen and justified to the stakeholders.

If different delay costs of train categories are considered, equity is associated to limited
deviation (and inequity) in costs, while delay times can still vary. The optimization ap-
proach exploits trains with lower delay costs and delays them more than other trains.
The delay costs can be further adjusted to match the economic value of train punctual-
ity of real operations for different train categories (i.e., the different punctuality targets
of passenger and freight trains).

If only consecutive delays are considered, see the P4 problem, the performance con-
cerning equity is similar to that considering total delays. Anyway, the total delay cost
is smaller compared to the P2 problem. This is due to the fact that primary delays
(over which limited to no control is possible) are not counted in the objective function.
When considering consecutive delays only, trains will face different total delays (that
can be seen as a form of inequity), but the delay incurred in the control process will be
spread more uniformly, and with overall smaller delays.

(2) Possible application of the proposed optimization approaches in practice

In spite of the wish for dispatching trains in a non-discriminatory (equitable) way, only
limited steps forward have been made to ensure this behavior for every single delay
case and instance. According to the result summary in Section 3.3.3, we now pro-
vide some ideas and suggestions for managing railway traffic in a non-discriminatory
fashion, from different viewpoints.

Equitable railway traffic management may suffer some extra delay cost (compared to
traditional dispatching which neglects equity), which can be viewed as the “price of
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Figure 3.12: Illustration of the steps for applying the proposed optimization ap-
proaches in practice

equity”. We found that the “price of equity” depends on the network complexity, the in-
tensity of perturbations, the starting/original timetable and the number of trains in oper-
ation. Exploring and determining an acceptable price of equity is a political/regulatory
choice.

An example of how to practically deal with the gap between system performance and
equity can be seen in Figure 3.12. First, the P2 problem and the P3 problem are simul-
taneously solved with the same dataset, in order to obtain the two extreme solutions
of the equitable case and the inequitable case. If the extra delays associated with eq-
uitable dispatching are acceptable, the equitable solution would be chosen right away.
If instead the extra delays are unacceptable, the equity can be incorporated to a certain
extent only, by using the weighing ratio κ in the optimization; or it can be considered at
the level of TOCs only, and not at the level of individual trains. If only the inequitable
solution with the minimum delays is to be adopted in practice, a last resort would be to
incorporate actions that offset the inequitable traffic. As stated in the Council Direc-
tive 2001/14/EC on the Allocation of Railway Infrastructure Capacity and the Levying
of Charges for the Use of Railway Infrastructure and Safety Certification (European
Commission, 2001), penalty and compensation may be included for actions that dis-
rupt the operation of the network and for TOCs that suffer from disruption respectively.
For instance, the TOCs with less delays may provide compensation to others that have
more delays. The value of compensation can be measured by the difference of delay
cost between the inequitable solution and the absolute equitable solution. This leads to
a typical cooperative game theory setting of redistributing welfare.

The trade-off between system optimum (inequitable solution) and the equitable so-
lution might be large, and sometimes even prescribe traffic to be delayed only for
achieving equity. This behavior might be acceptable only under the strictest applica-
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tion of a non-discriminatory policy, but degrades performance of the system to a large
extent. Defining a threshold for acceptable equity in terms of weighing factors can
provide a balance between the two objectives, or typical multi-criteria decision mak-
ing techniques can be applied. Finally, the resulting equity depends on factors that can
be regulated by policy, such as capacity allocation and the original timetable. An open
challenge for policy makers is how to define timetables that naturally lead to equitable
solutions in practice.

3.4 Conclusions

This chapter has addressed the problem of determining real-time non-discriminatory
(enforcing equity of train traffic against all possible traffic conditions and delays) train
dispatching solutions, where a set of mathematical formulations and comprehensive
experiments have been presented. The non-discriminatory train dispatching problem
has been respectively formulated by a set of constraints in the P1 problem and bia
the objectives in the P2 problem. The performance of the proposed optimization ap-
proaches for non-discriminatory traffic control has been assessed in comparison with
the traditional problem (P3),where equity is neglected, the optimization problems con-
sidering the objective of train punctuality and severity of train delay respectively, and
also with three dispatching rules (i.e., FIFO, FSFS, and AMCC rules), on a case study
adapted from the Dutch railway network. Conclusions made from the experimental re-
sults indicate how to manage railway traffic in a non-discriminatory fashion, from the
policy and practice points of view. We have studied the trade-off between equity and
system performance. According to the experimental results, the optimization problem
(P2) yields better performance than the FIFO, FSFS, and AMCC scheduling rules in
terms of both delays and equity. The minimization of the train delays and the delay
inequity are two conflicting objectives; generally, equity of running traffic is improved
at the expense of larger delays. Similar distributions of the primary delays result in
higher equity. Moreover, considering only the equity of TOCs allows to aggregate
over an increasingly large set of trains and gives more freedom in rescheduling trains.

The future research could focus on the following main extensions. First, complex inter-
locking systems can be incorporated further in the optimization problems, by refining
the concept of cells. This would allow to enlarge the set of routes in station areas, as
well as including more processes at stations, like turn-around or shunting. A second
direction is to study how to best structure the original timetable, with the objective
of ensuring equitable traffic control in operations. This would describe the impact
of the timetable beyond robustness and resilience against small delays in operations
(see Bešinović et al., 2016). The trade-off between equity and heterogeneity of the
timetable should also be explored. Finally, a comprehensive framework can be defined
where equitable planning (capacity allocation) and equitable control can be considered
at once, to reach non-discriminatory operations at system level.



Chapter 4

Integration of traffic control and
preventive maintenance planning1

This chapter addresses the problem of simultaneously scheduling trains and planning
preventive maintenance time slots (PMTSs) on a general railway network. The opti-
mization problem in this chapter is developed based on the flag variables introduced in
Section 2.4.1.

This chapter is organized as follows. Section 4.1 gives a detailed introduction of the
integrated problem of train scheduling and PMTS planning. Section 4.2 presents a
conceptual illustration for interpreting the integration of train scheduling and PMTS
planning. A virtual-train-based formulation technique is introduced in Section 4.3,
followed by an integrated optimization approach for scheduling trains and planning
PMTSs. In Section 4.4, a Lagrangian-relaxation-based solution framework is pro-
posed. Section 4.5 systematically examines the effectiveness and computational effi-
ciency of the proposed optimization approach and algorithms. Conclusions are given
in Section 4.6.

4.1 Introduction

Railway transport plays a crucial role in addressing the ever-growing needs for mo-
bility of population and goods. In order to fulfill the growing demand and achieve
higher competitiveness in a multimodal transport market, the infrastructure needs to
be well-utilized (in terms of a train timetable) to meet passenger and goods transport
demand. Meanwhile, railway infrastructure should be in a good condition (i.e., well-
maintained by means of preventive maintenance (PM)) for ensuring that tracks are in
the appropriate states for running trains. However, performing PM tasks in a time slot

1With minor updates, this chapter has been published in “Luan, X., Miao, J., Meng, L., Corman,
F., Lodewijks, G. (2017). Integrated optimization on train scheduling and preventive maintenance time
slots planning. Transportation Research Part C: Emerging Technologies, 80, 329-359.”
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normally needs a possession of tracks, which implies a complete capacity breakdown
of the tracks; as a result, no train is allowed to run on them during the possession.
Thus, an effective train schedule with joint consideration of PMTS plans is typically
desired, especially for the bottleneck area(s) of a railway network during peak hours.

Train schedules are tactical plans that specify for each train a physical network route
and arrival and departure time at passing stations. PMTS plans define work space and
work time possession for each PM task. The former aim at delivering railway services
to customers, and the latter have the role of supporting railway services by preventing
infrastructure failures. In practice, train schedules and PMTS plans are usually de-
signed separately by different departments and planners. However, the interaction be-
tween those two is critical, as they take possession of infrastructure (utilizing capacity)
competitively. Operating more trains leads to less time slots available for performing
maintenance, and vice versa. The tension is especially high when infrastructure capac-
ity is inadequate, which is the case in many bottleneck areas. When generating a train
schedule (or a PMTS plan), an unavoidable issue is to coordinate with PMTS plans (or
train schedules), by means of simultaneously considering train scheduling and PMTS
planning. Inappropriate coordination would result in inefficient use of capacity and
even conflicts between those two. Moreover, situations of interchange stations on a
railway network would be even more complex. The capacity of an interchange sta-
tion might be underutilized, due to unsynchronized occupancy of PMTSs for different
lines. It is hardly possible to find a timetable with efficiently utilized capacity for trains
and maintenance tasks, if the two tasks (i.e., schedule trains and PMTSs) would not be
simultaneously considered.

In this chapter, we integrate the train scheduling and PMTS planning processes by
means of an optimization approach. With the given demand of trains and PM tasks, we
simultaneously optimize the routes, orders, and departure and arrival times of trains
at passing stations, as well as the work time of PM tasks (i.e., PMTSs). By apply-
ing a flag-variable-based formulation method (introduced in Section 2.4.2), a novel
integrated mixed-integer linear programming (MILP) approach is proposed, to deliver
a globally optimal or satisfactory schedule for both trains and PMTSs with micro-
scopic feasibility details. This means that PMTSs are also scheduled and no longer
pre-determined in the train scheduling process; they are positioned in time so as to have
the best impact. To achieve this integration, a modeling technique is especially pre-
sented that naturally provides an easy formulation method to describe PMTSs as virtual
trains. Complex track capacity is formulated by side constraints and further dualized
in a Lagrangian-relaxation-based solution framework, where the original complex in-
tegrated problem of train scheduling and PMTS planning is decomposed into several
single-train-based subproblems. For each subproblem, a standard label-correcting al-
gorithm is employed for finding the time-dependent least-cost path on a time-space
network. The resulting dual solutions can be transformed to feasible solutions by
adopting priority rules. Numerical experiments are conducted on a small artificial
network and a real-world network adapted from a Chinese railway network, to eval-
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uate the performance (in terms of effectiveness and computational efficiency) of the
integrated optimization approach and the Lagrangian-relaxation-based solution frame-
work. The benefits of simultaneously scheduling trains and planning PMTSs are also
demonstrated, compared with a commonly used sequential scheduling method, which
will be described at the end of Section 4.2.1.

4.2 Conceptual illustration

In this section, integrated scheduling and sequential scheduling of trains and PMTSs
are conceptually illustrated, followed by a problem statement and notations.

4.2.1 Integrated and sequential scheduling of trains and PMTSs

Recall that the train scheduling problem aims at determining routes, orders, and depar-
ture and arrival times for a set of trains such that the resulting train schedule does not
violate capacity and satisfies operational safety. The PMTSs planning problem consid-
ered in this research involves the allocation of time slots for PM tasks in a timetable,
i.e., determine the work time for a set of PM tasks. Note that other maintenance-related
problems, e.g., how often should we perform maintenance to match the deterioration
of infrastructures, are out of the scope of this research.

These two problems are not independent, and the choices taken to solve one of them
heavily influence the other. Less coordination between these two problems would lead
to negative consequences and further affect railway services. The following negative
consequences are seen in practical planning processes, when the train scheduling and
PMTSs planning are separated and not harmonized:

(1) Conflicts: situations where infrastructure resources are requested by a train and a
PMTS in overlapping time periods. Conflicts often occur between train schedules
and PM plans, if there is no interaction between those two scheduling processes.
Such conflicts would result in a potential safety risk and affect safety of passengers
and maintenance workers. This risk forces the planners to accept a sub-optimal
schedule for each individual problem.

(2) Underutilized capacity: situations where potential capacity could be exploited for
operating more trains. Capacity is potentially available, but practically impossible
to be used somewhere else in time or space. This is more critical at interchange
stations where two or more railway lines merge. As illustrated in the upper portion
of Figure 4.1, Line 1 and Line 2 merge at Station X. One PMTS is required for
each line with a duration of three hours. Figure 4.1(a) presents a schedule of trains
and PMTSs for instance, in which the PMTSs’ starting times of the two lines are
at 3 and 6 respectively. This results in a 6-hour unavailable period for Station X.
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Figure 4.1: Un-synchronized and synchronized PMTSs at an interchange station

In such a case, a solution with synchronized PMTSs is preferred, as shown Fig-
ure 4.1(b). Such a synchronization can improve the utilization of capacity, so that
more time slots are available for operating trains and further providing more train
services to customers. Such an underutilization of capacity can be seen in practice,
where it results from the uncoordinated planning. However, this does not imply
that all PMTSs at an interchange station should be performed in overlapping time
periods; the solution varies from case to case and should be optimized from a
global perspective.

(3) Inefficiency of the overall system. The global optimal schedule for some objectives,
like minimizing the total train travel times, is far from easy to achieve, if trains and
PMTSs are sequentially optimized. A schedule with bad quality would further
affect the efficiency of a railway system.

(4) Dissatisfaction of passengers. Due to a lack of coordination, one train may stop
at a station to wait for the end of maintenance works. An increased train travel
time may result in an uncomfortable experience for passengers and further affect
passengers’ satisfaction.

(5) Reduced benefits of train operating companies. Maintenance aims at keeping the
railway production system into a good condition to perform its function. More
capacity used by maintenance implies less capacity available for operating trains.
Inefficient use of capacity impacts the number of trains operated, which would
further reduce the benefits of train operating companies.

For safety reasons, conflicts must be eliminated completely. To deal with this, a se-
quential scheduling method is usually adopted, where PMTSs are pre-scheduled and
considered as input for scheduling trains (e.g., Caprara et al., 2006). Figure 4.2(a) il-
lustrates the sequential scheduling method with two steps: 1) determine PMTS(s); 2)



Chapter 4. Integration of traffic control and preventive maintenance planning 63

a) sequential scheduling method

Step_1: pre-determine PMTS(s) Step_2: schedule trains with pre-determined PMTS(s)

b) sequential scheduling method with enumeration

sc
en

ar
io

_
2

sc
en

ar
io

_
n

-1
sc

en
ar

io
_
n

select the best solution 
among all scenarios

sc
en

ar
io

_
1

best solution

enumerate all possible options with a uniformly spaced starting time of PMTS(s)

co
n
si

d
er

 e
ac

h
 e

n
u
m

er
at

ed
 o

p
ti

o
n
 i

n
 e

ac
h
 s

ce
n
ar

io
n

Figure 4.2: Illustration on the sequential scheduling method

schedule trains given the pre-determined PMTS(s). One possible drawback associated
with such a sequential scheduling method is that the limited options given in the first
PMTSs planning stage could dramatically downgrade the performance of the second
train scheduling solution. The available capacity for trains might be reduced by in-
appropriate PMTS schedules in the first stage, so that the planned trains might not be
able to be scheduled completely and efficiently.

In reality, the pre-scheduled PMTSs may be adjusted according to the feedbacks of
scheduling trains. However, no inspiration is found in the literature to achieve such
a feedback loop, i.e., how to update the pre-determined PMTSs in the first stage (an
interesting future research topic would be to determine smart ways to do that, e.g.,
based on meta-heuristics). For obtaining a sequential solution with better quality, an
enumerative process can be applied, as illustrated in Figure 4.2(b), rather than ran-
domly pre-determining the PMTSs (as shown in Figure 4.2(a)). Several scenarios are
generated by enumerating all possible options with a uniformly spaced starting time
of PMTSs. In each scenario, each option of PMTS starting times is considered, and
we assume that the PMTSs start at the same time on all relevant block sections. A
new train schedule is then generated according to the considered option of PMTSs in
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each scenario. However, the global optimal schedule of trains and PMTSs is not easy
to find, unless all possible options of PMTS plans are enumerated. In fact, it is quite
difficult (sometimes even impossible) to identify and explore all possible options of
PMTSs, especially on a large-scale rail network over a long-term planning horizon.

To implement the sequential scheduling method, we refer to the optimization problem
and algorithm proposed by Meng and Zhou (2014), which is able to simultaneously
retime and reroute trains for generating an optimal train schedule. The cell capac-
ity in the corresponding time periods of the pre-determined PMTSs is set to zero for
representing the track possessions of PM tasks.

Such a sequential scheduling method is able to avoid conflicts (it generates a feasible
schedule of trains and PMTSs) and marginally improves capacity utilization by con-
sidering an enumerative process. However, it can hardly achieve an optimal balance
among utilization of capacity, system-level efficiency, passengers satisfaction, and ben-
efits of train operating companies.In this research, we do not consider any preprocess-
ing step for PMTS plans nor enumerative processes: trains and PMTSs are scheduled
at the same time, in order to systematically search a larger solution space and achieve
an optimal performance of the overall system.

4.2.2 Problem statement and notations

Given a railway network with stations and segments, a set of real trains from pre-
specified origins to destinations and a set of virtual trains implicitly representing PMTSs
over a given planning horizon, the integrated train scheduling and PMTSs planning
problem consists in finding the best incorporation between trains and PMTSs, simul-
taneously determining train aspects (i.e., the orders, routes, and departure and arrival
times of trains) and maintenance aspects (i.e., the work-space, work-time, and shape1).
In our integrated optimization problem, the following inputs are considered: 1) a plan-
ning horizon T , in which trains and PMTSs are scheduled; 2) a railway network with
stations and segments, which are further modeled as a sequence of nodes and cells;
3) a set of virtual trains (representing PMTSs, i.e., a set of PM tasks for railway lines
or segments) with their origins and destinations (associated with the work-space of
PMTSs), safety headway times (associated with the duration of PMTSs), and the mini-
mum and maximum dwell times (associated with the shape of PMTSs); 4) a set of real
trains with their origins, destinations, earliest departure times, preferred arrival times,
free-flow running times over cells, and safety headway times. Note that the free-flow
running times of trains over the cells are computed based on the planned speed profile,
which can in general be different for each train. A fixed speed profile model is used in
this research, as common in the train scheduling studies.

1There are two common shapes of PMTSs: rectangle or stairway. If the starting times of PM tasks
on a sequence of block sections are same, as well as the end times, then the blockage of the PM tasks on
a time-space graph will result in a rectangle shape. If there are spaced starting times for the PM tasks
on a sequence of block sections, then it will show a stairway shape on a time-space graph.
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Table 4.1 gives the general subscripts, sets, input parameters, and decision variables of
the proposed optimization approach.

Table 4.1: General subscripts

Symbol Description

Subscripts and sets
N set of nodes
E set of cells
T planning horizon
R set of real trains
V set of virtual trains (PMTSs), |V | is the total number of virtual trains
F the total set of real and virtual trains, F = R∪V
i, j,k node index, i, j,k ∈ N
e cell index, generated by two adjacent nodes i and j, e = (i, j) ∈ E
t scheduling time index, t ∈ {1, ...,T}
r real train index, r ∈ R
v virtual train index, i.e., preventive maintenance time slot (PMTS) index,

v ∈V
f train index, f ∈ F
E f set of cells train f may use, E f ⊆ E
ES set of cells corresponding to stations on railway network, ES ⊆ E

Input parameters and sets
o f origin node of train f
s f destination node of train f
σ f ,i, j free-flow (minimum) running time of train f to drive through cell (i, j)
δmin

f ,i, j minimum dwell time for train f on cell (i, j)
δmax

f ,i, j maximum dwell time for train f on cell (i, j)
Ci, j,t flow capacity on cell (i, j) at time t, set to be 1 by default
qr the ideal arrival time of real train r at its destination node
gr,i, j safety headway time between cell occupancy and arrival of real train r

on cell (i, j)
hr,i, j safety headway time between departure of real train r on cell (i, j) and

cell release
wv,i, j safety headway time (pre-blockage time interval) of virtual train v on cell

(i, j), i.e., duration of PMTS corresponding to virtual train v on cell (i, j)
Decision variables

a f ,i, j,t binary(flag) arrival variable, a f ,i, j,t = 1 if train f has already arrived at
cell (i, j) by time t, and otherwise a f ,i, j,t = 0

d f ,i, j,t binary(flag) departure variable, d f ,i, j,t = 1 if train f has already departed
from cell (i, j) by time t, and otherwise d f ,i, j,t = 0

continued on next page
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continued from previous page

Symbol Description

y f ,i, j,t binary time-space occupancy variable, y f ,i, j,t = 1, if train f occupies cell
(i, j) at time t, and otherwise y f ,i, j,t = 0

x f ,i, j binary train routing variable, x f ,i, j = 1 if train f selects cell (i, j) on the
rail network, and otherwise x f ,i, j = 0

τ f ,i, j travel time of train f on cell (i, j)

Cells in the set E f that train f may use must be consecutive and connect origin node
o f to destination node s f . Cells used to represent stations on the railway network are
contained in the set ES. Each train f has a free-flow (minimum) running time ϑ f ,i, j,
minimum dwell time δmin

f ,i, j, and maximum dwell time δmax
f ,i, j from node i to j. Each

cell (i, j) has a flow capacity Ci, j,t that indicates how many trains are allowed on cell
(i, j) at time step t. The flow capacity Ci, j,t normally defaults to one, which means
that only one train is allowed on any cell at any time. Each real train is assigned an
ideal timetable, and qr is the ideal arrival time of real train r at its destination node.
Train movements are separated by a safety headway time interval, which depends on
the train length, speed, and route chosen. The parameters gr,i, j and hr,i, j are introduced
to present cell pre-blockage time and post-release times for real trains. The parameter
wv,i, j is the safety headway time (pre-blockage time interval) of virtual trains, which
corresponds to the durations of PMTSs.

Four types of variables are used to formalize the routing and scheduling decisions: de-
parture time variables d, arrival time variables a, cell occupancy variables y, and route
selection variables x. Specifically, x f ,i, j captures the routing decisions on a rail net-
work, y f ,i, j,t describes a detailed train route through the extended time-space network,
and the pair of flag variables a f ,i, j,t and d f ,i, j,t represent both temporal and spatial
resource consumption of trains. The travel time τ f ,i, j is then a consequence of the
interaction of all those variables for all trains on the network.

We make the following assumptions: (1) each train is represented by a point (with
length 0) ; (2) train acceleration and deceleration processes are not considered; (3)
for a double-track railway segment between two stations, each track is modeled as a
sequence of directional cells (i.e., directional block sections), and for a single-track
railway segment, the only track between two stations is modeled as bi-directional cells
(i.e., bi-directional block section); (4) every station is simplified to a number of main
and siding track(s), which can be further modeled as a single cell or a set of cells; (5)
the granularity of time is one minute; (6) only one real train is permitted on a cell at any
given time, and a real train and a virtual train (representing a PMTS) cannot occupy a
cell at the same time. However, a cell can be used by more than one virtual train, since
two maintenance works can be performed at once.
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4.3 Mathematical formulation

In this section, a virtual-train-based formulation technique is first presented to describe
cell reservation and occupancy of trains and PMTSs simultaneously, based on the flag-
variable-based formulation method introduced in Section 2.4.2 for handling spatial oc-
cupancy and safety headway constraints. We then formulate the integrated optimiza-
tion problem of train scheduling and PMTS planning on a general railway network
based on the proposed virtual-train-based formulation.

4.3.1 Virtual-train-based formulation

In a train timetable, the interaction of trains and PMTSs can be considered as an al-
location of cell capacity. In other terms, maintenance can be regarded as a kind of
activity carried out on cells, as train movement is. Thus, we propose a virtual-train-
based formulation technique, where each PMTS is represented by a virtual train with
a specifically designed safety headway wv,i, j.

For instance, as illustrated in Figure 4.3, the PMTS for cell (i, j) is represented by
a virtual train v. In this figure, the cell pre-blockage parameter wv,i, j is 50 minutes,
which implies 50 minutes duration of the PMTS on cell (i, j), corresponding to the
pink rectangle in Figure 4.3. The running time of a virtual train is set to 0 in any case.
The running time has no effect on the duration of PMTS, and only the safety headway
time (pre-blockage time interval) of a virtual train has.

Table 4.2 lists some properties of real trains, virtual trains, and PMTSs. The proper-
ties of virtual trains reflect the corresponding properties of PMTSs, which should be
considered while formulating PMTSs.

As listed, some similarities are found between real trains and virtual trains, namely the
origin and destination are pre-specified, and dwell time ranges from the given mini-
mum value to the maximum value. It is worth noting that the minimum dwell time
of a real train is the required time to complete the processes of passengers board-
ing/alighting, goods loading/unloading, etc. In this research, the maximum dwell time
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Figure 4.3: Illustration of the virtual-train-based formulation technique
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is used to avoid unpermitted stops of trains, e.g., if a train is required to stop only at its
origin and destination, then the maximum dwell times at intermediate stations are set
to zero. However, the minimum and maximum dwell times of virtual trains are used to
shape PMTSs. The differences between real trains and virtual trains are as follows: (1)
the routes of real trains are optimized, and routes of virtual trains (i.e., a set of sections
to be maintained, but their relative order is free) are fixed input; (2) the running times
of real trains over cells cannot be less than the free-flow running times, and those of
virtual trains are set to zero; (3) the safety headways of real trains are relative small
(e.g., 2 minutes), and those of virtual trains are much larger (e.g., 50 minutes); and
(4) regarding the cell occupancy, a cell can be occupied by more than one virtual train
at the same time, since PM works can be performed simultaneously at an interchange
station connecting two or more lines.

The formulation techniques used in this research have significant advantages to achieve
the integration of train scheduling and PMTSs planning. The flag-variable-based rep-
resentation enables many unique formulation features. First, it can easily capture the
complex safety headway constraints on a general rail network at the microscopic level,
with or without a pre-determined train route, by reformulating the temporal and spa-
tial resource occupancy of trains. Second, it can flexibly describe the properties of
different types of trains (i.e., real train and virtual train) on each cell at any time,
and it further provides the possibility of scheduling trains and PMTSs simultaneously
through a virtual-train-based formulation technique. Third, it enables an efficient prob-
lem decomposition mechanism by trains, while each subproblem is relatively simple to
solve on an extended time-space network. Note that the problem decomposition mech-
anism used by the Lagrangian-relaxation-based solution algorithm will be detailed in
Section 4.4. Furthermore, thanks to the virtual-train-based formulation technique, the
problem decomposition mechanism by trains has strong applicability for the integrated
problem of scheduling trains and planning PMTSs, since PMTSs are viewed as virtual
trains, whose properties can be classified into the same categories with that of real
trains.

4.3.2 Optimization problem

We assign to each real train an ideal timetable, which would be the most desirable
timetable for the real train (e.g., the Periodic Service Intention of Caimi et al., 2011).
However, the given timetable may be modified to satisfy the safety or operational re-
quirements. We now propose the integrated optimization problem of train scheduling
and PMTS planning, denoted as the P1 problem. The objective function is formulated
as follow:

min ZP1 = ∑
r∈R

∑
(i,sr)∈ES

∣∣∣∣∣ ∑
t=1,...,T

t · [dr,i,sr,t−dr,i,sr,t−1]−qr

∣∣∣∣∣ (4.1)

to minimize the sum of the absolute arrival time deviations of real trains at destinations
between the ideal and actual timetables. For the PMTSs, no desired work time is given;
so they are not considered in the objective function.



70 TRAIL Thesis series

The following three constraints:

∑
j:(o f , j)∈E f

x f ,o f , j = 1, ∀ f ∈ F, (4.2)

∑
i:(i, j)∈E f

x f ,i, j = ∑
k:( j,k)∈E f

x f , j,k, ∀ f ∈ F, j ∈ N\
{

o f ,s f
}
, (4.3)

∑
j:(i,s f )∈E f

x f ,i,s f = 1, ∀ f ∈ F, (4.4)

are used to ensure the flow balance of train f on the rail network, at origin, intermedi-
ate, and destination nodes respectively. Each train f has to choose one and only one
route that connects its origin to its destination. Recall that the route is optimized for
real trains, but pre-determined for virtual trains (PMTSs).

The transition of train f within cell (i, j) is enforced by

d f ,i, j,t ≤ a f ,i, j,t , ∀ f ∈ F,(i, j) ∈ E f , t = 1, ...,T, (4.5)

i.e., the flag departure variable cannot be larger than the flag arrival variable for train f
on cell (i, j) at time t.

If two adjacent cells (i, j) and ( j,k) are consecutively used by train f , then the de-
parture time of train f from cell (i, j) should equal its arrival time at cell ( j,k), i.e.,
d f ,i, j,t = a f , j,k,t , which is forced by

∑
i:(i, j)∈E f

d f ,i, j,t = ∑
k:( j,k)∈E f

a f , j,k,t , ∀ f ∈ F, j ∈ N\
{

o f ,s f
}
, t = 1, ...,T. (4.6)

We use the constraint

x f ,i, j = a f ,i, j,T , ∀ f ∈ F,(i, j) ∈ E f (4.7)

to link the variable a f ,i, j,t of the time-space network with the variable x f ,i, j of the
physical network, in order to formulate whether cell (i, j) is selected by train f for
traversing the network from its origin to destination.

The train travel time constraint
τ f ,i, j = ∑

t=1,...,T
t ·
[
d f ,i, j,t−d f ,i, j,t−1

]
− ∑

t=1,...,T
t ·
[
a f ,i, j,t−a f ,i, j,t−1

]
∀ f ∈ F,(i, j) ∈ E f

(4.8)

computes the actual travel time τ f ,i, j of train f on cell (i, j).

The constraints

τr,i, j ≥
[
δ

min
r,i, j +σr,i, j

]
· xr,i, j, ∀r ∈ R,(i, j) ∈ Er (4.9)

τr,i, j ≤
[
δ

max
r,i, j +σr,i, j

]
· xr,i, j, ∀r ∈ R,(i, j) ∈ Er (4.10)

ensure that the train travel time τ f ,i, j satisfies the required free-flow running time, as
well as the minimum and maximum dwell times at stations.

The flag arrival variable a f ,i, j,t and flag departure variable d f ,i, j,t have a non-decreasing
behavior as a function of time t. Thus, if train f has arrived at or departed from cell
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(i, j) by time t, then the variables will have a value of 1 for all later time periods t ′ ≥ t,
as formulated by

a f ,i, j,t−1 ≤ a f ,i, j,t , ∀ f ∈ F,(i, j) ∈ E f , t = 1, ...,T, (4.11)

d f ,i, j,t−1 ≤ d f ,i, j,t , ∀ f ∈ F,(i, j) ∈ E f , t = 1, ...,T. (4.12)

In comparison with the optimization problem proposed by Meng and Zhou (2014),
the following constraints (4.14)-(4.17) are newly proposed, in order to simultaneously
schedule real trains and virtual trains (PMTSs).

The running time of virtual train v on cell (i, j) is set to 0, which is forced by

τv,i, j = 0, ∀v ∈V,(i, j) ∈ Ev. (4.13)

The free-flow running time for all virtual trains is set to 0; thus, in order to guarantee
the duration of PMTSs on their origin cells, a virtual train v is not allowed to depart
from its origin earlier than the given time wv,ov, j, which is formulated as follows:

∑
t=1,...,T

t ·
[
av,ov, j,t−av,ov, j,t−1

]
≥ wv,ov, j, ∀v ∈V,(ov, j) ∈ Ev, (4.14)

The constraints

yr,i, j,t =


ar,i, j,t+gr,i, j , if 1≤ t < hr,i, j +1
ar,i, j,t+gr,i, j −dr,i, j,t−hr,i, j , if hr,i, j + t = 1, ...,T −gr,i, j

1−dr,i, j,t−hr,i, j , if T −gr,i, j < t ≤ T
∀r ∈ R,(i, j) ∈ Er

(4.15)

yv,i, j,t =

{
av,i, j,t+wv,i, j −dv,i, j,t , if t = 1, ...,T −wv,i, j

xv,i, j−dv,i, j,t , if T −wv,i, j < t ≤ T
∀v ∈V,(i, j) ∈ Ev

(4.16)

draw the relation between the cell blockage variable y f ,i, j,t and the flag arrival and flag
departure variables, i.e., a f ,i, j,t and d f ,i, j,t , for real trains r ∈ R and virtual trains v ∈V
respectively.

The cell capacity constraint
∑

v∈V :(i, j)∈Ev
yv,i, j,t

|V | + ∑
r∈R:(i, j)∈Er

yr,i, j,t + ∑
r′∈R:( j,i)∈Er′

yr′, j,i,t ≤Ci, j,t ,

∀(i, j) ∈ E, t = 1, ...,T
(4.17)

explicitly ensures that the number of trains occupying cell (i, j) is less than the capacity
of cell (i, j), which defaults to 1. It should be noted that the occupancy of the cell
from i to j should also be counted into the occupancy of the cell from j to i by train
f for bi-directional traffic, and vice versa, as cell (i, j) and ( j, i) essentially refer to
one physical track circuit. Moreover, a cell is allowed to be occupied by more than
one virtual train at any time, because the maintenance tasks for different lines can be
implemented simultaneously at an interchange station. The mean cell occupancy rate
of virtual trains is used to indicate that there is always no conflict between virtual trains,
since the mean occupancy rate cannot be greater than 1 (i.e., the default value of cell
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capacity Ci, j,t) in any case and will be greater than 0 if any virtual train is running on
the cell. This cell capacity constraint is specially designed for the integration of train
scheduling and PMTSs planning, which differs from the capacity constraints used by
Meng and Zhou (2014).

The P1 problem is an MILP problem, including the objective function (4.1) and the
constraints (4.2)-(4.17). By dealing with the integration of the train scheduling and the
PMTS planning, the complexity of the P1 problem increases, which makes the problem
difficult to solve.

4.4 Lagrangian-relaxation-based solution framework

This section aims to solve the proposed optimization problem (P1), which incorporates
the PMTS planning into the train scheduling, through a Lagrangian-relaxation-based
solution framework. Complicating constraints in the P1 problem are first dualized,
which results in a relaxed problem (PLR). The PLR problem is further decomposed into
a sequence of single-train-based (for either real trains or virtual trains) subproblems,
which are solved by a time-dependent least-cost path algorithm. The Lagrangian-
relaxation-based solution framework used in this research can help constructing a
lower bound and provide a good base solution for generating feasible solutions with
valid upper bounds. The subgradient method is used to update Lagrangian multipliers.
We then detail the overall Lagrangian-relaxation-based solution framework and the
underlying label correcting algorithm for solving the time-dependent least-cost path
problem, as well as the priority-rule-based method for transforming dual solutions to
feasible solutions.

4.4.1 Dualizing complicating constraints

The constraints in the P1 problem can be divided into two categories, i.e, easy con-
straints and difficult constraints. The former category includes constraints (4.2)-(4.16),
because each of them is only directly associated with an individual train. The latter cat-
egory contains the cell capacity constraint (4.17), which is generally difficult to solve,
reflecting the interaction of all trains on the same cell.

We introduce a set of non-negative Lagrangian multipliers αi, j,t for dualizing the cell
capacity constraint (4.17). The Lagrangian relaxation problem (PLR) can be described
with a penalty term as follows:

min Z(PLR) = ∑
r∈R

∑
(i,sr)∈ES

∣∣∣∣∣ ∑
t=1,...,T

t · [dr,i,sr,t−dr,i,sr,t−1]−qr

∣∣∣∣∣+
∑

(i, j)∈E
∑

t=1,...,T
αi, j,t ·

[
∑

v∈V
yv(i, j,t)

|V | + ∑
r∈R

yr,i, j,t + ∑
r′∈R

yr′, j,i,t−Ci, j,t

]
,

(4.18)

subject to constraints (4.2)-(4.16).
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The multipliers αi, j,t can be interpreted as the cost charged for using cell (i, j) at time t.
Essentially, the major goal of the Lagrangian function is to balance the total train devi-
ation from the ideal timetable and the cost for using limited resources (cells) through
paying appropriate resource usage prices. It is worth noting that constraints (4.2)-
(4.16) can be easily solved in an extended time-space network, which can be derived
from the physical network. Specifically, they can be modeled by cell traveling arcs,
waiting arcs, and dummy arcs. The method that we use to construct the extended
time-space network is same as the one proposed by Meng and Zhou (2014). Interested
readers may refer to this reference for more details.

4.4.2 Problem decomposition

By re-grouping the variables in (4.18), we can get the following Lagrangian dual prob-
lem:

max
αi, j,t≥0

ZLR =− ∑
(i, j)∈E

∑
t=1,...,T

αi, j,t ·Ci, j,t +minLRr +min
LRv

|V |
, (4.19)

where

LRr = ∑
(i,sr)∈ES

∣∣∣∣∣ ∑
t=1,...,T

t · [dr,i,sr,t−dr,i,sr,t−1]−qr

∣∣∣∣∣+ ∑
(i, j)∈E

∑
t=1,...,T

αi, j,t · yr,i, j,t , (4.20)

LRv = ∑
(i, j)∈E

∑
t=1,...,T

αi, j,t · yv,i, j,t . (4.21)

The original problem is then separated into a sequence of single train (either real train
or virtual train) optimization subproblems, and the inner minimization problem is con-
cerned with the sum of LRr for all real trains and the mean of LRv for all virtual trains.
In the decomposed subproblem LRr, the deviation time of a real train r (i.e., the first
portion of (4.20)) is expressed as the sum of the absolute deviation between the arrival
time of real train r at its destination and the corresponding ideal arrival time. The
resource price of a real train r or a virtual train v (i.e., the second portion of (4.20)
or (4.21)) for traversing the network from its origin to its destination is computed by
summing αi, j,t over all selected cells within associated time spans.

With a given set of resource prices, we aim at finding the least-cost path of a train
from its origin to its destination. As a result, the single-train-based subproblems are
now transformed to a sequence of time-dependent least-cost path problems. Those
problems seek to find the best resource utilization scheme for each train, subject to
constraints (4.2)-(4.16), which restrict the possible paths in the time-space network.

By dualizing the complicating capacity constraint, the whole problem can be decom-
posed into several subproblems, and each subproblem corresponds to a real train or a
virtual train (PMTS). The nature of the LR subproblems is still MILP problems, and
we solve them by using a time-dependent least-cost path algorithm.
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4.4.3 Sub-gradient method for updating Lagrangian multipliers

Since the dual cost function (4.19) is not differentiable everywhere, a standard sub-
gradient method is used to update the multipliers αi, j,t . The resource usage prices are
iteratively updated by

α
u+1
i, j,t = max

{
0,αu

i, j,t +λu ·
[

∑
v∈V

yv,i, j,t

|V | + ∑
r∈R

yr,i, j,t + ∑
r′∈R

yr′, j,i,t−Ci, j,t

]}
(4.22)

where the superscript u is the iteration index used in the dual updating procedure; αu
i, j,t

and λu denote the cell multiplier value and step size at iteration u respectively. In
the optimum search process, the step size parameter is updated as λu = 1

u+1 , which
is commonly-used. If a resource has not been used within several recent iterations,
the algorithm automatically resets the price of the unused resource back to zero. With
this dynamic generating scheme, the set of Lagrangian multipliers is updated along
the iterative process, and the multi-dimensional resource price vector can be relatively
easily stabilized.

4.4.4 Priority-rule-based algorithm

For generating a feasible solution at each iteration, a priority-rule-based algorithm is
used for transforming a dual solution into a feasible solution. The schedule of trains is
computed in a sequential manner according to train priorities, which are dynamically
determined by the Lagrangian profits, i.e., the ratio of total free-flow travel time divided
by expected total travel time for real trains in the dual solution. Note that the free-flow
travel time of virtual trains is 0, so that the way used for real trains to compute the
Lagrangian profit would always give an answer of 0. Thus the Lagrangian profit of
virtual trains is randomly generated. The algorithm is described by the following three
steps:

Step 1. Train priority ranking

Rank trains by decreasing values of Lagrangian profits. The Lagrangian
profit of real trains is the ratio of the total free-flow travel time divided by
the total travel time in the dual solution, and that of virtual trains is randomly
generated.

Step 2. Scheduling trains (including real train and virtual train) one by one

(1) schedule the train f with the highest priority by applying the time-dependent
least-cost path algorithm. If a status of infeasibility occurs, a warning will
be given.

(2) fix the routes and departure and arrival times at passing stations for train
f , and record the capacity usage of train f on the railway network.
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(3) if all trains have been scheduled, move to Step 3, otherwise, loop to Step
2.

Step 3. Update and output the upper bound

(1) compute the objective value of the heuristic solution obtained in Step 2.

(2) update the upper bound by using the obtained objective value, if the cur-
rent global upper bound is greater than the objective value and the given
planning horizon is not exceeded.

(3) output the train routes and train departure and arrival times at passing
stations, and the updated upper bound in the current iteration.

It should be remarked that using the time-dependent least-cost path algorithm to sched-
ule a real train, a plan (including the train departure time, arrival time, and route) with
the minimum deviation time from the ideal timetable for the real train is found ac-
cording to the given or updated set of resource prices. When scheduling a virtual train
(PMTS), the time-dependent least-cost path algorithm is to search the available time
slots for performing the PM task with respect to the given or updated set of resource
prices. As no desired work time is required for the PMTS, the algorithm takes pos-
session of the available time slot found first for the scheduled PMTS. Moreover, the
planning horizon should be carefully chosen and appropriate for the planned trains and
PMTSs. If a status of infeasibility occurs, a warning will be given by the algorithm.

4.4.5 Overall Lagrangian-relaxation-based solution framework

The Lagrangian-relaxation-based solution framework is illustrated in Figure 4.4.

Input: identical to the input of the P1 problem

Output: dual solutions of the PLR problem, feasible solutions of the P1 problem, and
the corresponding optimality gap ε.

Step 1. Initialization
Let u = 1, initialize the multipliers α1

i, j,t = 0, step size λ1 = 0.5, local lower
bound z1

LB = 0, global lower bound Z1
LB = 0, local upper bound z1

UB = 0, and
global upper bound Z1

UB = 0.

Step 2. Solving the relaxed problem (PLR)
(1) solve the subproblems LRr and LRv of the PLR problem by a time-dependent
least-cost path algorithm, which is equivalent to the one proposed by Meng
and Zhou (2014);
(2) compute the local lower bound of the PLR problem for the current iteration
u, denoted by zu

LB, then update global lower bound by

Zu
LB =

{
z1

LB, if u = 1

max
{

zu
LB,Z

u−1
LB

}
, if u > 1.

(4.23)
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Figure 4.4: Illustration of the Lagrangian-relaxation-based solution framework

Step 3. Transforming dual solutions to feasible solutions
Use the priority-rule-based algorithm introduced in Section 4.4.4 to transform
the dual solutions into feasible solutions of the P1 problem, and compute the
upper bound of the PLR problem for the current iteration u, denoted by zu

UB,
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then update global upper bound by

Zu
UB =

{
z1

UB, if u = 1

min
{

zu
UB,Z

u−1
UB

}
, if u > 1

(4.24)

Step 4. Computing optimality gap ε

Compute the optimality gap εu between Zu
LB and Zu

UB for the current iteration
u, i.e., εu =

Zu
UB−Zu

LB
Zu

UB
.

Step 5. Updating Lagrangian multipliers
Update the Lagrangian multipliers for the next iteration u+1 by (4.22) and let
u = u+1.

Step 6. Termination condition
The algorithm will be terminated if one of the following conditions are satis-
fied:
(1) u−1 >Umax, the current iteration u−1 is larger than the given maximum
iteration Umax;
(2) εu < ε∗, the current optimality gap εu is smaller than the expected gap ε∗;
(3) Zu

UB = Zu−κ

UB , the global upper bound Zu
UB has not improved for a given

number of iterations κ.
Otherwise, loop to Step 2.

4.5 Case study

This section first presents the description of two experimental networks under consid-
eration, i.e., an artificial network and a real-world network adapted from a Chinese
railway network, followed by the computational results of the integrated optimization
problem (P1) and the Lagrangian-relaxation-based solution framework. All the follow-
ing experiments are performed on a computer with an Intel R©CoreTM i7 @ 2.00 GHz
processor and 16GB RAM.

4.5.1 Setup

(1) Description of the artificial network

We first adopt an artificial network, as shown in Figure 4.5, with 2 lines and 1 station,
which consists of 32 nodes and 36 cells. Double-track Line 1 merges with single-track
Line 2 at Station X, which is represented by nodes (16, 17, 18, 19) and (23, 22, 21,
20) and designed with 1 siding track for each direction, i.e., cell (17, 18) and (22, 21),
where trains may stop.

The directionality (up/down) of each cell is marked in Figure 4.5, and the capacity of
each cell is set to 1. For all cells, the minimum dwell time and the safety headway
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Figure 4.5: An artificial experimental network

Table 4.3: Data for the artificial network

ID
Origin

(O)
Destination

(D)
Preferred departure time
window (unit: minute)

Ideal arrival time
(unit: minute)

Free-flow running
time (unit: minute)

Safety headway
(unit: minute)

Trains

train 1 2 33 [0,T ] 15

1 g=1 h=2

train 2 37 6 [0,T ] 16
train 3 37 4 [0,T ] 18
train 4 33 6 [0,T ] 18
train 5 6 33 [0,T ] 19
train 6 6 35 [0,T ] 16
train 7 2 35 [0,T ] 65
train 8 37 4 [0,T ] 55
train 9 33 4 [0,T ] 65

train 10 6 35 [0,T ] 62
train 11 37 4 [0,T ] 75
train 12 2 33 [0,T ] 72
train 13 37 6 [0,T ] 83
train 14 33 4 [0,T ] 80
train 15 6 33 [0,T ] 93
train 16 37 4 [0,T ] 95
train 17 2 35 [0,T ] 98
train 18 33 6 [0,T ] 100
train 19 37 6 [0,T ] 110
train 20 6 35 [0,T ] 115

PMTSs
PMTS 1 2 35 – – 0 w=29
PMTS 2 6 33 – – 0 w=29

Planning horizon T 50, 80, 100, 150, 200 Minimum and maximum dwell time on cell (17, 18) and (22, 21) 0 (min), 40 (max)

times g and h are set to 0, 1 and 2 minutes respectively. We consider 20 trains (namely
train 1, ..., train 20) and 2 PMTSs (i.e., virtual trains PMTS 1 and PMTS 2 for the
up direction of Line 1 and Line 2 respectively). The data for this artificial network is
given in Table 4.3, including the origin, destination, free-flow running time, and safety
headway time for each train and PMTS.

(2) Description of a realistic network: a Chinese railway network

The realistic case study used in this chapter refers to part of a Chinese railway network.
The complex railway network is sketched and shown in Figure 4.6(a). There are 5
stations, namely station W, N, E, S, and M, with at least 2 platforms and up to 17
platforms. The network is composed of 454 nodes and 513 cells, with 2 main double-
track lines, merged at station M.

A total of 21 trains that run in a given planning horizon T (400 minutes, which is
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Figure 4.6: A realistic network adapted from a partial Chinese railway network

large enough for the planned trains and PMTSs) are first scheduled over the whole
network, meanwhile 2 PMTSs are planned, as shown in Figure 4.6(b). Seven global
(bi-)directional O-D pairs (i.e., pairs [M↔W], [M↔E], [W↔N], [W↔E], [N↔S],
[N↔E], and [E→S]) are determined. The number of trains operated is labeled at the
origin for each O-D pair. Note that Figure 4.6(b) briefly sketches the global O-D pairs
and does not give the exact routes in stations, which implies that multiple options of
routes are provided for each train. For instance, the train traversing from station E to
S has another rerouting option shown as the pink dashed line of Figure 4.6(b). The 21
trains and the 2 PMTSs under consideration are given in Table 4.4, without a mark of
†. Moreover, to evaluate the performance of the proposed algorithm on a larger-scale
instance, we further consider 10 additional trains and 2 PMTSs, which are detailed and
marked by † in Table 4.4.

Regarding the data of the larger amount of trains and PMTSs, 9 global (bi)-directional
O-D pairs (i.e., pairs [M↔W], [M↔ E], [M↔S], [M↔N], [W↔N], [W↔E], [N↔S],
[N↔E], and [E→S]) are determined, as shown in Figure 4.7. The number of trains op-
erated is labelled at the origin for each O-D pair.

In the remainder of this section, we evaluate the benefits of the integrated optimiza-
tion problem (P1) in Section 4.5.2(1), which is solved by CPLEX optimization studio
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Table 4.4: Dataset for the realistic network

ID
Origin (O), i.e.,
station (node id)

Destination (D), i.e.,
station (node id)

Preferred departure time
window (unit: minute)

Ideal arrival time
(unit: minute)

Speed
multiplier*

Safety headway
(unit: minute)

Trains

TRN 1 E(1021) N(22) [0,40] 215 0.7

g = 1 h = 2

TRN 2 E(1020) N(22) [10,50] 225 0.7
TRN 3 E(1021) S(515) [90,140] 390 0.7
TRN 4 E(1020) S(515) [50,90] 250 1
TRN 5 E(1021) W(1547) [40,90] 225 0.7

TRN 6† E(1020) W(1547) [80,120] 210 1
TRN 7 N(21) E(1022) [10,50] 226 0.7

TRN 8† N(21) E(1022) [40,80] 256 0.7
TRN 9 N(21) S(515) [20,60] 250 0.7

TRN 10† N(21) S(515) [40,80] 197 1
TRN 11 N(21) S(515) [60,120] 217 1
TRN 12 N(21) W(1547) [30,80] 108 0.7

TRN 13† N(21) W(1547) [30,70] 84 1
TRN 14 S(514) N(22) [10,50] 234 0.7

TRN 15† S(514) N(22) [10,50] 162 1
TRN 16 S(514) N(22) [40,80] 264 0.7
TRN 17 W(1524) E(1022) [10,50] 196 0.7

TRN 18† W(1525) E(1022) [20,60] 149 1
TRN 19 W(1526) E(1022) [30,70] 159 1
TRN 20 W(1527) N(22) [0,40] 80 0.7
TRN 21 W(1528) N(22) [30,70] 84 1
TRN 22 W(1582) M(2206) [0,20] 74 0.7
TRN 23 M(2204) E(1022) [0,20] 55 1
TRN 24 E(1020) M(2180) [20,40] 91 0.7
TRN 25 M(2182) W(1547) [0,15] 87 1

TRN 26† N(21) M(2077) [60,90] 167 1
TRN 27† M(2079) S(515) [8,28] 115 0.7
TRN 28† S(514) M(2071) [35,55] 108 1
TRN 29† M(2068) N(22) [5,25] 125 0.7
TRN 30 M(2179) W(1547) [5,18] 98 1
TRN 31 M(2206) E(1022) [15,35] 89 0.7

PMTSs PMTS zone1 2249 2162 – – – w = 25
PMTS zone2 2161 2248 – – – w = 30

PMTS zone3† 2035 2114 – – – w = 35
PMTS zone4† 2111 2036 – – – w = 40

Planning horizon T 400 Minimum and maximum dwell time at stations 0 (min), 120 (max)

* Note that speed multiplier is used to obtain the actual free-flow running time by multiplying the max-
imum free-flow running time of the cell and the speed multiplier of the train.
† The 21 trains and 2 PMTSs without the † mark are used in the first two parts of Section 4.5.2(2.b),
and all 31 trains and 4 PMTSs are considered for the larger-scale experiment in the third part of Sec-
tion 4.5.2(2.b).
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Figure 4.7: Illustration of the O-D pairs of the 31 trains and the workspace of the
4 PMTSs
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12.6. We further present an assessment of the Lagrangian-relaxation-based algorithm
in Section 4.5.2(2), which is implemented by Visual C++ 2013. Due to the limited
applicability of the P1 problem to large-scale instances, the experiments related to the
P1 problem are only done based on the artificial case study. However, the proposed
Lagrangian-relaxation-based algorithm is able to solve large-scale instances, so that
both artificial and realistic case studies are used to examine its performance, from the
point of view of effectiveness and efficiency.

4.5.2 Experimental results and discussion

(1) Performance of the P1 problem: experiments based on the artificial network

This section reports the experimental analysis of the integrated optimization prob-
lem (P1), based on the artificial case study introduced in Section 4.5.1(1). The so-
lutions obtained by the sequential scheduling method in an enumerative manner are
also provided as benchmarks, in order to demonstrate the benefits of the integrated
optimization on train scheduling and PMTS planning.

(1.a) Complexity analysis of the P1 problem

We first analyze the complexity of the P1 problem, in terms of the number of variables
and constraints. An increasing number of trains (up to 20) and planning horizon (up
to 300 minutes) are considered, based on the artificial network of Figure 4.5. As illus-
trated in Figure 4.8, the number of variables and constraints increase with an increasing
number of trains, and planning horizon as well. When considering 20 trains and a 300
minutes planning horizon, the numbers of variables and constraints are 291795 and
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Figure 4.8: Number of variables and constraints of the P1 problem, corresponding
to different planning horizons T and numbers of trains (based on the artificial
network of Figure 4.5)
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633460 respectively. The number of trains and time horizon affect the complexity of
the P1 problem in a linear manner. This implies that one can improve the compu-
tational efficiency by choosing an appropriate planning horizon that only covers the
entire paths of all trains and PMTSs involved.

(1.b) Benefits of the integrated optimization on train scheduling and PMTS plan-
ning

Due to the limited applicability of the P1 problem to large-scale instances, we only re-
port the results considering the first 2, 4, 6, and 8 trains listed in Table 4.3 respectively,
for different planning horizons (i.e., 50, 60, 70, 80, 100, 150, and 200 minutes).

Several scenarios with different pre-determined PMTSs are considered for the sequen-
tial scheduling method, i.e., 22, 16, 21, 26, 24, 31, and 35 scenarios for 50, 60, 70, 80,
100, 150, and 200 minutes planning horizon respectively, as listed in the second row
of Table 4.5. By using the model proposed by Meng and Zhou (2014), these scenarios
are solved one by one in an ascending order of PMTS starting times, which results
in an equivalent iterative process. Moreover, these scenarios have uniformly-spaced
starting times for the PMTSs, namely 1, 2, 2, 2, 3, 4, and 5 minutes for the cases
with 50, 60, 70, 80, 100, 150, and 200 minutes planning horizon respectively. In each
scenario, the PMTSs are assumed to start at the same time on all relevant block sec-
tions. For instance, in the case with 50 minutes planning horizon, the starting times of
the PMTSs are 0, 1, 2, ..., 21 minutes respectively, and in the case with 200 minutes
planning horizon, the starting times are 0, 5, 10, ..., 170 minutes. In the case with 200
minutes planning horizon, 1-minute-spaced starting times of PMTSs leads to a large
amount of scenarios (172 scenarios) and a much longer computation time. To reduce
the computation time and quickly scan the whole time horizon, a 5-minute interval is
instead considered.

The percentages of feasible solutions obtained by the sequential scheduling method are
reported in Table 4.5. When considering a small planning horizon (i.e., 50 minutes,
which can be viewed as a kind of capacity saturation), not all scenarios are feasible. In
fact, only 9.09% of scenarios (2 out of 22) are feasible for the case with 8 trains and a
50 minutes planning horizon. This reflects the drawback of the sequential method: a
limited option given in the first PMTSs planning stage could dramatically downgrade

Table 4.5: Feasibility analysis of the sequential scheduling method

Percentage of feasible solutions (unit: %)
Planning horizon (unit: minute)

50 60 70 80 100 150 200
Total number of scenarios 22 16 21 26 24 31 35

Number of trains

2 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4 100.00 100.00 100.00 100.00 100.00 100.00 100.00
6 27.27 100.00 100.00 100.00 100.00 100.00 100.00
8 9.09 100.00 100.00 100.00 100.00 100.00 100.00
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(c) Case with 6 trains
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Figure 4.9: Results of the integrated and sequential scheduling methods in differ-
ent cases

the performance of the second train scheduling solution. Moreover, the available ca-
pacity for trains might be reduced by inappropriate PMTS plans in the first stage, so
that the planned trains might not be able to be completely scheduled.

Figure 4.9 illustrates the total deviation time of the integrated and sequential scheduling
methods for the cases with 2, 4, 6, and 8 trains respectively. Recall that several scenar-
ios with different pre-determined PMTSs are considered for the sequential scheduling
method. Each black circle represents the total deviation time of all real trains in a
scenario.

As shown in Figure 4.9, in each case, the integrated solutions always achieve the best
quality (i.e., the lowest deviation time) comparing with the sequential solutions: the
integrated scheduling method is at least as good as the sequential one. Moreover, the
solution quality can be improved by an increasing planning horizon, due to the ade-
quate capacity. See for instance the case with 8 trains: an increase of the planning
horizon from 50 to 60 minutes results in a 153-minute reduction of the total deviation
time (reducing it from 164 to 11 minutes). Although a better solution can be found by
increasing the planning horizon, a longer planning horizon cannot be always available
in real operations. For instance, if the possible planning horizon for the case with 8
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Figure 4.10: (Cumulative) Computation time of the integrated and sequential
scheduling methods in different cases

trains is only 50 minutes, the schedule with a 164-minute deviation time of trains is the
best one we can apply; if it is possible to increase the planning horizon to 60 minutes,
a better schedule with an 11-minute deviation time is available. In real operations,
the planning horizon generally increases with an increasing amount of trains. In this
chapter we do not focus on determine an appropriate planning horizon; we focus on
generate a schedule of trains and PMTSs under a certain condition, namely simultane-
ously scheduling a certain amount of trains and PMTSs in a certain planning horizon.

Figure 4.10 illustrates the computation time of the integrated solution, and the cu-
mulative computation time of the sequential solutions, corresponding to each case in
Figure 4.9. While generating the sequential solutions, an ascending order is considered
for the starting times of the pre-determined PMTSs. Moreover, in Figure 4.10, we only
cumulate the computation times of the sequential solutions until a solution that has the
same deviation time as the integrated solution is found. This helps constructing a read-
able figure, as the total computation time of all sequential scenarios is too large (up to
36859.27 seconds, 10 hours). Even if counting in such a way, the sequential scheduling
method still needs a longer computation time for finding the best solution (the optimal
integrated solution) in most cases, among which the largest difference is 7826.36 sec-
onds. However, in some other cases, the computation time of the sequential scheduling
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method can be 60.62 seconds shorter (at most) than that of the integrated scheduling
method. This demonstrates the good performance of the integrated scheduling method
on computational efficiency. The best solution cannot be known before solving all the
scenarios of the sequential scheduling method and cannot be definitely obtained even
when solving all the scenarios. Furthermore, as shown in Figure 4.10, the computation
time increases with an increasing planning horizon and an increasing number of trains.

The benefits of the integrated optimization approach are given as follows:

1). A solution with better quality can be obtained efficiently, as the solution space of
the integrated optimization problem contains the solution space of the sequential
method as a subset;

2). The solving process is simplified and efficient: the global optimal solution can be
obtained directly without any enumerative or iterative processes;

3). It is unnecessary to pre-determine PMTS(s), which has a great impact on the fea-
sibility and solution quality.

While the performance of the integrated optimization problem (P1) is good on small-
scale networks, the model complexity limits its scalability and its applicability to large-
scale instances: no feasible solution can be obtained by the P1 problem within a com-
putation time limit, when considering a larger amount of trains (like 20 trains) and a
longer time horizon (like 300 minutes). However, the proposed Lagrangian-relaxation-
based solution framework can solve such a large-scale problem, as will be shown next.

(2) Performance of the Lagrangian-relaxation-based solution algorithm

This section demonstrates the effectiveness and efficiency of the proposed Lagrangian-
relaxation-based solution framework, which includes the time-dependent least-cost
path algorithm and the priority-rule-based algorithm. We are mainly interested in so-
lution quality and computation time for the following three types of solution methods.

i). IP-CPLEX, integer programming (IP) implementation of the P1 problem, solved
by CPLEX;

ii). LP-CPLEX, linear programming (LP) relaxation of the P1 problem, solved by
CPLEX;

iii). LR-C++, IP implementation of the P1 problem, solved by the customized C++
package with the built-in time-dependent least-cost path algorithm in the Lagrangian-
relaxation-based solution framework.
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We first use the artificial network described in Section 4.5.1(1) as the test bed, to com-
pare the results of the above three types of solution methods. After that, the perfor-
mance of the proposed Lagrangian-relaxation-based solution algorithm is evaluated
on the realistic network described in Section 4.5.1(2). Due to the increasing number
of trains used in this section, which leads to a longer computation time, a computation
time limit of 10800 seconds (3 hours) is considered for terminating the CPLEX solving
process.

(2.a) Evaluation based on the artificial network

• Effectiveness analysis: lower bound (obtained by LP-CPLEX and LR-C++) and
upper bound (obtained by IP-CPLEX and LR-C++)

In this section, the network in Figure 4.5 with different numbers of trains (range from
2 to 20) is considered, and the planning horizon T is set to 150 minutes. Table 4.6
reports the results (upper bounds) obtained by CPLEX and C++.

The lower bounds of LP-CPLEX and LR-C++ are zero for all cases, so we do not
report them in Table 4.6. This phenomenon results from the scale of the experimental
case, the pre-defined ideal timetable, and the consideration of a non-negative objective
function. According to our experimental experiences, solving a case with a larger
number of trains on a large-scale network normally yields better lower bounds. In fact,
in the experiments based on the realistic network, we obtain better lower bounds (see
below).

Regarding the upper bounds in Table 4.6, we observe that optimal solutions can only be
found by IP-CPLEX for the small-scale cases, with no more than 12 trains. When the
number of trains is larger than 12, IP-CPLEX cannot obtain any solution within 3 hours

Table 4.6: Upper bound (total deviation time) of IP-CPLEX and LR-C++

Number of trains
Upper bound (unit: minute)

IP-CPLEX (optimal) LR-C++ (feasible) Optimality gap (%)
2 0 0 0.00
4 4 4 0.00
6 6 6 0.00
8 6 6 0.00

10 6 8 33.33
12 6 8 33.33
14 – 11 –
16 – 16 –
18 – 20 –
20 – 21 –

∗ Note that optimality gap = (LR-C++ – IP-CPLEX)/IP-CPLEX (%); “–” means that no optimal solution
is obtained by IP-CPLEX within 10800 seconds (3 hours), and as a result the corresponding optimality
gap measure is not available.
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(even no feasible solution is found). The limited applicability of IP-CPLEX on finding
solutions for a relatively large network with more trains is evident. In comparison,
LR-C++ can find the optimal solutions for the small-scale cases (the cases with no
more than 8 trains), and feasible solutions (with an optimality gap of 33.33% for the
cases with 10 and 12 trains) within 1 minute (the corresponding computation times
are shown in Table 4.7). The applicability of LR-C++ on finding feasible solutions
is further confirmed by the realistic network adapted from a Chinese railway network
(see below).

• Efficiency analysis: computation time of LP-CPLEX, IP-CPLEX, and LR-C++

Table 4.7 shows the computation time of the lower and upper bounds reported in Ta-
ble 4.6. The computational efficiency of LR-C++ is much better than that of LP-
CPLEX and IP-CPLEX (for computing lower bounds and upper bounds respectively),
as a longer computation time is required for the CPLEX solving process (up to 822
seconds for the lower bounds and 9232 seconds for the upper bounds). The computa-
tion times of LP-CPLEX and IP-CPLEX increase with an increasing number of trains.
The upper bound (optimal solution) needs a longer computation time than the lower
bound, for all cases (if the optimal solution is available). Note that due to the non-
negative property of the objective function, the lower bound can be obtained quickly
by LR-C++ (less than 1 second). LR-C++ can obtain an upper bound (a feasible solu-
tion) for all cases within 1 minute, at the only cost of a relatively bad solution quality
(the optimality gap is given in Table 4.6). For instance, in the case with 10 trains, the
optimality gap between IP-CPLEX and LR-C++ is 33.33% (2-minute difference), with
a 5691-second reduction of the computation time (from 5739 to 48 seconds).

• Exploration of the iterative solving process of LR-C++

Table 4.7: Computation time of the lower bound and upper bound (unit: second)

Number of trains
Computation time of lower bound Computation time of upper bound
LP-CPLEX LR-C++ IP-CPLEX (optimal) LR-C++ (feasible)

2 19.51 <1 57.91 2
4 40.85 <1 206.61 8
6 107.91 <1 919.85 9
8 157.32 <1 2703.58 10

10 233.27 <1 5739.08 48
12 345.31 <1 9232.33 13
14 378.45 <1 – 54
16 564.15 <1 – 18
18 671.96 <1 – 19
20 821.80 <1 – 26

∗ Note that “-” means no optimal solution obtained by IP-CPLEX within 10800 seconds (3 hours).
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In this section, we present how real trains and virtual trains (PMTSs) are updated dur-
ing the iterative solving process of LR-C++. For simplicity, only a small-scale instance
is given, i.e., the case with 4 trains, for which the optimal solution can be found by
LR-C++ within a displayable amount of iterations. For each iteration, the scheduling
sequence, indicators (the arrival time for each real train and the working time window
for each PMTS), deviation time of each real train from the ideal timetable, and the lo-
cal/global upper bounds are provided in Figure 4.11. Recall that, in each iteration, the
scheduling sequence is changed by Lagrangian profits, and a feasible solution (upper
bound) is generated by applying the time-dependent least-cost path algorithm.

As illustrated, in Iteration 1, two PMTSs are first scheduled, followed by four real
trains, which leads to a feasible solution with a total deviation time of 82 seconds.
In Iteration 2, a solution with a total deviation time of 48 seconds is found, which is
the current best solution; so the global upper bound is updated. This also occurs in
Iteration 3, Iteration 6, and Iteration 10, in which the global upper bound is updated
to 7, 5, and 4 minutes respectively. Note that due to the competition between PMTS 1
and train 4 for the same infrastructure resources (cells), the deviation time of train 4
is quite large in Iteration 2, even if it is the first scheduled real train. The solution
obtained in Iteration 10 is same as the optimal solution found by the P1 problem.

(2.b) Evaluation based on the realistic network

In this section, we use the large-scale realistic network described in Figure 4.6 to test
the performance of LR-C++. The benefits of the integrated scheduling method are first
estimated based on the dataset considering 21 trains and 2 PMTSs. A larger amount
of trains and PMTSs (31 trains and 4 PMTSs) is further considered to evaluate the
performance of LR-C++ on larger scale instances.

• Benefits of the integrated scheduling method reported by LR-C++

A comprehensive set of sequential solutions that consider different pre-determined
PMTSs are provided as benchmarks, in order to demonstrate the benefits of the in-
tegration of train scheduling and PMTSs planning and verify the effectiveness of the
proposed algorithm. These sequential solutions are obtained by applying a previous
version of the Lagrangian-relaxation-based solution algorithm (proposed by Meng and
Zhou, 2014), in which PMTSs are fixed and result in track possessions in a certain
time period. Regarding the pre-determined PMTSs, we still follow a similar structure
(as that of the previous test cases) that considers a uniformly spaced starting time of
the PMTSs. These pre-determined starting times result in several scenarios, and in
each scenario the PMTSs are assumed to start at the same time on all relevant block
sections. For the realistic dataset, we consider a 10-minute spaced starting time of the
PMTSs in a 400-minute planning horizon, which leads to 38 scenarios (the starting
time of the PMTSs is 0, 10, ..., 360, 370 minutes respectively in each scenario, as the
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Iteration_1:

- Scheduling sequence:

- Indicators*:

PMTS_1 PMTS_2 train_4 train_3 train_2 train_1

[0,29] [0,29] 42 32 35 40

- Deviation time:

local

82

-- -- 24 14 19 25

Iteration_2:

- Scheduling sequence:

- Indicators*:

PMTS_1 train_4 train_3 train_2 train_1 PMTS_2

[0,29] 40 18 15 40 [42,71]

- Deviation time: -- 22 0 1 25 --

Iteration_3:

- Scheduling sequence:

- Indicators*:

train_1 train_4 train_3 train_2 PMTS_2 PMTS_1

15 18 15 12 [15,44] [20,49]

- Deviation time: 0 0 3 4 -- --

Iteration_4:

- Scheduling sequence:

- Indicators*:

train_1 train_4 train_3 train_2 PMTS_2 PMTS_1

15 18 15 12 [15,44] [20,49]

- Deviation time: 0 0 3 4 -- --

Iteration_5:

- Scheduling sequence:

- Indicators*:

train_4 train_3 train_1 PMTS_1 train_2 PMTS_2

18 15 15 [15,44] 12 [20,49]

- Deviation time: 0 3 0 -- 4 --

Iteration_6:

- Scheduling sequence:

- Indicators*:

train_3 train_2 train_4 train_1 PMTS_1 PMTS_2

18 15 21 16 [16,45] [23,52]

- Deviation time: 0 1 3 1 -- --

Iteration_7:

- Scheduling sequence:

- Indicators*:

train_3 train_1 PMTS_2 PMTS_1 train_2 train_4

18 15 [18,47] [15,44] 15 60

- Deviation time: 0 0 -- -- 1 42

Iteration_8:

- Scheduling sequence:

- Indicators*:

train_4 train_3 train_2 PMTS_2 train_1 PMTS_1

18 15 12 [20,49] 15 [15,44]

- Deviation time: 0 3 4 -- 0 --

Iteration_9:

- Scheduling sequence:

- Indicators*:

train_3 train_1 train_2 train_4 PMTS_2 PMTS_1

18 15 15 30 [32,61] [22,51]

- Deviation time: 0 0 1 12 -- --

Iteration_10:

- Scheduling sequence:

- Indicators*:

train_1 train_4 train_2 PMTS_1 train_3 PMTS_2

15 18 15 [15,44] 21 [21,50]

- Deviation time: 0 0 1 -- 3 --

(updated)

U
p

p
e
r
 b

o
u

n
d

global

82

48 48

(updated)

7 7

7 7

7 7

(updated)

5 5

43 5

7 5

13 5

(updated)

4 4

Figure 4.11: Illustration on the iterative solving process of LR-C++ for the case
with 4 trains

longest duration of the PMTSs is 30 minutes). However, we only report ten of these
possible scenarios (denoted as Scenario 1, ..., Scenario 10). Note that the number of
the possible scenarios increases with the increasing instance scale. It is hardly possi-
ble to explore all possibilities for a large-scale instance, which would lead to a much
longer computation time.

Figure 4.12 provides a summary of the integrated solution and sequential solutions
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obtained at 60 and 500 seconds of computation time, reporting the upper bound, qual-
ity improvement, and optimality gap respectively. The quality improvement in Fig-
ure 4.12(b) indicates how much the integrated solution improves while comparing with
the sequential solution in each scenario. The upper bound in Figure 4.12(a) and the op-
timality gap in Figure 4.12(c) are desired to be as low as possible, while the quality
improvement in Figure 4.12(b) is better to be higher. The sequential solution for each
scenario obtained at 60 seconds of computation time is presented as a gray bar, and
that obtained at 500 seconds is shown as a black bar. The average value of the ten
scenarios is given in light blue and dark blue for 60 and 500 seconds respectively. A
red/green bar indicates the integrated solution at 60/500 seconds of computation time.

The upper bound of the integrated scheduling method is always better, which achieves
29.75% and 27.55% improvement in average with respect to the sequential solutions
at 60 and 500 seconds respectively, as shown in Figure 4.12(b). This demonstrates that
the algorithm is able to effectively exploit the larger solution space associated with the
integration of maintenance and train operations. The gap of improvement in the results
demonstrates the value of the integration of train scheduling and PMTS planning.

The upper bound of the integrated solution found at 60 seconds (248 minutes) is even
better than the best upper bound of the ten sequential solutions obtained at 500 seconds
(253 minutes in Scenario 5). This implies that the proposed algorithm is efficient, as a
solution with good/satisfactory quality (248 minutes) is obtained already at 60 seconds.
This solution can be improved further by 10 minutes (from 248 to 238 minutes), if the
computation time is extended to 500 seconds.

Moreover, the optimality gap of the integrated solution is reduced from 42.51% to
39.74% with the extra 440-second computation time (from 60 to 500 seconds). The
optimality gap of the sequential solutions ranges from 28.18% to 56.17% at 60 seconds
of the computation time and 22.17% to 51.51% at 500 seconds. When considering a
shorter computation time, i.e., 60 seconds, the optimality gap of the integrated solu-
tion (42.51%) is smaller than the average optimality gap of the sequential solutions
(44.25%). However, due to the relatively large reduction of the upper bounds of the
sequential solutions, the average optimality gap has a larger change of 6.94% (from
44.25% to 37.31%) at 500 seconds. A smaller average gap (37.31%) can be seen in
the sequential solutions, compared with that of the integrated solution (39.74%). The
smaller average gap of the sequential solutions results from the tight lower bounds ob-
tained, rather than the upper bounds (the obtained feasible solutions). The integrated
approach still yields better performance with respect to solution quality.

• LR-C++ performing on a larger-scale instance

We next use a larger amount of trains and PMTSs (31 trains and 4 PMTSs in total)
on the realistic network to further examine the performance of LR-C++. Figure 4.13
illustrates the upper bound, lower bound, and optimality gap of LR-C++ along the
computation time.
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Figure 4.13: Upper bound, lower bound, and optimality gap for the larger-scale
instance

As shown in Figure 4.13, for a larger number of trains, LR-C++ can find an upper
bound (feasible solution with 535-minute total deviation time) at 300 seconds with
an optimality gap 44.33%. By extending the computation time to 600 seconds, the
optimality gap is reduced to 40.70%, and the upper bound is still 535 minutes. We
can also see that the lower bound and upper bound tend to become better along the
computation time. However, the upper bound becomes stable within 300 seconds.

4.6 Conclusions

This chapter has addressed the integrated optimization problem of train scheduling
and preventive maintenance time slot planning, by using an innovative virtual-train-
based formulation technique and applying a flag-variables-based formulation tech-
nique proposed by Meng and Zhou (2014). An integrated optimization problem (P1)
has been developed to deliver a global optimal or satisfactory schedule for both trains
and PMTSs with microscopic feasibility details. To solve large-scale problems, a
Lagrangian-relaxation-based solution framework has been further proposed, in which
the difficult track capacity constraints related to safety operations are dualized to de-
compose the original complex problem into a sequence of single-train-based sub-
problems. Each subproblem is solved by a standard label-correcting algorithm for
finding the time-dependent least-cost path on a time-space network. A priority-rule-
based algorithm has been introduced to transform dual solutions into feasible solutions.
The performance of the integrated optimization problem (P1) and the Lagrangian-
relaxation-based solution framework has been assessed on a simple artificial network
and a real-world network adapted from a Chinese railway network, from the point
of view of effectiveness (more than 25% improvement can be achieved by the inte-
grated scheduling method, as reported in Section 4.5.2(2.b)) and efficiency (a solu-
tion with a satisfactory quality can be obtained quickly, at about 60 seconds, see Sec-
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tion 4.5.2(2.b)). The experiments demonstrate that the integrated scheduling method
is at least as good as the sequential one and the proposed algorithm is able to exploit
the large solution space effectively.

Our future research focuses on the following extensions. First, different optimization
or reformulation methods might be developed, which can increase the lower bound and
decrease the upper bound of the solutions, in order to reduce the optimality gap and
further improve the solution quality. Finally, the relation between maintenance plans
and reliability of train services can be defined, by considering the risk associated with
delaying maintenance, and be able to (re-)schedule traffic in a closed-loop perspective
(Corman and Quaglietta, 2015) or within a robust optimization framework (Meng et al.,
2016), in order to further reduce the system cost and achieve the largest economic
benefits.



94 TRAIL Thesis series



Chapter 5

Integration of traffic control and train
control-Part 1: Optimization problems
and solution approaches1

In this chapter, we study the integration of real-time traffic management and train con-
trol by using mixed-integer nonlinear programming (MINLP) and mixed-integer linear
programming (MILP) approaches. The optimization approaches in this chapter are de-
veloped based on the time-instant formulation method described in Section 2.4.1.

This chapter is organized as follows. In Section 5.1, a detailed introduction of the inte-
grated problem of real-time traffic management and train control is given. Section 5.2
introduces blocking time theory, followed by a problem statement and formulation as-
sumptions in Section 5.3. In Section 5.4, three optimization problems formulating the
integration of traffic management and train control are presented. Section 5.5 intro-
duces two solution approaches, i.e., a two-level approach for solving an MINLP prob-
lem (PNLP), and a custom-designed two-step method for improving the computational
efficiency of the MILP problem (PTSPO). Experimental results based on a real-world
railway network are given in Section 5.6 for evaluating the performance of the pro-
posed approaches and investigating the benefits of the integration. Finally, Section 5.7
ends the chapter with conclusions.

5.1 Introduction

Railway transport systems are of crucial importance for the competitiveness of na-
tional or regional economy as well as for the mobility of people and goods. To im-
prove reliability of train services and increase satisfaction of customers, many railway

1With minor updates, this chapter has been published in “Luan, X., Wang, Y., De Schutter, B., Meng,
L., Lodewijks, G., Corman, F. (2018). Integration of real-time traffic management and train control for
rail networks-Part 1: Optimization problems and solution approaches. Transportation Research Part B:
Methodological, 115, 41-71.”
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infrastructure managers (e.g., Network Rail in United Kingdom and Banedanmark in
Denmark) and train operating companies (e.g., V/Line in Australia) have set their own
targets for train punctuality, in terms of punctuality rates. Moreover, there have been
many projects over the years that have aimed at improving the punctuality of trains,
such as the On-Time project (Quaglietta et al., 2016). Policy makers and researchers
have been seeking approaches for attaining the punctuality goals.

In real operations, unavoidable perturbations (caused by bad weather, infrastructure
failure, extra passenger flow, etc.) often happen and result in delays to the original
train timetable, which makes it difficulties to achieve the punctuality goals. When
trains are delayed from the normal operation, train dispatchers are in charge of ad-
justing the impacted train timetables from perturbations (by means of taking proper
dispatching measures, e.g., re-timing, re-ordering, and re-routing), so as to reduce po-
tential negative consequences (train delays); train drivers are responsible for control-
ling the delayed trains (by means of taking proper driving actions, i.e., accelerating,
cruising, coasting, and braking) to reach the stations at the times specified by train
dispatchers, with the aim of minimizing energy consumption. The problem faced by
train dispatchers is well-known as the real-time traffic management problem, and the
problem encountered by train drivers is the so-called train control problem. In fact,
significant interconnections exist between these two problems, as the traffic-related
properties have impact on the train-related properties, and vice versa. Solving the two
problems in a sequential way hides the potential improvements in performance of train
operations. Better train operations can be potentially achieved by jointly considering
the two problems, i.e., (re-)constructing a train timetable in a way that applies different
diving actions. However, such a joint consideration leads to a very complex and diffi-
cult optimization problem, because not only the timetable should be well-defined for
synchronizing the accelerating and braking actions of trains in the same block section,
but also the driving actions should be controlled under the speed limits, travel time,
and distance constraints (Tuyttens et al., 2013). This is even more critical and diffi-
cult for real-time operations. Moreover, the safety headway between two consecutive
trains dynamically depends on their real speed and acceleration/deceleration rate. As
a result, a prompt and reliable decision-making support tool for both dispatchers and
drivers is desired, which requires the integration of a rescheduling optimization with
microscopic details and highly accurate real-time train speed trajectory optimization at
once.

We therefore address the integration of real-time traffic management and train control
by using optimization methods, identifying both traffic-related properties (i.e., a set of
times, orders, routes to be followed by trains) and train-related properties (i.e., speed
trajectories) at once. To formulate the integrated problem, a mixed-integer non-linear
programming (MINLP) problem (PNLP) is first proposed and solved by a two-level
approach. An approximation based on piecewise affine functions is applied to the non-
linear terms in the PNLP problem, which results in a mixed-integer linear programming
(MILP) problem (PPWA). Furthermore, a preprocessing method for generating the pos-
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sible train speed profile options (TSPOs) for each train on each block section is consid-
ered to reduce the complexity of the problem and to restrict the search only to a subset
that allows better energy performance. An MILP problem (PTSPO) is subsequently de-
veloped to determine the optimal option with minimum train delays. The two MILP
problems are both solved by using an MILP solver, but a custom-designed two-step
method is particularly used for the PTSPO problem to speed up the solving procedure.
In our optimization problems, the blocking time of a train on a block section dynami-
cally depends on its real speed. We consider the minimization of the total train delay
times as the objective. According to the experimental results, the proposed approach
can obtain feasible solutions (with good quality) of the integrated traffic management
and train control problem for a single direction along a 50 km corridor with 9 stations
and 15 trains each hour within 3 minutes of computation time, while achieving the goal
of reducing train delays by managing the train speed. In Chapter 6, we will further dis-
cuss energy-related extensions based on the proposed optimization approaches, i.e.,
evaluating energy consumption and computing regenerative energy utilization. With
the inclusion of the energy-related aspects, we aim at both delay recovery and energy
efficiency, in order to achieve energy-efficient train operation.

5.2 Blocking time theory

The safety headway time is the time interval between two following trains and the min-
imum headway depends on the so-called “blocking time” (Pachl, 2009). The blocking
time is the duration of the time interval in which a section of track (usually a block
section) is exclusively allocated to a train and therefore blocked for other trains. Thus,
the blocking time runs from the moment of issuing a train movement authorization
(e.g., by clearing a signal) to the moment that it becomes possible to issue a movement
authorization to another train to enter that same section. The blocking time of a block
section is usually much longer than the time that the train occupies the block section.
Figure 5.1(a) and Figure 5.1(b) illustrate the blocking time of a block section for a train
without and with a scheduled stop respectively.

Pachl (2009) defined the components of the blocking time illustrated in Figure 5.1 as
follows: 1) the setup time is the time duration for clearing the signal before the arrival
of a train; 2) the sight and reaction time is the time duration for the driver to view the
signal; 3) the approach time is the time duration for train running over the preceding
block section (from the approach signal to the block signal); 4) the running time is the
time duration for a train to run on the block section; 5) the clearing time is the time
duration to clear the block section and the overlap with the full length of the train (if
required) after the departure of a train; 6) the release time is used to unlock the safety
block system. Note that the six components of the blocking time are all time durations,
the former three terms are used for pre-blocking a block section, and the latter two
terms are for post-releasing a block section. Based on the explanations, the approach
time and the clearing time strongly depend on the train characteristics (e.g., train speed



98 TRAIL Thesis series

clearing time

release time

train
length

sight and reaction time

setup time

running time between 
block signals

minimum headway (as distance) of following trains

sighting 
distance

train
length

block section block section

sight and reaction time

setup time

approach time

clearing time

release time

running time between 
block signals

(a) train without stop

(b) train with stopspace

e
mit

Figure 5.1: The blocking time of a block section for a train without/with a sched-
uled stop

and train length) and the rail network conditions (e.g., the length of the block section);
therefore, they are considered as decision variables and the others (e.g., the setup time)
are regarded as constant in this research.

5.3 Problem statement and formulation assumptions

Given a railway network with the technical and operational requirements of stations
and segments (e.g., lengths of block sections, speed limitations, and allowed/forbidden
dwelling events), a set of trains from pre-specified origins to pre-specified destinations
and with pre-specified train characteristics (e.g., length, speed limitation, acceleration,
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and deceleration), the statement of the integrated traffic management and train control
problem is to determine the routes, orders, arrival times, and departure times of the
trains at passing stations by finding the optimal train speed profiles, in order to reduce
the train delay, and at the same time to reduce the energy for accelerating and re-
accelerating caused by unnecessary braking.

We focus on the investigation of the traffic operations. Thus, when constructing the for-
mulations, we emphasize in detail the operational aspect of the traffic and consider the
train control aspect with relatively less accuracy in computing the energy consumption
(at least, compared with the studies only focusing on train trajectory optimization). In
fact, what we target is not to take decisions to change the cruising speed of trains (as
it may result in lots of delays due to the high dependence among trains), or to exploit
running time buffers to save energy (which can be done by focusing on a single train at
a time only, computing ahead of time), but mostly by avoiding unnecessary accelera-
tion and deceleration due to interaction of traffic. We construct and reschedule the train
timetable by optimizing the train accelerating and braking actions. Therefore, in our
optimization problems, we make the following assumptions: 1) train acceleration is
considered as a piecewise constant function of speed by giving a fixed switching point
(breakpoint) of speed (e.g., 60 km/h) for each train category; 2) train deceleration is
constant for a certain train category and differs among train categories; 3) the speed
limit is considered as constant for a certain train category on a certain block section,
i.e., the minimum value of the designed train speed and the designed block section
(track) speed, but may differ among train categories and block sections; 4) the begin-
ning/end point of a block section or of a main/siding track in a station, or a point of
merging/diverging of tracks on a segment, is represented by a node; 5) a block section
is described as a cell, which connects two nodes in a pair; 6) a station is simplified
to a number of main/siding track(s), which can be further modeled as a single cell or
a set of cells; 7) station platforms are placed at the end of cells for trains to stop; 8)
for a double-track railway segment between two stations, each track is modeled as a
sequence of directional cells (i.e., directional block sections), and for a single-track
railway segment, the only track between two stations is modeled as bi-directional cells
(i.e., bi-directional block section); 9) the speed of a train on a cell is divided into three
phases, i.e., incoming, cruising, and outgoing phases, and train coasting is neglected
(however, a coasting phase can be introduced by assuming a piecewise constant decel-
eration function of the cruising speed, as discussed in Chapter 6); 10) the resistances
caused by air, roll, track grade, curves, and tunnels are not considered in this part,
but they are included in Chapter 6 while evaluating energy consumption, i.e., the en-
ergy consumed for overcoming resistance in accelerating, cruising, and decelerating
is computed in Chapter 6; 11) only one train is allowed to access a cell at any time;
12) the granularity of time is one second. Note that the maximum acceleration and
deceleration depend on the traction and braking force. In the literature, researchers ei-
ther consider tractive force as a precise function of speed and control (Howlett, 2000),
or assume a constant power (then tractive force is a function of speed, e.g., Howlett,
2000), or assume a constant acceleration (Wang et al., 2016).
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5.4 Mathematical formulation

In this section, three optimization approaches are proposed to address the integration
of traffic management and train control, i.e., an MINLP approach (PNLP) presented
in Section 5.4.1, an MILP approach (PPWA) obtained by approximating the nonlin-
ear terms with PWA functions in Section 5.4.2, and another MILP approach (PTSPO)
considering multiple TSPOs generated in a preprocessing step (Section 5.4.3).

5.4.1 Formulation of the PNLP problem

Table 5.1 lists the sets, subscripts, input parameters, and decision variables used by the
PNLP problem.

Table 5.1: Sets, subscripts, input parameters, and decision variables

Symbol Description

Subscripts and sets

F set of trains, |F | is the number of trains
V set of nodes, |V | is the number of nodes
E set of cells, i.e., block sections, E ⊆V ×V , |E| is the number of cells
f train index, f ∈ F
p, i, j,k node index, p, i, j,k ∈V
e cell index, denoted by (i, j), e ∈ E
E f set of cells (or sections) that train f may use, E f ⊆ E

Estop
f

set of cells in which train f should stop, Estop
f ⊆ E f , |Estop

f | is the number
of stops of train f

Input parameters

o f origin node of train f
s f destination node of train f
Ltrain

f length of train f
cpri

f primary delay time of train f at its origin node
c f planned departure time of train f at its origin node
ρ f direction of train f
vturn

f the train speed at the switching point of acceleration for train f
vmincru the minimum cruising speed for each train on each cell
vnlim

i train speed limitation at node i
vclim

i, j train speed limitation on cell (i, j)
Lcell

i, j length of cell (i, j)
A f ,i, j planned arrival time of train f on cell (i, j), (i, j) ∈ Estop

f

continued on next page
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continued from previous page

Symbol Description

wmin
f ,i, j minimum dwell time of train f on cell (i, j)

wmax
f ,i, j maximum dwell time of train f on cell (i, j)

α1, f ,i, j maximum acceleration of train f on cell (i, j), when the train speed is not
larger than vturn

f
α2, f ,i, j maximum acceleration of train f on cell (i, j), when the train speed is

larger than vturn
f

β f ,i, j the maximum deceleration of train f on cell (i, j)
τ

setup
f ,i, j setup time for clearing and setting cell (i, j) when train f is approaching

τ
sight
f ,i, j sight time, i.e., running time over a sight distance when train f is

approaching cell (p, i), where cell (p, i) is the preceding cell of cell (i, j)
τreaction

f ,i, j reaction time of train f ’s driver while approaching cell (i, j)
τrelease

f ,i, j release time for releasing cell (i, j) after the clearance of train f
M/ε a sufficiently large/small positive number

Decision variables
a f ,i, j arrival time of train f at cell (i, j)
d f ,i, j departure time of train f at cell (i, j)
aturn

f ,i, j time point that train f reaches the switching speed vturn
f in the incoming

phase on cell (i, j)
dturn

f ,i, j time point that train f reaches the switching speed vturn
f in the outgoing

phase on cell (i, j)
acru

f ,i, j time point that train f starts cruising, i.e., the starting time of cruising
phase on cell (i, j)

dcru
f ,i, j time point that train f ends cruising, i.e., the end time of cruising phase

on cell (i, j)
vin

f ,i, j incoming speed of train f on cell (i, j)
vcru

f ,i, j cruising speed of train f on cell (i, j)
vout

f ,i, j outgoing speed of train f on cell (i, j)
θ f , f ′,i, j binary train ordering variables, θ f , f ′,i, j = 1 if train f ′ arrives at cell (i, j)

after train f , and otherwise θ f , f ′,i, j = 0
w f ,i, j dwell time of train f on cell (i, j)
τ

approach
f ,i, j approach time of train f on cell (i, j), i.e., running time of train f on the

preceding cell (p, i)
τclear

f ,i, j clearing time for clearing cell (i, j) with the length of train f
g f ,i, j safety time interval between occupancy of cell (i, j) and arrival of train f
h f ,i, j safety time interval between departure of train f and release of cell (i, j)
σ f ,i, j occupancy time of cell (i, j) for train f

continued on next page
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continued from previous page

Symbol Description

δ f ,i, j release time of cell (i, j) for train f
Θin

f ,i, j energy consumption of train f caused by traction force, represented by
the difference of the squared speeds in the incoming phase on cell (i, j)

Θout
f ,i, j energy consumption of train f caused by traction force, represented by

the difference of the squared speeds in the outgoing phase on cell (i, j)
ζ1, f ,i, j,...,
ζ6, f ,i, j

logical variables to indicate the relation of the incoming, cruising,
outgoing speed, and switching speed vturn

f , for train f on cell (i, j), as
explained in Table 5.2

Three types of variables are used to formalize the traffic and train related decisions:
time variables a and d, speed variables v, and train order variables θ. The other vari-
ables are a consequence of the interactions among these variables for all trains in the
network, with respect to the formulas of the uniformly accelerating and decelerating
motions, definition of the blocking time, and safety requirements.

Figure 5.2 illustrates the relevant variables of train f on two adjacent cells, namely cell
(i, j) and cell ( j,k). The trajectory of train f on each cell is divided into three phases:
incoming, cruising, and outgoing phases. As illustrated in Figure 5.2, train f enters
cell (i, j) at time a f ,i, j with a speed vin

f ,i, j, and then a sequence of the following actions
is taken on cell (i, j):

1) in the time interval [a f ,i, j,a
turn
f ,i, j], the train accelerates from speed vin

f ,i, j to speed vturn
f

at a steady acceleration α1, f ,i, j;

2) in the time interval [aturn
f ,i, j,a

cru
f ,i, j], the train accelerates from speed vturn

f to speed vcru
f ,i, j

at a steady acceleration α2, f ,i, j;
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3) in the time interval [acru
f ,i, j,d

cru
f ,i, j], the train keeps a constant speed vcru

f ,i, j;

4) in the time interval [dcru
f ,i, j,d f ,i, j−w f ,i, j], the train decelerates from speed vcru

f ,i, j to
speed vout

f ,i, j (taken as 0 km/h in Figure 5.2) at a steady deceleration −β f ,i, j;

5) in the time interval [d f ,i, j−w f ,i, j,d f ,i, j], the train dwells in cell (i, j).

Then, train f departs from cell (i, j) at time d f ,i, j. Meanwhile, train f arrives at cell
( j,k) at time a f , j,k, and starts accelerating. As train f does not reach the switch-
ing speed vturn

f in the incoming phase of cell ( j,k), only one acceleration α1, f ,i, j is
used. Note that the action(s) taken by a train on a cell does not follow a pre-specified
sequence (like the one described above); in fact, it is determined by optimizing the
time variables (a/d) and speed variables (v). For instance, a train may take a se-
quence of actions to first accelerate and then decelerate on a cell (i.e., vin

f ,i, j < vcru
f ,i, j and

vout
f ,i, j < vcru

f ,i, j), and it may also take only one action to keep a constant speed travers-
ing the cell (i.e., vin

f ,i, j = vcru
f ,i, j = vout

f ,i, j). All possible train trajectories in the incoming
and outgoing phases are intuitively provided and explained in Table A.1 of Appendix
A.1.1.

We next formulate the integrated traffic management and train control problem. As
commonly used in train dispatching optimization problems, each train is assigned a
planned arrival time at each planned stop. In the objective function, we minimize
the sum over all trains of the mean absolute delay time at all visited stations, i.e., we
minimize the deviation from the planned train timetable:

minZ = ∑
f∈F

∑
(i, j)∈Estop

f

∣∣d f ,i, j−w f ,i, j−A f ,i, j
∣∣∣∣∣Estop

f

∣∣∣ , (5.1)

The train speed consistency constraint

vout
f ,i, j = vin

f , j,k, ∀ f ∈ F, j 6= o f ,(i, j) ∈ E f ,( j,k) ∈ E f (5.2)

ensures the consistency of the train speed between two adjacent cells, i.e., the incoming
speed of train f on cell ( j,k) equals its outgoing speed on the preceding cell (i, j).

A set of train speed limitation constraints is presented, in which

vin
f ,o f , j = 0, ∀ f ∈ F,

(
o f , j

)
∈ E f , (5.3)

vout
f , j,s f

= 0, ∀ f ∈ F,
(

j,s f
)
∈ E f (5.4)

guarantee that trains stop at their origins and destinations respectively, i.e., the incom-
ing speed of the origin cell (o f , j) and the outgoing speed of the destination cell ( j,s f )

is zero, and

0≤ vin
f ,i, j ≤ vnlim

i , ∀ f ∈ F,(i, j) ∈ E f , (5.5)

0≤ vout
f ,i, j ≤ vnlim

j , ∀ f ∈ F,(i, j) ∈ E f , (5.6)

vmincru ≤ vcru
f ,i, j ≤ vclim

i, j , ∀ f ∈ F,(i, j) ∈ E f (5.7)
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ensure that train speed cannot exceed the given speed limitation at each node and on
each cell.

The constraint
a f ,i, j ≤ aturn

f ,i, j ≤ acru
f ,i, j ≤ dcru

f ,i, j ≤ dturn
f ,i, j ≤ d f ,i, j−w f ,i, j, ∀ f ∈ F,(i, j) ∈ E f (5.8)

ensures a proper sequence of the multiple events of train f on cell (i, j), e.g., the train
arrival, cruising, and departure occur in sequence.

The cell-to-cell transition constraint
d f ,i, j = a f , j,k, ∀ f ∈ F,(i, j) ∈ E f ,( j,k) ∈ E f (5.9)

enforces the transition time between two adjacent cells, i.e., the departure time of train
f on the preceding cell (i, j) equals the arrival time of train f on the successive cell
( j,k), if two adjacent cells (i, j) and ( j,k) are used consecutively by train f .

The earliest departure time constraint
a f ,o f , j ≥ c f + cpri

f , ∀ f ∈ F,
(
o f , j

)
∈ E f (5.10)

ensures that trains do not leave their origins before the earliest departure time, i.e., the
sum of the planned departure time and the primary delay time.

A set of train dwell time constraints is considered, in which
wmin

f ,i, j ≤ w f ,i, j ≤ wmax
f ,i, j, ∀ f ∈ F,(i, j) ∈ E f (5.11)

guarantees the required minimum and maximum dwell times at stations, and{
vout

f ,i, j = 0, if w f ,i, j > 0
vout

f ,i, j > 0, if w f ,i, j = 0
, ∀ f ∈ F,(i, j) ∈ E f (5.12)

links the outgoing speed variables vout
f ,i, j and the dwell time variables w f ,i, j. The maxi-

mum dwell time is used to avoid forbidden dwell events of trains. If a train is allowed
to stop on a block section (in a general case), then the corresponding maximum dwell
time is set to be sufficiently large; if a train is required to not stop on some particular
block sections, then the maximum dwell times on these particular block sections are set
to be zero. In (5.12), if train f stops on cell (i, j), i.e., the dwell time w f ,i, j is larger than
zero, then the corresponding outgoing speed vout

f ,i, j equals zero; otherwise, vout
f ,i, j should

be larger than zero. Note that constraint (5.12) is an “if-then” constraint, which can be
rewritten as mixed-integer linear constraints by applying the transformation properties
in Williams (2013), which will be introduced in Section 5.4.2. We assume that station
platforms for trains to stop are always placed at the end of block sections.

The cell length constraints can be written as
Lcell

i, j = Lin
f ,i, j +Lcru

f ,i, j +Lout
f ,i, j, ∀ f ∈ F,(i, j) ∈ E f , (5.13)

where Lin
f ,i, j, Lcru

f ,i, j, and Lout
f ,i, j indicate the distance that train f runs through on cell (i, j)

in the incoming, cruising, and outgoing phases respectively; these distances are given
by the following equations:

Lin
f ,i, j =


1
2

(
vin

f ,i, j + vturn
f

)(
aturn

f ,i, j−a f ,i, j

)
+1

2

(
vturn

f + vcru
f ,i, j

)(
acru

f ,i, j−aturn
f ,i, j

)
, if vin

f ,i, j ≤ vturn
f ≤ vcru

f ,i, j
1
2

(
vin

f ,i, j + vcru
f ,i, j

)(
acru

f ,i, j−a f ,i, j

)
, otherwise

(5.14a)
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Lcru
f ,i, j = vcru

f ,i, j ·
(

dcru
f ,i, j−acru

f ,i, j

)
, (5.14b)

Lout
f ,i, j =


1
2

(
vturn

f + vout
f ,i, j

)(
d f ,i, j−w f ,i, j−dturn

f ,i, j

)
+1

2

(
vcru

f ,i, j + vturn
f

)(
dturn

f ,i, j−dcru
f ,i, j

)
, if vcru

f ,i, j ≤ vturn
f ≤ vout

f ,i, j
1
2

(
vcru

f ,i, j + vout
f ,i, j

)(
d f ,i, j−w f ,i, j−dcru

f ,i, j

)
, otherwise

(5.14c)

These equations derive from the basic formulas of uniformly accelerating or deceler-
ating motions, i.e., for such a motion with an initial speed vo, a final speed vt and an
elapsed time ∆t, the distance traveled is L = v0+vt

2 ·∆t. Note that the distance Lcell
i, j

that train f runs over on cell (i, j) equals the length of cell (i, j) and corresponds to
the shaded area in Figure 5.2. Constraints (5.14a)-(5.14c) are nonlinear, due to the
nonlinear dynamics of time, speed, and distance.

The approach time and clearing time constraints can be written as

τ
approach
f , j,k =

{
0, if w f ,i, j > 0
d f ,i, j−a f ,i, j, if w f ,i, j = 0

, ∀ f ∈ F,(i, j) ∈ E f ,( j,k) ∈ E f , (5.15)

τ
clear
f ,p,i = 2 ·Ltrain

f

/
(vout

f ,p,i + vcru
f ,i, j), ∀ f ∈ F,(p, i) ∈ E f ,(i, j) ∈ E f . (5.16)

These two constraints are also nonlinear. In (5.15), if train f does not stop on the pre-
ceding cell (i, j), the approach time of train f on cell ( j,k) equals its running time on
the preceding cell (i, j); otherwise, the approach time of train f on cell ( j,k) equals
zero. The clearing time of train f on cell (p, i) is determined in (5.16) according to its
incoming and cruising speed on the successive cell (i, j). However, constraint (5.16)
may cause an error if the actual train speed (when the train tail leaves the preceding
block section) is much smaller than the cruising speed vcru

f ,i, j of the train on the suc-
cessive cell (i, j). To solve this issue, we can formulate the clearing time τclear

f ,p,i as a
piecewise constant function of the outgoing speed vout

f ,p,i, as follows:

τclear
f ,p,i =


C f ,1 · vout

f ,p,i, if vout bk
1, f ≤ vout

f ,p,i ≤ vout bk
2, f

C f ,2 · vout
f ,p,i, if vout bk

2, f ≤ vout
f ,p,i ≤ vout bk

3, f
C f ,3 · vout

f ,p,i, if vout bk
3, f ≤ vout

f ,p,i ≤ vout bk
4, f

, (5.17)

where C f ,1, C f ,2, and C f ,3 are pre-defined clearing times for train f and vout bk
1, f , ...,

vout bk
4, f are relevant coefficients regarding the piecewise constant line segments. Con-

straints (5.15) and (5.17) are “if-then” constraints, which can be rewritten as mixed-
integer linear constraints by applying the transformation properties in Williams (2013),
which will be introduced in Section 5.4.2.

A set of equations is now proposed for determining the safety time interval illustrated
in Figure 5.1:

g f ,i, j = τ
setup
f ,i, j + τ

sight
f ,i, j + τ

reaction
f ,i, j + τ

approach
f ,i, j , ∀ f ∈ F,(i, j) ∈ E f (5.18)

defines the safety time interval between cell occupancy and train arrival, including the
setup time τ

setup
f ,i, j , the sight time τ

sight
f ,i, j , the reaction time τreaction

f ,i, j , and the approach time

τ
approach
f ,i, j , and

h f ,i, j = τ
release
f ,i, j + τ

clear
f ,i, j , ∀ f ∈ F,(i, j) ∈ E f (5.19)



106 TRAIL Thesis series

Table 5.2: Explanation of the speed indicators ζ1, f ,i, j, ...,ζ6, f ,i, j for train f on cell
(i, j)

Incoming phase Outgoing phase

Speed conditions vin
f ,i, j ≤ vcru

f ,i, j vturn
f ≤ vin

f ,i, j vcru
f ,i, j ≤ vturn

f vcru
f ,i, j ≤ vout

f ,i, j vturn
f ≤ vcru

f ,i, j vout
f ,i, j ≤ vturn

f
m m m m m m

Speed indicators ζ1, f ,i, j = 1 ζ3, f ,i, j = 1 ζ4, f ,i, j = 1 ζ2, f ,i, j = 1 ζ5, f ,i, j = 1 ζ6, f ,i, j = 1

calculates the safety time interval between train departure and cell release, including
the release time τrelease

f ,i, j and the clearing time τ
clearing
f ,i, j .

Then, the cell occupancy and cell release times, i.e., the blocking time for train f
traversing cell (i, j), can be respectively written as

σ f ,i, j = a f ,i, j−g f ,i, j, ∀ f ∈ F,(i, j) ∈ E f , (5.20)

δ f ,i, j = d f ,i, j +h f ,i, j, ∀ f ∈ F,(i, j) ∈ E f . (5.21)

The constraint

θ f , f ′,i, j +θ f ′, f ,i, j = 1, ∀ f ∈ F, f ′ ∈ F,(i, j) ∈ E f ,(i, j) ∈ E f ′ (5.22)

indicates that either train f ’ arrives at cell (i, j) after train f or train f arrives at cell
(i, j) after train f ′.

Recall that as cells can be bi-directional, trains can use the same cell in different direc-
tions, i.e., it is possible to use cell (i, j) and ( j, i). Based on the restriction of the train
orders in (5.22), the cell capacity constraints can be written as

σ f ′,i, j +
(
1−θ f , f ′,i, j

)
·M ≥ δ f ,i, j,

∀ f ∈ F, f ′ ∈ F, f 6= f ′,ρ f = ρ f ′,(i, j) ∈ E f ,(i, j) ∈ E f ′,
(5.23)

σ f ′, j,i +
(
1−θ f , f ′,i, j

)
·M ≥ δ f ,i, j,

∀ f ∈ F, f ′ ∈ F, f 6= f ′,ρ f 6= ρ f ′,(i, j) ∈ E f ,( j, i) ∈ E f ′.
(5.24)

Constraints (5.23) and (5.24) ensure that any pair of trains using one cell in the same
or different direction respectively are conflict-free, by avoiding the overlap between
the cell release time for a preceding train and the cell occupancy time for a successive
train. Specifically, for both train f and f ′ traversing cell (i, j) (i.e., with the same
running direction ρ f = ρ f ′), if train f ′ arrives at cell (i, j) after train f , i.e., θ f , f ′,i, j = 1,
constraint (5.24) is non-active and (5.23) reduces to σ f ′,i, j ≥ δ f ,i, j, which implies that
the occupancy time of cell (i, j) for train f ′ should be later than the release time of cell
(i, j) for train f .

To formulate the uniformly accelerating and decelerating motions, six logical speed
indicators ζ1, f ,i, j, ..., ζ6, f ,i, j are used to indicate the train speed. Table 5.2 gives an
overview of the link between the speed conditions and the speed indicators, and Ap-
pendix A.1.1 provides the detailed explanation of these indicators. By adapting the
transformation properties in Williams (2013) (see also Section 5.4.2), these if-then
constraints can be further represented by a set of linear inequalities. For instance,
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ζ1, f ,i, j = 1, if and only if vin
f ,i, j ≤ vcru

f ,i, j can be represented by the following inequali-
ties:

vin
f ,i, j− vcru

f ,i, j ≤ vnlim
i · (1−ζ1, f ,i, j), (5.25a)

vin
f ,i, j− vcru

f ,i, j ≥ ε+(−vclim
i, j − ε) ·ζ1, f ,i, j, (5.25b)

where vnlim
i is the upper bound of (vin

f ,i, j− vcru
f ,i, j) and −vclim

i, j is the lower bound of
(vin

f ,i, j− vcru
f ,i, j).

Thanks to the logical speed indicators ζ1, f ,i, j, ...,ζ6, f ,i, j, we can formulate the uni-
formly accelerating and decelerating motion in a linear manner and consider multiple
scenarios (where different values of acceleration and deceleration are required) at once.
The following set of constraints is presented for the incoming phase, in which

−vcru
f ,i, j−vin

f ,i, j
β f ,i, j

−M ·ζ1, f ,i, j ≤ acru
f ,i, j−a f ,i, j ≤−

vcru
f ,i, j−vin

f ,i, j
β f ,i, j

+M ·ζ1, f ,i, j (5.26a)
indicates the uniformly decelerating motion at a steady deceleration −β f ,i, j,

vcru
f ,i, j−vin

f ,i, j
α2, f ,i, j

−M ·
(
2−ζ1, f ,i, j−ζ3, f ,i, j

)
≤ acru

f ,i, j−a f ,i, j

≤ vcru
f ,i, j−vin

f ,i, j
α2, f ,i, j

+M ·
(
2−ζ1, f ,i, j−ζ3, f ,i, j

) (5.26b)

indicates the uniformly accelerating motion at a steady acceleration α2, f ,i, j, when the
train speed is always larger than the switching speed vturn

f ,
vcru

f ,i, j−vin
f ,i, j

α1, f ,i, j
−M ·

(
2−ζ1, f ,i, j−ζ4, f ,i, j

)
≤ acru

f ,i, j−a f ,i, j

≤ vcru
f ,i, j−vin

f ,i, j
α1, f ,i, j

+M ·
(
2−ζ1, f ,i, j−ζ4, f ,i, j

) (5.26c)

indicates the uniformly accelerating motion at a steady acceleration α1, f ,i, j, when the
train speed is always less than the switching speed vturn

f , and
vturn

f −vin
f ,i, j

α1, f ,i, j
−M ·

(
1−ζ1, f ,i, j +2 ·ζ3, f ,i, j +2 ·ζ4, f ,i, j

)
≤ aturn

f ,i, j−a f ,i, j

≤ vturn
f −vin

f ,i, j
α1, f ,i, j

+M ·
(
1−ζ1, f ,i, j +2 ·ζ3, f ,i, j +2 ·ζ4, f ,i, j

) (5.26d)

vcru
f ,i, j−vturn

f
α2, f ,i, j

−M ·
(
1−ζ1, f ,i, j +2 ·ζ3, f ,i, j +2 ·ζ4, f ,i, j

)
≤ acru

f ,i, j−aturn
f ,i, j

≤ vcru
f ,i, j−vturn

f
α2, f ,i, j

+M ·
(
1−ζ1, f ,i, j +2 ·ζ3, f ,i, j +2 ·ζ4, f ,i, j

) (5.26e)

indicate a two-stage uniformly accelerating motion, i.e., the train first accelerates at a
steady acceleration α1, f ,i, j and then accelerates at a steady acceleration α2, f ,i, j. The
detailed explanation of (5.26) is provided in Appendix A.1.2.

To compute the time points aturn
f ,i, j and dturn

f ,i, j under some special scenarios, e.g., a train
does not reach the switching speed vturn

f on a cell, the following set of constraints is
proposed for the incoming phase:

aturn
f ,i, j ≤ a f ,i, j +M ·

∣∣ζ1, f ,i, j−ζ3, f ,i, j
∣∣ , (5.27a)

aturn
f ,i, j ≥ acru

f ,i, j−M ·
∣∣ζ1, f ,i, j−ζ4, f ,i, j

∣∣ . (5.27b)
Specifically, when ζ1, f ,i, j = ζ3, f ,i, j, i.e., vturn

f ≤ vin
f ,i, j ≤ vcru

f ,i, j or vcru
f ,i, j < vin

f ,i, j < vturn
f ,

constraint (5.27a) reduces to aturn
f ,i, j ≤ a f ,i, j. Since a f ,i, j ≤ aturn

f ,i, j is required in (5.8), we
can further obtain aturn

f ,i, j = a f ,i, j, i.e., let the time point that train f reaches the speed
vturn

f on cell (i, j) equals the arrival time of the train. Formulations similar to (5.26) and
(5.27) can also be constructed for the outgoing phase.

The optimization problem including the objective function (5.1) and constraints (5.2)-
(5.27), is called the PNLP problem, among which there are if-then constraints, i.e.,
(5.12) and (5.15), and nonlinear constraints, i.e., (5.14) and (5.16).
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5.4.2 Formulation of the PPWA problem: the PNLP problem approx-
imated by using PWA functions

This section proposes the MILP problem (PPWA) by reformulating and approximating
the nonlinear terms in the PNLP problem, i.e., (5.12), (5.14), (5.15), and (5.16). A PWA
function is adopted for the approximation, as well as three transformation properties
proposed in Williams (2013), which are briefly introduced below. Interested readers
may refer to this reference for more details.

Let us consider the statement f̃ (x̃)≤ 0, where f̃ : Rn→R is affine, x̃ ∈ χ with χ⊂Rn

and let Q̃ = max
x̃∈χ

f̃ (x̃), q̃ = min
x̃∈χ

f̃ (x̃).

• Transformation property I: If we introduce a logical variable l ∈ {0,1}, then the
following equivalence holds:

[
f̃ (x̃)≤ 0

]
⇔ [l = 1] is true iff f̃ (x̃) ≤ Q̃ · (1− l)

and f̃ (x̃)≥ ε+(q̃− ε) · l.

• Transformation property II: The product of two logical variables l1 and l2 can be
replaced by an auxiliary logical variable l3 = l1 · l2, i.e., [l3 = 1]⇔ [l1 = l2 = 1],
which is equivalent to three linear inequalities: −l1 + l3 ≤ 0, −l2 + l3 ≤ 0 and
l1 + l2− l3 ≤ 1.

• Transformation property III: The product l · f̃ (x̃) can be replaced by the aux-
iliary real variable r = l · f̃ (x̃), which satisfies [l = 0]⇒ [r = 0] and [l = 1]⇒[
r = f̃ (x̃)

]
. Then r = l · f̃ (x̃) is equivalent to four inequalities: r≤ Q̃ · l, r≥ q̃ · l,

r ≤ f̃ (x̃)− q̃ · (1− l) and r ≥ f̃ (x̃)− Q̃ · (1− l).

Note that Transformation property I has been used to formulate (5.25) for the speed
indicators in Table 5.2 of Section 5.4.1. Moreover, the if-then constraints (5.12) and
(5.15) can be reformulated as linear constraints by using Transformation property I
(for the sake of compactness, we do not present the details here).

To approximate the nonlinear terms, constraint (5.14a) for calculating Lin
f ,i, j is first

reformulated as the following set of linear constraints by using the logical speed indi-
cators ζ1, f ,i, j, ζ3, f ,i, j, and ζ4, f ,i, j:

− (vcru
f ,i, j)

2−(vin
f ,i, j)

2

2·β f ,i, j
−M ·ζ1, f ,i, j ≤ Lin

f ,i, j ≤−
(vcru

f ,i, j)
2−(vin

f ,i, j)
2

2·β f ,i, j
+M ·ζ1, f ,i, j, (5.28a)

(vcru
f ,i, j)

2−(vin
f ,i, j)

2

2·α2, f ,i, j
−M ·

(
2−ζ1, f ,i, j−ζ3, f ,i, j

)
≤ Lin

f ,i, j

≤ (vcru
f ,i, j)

2−(vin
f ,i, j)

2

2·α2, f ,i, j
+M ·

(
2−ζ1, f ,i, j−ζ3, f ,i, j

)
,

(5.28b)

(vcru
f ,i, j)

2−(vin
f ,i, j)

2

2·α1, f ,i, j
−M ·

(
2−ζ1, f ,i, j−ζ4, f ,i, j

)
≤ Lin

f ,i, j

≤ (vcru
f ,i, j)

2−(vin
f ,i, j)

2

2·α1, f ,i, j
+M ·

(
2−ζ1, f ,i, j−ζ4, f ,i, j

)
,

(5.28c)
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(vturn
f )

2−(vin
f ,i, j)

2

2·α1, f ,i, j
+

(vcru
f ,i, j)

2−(vturn
f )

2

2·α2, f ,i, j
−M ·

(
1−ζ1, f ,i, j +2 ·ζ3, f ,i, j

+ 2 ·ζ4, f ,i, j
)
≤ Lin

f ,i, j ≤
(vturn

f )
2−(vin

f ,i, j)
2

2·α1, f
+

(vcru
f ,i, j)

2−(vturn
f )

2

2·α2, f ,i, j

+M ·
(
1−ζ1, f ,i, j +2 ·ζ3, f ,i, j +2 ·ζ4, f ,i, j

)
.

(5.28d)

These constraints satisfy the uniformly accelerating and decelerating motions, and the
detailed explanation of (5.28) is provided in Appendix A.1.3. Constraints similar to
(5.28) can also be constructed for reformulating (5.14c) and for further calculating
Lout

f ,i, j, but for the sake of compactness, we do not report those details here. Let ϖin
f ,i, j,

ϖcru
f ,i, j, and ϖout

f ,i, j be the square of vin
f ,i, j, vcru

f ,i, j, and vout
f ,i, j respectively, as formulated in

(5.29):

ϖ
in
f ,i, j =

(
vin

f ,i, j

)2
, ∀ f ∈ F,(i, j) ∈ E f , (5.29a)

ϖ
cru
f ,i, j =

(
vcru

f ,i, j

)2
, ∀ f ∈ F,(i, j) ∈ E f , (5.29b)

ϖ
out
f ,i, j =

(
vout

f ,i, j

)2
, ∀ f ∈ F,(i, j) ∈ E f . (5.29c)

As a result, (5.28a)-(5.28d) become linear, and instead (5.29a)-(5.29c) are nonlinear
and should be approximated. The reason that we first reformulate (5.14a) and (5.14c)
as above is to reduce the number of nonlinear terms that need to be approximated, i.e.,
by introducing (5.29), (5.28), and the constraints obtained when reformulating (5.14c)
become linear. Regarding (5.14b), which calculates Lcru

f ,i, j for the cruising phase, an

additional step is needed to reformulate the nonlinear term x · y as (x+y)2−(x−y)2

4 , i.e.,
reformulating (5.14b) as follows:

Lcru
i, j =

1
4
·
[(

vcru
f ,i, j +dcru

f ,i, j−acru
f ,i, j

)2
−
(

vcru
f ,i, j−dcru

f ,i, j +acru
f ,i, j

)2
]
. (5.30)

Then, by defining

m f ,i, j =
(

vcru
f ,i, j +dcru

f ,i, j−acru
f ,i, j

)2
, (5.31a)

n f ,i, j =
(

vcru
f ,i, j−dcru

f ,i, j +acru
f ,i, j

)2
, (5.31b)

equation (5.30) becomes linear, and instead (5.31a)-(5.31b) need to be approximated
by using PWA functions, as will be explained next.

Based on the above reformulation, the nonlinear constraints (5.16), (5.29), and (5.31)
need to be further approximated by using PWA functions. For simplicity, we only
describe the approximating process of (5.29a) here; a similar process can be followed
for approximating the other nonlinear constraints.

We adopt an approximation using three affine sub-functions as illustrated in Figure 5.3.
Note that more affine sub-functions can be selected if needed; the approach then stays
similar in such a case. We consider two kinds of line fitting methods, namely the
upper/lower line fitting method, where the values of the approximated line segments
are no less/greater than the original curve, as shown in Figure 5.3(a)-Figure 5.3(b) re-
spectively. The relevant coefficients regarding the three line segments (e.g., vin bk

2, f ,i, j and
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Figure 5.3: The PWA approximation of the non-linear function (5.29a)

vin bk
3, f ,i, j) are determined through minimizing the approximation errors between the orig-

inal curve (indicated in black) and three line segments (indicated in blue). It is worth
noting that the reason of using these two methods is to keep the approximated con-
straints feasible. For instance, constraint (5.29a) should be approximated by using the
lower line fitting method in Figure 5.3(b), in order to guarantee that the approximated
value of the train speed is not greater than its actual value and the corresponding speed
limitation as well. Additionally, the approximated value of the time, the distance, and
the square of the train speed should not be negative, so we keep all approximated values
non-negative.

The PWA approximation of the nonlinear function (5.29a) over the interval
[
min

(
vin

f ,i, j

)
,

max
(

vin
f ,i, j

)]
, i.e.,

[
vin bk

1, f ,i, j,v
in bk
4, f ,i, j

]
, can be written as

u1,PWA

(
vin

f ,i, j

)
=

ϖin
f ,i, j =


µ1, f ,i, j · vin

f ,i, j +η1, f ,i, j, if vin bk
1, f ,i, j ≤ vin

f ,i, j ≤ vin bk
2, f ,i, j

µ2, f ,i, j · vin
f ,i, j +η2, f ,i, j, if vin bk

2, f ,i, j ≤ vin
f ,i, j ≤ vin bk

3, f ,i, j
µ3, f ,i, j · vin

f ,i, j +η3, f ,i, j, if vin bk
3, f ,i, j ≤ vin

f ,i, j ≤ vin bk
4, f ,i, j

(5.32)

where µx, f ,i, j and ηx, f ,i, j, x = 1, ...,3, are coefficients, .

Let us consider the logical variables λ1, f ,i, j and λ2, f ,i, j to satisfy the conditions[
vin

f ,i, j− vin bk
2, f ,i, j ≤ 0

]
⇔
[
λ1, f ,i, j = 1

]
and

[
vin

f ,i, j− vin bk
3, f ,i, j ≤ 0

]
⇔
[
λ2, f ,i, j = 1

]
, which

can be represented as a set of linear inequalities by using Transformation property I
(Williams, 2013). Then, the function (5.32) can be rewritten as

u1,PWA

(
vin

f ,i, j

)
= ϖin

f ,i, j = λ1, f ,i, j ·λ2, f ,i, j ·
(

µ1, f ,i, j · vin
f ,i, j +η1, f ,i, j

)
+
(
1−λ1, f ,i, j

)
·λ2, f ,i, j ·

(
µ2, f ,i, j · vin

f ,i, j +η2, f ,i, j

)
+
(
1−λ1, f ,i, j

)
·
(
1−λ2, f ,i, j

)
·
(

µ3, f ,i, j · vin
f ,i, j +η3, f ,i, j

) (5.33)

We introduce the auxiliary logical variable λ3, f ,i, j to replace the product λ1, f ,i, j ·λ2, f ,i, j.
According to Transformation property II, the condition λ3, f ,i, j = λ1, f ,i, j · λ2, f ,i, j can
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also be rewritten as a system of linear inequalities. Moreover, by defining new auxiliary
variables zx, f ,i, j = λx, f ,i, j · vin

f ,i, j, x = 1, ...,3, which can be expressed as a set of linear
inequalities by adapting Transformation property III, the function (5.33) can be further
rewritten as

u1,PWA

(
vin

f ,i, j

)
= ϖin

f ,i, j = z3, f ,i, j ·
(
µ1, f ,i, j−µ2, f ,i, j +µ3, f ,i, j

)
+z2, f ,i, j ·

(
µ2, f ,i, j−µ3, f ,i, j

)
+λ3, f ,i, j ·

(
η1, f ,i, j−η2, f ,i, j +η3, f ,i, j

)
+λ2, f ,i, j ·

(
η2, f ,i, j−η3, f ,i, j

)
− z1, f ,i, j ·µ3, f ,i, j−λ1, f ,i, j ·η3, f ,i, j

+µ3, f ,i, j · vin
f ,i, j +η3, f ,i, j

(5.34)

Finally, the nonlinear constraints (5.29a) can be replaced by the linear equation (5.34)
and the linear inequalities obtained by using the three transformation properties, three
logical variables λ1, f ,i, j, λ2, f ,i, j, λ3, f ,i, j, and three auxiliary variables z1, f ,i, j, z2, f ,i, j,

z3, f ,i, j. A similar process can be followed for approximating the nonlinear constraints
(5.16), (5.29b), (5.29c), and (5.31) by applying the three transformation properties and
introducing extra logical variables and auxiliary variables, thus we do not report those
details in this chapter.

In particular, the clearing time constraint (5.16) is approximated by using a piece-wise
constant function. We can also use the transformation properties in Williams (2013) to
approximate (5.16), similar to the approximating process of (5.29a).

The optimization problem including the objective function (5.1), constraints (5.2)-
(5.11), (5.13), (5.18)-(5.27), (5.28), (5.30), (5.34), and those constraints for reformulat-
ing (5.12) and (5.15) and for approximating (5.16), (5.29b), (5.29c), and (5.31), which
are not detailed in this chapter, is called the PPWA problem.

5.4.3 Formulation of the PTSPO problem: considering multiple train
speed profile options generated in a preprocessing step

Aiming at reducing the solving complexity and the approximation errors, in this sec-
tion, another MILP problem (PTSPO) considering multiple TSPOs is developed. A
preprocessing step is used to generate multiple TSPOs by considering discrete speed
values, in order to restrict the search only to an efficient subset of all possible TSPOs.
Figure 5.4 gives an example to illustrate how TSPOs are generated for a train on cells
along its route. Given a set of discrete speed values [v1,v2,v3,v4,v5], we can create
a complex space-speed network, indicated by the solid gray lines. The created space-
speed network respects the formulas of the uniformly accelerating/decelerating motion
and the technical requirements of train operations and infrastructures, e.g., train speed
limitation, train dwell requirements, train acceleration/deceleration (which depends
on traction/braking force), and length of block section. For instance, due to the short
length of cell1, the train cannot reach speeds v4 and v5 within cell1 based on its acceler-
ation rate; therefore, the options to speeds v4 and v5 are not included in the space-speed
network. Such an assessment on the feasibility of TSPO is also considered for train
deceleration, e.g., when the train approaches its destination or an intermediate station
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Figure 5.4: Train speed profile generation in the preprocessing step

where a stop is required, the options that cannot let the train stop at the corresponding
station are discarded. Based on the space-speed network, we can then select TSPOs
for the train from its origin to its destination. Three possible TSPOs are indicated in
Figure 5.4: the red line indicates the full TSPO (which lets the train run as fast as possi-
ble), the blue line indicates a TSPO with no stop, and the orange line indicates a TSPO
with a stop at an intermediate station. Note that the full TSPO may also include a train
stop at an intermediate station if the stop is required. Moreover, we can also discard
some obviously-inefficient TSPOs, e.g., the TSPOs that allow train deceleration just
following a train acceleration within one cell. In such a way, only an efficient subset
of all possible TSPOs are generated. We still refer to the notations in Table 5.1, with
the changes listed in Table 5.3.

For each train on each cell, some train speed profile vectors y f ,i, j,b are given, and
each vector contains a possible set of incoming, cruising, and outgoing speeds, i.e.,

y f ,i, j,b =
[
yin

f ,i, j,b ycru
f ,i, j,b yout

f ,i, j,b

]>
. Logical parameters ζ1, f ,i, j,b, ...,ζ6, f ,i, j,b are used

to indicate the speed conditions in the corresponding train speed profile vector y f ,i, j,b,
as explained in Table 5.2. The problem objective is also to minimize the total train
delay times at all visited stations, as formulated in (5.1). In addition, the following
constraints are used by the PTSPO problem:

vin
f ,i, j =

|Y f ,i, j|
∑
b=1

ϑ f ,i, j,b · yin
f ,i, j,b, ∀ f ∈ F,(i, j) ∈ E f , (5.35)

vcru
f ,i, j =

|Y f ,i, j|
∑
b=1

ϑ f ,i, j,b · ycru
f ,i, j,b, ∀ f ∈ F,(i, j) ∈ E f , (5.36)

vout
f ,i, j =

|Y f ,i, j|
∑
b=1

ϑ f ,i, j,b · yout
f ,i, j,b, ∀ f ∈ F,(i, j) ∈ E f , (5.37)

|Y f ,i, j|
∑
b=1

ϑ f ,i, j,b = 1, ∀ f ∈ F,(i, j) ∈ E f (5.38)
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ϑ f ,i, j,b ·
(

Lcell
i, j −Lin

f ,i, j,b−Lout
f ,i, j,b

)
ycru

f ,i, j,b
≤ dcru

f ,i, j−acru
f ,i, j ≤(

Lcell
i, j −Lin

f ,i, j,b−Lout
f ,i, j,b

)
ycru

f ,i, j,b
+M ·

(
1−ϑ f ,i, j,b

) (5.39)

(d f ,i, j−a f ,i, j)·yout
f ,i, j,b

ε+yout
f ,i, j,b

−M · (1−ϑ f ,i, j,b)≤ τ
approach
f , j,k ≤

(d f ,i, j−a f ,i, j)·yout
f ,i, j,b

ε+yout
f ,i, j,b

+M · (1−ϑ f ,i, j,b),

∀ f ∈ F,(i, j) ∈ E f ,( j,k) ∈ E f ,b = 1, ...,
∣∣Yf ,i, j

∣∣ (5.40)

τ
clear
f ,p,i =

|Y f ,i, j|
∑
b=1

2 ·Ltrain
f ·ϑ f ,i, j,b

yin
f ,i, j,b + ycru

f ,i, j,b
, ∀ f ∈ F,(p, i) ∈ E f ,(i, j) ∈ E f (5.41)

Constraints (5.35)-(5.37) determine the selected incoming, cruising, and outgoing speed
respectively, i.e., if ϑ f ,i, j,b = 1, then vin

f ,i, j = yin
f ,i, j,b, vcru

f ,i, j = ycru
f ,i, j,b, and vout

f ,i, j = yout
f ,i, j,b.

Constraint (5.38) ensures that one and only one TSPO is selected for each train on
each cell. Constraint (5.39) is the cell length constraint, which restricts the distance
that a train runs over on a cell. Specifically, if ϑ f ,i, j,b = 1, i.e., the bth train speed
profile vector y f ,i, j,b is used, constraint (5.39) reduces to a linear equation dcru

f ,i, j −

acru
f ,i, j =

(
Lcell

i, j −Lin
f ,i, j,b−Lout

f ,i, j,b

)
ycru

f ,i, j,b
, which satisfies the basic formula “time = distance

constant speed” of
the constant-speed motion. Constraints (5.40) and (5.41) define the approach time and
clearing time respectively. Note that if train f stops on cell (i, j), i.e., ϑ f ,i, j,b = 1 and
yout

f ,i, j,b = 0, the approach time of train f on the successive cell ( j,k) should be zero. To
avoid the denominator from becoming zero, a sufficiently small positive number ε is
used in (5.40).

The optimization problem including the objective function (5.1), constraints (5.2)-
(5.4), (5.8)-(5.11), (5.18)-(5.24), (5.26)-(5.27), and (5.35)-(5.41), is called the PTSPO

problem.

5.5 Solution approaches

In this section, we introduce the solution approaches for solving the proposed opti-
mization approaches, i.e., a two-level approach for solving the PNLP problem and a
custom-designed two-step approach for solving the PTSPO problem. Regarding the so-
lution approach of the PPWA problem, an MILP solver can be used, such as CPLEX or
Gurobi.

5.5.1 A two-level approach for solving the PNLP problem

The nonlinear dynamics of the PNLP problem limit its scalability and applicability for
large-scale instances. Therefore, we propose a two-level approach to solve the PNLP
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problem, as illustrated in Figure 5.5(a), where a genetic-algorithm-based heuristic is
introduced to generate the possible train orders based on the track layouts, train routes,
delays, etc. in the upper level, and a nonlinear programming method is used in the
lower level to optimize the departure/arrival times and the train speed profiles under
the fixed train orders.

In the upper level, to describe the entire set of train orders in the network, we use
a chromosome. This is defined as a vector that is composed by several sub-vectors.
There is a sub-vector for each merging/diverging point (i.e., where train orders can
change; we call them relevant points in what follows) of the network. A sub-vector
is used to indicate the train orders at that specific relevant point. In order to generate
feasible initial populations, the train orders defined in the original train timetable or
the initial solution can be used as a starting point. In addition, we only adopt the
mutation operation for the genetic algorithm used in this research to generate feasible
chromosomes. In particular, the mutation operation is carried out by swapping the
order of two trains at a relevant point inside the chromosomes. Since the orders of
trains at the relevant points are related to each other, the order of these two chosen trains
at other relevant points may need to be swapped accordingly. Furthermore, the train
delays at the relevant points are also used as a supplement for the decision of swapping
trains. After a new population is generated, the nonlinear programming method in the
lower level is used to optimize the departure/arrival times and train speed profiles and
to obtain the fitness for each chromosome. We terminate the genetic algorithm in the
upper level of the two-level approach after a given number of generations.

Due to the non-convexity of the PNLP problem, the two-level approach can only obtain
a local minimum for the departure/arrival times and speeds, by given the train orders;
therefore, the final solution of the nonlinear optimization problem is a local minimum
associated with the best upper level solution. The two-level approach with multiple
initial solutions (including multiple initial train orders for the upper level and multiple
initial departure/arrival times and train speeds for the lower level) could improve the
performance, but reaching the global optimum can in general not be guaranteed. The
initial solution could be the original timetable or the initial solution obtained by the
PTSPO problem through considering a fixed full TSPO for each train, as indicated by
the blue dashed line in Figure 5.5.

5.5.2 A custom-designed two-step approach for solving the PTSPO

problem

The PTSPO problem is an MILP problem that can be solved by a standard MILP solver.
Inspired by the good performance on similar problems in Xu et al. (2017), a custom
designed two-step approach is particularly developed to solve the PTSPO problem, in
order to speed up the solving procedure, as illustrated in Figure 5.5(b).

As the PTSPO problem is defined by considering multiple pre-determined TSPOs, a
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preprocessing stage is used to generate the possible TSPOs (by Function A) and to
clarify the full TSPO (by Function B). Each TSPO generated by Function A respects
the formulas of the uniformly accelerating/decelerating motion and the technical re-
quirements of train operations and infrastructures, e.g., train speed limitation, train ac-
celeration/deceleration (which depends on traction/braking force), and length of block
section. The full TSPO for each train derives from the corresponding set of all pos-
sible TSPOs, by selecting the fastest TSPO from this set that lets the train run as fast
as possible. With a given set of possible TSPOs, the full TSPO is unique, i.e., the
fastest one while respecting all operational requirements. In Function C of the solving
stage, we consider the selected full TSPO only to solve the PTSPO problem by using
a standard MILP solver, which results in an initial solution (i.e., an upper bound with
a fixed full TSPO for each train). Then, the obtained solution is given as a feasible
initial solution to the MILP solver, for solving the PTSPO problem with the larger set
of all possible TSPOs. Therefore, in Function D, an improved secondary solution can
be obtained through optimizing the TSPOs (and optimizing the train orders as well).
Moreover, the train orders of the initial solution can also be given as an input of the
problem in Function D; as a result, we can obtain an improved secondary solution with
fixed train orders. Due to the limited number of TSPOs resulting from the preprocess-
ing stage, only a local optimal solution can be obtained for the PTSPO problem and its
performance strongly depends on the given subset of TSPOs.

5.6 Case study

Before reporting the experimental results, we first describe the case study in Sec-
tion 5.6.1, i.e., a Dutch railway network. In Section 5.6.2(1), we compare the over-
all performance of the three proposed optimization approaches based on the Dutch test
case described in Section 5.6.1. For the PPWA problem and the PTSPO problem, we have
multiple computational configurations; therefore, we further investigate the impact of
these configurations on the results. In Section 5.6.2(2), the analysis of the PPWA prob-
lem focuses on assessing the effectiveness of the approximation when using different
line fitting methods, from the viewpoints of feasibility and approximation error. For
the PTSPO problem, Section 5.6.2(3) investigates the impact of the TSPOs generated in
the preprocessing step on the solution quality, by considering different sets of discrete
speed values. Moreover, we explore the benefits of changing train orders and managing
train speeds. Finally, a lower bound is generated to evaluate the quality of the PTSPO

solution obtained within a given computation time limit. Moreover, we additionally
report the detailed data about the solutions of this test case in the online repository
(Research Collection ETH Zurich). In Appendix A.3, we explore the applicability of
the proposed approach to a different test case adapted from INFORMS RAS (2012), in
order to show the generality of the conclusions.

We use the SNOPT solver implemented in the MATLAB (R2016a) TOMLAB tool-
box to solve the MINLP problem, i.e., the PNLP problem, by applying the two-level
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Figure 5.6: A real-world experimental network adapted from the Dutch railway
network

approach introduced in Section 5.5. We adopt the IBM ILOG CPLEX optimization
studio 12.6.3 with default settings to solve the MILP problems, i.e., the PPWA prob-
lem and the PTSPO problem. The custom-designed two-step approach described in
Section 5.5.2 is particularly considered for the PTSPO problem. Functions A and B
of the custom-designed two-step approach are implemented in Visual C++ 2013. The
experiments are all performed on a computer with an Intel R©CoreTM i7 @ 2.00 GHz
processor and 16GB RAM.

5.6.1 Setup

We consider the line of the Dutch railway network connecting Utrecht (Ut) to Den
Bosch (Ht), of about 50 km length. The network under consideration is shown in Fig-
ure 5.6. The network is composed of 40 nodes and 42 cells, with 2 main tracks, divided
into a long corridor for each traffic direction and 9 stations. The two tracks in different
directions are independent, so only one direction is considered, i.e., from Utrecht (Ut)
to Den Bosch (Ht). Three categories of trains are considered: intercity, sprinter, and
freight trains, with different acceleration, deceleration, and dynamic characteristics.
Four global1 routes (identified by colors: blue for intercity trains, green for sprinter
trains, and red for freight trains) are determined and graphically presented in the lower
part of Figure 5.6, in terms of origin, intermediate stop, destination, and number of
trains per hour. Sprinter trains stop at all stations; intercity and freight trains stop
only at the origin and destination stations. We consider one hour of traffic based on a
regular-interval timetable, with 15 trains.

Each train is given a randomly generated primary delay time cpri
f at its origin. More

specifically, we consider 10 delay cases of the primary delays following a 3-parameter
Weibull distribution. The delay distributions differ per train category, and the following
parameters in the form of [scale, shape, shift] are used: 1) for intercity trains, [394,

1A global route identifies the origin and destination of a train service, but does not specify tracks and
platforms used in station areas. The tracks and platforms used in a station area are described as local
routes.
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2.27, 315]; 2) for sprinter trains, [235, 3.00, 186]; 3) for freight trains, [1099, 2.62,
885]. These values come from fitting to real-life data as explained in Corman et al.
(2011b).

5.6.2 Experimental results

(1) Performance evaluation of the PNLP problem, the PPWA problem, and the PTSPO

problem

In this section, we use the Dutch test case introduced in Section 5.6.1 to evaluate the
overall performance of the three proposed optimization approaches, from the point of
view of effectiveness and efficiency.

We assess the performance of the three proposed optimization approaches on multi-
scale instances, i.e., considering several instances with different numbers of trains
(ranging from 2 to 15, a subset of the 15 trains described in Figure 5.6) and with
heterogeneous traffic. We here consider two computation time limits (i.e., 180 and
3600 seconds) for all three proposed optimization problems, and we output the best
feasible solution obtained within each given computation time limit. A large set of
TSPOs (i.e., Set 1 in Table 5.4) is used here for the PTSPO problem, due to its good
solution quality, as will be discussed in Section 5.6.2(3). Moreover, we consider two
scenarios for the PPWA problem regarding the upper and lower line fitting methods used
for approximating the nonlinear constraints, indicated as “PWA ul” and “PWA ll”, as
will be explained in Section 5.6.2(2). We terminate the genetic algorithm in the upper
level of the two-level approach after 10 generations.

In some experiments of the PPWA problem, we cannot obtain any feasible solution
within the given computation time limit; therefore, in Figure 5.7, we particularly re-
port the average results of the three proposed optimization approaches respectively for
the corresponding feasible cases of the PPWA problem. The bars indicate the total train
delay time, and refer to the Y-axis on the left-hand side, and the lines (with symbols)
indicate the actual computation time, and refer to the Y-axis on the right-hand side.
A missing bar/line means that no feasible solution is found for the given instance.
Figure 5.7(a) and (b) correspond to the “PWA ul” scenario of the PPWA problem, and
Figure 5.7(c) and (d) correspond to the “PWA ll” scenario. Figure 5.7(a) and (c) illus-
trate the results obtained within 180 seconds of computation time, and Figure 5.7(b)
and (d) give the results obtained within 3600 seconds.

We can see that the solution quality of the PPWA problem is the worst in most instances,
as the dark gray bars are much higher than the other bars, even when the computation
time is extended to 3600 seconds. The solution quality of the PNLP problem and the
PTSPO problem is similar in most instances; the largest deviation is less than 33% (cor-
responding to a delay time of 151 seconds). When focusing on the computational
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(a) scenario PWA_ul, timelimit = 180 seconds (b) scenario PWA_ul, timelimit = 3600 seconds

(c) scenario PWA_ll, timelimit = 180 seconds (d) scenario PWA_ll, timelimit = 3600 seconds

Number of trains considered

Number of trains considered

Number of trains considered

Number of trains considered

180

Figure 5.7: Results of the three optimization approaches, corresponding to the
feasible cases of the PPWA approach

efficiency, the PNLP problem appears to perform better on small-scale instances, be-
cause the black line (with dots) is mostly lower than the light gray line (with triangles)
for the instances with less than 10 trains, as is shown in Figure 5.7(b) and (d).

As the PNLP problem and the PTSPO problem can obtain feasible solutions for all delay
cases, we next focus on all the results of the 10 delay cases to further evaluate the
performance of these two optimization approaches, instead of only considering the
corresponding feasible cases of the PPWA problem. Figure 5.8 comparatively presents
the results of these two models, as an average of the 10 delay cases, in terms of the
objective value (i.e., the total train delay time), the actual computation time, and the
improvement in solution quality. Figure 5.8(a) has the same structure as Figure 5.7.
In Figure 5.8(b), each black (white) bar indicates the average improvement in solution
quality for each instance, when comparing the PNLP solution with the PTSPO solution
obtained within 180 (3600) seconds respectively, i.e., PNLP solution−PTSPO solution

PNLP solution ×100%.
A positive value means that the solution quality of the PTSPO problem is better, while
a negative value implies a better solution quality of the PNLP problem.

As illustrated in Figure 5.8, the solution quality of the PNLP problem and the PTSPO

problem differs among instances. Regarding the instances with a larger number of
trains (i.e., 8-15 trains), much better solutions are found by the PTSPO problem within
the computation time limit, attaining a 30% improvement in the solution quality at
most. The PTSPO solution found within 180 seconds is even better than the PNLP so-
lution obtained by consuming a longer computation time (which extends to 3600 sec-
onds). In the other instances with smaller scales, the PNLP problem performs better, as
a solution with a smaller train delay time can be found. Although the PNLP problem
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can find better solutions in small-scale instances, in comparison, the PTSPO solution ob-
tained within 180 seconds of computation time is still satisfactory. The PTSPO solution
is 3% worse at most than the PNLP solution, which is relatively small when compar-
ing to the 30% improvement of the PTSPO problem achieved for larger-scale instances.
Overall, the performance of the PTSPO problem is the best, as a solution with a good
quality can be found efficiently (within 180 seconds). Moreover, the train timetables
(dispatching solutions) and the speed-space graphs obtained by the PNLP problem and
the PTSPO problem for the Dutch test case are provided in Figure A.1 of Appendix A.2.

(2) Further analysis of the experimental results of the PPWA problem

We now study the solution quality and computational efficiency of the PPWA problem
by considering different line fitting methods (namely the upper and lower line fitting
methods, as illustrated in Figure 5.3), and we also analyze the resulting approximation
errors. As discussed before, in order to guarantee the feasibility of the approximated
constraints, we only use the lower line fitting method in Figure 5.3(b) to approxi-
mate (5.29). Regarding the approximation of (5.31), we consider both the upper and
lower line fitting methods, which results in two scenarios, indicated as “PWA ul” and
“PWA ll” respectively, and we further explore the impact of the line fitting method on
the solution quality. We also use the Dutch railway network in Figure 5.6 as test bed,
and we consider different instances with different numbers of trains (ranging from 2 to
15, a subset of the 15 trains described in Figure 5.6) and with heterogeneous traffic.

The CPLEX solving process of the PPWA problem is terminated by considering a given
computation time limit (i.e., 180 seconds and 3600 seconds), and we then output the
best feasible solution obtained within the given computation time limit. Figure 5.9
illustrates the relevant results of “PWA ul” and “PWA ll” for each computation time
limit, indicated as dark bars and light bars respectively. A missing bar means that
no feasible solution is found for the instance within the given computation time limit.
Figure 5.9(a) gives the number of the obtained feasible solutions, out of the 10 delay
cases. Figure 5.9(b) and (c) present the actual computation time and the objective value
as an average of the 10 delay cases.

The optimal solution can be obtained when considering only 2 trains (and 4 trains in
“PWA ll” scenario as well), as the actual computation time of these instances is less
than the given computation time limit. For the other instances, the optimality cannot
be guaranteed. A longer computation time leads to better objective values and a larger
number of cases for which a feasible solution can be attained. No feasible solution
can be obtained within 180 seconds for the instances with more than 4 trains, and no
feasible solution is obtained within 3600 seconds for the instances with more than 12
trains. Moreover, “PWA ll” yields a better performance in most instances, as it attains
more feasible solutions, relatively shorter computation times, and smaller objective
function values.
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Figure 5.9: Results of the PPWA problem, for “PWA ul” and “PWA ll”

The approximation errors of “PWA ul” and “PWA ll” for different constraints of the
PPWA problem are presented in Figure 5.10, as the percentage, i.e.,

|approximatedvalue− actualvalue|
actualvalue

×100%,

and as an average of the 10 delay cases. The errors caused by approximating (5.31a)
and (5.31b) lead to a deviation for calculating Lcru in (5.30), so we directly analyze the
deviation value (approximation error) of Lcru in (5.30). The (blue) diamond, (green)
square, (pink) dot, and (orange) triangle symbols indicate the approximation errors in
the final solution for (5.30), (5.29a), (5.29b), and (5.29c) respectively. The dark small
symbols indicate the approximation error of the solution obtained within 180 seconds
of computation time, and the light large symbols represent the approximation error of
the solution obtained within 3600 seconds. A missing symbol means that no feasible
solution is found within the given computation time limit, i.e., the dark small symbols
for the instances considering more than 4 trains and the light large symbols for the
instances with 14-15 trains.

As illustrated in Figure 5.10, the performance of “PWA ll” and “PWA ul” differs
among instances, i.e., “PWA ll” performs better for the instances with 2, 4, 10, and
12 trains, while “PWA ul” performs better for the instances with 6 and 8 trains. How-
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ever, “PWA ll” and “PWA ul” overall perform similarly, with less than 2.5% difference
of errors between them. Moreover, the approximation error of (5.30) is larger than that
of the others, ranging from 6% to 12%, which results from the different magnitudes
of the speed variable (v) and the time variables (a and d). The approximation error of
(5.29b) is the smallest, and it ranges from 4% to 8%. For reducing the errors further,
we can consider a PWA approximation using more affine subfunctions, and follow the
approach described in Section 5.4.2.

Furthermore, we analyze the number of constraint violations caused by the PWA ap-
proximation. Regarding (5.29), no constraint is violated, as we apply the lower line
fitting method to keep a smaller (positive) approximated value of the train speed than
its actual value. For (5.30), around 5% (ranging from 4.2% to 5.0% for “PWA ll” and
from 4.1% to 5.6% for “PWA ul”) of the constraints is violated, in the sense that the
approximated distance that a train travels in the cruising phase is larger than the actual
distance that a train can move.

In summary, from all perspectives, i.e., the solution quality, the computational effi-
ciency, the feasibility, and the errors, the PPWA problem does not seem to perform
good enough for addressing the integrated problem of traffic management and train
control.

(3) Further analysis of the experimental results of the PTSPO problem

We now study the impact of the TSPOs generated in the preprocessing step on the
solution quality. Six sets of TSPOs are given by considering different discrete speed
values for different train categories; they are presented in Table 5.4, denoted as Set 1,
..., Set 6 respectively. Note that intercity and sprinter trains use the same speed pat-
tern in each set. The number of the discrete speed values used in Set 1, ..., Set 6 is
decreasing, which implies that the resolution of the train speed becomes lower and
less TSPOs are available. The total number of TSPOs corresponding to the 6 sets is
provided in columns 4-5 of Table 5.4. Column 4 gives the total number of TSPOs per
train per block section, i.e., summing up the number of TSPOs for each train on each
block section; column 5 presents the number of possibilities of combining the TSPOs
for the train services, which indicates the scale of the feasible solution space.

Figure 5.11 illustrates the results of the 6 sets as a function of the computation time,
in particular, the total train delay time on average of the 10 delay cases. Note that
the CPLEX solving process is terminated by considering 8 computation time limits
ranging from 180 to 3600 seconds, and the best feasible solution obtained within each
given computation time limit is presented. The 6 sets are distinguished by colors:
green, blue, purple, pink, orange and yellow for Set 1, ..., Set 6 respectively. For each
set, the result with fixed train orders is drawn as a solid line and the result considering
variable train orders is indicated by a dashed line. Each line presents an initial solution
(represented by a star) and secondary solutions (indicated by dot and square symbols)



126 TRAIL Thesis series

Table
5.4:Six

setsofT
SPO

sgenerated
by

using
differentdiscrete

speed
values,see

Figure
5.4

for
m

ore
inform

ation

D
iscrete

speed
values

forintercity
train

and
sprintertrain

(unit:km
/h)

D
iscrete

speed
values

for
freighttrain

(unit:km
/h)

Totalnum
berofT

SPO
s

pertrain
perblock

section

N
um

berofall
possibilities

of
com

bining
the

T
SPO

s

Set
1
{0,40,60,80,90,100

,110
,120

,130}
{0,20,30,40,50,60,70,80}

16402
5
.70×

10
50

Set
2

{0
,40,70,90,100,110

,120,130}
{0

,20,40
,50

,60
,70

,80}
12370

5
.28×

10
46

Set
3

{0,40,70,90,110
,120

,130}
{0,20,40,60,70,80}

9084
3
.16×

10
43

Set
4

{0
,40

,70,100
,120

,130}
{0

,20
,50

,70,80}
6332

5
.56×

10
39

Set
5

{0,40,100
,130}

{0
,40

,80}
2388

8
.27×

10
28

Set
6

{0
,40

,130}
{0
,40

,80}
1278

6
.71×

10
19



Chapter 5. Integration of traffic control and train control-Part 1 127

T
o

ta
l 

tr
ai

n
 d

el
ay

 t
im

e 
(u

n
it

: 
se

co
n

d
)

180 300 600 1200 1800 2400 3000 3600
Computation time (unit: second)

10400

10500

10600

10700

10800

4500

4600

4700

4800

4900

5000

5100

5200

5300

5400

5500

10900

Set_1 Set_2

Set_3 Set_4

Set_5 Set_6

Initial solution

Fixed train orders

Variable train orders

28800

29100

29400

29700

30000

Figure 5.11: Total train delay time of the 6 sets as a function of computation time

as a function of computation time. Recall that the initial solution is obtained by con-
sidering a fixed full TSPO for each train on each block section and then improved to
generate the secondary solutions by considering a larger set of multiple TSPOs.

We first focus on the results with fixed train orders, represented as solid lines in Fig-
ure 5.11. The initial optimal solution considering a fixed full TSPO for each train on
each block section (i.e., each train is required to run as fast as possible with respect to
the safety, technical, and operational requirements) can be obtained efficiently (i.e., in
less than 6 seconds). The initial solution is further improved to generate the secondary
solutions by considering a larger set of multiple TSPOs. As shown, when focusing on
one set, the total delay time decreases as a function of the computation time, implying
an improvement in solution quality. This demonstrates the benefit of integrating traffic
management and train control, i.e., train delays can be reduced by managing train
speed. Moreover, focusing on all the 6 sets, the total delay time increases in both the
initial solution and the secondary solutions, if fewer discrete speed values are consid-
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ered. So the total delay time increases with a decreasing resolution of the train speed
in Set 1, ..., Set 6 sequentially. This results from the reduced solution space, i.e., the
reduced number of TSPOs available. The improvement in train delay time of Set 1
(the best/significant one with the lowest total delay time) is 3.14% at 180 seconds, and
it increases to 8.08% when extending the computation time to 3600 seconds.

When comparing with the results with fixed train orders, the solution quality consid-
ering variable train orders is better for Set 2, ..., Set 6, i.e., the dashed line is mostly
lower than the corresponding solid line. For Set 1, which contains the largest number
of TSPOs among the 6 sets, the result considering variable train order is worse than
that for fixed train orders. This may result from the large solution space caused by the
huge number of TSPOs and various possibilities of train orders, and the high sensi-
tivity of the solutions to the train speed. The sensitivity of the solutions to the train
speed is higher with an increasing number of TSPOs. Therefore, the MILP solver is
unable to effectively explore the solution space (regarding train speed) within a given
computation time limit. When reducing the solution space by fixing train orders, the
MILP solver has a higher chance to explore the solution space more efficiently within
the same time limit. To conclude, we may consider variable train orders for the case
with a low resolution of the train speed, and fixed train orders for the case with a high
train speed resolution, in order to obtain a better solution within a given computation
time limit.

Figure 5.12(a) and (b) present the percentage of improvement in solution quality from
the initial solution as a function of computation time, for the cases considering fixed
and variable train order respectively. This percentage of improvement is calculated
by the formula Φ`−1−Φ`

Φ1−Φ9
, for ` = 2, ...,9. Note that ` is the index of the computation

time limits considered, i.e., ` = 1, ...,9 represents 0 (initial solution), 180, 300, 600,
1200, 1800, 2400, 3000, and 3600 seconds of computation time limits respectively;
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Figure 5.12: Percentage of the improvement in solution quality as a function of
computation time for the 6 sets
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and Φ` indicates the total train delay time at the corresponding computation time limit
`. For instance, the delay time of the initial solution for Set 1 is 4902 seconds (i.e.,
Φ1 = 4902), which is reduced to 4748 and 4506 seconds in the secondary solutions
obtained at 180 and 3600 seconds of computation time respectively (i.e., Φ2 = 4748
and Φ9 = 4506); the percentage of improvement in solution quality within 180 seconds
is then Φ1−Φ2

Φ1−Φ9
= 4902−4748

4902−4506=39%. In each figure, the percentages of improvement in
solution quality at the 8 computation time limits are respectively drawn from the left
to the right using different colors, and each horizontal bar represents a set of TSPOs.

As illustrated, the green region (i.e., the improvement in solution quality at the first
180 seconds) occupies most of the space for each bar, ranging from 38% to 85% in
Figure 5.12(a) and from 39% to 76% in Figure 5.12(b). When expanding the focus to
the green and light blue portions, the percentage of the quality improvement from 0 to
300 seconds of computation time is more than a half for all the sets, achieving 52% -
87% in Figure 5.12(a) and 56% - 76% in Figure 5.12(b). This implies that a significant
improvement in solution quality can be achieved efficiently. Although the solution
quality can be improved by considering a longer computation time, the improvement
is not as significant as that achieved within the first 180 seconds. Hence, practically, it
is not a good choice to consume a much longer computation time for obtaining a small
improvement only.

Although a significant improvement from the initial solution can be achieved effi-
ciently, the solution quality is still unknown, i.e., how far is the solution away from
the optimal one (an estimation of the optimality gap). Therefore, we generate lower
bounds for the PTSPO problem to assess their solution quality. Note that the so-called
lower bound here is not physically feasible and therefore not the best lower bound.

Figure 5.13(a) and (b) illustrate the obtained lower bounds, feasible solutions, and the
corresponding estimation of optimality gaps1 as a function of the computation time,
and as an average of 10 delay cases, considering fixed and variable train orders respec-
tively. The largest set of TSPOs (i.e., Set 1) is used for computing the lower bounds,
due to its good solution quality. The best feasible solutions obtained within the given
computation time limits are represented by black dots (connected by a solid line), and
the lower bound is indicated by a horizontal dashed line. The percentage in blue color
indicates the optimality gap. To calculate these lower bounds, we have neglected train
acceleration and deceleration characteristics, i.e., we assume that a train can suddenly
and instantly accelerate or decelerate to any given speed value (listed in row 2 of Ta-
ble 5.4). This leads to a reduction of the optimization problem to identify an optimal
cruising speed for each train on each block section, as the incoming speed and the
outgoing speeds do not affect the final results anymore. The calculation of the lower
bounds is also an MILP problem, so we use the CPLEX solver to get them.

The lower bound of the case with fixed train order in Figure 5.13(a) is tighter than
that of the case considering variable train order in Figure 5.13(b), which results from

1Note that the gap between the feasible solution obtained and the lower bound is considered as an
estimation of the optimality gap.
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Figure 5.13: Lower bounds, feasible solutions, and estimation of optimality gaps

the reduced solution space by fixing train orders. As shown in Figure 5.13(a), when
fixing the train orders, the optimality gap is 17% within 180 seconds of computation
time, and it is then reduced to 11% by extending the computation time to at most 3600
seconds. In comparison, the optimality gap of the case considering variable train orders
is larger, ranging from 22% to 16%, as shown in Figure 5.13(b).

5.6.3 Discussion

We here derive the main conclusions, sketched quantitatively in Figure 5.14, from
the viewpoints of solution feasibility (constraint violation), solution quality, computa-
tional efficiency (reported approximately), and applicability for large-scale instances
(measured by the total number of the cases, for which at lease one feasible solution
is obtained within the given computation time limit). The center indicates the worst
performance for all the four items.

In view of the solution feasibility and the applicability for large-scale instances, the
PNLP problem and the PTSPO problem have a similar performance, as they can find
feasible solutions for all instances (and for all delay cases, even the instance with 15
trains). These two approaches perform better than the PPWA approach, because some
constraints are violated in the PPWA solution, and for some large-scale instances no
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Figure 5.14: Overview of the performance of the three proposed approaches

feasible solution is obtained for the PPWA problem within the given computation time
limit.

Regarding the solution quality, the PPWA approach is also the worst among the three
approaches. The solution quality of the PNLP problem and the PTSPO problem differs
among instances. The PTSPO approach has a better performance on the instances with a
larger number of trains, and the PNLP approach performs a little better on the instances
with a smaller number of trains. Overall, the PTSPO solution is better than the PNLP

solution, achieving a 23.2% improvement, corresponding to a total delay time of 3727
seconds, within 180 seconds of computation time. The improvement of the PTSPO

approach in solution quality reduces to 6.7%, when extending the computation time to
3600 seconds.

From the perspective of computational efficiency, the PPWA approach does not yield
any feasible solution within the given time limit for many instances, so the compu-
tational efficiency of the PPWA approach is recognized as being the worst. In the ex-
periments, feasible solutions (having satisfactory quality in fact) can always be found
by the PTSPO approach within the shortest computation time limit (i.e., 180 seconds),
and a significant improvement (with respect to the corresponding initial solution) in
solution quality can be achieved efficiently. Regarding the computational efficiency of
the PNLP approach, feasible solutions can also be obtained within the given computa-
tion time limit, but with a worse quality in comparison with the PTSPO solution. As
computation time limits are considered and feasible solutions can be found by both the
PNLP approach and the PTSPO approach for all delay cases, within 180 seconds of com-
putation time, we cannot draw conclusions on their computational efficiency. Their
computational efficiency is therefore reflected by the quality of the solutions obtained
within the given computation time limits.



132 TRAIL Thesis series

Computational efficiency is a key factor for addressing real-time problems, and the
problem of integrating real-time traffic management and train control is such a case.
Therefore, the overall performance of the PTSPO approach is recognized as being the
best, as a solution with better and satisfactory quality can be found efficiently (within
180 seconds), see Figure 5.8. Using a larger set of TSPOs for the PTSPO approach
leads to a better solution. The results show that we could consider to fix the train
orders when using a larger set of TSPOs, in order to better explore a smaller solution
space regarding the train speed within a time limit.

The experimental results demonstrate the benefits of integrating traffic management
and train control. The benefit is reflected by the reduced train delays, i.e., train delays
can be reduced by managing the train speed and by changing the train orders. In
our test case, the consideration of multiple TSPOs leads to respectively 3.14% and
8.08% reduction of train delays for Set 1 within 180 and 3600 seconds of computation
time, and the consideration of changing train orders results in an additional 1.59%
improvement in the solution quality for Set 2, as discussed in Section 5.6.2(3).

5.7 Conclusions

In this chapter, we have tackled the integration of real-time traffic management and
train control by using mixed-integer nonlinear programming (MINLP) and mixed-
integer linear programming (MILP) methods. Three optimization approaches are de-
veloped, i.e., one MINLP problem (PNLP) and two MILP problems (PPWA and PTSPO),
for delivering both a train dispatching solution (i.e., binary/integer decisions on a set
of times, orders, and routes to be followed by trains) and a train control solution (i.e.,
train speed trajectories following nonlinear dynamics) simultaneously. A preprocess-
ing step is used for the PTSPO problem to generate multiple TSPOs by considering
discrete speed values, in order to restrict the search only to an efficient subset of all
possible TSPOs. In these optimization problems, the train speed is considered vari-
able, and the blocking time of a train on a block section dynamically depends on its
real speed. Regarding the solution approaches, we have presented a two-level approach
for solving the PNLP problem and proposed a custom-designed two-step approach for
solving the PTSPO problem. The performance of the three proposed optimization ap-
proaches has been evaluated comparatively from the viewpoints of solution feasibility,
solution quality, computational efficiency, and applicability for large-scale instances,
based on a real-world test case adapted from the Dutch railway network. According
to the experimental results, the PTSPO approach overall yields the best performance
among the three optimization approaches, as it is able to exploit the solution space ef-
ficiently. Moreover, the benefits of integrating real-time traffic management and train
control are demonstrated: for the given test case, the train delay can be reduced up to
8% by managing the train speed and by changing the train orders.

For future research, a comprehensive system could be developed based on the pro-
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posed optimization approaches to integrate the multiple steps in the solving procedure,
e.g., the preprocessing step for generating a set (or an efficient subset) of the possible
TSPOs, the solving step to solve the optimization problem, and the displaying step to
show train timetables and speed-space graphs.
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Chapter 6

Integration of traffic control and train
control-Part 2: Extensions towards
energy-efficient train operations1

We here still study the integration of real-time traffic management and train control by
using mixed-integer nonlinear programming (MINLP) and mixed-integer linear pro-
gramming (MILP) approaches. In this chapter, aiming at energy-efficient train oper-
ation, we extend the three optimization problems proposed in Chapter 5 by means of
introducing energy-related formulations.

This chapter is organized as follows. Section 6.1 gives a detailed introduction of the
integrated problem of real-time traffic management and train control, focusing on the
energy-related aspects. In Section 6.2, after introducing the notations used in the math-
ematical formulations, we calculate the energy consumption of the train motion for
accelerating trains and for overcoming resistances respectively. Then, formulations for
calculating the utilization of the energy obtained by braking trains are constructed. In
Section 6.3, the experimental results based on a real-world railway network are given
for evaluating the performance of the optimization approaches, exploring the trade-off
between train delay and energy consumption, and investigating the benefits of regen-
erative braking. Moreover, we examine the quality of the train speed trajectories ob-
tained by the proposed integrated optimization approaches, by means of comparing
them with the train speed trajectories obtained by using the detailed nonlinear train
models as proposed by Wang et al. (2013); Liu and Golovitcher (2003); Khmelnitsky
(2000). Finally, Section 6.4 ends the chapter with conclusions.

1With minor updates, this chapter has been published in “Luan, X., Wang, Y., De Schutter, B., Meng,
L., Lodewijks, G., Corman, F. (2018). Integration of real-time traffic management and train control for
rail networks-Part 2: Extensions towards energy-efficient train operations. Transportation Research
Part B: Methodological, 115, 72-94.”

135
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6.1 Introduction

Railway transport systems are of crucial importance for the competitiveness of national
or regional economy as well as for the mobility of people and goods. To maintain the
environmental advantage and business benefits of railway sectors, targets have been
set by the International Union of Railways (UIC, 2012) to reduce the carbon diox-
ide (CO2) emissions and energy consumption from train operations by 50% and 30%
respectively in 2030, compared to 1990. Such policies reflect an increasing concern
for sustainability and energy efficiency. Consequently, energy-efficient train operation
is attracting more and more attention, as it is seen as the most important measure to
reduce the environmental impacts and the costs used to power trains.

In railway transport systems, the energy efficiency is greatly influenced by the train
operation strategy, which consists of the operational train timetables and the applied
driving actions. The former relates to the real-time traffic management problem, i.e.,
(re-)scheduling train routes, orders, and passing times at stations, aiming at adjust-
ing the impacted schedules from perturbations and reducing negative consequences.
The latter concerns the train control problem, i.e., optimizing the sequence of driving
regimes (maximum acceleration, cruising, coasting, and maximum braking) and the
switching points between the regimes, with the aim of minimizing energy consump-
tion. As discussed in Chapter 5, the two problems are closely related to each other. In
order to achieve energy-efficient train operation, one of the most promising options is
to jointly consider the two problems, i.e., (re-)constructing a timetable in a way that not
only allows different driving actions, but enables eco-driving actions (resulting in bet-
ter energy performance). This comes from, e.g., avoiding unneeded accelerating and
braking actions, which do not only lead to trains delays, but also unnecessary waste of
energy. Another promising option is to incorporate regenerative braking, so that the
energy generated by braking trains can be further utilized for accelerating trains, and
then the overall energy consumption of train operations decreases. As a result, to com-
pute energy-efficient train trajectories and to further achieve the energy efficiency of
train operations, the focus on only train delay is not enough; approaches that not only
include train delays but also evaluate energy consumption and consider regenerative
energy utilization are desired.

In most studies of the real-time traffic management problem, train delay is a commonly
used objective, and any dynamics-related objective, such as energy consumption, can-
not be directly considered, due to the disregard of train dynamics, However, the ob-
jective of energy consumption is considered only in train control studies (see Lu and
Feng, 2011; Wang et al., 2013). In Chapter 5, the integration of the two problems has
been addressed, and three integrated optimization approaches have been developed to
consider both traffic-related properties (i.e., a set of times, orders, routes to be fol-
lowed by trains) and train-related properties (i.e., speed trajectories) at the same time,
focusing on delay recovery only. These integrated optimization approaches build up a
good foundation and enable us to introduce energy-related formulations and to focus
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on delay recovery and energy efficiency at the same time.

In this chapter, we focus on the train control part of the integrated optimization ap-
proaches while including energy-related formulations. We first introduce the evalua-
tion of energy consumption into the integrated optimization problems. To calculate
the energy consumption, a set of linear constraints is proposed for the PTSPO problem;
for the PNLP and PPWA problems, the resistance function with a quadratic term of the
train speed is approximated with a piecewise constant function, in order to maintain
the nature of these two optimization approaches. In addition, we consider the option of
regenerative braking and present linear formulations to calculate the utilization of the
energy obtained through regenerative braking. With the inclusion of the energy-related
formulations, we consider two objectives, i.e., delay recovery and energy efficiency, by
using a weighted-sum formulation and an ε-constraint formulation. Train coasting is
not included due to the concern of problem complexity; however, a coasting phase can
be introduced by assuming a piecewise constant deceleration function of the cruising
speed, as discussed in Chapter 6 We use the Dutch test case to conduct experiments,
just as in Chapter 5. We compare the performance of the optimization approaches
and investigate the trade-off between train delay and energy consumption. By our ap-
proaches, train delay and energy consumption can be reduced at the same time through
managing the train speed, by up to 4.0% and 5.6% respectively. This demonstrates
the benefit of the integration and shows great potential for energy efficiency of train
operations. Moreover, the benefit of regenerative braking is shown. In our case study,
when applying regenerative braking, up to 53.3% of the kinetic energy can be stored,
and up to 46.6% of the stored energy is re-utilized for train acceleration, which further
leads to a 22.9% reduction of the total energy consumption. In the experiments, the
proposed optimization approaches can obtain feasible solutions (with good quality) of
the train delay and energy consumption minimization problem, for a single direction
along a 50 km corridor with 9 stations and 15 trains each hour within a computation
time of 3 minutes.

6.2 Mathematical formulation

In Section 6.2.1, we first describe the notations used for formulating, modeling, and op-
timizing the energy-related aspects. Section 6.2.2 discusses and formulates the energy
consumption of the train motion for accelerating trains and for overcoming resistances
respectively. As incorporating regenerative braking is an effective way to achieve en-
ergy efficiency, in Section 6.2.3, we consider the possibility of regenerative braking
and provide formulations for calculating the utilization of the regenerative energy ob-
tained by braking trains. In this chapter, we still follow the assumptions proposed in
Section 5.3 of Chapter 5.
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6.2.1 Notations

We use the notations in Table 5.1, with the additional sets, subscripts, input parameters,
and decision variables given in Table 6.1 to formulate the train energy consumption.
Movement of a train on a block section is considered to be made up by an incoming
phase, (accelerating or braking from a starting speed to a cruising speed), a cruising
phase with a constant cruising speed, and an outgoing phase (accelerating or braking
from the cruising speed to an exit speed of the block section).

Table 6.1: Sets, subscripts, input parameters, and decision variables

Subscripts and sets

K set of regions, i.e., electric regions, |K| is the number of regions
κ region index, κ ∈ K
Yf ,i, j set of options of train speed profile vectors that train f may follow on

cell (i, j),
∣∣Yf ,i, j

∣∣ is the number of train speed profile options (TSPOs)
for train f on cell (i, j)

b TSPO index, b f ,i, j ∈
{

1, ...,
∣∣Y f ,i, j

∣∣}
Er

κ set of cells in region κ where trains can utilize regenerative energy

Input parameters
m f mass of train f
yin

f ,i, j,b bth incoming speed of train f on cell (i, j)
ycru

f ,i, j,b bth cruising speed of train f on cell (i, j)
yout

f ,i, j,b bth outgoing speed of train f on cell (i, j)
y f ,i, j,b bth train speed profile vector, y f ,i, j,b ∈ Yf ,i, j, train speed profile vector

y f ,i, j,b =
[
yin

f ,i, j,b ycru
f ,i, j,b yout

f ,i, j,b

]>
∈ Yf ,i, j

Lin
f ,i, j,b distance that train f runs over on cell (i, j) in the incoming phase in

the bth train speed profile vector y f ,i, j,b
Lout

f ,i, j,b distance that train f runs over on cell (i, j) in the outgoing phase in
the bth train speed profile vector y f ,i, j,b

ζ1, f ,i, j,b, ...,

ζ6. f ,i, j,b

logical parameters to indicate the relation of the incoming, cruising,
outgoing speed, and switching speed vturn

f in the bth train speed
profile vector y f ,i, j,b (see the explanation in Table 5.2)

r1, f ,i, j,r2, f ,i, j,
r3, f ,i, j

coefficients of the total resistance function for train f on cell (i, j)

ηi, j,p,k recuperation coefficient for utilizing the regenerative energy between
cells (i, j) and (p,k) depending on the distance between the two cells

Decision variables
Lcru

f ,i, j distance that train f runs through on cell (i, j) in the cruising phase

continued on next page
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continued from previous page

Symbol Description

ϑ f ,i, j,b binary variables, ϑ f ,i, j,b = 1 if the corresponding train speed vector
y f ,i, j,b is used by train f on cell (i, j), and otherwise ϑ f ,i, j,b = 0

Jacc in
f ,i, j ,Jacc out

f ,i, j
energy consumption for accelerating train f in the incoming and
outgoing phases on cell (i, j)

Jres in
f ,i, j ,Jres cru

f ,i, j ,

Jres out
f ,i, j

energy consumption for overcoming the resistances of train f in the
incoming, cruising, and outgoing phases on cell (i, j)

Jreg in
f ,i, j ,Jreg out

f ,i, j
regenerative energy obtained by braking train f in the incoming and
outgoing phases on cell (i, j)

u f , f ′,i, j,p,k energy generated by braking train f on cell (i, j) and further used for
accelerating train f ′ on cell (p,k)

We model train movements over block sections, such that their timing can be deter-
mined, and the energy can be related to the accelerating, cruising, and braking actions
occuring in the train movements. Compared to Chapter 5, some variables for calculat-
ing the energy consumption and the regenerative energy utilization are newly added,
e.g., Jacc in

f ,i, j , Jres in
f ,i, j , Jreg in

f ,i, j , and u f , f ′,i, j,p,k. Basically, these variables are a consequence
of the interactions among the key variables for formulating the traffic and train related
decisions introduced in Chapter 5, i.e., arrival time variables a, departure time variables
d, and train speed variables v, for all trains in the network, with respect to the work
formula, Newton’s second law of motion, the formulas of the uniformly accelerating
and decelerating motions, and operational requirements.

Note that the maximum acceleration and deceleration depend on the traction and brak-
ing force. In the literature, researchers either consider the tractive force as a well-
defined function of the speed and the control input (Howlett, 2000), or assume a con-
stant power (then the tractive force is a function of the speed, e.g., Howlett, 2000), or
assume a constant acceleration (Wang et al., 2016). As this chapter aims to include
the minimization of the energy consumption into the integrated optimization problems
proposed in Chapter 5 and to compare the integrated optimization approaches in a
clear way, we still assume a piecewise constant acceleration (with a switching point
vturn

f ) and a constant deceleration for each train category, just as in Chapter 5. So a
train follows a uniform acceleration and deceleration motion in a given speed interval.
According to the equation q = r +m ·α (where q, r, m, and α indicate the tractive
force, resistance force, train mass, and train acceleration respectively), the introduc-
tion of resistance would result in a larger tractive force (compared with the case where
the resistance is neglected), which further has impact on the energy consumption. We
consider a piecewise constant acceleration for the train motion, and the resistance is
taken into account for determining this piecewise constant acceleration, i.e., ensuring
that the tractive force used for accelerating trains and for overcoming the resistance
together is technically feasible (not greater than the maximum tractive force).
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6.2.2 Optimization of energy consumption

Energy is mostly consumed for accelerating trains and for overcoming the resistance in
a train movement. In previous studies on the train control problem (Wang et al., 2013;
Wang and Goverde, 2016), the energy used for a train that travels from position x1 to
position x2 is calculated by using the following equation:

J =
∫ x2

x1

q(x) ·dx =
∫ x2

x1

m ·α ·dx+
∫ x2

x1

rx(x) ·dx, (6.1)

where J indicates the work (energy consumption), q(·) and rx(·) indicate the tractive
force and the resistance force respectively, given as a function of the distance x, m is
the train mass, and α indicates the train acceleration. By using the formulas dx = v ·dt
and dv = α ·dt, we can rewrite (6.1) as follows:

J =
∫ v2

v1

m · v ·dv+
∫ v2

v1

r(v) · v
α
·dv, (6.2)

where the resistance force r(·) is given as a function of the train speed v, and v1 and
v2 indicate the train speeds at the positions x1 and x2 respectively. The first term of
(6.2) in fact indicates the energy used for accelerating the train, and the second term
calculates the energy consumption for overcoming the resistance.

In Section 6.2.2(1) and Section 6.2.2(2), we discuss and formulate the energy con-
sumption in these two usages respectively. Thus, the problem of modeling train move-
ments is that we have to relate energy consumption to resistance and train speed, re-
sistance to train speed, and departure and arrival times (which are the optimization
variables for the traffic management problem) to distance and train speed.

(1) Energy used for accelerating trains

With integral calculation, the energy consumption for train acceleration, i.e., the first
term of (6.2), can be easily calculated as m

2 · (v
2
2− v2

1), which is in fact the difference
of the train kinetic energy when changing the speed of a train with a mass m from v1

to v2. Based on the notations in Tables 5.1 and 6.1 and the formulations proposed in
Chapter 5, we add the following constraints to determine the energy consumption used
for accelerating trains in the incoming and outgoing phases respectively:

Jacc in
f ,i, j = max

{
0,

1
2
·m f · [(vcru

f ,i, j)
2− (vin

f ,i, j)
2
]

}
, ∀ f ∈ F,(i, j) ∈ E f (6.3)

Jacc out
f ,i, j = max

{
0,

1
2
·m f · [(vout

f ,i, j)
2− (vcru

f ,i, j)
2]

}
, ∀ f ∈ F,(i, j) ∈ E f . (6.4)

In the cruising phase, energy is only used for maintaining a constant cruising speed,
i.e., overcoming the resistance; so no energy is consumed for train acceleration in the
cruising phase.
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Constraints (6.3)-(6.4) contain quadratic terms of the speed variables vin
f ,i, j, vcru

f ,i, j, and
vout

f ,i, j. These quadratic terms will not affect the nature of the three optimization prob-
lems proposed in Chapter 5, i.e., the PNLP problem is still an NLP problem and the
PPWA and PTSPO problems are still MILP problems. Therefore, with the inclusion of
(6.3)-(6.4), the solution approaches proposed in Section 5.5 of Chapter 5 can still be
used to solve these problems.

(2) Energy used for overcoming the resistance

The energy used for overcoming resistance while changing the train speed from v1 to v2

can be formulated as
∫ v2

v1

r(v)·v
α
·dv, i.e., the second time of (6.2), where r(·) indicates the

resistance force as a function of the train speed v and α indicates the train acceleration.

Regarding the resistance force r(·), it is typically assumed that there are two categories
of resistances for trains, i.e., the train resistance and the line resistance. Besides the
common impact factor of the infrastructure (train) characteristics, the train resistance
only depends on the train driving strategy (i.e., the operating speed), and the line re-
sistance is mostly determined by the characteristics of the rail network (track). In the
studies on the train control problem (Davis, 1926; Brünger and Dahlhaus, 2008; Wang
et al., 2013; Hansen et al., 2017), the resistance force r(·) is commonly expressed as a
quadratic function of the speed, i.e., r1,x · v2 + r2,x · v+ r3,x, where rρ,x for ρ ∈ {1,2,3}
are non-negative coefficients that depend on the train characteristics and the rail net-
work (track) characteristics. We assume that the gradients and curve radii are constant
for each cell (block section); the difference of the gradient and curve radii within a cell
is neglected. The tunnel resistance occurs in the cells inside the tunnels (even if the
cell is partially inside the tunnel) and is equal to zero for the cells completely outside
the tunnels. With this assumption, the coefficients rρ,x for ρ ∈ {1,2,3} are then con-
stant for each train category on each cell; thus, they could be rewritten as rρ, f ,i, j for
ρ ∈ {1,2,3} for train f on cell (i, j). As a result, we can express the total resistance of
train f on cell (i, j) as r f ,i, j(v f ,i, j) = r1, f ,i, j · v2

f ,i, j + r2, f ,i, j · v f ,i, j + r3, f ,i, j, which only
depends on its running speed v f ,i, j. Note that the total resistance is a strictly increasing
quadratic function of the speed.

Let us define a function Ξ(v) = r1
4 ·v

4+ r2
3 ·v

3+ r3
2 ·v

2, where r(v) ·v is the derivative of
the function Ξ(v), i.e., [Ξ(v)]′ = r(v) · v. Then, we could calculate the integral formula∫ v2

v1

r(v)·v
α
·dv as Ξ(v2)−Ξ(v1)

α
, which computes the energy used for overcoming resistance

when accelerating a train from speed v1 to speed v2 at a steady acceleration α. Note
that the function Ξ(v) should be train and block section dependent, due to the train and
block section specified coefficients rρ, f ,i, j for ρ ∈ {1,2,3}.

By assuming a piecewise constant acceleration (with a switching point vturn
f ) and a

constant deceleration for each train category, a train follows a uniform acceleration and
deceleration motion in a given speed interval. We apply the formulation Ξ(v2)−Ξ(v1)

α
to

compute the energy used by train f on cell (i, j) for overcoming the resistance in the
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incoming phase, meanwhile taking the piecewise constant acceleration into account;
the formulation is given as follows:

Jres in
f ,i, j =



Ξ f ,i, j(vcru
f ,i, j)−Ξ f ,i, j(vin

f ,i, j)

α1, f ,i, j
, if vin

f ,i, j ≤ vcru
f ,i, j ≤ vturn

f
Ξ f ,i, j(vcru

f ,i, j)−Ξ f ,i, j(vin
f ,i, j)

α2, f ,i, j
, if vturn

f ≤ vin
f ,i, j < vcru

f ,i, j
Ξ f ,i, j(vturn

f )−Ξ f ,i, j(vin
f ,i, j)

α1, f ,i, j
+

Ξ f ,i, j(vcru
f ,i, j)−Ξ f ,i, j(vturn

f )

α2, f ,i, j
,

if vin
f ,i, j < vturn

f < vcru
f ,i, j

0, if vin
f ,i, j > vcru

f ,i, j
∀ f ∈ F,(i, j) ∈ E f .

(6.5)

A formulation similar to (6.5) can also be constructed for calculating the energy con-
sumption Jres out

f ,i, j in the outgoing phase. For the sake of compactness, we do not report
those details here.

In the cruising phase, a train follows a uniform motion at a certain cruising speed;
so the resistance force does not change and can be easily computed by r f ,i, j(vcru

f ,i, j).
Therefore, based on the work formula J = r · x (where J, r, and x indicate the work,
force, and distance that a train travelled respectively), we can formulate the energy
used by train f on cell (i, j) in the cruising phase as follows:

Jres cru
f ,i, j = r f ,i, j(vcru

f ,i, j) ·Lcru
f ,i, j = (r1, f ,i, j · vcru

f ,i, j
2 + r2, f ,i, j · vcru

f ,i, j
+r3, f ,i, j) ·Lcru

f ,i, j, ∀ f ∈ F,(i, j) ∈ E f .
(6.6)

Constraints (6.5)-(6.6) contain either a quartic term of the train speed or a product term
of the speed and distance. The inclusion of these two equations changes the nature of
the PNLP problem and the PPWA problem and leads to difficulties in solving these two
problems (i.e., the resulting problems cannot be solved directly). However, as a set
Yf ,i, j of train speed profile options (TSPOs) is pre-defined in a preprocessing step for
the PTSPO problem, that problem is still an MILP problem.

In order to help readers understand the unchanged nature of the PTSPO problem, we
reformulate (6.5) and (6.6) for the PTSPO problem as follows:

Jres in
f ,i, j =

|Y f ,i, j|
∑

b=1
ϑ f ,i, j,b ·ζ1, f ,i, j,b ·ζ4, f ,i, j,b ·

Ξ f ,i, j(ycru
f ,i, j,b)−Ξ f ,i, j(yin

f ,i, j,b)

α1, f ,i, j

+
|Y f ,i, j|

∑
b=1

ϑ f ,i, j,b ·ζ1, f ,i, j,b ·ζ3, f ,i, j,b ·
Ξ f ,i, j(ycru

f ,i, j,b)−Ξ f ,i, j(yin
f ,i, j,b)

α2, f ,i, j

+
|Y f ,i, j|

∑
b=1

ϑ f ,i, j,b ·ζ1, f ,i, j,b · (1−ζ3, f ,i, j,b) · (1−ζ4, f ,i, j,b)

·
[

Ξ f ,i, j(vturn
f )−Ξ f ,i, j(yin

f ,i, j)

α1, f ,i, j
+

Ξ f ,i, j(ycru
f ,i, j)−Ξ f ,i, j(vturn

f )

α2, f ,i, j

]
∀ f ∈ F,(i, j) ∈ E f .

(6.7)

Jres cru
f ,i, j =

|Y f ,i, j|
∑

b=1
ϑ f ,i, j,b ·

(
Lcell

i, j −Lin
f ,i, j,b−Lout

f ,i, j,b

)
·
(

r1, f ,i, j · ycru
f ,i, j,b

2

+r2, f ,i, j · ycru
f ,i, j,b + r3, f ,i, j

)
, ∀ f ∈ F,(i, j) ∈ E f .

(6.8)
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The binary variable ϑ f ,i, j,b and the input parameters yin
f ,i, j,b, ycru

f ,i, j,b, yout
f ,i, j,b, Lcell

i, j , etc.
have all been introduced in Chapter 5, and they are described in Table 5.1. The speed
indicators ζ1, f ,i, j,b, ..., ζ6, f ,i, j,b are used in Chapter 5 and explained in Table 5.2. A
formulation similar to (6.7) can also be constructed for calculating the energy con-
sumption Jres out

f ,i, j in the outgoing phase; we skip the details here for the sake of com-
pactness. With the inclusion of the linear constraint (6.7) and (6.8), the nature of the
PTSPO problem will not change, i.e., it is still an MILP problem.

To address the difficulties in solving the PNLP problem and the PPWA problem with
constraints (6.5) and (6.6), we can approximate the resistance function r f ,i, j(·) by using
a piecewise constant function with 2 affine parts and with constant values rcs

1, f ,i, j and
rcs

2, f ,i, j. As a result, we can use the following formulations to calculate the energy used
by train f on cell (i, j) for overcoming resistance in the incoming and cruising phases
respectively:

Jres in
f ,i, j =



rcs
1, f ,i, j

2α1, f ,i, j
·
[
(vcru

f ,i, j)
2− (vin

f ,i, j)
2
]
, if vin

f ,i, j ≤ vcru
f ,i, j ≤ vturn

f
rcs

2, f ,i, j
2α2, f ,i, j

·
[
(vcru

f ,i, j)
2− (vin

f ,i, j)
2
]
, if vturn

f ≤ vin
f ,i, j < vcru

f ,i, j
rcs

1, f ,i, j
2α1, f ,i, j

·
[
(vturn

f ,i, j)
2− (vin

f ,i, j)
2
]
+

rcs
2, f ,i, j

2α2, f ,i, j
·
[
(vcru

f ,i, j)
2− (vturn

f ,i, j)
2
]
,

if vin
f ,i, j < vturn

f < vcru
f ,i, j

0, if vin
f ,i, j > vcru

f ,i, j

,

∀ f ∈ F,(i, j) ∈ E f

(6.9)

Jres cru
f ,i, j =

{
rcs

1, f ,i, j ·Lcru
f ,i, j, if vcru

f ,i, j ≤ vturn
f

rcs
2, f ,i, j ·Lcru

f ,i, j, if vcru
f ,i, j > vturn

f
, ∀ f ∈ F,(i, j) ∈ E f . (6.10)

These two equations derive from the work formula J = r · x, where J and r indicate

the energy consumption and the resistance force and x = v2
2−v2

1
2α

computes the distance
travelled by a train for accelerating from speed v1 to v2 in a uniform acceleration mo-
tion. A formulation similar to (6.9) can also be constructed for calculating the energy
consumption Jres out

f ,i, j in the outgoing phase. For the sake of compactness, we do not
report those details here.

We consider two objectives: one is for delay recovery, just as in Chapter 5, i.e., reduc-
ing the sum over all trains of the mean absolute delay time at all visited stations:

Zdelay = ∑
f∈F

∑
(i, j)∈Estop

f

∣∣d f ,i, j−w f ,i, j−D f ,i, j
∣∣∣∣∣Estop

f

∣∣∣ , (6.11)

and another one is to achieve energy efficiency, i.e., reducing the total energy con-
sumption for both accelerating trains and overcoming the resistance:

Zenergy = ∑
f∈F

∑
(i, j)∈E f

(
Jacc in

f ,i, j + Jacc out
f ,i, j + Jres in

f ,i, j + Jres cru
f ,i, j + Jres out

f ,i, j

)
, (6.12)

where Jacc in
f ,i, j and Jacc out

f ,i, j are computed in (6.3)-(6.4), and Jres in
f ,i, j , Jres cru

f ,i, j , and Jres out
f ,i, j are

calculated by using (6.7)-(6.8) for the PTSPO problem and by following (6.9)-(6.10) for
the other two problems.
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For multi-objective optimization problems, the weighted-sum formulation and the ε-
constraint formulation are commonly used. Therefore, aiming at both delay recovery
and energy efficiency, we use the following two ways:

1) One way is to minimize the weighted sum of the two objectives. Then, the overall
objective function can be presented as

minZ = ι
delay ·Zdelay + ι

energy ·Zenergy, (6.13)

where the weights ιdelay and ιenergy are used to balance their importance, and for
normalization as well.

2) Another way is to minimize the energy consumption with respect to a given upper
bound Zdelay ub of the train delay, formulated as

minZenergy (6.14a)

s.t. Zdelay ≤ Zdelay ub. (6.14b)

Additionally, in this research, the constraints proposed in Chapter 5 for the three pro-
posed optimization problems should also be included.

6.2.3 Utilization of regenerated energy

An option for further improving the energy efficiency of train operations is to incorpo-
rate regenerative braking, where the kinetic energy of a running train can be converted
into electrical energy when the train brakes. This electrical energy can be fed back
to the catenary system for immediately accelerating other trains or stored in energy
storage devices (e.g., batteries, super-capacitors, and flywheels) for train acceleration
when required. Regenerative braking is a mature technology. In practice, it has been
used in urban rail transit systems and also in railway transportation systems (UIC,
2002). The use of regenerative braking decreases the overall energy consumption of
the train motion and changes the optimal solution to the energy-efficient train control
(operation) problem. Therefore, in this section, we present formulations to calculate
the regenerative energy and to determine the utilization of the regenerative energy, for
railway and metro systems that are equipped with this technology.

Aiming at maximizing the use of the regenerative energy and at minimizing the need of
on-board resistors (which are used for dissipating the regenerative energy that cannot
be used within the system), energy storage technologies have been well studied in
the literature (see the review papers by Khaligh and Li (2010); González-Gil et al.
(2013)) and applied in the railway industry (see the recent review paper by Ghaviha
et al., 2017). Therefore, we consider the use of energy storage systems, and then the
regenerative energy can be used for train acceleration when it is required. Energy
storage systems can by divided into two types, i.e., on-board energy storage systems
and the wayside (or stationary) energy storage systems, which result in different rules
for utilizing the regenerative energy, explained as follows:
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• For the on-board energy storage systems, i.e., storage devices that are installed
on the trains, a train is able to temporarily store its own braking energy and re-
utilize it in the next acceleration stages. So, the energy generated by braking a
train on a block section can only be further used by the train itself. This kind of
system is operated in some countries, e.g., Portugal (a light rail network in the
south of Lisbon Meinert, 2009) and Germany (light rail networks in Mannheim
Steiner et al., 2007).

• For the wayside (or stationary) energy storage systems, where the storage de-
vices are installed along the track, the surplus regenerated energy could be ab-
sorbed and delivered when it is required for accelerating other trains in the same
electric region. So, the energy generated by braking a train on a block section
can be further used by other trains on the block sections that are in the same
electric region as the block section where the the energy is generated. In prac-
tice, this kind of system is commonly used in urban rail transit systems, e.g.,
metro systems in France (Boizumeau et al., 2011), Germany, China, and Spain
(Siemens, 2011), and also used or tested for railway transport systems in some
countries, e.g., Spain (Garcia-Tabares et al., 2011) and Japan (Shimada et al.,
2010; Ogasa, 2010).

The installation of the on-board energy storage devices will greatly increase the train
mass and will require a large space, so this option is sometimes used for light rail ve-
hicles and seldom used for railway trains. In comparison, the wayside energy storage
systems have less weight and little influence on operation and maintenance (Su et al.,
2016). Therefore, we consider wayside energy storage systems to illustrate the con-
struction of the formulations. Some modifications should be made in the following
proposed formulations in order to be make them suited for a case with an on-board en-
ergy storage system. We discuss these modifications at the end of this section (before
Remark 6.1 on train coasting).

Regenerative energy is the energy converted from kinetic energy into electrical energy
while braking. According to the definition of regenerative energy (Scheepmaker and
Goverde, 2016), we formulate the energy regenerated by the braking of the train as
follows:

Jreg in
f ,i, j =−min

{
0,

1
2
·m f · [(vcru

f ,i, j)
2− (vin

f ,i, j)
2
]

}
, ∀ f ∈ F,(i, j) ∈ E f , (6.15)

Jreg out
f ,i, j =−min

{
0,

1
2
·m f · [(vout

f ,i, j)
2− (vcru

f ,i, j)
2]

}
, ∀ f ∈ F,(i, j) ∈ E f (6.16)

i.e., the reduction of the train kinetic energy while braking for the incoming and outgo-
ing phases respectively. Note that implicitly Jacc in

f ,i, j ·J
reg in
f ,i, j = 0 and Jacc out

f ,i, j ·Jreg out
f ,i, j = 0,

as a train cannot accelerate and decelerate at the same time.

As discussed, the final energy consumption is not just the difference between the en-
ergy used for powering trains and the energy generated by braking trains. We need
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to consider the rules with regards to the temporal and spatial limitations for utilizing
the regenerative energy that result from the installation position of the energy storage
systems, as well as the efficiency of the regenerative braking system.

We introduce a non-negative variable u f , f ′,i, j,p,k that indicates the amount of the en-
ergy generated by braking train f on cell (i, j) and then used for accelerating train f ′

on cell (p,k); moreover, we let ηi, j,p,k ∈ [0,1] be the recuperation coefficient, which
determines the efficiency of the regenerative braking system between cells (i, j) and
(p,k), based on the distance between the two cells.

From a temporal perspective, we ensure that the regenerative energy is available when
it is used for powering trains. Therefore, the following constraints is added:

u f , f ′,i, j,p,k ≤ 0, if a f ,i, j > a f ′,p,k,

∀ f ∈ F, f ′ ∈ F,(i, j) ∈ E f ,(p,k) ∈ E f ′,
(6.17)

for guaranteeing that the energy generated by train f on cell (i, j) cannot be used by
train f ′ on cell (p,k), if train f arrives at cell (i, j) after the arrival of train f ′ at cell
(p,k). Constraint (6.17) is an if-then constraint, which can be rewritten as a mixed-
integer linear constraint by applying the transformation properties in Bemporad and
Morari (1999).

Regarding the spatial limitations, we enforce that the energy generated by braking a
train can only be used by accelerating the trains located in the same electric region.
Without loss of generality, we select |K| regions in the network, where each region
corresponds to an electric region. We then assume that the available energy regenerated
in a cell can be used by any trains traveling in the region that the cell belongs to.
We denote the sets of cells in the regions as Er

1,E
r
2, ...,E

r
|K|. We use the following

constraint:

∑ f∈F, f ′∈F u f , f ′,i, j,p,k ≤ 0,
∀(i, j) ∈ E f ,(p,k) ∈ E f ′ ,{(i, j),(p,k)} 6⊂ Er

κ,κ ∈ K
(6.18)

to ensure that the regenerative energy on cell (i, j) (or (p,k)) cannot be utilized by any
train on cell (p,k) (or (i, j)), if the set of the two cells {(i, j),(p,k)} is not a subset of
set Er

κ, for any κ ∈ K, i.e., cells (p,k) and (i, j) are not in the same electric region.

To balance the generation and utilization of the regenerative energy, we have the fol-
lowing constraint:

∑
f ′∈F,(p,k)∈E f ′

u f , f ′,i, j,p,k

ηi, j,p,k
≤ (Jreg in

f ,i, j + Jreg out
f ,i, j ), ∀ f ∈ F,(i, j) ∈ E f , (6.19)

for ensuring that the total usage of the regenerative energy obtained by braking train f
on cell (i, j) and further used for accelerating all trains f ′ ∈ F on all cells (p,k) ∈ E f ′

cannot exceed the available amount of the energy generated by braking train f on cell
(i, j). By taking the efficiency of the regenerative braking system into account, we
divide the total usage of the regenerative energy by the non-negative recuperation co-
efficient ηi, j,p,k, as presented on the left-hand side of (6.19). Recall that the coefficient
ηi, j,p,k is given based on the distance between the two cells (i, j) and (p,k).
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The amount of the regenerative energy that is further utilized for accelerating trains
can be determined by

Zenergy reg = ∑
f∈F

∑
(i, j)∈E f

∑
f ′∈F

∑
(p,k)∈E f ′

u f , f ′,i, j,p,k. (6.20)

The final energy consumption is then calculated as follows:

Zenergy final = Zenergy−Zenergy reg, (6.21)

where the term Zenergy is computed by using (6.12), including the energy used for
train acceleration and for overcoming resistance. We can still use the weighted sum
formulation and the ε-constraint formulation, i.e., minimizing the weighted sum of the
train delays and the final energy consumption, as presented in (6.13) through replacing
Zenergy by Zenergy final, and only minimizing the final energy consumption in (6.21) with
respect to (6.14b).

We now discuss the modifications for calculating the regenerative energy in case of
an on-board energy storage system. For implementing the utilization rule, i.e., the
regenerative energy can only by utilized by the same train that generates it through
braking, two equivalent ways can be used. The first way consists in simply requir-
ing ∑ f∈F, f ′∈F : f 6= f ′ u f , f ′,i, j,p,k = 0 for preventing the regenerative energy utilization be-
tween two different trains. Alternatively, we could re-define the variable u f , f ′,i, j,p,k as
u f ,i, j,p,k for all f ∈ F , (i, j) ∈ E f , and (p,k) ∈ E f . Then, in (6.17), (6.19), and (6.20),
we remove the condition term f ′ ∈ F and replace (p,k)∈ E f ′ by (p,k)∈ E f . No matter
which way is used, a common change in this case is to remove (6.18), as the spatial
limitation is not active. The first way is applicable to both the wayside and on-board
energy storage systems, and it is easier for switching or integrating the two types of
energy storage systems, at the expense of a larger complexity of the optimization prob-
lem. In the case with only the on-board energy storage system, using the second way
is a better choice, as its problem complexity is largely reduced.

Remark 6.1: Coasting phase
A coasting phase can be included into the proposed optimization problem by assum-
ing a piecewise constant deceleration that depends on the cruising speed. In other
words, we could consider a piecewise constant train deceleration; then, the formula-
tion approach stays similar to the approach that includes the piecewise constant train
acceleration. As a similar formulation approach can be followed, we do not present
the formulations for train coasting in this chapter. Moreover, we can use the arrival
and departure times of a train along its route in the solutions (which have no coasting
phase) obtained by applying our integrated optimization methods to further generate
an accurate train speed profile option by using train trajectory optimization approaches
with the aim of minimizing the energy consumption.
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6.3 Case study

6.3.1 Setup

We consider the same Dutch railway network and the same 15 trains as in Chapter 5;
we refer to Section 5.6.1 for the description of the test case. Also just as in Chapter 5,
each train is given a randomly generated primary delay time cpri

f at its origin, and
we consider 10 delay cases of the primary delays following a 3-parameter Weibull
distribution. Additionally, we consider 6 electric regions, corresponding to 6 station
areas, as depicted in Figure 6.1. The 15 trains considered run in the same direction.
No energy can be regenerated at Ut (Utrecht) and Hto (Den Bosch Oost) station (as no
train brakes here), and no train can utilize the regenerated energy at Ht (Den Bosch)
station (as no train departs from here); therefore, in our case study, no electric region is
set up in the Ut, Hto, and Ht station areas. The recuperation coefficient η ranges from
70% to 80% in our experiments.

As this chapter focuses on the energy-related extensions based on the integrated opti-
mization approaches proposed in Chapter 5, the complexity of the optimization prob-
lems increases with the inclusion of energy consumption and regenerative braking.
Due to the worst performance of the PPWA approach evaluated in Section 5.6.2(1) of
Chapter 5, we cannot expect this approach to perform better on the extended optimiza-
tion problems. Therefore, in the experiments of chapter, we neglect the PPWA approach
and only test the other two approaches, i.e., the PNLP approach and the PTSPO approach.

In Section 6.3.2(1), we compare the results of the PNLP approach and the PTSPO ap-
proach, aiming at both delay recovery and energy efficiency. Section 6.3.2(2) explores
the trade-off between train delay and energy consumption, where the possibility of
reducing train delay and energy consumption at the same time is shown. Both the
weighted-sum formulation and the ε-constraint formulation are used for representing
the two-objective optimization problem of delay recovery and energy efficiency. We
further show the benefits of regenerative braking by investigating its impact on the
energy consumption in Section 6.3.2(3). In order to examine the solution quality of
the proposed optimization approach from a train control perspective, Section 6.3.2(4)

Hto

Ut

Ht
HtnHtncClZbm Utl

1 freight train

2 sprinter trains
2 intercity trains

Gdm

electric region

}

}

} global route 4

global route 3

global route 1

global route 2

Figure 6.1: Part of the Dutch railway network, with 6 electric regions



Chapter 6. Integration of traffic control and train control-Part 2 149

compares the train speed profiles obtained by the proposed integrated optimization ap-
proach with those obtained by using the detailed nonlinear train model as proposed by
Wang et al. (2013); Liu and Golovitcher (2003); Khmelnitsky (2000). In addition to the
constraints caused by the speed limits, maximum acceleration, maximum deceleration,
etc., the traffic management problem also presents many operational constraints (i.e.,
a train should pass a certain place at a certain time, the passing time at a non-stopping
station), which should be also considered in the train control problem (Wang et al.,
2012). Here we apply a sequential quadratic programming (SQP) approach to solve
the resulting nonlinear train control problem. The details for the solution approach will
be introduced in Section 6.3.2(4). Note that the solution approaches proposed in Sec-
tion 5.5 of Chapter 5 are still used to solve the PNLP problem and the PTSPO problem.
Moreover, we additionally report the detailed experimental results of this test case in
the online repository (Research Collection ETH Zurich).

We use the SNOPT solver implemented in the MATLAB (R2016a) TOMLAB toolbox
to solve the MINLP problem, i.e., the PNLP problem. We adopt the IBM ILOG CPLEX
optimization studio version 12.6.3 with default settings to solve the MILP problem, i.e.,
the PTSPO problem. The following experiments are all performed on a computer with
an Intel R©CoreTM i7 @ 2.00 GHz processor and 16GB RAM.

6.3.2 Experimental results

(1) Overall performance of the PNLP and PTSPO optimization problems

In this section, the overall performance of the PNLP and PTSPO optimization problems
are compared; the results of the weighted-sum formulation and the ε-constraint formu-
lation are presented in Figures 6.2 and 6.3 respectively. For the PTSPO optimization
problem, the largest set of TSPOs (i.e., Set 1) is considered, which is generated by us-
ing the discrete speed values {0,40,60,80,90,100,110,120,130} (km/h) for intercity
and sprinter trains and {0,20,30,40,50,60,70,80} (km/h) for freight trains, as its so-
lution quality is the best among the six sets, discussed in Section 5.6.2(3) of Chapter 5.
This set contains 16402 speed profiles per train per block section, which results in
5.70×1050 possibilities of combining the speed profiles for all train services. For the
weighted-sum formulation, we use 10 weights (indicated in the form of [ιdelay, ιenergy],
widely ranged, see the X-axis of Figure 6.2) to balance their importance, and for nor-
malization as well. As the weight of the energy consumption ιenergy is always set to
be 1, we can also use a single weight, denoted as ι = ιdelay, to describe the multiple
choices of weights. An increase of the single weight ι implies that the importance of
the train delay increases. For the ε-constraint formulation, we consider 5 upper bounds
for the train delay, which stem from the delay time in the initial solution and in the
secondary solutions obtained within 180, 300, 600, and 3600 seconds of computation
time (refer to Section 5.6.2(3) of Chapter 5), indicated as Idelay

initial, Idelay
180 , Idelay

300 , Idelay
600 ,

and Idelay
3600 respectively. We consider two computation time limits, i.e., 180 seconds
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Figure 6.2: Comparison of the PNLP and PTSPO results, in the case of using the
weighted-sum formulation
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Figure 6.3: Comparison of the PNLP and PTSPO results, in the case of using the
ε-constraint formulation

and 3600 seconds, in the case of using the weighted-sum formulation. When using
the ε-constraint formulation, the solution is almost never improved after 600 seconds;
so we consider 600 seconds as the maximum computation time limit, instead of 3600
seconds.

In Figures 6.2 and 6.3, each bar indicates an average result of 10 delay cases. In the
upper portion of each figure, the objective values are given, indicated as gray bars for
the PNLP problem and as black bars for the PTSPO problem; in the lower portion of each
figure, each white bar indicates the average improvement, i.e.,

PNLP solution−PTSPO solution
PNLP solution

×100%.

A positive value means that the PTSPO solution is better; a negative value implies a
better solution quality of the PNLP problem. Note that in Figure 6.2 we present the
objective values, i.e., the real values of the train delay and the energy consumption
multiplied by the weights, as we aim at comparing the overall performance of the two
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approaches; in all other remaining representations of the results (i.e., in Figures 6.3-
6.10), we always present the real values of the delay time and the energy consumption.

As illustrated in Figure 6.2, the PTSPO problem obtains better solutions in almost all
instances, achieving 13.4% improvement in the objective value at most. When the
train delay is considered very important, the PNLP solution has a quality that is similar
to that of the PTSPO solution obtained within 180 seconds of computation time in Fig-
ure 6.2(a); with a larger computation time of 3600 seconds in Figure 6.2(b), the PNLP

solution is about 1.6% better than the PTSPO solution. From the viewpoints of both
solution quality and computational efficiency, we conclude that the PTSPO problem
performs better in the case of using the weighted-sum formulation.

The results of the two optimization problems by using the ε-constraint formulation
are comparatively given in Figure 6.3, which has the same structure as Figure 6.2.
When considering the ε-constraint formulation, the performance of the two optimiza-
tion problems is similar to their performance in the case of using the weighted-sum
formulation, but the difference of the two problems in solution quality is smaller. In
most instances, the PTSPO problem still has a better performance, achieving up to 4.2%
improvement in the energy consumption. In a few other instances with 600 seconds of
computation time, the PNLP problem performs better, but it has only a small (less than
0.5%) improvement in the energy consumption. Overall, the PTSPO optimization ap-
proach is recognized for having a better performance, by using either the ε-constraint
formulation or the weighted-sum formulation.

(2) Exploration of the trade-off between train delay and energy consumption

Due to the good performance of the PTSPO approach evaluated in Section 6.3.2(1), we
apply this approach to investigate the trade-off between train delay and energy con-
sumption in this section. We present the results of the weighted-sum formulation in
Section 6.3.2(2.a). The results of the ε-constraint formulation are analyzed in Sec-
tion 6.3.2(2.b).

(2.a) The weighted-sum formulation: minimization of both train delay and energy
consumption

Figure 6.4(a) and (b) illustrate the deviations of train delay and energy consumption
respectively from the initial solution1, within 180 and 3600 seconds of computation
time. The red vertical line (zero line) is the benchmark, representing the initial solu-
tion. Each bar indicates an average result of ten delay cases. The gray dashed box in
Figure 6.4(a) is a zoom-in, using the interval [−0.02, 1.00] ×103 of the X-axis. The

1The initial solution is obtained by considering a fixed full TSPO (train speed profile option) for each
train on each block section, which is further improved to generate secondary solutions by considering a
larger set of multiple TSPOs. We refer to Section 5.5 for more details.
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Figure 6.4: Deviations of train delay and energy consumption with respect to the
initial solution

Y-axis represents the weights considered. From the bottom to the top of the Y-axis,
the importance of the train delay increases. It should be noted that a negative value
in Figure 6.4 indicates a reduction (an improvement) from the initial solution, and a
positive value means an increase.

As shown, compared with the initial solution, the energy consumption is reduced with
a decreasing weight ι, while the total train delay time increases. When the weight ι

is not larger than 20, the energy consumption is significantly reduced, at the expense
of larger train delay times (corresponding to the positive values in Figure 6.4(a)). In
such cases, trains are required to run slowly for saving energy, and train delay is not
the determining factor. When the weight ι is not less than 50, the train delay and
energy consumption are both reduced with respect to the initial solution. The reduction
of the energy consumption becomes smaller with an increasing weight ι, while the
reduction of the train delay becomes larger. The possibility of reducing train delays
and saving energy at once by managing train speed is evident, achieving up to a 4.0%
and 5.6% reduction of train delay and energy consumption respectively, demonstrating
the benefits of the integration of traffic management and train control again. Moreover,
the extension of the computation time to 3600 seconds improves the solution quality,
but the improvement is not as significant as that at 180 seconds for most cases.
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(2.b) The ε-constraint formulation: energy-saving with respect to an upper bound
for train delay

In Figure 6.5, we respectively present the train delay and the energy consumption, ob-
tained by using the ε-constraint formulation (i.e., minimizing the energy consumption
with respect to the given upper bound of the train delay), as a function of the compu-
tation time. We consider 5 upper bounds for the train delay, indicated as Idelay

initial, Idelay
180 ,

Idelay
300 , Idelay

600 , and Idelay
3600 respectively. We distinguish them by using colors in Figure 6.5.

The lighter the color becomes, the stricter the upper bound for the train delay required
is, i.e., the requirement of the train delay becomes stricter in a sequence of Idelay

initial, ...,
Idelay
3600 .

In all cases, a reduction of energy consumption can be always achieved within the
first 180 seconds of computation time; however, the energy consumption is almost
not reduced anymore after 300 seconds. Since the train delay is considered as a hard
constraint, there is little room for its improvement, i.e., the lines of the delay time in
Figure 6.5(a) are almost flat. Moreover, the trade-off between the train delay and the
energy consumption is clearly shown in Figure 6.5. A stricter upper bound of the train
delay leads to less delays (i.e., the lighter lines are lower in Figure 6.5(a)), more energy
consumption (i.e., the lighter lines are higher than the darker lines in Figure 6.5(b)),
and less saved energy (i.e., the gradient of the darker lines is larger than that of the
lighter lines in Figure 6.5(b)).

Overall, the two formulation methods both perform well. However, the ε-constraint
formulation requires an appropriate upper bound for the train delay, which is generally
hard to determine. On one hand, a tighter upper bound for train delay will lead to
a worse performance on the energy consumption, which is reflected in the increase
of the energy consumption in Figure 6.5(b), and it may even result in infeasibility of
the optimization problem. On the other hand, if we use a looser upper bound, the
train delay could be large, even if there is some room for its reduction; therefore, the
performance of the train dispatching problem cannot be guaranteed. Moreover, we find
solutions where the train delay and the energy consumption are reduced at the same

To
ta

l t
ra

in
 d

e
la

y
 t

im
e

(u
n

it
: 1

0
   

se
co

n
d

)
3

I
delay

initial I
delay

180 I
delay

300 I
delay

600 I
delay

3600

4.50

4.55

4.60

4.65

4.70

4.75

4.80

4.85

4.90

4.95

72.50

77.50

82.50

87.50

92.50

97.50

102.50

Computation time (unit: second)
0 60 120 180 240 300 360 420 480 540 600

(a)
Computation time (unit: second)

0 60 120 180 240 300 360 420 480 540 600

(b)

E
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

 

(u
n

it
: 1

0
  J

)
8

Figure 6.5: Evolution of the train delay and the energy consumption as a function
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time from the initial solution by using the weighted-sum formulation; however, in the
solutions of the ε-constraint formulation, we can only see the reduction of the energy
consumption, but no improvement in the train delay. Based on the above reasons, we
conclude that the weighted-sum formulation is better and more applicable here than
the ε-constraint formulation.

(3) Benefits of regenerative braking

This section compares the results with and without regenerative braking. The com-
position of the energy consumption in the solutions obtained based on the Dutch test
case is illustrated in Figure 6.6. The Y-axis represents the weights considered. From
the top to the bottom of the Y-axis, the importance of the train delay increases. The
X-axis represents the energy consumption. For each weight, an average result of 10
delay cases is provided. Each black (vertical) bar indicates the total energy consump-
tion without regenerative braking. The light gray and dark gray areas indicate 80%
and 60% of this total energy consumption respectively, given as benchmarks. Each
dark blue bar indicates the energy used for overcoming the resistance in acceleration
and cruising. As a result, the difference between the total energy consumption and the
energy consumed for overcoming the resistance in acceleration and cruising is in fact
the energy used for train acceleration, which is converted into the train kinetic energy,
indicated by a light blue line. A small part of this train kinetic energy is further con-
sumed for overcoming the resistance in deceleration, represented by a light blue bar.
By applying regenerative braking, some of this kinetic energy can be stored in energy
storage devices, and we use a light green bar to indicate the energy stored during train
braking. Then, a part of the energy stored is further re-utilized for train acceleration,
which results in a reduction of the total energy consumption from the black bar to the
black circle, i.e., the difference between the black bar and the black circle indicates
the energy that is re-utilized. The energy loss of the regenerated energy due to system
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Figure 6.6: Composition of the energy consumption
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efficiency (i.e., caused by the recuperation coefficient η) is represented by a bar with a
green border.

As illustrated in Figure 6.6, the total energy consumption decreases with the increase
of the importance of the energy consumption. The percentage of the energy that is
re-utilized becomes larger when considering the energy consumption to be more im-
portant. Moreover, in our solutions, there is a large amount (around 40%-50%) of the
train kinetic energy that is not stored, indicated by the difference of the lengths between
the light blue line and the light green bar. One reason for this unstored energy is due
to the configuration of the electric regions, i.e., the Den Bosch (Ht) station area is not
considered as an electric region of regenerative braking, so that regenerative braking
cannot be applied in this station area, as shown in Figure 6.1. Another reason is that
the Den Bosch (Ht) station is the destination for most trains, so that many train braking
actions happen in this area. As regenerative braking cannot be used in the Den Bosch
(Ht) station, the train kinetic energy in these braking actions is all lost. In fact, the
composition of the energy consumption strongly depends on the test case (e.g., elec-
tric regions and train routes) and the settings (e.g., the estimated system efficiency).
For a certain test case, comprehensive experiments could be done to correct the input
parameters (e.g., the recuperation coefficient η for system efficiency) for increasing
solution accuracy, and also to find the best option for making maximum use of the re-
generated energy (e.g., locations of installing energy storage devices). We evaluate the
performance indicators with regards to regenerative braking, including the storage rate
of the regenerated energy, the utilization rate of the stored energy, the percentage of the
energy loss due to system efficiency, and the reduction of the total energy consumption
due to regenerative braking, shown in Figure 6.7(a)-(d) respectively.
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Figure 6.7: Storage rate of the train kinetic energy, utilization rate of the stored
energy, energy loss due to system efficiency, and reduction of the total energy
consumption
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The results of the performance indicators differ for the different weights considered.
Basically, an increase of the importance of the energy consumption leads to a larger
storage rate of the train kinetic energy and a larger utilization rate of the regenerated
energy; as a result, we obtain a larger reduction of the total energy consumption. The
energy loss resulting from system efficiency also becomes larger with the increase of
the storage rate and the utilization rate. In our case study, there is a surplus of the stored
energy, i.e., not all of the stored energy are re-used for train acceleration; therefore, we
can save more energy even if the energy loss increases. Overall, based on the Dutch
test case, 41.5%-53.3% of the train kinetic energy is stored in energy storage devices.
About 4.4%-7.2% of this stored energy is lost due to system inefficiency, and 32.7%-
46.6% of this stored energy is re-utilized for train acceleration, which further leads
to 13.1%-22.9% reduction of the total energy consumption. According to the experi-
mental results, regenerative braking can significantly reduce the energy consumption
of train operations, and it is an effective and practical way to achieve energy-efficient
train operation. The results based on the Dutch test case show the effectiveness of the
proposed formulations.

(4) Comparison with the train speed profiles generated by a train trajectory opti-
mization approach

In this section, we assess the results of the PTSPO problem from a train control per-
spective. We adopt the nonlinear train speed profile optimization approach proposed
in Section 2 of Wang et al. (2013) and apply the sequential quadratic programming
(SQP) approach to generate a speed profile for each train. The departure times at the
origin and arrival times at the destinations of trains are given as time constraints for
the train control problem. Moreover, the passing times at intermediate non-stopping
stations and critical block sections are given as operational constraints, i.e., the traffic
management problem is solved beforehand. For each train, a speed profile is gener-
ated with the objective of minimizing the energy consumption. For the train control
problem, each block section in the network is divided into 20 subsections and the accel-
eration or deceleration of trains is assumed to be a constant for each subsection. Since
the SQP approach could result in local minima, we use 10 initial points for the calcula-
tion of the train speed profile for each train, and we select the best solution among the
resulting speed profiles. The SQP approach uses a more accurate and refined model
for generating train speed profiles, compared with the PTSPO approach, so it can be
seen as a more accurate approach for obtaining optimal speed profiles. We compare
the train speed profiles generated by the PTSPO approach and the SQP approach, as
well as the resulting energy consumption. Note that we consider the PTSPO approach
with the weighted-sum formulation. As we aim at assessing the quality of the speed
profiles generated by the PTSPO problem, we do not consider the option of regenerative
braking here for both the PTSPO approach and the SQP approach.

Figure 6.8 shows the speed-space trajectories obtained by the two approaches. For
the sake of compactness, only one representative delay case with 15 trains is provided
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here. The train speed profiles of the PTSPO solution and the SQP solution are indicated
by solid lines and dashed lines respectively.

It can be seen that the speed profiles generated by the SQP approach are smoother
than those of the PTSPO approach in acceleration and deceleration modes, as the SQP
approach uses the detailed nonlinear train model. However, for most trains that travel
sequentially on nodes 27→ 30→ 28, the driving strategy obtained by the PTSPO ap-
proach is more efficient for energy consumption. Due to the speed limit requirement
for node 27, every train reduces its speed to 60 km/h while passing node 27. In the
PTSPO solution, most trains maintain a speed of 60 km/h after passing node 27 to further
approach their destination, e.g., the 1B8001 and 1B16001 trains; a few trains acceler-
ate to their maximum speeds after passing node 27, e.g., the 1D8001 train. In the
SQP solution, every train that traverses node 27 accelerates after passing node 27 and
then decelerates when approaching its destination. This may be caused by the differ-
ent computational configurations of the two approaches and the sub-optimal solutions
found by the two approaches. The train acceleration after passing node 27 needs to ad-
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Figure 6.8: Comparison of the train speed profiles
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case

ditionally use energy; therefore, the driving strategy of not accelerating the train after
passing node 27, found by the PTSPO approach, is more efficient in use of energy. For
some trains, the speed profiles of the two approaches are highly coincident, e.g., the
1B36001 and 1BVF11 trains. The quality of the train speed profiles obtained by the
PTSPO approach is overall satisfactory, with regard to the solution found by the SQP
approach.

In Figure 6.9, we present the energy consumption of each train, computed by the PTSPO

approach (indicated in gray) and the SQP approach (indicated in black). The Y-axis
indicates the energy consumption for each train, and the X-axis represents the train
number.

When focusing on each single train, the energy consumption computed by the two
approaches is different. For some trains, e.g., the 1B8001 and 1B35001 trains, the
speed profiles found by the PTSPO approach are better in terms of efficient use of en-
ergy, mainly caused by the driving strategy of maintaining a speed of 60 km/h after
passing node 27. For some other trains, e.g., the 1D160001 train, better speed pro-
files for energy efficiency are found by the SQP approach. However, the results of
the total energy consumption of the two approaches are very close, i.e., 78.00×108(J)
and 77.86× 108(J) for the PTSPO approach and the SQP approach respectively. The
SQP approach overall performs better than the PTSPO approach, as it finds better speed
profiles in terms of efficient use of energy; however, the relative difference of the total
energy consumption obtained by the two approaches is very small, only 0.18%.

According to the comparison of the PTSPO approach and the SQP approach, it is
demonstrated that the control performance of the PTSPO approach is appropriate for
both the quality of the speed profiles and the calculation of the energy consumption.



Chapter 6. Integration of traffic control and train control-Part 2 159

(a
)

0 5 10 15 20 25 30 35 40 45 50

40
45
50
55
60
65
70
75
80
85
90
95

100

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
50

55

60

65

70

75

80

85

90

95

100

35

105

E
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

 (
u

n
it

: 1
0

  J
)

8
E

n
e

rg
y

 c
o

n
su

m
p

ti
o

n
 (

u
n

it
: 1

0
  J

)
8

initial solution
secondary - 180 seconds
secondary - 600 seconds
secondary - 3600 seconds

PNLP, weighted-sum, no regenerative braking
PNLP,                         , no regenerative braking   -constraint

PTSPO, weighted-sum, no regenerative braking

PTSPO,                         , no regenerative braking   -constraint

PTSPO, weighted-sum, with regenerative braking

(b
)

Total delay time (unit: 10  second)3

Total delay time (unit: 10  second)3

Figure 6.10: Overview of all experimental results, from the viewpoints of train
delay and energy consumption

6.3.3 Discussion

We here summarize the main conclusions, sketched quantitatively in Figure 6.10 from
the viewpoints of train delay (X-axis) and energy consumption (Y-axis), clarifying the
trade-off between them. The experimental results reported in Section 6.3.2 are all
included in Figure 6.10. Figure 6.10(b) is a zoom-in of Figure 6.10(a), with some
trend lines. We use symbols to distinguish the computation time limits considered
for obtaining the solutions, i.e., the dot, square, plus, and cross symbols represent
the initial solution, and the secondary solutions obtained within 180, 600, and 3600
seconds of computation time respectively. Each symbol indicates an average result of
10 delay cases, obtained within the given computation time limit. We use colors to
indicate the multiple combined choices of the optimization approaches (i.e., the PNLP

and PTSPO approaches), the formulation methods (i.e., the weighted-sum formulation
and the ε-constraint formulation), and the option of regenerative braking. The blue
and orange colors indicate the PNLP solutions by using the weighted-sum formulation
and the ε-constraint formulation respectively. The purple and gray colors indicate the
PTSPO solutions with the weighted-sum formulation and the ε-constraint formulation
respectively. The green color represents the solution considering regenerative braking,
obtained by the PTSPO approach with the weighted-sum formulation.
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According to the experimental results presented in Section 6.3.2(1), the performance
of the PTSPO approach is better than the performance of the PNLP approach. This
is reflected in Figure 6.10 by the lower purple line, compared with the blue line in
the case of using the weighted-sum formulation, and is also reflected by the gray line,
which is mostly lower than the orange line when applying the ε-constraint formulation.

When using the ε-constraint formulation, the gray and orange trend lines in Figure 6.10
go towards a larger energy consumption with a stricter upper bound on the train de-
lay. Required as the input of the ε-constraint formulation, the upper bound for the
train delay has to be carefully chosen: an inappropriate upper bound may lead to a bad
performance on either train delay or energy consumption, and it may even cause in-
feasibility of the optimization problem. For the weighted-sum formulation, the results
of the train delay and the energy consumption cover a wide range, depending on the
weights considered, see the blue, purple, and green trend lines. Overall, for our case,
the weighted-sum formulation is more applicable than the ε-constraint formulation, as
discussed in Section 6.3.2(2).

In Section 6.3.2(2.a), by using the PTSPO approach with the weighted-sum formulation,
we find better solutions. The delay time and the energy consumption are reduced at the
same time, compared with the initial solution that is obtained by considering a fixed
full speed profile for each train on each block section. This is reflected by the sym-
bols located between the purple dashed lines in Figure 6.10; the vertical and horizontal
dashed lines come from the initial solution (indicated by the purple dot symbol), given
as benchmarks. Train delay and energy consumption can be improved simultaneously
through managing the train speed, by up to 4.0% and 5.6% respectively (see the de-
tailed experimental results provided in the online repository (Research Collection ETH
Zurich). The simultaneous reduction of the two objectives also demonstrates the ben-
efit of integrating traffic management and train control and shows great potential for
energy efficiency of train operations.

When regenerative braking is applied, the total energy consumption for train operations
is significantly reduced, indicated by the green lines in Figure 6.10, which represent
a smaller energy consumption in comparison with the purple lines. Applying regen-
erative braking is thus an effective way to achieve energy-efficient train operation (as
discussed in Section 6.3.2(3)).

The good quality of the train speed profiles generated by the PTSPO approach is demon-
strated in Section 6.3.2(4), compared with the train speed profiles obtained by the SQP
approach, which is a more accurate approach for computing optimal speed profiles.
The relative difference of the total energy consumption of the PTSPO solution and the
SQP solution is very small (only 0.18%), which also demonstrates the good control
performance of the PTSPO approach.
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6.4 Conclusions

In this chapter, we have considered extensions towards energy-efficient train opera-
tion, based on the integrated optimization approaches proposed in Chapter 5, where
the traffic-related properties (i.e., departure times, arrival times, and train orders) and
the train-related properties (i.e., train speed trajectory) are optimized simultaneously.
We have first introduced energy evaluation into the integrated optimization approaches,
calculating the energy used for train acceleration and the energy consumed for over-
coming resistance. We have developed a set of linear constraints for the PTSPO problem
to compute the energy consumption. An approximation of the resistance function with
a piecewise constant function has been applied for computing the energy consumption
of the PNLP and PPWA problems. In addition, we have considered the option of regener-
ative braking and presented linear formulations to calculate the utilization of the energy
obtained through regenerative braking. With the inclusion of the energy-related formu-
lations, we could focus on two objectives, i.e., delay recovery and energy efficiency,
by using the weighted-sum formulation and the ε-constraint formulation. Experiments
have been conducted based on a real-world dataset adapted from the Dutch railway
network (the same as Chapter 5). According to the experimental results, the PTSPO

approach overall performs better than the PNLP approach. Aiming at both delay recov-
ery and energy efficiency, the two objectives can be improved at once (e.g., by up to
4.0% and 5.6% for the train delay and the energy consumption in one of the solutions)
through managing the train speed. Moreover, for the test case, the application of regen-
erative braking leads to about 13.1%-22.9% reduction of the total energy consumption.
By comparing with the train speed profiles obtained by the SQP approach, which is a
more accurate approach for computing speed profiles, the good control performance of
the PTSPO approach has been demonstrated, as the speed profiles of the PTSPO approach
are similar to those obtained by the SQP approach.

In future research, comprehensive experiments could be done to correct the input pa-
rameters (e.g., the recuperation coefficient η for system efficiency) for increasing so-
lution accuracy, and also to find the best option for making maximum use of the regen-
erated energy (e.g., locations of installing energy storage devices).
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Chapter 7

Distributed optimization of real-time
railway traffic management for
large-scale networks

This chapter introduces distributed optimization approaches, with the aim of improv-
ing the computational efficiency of the integrated optimization problem proposed in
Chapters 5 and 6 for large-scale railway networks.

This chapter is organized as follows. Section 7.1 first gives a detailed introduction
of the distributed optimization problem of real-time railway traffic management. Sec-
tion 7.3 introduces three decomposition methods, namely a geography-based, a train-
based, and a time-interval-based decomposition, where a number of subproblems are
obtained. In Section 7.4, three distributed optimization approaches are developed for
handling the couplings among the resulting subproblems. Section 7.6 examines the
performance of the proposed algorithms and decomposition methods, through experi-
ments on the Dutch railway network. Finally, the conclusions are given in Section 7.7.

7.1 Introduction

Real-time traffic management is of great importance to limit the negative consequences
caused by perturbations occurring in real-time railway operations. The train control
problem reflects the traffic control process by defining speed profiles to let the delayed
trains reach the stations at the times specified by the traffic management problem.
Due to the real-time nature, a solution is required in a very short computation time
for dealing with delayed and canceled train services and for evacuating delayed and
stranded passengers as quickly as possible.

The real-time traffic management problem has been studied extensively in the litera-
ture, and we refer to the literature review in Section 2.2.1. There are many optimization
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approaches available for the railway traffic management problem, using different for-
mulation methods, e.g., the alternative-graph-based method by D’Ariano et al. (2007a)
and the cumulative-flow-variable-based method by Meng and Zhou (2014), and having
different focuses, e.g., considering multiple classes of running traffic in Corman et al.
(2011a) and integrating train control in Luan et al. (2018a,b) and Chapters 5 and 6.
These approaches often lead to large and rather complex optimization problems, es-
pecially when considering microscopic details or when integrating traffic management
with other problems (e.g., the train control problem). They mostly have excellent
performance on small-scale cases, where optimality can be achieved in a short compu-
tation time. However, when enlarging the scale of the case, the computation time for
finding a solution or for proving the optimality of a solution increases exponentially in
general.

Distributed optimization approaches have gained a lot of attention to face the need for
fast and efficient solutions for problems arising in the context of large-scale networks,
such as utility maximization problems. We refer to Nedic and Ozdaglar (2010) and
Meinel et al. (2014) for more details. The main idea is to solve the problems either
serially or in parallel to jointly minimize a separable objective function, usually sub-
ject to coupling constraints that force the different problems to exchange information
during the optimization process. In the literature, these approaches have been widely
studied in many fields. In transportation systems, they have been explored for con-
trolling road traffic (Findler and Stapp, 1992), for managing air traffic (Wangermann
and Stengel, 1996), and for railway traffic (Kersbergen et al., 2016). Kersbergen et al.
(2016) focused on the railway traffic management problem with macroscopic details
and considered a geography-based decomposition. Lamorgese et al. (2016) proposed
a Benders-like decomposition within a master/slave scheme to address the train dis-
patching problem. The master and the slave problems here respectively correspond to
a macroscopic and microscopic representation of the railway.

Bad computational efficiency is one limitation that (integrated) optimization approaches
have for large-scale networks. Overcoming this limitation will promote the appli-
cation of such optimization approaches in practice. Thus, we aim at improving the
computational efficiency of solving such (integrated) optimization problems by using
distributed optimization approaches. The optimization problem that we focus on is
the mixed-integer linear programming (MILP) problem (PTSPO, which overall yields a
better performance), developed in Chapters 5 and 6, where the traffic-related variables
(i.e., a set of times, orders, and routes to be followed by trains) and the train-related
variables (i.e., speed trajectories) are optimized simultaneously.

In this chapter, we consider three decomposition methods, namely a geography-based
(GEO) decomposition, a train-based (TRA) decomposition, and a time-interval-based
(TIN) decomposition. The GEO decomposition consists of first partitioning the whole
railway network into many elementary block sections and then clustering these block
sections into a given number of regions. An integer linear optimization approach is
proposed to cluster the block sections with the objective of minimizing the total num-
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ber of train service interconnections among the regions and of balancing the region
sizes. Consequently, several subproblems are obtained, and each region corresponds to
one subproblem. For the TRA decomposition, we decompose an F-train problem into
F subproblems, where each subproblem includes one individual train only. The TIN
decomposition makes a division of the time horizon into equal-length pieces, and each
time interval piece corresponds to one subproblem, which involves all events (i.e., train
departures and arrivals) that are estimated to happen in this time interval. No matter
which decomposition method is used, couplings always exist among subproblems, and
the presence of these couplings leads to a non-separable structure of the whole opti-
mization problem. To handle the issue of the couplings, we introduce three distributed
optimization approaches. The first one is an Alternating Direction Method of Multipli-
ers (ADMM) algorithm, where each subproblem is solved through coordination with
the other subproblems in an iterative manner. The second one is a priority-rule-based
(PR) algorithm, where the subproblems are sequentially and iteratively solved in a pri-
ority order with respect to the solutions of the other subproblems that have been solved
with a higher priority. The third one is a Cooperative Distributed Robust Safe But
Knowledgeable (CDRSBK) algorithm, where four types of couplings are defined and
each subproblem is iteratively solved together with its actively coupling subproblems.

Experiments are conducted based on the Dutch railway network to comparatively test
the performance of the three proposed algorithms with the three decomposition meth-
ods, in terms of feasibility, computational efficiency, solution quality, and estimated
optimality.

7.2 Standard mixed-integer linear programming for-
mulation of the PTSPO problem

Recall that an MILP approach (PTSPO) has been developed in Chapters 5 and 6 for
addressing the integrated problem of real-time traffic management and train control.
The PTSPO approach can be expressed by a standard MILP formulation as follows:

min
λ

Z(λ) = c> ·λ (7.1a)

s.t. A ·λ≤ b (7.1b)

with variable λ ∈ Rn, matrix A ∈ Rm×n, and vectors c ∈ Rn, b ∈ Rm. The objective
function Z(λ) in (7.1a) minimizes the weighted sum of the total train delay times at
all visited stations and the energy consumption of the train movements. The vector λ

contains both the traffic-related variables and train-related variables for describing the
train movements on block sections, in particular, the arrival times a, departure times
d, train orders θ, incoming speeds vin, cruising speeds vcru, outgoing speeds vout, ap-
proach time τapproach, and clear time τclear. In (7.1b), all constraints (inequalities and
equalities) are represented for ensuring the train speed limitations, for enforcing the
consistency of train transition times and speeds, for guaranteeing the required dwell
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times, for determining train blocking times, and for respecting the block section ca-
pacities. The MILP problem (7.1a)-(7.1b) can be solved by a standard MILP solver,
e.g., CPLEX or Gurobi. Interested readers are referred to Chapters 5 and 6 for a more
detailed description of the PTSPO problem.

7.3 Problem decomposition

Three decomposition methods, i.e., the geography-based (GEO), the train-based (TRA),
and the time-interval-based (TIN) decomposition, are described in Sections 7.3.1 to
7.3.3 respectively. Section 7.3.4 discusses the decomposition result, i.e., subproblems
and couplings. Figure 7.1 comparatively illustrates the three decomposition methods in
a time-space graph, where black lines indicate train paths and red dashed lines indicate
boundaries of subproblems.

7.3.1 Geography-based decomposition

The GEO decomposition partitions the whole railway network into a given number
of regions. Consider a railway network composed of a set of block sections E, and
consider a set of scheduled trains F traversing this network. We could easily parti-
tion the whole network into |E| units, by means of a geography-(i.e., block section)-
based decomposition; however, this could result in a large number of subproblems
with couplings. In general, a larger number of subproblems implies more couplings
among them, which makes coordination difficult and which may affect the overall per-
formance of the system; therefore, we cluster these elementary block sections into a
pre-defined number |R| of regions, where R = {1,2, ..., |R|} is the set of regions. Fig-
ure 7.1(b) illustrates a 2-region example of the geography-based decomposition; as
shown, the timetable is split in the dimension of space.

To distribute |E| different units into |R| groups, there are |R||E| ways, e.g., up to 106

ways for distributing 20 units into 2 groups only. Thus, in our case, a huge number
of the GEO decomposition results are available. To obtain the optimal decomposition

ti
m

e

space

(a) Train timetable (b) Geography-based (GEO) (c) Train-based (TRA) (d) Time-interval-based (TIN)

Figure 7.1: Illustration of the three decomposition methods in a time-space graph
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result, an integer linear programming (ILP) approach is proposed. We now introduce
this ILP approach.

The set E f contains the sequence of block sections composing the route of train f , and
|E f | represents the number of block sections along the route of train f . The binary
vector β f indicates whether two consecutive block sections along the route of train f
belong to different regions, e.g., if (β f ) j = 1, then the jth and ( j+1)th block sections in
set E f belong to different regions, otherwise, (β f ) j = 0. The binary vector αr indicates
the assignment of all block sections for region r, e.g., if (αr)i = 1, then the ith block
section in set E is assigned to region r, otherwise, (αr)i = 0. The route matrix B f ∈
Z(|E f |−1)×|E| indicates that train f traverses a sequence of block sections, e.g., if train
f traverses from the 1st block section to the 3rd block section in the set E, then B f =[

1 0 −1 0 ...
]
. Each row of B f indicates the transition of a train from one block

section to another. The integer vector µ ∈ (Z+)|E|×1 indicates the index of regions that
each block section e ∈ E belongs to. We use ‖ ·‖1 to denote the 1-norm. The objective
function is formulated as follows:

min
α,β

[
ζ ·
(
∑ f∈F ‖β f ‖1

)
+(1−ζ) ·

(
∑
|R|
r=1

∣∣∣∣‖αr‖1−
|E|
|R|

∣∣∣∣)] , (7.2)

where the weight ζ∈ [0,1] is used to balance the importance of the two objectives. The
first term serves to minimize the train service interconnections among regions, and the
second term aims at balancing the region sizes.

We consider four constraints, presented as follows:∣∣∣(B f ·µ
)

j

∣∣∣
|R|−1

≤
(
β f
)

j , ∀ f ∈ F, j ∈
{

1, ..., |E f |−1
}
, (7.3)

guarantees that (β f ) j > 0 if the two consecutive block sections along the route of train

f belong to different regions, i.e.,
∣∣∣(B f ·µ

)
j

∣∣∣> 0.

µi ∈ {1, ..., |R|} , ∀i ∈ {1, ..., |E|} , (7.4)

enforces that the indices of the resulting regions cannot exceed the pre-defined number
of regions, while

(αr)i ≤ 1− |µi− r|
|R|−1

, ∀r ∈ {1, ..., |R|} , i ∈ {1, ..., |E|} , (7.5)

and

‖αr‖1 ≥ 1, ∀r ∈ {1, ..., |R|} , (7.6)

are used to avoid solution in which no block section is assigned to some region(s).
Specifically, in (7.5), if the ith block section in set E is assigned to region r, i.e., µi = r,
then the binary variable (αr)i = 1; otherwise, (αr)i = 0. In (7.6), we ensure that at least
one block section is assigned to each region. As a result, (7.5) and (7.6) imply that
the number of the resulting regions must equal the given number |R|. An illustrative
example is provided in Section 7.5 to explain the above formulations.

With a pre-defined number of regions, there are two impact factors of the GEO de-
composition result: the network layout and the train routes planned in the original
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timetable. This implies that the optimal decomposition result is the same for all delay
cases. The train routes have impact on the decomposition result, because we minimize
the train service interconnections among regions in the objective function (7.2).

When applying the GEO decomposition, some trains may traverse from one region to
another region. The time and speed that a train leaves one region should equal the time
and speed that the train arrives at the other region. Therefore, the time and speed tran-
sition constraints are the complicating constraints for the GEO decomposition, which
cause the couplings among regions (i.e., subproblems). The speed and time transition
constraints of the MILP problem (7.1) are formulated in (5.2) and (5.9) of Section 5.4.1
respectively.

7.3.2 Train-based decomposition

The TRA decomposition simply splits an |F |-train problem into |F | subproblems, and
each subproblem corresponds to a 1-train problem, as illustrated in Figure 7.1(c). Thus,
for a given instance, only one decomposition result is available. The only impact factor
of the TRA decomposition is the involved trains. Such a train-based decomposition
was used by Brännlund et al. (1998) for addressing train timetabling problem by using
Lagrangian relaxation.

When applying the TRA decomposition, each train is independently scheduled in each
subproblem, so that trains may use the same infrastructure at the same time, resulting in
conflicts. Therefore, the capacity constraint is the complicating constraint for the TRA
decomposition. The capacity constraint is formulated in (5.23)-(5.24) of Section 5.4.1.

7.3.3 Time-interval-based decomposition

The time-interval-based (TIN) decomposition makes a division of a train timetable in
the dimension of time, based on a given size of time interval, as illustrated in Fig-
ure 7.1. The TIN decomposition is implemented with consideration of disruptions
(delays), i.e., taking the impact of disruptions on the train schedule into account while
making the decomposition. We independently schedule all trains by taking disruptions
into account, generating an infeasible timetable, where train conflicts exist. With this
infeasible timetable, we estimate the times at which all events (e.g., train departure
and arrival) may occur. Each event is then assigned to one time interval based on its
estimated occurrence time. As a result, the subproblem of each time interval includes
all events that are estimated to occur in this time interval. The TIN decomposition re-
sult mainly depends on the given size of time interval and the estimated train schedule,
which can be different in delay cases.

One train service consists of a set of events indicating the departures and arrivals of the
train on block sections. When applying the TIN decomposition, these events may be
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split into more than one time intervals. Thus, similar to the GEO decomposition (where
trains may traverse from region to region), the time and speed when a train leaves
a time interval should be consistent with those when the train enters the next time
interval, i.e., the speed and time transition constraints are complicating constraints, as
formulated in (5.2) and (5.9) of Section 5.4.1. Moreover, as the TIN decomposition is
based on an estimated infeasible timetable, an event assigned to time interval t maybe
further scheduled into the next time interval t +1, causing conflicts with the events in
time interval t +1. Therefore, the capacity constraint in (5.23)-(5.24) of Section 5.4.1
is also a complicating constraint for the TIN decomposition.

7.3.4 Subproblems and couplings

Let us denote with S the set of the |S| resulting subproblems, e.g., |S| = |R| for the
GEO decomposition. No matter which decomposition method is used, we can always
divide the constraints of the MILP problem (7.1) into two categories, i.e., local con-
straints and complicating constraints. A local constraint is only related to a single
subproblem, so that it leads to a separable structure of the optimization problem. A
complicating constraint is associated with at least two subproblems, so that it results in
a non-separable structure. We thus rewrite (7.1b) into a general form of the following
local and complicating constraints:

Aloc ·λ≤ bloc (7.7a)

Acpl ·λ≤ bcpl (7.7b)

with matrices Aloc ∈ Rm1×n and Acpl ∈ Rm2×n and vectors bloc ∈ Rm1 and bcpl ∈ Rm2 .
The complicating constraint (7.7b) contains the speed transition constraint (5.2) and the
time transition constraint (5.9) when the GEO decomposition applies; (7.7b) contains
the capacity constraints (5.23)-(5.24) when the TRA decomposition is adopted; and
(7.7b) contains all the above constraints (5.2), (5.9), (5.23), and (5.24) when the TIN
decomposition is considered.

Let us denote with Qp =
{

q1,q2, ...,qmp

}
the set of mp subproblems that have cou-

plings with subproblem p. The subproblem p ∈ S of the MILP problem (7.1) is formu-
lated as

min
λp

Zp(λp) = c>p ·λp (7.8a)

s.t. Aloc
p ·λp ≤ bloc

p (7.8b)

Acpl
p,q ·λp +Acpl

q,p ·λq ≤ bcpl
p,q, ∀q ∈ Qp (7.8c)

where Acpl
p,q and Acpl

q,p are selection matrices for selecting the coupling variables between
subproblems p and q. Since each coupling constraint in (7.8c) includes the variables
λp and λq of two subproblems p and q, we cannot explicitly add them to any individual
subproblem. Instead we can determine and exchange values of the coupling variables
among subproblems in an iterative way. The train(s) of one subproblem p can obtain
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an agreement through iterations that inform the train(s) of the coupling subproblems
q ∈ Qp about what subproblem p prefers the values of coupling variables to be. To
achieve this agreement, for a single subproblem p, we have to compute the optimal
coupling variables (inputs) for its coupling subproblems q ∈ Qp as well, rather than
only focusing on computing optimal local variables. Moreover, for its coupling sub-
problems q ∈ Qp, we need to compute both the optimal local variables and coupling
variables (outputs). Through exchanging these desired coupling variables, the values
of these outputs and inputs should converge to each other, and a set of local inputs that
is overall optimal should be found. Distributed optimization approaches for reaching
this agreement are developed in Section 7.4.

7.4 Distributed optimization approaches

This section introduces three distributed optimization approaches to address the issue
of couplings among subproblems, namely the Alternating Direction Method of Multi-
pliers (ADMM) algorithm, the priority-rule-based (PR) algorithm, and the Cooperative
Distributed Robust Safe But Knowledgeable (CDRSBK) algorithm, presented in Sec-
tions 7.4.1 to 7.4.3 respectively. A key challenge in distributed optimization algorithms
is to ensure that the solution generated for a single subproblem leads to feasible solu-
tions that satisfy the complicating constraints with other subproblems.

7.4.1 Alternating direction method of multipliers algorithm

The alternating direction method of multipliers (ADMM) algorithm (see e.g., Boyd
et al., 2011) solves problems of the following form:

min
x,z

f (x)+g(z) (7.9a)

s.t. A · x+B · z = b, (7.9b)
with variables x∈Rn and z∈Rm, matrices A∈Rp×n and B∈Rp×m, and vector b∈Rp.
Assume that the variables x and z can be split into two parts, with the objective function
that is separable across this splitting. We can then form the augmented Lagrangian
relaxation as

Lρ(x,z,y) = f (x)+g(z)+ y>(A · x+B · z−b)+ ρ

2 · ‖A · x+B · z−b‖2
2, (7.10)

where y is the dual variable (Lagrangian multiplier), the parameter ρ > 0 indicates the
penalty multiplier, and ‖·‖2 denotes the Euclidean norm. The augmented Lagrangian
function is optimized by minimizing over x and z sequentially and then evaluating the
resulting equality constraint residual. By applying the dual ascent method, the ADMM
algorithm consists of the following iterations:

xi+1 := argmin
x

Lρ(x,zi,yi), (7.11a)

zi+1 := argmin
z

Lρ(xi+1,z,yi), (7.11b)

yi+1 := yi +ρ(A · xi+1 +B · zi+1−b) (7.11c)
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where i is the iteration counter. In the ADMM algorithm, the variables x and z are
updated in a sequential fashion, which accounts for the term alternating direction.

The ADMM algorithm can obviously deal with linear equality constraints, but it can
also handle linear inequality constraints. The latter can be reduced to linear equality
constraints by replacing constraints of the form A · x ≤ b by A · x+ s = b, adding the
slack variable s to the set of optimization variables, and setting Z(x,s) = 0, if s ≥ 0,
otherwise, setting Z(x,s) = ∞. Alternatively, we can also work with an equivalent
reformulation of problem (7.8), where we replace the complicating constraint (7.8c)
by

Cp(λp,λq) = 0 (7.12)

where Cp(λp,λq) = max
{

0,Acpl
p,q ·λp +Acpl

q,p ·λq−bcpl
p,q

}
with component-wise maxi-

mum. In such a way, we can transform the inequality constraints into equality con-
straints.

Now we can apply the ADMM algorithm, and the augmented Lagrangian formulation
of the MILP problem (7.1) can be described as follows:

Lρ = ∑
p∈S

[
Zp(λp)+ ∑

q∈Qp

[
y>p,q ·Cp(λp,λq)+

ρ

2
· ||Cp(λp,λq)||22

]]
(7.13)

subject to (7.8b).

The iterations to compute the solution of the MILP problem (7.1) based on the aug-
mented Lagrangian formulation (7.13) include quadratic terms; therefore, the function
cannot directly be distributed over subproblems. Inspired by Negenborn et al. (2008),
for handling this non-separable issue, the function (7.13) can be approximated by solv-
ing |S| separate problems of the form

min
λp

Zp(λp)+ ∑
q∈Qp

Jp(λp,λq,yp,q) (7.14)

subject to (7.8b) for the train movements of single subproblem p, where the additional
term Jp(·) deals with coupling variables.

We now define the term Jp(·) by using a serial implementation. We apply a block co-
ordinate descent approach (Beltran Royoa and Heredia, 2002; Negenborn et al., 2008).
The approach minimizes the quadratic term directly in a serial manner. One subprob-
lem after another minimizes its local and coupling variables while the variables of the
other subproblems stay fixed. At iteration i, let us use Q̂i

p ⊆ Qp to denote the set of
those coupling subproblems (of subproblem p) that have been solved before solving
subproblem p.

The serial implementation uses the information from both the current iteration i and
the last iteration i−1. With the information λ̄q = λ

(i)
q computed in the current iteration

i for subproblems q ∈ Q̂i
p and the information λ̄q = λ

(i−1)
q obtained in the last iteration

i−1 for the other subproblems q ∈ Qp\Q̂i
p, we can solve (7.14) for subproblem p by

using the following function:

Jp(λp, λ̄,yp,q) = y>p,q ·Cp(λp, λ̄q)+
ρ

2
· ||Cp(λp, λ̄q)||22 (7.15)
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The second term of (7.15) penalizes the deviation from the coupling variable iterates
that were computed for the subproblems before subproblem p in the current iteration i
and by the other subproblems during the last iteration i−1.

The solution procedure of the ADMM algorithm is described in Algorithm 7.1.

Algorithm 7.1 The solution procedure of the ADMM Algorithm
Input: The penalty multiplier ρ, the maximum number of iterations Imax, the expected
gap ε, the decomposition results (subproblem set S), and those inputs identical to the
PTSPO problem.
Initialization: Set the Lagrange multipliers y(0) := 0 and set all elements in the latest
solution set Ssol := {λ̄p|p ∈ S} to be empty.

1: for iteration i := 1,2, ..., Imax do
2: Randomly generate the orders of subproblems, denoted as P(i)

order.
3: for subproblem j := 1,2, ..., |S| do
4: Solve subproblem p := P(i)

order( j), consisting of objective function (7.14)

and constraint (7.8b), by taking the available solutions in Ssol for all q ∈ Q̂i
p into

account.
5: Denote the obtained solution of subproblem p as λ

(i)
p , and update the latest

solution set Ssol by adding or replacing λ̄p, where λ̄p := λ
(i)
p .

6: end for
7: Update the Lagrange multipliers by y(i)p,q := y(i−1)

p,q +ρ ·Cp(λ
(i−1)
p ,λ

(i−1)
q ) for all

p ∈ S and q ∈ Qp.
8: Break the iterations if the difference of the coupling variables at the current

iteration step i is less than the expected gap ε, i.e., ‖C‖
∞
≤ ε, where ε is a small

positive scalar and ‖·‖
∞

denotes the infinity norm.
9: end for

By applying the ADMM algorithm, we solve the subproblems p ∈ S in an iterative
manner, with respect to the local constraint (7.8b) of a single subproblem p and taking
the solutions of all coupling subproblems (i.e., the variable λ̄q for q ∈ Qp obtained in
either the current iteration or the last iteration) into account. In (7.13), only the local
objective Zp for a single subproblem p is minimized, not the global objective ∑p∈S Zp

for all subproblems.

In order to further improve the performance of the ADMM algorithm, we can consider
a cost-to-go function Zctg

p (λp) into the objective function of each subproblem, which
provides an estimation of the train running to its destination. The cost-to-go function is
inspired by Kuwata and How (2011), where a cost-to-go function is used to represent
the remainder of the path to the target for addressing an unmanned aerial vehicles
trajectory optimization problem. Then, the objective function (7.14) for subproblem
p ∈ S can be rewritten as follows:

min
λp

Zp(λp)+Zctg
p (λp)+ ∑

q∈Qp

Jp(λp,λq,yp,q) (7.16)
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For instance, with the GEO decomposition, we can define the cost-to-go function as
the deviation between the actual and planned departure time from the block section
where a train leaves a region. Thus, an original timetable with more details is then
needed, where the departure and arrival times are given not only for stations but also
for block sections.

7.4.2 Priority-rule-based algorithm

The ADMM algorithm incorporates the complicating constraint (7.8c) into the ob-
jective function and strives to make the information consistent among subproblems
(i.e., each subproblem takes the information of the other subproblems into account)
in an iterative manner. However, convergence cannot be guaranteed for non-convex
optimization problems, so that a feasible solution may not be available. Therefore,
we need to explore other distributed optimization approaches. We next introduce a
priority-rule-based (PR) algorithm.

The main idea of the PR algorithm is to optimize train schedules of the subproblems
in a sequential manner according to problem priorities, with respect to the solutions
of the other subproblems that have already been solved in the current iteration. The
problem priorities are determined by the train delay times of the subproblems, e.g.,
we solve the subproblem with the largest delay time first. Note that the result could
be different even with the same problem priorities, as multiple optimal solutions may
exist for each subproblem. These different optimal solutions with the same objective
value for one subproblem could then result in different objective values for the other
subproblems.

By applying the PR algorithm, the complicating constraint (7.8c) for the subproblem
p ∈ S can be rewritten as follows:

Acpl
p,q ·λp +Acpl

q,p · λ̄q ≤ bcpl
p,q, ∀q ∈ Qp (7.17)

with the solution λ̄q = λ
(i)
q computed in the current iteration i for all subproblems

q ∈ Q̂i
p.

The solution procedure of the PR algorithm is described in Algorithm 7.2.

In the priority-rule-based algorithm, we solve each subproblem p ∈ S in a sequential
manner according to the priorities of the subproblems, with respect to the local con-
straint (7.8b) and the outputs λ̄q of the coupling subproblems q ∈Qp in (7.17). Similar
to the ADMM algorithm, only the local objective Zp is minimized when solving sub-
problem p, rather than the global objective ∑p∈R Zp for all subproblems. Constraint
(7.17) ensures that the coupling variables of subproblem p satisfy those of its coupling
subproblems q ∈ Qp obtained in the current iteration. For the first solved subproblem
in each iteration, the complicating constraint (7.17) is relaxed.
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Algorithm 7.2 The solution procedure of the PR Algorithm
Input: The maximum number of iterations Imax, the iteration number κ, the decompo-
sition results (subproblem set S), and those inputs identical to the PTSPO problem.
Initialization: Set the local upper bound o(0)UB := M, and the global upper bound

O(0)
UB := M, where M is a sufficient large positive number. Initialize the problem prior-

ities P(0)
prior arbitrarily.

1: for iteration i := 1,2, ..., Imax do
2: Sort subproblems in set S in a descending order by their problem priorities

P(i−1)
prior , denoted as P(i)

order.
3: Set the solution set Ssol := {λ̄p|p ∈ S} to be empty.
4: for subproblem j := 1,2, ..., |S| do
5: Solve subproblem p := P(i)

order( j), including objective function (7.8a) and
constraints (7.8b) and (7.17), with respect to the available solutions in Ssol for all
q ∈ Q̂i

p.

6: Denote the obtained solution of subproblem p as λ
(i)
p , and update the solu-

tion set Ssol by adding λ̄p, where λ̄p := λ
(i)
p .

7: end for
8: Compute the local upper bound o(i)UB, and update the global upper bound by

O(i)
UB :=

{
o(i)UB, ifO(i−1)

UB > o(i)UB

O(i−1)
UB , otherwise

9: Update the problem priorities P(i)
prior by the train delay times of the subproblems.

10: Break the iterations if the global upper bounds are not improved for a given
number of iterations κ, i.e., O(i)

UB = O(i−κ)
UB .

11: end for

7.4.3 Cooperative Distributed Robust Safe But Knowledgeable al-
gorithm

The third algorithm considered in this research is the Cooperative Distributed Ro-
bust Safe But Knowledgeable (CDRSBK) algorithm, introduced by Kuwata and How
(2011) to address trajectory planning problems. In the CDRSBK algorithm, four types
of couplings among subproblems are defined for a subproblem p ∈ S, as illustrated in
Figure 7.2.

Type 1 indicates a non-active coupling between subproblem p ∈ S and its neighbor;
Type 2 indicates an active coupling between subproblem p and its neighbor; Type 3
indicates the coupling between the active coupling neighbors of subproblem p and their
neighbors; and Type 4 indicates the coupling between two active coupling neighbors
of subproblem p. Let us use Qp to denote the set of all coupling neighbors of subprob-
lem p and use Qact

p to denote the set of subproblem p’s neighbors that have an active
coupling with subproblem p. The interpretation of active and non-active couplings
can be different for different decomposition methods. We discuss the details regarding
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Figure 7.2: Four types of couplings defined in the CDRSBK algorithm

their implementations in Section 7.4.4.

By applying the CDRSBK algorithm, the subproblem p ∈ S of the MILP problem
(7.8a)-(7.8c) can be reformulated as

min
λp,ξq

Zp(λp)+ ∑
q∈Qact

p

Zq(λ̄q +Tq ·ξq) (7.18a)

s.t. Ap ·λp ≤ bloc
p (7.18b)

Aq · (λ̄q +Tq ·ξq)≤ bloc
q , ∀q ∈ Qact

p (7.18c)

Acpl
p,q ·λp +Acpl

q,p · λ̄q ≤ bcpl
p,q, ∀q ∈ Qp\Qact

p (7.18d)

Acpl
p,q ·λp +Acpl

q,p · (λ̄q +Tq ·ξq)≤ bcpl
p,q, ∀q ∈ Qact

p (7.18e)

Acpl
o,q · λ̄o +Acpl

q,o · (λ̄q +Tq ·ξq)≤ bcpl
o,q, ∀o ∈ Qq\Qact

p ,q ∈ Qact
p (7.18f)

Acpl
q1,q2 · (λ̄q1 +Tq1 ·ξq1)+Acpl

q2,q1 · (λ̄q2 +Tq2 ·ξq2)≤ bcpl
q1,q2,

∀q1,q2 ∈ Qact
p ,q2 ∈ Qq1,q1 ∈ Qq2

(7.18g)

In (7.18a), the objective function of both subproblem p and its actively coupled sub-
problems q ∈ Qact

p are included. Constraints (7.18b)-(7.18c) represent the local con-
straints of subproblem p and its actively coupled subproblems q ∈ Qact

p respectively.
In (7.18d)-(7.18g), coupling constraints (7.8c) are rewritten for the four types of cou-
plings among subproblems respectively. When solving subproblem p, besides the lo-
cal variable λp, the variable ξq is also optimized for its actively coupled subproblems
q ∈ Qact

p on the communicated solution λ̄q, as follows:

λq = λ̄q +Tq ·ξq (7.19)
parameterized with a matrix Tq, which is formed to allow the variable ξq to change
only the rows that correspond to the active complicating constraints. This can be also
interpreted as allowing a change for the constraint that has a non-zero Lagrange mul-
tiplier. In (7.18a), the objectives of a single subproblem p and its actively coupled
neighbors q ∈ Qact

p are both minimized.

The solution procedure of the CDRSBK algorithm is described in Algorithm 7.3.

In each iteration, the CDRSBK algorithm actually solves each subproblem, with addi-
tional objectives and coupling constraints that include the changeable (local) variables
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Algorithm 7.3 The solution procedure of the CDRSBK Algorithm
Input: The maximum number of iterations Imax, the iteration number κ, the decompo-
sition results (subproblem set S), and those inputs identical to the PTSPO problem.
Initialization: Set the local upper bound o(1)UB := M, and the global upper bound

O(1)
UB := M, and all elements in the latest solution set Ssol := {λ̄p|p ∈ S} to be empty.

1: for iteration i := 1,2, ..., Imax do
2: Randomly generate the orders of subproblems, denoted as P(i)

order.
3: for subproblem j := 1,2, ..., |S| do
4: Solve subproblem p := P(i)

order( j) and its actively coupling subproblems q ∈
Qact

p , consisting of objective function (7.18a) and constraints (7.18b)-(7.18g), by
taking the available solutions in set Ssol for all o ∈ (Qp\Qact

p )∪ (Qq\Qact
p ) into

account.
5: Denote the obtained solutions of subproblem p and its actively coupling

subproblems q ∈ Qact
p as λ

(i)
p and λ

(i)
q (which is obtained by (7.19)) respectively,

and update the latest solution set Ssol by adding or replacing λ̄p and λ̄q for all
q ∈ Qact

p , where λ̄p := λ
(i)
p and λ̄q := λ

(i)
q .

6: end for
7: Compute the local upper bound o(i)UB, and update the global upper bound by

O(i)
UB :=

{
o(i)UB, ifO(i−1)

UB > o(i)UB

O(i−1)
UB , otherwise

8: Break the iterations if the global upper bounds are not improved for a given
number of iterations κ, i.e., O(i)

UB = O(i−κ)
UB .

9: end for

of its actively coupled subproblems q ∈ Qact
p . If the variables of its actively coupled

subproblems are unchangeable, i.e., λq = λ̄q when ξq has no impact on the variables,
the coupling constraints are automatically satisfied and could be omitted.

7.4.4 Remarks on the implementation of the decomposition meth-
ods and algorithms

Here we give some remarks for the implementation of the proposed decomposition
methods and algorithms, e.g., interpreting the active and non-active couplings in the
CDRSBK algorithm for different decomposition methods and giving some tips for
achieving feasibility.

Remark 7.1: Train orders in the ADMM algorithm with the GEO decomposition
and the TIN decomposition
It is essential to ensure that train orders in subproblems are feasible, in order to avoid
unnecessary iterations and to achieve fast convergence. To do this, we keep the con-
sistency of the train orders that are interrelated, e.g., if two trains cannot overtake on
a sequence of block sections, then the train orders of these two trains on these block
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sections are interrelated and must be same.

Remark 7.2: The CDRSBK algorithm & the GEO decomposition
If two regions are connected by tracks, i.e., they are neighbors, then we consider that
a coupling exists between the two subproblems of these two regions. A coupling be-
tween two subproblems is considered to be active (Type 2) if there is any train traverse
between the two regions of the two subproblems; otherwise, the coupling is recog-
nized as non-active coupling (Type 2). For coupling Type 3 and Type 4, we follow
their general definitions, i.e., the couplings between an active coupling neighbor and
its coupling neighbors are labeled as Type 3 coupling and the coupling between two
active coupling neighbor is labeled as Type 4.

Remark 7.3: The CDRSBK algorithm & the TRA decomposition
If two trains use the same infrastructure (block section), then we consider that a cou-
pling exists between the two subproblems of these two trains. If a conflict exists be-
tween these two trains, then their coupling is recognized as an active coupling; other-
wise, their coupling is considered to be non-active. For coupling Type 3 and Type 4,
we follow their general definitions. In the TRA decomposition, we often have many
trains that use the same infrastructure; but conflicts may never happen among some
of them, e.g., a train scheduled in the early morning has little chance to conflict with
another train scheduled in the late afternoon. Thus, to further reduce the problem com-
plexity for large-scale networks, we provide two more options for defining coupling
Type 1 and Type 3. We denote the option described above as Opt 1. The difference
between Opt 1 and Opt 2 is in the definition of coupling Type 3: in Opt 2, we label
the couplings between an active coupling neighbor and its active coupling neighbor as
Type 3. Based on Opt 2, we discard all Type 1 couplings, which results in Opt 3, i.e.,
when and only when a conflict happens between two trains, a coupling exists between
them and is recognized as active coupling (Type 2). However, we still have Type 3
and Type 4 couplings in Opt 3 by following their general definitions. According to
the case study, Opt 3 performs best, in terms of computational efficiency and solution
quality. An illustrative example is provided in Section 7.5 to graphically explain these
three options.

Remark 7.4: The CDRSBK algorithm & the TIN decomposition
Due to the nature of the TIN decomposition, the relation among subproblems is rela-
tively simple in this case. Couplings exist only between two consecutive subproblems
(i.e., two subproblems of two consecutive time intervals t and t + 1) and are all rec-
ognized as active couplings (Type 2). As a result, according to the general definition
of the four types of couplings, the couplings between a consecutive subproblem and
its consecutive subproblem are considered as Type 3 (e.g., for subproblem t, a Type 3
coupling exists between subproblems t+1 and t+2), and Type 1 and Type 4 couplings
do not exist. Moreover, for guaranteeing a feasible solution in the first iteration, solv-
ing subproblems in a time sequence (i.e., for time intervals t = 1,2,3.... in sequence)
is recommended.
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7.5 An illustrative example

In this section, we use a small instance to explain the proposed decomposition methods
and algorithms. As illustrated in Figure 7.3, the instance includes 4 trains following
the pre-defined routes, i.e., train f1 : e1→ e2→ e4, train f2 and f3 : e1→ e3→ e5, and
train f4 : e3→ e5.

We now illustratively explain the formulation of the ILP problem proposed in Sec-
tion 7.3.1. We can write the set of block sections as E = {e1,e2,e3,e4,e5}. The route
matrix B f1 and the variable vector β f1 for train f1 and the variable vector µ for block
sections can be expressed as

B f1 =

[
1 −1 0 0 0
0 1 0 −1 0

]
, β f1 =

[
(β f1)1

(β f1)2

]
, and µ =

[
µ1 µ2 µ3 µ4 µ5

]>
.

Consider the consecutive block sections e1 and e2 in the route of train f1; then (7.3)
results in the inequality |µ1−µ2|

|R|−1 ≤ (β f1)1. If the two block sections belong to the same
region, i.e., µ1 = µ2, then we will have (β f1)1 = 0 (as we are solving a minimization
problem). If block sections e1 and e2 belong to different regions, i.e., µ1 6= µ2, then we
will have (β f1)1 = 1, as the left-hand side of the inequality is strictly in the range [0,1)
and B f1 is an integer matrix. Constraints (7.5)-(7.6) are used to avoid the solutions like

µ =
[

1 1 1 1 1
]>

.

We now illustrate the three decomposition methods. Let us assume |R| = 5, i.e., we
have 5 regions and each region contains only one block section. Let us denote T as the
number of subproblems for the TIN decomposition. By applying the three proposed
decomposition methods, the resulting subproblems and (primary) couplings can be de-
termined as shown in Figure 7.4. As illustrated, the GEO decomposition results in 5
subproblems, corresponding to the 5 block sections respectively; the TRA decompo-
sition leads to 4 subproblems, corresponding to the 4 trains respectively; and the TIN
decomposition gives T subproblems connected in time sequence.

We now illustrate the three options for defining the four types of couplings in the
CDRSBK algorithm with the TRA decomposition. Let us assume the infeasible timetable
shown in Figure 7.5(a), which can be generated by independently scheduling trains
one-by-one without considering their couplings. The three options are illustrated in
Figures 7.5(b) to 7.5(d) respectively. Let us now focus on train f1 (i.e., subproblem f1).
In Opt 1, the coupling between f1 and f2 is recognized as an active coupling (Type 2),

e1 e2

e3

e4

e5

train f1 : e1 -> e2 -> e4 

train f3 : e1 -> e2 -> e5
train f2 : e1 -> e3 -> e5

train f4 : e3 -> e5 

3 train routes: e1 -> e4
e1 -> e5
e3 -> e5

Figure 7.3: A small instance for illustrating the proposed decomposition methods
and algorithms
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(a) Geography-based (GEO) (b) Train-based (TRA) (c) Time-interval-based (TIN)
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Figure 7.4: Subproblems and couplings

because train f1 has a conflict with train f2 in the timetable shown in Figure 7.5(a).
Both f2 and f3 have an active coupling (Type 2) with f1; so a Type 3 coupling exists
between f2 and f3. Train f1 and train f4 use completely different block sections. So
subproblem (train) f4 only has couplings with f2 and f3, and their couplings are rec-
ognized as a Type 3 coupling for subproblem f1. Train f2 uses same block sections as
all the other trains, but only has a conflict with train f1; therefore, when we focus on
train f2, the coupling between f2 and f1 is considered to be Type 2 and the coupling
between f2 and f3 (and f4) is recognized as Type 1. In Opt 2, still focusing on sub-
problem f1, as the coupling between f2 and f4 is a non-active coupling (Type 1, when
focusing on subproblem f2 or f4), we consider the Type 3 coupling between f2 and f4

(and between f3 and f4) do not exist. In Opt 3, we consider no coupling if there is no
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Figure 7.5: Three options of the CDRSBK algorithm with the TRA decomposition
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conflict, which can be simply explained as removing all Type 1 couplings based on the
coupling architecture of Opt 2; however, Type 3 and Type 4 couplings are still defined
as same as Opt 1 (and Opt 2).

We now explain the three proposed algorithms by considering the GEO decomposition
as an example. Figure 7.4(a), which shows 5 subproblems and their couplings of the
GEO decomposition, is re-drawn as Figure 7.6(a) to express the local and coupling
variables. Figure 7.6(a) is used to graphically explain the solving process of the three
proposed algorithms.

Figure 7.6(b) illustrates the solving process of the ADMM algorithm based on the
small instance in Figure 7.3. For serial implementation, we randomly generate orders
of subproblems in each iteration and solve each subproblem according to the orders
through coordination with other neighboring subproblems. As shown, we first solve
subproblem 5, then the obtained solution of subproblem 5 is given as a soft constraint
to solve subproblem 3. Subproblem 1 is solved based on the solutions of both sub-
problem 2 and subproblem 3, using soft constraints as well. In each iteration, we
always consider the latest solution obtained, e.g., when solving subproblem 1 in itera-
tion 2, we use the solution of subproblem 2 obtained in last iteration, as subproblem 2
has not been solved in iteration 2, and we use solution of subproblem 3 obtained in
iteration 2, as it has been solved in current iteration 2.

The solving process of the PR algorithm can be illustrated in Figure 7.6(c) for the
small instance. As shown, subproblem 5 is first solved at iteration 1. After solving
subproblem 5, the solution of subproblem 5 is given as a hard constraint, indicated
by a black block, for solving subproblem 3. As we only considered (respect to) the
solutions obtained at current iteration, there is no interaction between iterations.

Figure 7.6(d) illustrates the solving process of the CDRSBK algorithm. In this case, all
couplings between two neighboring subproblems are considered to be active (Type 2).
As shown, in iteration 1, with consideration of subproblem 5, we first solve subprob-
lem 5 and subproblem 3. Then with considering subproblem 3, we solve subprob-
lem 5, subproblem 3, and subproblem 1, but only part of variables in subproblem 5
can be changed. Dark gray indicates unchangeable variables, coming from the lasted
solution obtained for the corresponding subproblem, and light gray indicates change-
able variables. When addressing subproblem 2, some variables in subproblem 1 are
unchangeable, including the coupling variables related to subproblem 3. Therefore,
the coupling between subproblem 1 and subproblem 3 will also be satisfied as a hard
constraint when solving subproblem 2.
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subproblem_1 subproblem_2 subproblem_4subproblem_3subproblem_5

local variables of subproblem_5 coupling variables between subproblem_5 and subproblem_3

(a) Illustration of the local and coupling variables

subproblem_1 subproblem_2 subproblem_4subproblem_3subproblem_5

iteration_1

iteration_2

……

(5->3->2->1->4)

(3->1->5->2->4)

coupling variables forced by soft constraints

variables optimized

(b) Solving process of the ADMM algorithm with serial implementation
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coupling variables forced by hard constraints

variables optimized

(c) Solving process of the PR algorithm

subproblem_1 subproblem_2 subproblem_4subproblem_3subproblem_5

……

iteration_1

iteration_2

(5->3->2->1->4)

(3->1->5->2->4)

coupling variables forced by hard constraints unchangable variables variables optimized

(d) Solving process of the CDRSBK algorithm

Figure 7.6: Illustration of the three algorithms, considering the GEO decomposi-
tion
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Figure 7.7: A railway network

7.6 Case study

7.6.1 Setup

We consider a line of the Dutch railway network, connecting Utrecht (Ut) to Den Bosch
(Ht), of about 50 km length, with 9 stations, as shown in Figure 7.7. The network com-
prises 42 nodes and 40 cells. We consider one hour of heterogeneous traffic with 15
trains. Moreover, we consider different numbers of regions for the GEO decomposi-
tion, ranging from 2 to 6, and we consider 4 time intervals for the TIN decomposition,
i.e., 300s, 600s, 900s, and 1200s. We consider 15 delay cases with randomly generated
primary delays following a 3-parameter Weibull distribution, as explained in Corman
et al. (2011b). We consider the average result of 15 delay cases with randomly gen-
erated primary delays. The maximum number of iterations is set to 200, 100, and 30
for the ADMM, PR, and CDRSBK algorithm respectively. A larger number is set for
the ADMM algorithm because in general it needs more iterations to converge, and
a smaller number is set for the CDRSBK algorithm because it often finds a feasible
solution very fast and its solution is updated multiple times in one iteration.

We adopt the CPLEX solver version 12.6.3 implemented in the MATLAB (R2018a)
TOMLAB toolbox to solve the MILP problems. The experiments are performed on a
computer with an Intel R©CoreTM i7 @ 2.00 GHz processor and 16GB RAM.

7.6.2 Experimental results and discussion

This section shows the (average) results of 15 delay cases from the viewpoints of fea-
sibility, estimated optimality, solution quality, and computational efficiency.

Figure 7.8 presents the number of cases that we can find feasible solutions within
the maximum number of iterations. We can conclude that, for achieving feasibility,
the TRA decomposition performs best among the three decomposition methods, and
the CDRSBK algorithm is the best among the three algorithms. Considering a larger
number of regions for the GEO decomposition or considering a smaller time interval
for the TIN decomposition can make feasibility difficult to achieve, as they lead to a
larger number of couplings among subproblems.

In Figure 7.9, the estimated optimality gap for each decomposition method and each
algorithm is given, calculated by a−b

a ×100%, where a represents the best solution of
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Figure 7.10: Solution quality and computational efficiency

the three algorithms for each decomposition method and b indicates the lower bound
obtained by each decomposition, when we focus on the three decomposition methods;
and if we focus on the three algorithms, then a represents the best solution of the
three decomposition method for each algorithm and b indicates the best lower bound
obtained by the three decomposition methods. As shown, the estimated optimality
gap of the GEO decomposition is 3.52%, the lowest among the three decomposition
methods, and the CDRSBK algorithm has the smallest estimated optimality gap (only
1.11%) among the three algorithms. A large estimated optimality gap does not always
reflect a bad solution quality; it may be caused by a loose lower bound, as in the case
of the TRA decomposition.

Figure 7.10 shows the cumulative computation time (on the X-axis) and the objective
value (on the Y-axis). The cumulative computation time in a serial implementation for
solving the subproblems is the sum of the CPU time consumed for finding the best fea-
sible solution. Dashed circles around symbols indicate that feasible solution(s) can be
found for all 15 delay cases by using the corresponding decomposition method and al-
gorithm. When focusing on the three decomposition methods (represented by colors),
the GEO decomposition (in pink) leads to a large range in computation time and a small
range in objective value. This implies that the GEO decomposition results in small dif-
ferences in the solution quality, but the computational efficiency is quite different for
different algorithms. For the TRA decomposition (in blue) and the TIN decomposi-
tion (in green), wide ranges still exist in the two dimensions, and they show a general
trade-off between solution quality and computational efficiency. Let us now focus on
the three algorithms (indicated by symbols). The CDRSBK algorithm (indicated by
diamonds) overall yields the best solution quality, and the computational efficiency be-
comes much better when the TRA decomposition is applied. The performance of the
ADMM and PR algorithms is highly variable. For the ADMM algorithm (indicated by
circles), the best solution quality is achieved when using the GEO decomposition, and
the best computational efficiency is achieved when the TRA decomposition is adopted.
The PR algorithm (indicated by triangles) has the best performance with respect to so-
lution quality when the GEO decomposition is used and with respect to computational
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efficiency when the TIN decomposition is applied. A black dashed circle around a
symbol indicates that feasible solution(s) can be found for all 15 delay cases by using
the corresponding decomposition method and algorithm. Moreover, the lower bound
of the TRA decomposition (indicated by a blue cross symbol) is the loosest, which
leads to its large estimated optimality gap in Figure 7.9.

Overall, the CDRSBK algorithm with the TRA decomposition, the ADMM algorithm
with the GEO decomposition, and the ADMM algorithm with the TRA decomposi-
tion yield a good overall performance. All these three combinations can find feasible
solutions for all delay cases. In comparison, the first two combinations yield the best
performance with respect to solution quality and a satisfactory performance with re-
spect to computational efficiency. The last combination shows the best computational
efficiency (roughly half of the computation time compared with the first two combina-
tions) but at the cost of a relatively bad solution quality.

Moreover, when using the CDRSBK algorithm together with the TRA decomposition,
Opt 3 described in Section 7.4.4 yields the best performance with respect to both so-
lution quality and computational efficiency. For Opt 1, Opt 2, and Opt 3, the average
objective value for the 15 delay cases is 7934.43, 7334.86, and 7217.08 respectively,
and the average cumulative computation time is 255.19 seconds, 224.64 seconds, and
104.75 seconds.

Based on the above findings, to combine the best features of all combinations, a
promising approach is to first use the ADMM algorithm with the TRA decomposi-
tion to generate a good feasible solution as quickly as possible and then next try the
CDRSBK algorithm with the TRA decomposition or the ADMM algorithm with the
GEO decomposition to get a potentially better solution at the cost of more CPU time.

7.7 Conclusions

We have introduced distributed optimization approaches, aiming at improving the com-
putational efficiency of the integrated optimization problem for large-scale railway net-
works. Three decomposition methods have been presented to split the whole optimiza-
tion problem into several subproblems, and three distributed optimization approaches
have been proposed for dealing with the couplings among subproblems.

The performance of the proposed approaches has been examined in terms of feasi-
bility, estimated optimality, solution quality, and computational efficiency. The TRA
decomposition and the CDRSBK algorithm yield the best performance from the per-
spective of feasibility. The GEO decomposition and the CDRSBK algorithm yield the
smallest estimated optimality gap. The CDRSBK algorithm with the TRA decompo-
sition and the ADMM algorithm with the GEO decomposition achieve the best perfor-
mance on solution quality and satisfactory performance on computational efficiency.
The ADMM algorithm with the TRA decomposition shows the best computational
efficiency but gives a relatively bad solution.
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Future research will focus on the practical applications of the distributed optimization
approaches. A promising two-step procedure can be used: first generate a feasible
solution in short time (e.g., by applying the ADMM algorithm) and then improve the
solution quality (by using the CDRSBK algorithm) based on that feasible solution if
time permits. The interactions of the ADMM, PR, and CDRSBK algorithms and the
GEO, TRA, and TIN decomposition methods could be explored, so that we can exploit
their advantages, in order to further achieve a best overall solution.



Chapter 8

Conclusions

This dissertation is motivated by the challenges in improving the performance of rail-
way operations, in terms of punctuality, reliability, non-discrimination, capacity uti-
lization, and energy efficiency, as outlined in Chapter 1.

Several research questions have been stated under the research objectives, which are
answered throughout Chapters 2 to 7. This chapter summarizes the answers. Sec-
tion 8.1 gives the main conclusions, and Section 8.2 recommends for future research
directions.

8.1 Main contributions

Several research questions were proposed in Section 1.3, including 1 main question
and 6 sub-questions. We now answer the proposed research questions.

Main question: Are there benefits of incorporating equity policy, preventive main-
tenance planning, or train control into railway traffic management by means of
optimization approaches?

The answer of the main research question is positive.

The benefit of incorporating equity policy into railway traffic management is reflected
by the improved delay equity among competing train operation companies (TOCs)
or trains. Moreover, in comparison with other scheduling algorithms (e.g., First-In-
First-Out and First-Scheduled-First-Served), the proposed optimization approach in
Chapter 3 can achieve better solutions for both delays and equity.

The benefit of incorporating preventive maintenance (PM) planning into railway traffic
management is reflected by the reduction of the total train travel time, which further
leads to the release of infrastructure capacity (i.e., more available capacity of the exist-
ing infrastructure), as shown in Chapter 4.

187
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The integration of traffic management and train control enables us to assess energy
consumption and train delay of train operations simultaneously. As explored in Chap-
ters 5 and 6, aiming at both delay recovery and energy efficiency, the two objectives
can be improved at the same time through managing the train speed, which reflects the
benefit of their integration.

The main research question is briefly answered above and further detailed by answer-
ing the 6 sub-questions item-by-item as follows:

(1) How to equitably deal with the conflicting requests of competing train operation
companies while dispatching trains?

As reviewed in Sections 2.2.1 and 2.2.2 of Chapter 2 on real-time traffic manage-
ment and on equitable capacity allocation (of the train timetabling problem) and
equitable control of air traffic and road traffic, the approaches based on auctions
and those based on scheduling are two common ways to allocate capacity with
some consideration of equity. However, in railway transport system, equitable
competition has been mostly considered and addressed during design and strategic
planning, and the investigation of equitable (or non-discriminatory) traffic control
is absent in the literature.

An optimization approach has been proposed in Chapter 3 for addressing the non-
discriminatory railway traffic control problem, where the delay equity among mul-
tiple TOCs or trains is explicitly considered, in addition to minimizing the average
(consecutive) train delay time. The delay equity is quantified as the degree of
homogeneity of the delays faced by different trains or trains of different TOCs,
formulated either as an objective or in a constraint. An inequitable (or discrimi-
natory) situation occurs when some trains or some TOCs face much larger delays
than other trains or TOCs. The proposed optimization approach can deal with the
conflicting requests of competing TOCs (or trains) in an equitable manner. Each
solution computed for any input determination has a satisfactory degree of equity,
which can be accepted by all interested parties.

(2) How to jointly schedule trains and preventive maintenance tasks at the same
time?

As reviewed in Section 2.2.3 of Chapter 2 on the joint scheduling of trains and
PM tasks, most existing studies on train scheduling focus on minimizing the to-
tal deviation times from an ideal timetable with pre-defined PM plans or without
considering maintenance, while studies related to PM mostly concern minimizing
total PM costs and delays of PM tasks. Only a few explicit discussions on the inte-
gration of these two problems are seen in the literature, and most of them schedule
one function by minimizing its impact on the other function. Integrated optimiza-
tion approaches that simultaneously schedule trains and PM tasks are absent in the
literature.

Chapter 4 proposed a virtual-train-based formulation method to describe resources
reservation and occupancy of trains and preventive maintenance time slots (PMTSs).
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Specifically, the workspace of a PMTS can be described by the route (pre-defined
with an origin and a destination) of a virtual train; the working time of a PMTS can
be described by the running time and the safety headway of a virtual train; and the
shape (rectangle or stairway1) of a PMTS can be described by the dwell times of a
virtual train at passing stations. In such a way, each PMTS can be represented by a
virtual train with a specifically designed safety headway. A capacity constraint is
only enforced for the real trains and between the real trains and the virtual trains;
it is not imposed for the virtual trains because the PM tasks for different lines
can be implemented simultaneously at an interchange station. By applying the
virtual-train-based formulation, all trains (including real trains and virtual trains
representing PMTSs) can be jointly scheduled at the same time.

(3) Can the joint consideration of train scheduling and preventive maintenance
planning bring any potential capacity of the existing infrastructure?

Based on the proposed virtual-train-based formulation, an integrated optimization
approach and a Lagrangian-relaxation-based solution approach have been pro-
posed in Chapter 4 for jointly scheduling trains and PM tasks on a general railway
network. In comparison with the commonly-used sequential scheduling method,
the experimental results showed the benefits of the integrated optimization on train
scheduling and PMTSs planning, i.e., the integrated scheduling method is at least
as good as the commonly-used sequential scheduling method and up to 25% im-
provement can be achieved by the integrated scheduling method. Therefore, the
answer of this research question is positive, i.e., the joint consideration of train
scheduling and PM planning can improve the quality of the train and PMTS sched-
ule and bring potential capacity of the existing infrastructure.

(4) How to incorporate driving actions (train control) into traffic management?

As reviewed in Section 2.2.4 of Chapter 2 on the interaction of traffic management
and train control, the vast majority of the optimization-based train rescheduling
approaches has a common assumption that a fixed speed profile is used for each
train, i.e., a pre-determined (constant) minimum running time is considered for
each train, and the studies on train control mostly focus on trajectory optimization
with a given running time, i.e., determining the driving regimes and the switching
points, with the aim of minimizing energy consumption. In the literature, the
available studies try to address their interaction and integration in a decomposed,
iterative, or non-optimized manner; however, few authors deal with the integrated
problem by employing mathematical optimization methods.

An integrated modeling approach has been presented in Chapter 5, which incor-
porates the representation of microscopic traffic regulations and speed trajectories

1If the starting times of PM tasks on a sequence of block sections are same, as well as the end times,
then the blockage of the PM tasks on a time-space graph will result in a rectangle shape. If there are
spaced starting times for the PM tasks on a sequence of block sections, then it will show a stairway
shape on a time-space graph.
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into a single optimization problem. The proposed modeling approach divides the
speed of a train on a cell into three phases, i.e., incoming, cruising, and outgoing
phases, while considering 4 time variables (e.g., the time point that a train starts
or ends cruising, in addition to the departure and arrival times) for describing the
state transition of a train on a cell. Train acceleration is considered as a piecewise
constant function by giving a fixed switching point (breakpoint) of speed (e.g., 60
km/h) for each train category, while train deceleration is considered constant for a
certain train category and different among train categories.

Based on the modeling approach, three integrated optimization approaches for
real-time traffic management, while explicitly including train control, have been
developed to deliver both a train dispatching solution (including train routes, or-
ders, departure and arrival times at passing stations) and a train control solution
(i.e., train speed trajectories). In these optimization approaches, train speed is con-
sidered variable, and the blocking time of a train on a cell dynamically depends on
its real operating speed.

(5) Is an improvement in energy efficiency of train operations possible by means of
integrating traffic management and train control?

Two approaches have been developed in Chapter 6 for including the minimiza-
tion of energy consumption into the integrated optimization problems of traffic
management and train control (proposed in Chapter 5), with either nonlinear con-
straints or linearized constraints. These enable us to assess and optimize energy
consumption and train delay of train operations simultaneously. The energy con-
sumed for accelerating trains and for overcoming resistances is evaluated. More-
over, we consider the option of regenerative braking and present linear formula-
tions to calculate the utilization of the energy obtained through regenerative brak-
ing.

According to the experimental results, the two objectives of delay recovery and
energy efficiency can be improved at the same time (e.g., by up to 4.0% and 5.6%
for the train delay and the energy consumption in one of the solutions) through
managing the train speed. For the test case, the application of regenerative brak-
ing leads to about 13.1%-22.9% reduction of the total energy consumption. Those
experimental results answer the research question, i.e., the improvement in energy
efficiency of train operation can be achieved by the integration of traffic manage-
ment and train control.

(6) Which distributed optimization approaches can be used to reduce the computa-
tion time of the integrated problem of traffic management and train control for
large railway networks?

In Chapter 7, three decomposition methods (i.e., a geography-based, a train-based,
and a time-interval-based decomposition, abbreviated GEO, TRA, and TIN de-
composition respectively) have been presented to split the whole optimization
problem into several subproblems, and three distributed optimization approaches
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have been proposed for dealing with the couplings among subproblems. The three
distributed optimization approaches under consideration are an Alternating Direc-
tion Method of Multipliers (ADMM) algorithm, a priority-rule-based (PR) algo-
rithm, and a Cooperative Distributed Robust Safe But Knowledgeable (CDRSBK)
algorithm.

In the experiments, the performance of the proposed approaches has been ex-
amined in terms of feasibility, estimated optimality, solution quality, and com-
putational efficiency. Overall, the CDRSBK algorithm with the TRA decompo-
sition and the ADMM algorithm with the GEO decomposition achieve the best
performance on solution quality and satisfactory performance on computational
efficiency. The ADMM algorithm with the TRA decomposition shows the best
computational efficiency but gives a relatively bad solution.

8.2 Recommendations for future research

In this section, we recommend several directions for future research. To extend this
dissertation from a theoretical perspective, the following directions are given:

• Complex interlocking systems can be incorporated in the optimization problems,
by refining the concept of cells. This would allow to enlarge the set of routes in
station areas, as well as including more processes at stations, like turn-around or
shunting.

• A direction goes towards studying how to best structure the original timetable,
with the objective of ensuring equitable traffic control in operations. This would
describe the impact of the timetable beyond robustness and resilience against
small delays in operations (see Bešinović et al., 2016). Moreover, a compre-
hensive framework can be defined where equitable planning (equitable capacity
allocation) and equitable control can be considered at the same time, to reach
non-discriminatory operations at a system level.

• The relation between maintenance plans and reliability of train services can be
defined by considering the risk associated with delaying maintenance, for being
able to (re-)schedule traffic in a closed-loop perspective (Corman and Quaglietta,
2015) or within a robust optimization framework (Meng et al., 2016), in order to
further reduce the system cost and achieve the largest economic benefits.

• With all kinds of uncertainties, e.g., the unexpected longer duration of mainte-
nance and the unexpected extra time for boarding and alighting of passengers or
loading and unloading of goods, that often occur in real operations, stochastic
optimization approaches should be sought for the real-time traffic management
problem, in order to generate a robust train dispatching solution, which can be
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less sensitive to uncertainties as much as possible. This leads to the exploration
of the trade-off between the quality and the robustness of a dispatching solution.

The following two extensions are made from a practical perspective:

• Embedded with the proposed optimization approaches for the integration of traf-
fic management and train control, a comprehensive system could be developed
to integrate the multiple steps in the solving procedure, e.g., the preprocessing
step for generating a set (or an efficient subset) of the possible train speed profile
options, the solving step to solve the optimization problem, and the displaying
step to show train timetables and speed-space graphs. This system can be used
as a decision support tool for both train dispatcher and train driver, in order to
bring the research presented in this dissertation into practice.

• For practical applications of the distributed optimization approaches, a promis-
ing two-step procedure can be used: first generate a feasible solution in short
time (e.g., by applying the ADMM algorithm) and then improve the solution
quality (by using the CDRSBK algorithm) based on that feasible solution if time
permits. This leads to one direction of the future research on exploring the inter-
actions of the ADMM, PR, and CDRSBK algorithms and the GEO, TRA, and
TIN decomposition methods, so that we can exploit their advantages, in order to
further achieve a best overall solution.
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Appendix A

A.1 Additional explanations of the formulations in Sec-
tion 5.4

In Section 5.4, we have introduced six logical speed indicators ζ1, f ,i, j, ..., ζ6, f ,i, j to
indicate the actions taken by train f on cell (i, j), i.e., the train trajectory. Some con-
straints, e.g., (5.26) and (5.28), further employ these indicators to perform their func-
tions. For assisting the readers to understand our formulations, we here describe the
six logical speed indicators in detail, and then we explain how these indicators play a
role in other constraints. In the remainder of this section, we omit the subscripts f , i, j
of the parameters and variables to improve the readability, e.g., the incoming speed is
denoted as vin, and the acceleration is indicated as α1 when the train speed is less than
the switching speed vturn (the speed point for switching the train acceleration) and as
α2 when the train speed is larger than the switching speed vturn.

A.1.1 Explanation of the six logical speed indicators ζ1, f ,i, j, ...,ζ6, f ,i, j

in Table 5.2

Table A.1 summarizes all possible train trajectories, i.e., the action(s) that a train may
take, in the incoming and outgoing phases respectively.

As presented, there are 9 possible trajectories for each phase. Each scenario can be
represented by the speed indicators ζ1,ζ3, and ζ4 for the incoming phase or by the
speed indicators ζ2,ζ5, and ζ6 for the outgoing phase. Regarding the cruising phase,
the train speed is constant, so only one train trajectory is possible, like “Trajectory 3”,
“Trajectory 5”, and “Trajectory 9”.

A.1.2 Explanation of (5.26)

Constraints (5.26a)-(5.26e) are proposed for the incoming phase by employing the
speed indicators and by satisfying the formula of the uniformly accelerating and de-
celerating motions, i.e., for such a motion with an initial speed v0, a final speed vt , and
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a steady acceleration α, the elapsed time for accelerating from speed v0 to speed vt is
∆t = vt−v0

α
. As shown in Table A.2, constraints (5.26a)-(5.26e) represent the 9 possible

trajectories for the incoming phase in Table A.1.

Table A.2: Overview of the details of (5.26)

Value of the speed indicators
Constraint

Corresponding trajectory
ID ζ1 ζ3 ζ4

Reduced equation

(5.26a) Trajectory 6, Trajectory 7, and Trajectory 8 0 0 or 1 0 or 1 acru−a =−vcru−vin

β

(5.26b) Trajectory 2, Trajectory 3, and Trajectory 9 1 1 0 or 1 acru−a = vcru−vin

α2

(5.26c) Trajectory 4, Trajectory 5, and Trajectory 9 1 0 or 1 1 acru−a = vcru−vin

α1

(5.26d) Trajectory 1 1 0 0 aturn−a = vturn−vin

α1

(5.26e) Trajectory 1 1 0 0 acru−aturn = vcru−vturn

α2

Regarding the cases of “Trajectory 3”, “Trajectory 5”, and “Trajectory 9”, as the in-
coming speed vin equals the cruising speed vcru, the incoming phase does not exist
anymore, and the condition acru = a is required by (5.26b) and (5.26c). Note that simi-
lar constraints can be constructed to represent the “Trajectory 10”, ..., “Trajectory 18”
for the outgoing phase in Table A.1. We do not present those details here.

A.1.3 Explanation of (5.28)

Constraints (5.28a)-(5.28d) are proposed for calculating the distance Lin that a train
travels within a cell in the incoming phase. These constraints also satisfy the formula
of the uniformly accelerating and decelerating motions, i.e., for such a motion with
an initial speed v0, a final speed vt , and a steady acceleration α, the distance traveled
for accelerating from speed v0 to speed vt is L = vt

2−v0
2

2·α . As shown in Table A.3,
constraints (5.28a)-(5.28d) represent the 9 possible trajectories for the incoming phase
in Table A.1.

Table A.3: Overview of the details of (5.28)

Value of the speed indicators
Constraint

Corresponding trajectory
ID ζ1 ζ3 ζ4

Reduced equation

(5.28a) Trajectory 6, Trajectory 7, and Trajectory 8 0 0 or 1 0 or 1 Lin =− (vcru)2−(vin)2

2·β

(5.28b) Trajectory 2, Trajectory 3, and Trajectory 9 1 1 0 or 1 Lin = (vcru)2−(vin)2

2·α2

(5.28c) Trajectory 4, Trajectory 5, and Trajectory 9 1 0 or 1 1 Lin = (vcru)2−(vin)2

2·α1

(5.28d) Trajectory 1 1 0 0
Lin = (vturn)2−(vin)2

2·α1

+ (vcru)2−(vturn)2

2·α2

Regarding the “Trajectory 3”, “Trajectory 5”, and “Trajectory 9”, as the incoming
speed vin equals the cruising speed vcru, the incoming phase does not exist anymore,
and then the distance Lin equals zero according to (5.28b) and (5.28c). Note that simi-
lar constraints can be constructed to represent the “Trajectory 10”, ..., “Trajectory 18”
in Table A.1, for calculating the distance Lout that a train runs over on a cell in the
outgoing phase. We do not present those details here.
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A.2 Illustration of the train timetables

We report here the train timetables of a representative case for the Dutch test case
(regarding the experiments in Section 5.6.2(1)), obtained by the PNLP problem (in Fig-
ure A.1(a)) and the PTSPO problem (an initial solution in Figure A.1(b) and a secondary
solution in Figure A.1(c)) respectively. Figure A.1(d) then provides the speed-space
graphs for all trains, corresponding to the train timetables given in Figures A.1(a)
to A.1(c). As there are siding tracks in some station areas, it is hard to draw every
train path in a single timetable. In order to present all train paths completely, we draw
the train blocking times on the main tracks by using dark gray blocks, and we use light
gray blocks to show the train blocking times on the siding tracks. Therefore, an overlap
of the dark and light gray blocks does not indicate a train conflict, but it means that the
two trains are running on different siding tracks in the same station area.

The total train delay time of the train timetables in Figures A.1(a) to A.1(c) is 3993
seconds, 3793 seconds, and 3426 seconds respectively. As we can see in the train
timetables of Figures A.1(a) to A.1(c), the orders of the sprinter train 1B60001 and the
intercity train 1D8001 (and the freight train 1RBH40S as well) change on some cells,
e.g., cell (8, 9). As a result, in Figure A.1(b), the sprinter train 1B60001 has more
delays (916 seconds), and the sum of the delays of the other affected trains (including
train 1RBH40S, 1D8001, and 1OVF11) decreases by 1219 seconds; in Figure A.1(c),
the delay of train 1B60001 increases by 927 seconds, and the total delay of the other
affected trains decreases by 1302 seconds.
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(d) Speed-space graphs for all trains, corresponding to the train timetables in (a)-(c)

Figure A.1: Train timetables and train speed-space graphs for the Dutch railway
network

A.3 Case study based on the railway network from the
INFORMS RAS problem solving competition 2012

A.3.1 Description of the railway network

To further assess the model performance on larger-scale instances, we adapt the rail-
way network from the INFORMS RAS problem solving competition 2012 (INFORMS
RAS, 2012), with both single-track segments and double-track segments, consisting of
67 nodes and 76 cells, as sketched in Figure A.2(a).

The train data (e.g., acceleration/deceleration rate, category, and length) and the stop
pattern same to the Dutch railway network are used here; we refer to Section 5.6.1
for more information. We consider 2.5 hours of traffic with 25 trains, including 10
intercity, 10 sprinter, and 5 freight trains, and six global (bi-)directional train routes,
as illustrated in Figure A.2(b). Each route has a mark in the form of (x,y,z) at its
origin; the mark indicates the numbers of intercity (x), sprinter (y), and freight (z)
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origin

destination

x intercity, y sprinter, and z freight
train(s) is/are operated on this route

(x,y,z)

intermediate station

(0,1,0) (1,1,0)
(0,1,0)

(2,2,1)
(1,1,1)

(1,0,0)

(2,2,1)

(2,1,1)

(1,1,1)

S1 S2 S3 S4

S5

station
track direction

Single track Double track Single track

(a)

(b)

Figure A.2: A rail network adapted from INFORMS RAS (2012)

trains respectively that are operated on this route.

A.3.2 Performance of the PTSPO model on a larger-scale instance

As evaluated in Section 5.6.2(1), the PTSPO model yields the best performance, and
the other two models already have a computation time in the experiments based on the
Dutch railway network, either obtaining no feasible solution or taking a much longer
computation time. Therefore, in this section, we only examine the PTSPO model per-
formance on larger-scale instances, by using the INFORMS RAS railway network de-
scribed in Section A.3.1. We use the larger set of TSPOs (i.e., Set 1 in Table 5.4), due
to its good solution quality, as discussed in Section 5.6.2(3). The average results of the
10 delay cases with randomly generated primary delays are illustrated in Figure A.3,
including the initial solution, the secondary solutions as a function of the computation
time, and the improvement in the objective value.

Similar to the results of the Dutch railway network, the initial solution is still obtained
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Figure A.3: Total train delay time as a function of computation time, results for
the INFORMS RAS railway network
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very quickly, and the total train delay time decreases as a function of the computation
time in the secondary solutions. Considering multiple TSPOs achieves 3.33% im-
provement in the train delay time within 180 seconds, and this improvement increases
to 10.62% when the computation time is extended to 3600 seconds.

Figure A.4 reports the train timetables of a representative case for the INFORMS RAS
railway network, obtained by the PTSPO model. An initial solution and a secondary
solution are provided in Figure A.4(a) and A.4(b) respectively.
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(a) Train timetable, corresponding to the initial solution of the PTSPO model
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(b) Train timetable, corresponding to the secondary solution of the PTSPO model

Figure A.4: Train timetables for the INFORMS RAS railway network



Samenvatting

In dit proefschrift worden optimaliseringmethoden ontwikkeld voor verkeersmanage-
ment in spoornetwerken. Het doel is om treinoperaties te verbeteren, in termen van
punctualiteit, betrouwbaarheid, niet-discriminatie, benutting van de capaciteit en effi-
ciëntie van het energiegebruik. Er wordt in het bijzonder aandacht besteed aan de
volgende vier aspecten:

• Niet-discrimerende verkeersregeling

Dit onderwerp betreft niet-discrimerende en gelijkwaardige behandeling van con-
flicterende wensen van concurrerende vervoerders. Er wordt een methode voor-
gesteld gebaseerd op gemengd-geheeltallige lineaire programmering (in het En-
gels: mixed-integer linear programming, MILP). Deze methode geeft een aan-
vaardbaar niveau van gelijkwaardige behandeling bij optimalisering van de ver-
trek- en aankomsttijden van treinen, volgordes en routes. Met behulp van experi-
menten en uitgebreide gevoeligheidsanalyse wordt de relatie onderzocht tussen
de mate van gelijkwaardigheid en de prestatie van het systeem. Het blijkt dat
minimalisering van treinvertragingen en gelijkwaardige verdeling van vertragin-
gen conflicterende doelstellingen zijn; de gelijkwaardigheid van verkeersbewe-
gingen kan worden verhoogd ten koste van grotere vertragingen.

• Verkeersregeling in samenhang met preventief onderhoud

In dit onderdeel worden de mogelijkheden van de bestaande infrastructuur beter
benut door een betere coördinatie van de verkeersregeling en preventief onder-
houd. Hiertoe worden preventieve onderhoudsacties geformuleerd als bewegin-
gen van virtuele treinen. Vervolgens worden in een geı̈ntegreerde optimalisatie
treinroutes, volgordes, vertrek- en aankomsttijden op tussenstations bepaald, als-
ook tijdvensters voor onderhoud op de betreffende segmenten en stations. Met
behulp van experimenten wordt de effectiviteit van de geı̈ntegreerde optimali-
sering nagegaan, en wordt aangetoond welke de voordelen zijn van simultane
planning van treinbewegingen en preventief onderhoud ten opzichte van de ge-
bruikelijke sequentiële planning.

• Integratie van verkeersregeling en treinbesturing

In dit onderdeel wordt onderzocht welke de mogelijkheden zijn voor optima-
lisering van het energiegebruik in treinoperaties door integratie van strategieën
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voor treinbesturing in de verkeersregeling. De details voor de verkeersregels en
snelheidsprofielen worden opgenomen in één model. Er worden drie optimalise-
ringsmethoden ontwikkeld om tegelijk een oplossing te geven voor de inzet van
treinen en voor de besturing van treinen. Het probleem wordt eerst geformuleerd
als een gemengd-geheeltallig niet-lineair programmeringsprobleem (in het En-
gels: mixed-integer nonlinear programming, MINLP). Dit MINLP-probleem
wordt geherformuleerd door de niet-lineaire termen te benaderen met stuksge-
wijs affiene functies. Dit geeft een MILP-probleem. In een voorbewerkingsstap
worden mogelijke snelheidsprofielen op elk blok gegenereerd. Daarvan wordt
er één gekozen door het oplossen van een MILP-probleem (de derde optimalise-
ringsmethode), rekening houdend met veiligheid, capaciteit en snelheidsregels.
In deze optimaliseringsbenadering wordt de snelheid van de trein gezien als een
variabele; de bloktijd van een trein wordt bepaald door de werkelijke snelheid.
Uit de resultaten van experimenten blijkt dat de derde optimaliseringsmethode
globaal gezien de beste resultaten geeft binnen de gewenste rekentijd. De re-
sultaten tonen de voordelen van integratie, d.w.z. vertragingen kunnen worden
verminderd door aanpassing van de snelheid.

• Gedistribueerde optimalisatie van verkeersregeling voor grote netwerken

Dit deel is gericht op verbetering van de efficiëntie van de berekeningen aan
het optimaliseringsprobleem met integratie van verkeersregeling en treinbestur-
ing. Er worden drie methoden afgeleid om het probleem op te delen in deelpro-
blemen: decompositie op basis van geografie, trein-gerelateerde decompositie
en tijd-gerelateerde decomposite. Er worden drie gedistribueerde optimaliser-
ingsbenaderingen ontwikkeld waarmee sequentieel en interactief elk deelpro-
bleem wordt opgelost, samen met andere deelproblemen of rekening houdend
met de oplossingen van andere deelproblemen. De drie beschouwde algorithmes
zijn een ‘alternating direction method of multipliers’ (ADMM) algorithme, een
‘priority-rule-based’ (PR) algorithme en een ‘cooperative distributed robust safe
but knowledgeable’ (CDRSBK) algorithme. Er worden experimenten gedaan
om de prestaties van de voorgestelde decompositiemethoden en algorithmes te
vergelijken ten aanzien van realiseerbaarheid, rekenefficiëntie, kwaliteit van de
oplossing en de geschatte afstand tot de optimale oplossing.



Summary

This thesis adopts optimization approaches to tackle the traffic management problem
for railway networks, aiming at achieving better performance of railway operations,
in terms of punctuality, reliability, non-discrimination, capacity utilization, and energy
efficiency. Specifically, the following four aspects are considered:

• Non-discriminatory traffic control

This topic deals with conflicting requests of competing train operators in a non-
discriminatory manner by considering equity in the decision process. A mixed-
integer linear programming approach is proposed, which enables us to achieve
a satisfactory degree of equity while optimizing the train departure and arrival
times, orders, and routes. In experiments, we study and quantify the trade-off
between equity and system performance, based on an extended sensitivity anal-
ysis. We demonstrate that the minimization of train delays and delay inequity
are two conflicting objectives; generally, equity of running traffic is improved at
the expense of larger delays.

• Traffic control cooperating with a preventive maintenance plan

This topic exploits the potential of existing infrastructure by better coordination
between the decisions on traffic management and preventive maintenance plan.
A virtual-train-based formulation method is introduced to describe preventive
maintenance tasks as virtual trains in train schedules. Next, an integrated opti-
mization approach is developed to simultaneously determine train routes, orders,
departure and arrival times at passing stations, as well as preventive maintenance
time slots on relevant segments and stations. In experiments, the effectiveness of
the integrated optimization approach is verified, and the benefits of simultane-
ously scheduling trains and planning preventive maintenance tasks are demon-
strated, compared with a commonly-used sequential scheduling method.

• Traffic control integrating with train control

This topic investigates the optimization of energy efficiency in train operations
by incorporating driving strategies into traffic control. The representation of mi-
croscopic traffic regulations and speed trajectories are incorporated into a single
optimization problem. Three optimization approaches are developed to deliver a
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train dispatching solution and a train control solution at the same time. A mixed-
integer nonlinear programming approach (MINLP) is first proposed, which is
then reformulated by approximating the nonlinear terms with piecewise affine
functions, resulting in a mixed-integer linear programming (MILP) problem. A
preprocessing method is further considered to generate the possible speed pro-
file options for each train on each block section, one of which is further selected
by a proposed MILP problem (i.e., the third optimization approach) with respect
to safety, capacity, and speed consistency constraints. In these optimization ap-
proaches, the train speed is considered to be variable, and the blocking time of
a train on a block section dynamically depends on its real operating speed. Ac-
cording to the experimental results, the third optimization approach yields the
best overall performance within the required computation time. The experimen-
tal results demonstrate the benefits of the integration, i.e., train delays can be
reduced by managing train speed.

• Distributed optimization of traffic control for large networks

This topic focuses on improving the computational efficiency of the integrated
optimization problem of traffic management and train control. Three decom-
position methods, namely a geography-based decomposition, a train-based de-
composition, and a time-interval-based decomposition, are presented to split
the whole optimization problem into several subproblems. To deal with cou-
plings among subproblems, three distributed optimization approaches are intro-
duced to sequentially and iteratively solve each subproblem through coordina-
tion with other subproblems or with respect to the available solutions of other
sub-problems. The three algorithms under consideration include an alternat-
ing direction method of multipliers (ADMM) algorithm, a priority-rule-based
(PR) algorithm, and a cooperative distributed robust safe but knowledgeable
(CDRSBK) algorithm. Experiments are conducted to comparatively examine the
performance of the proposed decomposition methods and algorithms, in terms of
feasibility, computational efficiency, solution quality, and estimated optimality.
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Stelling-Kończak, A., Cycling Safe and Sound, T2018/8, November 2018, TRAIL
Thesis Series, the Netherlands

Essen, van M.A., The Potential of Social Routing Advice, T2018/7, October 2018,
TRAIL Thesis Series, the Netherlands

Su, Zhou, Maintenance Optimization for Railway Infrastructure Networks, T2018/6,
September 2018, TRAIL Thesis Series, the Netherlands

Cai, J., Residual Ultimate Strength of Seamless Metallic Pipelines with Structural
Damage, T2018/5, September 2018, TRAIL Thesis Series, the Netherlands

Ghaemi, N., Short-turning Trains during Full Blockages in Railway Disruption Man-
agement, T2018/4, July 2018, TRAIL Thesis Series, the Netherlands

Gun, van der J.P.T., Multimodal Transportation Simulation for Emergencies using the
Link Transmission Model, T2018/3, May 2018, TRAIL Thesis Series, the Netherlands

Van Riessen, B., Optimal Transportation Plans and Portfolios for Synchromodal Con-
tainer Networks, T2018/2, March 2018, TRAIL Thesis Series, the Netherlands

Saeedi, H., Network-Level Analysis of the Market and Performance of Intermodal
Freight Transport, T2018/1, March 2018, TRAIL Thesis Series, the Netherlands

Ypsilantis, P., The Design, Planning and Execution of Sustainable Intermodal Port-
hinterland Transport Networks, T2017/14, December 2017, TRAIL Thesis Series, the
Netherlands

Han, Y, Fast Model Predictive Control Approaches for Road Traffic Control, T2017/13,
December 2017, TRAIL Thesis Series, the Netherlands

Wang, P., Train Trajectory Optimization Methods for Energy-Efficient Railway Oper-
ations, T2017/12, December 2017, TRAIL Thesis Series, the Netherlands

Weg, G.S. van de, Efficient Algorithms for Network-wide Road Traffic Control, T2017/11,
October 2017, TRAIL Thesis Series, the Netherlands

He, D., Energy Saving for Belt Conveyors by Speed Control, T2017/10, July 2017,
TRAIL Thesis Series, the Netherlands
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