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Abstract

Accurate vehicle localization is considered to be a key element in future automated driving
systems. A network of multiple sensors is employed to deliver information for this localization
process. Loosely coupled integration of global navigation satellite systems (GNSS) and inertial
navigation systems (INS) data is a common sensor-fusion method for such positioning. One
of the problems of this approach, is that exact knowledge of the process- and measurement
noise covariance matrices is often not available. The GNSS measurement noise uncertainties,
in particular, are highly dynamic and, depending on the specific environment, might follow
a non-Gaussian distribution. Since particle filter are known to be superior in non-Gaussian
environments, a hybrid filtering variant is proposed: adaptive particle-aided cubature Kalman
filtering. This algorithm compromises between a particle filter with kernel density estimation
algorithm in periods of non-Gaussian GNSS noise, and a standard cubature Kalman filter in
case of Gaussian GNSS noise. The results of GNSS/INS-based localization simulations indi-
cate that the proposed adaptive particle-aided cubature Kalman filter outperforms traditional
filtering methods in terms of minimal localization errors.

D.G.A. den Boer Master of Science Thesis



Table of Contents

Acknowledgements vi

Glossary vii
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction 2
1-1 Relevance of vehicle localization . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1-2 GNSS/INS-based vehicle localization . . . . . . . . . . . . . . . . . . . . . . . . 3
1-3 Filtering methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1-3-1 Kalman filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1-3-2 Particle filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1-4 Summary and structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Modelling the localization process 7
2-1 Vehicle model for ground-truth data acquisition . . . . . . . . . . . . . . . . . . 7
2-2 Sensor error modelling for acquisition of measurement data . . . . . . . . . . . . 9

2-2-1 GNSS measurement data . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2-2-2 INS measurement data . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2-3 Loosely coupled GNSS/INS integration . . . . . . . . . . . . . . . . . . . . . . . 10
2-3-1 Process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2-3-2 Measurement model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2-4 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2-4-1 Recent works on estimating noise covariance . . . . . . . . . . . . . . . . 13
2-4-2 Non-Gaussian GNSS noise . . . . . . . . . . . . . . . . . . . . . . . . . 15
2-4-3 Mitigating effects of GNSS outages . . . . . . . . . . . . . . . . . . . . 15

2-5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Master of Science Thesis D.G.A. den Boer



iv Table of Contents

3 Adaptive particle-aided cubature Kalman filter 17
3-1 Superiority particle filter in the non-Gaussian domain . . . . . . . . . . . . . . . 17
3-2 Novel hybrid filtering architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3-2-1 Traditional hybrid filters . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3-2-2 A key assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3-2-3 Kolmogorov-Smirnov test . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3-2-4 Soft switching between two filters . . . . . . . . . . . . . . . . . . . . . 24
3-2-5 Demonstration of the hybrid architecture . . . . . . . . . . . . . . . . . . 25

3-3 Full algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3-3-1 Cubature Kalman prediction . . . . . . . . . . . . . . . . . . . . . . . . 26
3-3-2 Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3-3-3 Cubature Kalman filter update . . . . . . . . . . . . . . . . . . . . . . . 28

3-4 Adaptive Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . 30
3-5 Proof of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3-5-1 Cubature Kalman filter convergence . . . . . . . . . . . . . . . . . . . . 33
3-5-2 Particle filter convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3-5-3 Stability of the adaptive particle weighting scheme . . . . . . . . . . . . 39
3-5-4 Stability of the full hybrid architecture . . . . . . . . . . . . . . . . . . . 40

3-6 Results for a benchmark example . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3-7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Localization simulations for performance evaluation 44
4-1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4-2 Implementation of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4-2-1 Adjustment for GNSS outages . . . . . . . . . . . . . . . . . . . . . . . 46
4-2-2 Particle filter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4-2-3 Tuning the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4-3 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4-3-1 Localization errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4-3-2 Validating the key assumption . . . . . . . . . . . . . . . . . . . . . . . 52
4-3-3 Evaluation of computation time . . . . . . . . . . . . . . . . . . . . . . 52

4-4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Conclusion and recommendation 54
5-1 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5-2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5-2-1 Mitigating effects of global navigation satellite system (GNSS) outages . 55
5-2-2 Application in other domains . . . . . . . . . . . . . . . . . . . . . . . . 56

A Full discrete state-space model 57

D.G.A. den Boer Master of Science Thesis



Table of Contents v

B Enlarged error plots 59
B-1 Multivariate nonlinear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B-2 Full loosely-coupled GNSS/INS-integration . . . . . . . . . . . . . . . . . . . . . 60

C Link to code samples 65

D Research paper 66

Bibliography 79

Master of Science Thesis D.G.A. den Boer



Acknowledgements

During my research, I have had lots of support from various persons. First of all, I want
to thank my supervisors. Peter, thank you for introducing me to Royal HaskoningDHV and
enthusing me for the subject. The research took a somewhat different direction than we
envisioned at the start, but you have always searched for interfaces between the companies
expertises and my research. Evert, thanks for the unconditional support, passion and excite-
ment that you have always shown. You have helped me when some tough decisions had to
be made. I would like to thank Bart for always expecting high-quality, grammatically and
mathematically correct documents, and for showing me the tricks of the trade of the academic
world. You have taught me to prepare, host and get the most out of our efficient meetings -
something that I will hopefully bring along in my future career.

Furthermore, I would like to thank my colleagues at Royal HaskoningDHV for including me in
their after-work activities. I have surely enjoyed the Friday afternoon drinks at the Rotterdam
office. For my fellow students at the 3ME study landscape; thanks for the numerous coffee
breaks and conversations on our happy moments and our struggles.

I would like to thank my housemates Oyono, Laurens, Mark and Tijmen, as they kept asking
me how my days were. We shared the burden of doing a thesis, research or residency in times
all the COVID-19 despair. I could have wished for no other comrades during this period. At
last, I would like to thank my parents, Gerard and Bernie, and my brothers Gijs and Rob for
their support during my studies. I am proud of how we get along so good as a family.

Delft, University of Technology D.G.A. den Boer
December 24, 2021

D.G.A. den Boer Master of Science Thesis



Glossary

List of Acronyms

GNSS global navigation satellite system
INS inertial navigation system
KDE kernel density estimation
RMSE root-mean-square error
CKF cubature Kalman filter
PF particle filter
CKFAPF cubature Kalman filter-aided particle filter / cubature particle filter
IBAE-UKF innovation-based adaptive estimation unscented Kalman filter
PACKF adaptive particle-aided cubature Kalman filter

Master of Science Thesis D.G.A. den Boer



viii Glossary

List of Symbols

µ Vector with ’Gaussianity’ switching parameters
∇b Accelerometer bias
ω Rotation velocity vector
ϕ Orientation error of INS
τ Time constant
ε Gyroscope bias
p Position error of INS
δω Rotation velocity error vector
δV Velocity error of INS
η Tuning parameter for the instrumental matrix Q̃
γ Safety factor for µ

N̂eff Effective sample size
{ξi, ωi} Cubature point
Q̃ Instrumental matrix for process noise
R̃ Instrumental matrix for measurement noise
ỹi,norm Normalized innovation
B Input transition matrix
Cn

b Rotation matrix from b-frame to n-frame
Csz Sigma point cross covariance matrix
F Transition matrix
f Accelerometer specific force measurement
H Measurement matrix
In Identity matrix of size n-by-n
K Kalman gain
P Covariance matrix of states
Pxz Cross covariance matrix of states
Pzz Innovation covariance matrix
Q Process noise covariance matrix
R Measurement noise covariance matrix
S Square-root of covariance matrix
u Input vector
v Measurement noise vector
w Process noise vector
x Vehicle state vector at time k, determined up until time k

xi State vector of the ith particle
Xi Cubature state
X∗

i Cubature state propagated through transition function

D.G.A. den Boer Master of Science Thesis



1

y Output vector
z Observation vector
Zi Cubature state propagated through measurement function
X ∗ Prediction centered matrix
Z Measurement centered matrix
ωz Yaw rate
ωb

z Bias yaw rate
ϕz yaw angle
ρ Tuning parameter for the instrumental matrix Q̃
σ Standard error
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Chapter 1

Introduction

The first experiments with automated vehicles originate from the 1920s. Though a low level of
autonomy was already achieved at that time, the phenomenon of fully self-driving vehicles was
put away as science-fiction. As for the late 2010s, a hype burst, placing autonomous vehicles
on top of most-discussed topics in technology, transport and urban planning. Carmakers were
spending billions on the development of automated features in their vehicles, and the world
was convinced fully self-driving cars on the roads were not that far away.

As of today, a road full of autonomous vehicles is considered to be decades away [36]. Experts
do not know how fast this advanced vehicle technology will develop. There is, however, a
general consensus about the tremendous potential of autonomous driving. About 94% of all
serious crashes is caused by human errors [1], indicating that the number of crashes could be
reduced significantly when automating driving tasks. Besides, it is expected that a road of
fully automated vehicles could reduce greenhouse gas emissions of road transport by nearly
35% [53]. Considering these statistics, there sure is a lot at stake in the coming decades.

1-1 Relevance of vehicle localization

One key element keeps coming back when advancing vehicle technology; the need for accurate
vehicle state estimation [63]. The states of a vehicle concern its kinematics: position and
orientation, as well as their time derivatives in both linear and angular form. For higher
levels of autonomy, a vehicle must be able to know its most important states, i.e. the ones
that describe its location, up to decimeter level [18]. The ultimate goal of the developments
in vehicle localization is crystal clear: providing a real-time, accurate location at any time,
at any place and under any condition.

Ideally, all incoming information for automated vehicles is reliable and robust. In reality,
complex and degraded working conditions could drastically degrade the reliability and ro-
bustness of sensor information [27]. Satellite signals can be disturbed by large objects in the
surroundings of a vehicle that occlude the signal, as depicted in Fig. 1-1. Cameras do not
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1-2 GNSS/INS-based vehicle localization 3

perform properly when the visibility is reduced due to, for example, adverse weather con-
ditions [61]. Too dark or bright lighting conditions reduce vision-based sensor performance
and snow could cover the lane markings, all preventing vehicle localization algorithms from
working properly.

Figure 1-1: The satellite signal (blue line) of a receiver mounted on a vehicle can be disturbed
by environmental factors such as trees, clouds, tunnels and urban areas. In tunnels, there might
even be no reception at all. Adopted from [25].

Though some types of information sources outperform others, there is a broad consent on the
fact that any stand-alone hardware system is not fit for vehicle localization on its own [38].
Each source of information has its strengths and weaknesses, which are mostly linked to ac-
curacy, the detection range and the robustness in specific environments. Current localization
techniques therefore exploit multiple sensors that complement each other [40]. Integration
of global navigation satellite system (GNSS) data and inertial navigation system (INS) mea-
surements is an example of such information fusion. These two sensors are almost exclusively
present in any vehicle localization architecture.

1-2 GNSS/INS-based vehicle localization

GNSS provides autonomous, geospatial positioning on a global scale. GNSS is a generic term
for satellite navigation, not to be confused with global positioning systems (GPS), which is
the United States’ version. Electronic receivers embedded in vehicles determine the longitude,
latitude and altitude of the receiver. The receivers use transmitted time signals that are sent
along a direct line by a radio on a satellite. The great advantage of GNSS signals is their
global coverage. Unfortunately, GNSS signal might be lost in areas where the direct line to
satellites is obstructed; think of tunnels, valleys, forests and urban areas (Fig. 1-1). Besides,
for localization purposes, low-end models are often employed, which have an accuracy of
approximately 5m for the cheapest models [41], or 2.5m for slightly better models [39].

An INS can determine the position of a vehicle at the hand of a set of motion sensors, rotation
sensors, wheel encoders and a computer. The data comes from an inertial measurement unit
(IMU), which often consists of an accelerometer, gyroscope and possibly a magnetometer.
Since the motion sensors capture the relative motion with respect to the previous measure-
ment, a so-called dead-reckoning method is used for determining a location. Dead-reckoning
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4 Introduction

uses speed and heading estimates as well as time measurements to determine a current po-
sition. Odometry is a sub-category of dead-reckoning that is used in a context with wheels;
the change in rotation of the wheels is used to determine the velocity. A standard INS does
not operate with odometry, but with accelerometer and gyroscope measurements.

Data from GNSS and INS is considered to be a golden combination for sensor fusion, since the
properties of these data sources are opposing in some sense. INS location estimates encounter
problems of accumulating errors over longer distances, thereby failing in long term navigation
operations [37]. The integration of GNSS can correct this error accumulation in intervals,
thereby limiting the localization errors. Besides, the smooth INS location estimates are often
used instead of the noisy GNSS signal. It results in both smooth and accurate location
estimates.

1-3 Filtering methods

GNSS/INS-based vehicle localization falls in the category of stochastic filtering problems.
Such problems consider the case of state estimation based on a set of inaccurate and noisy
observations or measurements. In other words, filtering methods attempt to find the best
estimate for the current state, given observations up to that time. The development of the
states is, in case of GNSS/INS-based vehicle localization, often represented by a nonlinear
discrete state-space model:

xk = f (xk−1, uk, wk)
yk = h (xk, vk)

(1-1)

In this equation, subscript k is a time indicator, x denotes the state vector, u is the input
vector, y is the output vector and wk and vk are noise sequences with unknown statistics. The
first equation indicates the state transition by function f . The probability that a current state
takes the value xk, given the previous state xk−1 and input uk, is denoted as p (xk | xk−1, uk).
The second equation of (1-1) is the measurement function h. In the context of filtering, an
observation of an output yk at time k is denoted as zk. The measurement function h describes
the probability p (zk | xk) that a measurement takes value zk given state xk.

The objective of filtering is to find the optimal state, i.e. the best estimate of x at time k.
This comes down to, given initial probability density p (x0), measurement likelihood p (zk | xk)
and prior state transition probability density p (xk | xk−1, uk), finding the posterior density
p (xk | xk−1, zk).

1-3-1 Kalman filtering

Rudolf Kalman proposed a new type of linear filtering, called Kalman filtering, in the 1960s
[34]. Kalman filters are based on the recursive Bayesian prediction-update framework [10].
Fig. 1-2 provides an example of the phases of this framework for Gaussian distributed process-
and measurement noise. Given a previous estimate and knowledge about the modelling
uncertainties, the prediction phase produces a predicted distribution, as indicated by the red
Gaussian of Fig. 1-2. Then, a filter uses a measurement and, with some a priori knowledge
of the uncertainty of this measurement, constructs a distribution around this measurement.
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1-3 Filtering methods 5

This step is indicated by the purple Gaussian of the center graph of Fig. 1-2. At last, a
weighted average is taken over the two distributions, in which the weights are determined
by the uncertainty of the two quantities. This results in the orange distribution of the right
graph of Fig. 1-2.

A Kalman filter calculates an optimal estimate when the system is linear, and the noise
distributions are Gaussian. Unfortunately, many systems in real-life are nonlinear, and suffer
from non-Gaussian process- and measurement noise. To solve the problem of nonlinearity,
some nonlinear variants of the Kalman filter have been developed. The most common ones
are; i) the extended Kalman filter [64], ii) the unscented Kalman filter ([33], [73]) and iii) the
cubature Kalman filter [8]. Extended Kalman filters linearize a system around the current
estimates of the mean and covariance, after which they proceed as a standard Kalman filter.
An unscented Kalman filter uses a deterministic set of sigma points around the mean. The
points have the property that if they are propagated through a function, the mean and
covariance of these sigma points accurately approximates the true mean and covariance after
propagation. Cubature Kalman filters work similarly, but the set of points (cubature points)
is determined differently, and there is one sample less needed compared to unscented Kalman
filtering.

Measure UpdatePredict

Repeat

Figure 1-2: The recursive Bayesian prediction-update framework for Gaussian process- and mea-
surement noise. A weighted average between the prediction (red) and measurement (purple)
results in a filtered estimate (orange). Adopted from [2].

1-3-2 Particle filtering

Particle filtering [26] is fundamentally different from any Kalman filtering approach. Particle
filters are based on sequential Monte Carlo approximations. Monte Carlo sampling is an
efficient sampling technique for state estimation.

Initially, the space of possible states is represented by Np particles, denoted as xi
k. The

space is filled at the hand of some probability measure; high particle density around some
states indicates a high probability of that state being the true one. Consecutively, one lets
each particle develop through time according to the corresponding dynamic state-space. The
posterior distribution is then estimated through a weighted average of all particles.

After some iteration, it can happen that all the weight is put on a few particles. Large dispar-
ities in the weights can eventually lead to all but one weights being zero. As a consequence,
the algorithm degenerates and the works only for a few iterations [11]. To overcome this
problem, particles with very low weights are replaced by ones that lay close to the particles
with higher weights after each iteration. Various methods exist for this resampling step, more
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6 Introduction

details on this can be found in [42]. For more general information on the current generation
of filtering methods, the interested reader could refer to an excellent survey on recent trends
in Gaussian filtering [5].

Observation
likelihood
distribution

Weighting

Resampling

Sampling

Proposal
distribution

Figure 1-3: Sampling-importance-resampling process (SIR). From the initial (proposal) distri-
bution, particles (the black dots), are sampled. They are weighted according to their probability
w.r.t. the measurement likelihood. At last, particles with low weights are resampled from the
proposal distribution. Adopted from [4].

1-4 Summary and structure of this thesis

Vehicle localization is an essential prerequisite for almost all automated features in intelligent
vehicles. Therefore, the new generations of vehicles are equipped with many sensors that
can provide real-time positioning data. To guarantee an accurate position estimate at all
times, at any place and under any condition, information from multiple sensors is necessary.
The fused location estimate of GNSS and INS is considered to be an essential contributor to
current localization methods. This fusion step is often performed by filtering methods, such
as Kalman filtering algorithms and particle filters. This thesis features a proposition for a
new hybrid filter for GNSS/INS-based vehicle localization.

Chapter 2 will discuss common integration strategies for GNSS and INS, and provides a
thorough mathematical description of the exploited system architecture. Besides, the current
state of the art will be examined. Then, Chapter 3 contains a proposition for a new type
of hybrid filtering. The proposed algorithm will be evaluated in Chapter 4, where the per-
formance for GNSS/INS-based localization simulations will be compared to existing filtering
methods. Chapter 5 contains the concluding remarks of this thesis.

D.G.A. den Boer Master of Science Thesis



Chapter 2

Modelling the localization process

There are many possible configurations for modelling the motions of a vehicle. These can
be categorized based on the assumptions and simplifications that are made. As such, a
model could assume constant velocity, constant acceleration, constant turn rate, constant
curvature, and so on [60]. More advanced models take additional factors into account, such
as dynamics (vertical forces, tire slip) of each individual wheel [62]. Luckily, fusion of global
navigation satellite system (GNSS) and inertial navigation system (INS) does not require
such advanced vehicle modelling. The main challenge is to transform the accelerometer and
gyroscope measurements into valid location estimates.

Three different models types will be used in this chapter; i) a model for generating ground-
truth data (true location data), which will be discussed in Section 2-1, ii) GNSS- and INS
sensor error models for generating sensor measurement data (Section 2-2), and iii) a model
for GNSS/INS fusion, as will be explained in Section 2-3. With the ground-truth and sensor
measurement data, we aim to realistically validate filtering-based localization methods in later
chapters.

For all the models, simulations and results of this work, the MATLAB R2021a software
environment will be used. The simulations are performed on an HP ZBook Fury 15 G7 with
an Intel core I7 vPRO processor.

2-1 Vehicle model for ground-truth data acquisition

In the state-space model for ground-truth data acquisition, the state vector x is defined as
follows:

x =
[
x y ϕz vx vy ωz ay ωz,b ay,b

]T
(2-1)

In this vector, x indicates the longitudinal position in global coordinates, y represents the lat-
eral position in the global coordinate frame, ϕz is the yaw of the vehicle, vx is the longitudinal
velocity, vy is the lateral velocity, ay is the lateral acceleration, ωz is the yaw rate, ab

y is the
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8 Modelling the localization process

bias of the acceleration measurements and wb
z is the bias of the yaw rate measurements. The

model uses the input uk =
[
δk ax,k

]T
at time step k, in which δ is the steering angle and

ax,k is the longitudinal acceleration. Apart from x, y, and ϕz, all states of the state vector
are given in the body frame of the given vehicle. These axis configurations will be discussed
in more detail later on in Subsection 2-3-1.

For the acquisition of ground-truth data, we use an Euler approximation of a model adopted
from [30]. This state transition model takes the following form:

xk+1 =



xk+1
yk+1
ϕk+1
vx,k+1
vy,k+1
ωz,k+1
ax,k+1
ay,k+1
ωb,k+1
ay,b,k+1


=



xk + vx,k · ∆t · cos(ϕk) − vy,k · ∆t · sin(ϕk)
yk + vx,k · ∆t · sin(ϕk) + vy,k · ∆t · cos(ϕz,k)

ϕz,k + ∆t · (ωz,k − ωb,k)
vx,k + ∆t · (ax,k)

vy,k + ∆t · (ay,k − ay,b,k)
ωz,k + ∆t · ( β4

vx,k
vy,k + ( β5

vx,k
)ωz,k + β6δ)

β1
vx,k

vy,k + ( β2
vx,k

− vx,k)ωz,k + β3δ

− 1
τω

ωb,k

− 1
τa

ay,b,k


+ wk (2-2)

In the last two equations, τω and τa are the correlation time constants of the gyroscope and
accelerometer biases, respectively. The parameters βi of the process model can be calculated
with:

βi


β1 = −2(Cαf+Cαr)

m , β2 = 2(−Cαf lf+Cαrlr)
m

β3 = 2Cαf
m , β4 = 2(−Cαf lf+Cαrlr)

If

β5 = −2(Cαf l
2
f +Cαrl2r )
m , β6 = 2Cαf lf

Iz

(2-3)

in which m indicates the vehicle mass, lf and lr indicate the distance (front and rear) of the
wheel axis to the center of gravity of the vehicle. Cαf and Cαr indicate the cornering stiffness
of the front- and rear axis.

Note that this model does not consider any vertical motions of the vehicle. This means that
the vehicle moves on a flat surface, and that roll and pitch motions are neglected. Such
simplifications make sure we avoid needles complexity; adding more degrees of freedom does
not contribute to a clear demonstration of the proposed hybrid filter.

Different sets of inputs u will be used to generate ground-truth data. This data is generated
without any process or measurement noise.
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2-2 Sensor error modelling for acquisition of measurement data 9

2-2 Sensor error modelling for acquisition of measurement data

Sensors attempt to capture the true states of a system. Unfortunately, errors are introduced
in this process. Modelling sensors comes down to modelling the errors that arise when using
these sensors. These errors are known as measurement noise. In our work, it is assumed that
these errors are additive.
The GNSS measurement data is obtained by artificially adding measurement noise to the
ground-truth data of the previous section. A second simulation with model (2-2) will be
performed to obtain INS measurements. Logically, the process noise wk is now nonzero.
From this second simulation, at each time step, the first 8 states of (2-2) are extracted. These
will be used as INS measurement data. This process of noise injection is a widely adopted
tool for simulating noise in order to validate localization algorithms [20, 48, 55].

2-2-1 GNSS measurement data

In our case, GNSS measurement are obtained by contaminating the corresponding ground-
truth states with an additive measurement noise sequence vk. Following [30], it is assumed
that the GNSS device can obtain both position and velocity measurements. The GNSS
observations are then generated as:

zGPS
k =


xGPS

k

yGPS
k

vGPS
x,k

vGPS
y,k

 =


xk

yk

vx,k

vy,k

+ vk (2-4)

2-2-2 INS measurement data

Errors in the INS are modelled as either standard additive noise or bias. The former is often
modelled as Gaussian white noise. The latter occurs when the accelerometer and gyroscope
outputs are integrated over time to produce velocity and yaw estimates, respectively. In this
process, the velocity and yaw errors will increase proportionally with time.
INS data is obtained differently than the GNSS data of the previous subsection, since a random
error build up affects the modelled dynamics in the INS along the way. The simulation has
to be performed again, now with nonzero process noise w. Due to the augmentation with the
bias states ωb,k and ay,b,k, one can model such errors that build up over time.
Let it be noted that the longitudinal acceleration ax,k is an input that we have full knowledge
of. A sequence of INS measurements can then be obtained:

zINS
k =



xINS
k

yINS
k

ϕINS
k

vINS
x,k

vINS
y,k

ωINS
z,k

aINS
x,k

aINS
y,k


=



xk

yk

ϕk

vx,k

vy,k

ωz,k

ax,k

ay,k


+ wk (2-5)
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10 Modelling the localization process

2-3 Loosely coupled GNSS/INS integration

When combining information from a GNSS and an INS, there are four common strategies:
uncoupled [69], loosely coupled [65], tightly coupled [43] and ultra tightly coupled [9]. In
uncoupled integration, the INS location estimate is reset when there is a GNSS signal avail-
able. There is no significant performance enhancement when using this technique, except
for an increased robustness. Loosely coupled methods use the GNSS speed- and position
measurements as observations of a Kalman filter that models INS error dynamics. Similarly,
tightly coupled integration methods use pseudorange and Doppler measurements (i.e. raw
GNSS signals) in the prediciton step of a Kalman filter. The observations come from the
INS. In ultra tightly coupled methods, the signal from the central GNSS processor is used to
control the code and carrier signals for each satellite, by means of digital tracking loops. In
tightly coupled methods, this tracking loop is performed separately for each satellite, leading
to higher vulnerability to jamming and unknown vehicle dynamics [23].

Loosely coupled integration strategies are considered to be the most intuitive. Besides, the
GNSS data can be obtained easily compared to tightly coupled methods. The observations
vector of (2-4) can simply be used. Therefore, the remainder of this report proceeds on a
loosely coupled strategy. Filters of the Kalman family operate with a prediction step and an
update step. The predictions are provided by the process model, which is based on INS data.
The update step is based on GNSS measurements.

2-3-1 Process model

In literature, the process model for loosely coupled integration is implemented in various ways,
with different notations and assumptions. The model in this subsection contains elements
from [6], [28], [49] and [66].

As stated earlier, it is assumed there is no change in the z-coordinate of the vehicle. These
states are still included in the process, but are set to zero after simulating the process model.

Several axis-frames are used in the localization process. The local navigation frame is denoted
as the n-frame, with ENU (East-North-Up) directions. The global frames are the geocentric
inertial frame (i-frame) and earth-centered earth-fixed frame (e-frame), for which more infor-
mation can be found in [15]. The body frame (b-frame) is defined at the INS center, and is
given in RFU (Right-Front-Up) convention.

The state vector is denoted as follows:

x =
[
δpT δVT ϕT εbT ∇bT

]T (2-6)

in which δp =
[
δL δλ δh

]T
is the INS position error in latitude L, longitude λ and height

h, δV n =
[
VE δVN δVU

]T
is the velocity error in the n-frame and ϕ =

[
ϕE ϕN ϕU

]T
denotes the orientation error in the n-frame. The state εb =

[
εx εy εz

]T
is the bias of

the gyroscope, given in the b-frame. The accelerometer specific force measurements in the
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2-3 Loosely coupled GNSS/INS integration 11

b-frame are defined as fb =
[
fx fy fz

]T
, with its bias ∇b =

[
∇b

x ∇b
y ∇b

z

]T
. The biases

are both modelled as first-order Markov processes:

∇̇b = − 1
τ a

∇b + wa

ε̇b = − 1
τ ω

εb + wω

(2-7)

Note that w, τ a and τ ω are similar as in the model of (2-2). The time derivative of the
orientation error ϕ̇ is determined through:

ϕ̇ = −ωn
in × ϕ + δωn

in − Cn
bεb

b (2-8)

in which ωn
in denotes the true angle rate and δωn

in is its error vector. The matrix Cn
b is the

rotation matrix from b-frame to n-frame, which is described by:

Cn
b =

 cos ϕz sin ϕz 0
− sin ϕz cos ϕz 0

0 0 1

 (2-9)

Note that a simplification is made with respect to the rotation matrix in for example [79],
since roll and pitch motions are neglected in our case. Logically, this holds for both the
b-frame and n-frame, and it leads to sin ϕx = 1, cos ϕy = 1, sin ϕx = 0 and sin ϕy = 0.

The change in the velocity error in the navigation frame can be calculated as:

δV̇n = Cn
bfb × ϕ − (2ωn

ie + ωn
en) × δV n − (2δωn

ie + δωn
en) × Vn + Cn

b∇b (2-10)

In this equation, ωn
en is the rotation velocity vector from e-frame to n-frame and ωn

ie is the
rotation of the earth in the n-frame, with δωn

en and δωn
ie as the corresponding error vectors.

The time derivative of the position error can be obtained as follows:

δṗ =

δL̇

δλ̇

δḣ

 =


δVN

Rn+h − δh VN
(Rn+h)2

δVE
Re+h sec L + δL VE

Re+h tan L sec L − δh VE sec L
(Re+h)2

δVU

 (2-11)

In this set of equations, Rn and Re are the radii of the curvatures in the meridian and prime
vertical axis of the earth, respectively. Following [66], ωn

in and δωn
in can now be calculated:

ωn
in =

[
− δVN

Rn+h ωie cos L + VE
Re+h ωie sin L + VE

Re+h tan L
]T

δωn
in =


− δVN

Rn+h + δh VN
(Rn+h)2

−δLωie sin L + δVE
Re+h − δh VE

(Re+h)2

δLωie cos L + δVE
Re+h tan L + δL VE

Re+h sec2 L − δh VE tan L
(Re+h)2

 = FavδVn + Fapδp

(2-12)
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12 Modelling the localization process

Substituting (2-12) into (2-10) leads to the following:

δV̇n = Cn
bfb × ϕ − (2ωn

ie + ωn
en) × δVn − (δωn

ie + FavδVn + Fapδp) × Vn + Cn
b∇b (2-13)

For each of the states in the vector x of (2-6), we have now described the continuous dynamics.
With the forward Euler discretization method [22], the set of equations is discretized. The
full, discrete state transition equation then takes the following form:

xk =


I3 + F11∆t F12∆t 03 03 03
F21∆t I3 + F22∆t F23∆t Cn

b,k∆t 03
F31∆t F32∆t I3 + F33∆t 03 Cn

b,k∆t

03 03 03 I3 − 1
τ a

∆t 03
03 03 03 03 I3 − 1

τ ω
∆t


k−1

xk−1 + wk

(2-14)
From now on, we will proceed with this discrete version. The Fij matrices can be found in
Appendix A.
The covariance matrix Q of the process noise can be estimated at the hand of sensor specifi-
cations. It is time-varying because of the rotation matrix Cn

b, that depends on the yaw angle
ϕz,k at time k. Both the accelerometer and the gyroscope experience noise- and bias errors,
which are included as standard errors σa, σω, σb,a and σb,ω, respectively. The process noise
then takes the following form:

wk ∼ N(0, Qk), Qk =


03 03 03 03 03
03 Cn

b,k 03 03 03
03 03 Cn

b,k 03 03
03 03 03 I3 03
03 03 03 03 I3




0
σ2

a
σ2

ω

σ2
b,a

σ2
b,ω

 (2-15)

2-3-2 Measurement model

Remember how the INS observations were defined in (2-5). The positions are given in the
local n-frame. However, the input vector uk =

[
δk ax,k

]T
provides the steering angle δ and

longitudinal acceleration ax,k in the vehicle’s b-frame. When generating realistic inputs, it is
much more intuitive to do this in the n-frame. Consequently, the velocities vx,k and vx,k and
the yaw rate ωz,k are also expressed in the body frame. The INS observation in the n-frame
can now be modelled:

pINS
k =

[
xINS

k yINS
k zINS

k

]T
VINS

k = Cn
b,k

[
vINS

x,k vINS
y,k vINS

z,k

]T (2-16)

The same holds for the GNSS observations; they can be described in the local n-frame as
follows:
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2-4 State of the art 13

pGPS
k =

[
xGPS

k yGPS
k zGPS

k

]T
VGPS

k = Cn
b,k

[
vGPS

x,k vGPS
y,k vGPS

z,k

]T (2-17)

In the loosely coupled GNSS/INS-integration architecture, we attempt to find the error be-
tween the GNSS and the INS. Later on, this error is then subtracted from the INS measure-
ments to determine a final state estimate. Thus, the observations for our filter are obtained
by subtracting the GNSS observations from the INS observations:

zk =
[

δp
δV

]
+ vk =

[
pINS

k − pGPS
k

VINS
k − VGPS

k

]
(2-18)

For the measurement noise covariance matrix R, the specifications of the considered GNSS
device can be used as in (2-19). The positioning and velocity standard error vectors are
denoted as σpos and σvel, respectively:

vk ∼ N(0, R), R =
[

I3 03
03 I3

] [
σ2

pos
σ2

vel

]
(2-19)

Note that the measurement noise is now modelled as Gaussian, but later on we will that this
is not necessarily the case. The fact that the measurement equation of (2-18) calculates the
errors between GNSS and INS has little influence on the uncertainty of the measurements.
That is the case because the INS errors over one time step are very small compared to the
GNSS errors. In other words, we assume that the standard errors of the GNSS device are equal
to the standard errors that we can use for constructing the measurement noise covariance R
of our filtering algorithm.

2-4 State of the art

A great literature has been devoted to the traditional loosely coupled integration scheme.
Many variations and extensions have been investigated. This section highlights some recent
(less than 3 years of age), state-of-the-art examples of such research. When reviewing this
literature, it can be seen that many of the newest journal papers focus on a problem that
researchers still struggle with in loosely coupled GNSS/INS integration schemes; that of
unknown process- and measurement noise covariance matrices Q and R. Besides, a different
branch of papers focuses on mitigating the effects of GNSS outages. Both will be discussed
in this section.

2-4-1 Recent works on estimating noise covariance

The work [7] comprises several adaptive Kalman filter-based methods for GNSS/INS integra-
tion and an evaluation of their performance. A compact and clear introduction is given for
three types of covariance estimation: i) innovation-based adaptive estimation (estimating R),
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14 Modelling the localization process

ii) residual-based adaptive estimation (estimating R) and iii) strong tracking filtering (esti-
mating Q). Some more advanced examples are provided in [49] (innovation-based adaptive
estimation) and [24], [29] (strong tracking filtering).

In [76], the authors propose an interacting multiple model (IMM) two stage Kalman filter. A
’bias-free’ filter operates without INS biases. Its output is then corrected by that of a second
Kalman filter. Within this second filter, the outputs of three filters, each with different process
noise covariance matrix Q, are mixed. Likewise, [32] contains a measurement modelling
method that exploits an extended state observer. The total, unpredictable uncertainty in the
system is obtained by taking the difference between the measurements and extended state
observer predictions. Assuming uncertainty mainly comes from measurement noise, a matrix
R is updated based on this difference.

In an approach that bears some resemblance to interacting multiple model filtering, the
authors propose a federated Kalman filter with strong tracking properties in [75]. A least-
squares principle determines the mixing proportions of the outcomes of the filters. More
recently, attempts have been made to estimate the process noise covariance Q based on the
maximum likelihood (ML) principle [28], [66].

A somewhat different approach uses a multitask learning model to find matrices Q and R
[74]. With the estimated orientation, velocity and INS measurements as input, the learning
model is trained when proper location data (e.g. from GNSS-RTK) is available.

The aforementioned literature works are included in Table 2-1, which serves as a brief overview
of noise covariance estimation methods for GNSS/INS-based vehicle localization.

Noise covariance estimation method Estimated
matrices

Examples in
literature

Innovation-based adaptive estimation Q, R [7], [49]
Strong tracking filtering Q [24], [29]
Interacting multiple model Q, R [41], [75], [76]
Extended state observer R [32]
Maximum likelihood Q [28], [66]
Learning model Q, R [74]

Table 2-1: Collection of some recent works on noise covariance estimation in loosely coupled
GNSS/INS-based vehicle localization.

When reviewing the different methods, there is one clear deficiency that might potentially
burden the localization process. Since loosely coupled GNSS/INS integration is bound to
(nonlinear) Kalman filter approaches, the process- and measurement noise are assumed to
be Gaussian. Even the adaptive methods of Table 2-1, though adapting to changes in noise
amplitude, approximate the noise with Gaussian distributions. It indicates that there is still
a gap of unvisited theory. The next subsection will disclose that the Gaussian assumption for
the GNSS measurement noise does not hold under some circumstances.
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2-4 State of the art 15

2-4-2 Non-Gaussian GNSS noise

Some recent works in literature expose the phenomena that lead to non-Gaussian GNSS mea-
surement noise. Various sources of non-Gaussian GNSS noise are studied in [30]. This work
models noise as either standard, Gaussian white noise, non-stationary noise due to satellite
distribution changes, multipath noise or GNSS outage. Similar findings were presented in
[25], where a distinction is made between noise under ideal circumstances (in an open sky
environment), harsh environments (routes with trees and clouds that absorb signals) and
urban environments (with sky-scrapers and bridges etc.). Correlated noises of GNSS-based
velocity estimates are studied in [58], thereby indicating that pink noise (or flicker noise) is
also not uncommon for GNSS devices. Outliers in GNSS measurements were investigated
in [54]. Changes in the number of visible satellites were seen as the largest contributors of
outlier measurements. Table 2-2 is a collection of the specific circumstances that induce non-
Gaussian GNSS noise, the corresponding non-Gaussian noise model and its mathematical
description.

Circumstances Noise Mathematical model
Open sky Gaussian noise vk ∼ N

(
0, σ2)

Varying conditions Flicker noise S(f) ∝ 1
f

Change in satellites Gaussian mixture vk ∼ (1 − α) N(µ, σ2) + αN
(
µ, βσ2)

Urban environments Random Walk vk = αvk−1 + β, β ∼ N
(
0, σ2)

Harsh environments Gaussian, dynamic variance vk ∼ N
(
0, σ2

i

)
GNSS outages Gaussian, high variance vk ∼ N

(
0, σ2) , σ ≫ 0

Table 2-2: Troubling circumstances, along with their corresponding noise types and mathematical
description of these noise types.

It is a well-known fact that Kalman filters are sensitive to outliers [31] or other forms of non-
Gaussian noise [57]. Logically, there is a strong suspicion that a Kalman-based loosely coupled
GNSS/INS integration scheme will suffer from the circumstances of Table 2-2. Even the noise
estimation methods of Table 2-1 can, presumably, not cope in non-Gaussian environments.
The remainder of this thesis will focus on a possible solution to this problem. This proposition
will be discussed extensively in the subsequent Chapter 3. The noise types of Table 2-2 will
be implemented according to the noise injection method as discussed earlier in Section 2-2.

2-4-3 Mitigating effects of GNSS outages

In [76], INS biases are estimated by a second-order autoregressive integrated moving average
(ARIMA) model, for which the parameters are found by the Burg estimation method [12].
This model is trained during periods with GNSS, and is used to estimate the biases in periods
of GNSS outage. A very similar approach has been studied in [41], featuring an extra step in
which the INS-data is pre-processing based on empirical mode decomposition for wavelet de-
noising. The work [79] exploits a Random Forest algorithm, that is trained to learn the input-
output relation between INS measurements and location estimate when GNSS is available.
Then, during GNSS outages, the system operates in pure INS-mode and uses the input-output
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16 Modelling the localization process

relation that was learned. Likewise, [47] attempts to mitigate the dependence on the (INS-
based) process model. An adaptive adjustment factor is used to improve the predictions. A
deep learning framework with multiple long short-term memory (multi-LSTM) modules is
trained to improve the INS predictions when GNSS is not available. In closing Chapter 5, we
will elaborate on this topic.

2-5 Summary

In this chapter, we have seen how we generate ground-truth data, as well as GNSS and INS
measurement data. One could artificially construct GNSS and INS data from ground-truth
data by a noise injection method. The injected noise should lead to INS location estimates
that, over time, drift away from the real track, as where the GNSS location estimates should
experience a significant amount of noise.

With this ground-truth and measurement data, we aim to realistically validate filtering-based
localization methods. Such filtering-based fusion strategies have been developed to overcome
the drawbacks of the GNSS and INS data. One of the most intuitive integration strategies for
GNSS/INS-based vehicle localization is the loosely coupled structure. A complete mathemat-
ical model for this integration structure is provided, under the assumption that any vertical
movement is neglected.

To deal with the problem of varying GNSS uncertainties, several extensions of the well-known
Kalman filter have been proposed in recent research. Unfortunately, these works all are all
based on the assumption that the GNSS noise is Gaussian. This is, however, not necessarily
the case; some specific circumstances might induce non-Gaussian GNSS noise. The next
chapter will propose a solution to this problem. At last, some works focus on mitigating the
effects of GNSS outages. In general, the INS biases are learned by models during periods of
good GNSS reception. The model then predicts the INS biases when GNSS is unavailable.
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Chapter 3

Adaptive particle-aided cubature
Kalman filter

Loosely coupled integration of global navigation satellite system (GNSS)- and inertial navi-
gation system (INS) data is usually performed by filters of the Kalman family. Such filters
provide an intuitive way of determining the proportions in which the GNSS- and INS mea-
surements contribute to the final state estimate. The motivation for using a hybrid filtering
architecture with a Kalman- and particle filter, has its origins in the general notion that
particle filters are more suitable under non-Gaussian circumstances [17].

Section 3-1 will prove the superiority of the particle filter in the non-Gaussian domain at
the hand of an example. The novelties of the proposed hybrid filtering architecture will be
discussed in Section 3-2, after which a compact description of the full algorithm is given in
Section 3-3. Section 3-4 demonstrates how the non-Gaussian distributions of the algorithm
are determined, and a proof of filtering convergence is given in Section 3-5. The preliminary
results of Section 3-6 and the summary of Section 3-7 complete this chapter.

3-1 Superiority particle filter in the non-Gaussian domain

There are two reasons for the superiority of the particle filter in the non-Gaussian domain:
i) the posterior distribution p(xk | xk−1, zk) can be represented as any distribution, and ii)
state transitions and observation likelihoods can be represented as any distribution. Filtering
methods of the Kalman family represent these distributions as Gaussian distributions, which
might lead to inaccuracy when in a non-Gaussian environment.

The nonlinear function of (3-1) is used to evaluate various nonlinear transformations that are
applied in filtering methods. This model is an adjusted version of the well-known benchmark
growth model, that was introduced in the original paper in which particle filters were proposed
[26]. For the sake of simplicity, the time-varying component is omitted:
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18 Adaptive particle-aided cubature Kalman filter

y = f(x) = x

2 + 25 x

1 + x2 (3-1)

A stochastic variable x has mean x̄ and perturbation error e such that x = x̄ + e. The goal
of nonlinear transformations is to estimate the statistics of the stochastic output variable
y. With statistics, we indicate the first p-order central moments of this output variable y.
For now, we are particularly interested in the first 2 central moments, i.e. the mean and the
covariance. Fig. 3-1 below provides a graphical representation of such transformations applied
on a dynamic system.

True mean

True covariance

Estimated
covariance

Estimated
mean

Sigma
points

Estimated mean

Estimated
mean

Cubature
points

Estimated
covariance

Estimated
covariance

Sigma points Cubature
points

Figure 3-1: Several transformations of a stochastic variable xk−1 through a nonlinear function
f . Left: propagation of 1000 Monte Carlo samples through f leads to an approximation of the
stochastic variable xk. Center-left: using a first order Taylor approximation (i.e. the linearization
of the extended Kalman filter), the statistics of xk can be estimated. Center-right: in an unscented
transformation, multiple sigma-points sj within the space of xk−1 are generated and propagated
through f . Right: a spherical-radial rule is used to generate cubature-points. Similarly to the
unscented transform, these points have the property that they can approximate the statistics of
xk. Adopted from [70].

The true distribution of y can be approximated by Monte Carlo simulations; the resulting
distribution of variable y after propagating x 1 · 105 times through (3-1) is given by the blue
density of Fig. 3-2. Performing more Monte Carlo simulations does not lead to a differ-
ent result. Performing this many simulations is often infeasible when considering real-time
applications. Therefore, several nonlinear transformations have been developed.
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3-1 Superiority particle filter in the non-Gaussian domain 19

To test these nonlinear transformations, two simulations are performed: one with e1 ∼
N(0, 0.1) (top graphs of Fig. 3-2) and one with e2 ∼ Pois(λ = 0.1) (lower two graphs of
Fig. 3-2). Note that the variance of x is equal for both cases (σ2

e1 = σ2
e2). The Poisson

distributed variable σe2 is normalized, such that x has mean 1 in both cases. Thus, the
most important simulation conditions, i.e. the first 2 central moments, are exactly the same.
However, the shape of the stochastic variable x is not the same. Properties of the shape of
distributions (e.g. kurtosis, skewness) are harvested in higher order central moments. The
means of the probability distributions of the left graph of Fig. 3-2 are indicated by the dotted
lines of the graphs on the right.
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Figure 3-2: Top left: for a Gaussian distributed x; true distribution of y = f(x) (3-1) and
the estimated distributions of an unscented transform (UKF, indigo), cubature transform (CKF,
orange) and Monte Carlo approximation with 10 samples (particle filter (PF), yellow). Bottom
left: similar, but for a stochastic x that follows a Poisson distribution. Top right: enlarged on the
true mean and approximated means. Bottom right: similar, but for non-Gaussian x. The Monte
Carlo approach convincingly outperforms other approaches in terms of approximating the true
mean. Especially for non-Gaussian distributed x, the difference in performance is considerable.

What stands out is that the true probability distribution of y is non-Gaussian, even for
normally distributed e. This indicates that propagation through nonlinear functions can
change the type of distribution of stochastic variables.

Now, an unscented transformation, a third-degree cubature transformation and a Monte Carlo
sampling method (with 100 particles) are applied to find the statistics of y without having
to perform 1 · 105 function evaluations. For e1 ∼ N(0, 0.1), the results of these nonlinear
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20 Adaptive particle-aided cubature Kalman filter

transformations are also included in Fig. 3-2. Both the unscented- and third-degree cubature
transformation represent y as a Gaussian, as expected. However, the Monte Carlo sampling
method captures the true shape of the density of y much better.

For a second simulation, we assume that there is full knowledge of the higher order statistics
of e2. The unscented- and cubature transformation allow a mean and covariance matrix as
inputs for x, but these do not change. There is nothing to adjust in these algorithms. Since
the Monte Carlo method can draw and weight particles from any distribution, it can also draw
from e2 ∼ Pois(λ = 0.1). With these settings, the same simulations are performed again, and
the resulting density estimates are given in the lower-left graph of Fig. 3-2. For this non-
Gaussian x, the mean of y is now approximated poorly by the distributions of the unscented-
and cubature transformations. The Monte Carlo method results in a much better estimate.
The difference in performance has increased considerably with respect to the simulation with
a Gaussian distributed x. Thus, with some knowledge of a possibly non-Gaussian variable x,
the mean of the variable y can be approximated better by Monte Carlo methods, such as the
particle filter. This strong advantage will be exploited in our hybrid filtering algorithm.

3-2 Novel hybrid filtering architecture

For the specific case of the previous section, the Monte Carlo sampling methods (such as
the particle filter) are more accurate than nonlinear Kalman-based methods as the unscented
Kalman filter and cubature Kalman filter. However, the nonlinear Kalman filters often per-
form adequately in Gaussian environments. Also, in higher-dimensional systems, more and
more particles are needed to obtain adequate results. This results in a considerable number
of function evaluations that are necessary if the particle filter were to match the performance
of the nonlinear variants of the Kalman filter. Researchers have been attempting to combine
both filters in order to use both their strengths.

3-2-1 Traditional hybrid filters

Over the years, several hybrid filtering architectures have been developed that employ both
a particle filter and a nonlinear Kalman filter. This section will discuss some common ones,
and will briefly introduce the proposed hybrid filtering architecture.

Switching strategy The most straight forward hybrid filter architecture is given by the left-
most scheme of Fig. 3-3. The two filters work in parallel, and a switching mechanism based
on an arbitrary criterion determines which output is used. A distinction is made between
a hard switch (either use the particle filter output or the Kalman-type filter output) and a
soft switch (a weighted average of both). Such an approach, using a hard switch, is used for
object tracking in [16].

We prefer the cubature Kalman filtering algorithm over the unscented Kalman filtering algo-
rithm for two reasons: i) the former is faster (one function evaluation less is needed) and ii)
a square-root configuration is possible. Square-root filtering solves the problem of indefinite
covariance matrices. The underlying meaning of covariance has its roots in its positive def-
initeness; a squared standard deviation can not be negative by definition. However, if very

D.G.A. den Boer Master of Science Thesis



3-2 Novel hybrid filtering architecture 21

accurate measurements are processed, or if some states are known with high accuracy, while
others are essentially unobservable, the numerically computed covariance P might turn out
non-positive definite [35]. In square-root filtering, a factorization is applied that guarantees
positive definiteness, thereby increasing the numerical stability of the filter. The additional
steps for square-root configuration will be provided in the full algorithm description of Section
3-3.
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Figure 3-3: From left to right: hybrid switching architecture, unscented/cubature particle fil-
ter architecture, particle-aided unscented Kalman filter architecture and the proposed adaptive
particle-aided cubature Kalman filter.

Unscented particle filter Perhaps the most common hybrid filtering method is given by
the center-left scheme of Fig. 3-3. Since it is generally rather difficult to find a good pro-
posal distribution for the particle filter with limited knowledge, a nonlinear Kalman-type
filter provides it. The method gained attention under the name unscented particle filter [71].
Although this method could solve the problem of non-Gaussian measurement noise, the draw-
backs of this method are as follows: i) the proposal distribution is exclusively Gaussian, ii)
when accurate predictions are available, one does not want to include inaccurate observations
in the proposal distribution, and iii) the particle filters sampling procedure might decrease
the accuracy with respect to the nonlinear Kalman estimate in pure Gaussian environments.
The sampling procedure inevitably leads to estimation errors (unless an infinite number of
particles is used), with the magnitude of these errors depending on the number of samples.
This might, in some cases, lead to situations (mainly in Gaussian environments) in which the
nonlinear Kalman estimate that is used for the proposal distribution is more accurate than
the subsequent particle filter estimate. This is, logically, highly undesirable. A switching
mechanism prevents this decrease in accuracy due to sampling.

Particle-aided unscented Kalman filter In a recent series of journal papers, the authors
propose the center-right approach of Fig. 3-3 for vehicle localization [44, 45, 46]. The particle
filter is now connected to the observation channel of the unscented Kalman filter. It has the
advantage that the particle filter can work with a reduced version of the state-space model,
one that only calculates the measurable states. There is, however, one large downside of this
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22 Adaptive particle-aided cubature Kalman filter

method; there are now limited tools for constructing the proposal distribution and observation
likelihood. We can explain this as follows: in the proposed particle-aided unscented Kalman
filter, the particle filter can weight the particles according to a non-Gaussian measurement
likelihood, leading to a more accurate observation for the unscented Kalman filter. This
should lead to a smaller measurement covariance matrix for the unscented Kalman filter
algorithm. An obvious choice for the measurement noise covariance matrix would be to use
the covariance matrix of the particle filter estimate. However, using this matrix increases
the vulnerability to filter instability, since the particle filters covariance estimate is prone to
negative definiteness. The last work of the series of papers [44] solves this issue by employing a
discriminative parameter training that learns an optimal measurement likelihood distribution.
This looks, however, like a brute force approach that only adds unnecessary complexity to a
problem that can be avoided easily.

Adaptive particle-aided cubature Kalman filter The novel hybrid filtering architecture of
the right diagram of Fig. 3-3 is more attractive for problems such as GNSS/INS-based vehicle
localization. The particle filter can work with any measurement likelihood distribution, and
we can implement an adaptive soft switching between Kalman-based filtering and particle
filtering, which is based on the Gaussianity of the measurement noise. The latter makes
sure that the final state estimates are not disturbed by the sampling procedure of the particle
filter in Gaussian circumstances, which was the case for the aforementioned unscented particle
filter. A cubature Kalman filter is employed to make a square-root configuration is possible,
guaranteeing numerical filter stability. Later on in Subsection 4-2-2, we will explain why we
use the cubature Kalman filter predictions as proposal distribution. This chapter will mainly
focus on the soft switching mechanism.

3-2-2 A key assumption

Section 3-1 has shown that particle filters are superior in case of non-Gaussian noise, given
that some knowledge with respect to the shape of this non-Gaussian distribution (i.e. the
higher order central moments) is available. This subsection will discuss an assumption that
is necessary to make this possible.

Consider the following multivariate nonlinear model:

xk =
[

x1,k−1 + τx2,k−1

x2,k−1 + τ
(
−x1,k−1 +

(
x2

1,k−1 + x2
2,k−1 − 1

)
x2,k−1

) ]+ wk , wk ∼ N
(
0, σ2

p

)

yk =
[

1 0
0 1

]
xk + vk

(3-2)

with time constant τ = 0.001 and the standard deviation of the process noise set to σp =
0.0005. Imagine that the measurement noise vk has a standard deviation of σm = 0.5. The
process noise is then much smaller than the measurement noise. In this specific case, with
accurate knowledge of the previous state xk−1, the prediction x̂k|k−1 of a nonlinear Kalman

D.G.A. den Boer Master of Science Thesis



3-2 Novel hybrid filtering architecture 23

filter, e.g. the cubature Kalman filter, is rather accurate. One might wonder; why not use
these accurate predictions as final state estimates? In many realistic systems (e.g. GNSS/INS-
based vehicle localization) the prediction error builds up over time. That is why, after a while,
the predictions become useless and there is a need for observation corrections in our final state
estimate.

Let us say that a filter is convergent, and the previous state is therefore estimated accurately
(its estimation error ek is small). The predicted observation ẑk is then a good approximation
of the true outputs yk. Kalman filters denote the difference between the predicted observation
ẑk and the actual observation zk as the innovation; ỹk = zk − ẑk. Under our specific circum-
stances, the measurement noise vk can be approximated by this innovation signal. This is
shown below:

ỹk = zk − ẑk = (x̌k + vk) − (x̌k + ek + wk) = vk − ek − wk ≈ vk (3-3)

in which x̌k is the true state, wk and vk are the process- and measurement perturbations and
ek as the estimation error of the previous state.

To summarize, assuming that the innovation signal sufficiently accurately approximates the
measurement noise, we possess over the right knowledge to let our particle filter perform su-
perior to the cubature Kalman filter. How the possible non-Gaussian measurement likelihood
distribution is build, will be disclosed later on in Section 3-4. Firstly, the next Subsection
3-2-3 will focus on the soft switching mechanism of the proposed hybrid filter.

3-2-3 Kolmogorov-Smirnov test

As stated before, the Gaussianity of the measurement noise will determine the mixing propor-
tions of the particle filter and the cubature Kalman filter for the final filtered state estimate.
To determine a measure for the Gaussianity of the measurement noise, a Kolmogorov-Smirnov
test [52] can be used. Let us take the last n normalized innovations (i.e. ỹi,norm = ỹi/|σỹ|)
as data points. The method first determines an empirical cumulative distribution function
Fk(x) for the n ordered innovations ỹi:

Fk(x) = 1
n

k∑
i=k−n

1[−∞,x] (ỹi,norm) (3-4)

Note that 1[−∞,n] (ỹi,norm) is the indicator function. This function equals 1 if ỹi,norm ≤ x and
equals 0 otherwise. The Kolmogorov-Smirnov statistic is then defined as the supremum of
the set of distances between a reference cumulative distribution F (x) (in our case a standard
normal distribution) and the empirical innovation cumulative distribution Fk(x):

Dk = sup
x

|Fk(x) − F (x)| (3-5)

A graphical representation can be found in Fig. 3-4.
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Figure 3-4: Cumulative distribution function of a standard normal distribution (blue), and the
empirical cumulative distribution function of the last n normalized innovations ỹi,norm (red). The
Kolmogorov-Smirnov statistic is supremum of the set of distances between the two distributions,
as indicated by the red markers.

The null hypothesis that the last n normalized innovations come from a standard normal
distribution can then be rejected with 1 − α confidence based on the following:

µ̌k =
{

1,
√

nDk > Kα, K = supt∈[0,1] |B(t)|, p (K ≤ Kα) = 1 − α

0,
√

nDk < Kα

(3-6)

in which B(t) is a Brownian bridge function [51]. Note that the bold symbol µ̌k is a vector
with its dimension as the number of measurable states, and the symbol µ̌k denotes one of its
entries. To avoid fast, aggressive switching between filter settings, the definitive Gaussianity
indicator µk is build up from the averages of µ̌k over the window n: µk = 1

n

∑k
i=k−n µ̌i.

Stability issues might arise when µk = 1, as we will see in Section 3-5. Therefore, a safety
factor γ ≪ 1 is employed to avoid this from happening.

µk = min

 1
n

k∑
i=k−n

µ̌i, 1 − γ

 , 0 < γ ≪ 1 (3-7)

3-2-4 Soft switching between two filters

The particle filter is connected to a cubature Kalman filter through the observations channel
of the standard algorithm. Instead of using the standard observations vector zk, a modified
version is used:

z̃k = (1 − µk) zk + µzpf
k (3-8)

in which zpf
k is the final output estimate of the particle filter. For each individual state,

this equation makes sure the filter is functioning as a standard cubature Kalman filter when
µk → 0, and uses the particle filter’s result as observation when µk → 1. When the uncertainty
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of this new observation is extremely low, the filter ’trusts’ the observations more than the
predictions, and eventually, the observations will contribute significantly to the final state
estimate. Therefore, we adjust the uncertainty of the observations with the matrix R̃k.
Instead of using a normal, fixed measurement noise matrix R, the following matrix is used:

R ⇒ R̃k = (1 − µk) R (3-9)

For each individual state, this adjustment leads to a small measurement noise variance when
µk → 1 (limµk→1 R̃k = 0), but the normal measurement noise variance is used when µk → 0
(limµk→0 R̃k = R). In the former case, the cubature Kalman filter predictions are neglected,
since the process noise is generally larger than R̃k → 0. The cubature Kalman filter then
fully uses the particle filter’s estimate as the definitive one.

Let it be noted that from now on, the matrices Q̃k and R̃k are used as tools to manipulate the
outcome of our state estimate, rather than representing the process- and measurement noise
covariance matrices Q and R. Both the process- and measurement noise covariance matrices
can often not be determined accurately. In fact, the noise statistics are often dynamic, and
inaccurate, fixed values for the noise covariance can be harmful for the estimation process.
Although more configurations are possible, we exploit z̃k and R̃k as a switching mechanism
between our filters, and we use Q̃k as an adaptive measure for the unknown components of
our system. The instrumental matrix Q̃k is calculated as:

Q̃k = ρỹT
k ỹkIn + ηIn (3-10)

with ρ and η as tuning parameters. Later on in the convergence proof of Section 3-5, the
reason for this specific choice for Q̃k will be explained. Both the instrumental matrices are
only used in specific steps of the algorithm. In other phases of the proposed hybrid filter, a set
of standard, fixed Q and R are used, as will be made clear in the full algorithm description
of Section 3-3.

3-2-5 Demonstration of the hybrid architecture

The hybrid filtering architecture, with the soft switching mechanism that depends on the
Gaussianity of the measurement noise, will now be evaluated with the aforementioned mul-
tivariate nonlinear model of (3-2). Imagine there would be a small amount of bias on these
states, such that the predictions of the process equation are worthless over large time spans.
We need the observations to correct for this error. The model is simulated for 50.000 time
steps. After 25.000 steps, the measurement noise abruptly changes from vk ∼ N(0, 0.25) to
a Gaussian mixture noise model:

vk ∼
([

0
0.1

]
+ 0.5 · N(0, 0.25 · I2)

)
+
([

−0.1
0

]
+ 0.5 · N (0, 10 · 0.25 · I2)

)
(3-11)

For comparison, four filters are reviewed: a cubature Kalman filter (CKF), a particle filter
(PF), an innovation-based adaptive estimation unscented Kalman filter (IBAE-UKF) and the
proposed adaptive particle-aided cubature Kalman filter (PACKF) with Np = 30, adaptive
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26 Adaptive particle-aided cubature Kalman filter

Q̃k matrix (3-10) and switching variable vector µk. For both particle filters, we use simple
multinomial resampling and the prior p(xk | xk−1) as proposal distribution. The innovation-
based feature of the unscented Kalman filter adapts its measurement noise covariance matrix
Rk based on the innovation signal. Remember from Section 2-4 that this approach accounts
for the changes in noise covariance, but it is still bound to a Gaussian shape for representing
the noise statistics.
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Figure 3-5: Estimation errors for the first state of the multivariate nonlinear model of (3-2). After
25.000 time steps, the measurement noise changes from a Gaussian distribution to a Gaussian
mixture model (3-11), which is non-Gaussian. Clearly, the estimation errors of the proposed
PACKF algorithm are the lowest in the second half of the simulation.

Fig. 3-5 shows the estimation errors of the first state of the model (3-2). Up until half of
the simulation period (i.e. the Gaussian case), all filters perform similarly. From 25.000 time
steps onwards, both the cubature Kalman filter estimation error and the innovation-based
adaptive estimation error increase. The particle filter and particle-aided cubature Kalman
filter perform better, with the proposed method resulting in the lowest estimation errors.
It is suspected that the adaptive Q̃k matrix accounts for this difference with respect to the
standard particle filter.

3-3 Full algorithm description

The full adaptive particle-aided cubature Kalman filtering algorithm can be split up into three
phases; i) the cubature Kalman prediction step, ii) the particle filter and iii) the cubature
Kalman update step. Each phase will be highlighted in this section, with the corresponding
mathematical steps provided by Tables 3-1, 3-2, and 3-3.

3-3-1 Cubature Kalman prediction

The prediction step follows that of a regular square-root cubature Kalman filter, except for
the adaptive matrix Q̃k. For the square-root configuration, several triangular factorizations
exist. Remember that this step assures that the covariance matrix P can never have a nega-
tive diagonal or become asymmetric. Well-known triangular factorizations are the Cholesky
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decomposition [14], the U-D decomposition and the QR-decomposition. These are denoted
by the Tria operator. We will use the Cholesky decomposition in our algorithm.

Steps of the algorithm
CKF prediction

1. Decompose last covariance Sk−1|k−1 = Tria
(
Pk−1|k−1

)
2. Calculate cubature points Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1

3. Propagate through f X∗
i,k|k−1 = f

(
Xi,k−1|k−1

)
4. Predict state x̂k|k−1 = 1

m

∑m
i=1 X∗

i,k|k−1

5. Calculate centered matrix X ∗
k|k−1 = 1√

m

[
X∗

1,k|k−1 − x̂k|k−1 · · · X∗
m,k|k−1 − x̂k|k−1

]
6. Calculate Q̃k Q̃k = ρỹT

k−1|k−1ỹk−1|k−1In + ηIn

7. Decompose Q̃k SQ,k = Tria
(
Q̃k

)
8. Square-root of covariance Sk|k−1 = Tria

([
X ∗

k|k−1 SQ,k

])
9. Calculate covariance Pk|k−1 = Sk|k−1ST

k|k−1

Table 3-1: Steps for the prediction step of a square-root cubature Kalman filter. The Tria
denotes an arbitrary triangular factorization.

The instrumental matrix Q̃k is determined at the hand of fixed, pre-defined constants ρ and
η, and the previous innovation signal ỹk−1|k−1. A total of m = 2n cubature points ξi are
defined in an initialization step, which is omitted for the sake of compactness. An extensive,
theoretical background on the origin of these points can be found in the original work of its
inventors [8].

3-3-2 Particle filter

Table 3-2 below shows the steps of the particle filter algorithm. A great advantage of the
proposed hybrid filter, is that it is still compatible with any type of proposal distribution and
any measurement likelihood distribution. In fact, it hands us extra tools for constructing a
proposal distribution, since the prior and posterior of the cubature Kalman filter can be used
as well.

Especially in case of small process noise covariance, these extra tools are useful. That is,
because the most common choice for a proposal distribution, i.e. the standard prior distri-
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bution p(xk | xk−1), has extremely short tails that do not cover the tails of the observation
likelihood. Thus, the most common choice for the proposal distribution will result in particle
degeneracy.

Steps of the algorithm
PF

10. Draw particles from proposal distribution xi
k ∼ q(xi

k | zk, xj
k−1)

11. Update particle weights * wi
k ∝ wj

k−1 · p(zk|xi
k)p(xi

k|xj
k−1)

q(xi
k

|xj
k−1,zk)

12. Calculate particle filter estimate x̂pf
k|k ≈

∑N
i=1 wi

kxi
k

13. Propagate through h zpf
k = h

(
x̂pf

k|k

)

Table 3-2: Steps of the particle filter that is used in the proposed hybrid filtering architecture.
* If one uses the prior p(xk | xk−1) as proposal distribution, the equation reduces to wi

k ∝
wj

k−1 · p
(
zk | xi

k

)
.

As we have seen in Section 3-1, particle filters perform better than Kalman-like filters, given
the condition that some knowledge on the non-Gaussian statistics is available. Is it then wise
to draw from a non-Gaussian proposal distribution? Not necessarily.

In non-Gaussian environments, the shape of the proposal distribution is not that important.
It must be close in shape to the true posterior, and a Gaussian shape often performs well.
More important is that one draws particles in the neighborhood of the observations and true
states. Thus, the support, which in the case of a Gaussian proposal distribution can be
characterized by the 3σ-bounds, is relevant rather than the exact shape. This means that
drawing particles from a non-Gaussian distribution does not solve the problem of filtering
non-Gaussian measurement noise. That is one of the reasons that we make the support of
our proposal distribution adaptive with the instrumental matrix Q̃k; to make sure that the
support of the proposal distribution adapts to the measurement uncertainty. Later on, Fig.
3-8 will delicately explain why the support of a proposal distribution is important rather than
the shape.

Then where do we need to implement a non-Gaussian distribution? The particles are weighted
with the observation likelihood p

(
zk | xi

k

)
, and if this is a non-Gaussian distribution, this is

where we should implement our non-Gaussian distribution approximation. The next section
will describe how the non-Gaussian observation likelihood p

(
zk | xi

k

)
can be determined. As

such, the superiority of the particle filter as described in Section 3-1 can be exploited.

3-3-3 Cubature Kalman filter update

In the last phase of the algorithm, a compromise is made between the standard observation
zk, and the observation zpf

k that comes from the particle filter state estimate. The stan-
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dard measurement update algorithm of the cubature Kalman filter is adopted, only with two
adjustments. The parameter µk is implemented as described by (3-8) and (3-9), thereby
changing the algorithm at step 18 and 23 of Table 3-3.

Steps of the algorithm
CKF Update

14. Evaluate cubature points Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1

15. Propagate through h Zi,k|k−1 = h
(
Xi,k|k−1

)
16. Predict measurement ẑk|k−1 = 1

m

∑m
i=1 Zi,k|k−1

17. Calculate centered matrix Zk|k−1 = 1√
m

[
Z1,k|k−1 − ẑk|k−1 · · · Zm,k|k−1 − ẑk|k−1

]
18. Decompose R̃k SR,k = Tria ((1 − µk) R)

19. Decompose ỹ covariance Szz,k|k−1 = Tria
([

Zk|k−1 SR,k

])
20. Calculate centered matrix Xk|k−1 = 1√

m

[
X1,k|k−1 − x̂k|k−1 · · · Xm,k|k−1 − x̂k|k−1

]
21. Calculate cross-covariance Pxz,k|k−1 = Xk|k−1ZT

k|k−1

22. Determine Kalman gain Kk =
(
Pxz,k|k−1/ST

zz,k|k−1

)
/Szz,k|k−1

23. Calculate observation z̃k|k = (1 − µk) zk + µk zpf
k

24. Calculate state estimate x̂k|k = x̂k|k−1 + Kk

(
z̃k|k − ẑk|k−1

)
25. Square-root of covariance Sk|k = Tria

([
Xk|k−1 − KkZk|k−1 Kk Tria(R)

])

Table 3-3: Measurement update step of the proposed algorithm. The Tria denotes an arbitrary
triangular factorization.

Note that in the final step 25 of the algorithm, i.e. the calculation of the square-root of the
covariance matrix, the pre-defined, time-invariant measurement noise covariance matrix R is
used. It is used instead of the earlier calculated SR,k, as would be the case in the standard
algorithm. We do this for two reasons. At first, the following might occur:

µk → 1 ⇒ (1 − µk)R → 0 (3-12)

This would mean that we are dealing with extremely accurate observations, and the square-
root of the covariance of the final state estimate would become very small as well. This can,
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however, not be the case in a realistic system. We merely manipulate the algorithm to use
the particle filter estimate instead of the cubature Kalman prediction.

As a second, a flawed covariance estimate in step 25 is problematic when, in the next time
step, the cubature points are drawn based on this covariance. The predictions will be very
poor. Also, when this covariance is used for the proposal distribution of the particle filter, or
when the estimate is to be fused with other estimates in later steps, an inaccurate covariance
matrix induces problems. Therefore, a fixed estimate for R is used in step 25 of Table 3-3.

3-4 Adaptive Kernel Density Estimation

The particle weighting step of Table 3-2 requires the determination of the observation like-
lihood p (zk | xk). In practice, gaining true statistics of the actual observation likelihood is
difficult. Often, this likelihood is assumed to be Gaussian, and is held constant.

Unfortunately, the measurement noise statistics might be time-varying and non-Gaussian in
reality. To overcome the problem of inaccurate particle weighting due to incorrect measure-
ment modelling, an adaptive particle weighting scheme is proposed. The last n innovations
ỹk, which are essentially the measurement noise values due to our assumption of (3-3), are
used to approximate the true observation likelihood. The following calculation shows how
this probability distribution function can be obtained:

f̂KDE(x) = 1
n

n∑
i=1

Kh (x − ỹi) = 1
nh

n∑
i=1

K

(
x − ỹi

h

)
(3-13)

The function K indicates an arbitrary kernel, ỹi represents one of the last n innovations, and
the parameter h denotes the bandwidth. The latter is a free parameter that determines the
smoothness of the resulting distribution function. A common choice for this bandwidth, the
one that minimizes the mean integrated squared error, can be found with:

h = θ σ̂ n− 1
5 , θ = 1.06 (3-14)

Such an approach for estimating densities at the hand of data points, is called kernel density
estimation [19, 56]. For the kernel function K ((x − ỹi)/h)) = K(u), an Epanechnikov kernel
[21] is used. This is a parabolic kernel function generally performs adequate for kernel density
estimation. The kernel can be calculated as:

K(u) = 3
4
(
1 − u2

)
, for |u| ≤ 1 (3-15)

Each particle will be weighted according to the approximated measurement likelihood, pro-
vided by the kernel density estimate f̂KDE(x). With this method, particles can be weighted
appropriately in case of time-varying and non-Gaussian measurement noise.

D.G.A. den Boer Master of Science Thesis



3-4 Adaptive Kernel Density Estimation 31

Figure 3-6: Let us say that the two-dimensional Gaussian mixture distribution on the left side
represents the true probability distribution of some measurement noise. This distribution has a
second mode on the left side of the origin. It has a higher skewness (i.e. asymmetry) and kurtosis
(i.e. heavy tails). If the measurement noise were to be approximated by a two-dimensional
Gaussian, one obtains the distribution in the right-most plot. If we take n = 50 innovations, and
use this data to approximate the true distribution with our kernel density estimation algorithm,
the center distribution is obtained. The proposed algorithm manages to capture the shape and
tailed behavior better than the Gaussian approximation.

Fig. 3-6 illustrates the effect of the kernel density estimation; the shape of the true mea-
surement likelihood can be captured better by the kernel density estimate than by a Gaus-
sian estimate. Thus, weighting particles with the approximated the measurement likelihood
p
(
zk | xi

k

)
is more accurate than using a Gaussian approximation. This will, hypothetically,

lead to better state estimation.

To verify this, we consider the multivariate nonlinear model of (3-2) once more. The model
is now simulated for 50.000 time steps. The simulation period is split up into five sectors (I
to V) of 10.000 time steps, each with different statistics for the measurement noise vk. The
noise types are represented mathematically in the parameterized descriptions of Table 3-4,
with the parameter values listed in the table caption.

Sector Time (×103) Noise model Mathematical description
Sector I 0-10.000 Gaussian vk ∼ N

(
0, σ2

1
)

Sector II 10.000-20.000 Gaussian mixture vk ∼ (1 − α2) N(µ, σ2
2) + α2N

(
µ, β2σ2

2
)

Sector III 20.000-30.000 Random walk vk = α3vk−1 + β3, β3 ∼ N
(
0, σ2

3
)

Sector IV 30.000-40.000 Poisson noise vk ∼ Poiss (λ4)
Sector V 40.000-50.000 Gaussian vk ∼ N

(
0, σ2

5
)

Table 3-4: The parameter values that are used: σ1 = 0.5, α2 = 0.5, σ2 = 0.5, β2 = 10, α3 = 1,
σ3 = 0.5, λ4 = 1 and σ5 = 0.5

For both a standard particle filter and a filter that uses the proposed kernel density estimation
algorithm, the development of the estimation error of the first state x1 are presented in Fig.
3-7 below. Under Gaussian circumstances (sectors I and V), the filters perform similarly.
In the sectors with non-Gaussian noise (II, III and IV), the standard particle filter exhibits
considerably larger estimation errors.
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Figure 3-7: Estimation error for the first state of model (3-2) for two particle filter: one with
Gaussian measurement noise assumption (yellow) and a particle filter with the measurement
likelihood approximated by the adaptive kernel density estimation algorithm (green). In the non-
Gaussian sectors (time step 10.000-40.000), the proposed method performs better in terms of
forcing the error towards the blue zero-line.

3-5 Proof of convergence

This section will show that in order to prove convergence of the proposed hybrid filter, there
are three elements required: cubature Kalman filter convergence (Subsection 3-5-1), particle
filter convergence (Subsection 3-5-2) and stability of the adaptive particle weighting scheme
(Subsection 3-5-3). Definitions for filter convergence are different for the cubature Kalman
and the particle filter. Therefore, any convergence definitions will be introduced in the cor-
responding subsections.
At first, stability conditions regarding the considered system are placed outside the scope of
this section. That is, it is assumed that the system we apply our filtering algorithm on, is a
system that has the properties listed in assumption 1 and assumption 2 below.

Assumption 1 Consider the following non-autonomous, nonlinear stochastic system model
with additive process noise wk, measurement noise vk:

xk = f (xk−1, uk) + wk

yk = h (xk) + vk

(3-16)

The system is N-locally uniformly rank observable. The functions f and h are differentiable.
Matrices F−1

k and H−1
k exist, and there also exist real numbers fmax > 0 and hmin > 0, such

that (3-17) below holds.

∥Fk∥ ≤ fmax, Fk = ∂f

∂x

∣∣∣∣
x̂k−1|k−1,uk

∥Hk∥ ≤ hmax, Hk = ∂h

∂x

∣∣∣∣
x̂k−1|k−1

(3-17)
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Assumption 2 The system (3-16) is a Markov process, i.e. the probability of a state depends
on the previous state only, and the probability of an observation depends on the current state
only, as shown in (3-18).

xk ∼ p (xk | x1:k−1) = p (xk | xk−1)
zk ∼ p (zk | x1:k) = p (zk | xk)

(3-18)

3-5-1 Cubature Kalman filter convergence

Before we dive into the conditions for cubature Kalman filter convergence, remember that
the version in our hybrid filter has two adjustments with respect to the regular algorithm.
Our version works with i) an adjusted observation vector z̃k instead of zk, and ii) adjusted
matrices Q̃k and R̃k instead of Q and R, respectively. The consequences of these adjustments
will be brought to light in the following paragraphs. Remark 1 below will be used throughout
the proof. This remark shows that our adjusted algorithm does not harm any deterministic
properties of the system (3-16) mentioned in Assumption 1.

Remark 1 Under Assumption 1 and the assumption that the particle filter’s estimate is
convergent in mean square, the adjusted observation z̃k is bounded with respect to the true
states x at the least, i.e. there exists some real N such that

|z̃k| = | (1 − µk) zk + µkh
(
zpf

k

)
| ≤ N, ∀ x ∈ Rn (3-19)

Then, for µk ∈ [0, 1), the deterministic stability properties of the measurement equation of
a given nonlinear system are not affected by the adjustment. Only the stochastic stability
properties, harvested in the measurement noise term vk, change:

zk = h(xk) + vk ⇒ z̃k = (1 − µk)h(xk) + ṽk (3-20)

Thus, by proving that vk and ṽk have similar properties, it is proven that the deterministic
stability properties of Assumption 1 and 2 are not affected by the adjustments of our algo-
rithm.

Throughout the following five conditions for the cubature Kalman filters convergence, we will
indicate which elements of the proofs are affected by our adjustments, and how we can prove
that these adjustments do not harm the hybrid filters’ convergence.

1. Assumption 3 The initial estimation error is assumed to be bounded, i.e. E
{
∥x̂0∥2} ≤

ϵ for small real constant ϵ > 0. Besides, we assume there exists a bound δ > 0 such that∥∥∥wT
k wk

∥∥∥ ≤ δ,
∥∥∥vT

k vk

∥∥∥ ≤ δ.

If the particle filter is convergent, it has a finite estimate and there will also exist a bound
δ such that the adjusted noise term ṽk of (3-20) is also bounded, i.e.

∥∥∥ṽT
k ṽk

∥∥∥ ≤ δ. This
assumption will therefore not be affected by our hybrid structure, given that the particle
filter is convergent. Thus, Remark 1 is valid.
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2. The covariance matrix Pk must be bounded. This holds when there exist positive scalars
θmin and θmax such that the following holds:

θminIn < P−1
k < θmaxIn (3-21)

To obtain this, the system should be N-locally uniformly rank observable [8].

Theorem 1 N-locally uniformly rank observable implicates that there exists an integer
N ≥ 1 such that

rank ∂

∂x


huk

(x)
huk+1 ◦ fuk

(x)
...

huk+N−1 ◦ fuk+N−2 ◦ · · · ◦ fuk
(x)


∣∣∣∣∣∣∣∣∣∣
x=xk

= n (3-22)

for all xk ∈ K and N -tuple of controls (uk, · · · , uk+N−1) ∈ U , in which K and U are
two compact subsets of Rn and Rr, respectively. [13]
This is a deterministic system property that falls under Assumption 1, which is not
lost by the adjustments made to our cubature Kalman filter (see (3-20) of Remark 1).
Thereby, this conditions is fulfilled.

3. The matrices Fk and Hk are uniformly bounded, and the inverse F−1
k exists. We have

assumed these deterministic properties earlier on (Assumption 1) and they are not
affected by the hybrid architecture (Remark 1). This condition is therefore fulfilled.

4. For the square-root configuration, the instrumental matrices Q̃k and R̃k need to be
positive definite at all times, in order to perform the triangularization step. In other
words, there should exist real constants q̂min > 0 and r̂min > 0, such that

q̂minI ≤ Q̃k

r̂minI ≤ R̃k

(3-23)

This can be achieved by setting both instrumental matrices as diagonal matrices with
only positive diagonal entries. The term ηIn of (3-10) guarantees this condition for Q̃k.
A constant, diagonal, positive definite matrix R is pre-defined in our filtering algorithm.
However, since our algorithm uses R̃k = (1 − µk)R instead of R, this condition might
be violated for values close to µ = 1. Therefore, we put a bound on µ: µ ≤ 1 − γ, with
γ close to 0, e.g. γ = 0.01, such that r̂minI ≤ R̃k, ∀ µ ∈ [0, 1 − γ]. As a result, both
conditions of (3-23) are met.

5. The previous conditions assure boundedness, but not necessarily convergence. A Lya-
punov argument is used to prove that the estimation error is locally asymptotically
convergent in mean square.
Let us define x̃k|k−1 as prediction error (i.e. x̃k|k−1 = xk − x̂k|k−1) and x̃k as estimation
error (x̃k|k = xk − x̂k|k). The linearized version of this equation, with Fk from (3-17),
then becomes as follows:
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x̃k|k−1 = Fkx̃k−1 + wk (3-24)

This error equation can be adjusted to (3-25) below, in which the unknown diagonal
matrix βk = diag (β1,k · · · βn,k) captures the first-order linearization errors and the errors
caused by noise:

x̃k|k−1 = βkFkx̃k−1 (3-25)

Following the example of [13], a Lyapunov function is proposed:

Vk(x) = x̃T
k P−1

k x̃k (3-26)

Note that this Lyapunov function must have the properties of Theorem 2 below.

Theorem 2 Let x = 0 be an equilibrium point for the autonomous system xk = f(xk−1)
where f : D → Rn is locally Lipschitz in D ⊂ Rn and 0 ∈ D. Suppose there exists a
continuous function V (x) : D → R, and there exists a λ ∈ (0, 1] such that

Vk(0) = 0
Vk(x) > 0, ∀ x ∈ D − {0}
Vk+1(x) − (1 − λ)Vk(x) ≤ 0 ∈ D

(3-27)

Then V (x) is decreasing, and the equilibrium x = 0 is stable. Moreover, if there exists
a λ ∈ (0, 1) such that

Vk+1(x) − (1 − λ)Vk(x) < 0, ∀ x ∈ D (3-28)

then V (x) is strictly decreasing, and the equilibrium x = 0 is asymptotically stable.
When using the error dynamics of (3-26), we could use Theorem 2 with x̃k|k−1 = 0 as
equilibrium point. The first condition of (3-27) is satisfied for the Lyapunov function of
(3-26). The second condition of (3-27) of Theorem 2 is valid for positive definite P−1

k .
We know that for an arbitrary non-singular, positive definite diagonal matrix K, all its
eigenvalues are positive. The eigenvalues of the inverse K−1 can then be calculated by
λi
(
K−1) = 1

λi(K) , i.e. the inverse of the eigenvalues, which remains positive. Therefore,
P−1

k is positive definite as well. Since we are using a square-root form for Pk, it is always
positive definite and the second condition of (3-27) can be guaranteed. Conditions for
the square-root form are included in the fourth element of this proof.
The last condition of (3-27) can be verified by performing several substitutions and
intermediate steps [77]. The last condition of (3-27) then reduces to:

σ [βk]2 ≤ σ [βk]2
σ [Ck]2 σ

[
Pk|k−1

]
σ [Pzz,k] + (1 − λ)

σ
[
P−1

k−1

]
σ
[
Pk|k−1

]
σ [Fk]2

(3-29)

Master of Science Thesis D.G.A. den Boer



36 Adaptive particle-aided cubature Kalman filter

in which σ and σ are the minimum and maximum singular values, and λ must be
within λ ∈ (0, 1) for asymptotic stability. Condition (3-29) can be guaranteed when an
appropriate (maximum) value for σ

[
Pk|k−1

]
can be realized. Substituting Pk|k−1 from

the equations of the cubature Kalman filtering algorithm, this term becomes as follows:

σ
[
Pk|k−1

]
= σ

[
1
m

m∑
i=1

X∗
i,k|k−1X∗T

i,k|k−1 − x̂k|k−1x̂T
k|k−1 + Q̃k

]
(3-30)

To adhere to (3-29), matrix Q̃k should be chosen such that (3-30) is maximized [77].
Following [13], the process covariance of the measurable states can be defined as in
(3-31). This instrumental matrix Q̃k is based on the innovation ỹk = zk − h

(
x̂k|k−1

)
such that in (3-28), λ < 1 at all times:

Q̃k = ρỹT
k ỹkIn + ηIn (3-31)

with ρ > 0 chosen large enough and η > 0 chosen small enough. This particular choice
for the instrumental Q̃k ensures that in case of large estimation errors, the condition
(3-29) is still valid, since the upper bound of the right side of (3-29) increases because
of the term ỹT

k ỹk. On the other hand, in case of small estimation errors, the term ỹT
k ỹk

converges to zero and the small term η determines the process noise covariance. With
such instrumental Q̃k, (3-29) will not be violated and Lyapunov decrease is proven [13],
regardless of the choice for R̃k.

The third condition of (3-27) is now fulfilled; Vk(x) is a strictly decreasing sequence. This
completes the fifth and last condition for this proof. We will now prove convergence of the
cubature Kalman filter.

Since Pk is a bounded matrix (3-21), and 0 < θminI ≤ P−1
k (3-21), we can perform the steps

below:

0 ≤ θminx̃T
k x̃k ≤ x̃T

k P−1
k x̃k = Vk(x) ≤ (1 − λ)kV0(x)

⇒ 0 ≤ θmin lim
k→∞

(
x̃T

k x̃k

)
≤ lim

k→∞
(Vk(x)) ≤ V0(x) lim

k→∞
(1 − λ)k = 0

(3-32)

This implicates that the error converges to zero:

θmin lim
k→∞

(
x̃T

k x̃k

)
⇒ lim

k→∞
x̃k = lim

k→∞

(
xk − x̂k|k−1

)
= 0 (3-33)

The proof that the cubature Kalman filter is locally asymptotically convergent is now com-
plete. □

3-5-2 Particle filter convergence

Remark 1 requires the particle filter to be convergent. In this subsection, we will show that the
convergence of the particle filter mainly depends on the choice for the proposal distribution.
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For a particle filter to work properly, the support of the proposal distribution must include
the true posterior at all times. We will show how we arrive at this conclusion.

First, let B (Rn) be the space of all Borel measurable test functions fk on the state-space
Rn. A particle filter estimates the true posterior p(xk | zk) by a weighted set of particles{(

wi
k, xi

k

)
: i = 1, . . . , N

}
as follows:

p(xk | zk) =
∫

fk (xk) p (xk | zk) dxk ≈
Np∑
i=1

wi
kfk

(
xi

k

)
(3-34)

Now let us have a look at Theorem 3.

Theorem 3 Let {Ĝi
k|k}Np

i=1 be a set of random approximations of Gk|k, then the mean of
the approximations Ĝk|k converges to Gk|k if, for any Borel bounded measurable function
fk ∈ B (Rn), the mean square error converges to zero for Np → ∞:

lim
Np→∞

E

[(
Ĝk|k − Gk|k

)2
]

= 0 (3-35)

In other words, a particle filter is said to converge if its approximation becomes exact (in
mean square sense) in the limit of an infinite number of particles. We will show that this
result holds for the particle filter in our hybrid architecture. To make Theorem 3 applicable,
let us say Gk|k =

∫
fk (xk) p(xk | zk)dxk and ∥fk∥ = sup |fk(xk)|.

Theorem 4 Consider a Markov state-space model in a stochastic form:

xk ∼ p (xk | xk−1)
zk ∼ p (zk | xk)

(3-36)

[71] If these two densities are bounded and the unnormalized importance weights wi
k are upper

bounded for any (xk−1, zk), then, for all k ≥ 0, there exists ck independent of Np, such that
for any fk ∈ B

(
Rnx×(k+1)

)
:

E

[(
Ĝk|k − Gk|k

)2
]

= E


 1

Np

Np∑
i=1

wi
kfk

(
xi

k

)
−
∫

fk (xk) p(xk | zk)dxk

2
 ≤ ck

∥fk∥2

Np

(3-37)

What this theorem says, is that the particle filter admits a mean square error of order 1/Np.
Thus, the squared error between the estimated state and true state vanishes when Np → ∞.
The expectation at the left-hand side of (3-37) is a representation of the degree of randomness
that the particle filter’s sampling introduces. We now know that if Theorem 4 can be proven,
Theorem 3 is valid and the proof of convergence is complete.

A noteworthy aspect; it seems as if the rate of convergence 1/Np is independent of the
number of states n, which would mean that particle filters beat the curse of dimensionality
[17]. However, Np might depend on ck, which might depend on n. So, for high dimensional
state-spaces, the curse of dimensionality might still occur.
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Now let us look at the conditions for Theorem 4. If p (xk | xk−1) is bounded, p (zk | xk) is
bounded and wi

k is bounded, the particle filter is convergent. Assuming that we are dealing
with a stable system (Assumptions 1, 2 and Remark 1), proving ∥wi

k∥ ≤ Bw, with B as any
positive real number, would complete the proof. Usually, a particle weight has the following
form:

wi
k ∝ wj

k−1 ·
p
(
zk | xi

k

)
p
(
xi

k | xj
k−1

)
q
(
xi

k | xj
k−1, zk

) (3-38)

with i as the current particle index and j as the previous particle index. An upper bound on
this weight can easily be accomplished as follows:

p (zk | xk) p (xk | xk−1) ≤ Bp, Bp > 0
Bq ≤ q (xk | xk−1, zk) , Bq > 0

(3-39)

The first condition indicates that p (zk | xk) and p (xk | xk−1) should have at least some
variance. The only case in which this is not true is when the probability distributions are
a Dirac delta function. The state-space equations would then be deterministic, and one
could easily set the corresponding probability to 1 instead (i.e. omit it from the weight
equation (3-38)) to solve this. That would mean the first condition can be satisfied by
looking at the system properties. The next Subsection will elaborate on the boundedness of
the measurement likelihood. The second condition says there must be a lower bound on the
proposal distribution. Theoretically, any Gaussian proposal distribution would suffice, since
its tails converge to zero, but never reach it. Later on, we will opt for a Gaussian proposal
distribution. Thereby, the conditions of (3-39) are fulfilled, and the particle filter converge
proof is complete. □

Choice for proposal distribution This proof seems to be counterintuitive, since boundedness
is much different from convergence. Imagine a realistic situation in which a lower bounded
proposal distribution and upper bounded observation likelihood do not match well (i.e. no
overlapping tails), and a finite number of particles will be sampled. Then almost all particles
will fall outside the measurement likelihood, resulting in all weights being very close to zero
(Fig. 3-8). The estimate then drifts away and will not converge. However, remember the
definition of convergence of Theorem 3; it holds for Np → ∞. Logically, when an infinite
number of samples is drawn, there will also be samples at the very outer edges of the (Gaus-
sian) proposal distribution that might fall within the support of the measurement likelihood.
Therefore, let it be noted that there is a considerable difference between a particle filter’s con-
vergence as stated in Theorem 3, and convergence in circumstances that are computationally
viable.

Reviewing the problem more intuitively; we do not want all weights to be zero, infinite or
equal to each other, as can be seen in Fig. 3-8. Ideally, the particles have varying weights,
indicating that little information about the true posterior is lost. In other words, the proposal
distribution must be a good approximation of the true posterior. In case of small process noise,
this is the same as that the proposal distribution must be close in support (and preferably
also shape) to the measurement noise distribution.
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Figure 3-8: Four configurations for a proposal distribution and measurement likelihood. Top left:
the proposal distribution has a small support that does not cover the measurement likelihood. Only
two particles get assigned a weight, and it is impossible that this weighted average approaches the
measurement likelihood mean. Top right: the proposal distribution is too narrow. All particles
get assigned a weight of similar order, and the weighted particle mean will not be a good estimate
of the observation mean. Bottom left: the proposal distribution has a wide support, but only
a few particles are weighted. This leads to inaccurate estimation. Bottom right: the proposal
distribution is similar in shape and support as the measurement likelihood. The weighted average
of the particles will be a good approximation of the measurement likelihood mean.

One option is to use the prior p(xk | xk−1) as proposal distribution. This is a Gaussian that
includes the effect of Q̃k. Remember that in our case, this covariance matrix scales with the
innovation. Therefore, it will have a wider support in case a measurement does not fall near
the proposal distribution (lower left graph of Fig. 3-8). There will then still be particles that
get assigned a weight. Later on in Subsection 4-2-2, we will elaborate on the choice for our
proposal distribution.

3-5-3 Stability of the adaptive particle weighting scheme

In this part of the proof, we will show that the observation likelihood p(zk | xk) has an
upper bounded probability density function, and has tails with similar properties to that of
a continuous distribution.

Standard, continuous Gaussian density functions have a value (i.e. probability) for the whole
space of the states x ∈ Rn. The tails of such a probability density function f(x) extend
indefinitely, and in these regions, the probability under the curve gets infinitesimally small:

lim
x→∞

f(x) → 0 (3-40)

In our case, however, a discrete Epanechnikov kernel is fitted to innovation data points. This
density approximation is built up of bins with a certain bin width and a certain probability.
Such a discrete nature would mean that we would have to compute likelihoods for an infinite
number of bins if we want to capture the endless tails of continuous density functions. We
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solve this by extending the outermost bins of our constructed probability density function
f(x) at the 3σ bound:

f(x) =
{

f(µx − 3σx), x ≤ µx − 3σx,

f(µx + 3σx), x ≥ µx + 3σx

(3-41)

For standard Gaussian distributions, 1 in 370 samples (≈ 0.3%) will fall out of this interval
and will be therefore be weighted inaccurately. In case of heavy-tailed distributions, it could
be slightly more. This does not weight up against the computational win that we gain with
these bounds. Filter convergence is still kept, since (i) we prevent the likelihood p(zk | xk) and
therefore the weight of (3-38) from taking value zero, and (ii) we are setting a lower bound for
the innovation variance σ2

ỹ ≥ κ for the rare case that all samples take exactly the same value
(σ2

ỹ = 0). In this highly unlikely case, the likelihood p(zk | xk) has a Dirac delta function
as probability density function, which is not upper bounded. This would be in conflict with
the conditions stated Theorem 3. With these bounds, we prove that our adaptive particle
weighting scheme does not tamper with any stability or convergence properties. □

3-5-4 Stability of the full hybrid architecture

Now we will briefly link the previous elements to obtain a full proof of convergence for our
hybrid filtering architecture.

At first, several assumptions are made on the stability of a given system. Given these assump-
tions, Subsection 3-5-1 has shown that our version of the cubature Kalman filter converges,
if the particle filter estimate converges (Remark 1). Subsection 3-5-2 has indicated that for
Np → ∞, an upper bounded p(zk | xk) and p(xk | xk−1) and a lower bounded q(xk | xk−1), the
particle filter estimate converges. The upperbounds are guaranteed for any stochastic system,
and can be replaced by 1 for deterministic transition- or measurement equations. The lower
bound of the proposal distribution is, theoretically, guaranteed for any Gaussian. Thereby,
all conditions for particle filter convergence are met, indicating that the full architecture is
convergent.

For finite Np, we have seen that numerical issues might arise when an inappropriate proposal
distribution is selected. Therefore, the choice for a proposal distribution is important for
practical convergence. Since our proposal distribution is adaptive through the influence of
adaptive matrix Q̃k, convergence can be realized in practise as well.
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3-6 Results for a benchmark example

With both the adaptive kernel density estimation and switching features implemented, a
simulation with the noise settings of Table 3-4 is performed. To illustrate the effect of the
switching, the development of the parameter µ for the two states of model (3-2) is shown in
Fig. 3-9 below. For this simulation, the safety factor γ of (3-7) is set as γ = 1 · 10−2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time steps 104

0

0.5

1

Figure 3-9: For the simulation settings of Table 3-4: development of the switching parameter µ
for both states of (3-2). Gaussian sectors I and V show small values for µ, while non-Gaussian
sectors II-IV show values close to 1.

As can be seen, the parameter adapts well to the Gaussianity of the measurement noise.
The average values µ̄ for both states are given in Table 3-5 below. Clearly, the sectors with
Gaussian noise (I and V) have lower values for µ, as where the sectors with non-Gaussian
noise have high values for µ.

Sector I II III IV V
µ̄ state 1 0.08 0.63 0.82 0.99 0.10
µ̄ state 2 0.07 0.97 0.98 0.99 0.10

Table 3-5: Mean values µ̄ for each of the five sectors of the simulation.

The development of the estimation error of the first state is given in Fig. 3-10 below. Especially
under the non-Gaussian circumstances of sectors II, III and IV, the proposed filtering method
outperforms the other method in terms of minimal errors. An enlarged version of each of the
sectors is provided in the Appendix B-1. Also, the mean root-mean-square error (RMSE)s of
25 separate Monte Carlo simulations is provided in Appendix B-1.
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Figure 3-10: Development of the estimation errors for state 1 and 2 of a cubature Kalman
filter (CKF), particle filter (PF), innovation-based adaptive estimation unscented Kalman filter
(IBAE-UKF) and the proposed adaptive particle-aided cubature Kalman filter (PACKF).

3-7 Summary

In this chapter, a new hybrid filtering algorithm is proposed. Because of this hybrid architec-
ture, the proposed adaptive particle-aided cubature Kalman filtering algorithm works under
both Gaussian and non-Gaussian measurement noise, given that the process noise is relatively
small. The contributions of this proposition are summarized by the following notes:

• Particle filters perform better in the non-Gaussian domain than nonlinear variants of
the Kalman filter, since they are not bound to Gaussian distributions for representing
stochastic variables.

• A switching architecture allows for usage of the particle filter under non-Gaussian mea-
surement noise, while the cubature Kalman filter is used in case of Gaussian measure-
ment noise. The sampling process of the particle filter then does not harm the estimates
in the Gaussian case.

• Since the process noise w is relatively small, the measurement noise v can be approxi-
mated by the innovation sequence ỹ.
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3-7 Summary 43

• A parameter µ is used as a measure for Gaussianity. It follows from a Kolmogorov-
Smirnov test on the innovation sequence ỹ. It provides a soft switching between a
cubature Kalman filter and an adjusted particle filter.

• An innovation-based, adaptive matrix Q̃k is used for two reasons: i) to guarantee
convergence of the cubature Kalman filter and ii) to adjust the proposal distribu-
tion q(xk | xk−1, zk) such that it support encloses that of the likelihood distribution
p(zk | xk). The latter will become clear in the next chapter.

• The innovation sequence ỹ is used in a kernel density estimation algorithm to accurately
weight particles with any measurement likelihood distribution p(zk | xk) (Gaussian and
non-Gaussian).

• The theoretical convergence of the proposed hybrid filter is proven.
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Chapter 4

Localization simulations for
performance evaluation

The complete adaptive particle-aided cubature Kalman filter is now applied on the com-
plete loosely coupled scheme for integration of global navigation satellite system (GNSS)-
and inertial navigation system (INS) data of Chapter 2. Section 4-1 will outline the data
acquisition process, and Section 4-2 will discuss some case-specific tuning processes. The
closing Section 4-3 provides the results of the simulations and a compact analysis. Logically,
the goal of the GNSS/INS-based localization is to find an accurate location at the hand of
a set of GNSS and INS measurements. As a performance metric in achieving this goal, the
root-mean-square error (RMSE) between the true position and the filter position estimates
is used. The RMSE over N time steps is calculated in the Cartesian, local navigation frame
(n-frame):

RMSEpos = 1
N

N∑
k=1

√(
(xk − x̂k)2 + (yk − ŷk)2

)
(4-1)

4-1 Data acquisition

The ground-truth data is generated with the model (2-2) and process noise w = 0 for all time
steps k. We simulate 4 minutes of driving in east direction, with both the GNSS- and INS
update rate at 10Hz. In each simulation, we generate three different inputs, which each will
be used for a third of the simulation time. In each of the three periods, the acceleration is
set such that the longitudinal speed ranges from 50 km/h to 110 km/h. An arbitrary, mild
steering angle (δ < 0.004 rad) is used to resemble highway driving conditions.

GNSS measurement data is generated with (2-4). For the GNSS noise, the simulation period
is split up into 7 sectors, each with a different type of measurement noise. A description of
these noise types can be found in Table 4-2 below.
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Sector Time period Noise model Mathematical description
Sector I 0s-40s Gaussian vk ∼ N (0, R)
Sector II 40s-80s Gaussian mixture vk ∼ 0.9N(0, R) + 0.1N (0, 300 R)
Sector III 80s-120s Varying variance vk ∼ N (0, αR) , α ∈ [1, 5]
Sector IV 120s-160s Flicker noise S(f) ∝ 1

f

Sector V 160s-170s High variance vk ∼ N (0, 100 R) ,
Sector VI 170s-210s Random walk vk = 0.6 vk−1 + β, β ∼ N (0, R)
Sector VII 210s-240s Gaussian vk ∼ N (0, R)

Table 4-1: Table with settings for the GNSS measurement noise sequence. Note that these
correspond to the phenomena that induce non-Gaussian noise of Section 2-4-2.

The INS noise is modelled by means of a Gaussian distribution. The process- and measure-
ment noise covariance matrices Q and R are diagonal matrices as described in (2-15) and
(2-19) of Chapter 2. The standard errors of the sensors are given in Table 4-2 below.

Standard error type Symbol Value Unit
GNSS position σpos 4 m
GNSS velocity σvel 1 m/s
Accelerometer noise σa 0.03 mg

√
Hz

Accelerometer bias in-run stability σb,a 0.015 mg
Accelerometer bias correlation time constant τ a 200 -
Gyroscope noise σω 0.006 ◦/s

√
Hz

Gyroscope bias in-run stability σb,ω 3 ◦/h
Gyroscope bias correlation time constant τ ω 200 -

Table 4-2: These values are based on the sensor specifications highlighted in [3]. These standard
errors are valid for any direction (x,y,z-axes and everything int between).

Some first simulations indicate that the sensors are modelled properly. For these simulations,
the GNSS measurement data, as well as the INS measurement data, are given in Fig. 4-1
below. As can be seen in the x,y-plane of the graphs, the error between the GNSS and INS
builds up over time.
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Figure 4-1: In the x,y-plane; GNSS and INS location measurements of three randomly generated
paths in east direction.
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46 Localization simulations for performance evaluation

4-2 Implementation of the algorithm

At first, Subsection 4-2-1 will describe an adjustment to the algorithm that makes it more
suitable for periods of GNSS outage. After specifying this adjustment, there are still multiple
settings that can be modified within the particle-aided cubature Kalman filtering algorithm
architecture. The settings of the particle filter are the most important, since there are still
various options for, for example, the number of particles, the proposal distribution and the
resampling strategy. It is difficult to determine proper settings for these entities, compared
to tuning a single parameter. Therefore, the particle filter settings will be determined first
in Subsection 4-2-2. Then, the algorithm’s remaining parameters will be tuned in Subsection
4-2-3.

4-2-1 Adjustment for GNSS outages

In case of GNSS outages, the measurements will have extremely high variance, or there might
even be no signal at all. As a consequence, our instrumental matrix Q̃k, which is based
on the innovation ỹk, will increase considerably as well. Also, the likelihood distribution
p
(
zk | xi

k

)
from the kernel density estimation algorithm (the one that we weight the particles

with) will have a wide support. This will lead to large estimation errors, since there is a low
particle density around the true states. For short periods of GNSS outage, it is therefore
better to completely ignore the measurements, and to fully trust the INS estimates. This can
be established as follows. When the estimated measurement noise standard error exceeds a
threshold (ȳ ≈ σ̂ ≥ κ), GNSS outage is detected, and the measurements are turned ’off’ in
the filter (extremely high variance is set). Moreover, the support of the proposal distribution
will not grow anymore. The mean of the innovation sequence over the window n, denoted by
ȳ, is used to detect GNSS outage. When detected, the matrices will be adjusted as follows:

R̃k =
{

R̃k · 1 · 1010, if ȳ ≥ κ

R̃k, otherwise

Q̃k =
{

κ, if ȳ ≥ κ

Q̃k, otherwise

(4-2)

4-2-2 Particle filter settings

In the convergence proof of Subsection 3-5-2, we underscore the importance of the choice
for the proposal distribution. To guarantee particle filter convergence, the support of the
proposal distribution must include the observation. This can be achieved by making sure
that the proposal distribution is overlapping the observation likelihood as much as possible.
Usually, there are no other uncertainties to base a proposal distribution on than the process
uncertainty, which is proportional to Q. Therefore, a common choice for the proposal distri-
bution is the prior p(xk | xk−1). However, the INS process uncertainties are very small in our
case. Earlier on, Fig. 3-8 has shown the consequences of inappropriate proposal distributions.
When employing the adaptive particle-aided cubature Kalman filtering algorithm for loosely
coupled GNSS/INS integration, we have access to the fairly accurate predictions of the cuba-
ture Kalman filter before drawing particles for our particle filter. It is very likely that these
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predictions fall close to the true posterior. Thus, sampling around the prior seems the obvious
choice. The proposal distribution then takes the following form:

q(xk | xk−1) = N
(
x̂k|k−1, Pk|k−1

)
(4-3)

Regular particle filters resample or re-use particles from the previous time step. This would
be a good approach for systems with large process uncertainty. In our specific case, how-
ever, it makes more sense to sample around the predictions, since these are already very
accurate. Re-using old particles would lead to very high resampling rates, since they quickly
become inaccurate compared to the new predictions. One might then as well just resample all
particles around the predictions at every time step. This is basically a sequential-importance-
resampling (SIR) particle filter with a high threshold NT for the effective sample size N̂eff:

N̂eff = 1∑Np

i=1
(
wi

k

)2 ≤ NT (4-4)

This threshold is then set as NT = Np, indicating we are resampling all particles at every
time step. The influence of the previous particle weights can then be neglected. The particle
weight equation from Table 3-2 then reduces to:

wi
k ∝ wj

k−1 ·
p
(
zk | xi

k

)
p
(
xi

k | xj
k−1

)
q
(
xi

k | xj
k−1, zk

) ⇒ wi
k ∝ p

(
zk | xi

k

)
(4-5)

This particular choice for the proposal distribution and resampling strategy has the following
advantages and disadvantages:

+ The predicted covariance matrix Pk|k−1 partially depends on the instrumental matrix
Q̃k, which depends on the innovation ỹk (see Table 3-1). This indicates that our pro-
posal distribution adapts to changes in estimation uncertainty. The lower-right proposal
distribution of Fig. 3-8 could then be realized at all times.

+ Instead of propagating Np particles, resulting in Np function evaluations, there is no
function evaluation needed at all. The prediction step of the cubature Kalman filter
has already propagated 2n cubature points to produce a prediction. As a consequence,
the particle filter becomes extremely fast, since no function evaluation is needed. Only
the particles have to be weighted.

- In our particle weighting step, the influence of the previous particle weights are ne-
glected. Besides, including the innovation ỹk in Q̃k indicates that we are sensitive
to outlier measurements. This might lead to a somewhat noisy particle filter output,
since the state estimates can abruptly change. To filter the most aggressive changes, a
Savitzky-Golay filter [59] is applied to the last n = 5 outputs of the particle filter. This
is a highly effective step that fits a curve to the last 5 measurements. From the per-
spective of the cubature Kalman filter, we pre-process incoming observations with this
filtering step. Pre-processing observation data is not uncommon in localization [41, 50].
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Figure 4-2: Enlarged for sectors I-VI; the 3σ bound of the proposal distribution, the 3σ bound
for the observation likelihood (note that this is not necessarily a Gaussian, but the bound gives
an indication), a smooth version of the GNSS measurements and the actual ground-truth for the
x-position. As can be seen, the support of the proposal distribution varies with time, and manages
to follow the support of the measurement likelihood. Only in sector V, i.e. the sector with GNSS
outage, the proposal distribution support does increase, but still manages to evolve around the
true state. Therefore, the state estimates will still be fairly accurate during GNSS outages.

From the perspective of convergence, this proposal distribution seems to be a good choice.
Simulations with other proposal distributions lead, in some cases, to instability, while the
proposed choice does not. Fig. 4-2 shows that the distribution leads to the desired result.

After a trade-off between speed and accuracy, we decide to use Np = 50. It appears that
larger numbers of particles do not necessarily results in much better performance.
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Figure 4-3: For the particle filter and particle-aided cubature Kalman filter: RMSE for a simula-
tion with Gaussian measurement noise for different numbers of particles. Increasing the number
of particles after Np = 100 leads to no significant improvement.
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4-2-3 Tuning the algorithm

The cubature Kalman algorithm itself does not require much tuning. The additional features
that were implemented along the way, do require some tuning. The choices for these tuning
parameters are disclosed in Table 4-3 below.

Parameter Value Formula
Window size n n = 100 (3-4, 3-6, 3-7, 3-13, 3-14)
Gaussianity test confidence α = 0.1 (3-6)
Safety factor for µ γ = 0.1 (3-7)
Scaling factors for Q̃ ρ = 0.01, η = 0.005 (3-10)
Bandwidth parameter θ = 3.5 (3-14)
Density number of bins Nb = 100 -
GNSS outage detection κpos = 50, κvel = 5 (4-2)

Table 4-3: Tuning parameters of the proposed algorithm. The values above are found through
empirical methods, based on the RMSE outcome.

For the sake of code compactness and efficiency, the window size n is used for both the
Kolmogorov-Smirnov test and the kernel density estimation. Longer windows result in a
reduced flexibility (i.e. a slower response to changes in noise) and shorter windows lead to
inaccurate density estimation. The Gaussianity test confidence factor α must be set with
0.05 ≤ α ≤ 0.2. After trying different values, we use α = 0.1. The safety factor γ sets an
upper bound on µ (µ ≤ 0.9), which smoothens the filter’s output and guarantees that the
term (1 − µk)R remains large enough for numerical stability.

After trying different values for ρ and η, the values of Table 4-3 appeared to work best. The
lower bound η has shown to guarantee convergence, while this choice for ρ results in proper
adaptation to the uncertainty in the system. Besides, this choice results in a suitable proposal
distribution, since the distribution indirectly dependents on Q̃k. The choice for the kernel
bandwidth parameter θ results in smooth, accurate distribution estimates for each of the
specified noise types of Table 4-2. The number of bins for the kernel density approximation is
traded-off between accuracy and speed. After tuning, the bounds for GNSS outage detection
are set to κpos = 50 and κvel = 5.

4-3 Results and analysis

The filters that will be used for evaluation are: a standard cubature Kalman filter (CKF),
a particle filter (PF), a cubature Kalman filter-aided particle filter / cubature particle filter
(CKFAPF), an innovation-based adaptive estimation unscented Kalman filter (IBAE-UKF)
and the proposed adaptive particle-aided cubature Kalman filter (PACKF). The particle filter
has the exact same settings as the one in the proposed method; the proposal distribution of
(4-3), full resampling at every time step, the same number of particles and an additional
Savitzky-Golay filter. The cubature particle filter has a proposal distribution that is provided
by a cubature Kalman filter. Thus, in this case, the proposal distribution also includes
information on the latest observation.
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4-3-1 Localization errors

For sectors I-VI, the localization errors of the x-position and y-position of the local n-frame
are presented in Fig. 4-4.
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Figure 4-4: The x-position estimation errors for several filtering methods. Though the algorithms
perform similarly in earlier sectors, there is a clear difference in performance in the later sectors.
The sector with GNSS outage seems, however, still problematic for the proposed filtering method.
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The particle filter estimate and, to a lesser extent, the particle-aided cubature Kalman filter
estimate, stand out by their noisy character. It is suspected that this is a result of our
choice for the proposal distribution and resampling strategy. After all, we do not re-use
any knowledge from the last time step. So the final estimate is sensitive to the current
measurements. We see, however, that lower thresholds NT lead to higher inaccuracy, since
particle degeneracy happens rather quickly. The mean of the estimation errors of the proposed
method appears to be the smallest with these settings. In Appendix B-2, an enlarged version
of each sector of Fig. 4-4 is provided.
A total of 25 separate Monte Carlo runs are performed. For each sector, the average RMSE
of these 25 runs is included in Table B-1 below. The runs have been performed with different
initial conditions and varying tracks in east direction. A visual representation of Table B-1
is provided by Fig. 4-5.

Sector I II III IV V VI VII Mean
CKF 0.77 3.54 5.31 8.37 7.57 11.40 10.06 6.42
PF 1.54 3.74 2.39 4.89 9.00 2.90 1.76 3.20
CKFAPF 0.68 2.88 3.99 8.24 7.76 9.28 8.25 5.49
IBAE-UKF 0.78 2.14 4.53 21.44 31.72 18.28 15.19 10.93
PACKF 0.61 2.44 1.43 3.93 7.34 1.97 1.21 2.26

Table 4-4: Average RMSE values of the GNSS/INS integration process for 25 Monte Carlo runs.
The proposed algorithm is the overall best performer. The lowest average RMSE values are, for
each sector, highlighted in green.
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Figure 4-5: The average RMSE of 25 Monte Carlo runs at the end of each sector. The proposed
filter has the lowest errors in all but one sector.

Fig. 4-5 shows that the GNSS outages, indicated by the RMSE peak at the 1700th time step,
are still problematic for the proposed hybrid filtering method. In the recommendations of
Section 5-2, we will elaborate on potential solutions for this.
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Furthermore, Fig. 4-5 shows that the standard particle filter performs adequate in the non-
Gaussian domain. Under Gaussian measurement noise, however, it performs much worse
than the other algorithms. Since it is expected that the majority of the measurement noise
will be (close to) Gaussian, particle filters would not be that competitive under normal cir-
cumstances. Moreover, the innovation-based adaptive estimation unscented Kalman filter
experiences problems with most non-Gaussian noise types. It adjusts its setting for R to
reduce the estimation errors, but the innovation does not become much smaller after a while,
due to the non-Gaussian nature that can not be captured. It seems as if the standard algo-
rithm suffers from this feature, rather than that it is helping.

4-3-2 Validating the key assumption

Remember that it is assumed that the innovation sequences provide a good approximation of
the measurement noise. To validate this, both the measurement noise v and the innovation
sequence ỹ for the x-position are given in Fig. 4-6. This figure validates our assumption that
the innovation forms an adequate approximation of the measurement noise.
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Figure 4-6: Left: comparison of GNSS measurement noise v and innovation ỹ for the x-position.
Right: a zoomed version of the left graph. Clearly, the innovation forms a good approximation of
the measurement noise.

4-3-3 Evaluation of computation time

Logically, the hybrid architecture with all its additional features will not be as fast as the
raw, standard filtering algorithms. Therefore, it is interesting to know whether the proposed
method could even function in a real-time scenario, or if it increases the computation time
by, for example, a factor 1000. If the latter is the case, the proposed method would be much
less relevant, or even worthless.

Since a wide variety of different software, hardware and coding configurations can be used, a
proper comparison of optimal computation times is difficult to establish. To be able to give an
indication of computation times, all filtering algorithms have been programmed similarly. In
other words, similar techniques are used and many lines of code are re-used. The computation
times for each of the elements of the code structure are included in the left bar chart of
Fig. 4-7. The right bar chart of Fig. 4-7 shows the total computation times of some of the
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aforementioned standard algorithms. Note that this gives us a rough idea of the computational
burden of the proposed method with respect to other methods, rather than a scientifically
justified ranking.

0.732
0.676 0.654

0.392

0.266 0.247

0.057 0.052

Standard PF

CKF pred.

KS-te
st

Our P
F

CKF upd.
KDE

Resampling

Adaptive Q-m
atrix

0

0.2

0.4

0.6

0.8

T
im

e 
[m

s]

2.287

1.465

0.923

PACKF Standard PF CKF
0

0.5

1

1.5

2

2.5

T
im

e 
[m

s]
Figure 4-7: Left: computation times of different processes of the filtering algorithms. Right:
total computation time of a cubature Kalman filter (CKF), particle filter (PF) and particle-aided
cubature Kalman filter (PACKF) for a single time step. Note that the cubature Kalman prediction
and update are also part of the particle-aided cubature Kalman filter process.

When compromising between computation complexity and estimation accuracy, the kernel
density estimation algorithm might be one of the most promising novelties. This lightweight
method produces the observation likelihood as a discrete 4-dimensional space (x,y-position
and longitudinal- and lateral velocity), instead of building a complete 4-dimensional probabil-
ity distribution. Weighting particles then becomes easy; one has to find the probability of the
bins with the shortest distance to the particle for each of the measurable states. The prod-
uct of these probabilities then forms the particle weight. This is much faster than weighting
particles with continuous distribution, which is the general standard. For the wins in terms
of accuracy that we gain with this method, the computational efforts are minimal.

4-4 Summary

In this chapter, the implementation process of the proposed particle-aided cubature Kalman
filter is specified. This is required to let the algorithm perform optimal for our use-case:
loosely coupled GNSS/INS integration. An additional feature for periods of GNSS outage is
implemented, as well as a somewhat unusual resampling strategy; all particles are resampled
at every time step. Because of this step, the algorithm becomes highly efficient in computa-
tional sense. When reviewing the localization errors, however, the proposed method shows
a somewhat noisy filter estimate. The algorithm also shows to be sensitive to periods of
GNSS outage. Nevertheless, the proposed method shows to beat other competitive filtering
methods when considering overall performance in terms of RMSE. The algorithm is a factor
2.5 slower than the fastest standard algorithm (the cubature Kalman filter). It is expected
that real-time implementation is therefore possible.
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Chapter 5

Conclusion and recommendation

5-1 Concluding remarks

Accurate vehicle localization is considered to be a key element of future automated driving
systems. A network of multiple sensors is employed to deliver information for this localization
process. Integration of a global navigation satellite system (GNSS) and inertial navigation
system (INS) is a common example of a fusion algorithm for positioning. Especially the loosely
coupled integration architecture provides an elegant, intuitive solution to the GNSS/INS
fusion problem. This architecture makes use of nonlinear variants of the Kalman filter family,
such as the extended Kalman filter, unscented Kalman filter or cubature Kalman filter.

One of the problems of this approach, is that the process- and measurement noise covariance
matrices are often not available. The GNSS measurement noise uncertainties, in particular,
are highly dynamic and, depending on the specific environment, might follow a non-Gaussian
distribution. We have seen that the problem of time-varying measurement noise character-
istics can be solved through various estimation methods. The occurrence of non-Gaussian
GNSS noise, however, still seems to be unsolved. At the hand of an example, it is demon-
strated that particle filters are superior in a non-Gaussian environment. This forms the basis
for a proposition for a novel hybrid filtering architecture.

The proposed adaptive particle-aided cubature Kalman filter exploits 2 features that are
possible because of the hybrid structure: i) the particle filter uses an accurate proposal
distribution that is provided by the cubature Kalman filter, and ii) a soft switching between
the particle filter estimates and cubature Kalman filter estimates is realized. Other hybrid
filtering architectures use only one of these features.

The switching algorithm compromises between the filter outputs by analyzing a measure for
the Gaussianity of the GNSS noise. Because of its simplicity and effectiveness, a Kolmogorov-
Smirnov algorithm is used to determine this measure. Besides, a lightweight kernel density
estimation algorithm is used to approximate the current non-Gaussian distributions of the
GNSS noise at any given time. These algorithms depend on knowledge of the measurement
noise statistics, which is available through the assumption that the innovation sequence is a

D.G.A. den Boer Master of Science Thesis



5-2 Recommendations 55

good approximation of the GNSS measurement noise. Individually, both the hybrid switching
architecture and the kernel density estimation show positive results with respect to other com-
mon filtering methods. Moreover, proof is provided that these adjustments to the standard
algorithm do not tamper with the filtering convergence.

After generating ground-truth data and injecting common non-Gaussian noise sequences in
the measurement data, the proposed particle-aided cubature Kalman filter is implemented in
the loosely coupled GNSS/INS-integration process. An extensive tuning process is performed,
with the specific choice for the proposal distribution as the biggest challenge. The results
in terms of localization errors are reviewed, and the proposed method shows to be very
competitive to other methods. The key assumption on the measurement noise approximation
seems to be valid. It is suspected that our choice for the proposal distribution and resampling
strategy induces a somewhat noisy filter output. The average root-mean-square error (RMSE)
results of 25 separate Monte Carlo runs, however, indicate that the proposed adaptive particle-
aided cubature Kalman filter is the overall best performer. Also in terms of computation times,
the proposed method shows to be competitive.

5-2 Recommendations

There are several topics that lend itself for further research. Some smaller subjects could be
investigated first. A deeper, more elaborate analysis of the effects of different choices for the
proposal distribution and resampling strategy could be established. Perhaps, the noisy filter
output could then be smoothened. Also, with some extra tuning efforts, there might be some
small wins that can be achieved.

One could also improve the algorithm and its validation with some more high-level adjust-
ments. A more sophisticated GNSS/INS integration strategy could be implemented, such as
the ultra-tightly coupled integration architecture. Such an extension, however, makes more
sense when applied to realistic data. Thus, real GNSS and INS datasets can be exploited to
perform a more accurate validation step. Taking it one step further, the algorithm could be
tested on an actual test setup. Then, besides an even better validation process, one could
also investigate whether the algorithm is suitable for real-time applications.

In our opinion, there are two topics for further research that have more potential. At first,
recent works in literature focus on accurate localization during periods of GNSS outage, which
could occur in, for example, tunnel environments. Subsection 5-2-1 will concentrate on this
topic. As a second, one could explore the applicability of the proposed filter in other domains.
The filtering method could theoretically be applied on any system. It would, however, only
function adequate in cases when i) the process noise is much smaller than the measurement
noise, and ii) there is some form of bias that make the predictions of the process model
inaccurate over longer periods. These are rather restrictive circumstances. Subsection 5-2-2
will elaborate on this.

5-2-1 Mitigating effects of GNSS outages

The learning approaches as highlighted in 2-4-3 show promising results. Since the proposed
algorithm experiences relatively large estimation errors in periods of GNSS outage, such an

Master of Science Thesis D.G.A. den Boer



56 Conclusion and recommendation

addition to the algorithm could make it more robust. In the method of [79], for example,
a random forest algorithm is trained to convert specific force data from an INS to accurate
positioning data. Then, when the GNSS outage occurs, the INS position- and velocity errors
are predicted by the random forest-based dual model. This method does not seem to be too
difficult to implement, and might improve the robustness of our algorithm.

5-2-2 Application in other domains

Localization and target-tracking are the most straight-forward applications for the proposed
filter. In practice, it is difficult to find some clear examples of systems that experience a
relatively small amount of process noise compared to the measurement noise. However, in
theory, every system could be modelled extensively to make a process model accurate. There
are endless applications possible, and we will provide a few.

In [72], an example of a double tank process is provided. The system consists of two tanks,
a large reservoir and a pump. The level in the tanks has to be estimated. The Bernoulli
energy equations form the process model, and noisy tank level measurements can be obtained.
Imagine the two tank system would operate for a few days. It would then be very unlikely
that the Bernoulli energy equations, which are logically simplified with respect to the real
world process, provide an accurate tank level estimate after a few days. The noisy tank level
measurements would, after a few days, be a better estimate. Thinking of the nature of this
elementary example triggers some ideas for applications in other domains.

One could, for instance, think of application in monitoring bioprocesses. In such processes,
concentrations of several liquids often should be monitored. Some advanced process model
equations can be used to predict these concentrations, but fermentation processes are rather
unpredictable in the long term. One could take samples and measure the concentration within
this sample, but this is known to be a rather inaccurate method. An example for a penicillin
production fed-batch process is given in [67].

In power systems, one could think of voltage- or current estimation in electrical circuits,
or state-of-charge estimation of batteries. In such circuits, process- and measurement noise
are often assumed to have similar proportions [68]. However, when modelled accurately,
measurement noise could be dominant, such as in the example of [78].

When proper knowledge of measurement noise statistics is available, the proposed method can
be applied to practically any domain in which Kalman-based filtering methods fit in nicely.
This implicates, for example, orbit determination, macroeconomics, sensorless AC motor
control, speech enhancement, weather forecasting, structural health monitoring, tracking of
objects in computer vision and so on.
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Appendix A

Full discrete state-space model

The discrete state-space model for loosely coupled GNSS/INS integration is given below:

xk =


I3 + F11∆t F12∆t 03 03 03
F21∆t I3 + F22∆t F23∆t Cn

b,k∆t 03
F31∆t F32∆t I3 + F33∆t 03 Cn

b,k∆t

03 03 03 I3 − 1
τ a

∆t 03
03 03 03 03 I3 − 1

τ ω
∆t


k−1

xk−1

+ wk, wk ∼ N(0, Q), Q =


03 03 03 03 03
03 Cn

b,k 03 03 03
03 03 Cn

b,k 03 03
03 03 03 I3 03
03 03 03 03 I3




0
σ2

a
σ2

ω

σ2
b,a

σ2
b,ω



(A-1)

All symbols have been described in Subsection 2-3-1 of Chapter 2, except for the matrices
Fij . These matrices are given below.

F11 =

 0 VE tan ϕ
Rm+h

−VE
Rn+h

0 0 −Vn
Rm+h

0 0 0

 (A-2)

F12 =

 1 0 0
0 1 0
0 0 1

 (A-3)

F21 =


0 2ωe(VU sin ϕ+VN cos ϕ)

Rm+h + VEVN
(Rm+h)(Rn+h) cos2 ϕ

VE(VU−VN tan ϕ)
(Rn+h)2

0 −2ωeVE cos ϕ
Rm+h − V 2

E
(Rm+h)(Rn+h) cos2 ϕ

−2ωeVE cos ϕ
Rm+h − V 2

E
(Rm+h)(Rn+h) cos2 ϕ

0 −2ωeVE sin ϕ
Rm+h

−V 2
N

(Rm+h)2 − V 2
E

(Rn+h)2 + 2 g
Re+h


(A-4)
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F22 =


VN tan ϕ
Rm+h − VU

Rn+h 2ωe sin ϕ + Ve tan ϕ
Rn+h −2ωe cos ϕ − Ve

Rn+h

−2ωe sin ϕ − 2Ve tan ϕ
Rn+h

−VU
Rm+h

−VN
Rm+h

2ωe cos ϕ + 2Ve
Rn+h

VN
Rm+h 0

 (A-5)

F23 =

 0 fU −fN
−fU 0 fE
fN −fE 0

 (A-6)

F31 =


0 0 −VN

(Rm+h)2

0 ωe sin ϕ
Rm+h

VE
(Rn+h)2

0 −ωe cos ϕ
Rm+h − VE

(Rm+h)(Rn+h) cos2 ϕ
VE tan ϕ

(Rn+h)2

 (A-7)

F32 =

 0 1
(Rm+h) 0

−1
Rn+h 0 0

− tan ϕ
Rm+h 0 0

 (A-8)

F33 =

 0 ωe sin ϕ + VE tan ϕ
Rn+h −ωe cos ϕ − VE

Rn+h
−ωe sin ϕ − VE tan ϕ

Rn+h 0 −Vn
Rm+h

ωe cos ϕ + VE
Rn+h

Vn
Rm+h 0

 (A-9)
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Appendix B

Enlarged error plots

B-1 Multivariate nonlinear model

The model of (3-2) is simulated with similar settings as were used for Fig. 3-10. The estima-
tion errors for the first state are included in Fig. B-1 (top left), as well as an enlarged area
for each of the sectors (I-V) of Table 3-4.

Figure B-1

For each of the sectors, the average RMSE of 25 separate Monte Carlo runs is included in
Table B-1 below.

Master of Science Thesis D.G.A. den Boer



60 Enlarged error plots

Sector I II III IV V Mean
CKF 0.0202 0.0624 1.4907 1.3894 0.3829 0.9277
PF 0.0264 0.0200 0.1220 0.1419 0.0251 0.0852
IBAE-UKF 0.0204 0.0269 0.1364 0.0321 0.1732 0.1007
PACKF 0.0195 0.0159 0.0179 0.0233 0.0121 0.0181

Table B-1: Average RMSE for each of the 5 sectors. Clearly, the proposed method performs
best in each of the sectors.

B-2 Full loosely-coupled GNSS/INS-integration

This section contains enlarged versions of the plots of Fig. 4-4 for each sector.
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Appendix C

Link to code samples

All MALTAB R2021a files of the simulations can be found on a GitHub page. The link for
this page is:

https://github.com/dirkdenboer97/Thesis-files-dirk
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Adaptive Particle-Aided Cubature Kalman Filter for
GNSS/INS-based Vehicle Localization

Dirk den Boer

Abstract - Accurate vehicle localization is considered to
be a key element of future automated driving systems.
A network of multiple sensors is employed to deliver
information for this localization process. Loosely coupled
integration of global navigation satellite systems (GNSS)
and inertial navigation systems (INS) data is a text-book
example of a fusion algorithm for positioning. One of the
problems of this approach, is that exact knowledge of
the process- and measurement noise covariance matrices
is often not available. The GNSS measurement noise
uncertainties, in particular, are highly dynamic and,
depending on the specific environment, might follow a
non-Gaussian distribution. Since particle filters are known
to be superior in non-Gaussian environments, a hybrid
filtering variant is proposed: adaptive particle-aided
cubature Kalman filtering. This algorithm compromises
between a particle filter with kernel density estimation
algorithm in periods of non-Gaussian GNSS noise, and
a standard cubature Kalman filter in case of Gaussian
GNSS noise. The results of GNSS/INS-based localization
simulations indicate that the proposed adaptive particle-
aided cubature Kalman filter outperforms traditional
filtering methods in terms of minimal localization errors.

Index terms - GNSS/INS-based vehicle localization, par-
ticle filter (PF), cubature Kalman filter (CKF), hybrid
archtitecture, kernel density estimation, switching strategy

I. INTRODUCTION

One element keeps coming back when advancing vehicle
technology; the need for accurate vehicle localization [1]. For
higher levels of autonomy, a vehicle must be able to know its
location up to decimeter level [2]. Almost all driver assistance
systems depend on this localization.

Ideally, all incoming information for automated vehicles is
reliable and robust. In reality, complex and degraded working
conditions could drastically degrade the reliability and robust-
ness of sensor information. Though some types of information
sources most definitely outperform others, there is a broad
consent on the fact that any stand-alone hardware system is not
fit for vehicle localization on its own [3]. Current localization
techniques therefore exploit multiple sensors that complement
each other [4]. Integration of GNSS and INS measurements is
an example of such information fusion. These two sensors
are almost exclusively present in any vehicle localization
architecture.

Dirk den Boer is a master student Systems & Control at TU Delft, The
Netherlands. E-mail addresses: dgadenboer@gmail.com.

A global navigation satellite system (GNSS) provides
geospatial positioning on a global scale. The great advantage
of GNSS is its global coverage. Unfortunately, GNSS signals
might be lost in areas where the direct line to satellites is
obstructed; think of tunnels, valleys, forests and urban areas.
Besides, for localization purposes, low-end models are often
employed, which have an accuracy of approximately 5m for
the cheapest models [5], or 2.5m for slightly better models
[6]. This accuracy does not meet the requirements for higher
levels of autonomy in vehicles.

An inertial navigation system (INS) can determine the
position of a vehicle at the hand of a set of motion sensors,
rotation sensors, wheel encoders and a computer. The data
comes from an inertial measurement unit (IMU), which often
consists of an accelerometer, gyroscope and possibly a magne-
tometer. Since the motion sensors capture the relative motion
with respect to the previous measurement, a so-called dead-
reckoning method is used for determining a location. Dead-
reckoning uses speed and heading estimates as well as time
measurements to determine a current position.

Data from GNSS and INS is considered to be a golden com-
bination for sensor fusion, since the properties of these data
sources are opposing in some sense. INS location estimates
encounter problems of accumulating errors over longer dis-
tances, thereby failing in long term navigation operations [7].
The integration of GNSS can correct this error accumulation in
intervals, thereby limiting the localization errors. Besides, the
smooth INS location estimates are used instead of the noisy
GNSS signal. It results in both smooth and accurate location
estimates.

Recursive Bayesian filtering algorithms form a common
method for fusion of GNSS and INS data. The celebrated
Kalman filter [8] is often employed. A Kalman filter, as well
as its nonlinear variants such as the extended Kalman filter
[9], the unscented Kalman filter ([10], [11]) and the cubature
Kalman filter [12], require the process- and measurement noise
covariance matrix (Q and R, respectively) to be known. The
ratio between these two matrices determines the proportions
in which the predictions and measurements contribute to the
final state estimate. The traditional Kalman filter assumes a
priori defined, constant values for these matrices. In reality,
however, these matrices might be time-varying due to changing
conditions [13]. Therefore, one often attempts to accurately
adjust the process- and measurement noise covariance matrices
to changing conditions.

Unfortunately, filters of the Kalman family are still bound
to a Gaussian process- and measurement noise representation.
This might harm the localization accuracy in cases of, for
example, non-Gaussian measurement noise. In other user-
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domains, such problems are solved by exploiting a hybrid fil-
tering architecture that incorporates a particle filter. This article
features a proposition for such a hybrid filtering architecture
for GNSS/INS-based vehicle localization: adaptive particle-
aided cubature Kalman filtering (PACKF). The contributions
of this work can be summarized as follows:

1) A hybrid filtering architecture allows for soft switching
between a particle filters output and a cubature Kalman
filters output. This switching strategy is based on a mea-
sure for the Gaussianity of the measurement noise. The
measurement noise is approximated by the innovation
sequence of the cubature Kalman filter predictions. A
Kolmogorov-Smirnov test is performed on the innova-
tion sequence to determine this measure for Gaussianity.

2) An innovation-based, adaptive process noise covariance
matrix is used to adjust the proposal distribution such
that it support encloses that of the measurement likeli-
hood distribution at any specific moment. This is impor-
tant for guaranteeing the particle filter’s convergence.

3) The innovation sequence is used in a kernel density
estimation algorithm to accurately weight particles with
any measurement likelihood distribution (Gaussian or
non-Gaussian).

The remainder of this article is structured as follows;
Section II discusses some recent works on process- and
measurement noise covariance estimation and hybrid filtering
architectures. An introduction to stochastic filtering problems
is given in Section III, along with a demonstration of the supe-
riority of particle filters in the non-Gaussian domain. The core
elements of the proposed algorithm are explained in Section
IV, after which Section V contains an experimental evaluation
of the algorithm on both a simple benchmark example as
a full loosely coupled GNSS/INS-integration strategy. The
concluding remarks are given in Section VI.

II. RELATED WORK

A great literature has been devoted to noise covariance
estimation in GNSS/INS-based vehicle localization. Some
recent works on this topic are discussed in Subsection II-A.
Common hybrid filtering architectures that use both a particle
filter and a Kalman-type filter, are discussed in Subsection
II-B.

A. Noise covariance

The work [14] comprises several adaptive Kalman filter-
based methods for GNSS/INS integration, and an evaluation
of their performance. A compact, very clear introduction is
given for three types of covariance estimation: i) innovation-
based adaptive estimation (estimating R), ii) residual-based
adaptive estimation (estimating R) and iii) strong tracking
filtering (estimating Q). Some more advanced examples are
provided in [15] (innovation-based adaptive estimation) and
[16], [17] (strong tracking filtering).

In [18], the authors propose an interacting multiple model
(IMM) two stage Kalman filter. A ’bias-free’ filter operates
without INS biases. Its output is then corrected by that of
a second Kalman filter. Within this second filter, the outputs

of three filters, each with different process noise covariance
matrix Q, are mixed. Likewise, [19] contains a measurement
modelling method that exploits an extended state observer.
The total, unpredictable uncertainty in the system is ob-
tained by taking the difference between the measurements
and extended state observer predictions. Assuming uncertainty
mainly comes from measurement noise, a matrix R is updated
based on this difference.

In an approach that bears some resemblance to interacting
multiple model filtering, the authors propose a federated
Kalman filter with strong tracking properties in [20]. A least-
squares principle determines the mixing proportions of the
outcomes of the filters. More recently, attempts have been
made to estimate the process noise covariance Q based on
the maximum likelihood (ML) principle [21], [22].

A somewhat different approach uses a multitask learning
model to find matrices Q and R [23]. With the estimated
orientation, velocity and INS measurements as input, the
learning model is trained when proper location data (e.g. from
GNSS-RTK) is available.

To the best of our knowledge, filtering non-Gaussian GNSS
noise distributions has not yet been investigated intensively.
In addition, employing a kernel density estimation algorithm
to form the measurement likelihood distribution for a particle
filter has not been attempted in any domain.

B. Hybrid architectures

Several hybrid filtering architectures have been developed
that employ both a particle filter and a nonlinear variant
of the Kalman filter. In the most straight forward one, two
filters work in parallel, and a switching mechanism based
on an arbitrary criterion determines which output is used.
A distinction is made between a hard switch (either use the
particle filter output or the Kalman-type filter output) and a soft
switch (a compromise/weighted average of both). An example
of such a hard switching algorithm can be found in [24], in
which it is applied to object tracking.

Perhaps the most common hybrid filtering method is the un-
scented particle filter [25]. Since it is generally rather difficult
to find a good proposal distribution for the particle filter with
limited knowledge, an unscented Kalman filter can be used to
provide this distribution. Although this method could solve the
problem of non-Gaussian measurement noise, the drawbacks
of this method are as follows: i) the proposal distribution is
then exclusively Gaussian, ii) when accurate predictions are
available, one does not want to include inaccurate observations
in the proposal distribution, and iii) the particle filters sampling
procedure might decrease the accuracy with respect to the
unscented Kalman estimate in pure Gaussian environments.

In a recent series of journal papers, the authors propose a
particle-aided unscented Kalman filter for vehicle localization
[26], [27], [28]. The particle filter is now connected to the
observation channel of the unscented Kalman filter, without
any switching mechanism. It has the advantage that the particle
filter can work with a reduced version of the state-space
model (one that only calculates the measurable states). There
is, however, one significant downside of this method; there
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are now limited tools for constructing a proper proposal
distribution and observation likelihood. The last work of the
series of papers [26] solves this issue by employing a dis-
criminative parameter training algorithm that learns an optimal
measurement likelihood distribution. This looks, however, like
a brute force approach that only adds unnecessary complexity
to a problem that can be avoided in a simpler way. The method
proposed in this work overcomes these issues of the current
hybrid architectures.

III. BAYESIAN FILTERING IN THE NON-LINEAR
NON-GAUSSIAN DOMAIN

In stochastic filtering problems, one aims to find the states
of a given system at the hand of a set of noisy observations
and model predictions. The stochastic nature of such problems
comes from stochastic noise sequences wk and vk. Consider
the following discrete state-space model with additive process-
and measurement noise sequences wk and vk, respectively:

xk+1 = f (xk,uk) + wk

zk = h (xk) + vk
(1)

In this equation, subscript k is a time indicator, x denotes
the state vector, u is the input vector, z is the observation
vector and wk and vk are noise sequences with unknown
statistics. The first equation of (1) indicates the state transition
by function f . The probability that a current state takes the
value xk, given the previous state xk−1 and input uk, is
denoted as p (xk | xk−1,uk). The second equation of (1) is
the measurement function h, which describes the probability
p (zk | xk) that a measurement takes value zk given state xk.

The objective of filtering is to find the optimal state, i.e. the
best estimate, of x at time k. This comes down to, given initial
probability density p (x0), measurement likelihood p (zk | xk)
and prior state transition probability density p (xk | xk−1,uk),
finding the posterior density p (xk | zk). From this posterior
distribution, a state estimate x̂k|k and, when necessary, a
corresponding estimate for the covariance matrix P̂k|k can be
obtained.

A. Traditional methods
Two methods are very common in stochastic filtering prob-

lems: Kalman filtering [8] and particle filtering [29]. The well-
known Kalman filter is the optimal estimator in the linear-
Gaussian domain. These circumstances are, however, very
restrictive when considering that many realistic systems are
nonlinear, with possibly non-Gaussian noise sources.

The main advantages of particle filters over Kalman-type
filters are the fact that they i) are suitable for complex,
highly nonlinear systems, and ii) that they can cope with
non-Gaussian distributions. The latter will be highlighted in
the next subsection. A major drawback of particle filters their
computational complexity, a factor that often depends on the
number of particles that is employed. The accuracy of the state
estimate depends on the chosen number of particles, as well
as other settable parameters such as the proposal distribution
and resampling strategy. In general, nonlinear Kalman filtering
methods require less computational time and tuning efforts
than particle filtering methods.

B. Superiority of the particle filter in the non-Gaussian do-
main

The nonlinear function of (2) is used to evaluate the non-
linear transformations of various filtering methods. This is an
adjusted version of the well-known benchmark growth model
that was introduced in the original paper on particle filtering
[29]. For the sake of simplicity, the time-varying component
is omitted.

y = f(x) =
x

2
+ 25

x

1 + x2
(2)

A stochastic variable x has mean x̄ and perturbation error e
such that x = x̄+e. The goal of nonlinear transformations is to
estimate the statistics of the stochastic output variable y. With
statistics, we indicate the first p-order central moments of this
output variable y. For now, we are particularly interested in
the first 2 central moments, i.e. the mean and the covariance.
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Fig. 1. Top left: for a Gaussian distributed x; true distribution of y = f(x)
(2) and the estimated distributions of an unscented transform (UKF, indigo),
cubature transform (CKF, orange) and Monte Carlo approximation with 100
samples (PF, yellow). Bottom left: similar, but for a stochastic x that follows a
Poisson distribution. Top right: enlarged on the true mean and approximated
means. Bottom right: similar, but for non-Gaussian x. Clearly, the Monte
Carlo approach performs best in terms of approximating the true mean.

The true distribution of y can be approximated by Monte
Carlo simulations; the resulting distribution of variable y after
propagating x 1 · 105 times through (2) is given by the blue
density of Fig. 1. Two simulations are performed: one with
e1 ∼ N(0, 0.1) (top graphs) and one with e2 ∼ Pois(λ = 0.1)
(lower two graphs). Note that the variance of x is equal for
both cases (σ2

e1 = σ2
e2 ). The Poisson variable e2 is normalized,

such that x has mean 1 in both simulations. Thus, the first
2 central moments of x are exactly the same. However, the
shape of the distribution of x is different. Properties of the
shape of distributions (e.g. kurtosis, skewness) are harvested



4

in higher order central moments. The means of the probability
distributions of the left graph of Fig. 1 are indicated by the
dotted lines of the graphs on the right.

An unscented transformation, a third-degree cubature trans-
formation and a Monte Carlo sampling method (with 100
particles) are applied to find the statistics of y without having
to perform 1·105 function evaluations. For e1 ∼ N(0, 0.1), the
results of these nonlinear transformations are also included in
Fig. 1. Both the unscented- and third-degree cubature trans-
formation represent y as a Gaussian, as expected. However,
the Monte Carlo sampling method captures the true shape of
the density of y much better.

For a second simulation, we assume that all filters have full
knowledge of the higher order statistics of e2. The unscented-
and cubature transformation allow a mean and covariance
matrix as inputs for x, but these do not change. There is
nothing to adjust in these algorithms. Since the Monte Carlo
method can draw from any distribution, it can also draw
from e2 ∼ Pois(λ = 0.1). With these settings, the same
simulations are performed again, and the resulting density
estimates are given in the lower-left graph of Fig. 1. For this
non-Gaussian x, the mean of y is now approximated poorly by
the distributions of unscented- and cubature transformations.
Again, the Monte Carlo method results in a much better es-
timate. Thus, with some knowledge of possibly non-Gaussian
distributed disturbances, the mean of a nonlinearly transformed
stochastic variable x can be approximated better by Monte
Carlo methods, such as the particle filter. This is a very strong
property that will be exploited in our hybrid filtering algorithm.

IV. ADAPTIVE PARTICLE-AIDED CUBATURE KALMAN
FILTERING

First, Subsection IV-A explains what key assumption forms
the basis for our filtering algorithm. The remainder of this
section then highlights the three main contributions of the
proposed algorithm. Subsection IV-B will discuss the imple-
mentation of the soft switching strategy in the hybrid filtering
architecture. The determination of the adaptive matrix Q̃,
along with its advantages, will be described in Subsection
IV-C. At last, Subsection IV-D features the kernel density
estimation algorithm that is used for constructing the adaptive
measurement likelihood distribution of our particle filter. The
full algorithm can be found in Appendix A.

A. A key assumption

Let us say that a filter is convergent, and the previous state
can be estimated properly (its estimation error ek−1 is small).
The predicted observation ẑk of a cubature Kalman filter is
then an accurate approximation of the true system outputs.
Kalman filters denote the difference between the predicted
observation ẑk and the actual observation zk as the innovation;
ỹk = zk − ẑk. When the proportion of the process noise
over a single time step is much smaller than the proportion
of the measurement noise, the measurement noise vk can be
approximated by this innovation signal. This assumption yields
the following:

ỹk = zk − ẑk = (x̌k + vk)− (x̌k + ek−1 + wk) ≈ vk (3)

in which x̌k is the true state, wk and vk are the process-
and measurement errors and ek−1 is the estimation error of
the previous state. To summarize, assuming that the innovation
signal sufficiently accurately approximates the measurement
noise, we possess over the right knowledge to let our particle
filter perform better than the cubature Kalman filter. One might
wonder; why not use the accurate predictions as final state
estimates? In many systems (e.g. GNSS/INS-based vehicle
localization) a prediction error builds up over time. That is
why, after a while, the predictions become useless and there is
a need for measurement corrections in our final state estimate.

B. Soft switching strategy

Different from other filtering approaches, the matrices Q̃k

and R̃k are used as tools to manipulate the outcome of
our state estimate, rather than representing the process- and
measurement noise covariance matrices Q and R. Both the
process- and measurement noise covariance matrices can often
not be determined accurately. In fact, the noise statistics are
often dynamic, and inaccurate, fixed values for the noise co-
variance can be harmful for the estimation process. Although
more configurations are possible, we exploit z̃k and R̃k as a
switching mechanism between our filters.

The particle filter is connected to a cubature Kalman filter
through the observations channel of the standard algorithm.
Its help can be turned off during periods of Gaussian mea-
surement noise, but can be increased during period of non-
Gaussian measurement noise. Instead of using the standard
observations vector zk, the modified version of (4) below is
used:

zk ⇒ z̃k = (1− µk) zk + µzpf
k (4)

This equation makes sure that for each individual state, the
filter is functioning as a standard cubature Kalman filter when
µk → 0 and uses the particle filter’s result as observation
when µk → 1. When the uncertainty of this new observation
is extremely low, the filter ’trusts’ the observations more than
the predictions, and eventually, the observations will contribute
significantly to the final state estimate. Therefore, we adjust
the uncertainty of the observations with the matrix R̃k. Instead
of using a normal, fixed measurement noise matrix R, the
following matrix is used:

R⇒ R̃k = (1− µk) R (5)

This adjustment leads to a small measurement noise vari-
ance when µk → 1 (limµk→1 R̃k = 0), but the nor-
mal measurement noise variance is used when µk → 0
(limµk→0 R̃k = R). In the former case, the influence of
the cubature Kalman filter predictions are reduced, since the
process noise is generally larger than R̃k → 0. The cubature
Kalman filter then fully uses the particle filter’s estimate as
the definitive one.

As stated before, the Gaussianity of the measurement noise
will determine whether the final state estimate is mainly
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determined by the particle filter, or the cubature Kalman
filter. To determine a measure for the Gaussianity of the
measurement noise, a Kolmogorov-Smirnov test [30] can be
used. Let us take the last n normalized innovations (i.e.
ỹi,norm = ỹi/|σỹ|) as data points. The method first determines
an empirical cumulative distribution function Fk(x) for n
ordered innovations ỹi as follows:

Fk(x) =
1

n

k∑

i=k−n
1[−∞,x] (ỹi,norm) (6)

Note that 1[−∞,n] (ỹi,norm) is the indicator function. This
function equals 1 if ỹi,norm ≤ x and equals 0 otherwise. The
Kolmogorov-Smirnov statistic Dk is then defined as the supre-
mum of the set of distances between a reference cumulative
distribution F (x) (in our case a standard normal distribution)
and the empirical innovation cumulative distribution Fk(x).
The statistics Dk can be calculated as follows:

Dk = sup
x
|Fk(x)− F (x)| (7)

A graphical representation can be found in Fig. 2.
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Fig. 2. Cumulative distribution function of a standard normal distribution
(blue), and the empirical cumulative distribution function of the last n
normalized innovations ỹi,norm (red). The Kolmogorov-Smirnov statistic Dk

is supremum of the set of distances between the two distributions, as indicated
by the red markers.

The null hypothesis that the last n normalized innovations
come from a standard normal distribution can then be rejected
based on

√
nDk > Kα, K = supt∈[0,1] |B(t)| with 1 − α

confidence, in which B(t) is a Brownian bridge [31]. When
rejected, µ̌k takes value µ̌k = 1. To avoid fast switching
between filter settings, the definitive Gaussianity indicator
vector µk is taken as:

µk = min

(
1

n

k∑

i=k−n
µ̌i, 1− γ

)
, 0 < γ � 1 (8)

Stability issues might arise when µk = 1, since then R̃k =
0. Therefore, a safety factor γ � 1 is employed to avoid this
from happening.

C. Adaptive matrix Q̃

Following [32], we use Q̃k as an adaptive measure for the
unknown components of our system. The instrumental matrix
Q̃k is calculated as follows:

Q̃k = ρỹTk ỹkIn + ηIn (9)

with tuning parameters ρ > 0 chosen large enough and
η > 0 chosen small enough. This particular choice for the
instrumental Q̃k ensures that in case of large estimation errors,
the conditions for cubature Kalman filter convergence are
valid at all times [33]. Besides, when using this matrix for
the proposal distribution of the particle filter, the support
of the proposal distribution grows with the innovation. As
a consequence, the support of the proposal distribution will
always enclose, or approach at the least, the support of the
measurement likelihood distribution. This is a key requirement
for particle filter convergence, as can be seen in Fig. 3.
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Fig. 3. Four configurations for a proposal distribution and measurement
likelihood. Top left: the proposal distribution has a small support that does
not cover the measurement likelihood. Only two particles get assigned a
weight, and it is highly unlikely that this weighted average approaches the
measurement likelihood mean. Top right: the proposal distribution is too
narrow. All particles get assigned a weight of similar order, and the weighted
particle mean will not be a good estimate of the observations mean. Bottom
left: the proposal distribution has a wide support, but only a few particles
are weighted. This leads to inaccurate estimation. Bottom right: the proposal
distribution is similar in shape and support as the measurement likelihood.
The weighted average of the particles will be a good approximation of the
measurement likelihood mean.

We have access to the fairly accurate predictions of the
cubature Kalman filter before drawing particles for our particle
filter. It is very likely that these predictions fall close to the
true posterior. Thus, sampling around the cubature Kalman
prediction seems an obvious choice. The proposal distribution
then becomes as follows:

q(xk | xk−1) = N
(
x̂k|k−1,Pk|k−1

)
(10)

The predicted covariance matrix Pk|k−1 partially depends
on the instrumental matrix Q̃k, which depends on the innova-
tion ỹ. In other phases of the proposed hybrid filter, a set of
standard, fixed Q and R are used, as can be seen in the full
algorithm description of Appendix A.

D. Kernel density estimation algorithm

The particle weighting step requires the determination of
the observation likelihood p (zk | xk). In practice, gaining
true statistics of the actual observation likelihood is difficult.
Often, this likelihood is assumed to be constant and Gaussian.
To overcome the problem of inaccurate particle weighting
due to incorrect measurement modelling, an adaptive particle
weighting scheme is proposed. The last n innovations ỹi,
which are essentially the measurement noise values due to



6

our assumption (3), are used to approximate the true obser-
vation likelihood. The calculation of (11) below shows how
this probability distribution function estimate f̂KDE(x) can be
obtained for a single state:

f̂KDE(x) =
1

n

n∑

i=1

Kh (x− ỹi) =
1

nh

n∑

i=1

K

(
x− ỹi
h

)
(11)

The function K indicates an arbitrary kernel, ỹi represents
one of the last n samples, and the parameter h denotes the
bandwidth. The latter is a free parameter that determines the
smoothness of the resulting distribution function. A common
choice for this bandwidth is the one that minimizes the mean
integrated squared error:

h =

(
4σ̂5

3n

) 1
5

≈ 1.06 σ̂ n−
1
5 (12)

Such an approach for estimating densities at the hand of data
points, is called kernel density estimation [34], [35]. For the
kernel function K ((x− yi)/h)) = K(u), an Epanechnikov
kernel [36] is used. This is a parabolic kernel function that
can be calculated as follows:

K(u) =
3

4

(
1− u2

)
, for |u| ≤ 1 (13)

Each particle will be weighted according to the approxi-
mated measurement likelihood, provided by the kernel den-
sity estimates f̂KDE(x) of each measurable state. With this
approach, particles can be weighted appropriately in case of
time-varying and non-Gaussian measurement noise. Note that
this approach is possible only because we have sufficiently
accurate measurement noise approximations. A demonstration
of the kernel density estimation algorithm is provided by Fig.
4.

Fig. 4. A two-dimensional Gaussian mixture distribution (left) represents
the true probability distribution of the measurement noise of system (2).
This distribution has a second mode on the left side of the origin and has
a relatively high skewness (i.e. asymmetry) and kurtosis (i.e. heavy tails).
If the measurement noise were to be approximated by a two-dimensional
Gaussian, one obtains the distribution in the right-most plot. If we take n = 50
innovations, and use this data to approximate the true distribution with our
kernel density estimation algorithm, the center distribution is obtained. The
proposed algorithm manages to capture the shape and tailed behavior better
than the Gaussian approximation.

V. EXPERIMENTAL EVALUATION AND ANALYSIS

An evaluation of the performance of the proposed method
is provided in this section. At first, the individual highlights
(adaptive hybrid switching architecture and kernel density
estimation algorithm) of the algorithm will be evaluated one-
by-one through a simple benchmark example in Subsection
V-A. Then, Subsection V-B contains the description and results
of a full loosely coupled GNSS/INS-integration strategy.

A. Results for a benchmark example

Consider the following multivariate nonlinear model:

xk+1 =

[
x1,k + τx2,k

x2,k +−τx1,k +
(
x21,k + x22,k − 1

)
τx2,k

]
+ wk

yk =

[
1 0
0 1

]
xk + vk

(14)
with time constant τ = 0.001 and wk ∼ N

(
0, 0.00052I2

)
.

Imagine there would be a small amount of bias present in the
process model. Then, the predictions of the process equation
are worthless over large time spans. We need the observations
to correct for this error.

1) Hybrid architecture evaluation: The model is simulated
for 50.000 time steps. After 25.000 steps, the measurement
noise abruptly changes from vk ∼ N(0, 0.25·I2) to a Gaussian
mixture as described by (15) below:

vk ∼
([

0
0.1

]
+ 0.5 ·N(0, 0.25 · I2)

)
+

([
−0.1

0

]
+ 0.5 ·N (0, 10 · 0.25 · I2)

) (15)

Fig. 5 shows the values of the switching vector µk.
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Fig. 5. Development of µ over time. The graph indicates that the cubature
Kalman filter has a large effect on the final state estimate during the first half
(µk is close to 0), and that particle filter estimates are mainly used for the
Gaussian mixture after 25.000 time steps (µk is close to 1).
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Fig. 6. Estimation errors for the first state of the multivariate nonlinear
model of (14). After 25.000 time steps, the measurement noise changes from
a Gaussian distribution to a Gaussian mixture model, which is non-Gaussian.
Clearly, the proposed PACKF algorithm has the lowest errors in the second
half of the simulation.

For comparison, four filters are reviewed: a standard cuba-
ture Kalman filter (CKF), a particle filter (PF), an innovation-
based adaptive estimation unscented Kalman filter (IBAE-
UKF) and the proposed particle-aided cubature Kalman filter



7

(PACKF) with Np = 30, the adaptive Q̃k matrix of (9)
and switching parameter µk. For both particle filters, we use
simple multinomial resampling and the prior p(xk | xk−1)
as proposal distribution. The development of the errors of the
first state x1 is given by Fig. 6.

2) Kernel density estimation evaluation: The model (14) is
again simulated for 50.000 time steps. The simulation period
is split up into five sectors (I to V) of 10.000 time steps, each
with different statistics for the measurement noise vk. The
noises are represented mathematically in the parameterized
descriptions of Table I, with the parameter values listed in the
table caption. These noises correspond to: sector I - Gaussian,
sector II - Gaussian mixture, sector III - Random Walk, sector
IV - Poisson noise and sector V - Gaussian.

Sector Mathematical description

Sector I vk ∼ N
(
0, σ2

1

)

Sector II vk ∼ (1− α2)N(µ, σ2
2) + α2N

(
µ, β2σ2

2

)

Sector III vk = α3vk−1 + β3, β3 ∼ N
(
0, σ2

3

)

Sector IV vk ∼ Poiss (λ4)
Sector V vk ∼ N

(
0, σ2

5

)

TABLE I
THE PARAMETER VALUES THAT ARE USED: σ1 = 0.5, α2 = 0.5,
σ2 = 0.5, β2 = 10, α3 = 1, σ3 = 0.5, λ4 = 1 AND σ5 = 0.5.

For both a standard particle filter and a particle filter that
uses the proposed kernel density estimation algorithm, the
development of the estimation error of the first state x1 are
presented in Fig. 7 below. Under Gaussian circumstances
(sectors I and V), the filters perform similarly. In the sectors
with non-Gaussian noise (II, III and IV), the standard particle
filter exhibits considerably larger estimation errors.
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Fig. 7. Estimation error for the first state x1 of model (14) for two particle
filters: one with Gaussian measurement noise assumption (yellow) and a
particle filter with the measurement likelihood approximated by the adaptive
kernel density estimation algorithm (green). In the non-Gaussian sectors (time
step 10.000-40.000), the proposed method performs better in terms of forcing
the error towards the blue zero-line.

B. Loosely coupled GNSS/INS-integration

1) Process- and measurement model: In literature, the
process model for loosely coupled integration is implemented
in various ways, with different notations and assumptions. The
model in this subsection contains elements from [15], [21],
[22] and [37].

In our localization model, there is no change in the z-
coordinate of the vehicle. We assume a vehicle is travelling
on a flat surface, and all roll and pitch motions are neglected.

These states are still included in the model, but are set to zero.
The local navigation frame is denoted as the n-frame, with
ENU (East-North-Up) directions. The global frames are the
geocentric inertial frame (i-frame) and earth-centered earth-
fixed frame (e-frame), for which more information can be
found in [38]. The body frame (b-frame) is defined at the
INS center, and is given in RFU (Right-Front-Up) convention.

The state vector is denoted as in follows:

x =
[
δpT δVT φT εbT ∇bT

]T (16)

in which δp =
[
δL δλ δh

]T
is the INS position error

in latitude L, longitude λ and height h in the n-frame,
δV =

[
VE δVN δVU

]T
is the velocity error in the n-frame,

and φ =
[
φE φN φU

]T
denotes the orientation error in the

n-frame. εb =
[
εx εy εz

]T
is the bias of the gyroscope,

given in the b-frame. The accelerometer specific force mea-
surements in the b-frame are defined as f b =

[
fx fy fz

]T
,

with its bias ∇b =
[
∇b
x ∇b

y ∇b
z

]T
. The biases are both

modelled as first-order Markov processes:

∇̇b
= τ a∇b + wa

ε̇b = τω ε
b + wω

(17)

with τ a and τω as time constants of the accelerator and
gyroscope bias, respectively. The time derivative of the orien-
tation error φ̇ is given as:

φ̇ = −ωn
in × φ+ δωn

in −Cn
bε

b
b (18)

in which ωn
in denotes the true angle rate and δωn

in is its
error vector. The term Cn

b is the rotation matrix from b-frame
to n-frame:

Cn
b =




cosφz sinφz 0
− sinφz cosφz 0

0 0 1


 (19)

Note that a simplification is made with respect to the
rotation matrix in, for example, [39], since roll and pitch
motions are neglected in our case. Logically, this holds for
both the b-frame and n-frame, and it leads to sinφx = 1,
cosφy = 1, sinφx = 0 and sinφy = 0.

The change in the velocity error in the navigation frame can
be expressed as:

δV̇n = Cn
bf

b × φ− (2ωn
ie + ωn

en)× δV n

− (2δωn
ie + δωn

en)×Vn + Cn
b∇b (20)

In this equation, ωn
en is the rotation velocity vector from e-

frame to n-frame and ωn
ie is the rotation of the earth in the n-

frame, with δωn
en and δωn

ie as the corresponding error vectors.
The time derivative of the position error is defined as follows:

δṗ =




δVN
Rn+h

− δh VN
(Rn+h)

2

δVE
Re+h

secL+ δL VE
Re+h

tanL secL− δh VE secL
(Re+h)

2

δVU




(21)
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In this set of equations, Rn and Re are the radii of the
curvatures in the meridian and prime vertical axis of the
earth, respectively. Following [22], ωn

in and δωn
in can now be

described by:

ωn
in =

[
− δVN
Rn+h

ωie cosL+ VE
Re+h

ωie sinL+ VE
Re+h

tanL
]T

δωn
in = FavδV

n + Fapδp (22)

The matrices Fav and Fap are included in Appendix B.
Substituting (22) into (20) leads to (23) below:

δV̇n =Cn
bf

b × φ− (2ωn
ie + ωn

en)× δVn−
(δωn

ie + FavδV
n + Fapδp)×Vn + Cn

b∇b (23)

For each of the states in the vector x of (16), we have now
described the continuous dynamics. With the forward Euler
discretization method [40], the set of equations is discretized.
From now on, we will proceed with this discrete version.

GNSS- and INS location measurements are generated in the
local n-frame. The velocities vx,k and vy,k and the yaw rate
ωz,k are expressed in the b-frame. The INS measurements in
the n-frame can now be modelled as:

pINS
k =

[
xINS
k yINS

k zINS
k

]T

VINS
k = Cn

b,k

[
vINS
x,k vINS

y,k vINS
z,k

]T (24)

The same holds for the GNSS measurements, they can be
described in the local n-frame by:

pGNSS
k =

[
xGNSS
k yGNSS

k zGNSS
k

]T

VGNSS
k = Cn

b,k

[
vGNSS
x,k vGNSS

y,k vGNSS
z,k

]T (25)

In the loosely coupled GNSS/INS-integration architecture,
we attempt to find the error of the INS with respect to the
true states. Later on, this error is then subtracted from the
INS measurements to determine a final state estimate. The
observations for our filter are then, logically, obtained by
subtracting the GNSS observations from the INS observations:

zk =

[
δp
δV

]
+ vk =

[
pINS
k − pGNSS

k

VINS
k −VGNSS

k

]
(26)

The fact that the measurement equation of (26) calculates
the errors between GNSS and INS has no influence on the
uncertainty of the measurements. That is the case because the
INS errors over one time step are very small compared to
the GNSS errors. In other words, we assume that the standard
errors of the GNSS device are equal to the standard errors that
we can use for constructing the measurement noise covariance
R of our filtering algorithm.

2) Ground truth- and measurement data acquisition:
Ground-truth data is generated with a 10-dimensional model
based on configuration 1 of [41]. The process noise is w = 0
for all time steps k. We simulate 4 minutes of driving in
east direction, with both the GNSS- and INS update rate at
10Hz. In each simulation, we randomly generate three different
inputs, which each will be used for a third of the simulation
time. In each of the three periods, the acceleration is set such
that the longitudinal speed ranges from 50 km/h to 110 km/h.

An arbitrary, mild steering angle (δ < 0.004 rad) is used to
resemble highway driving conditions.

The GNSS measurement data is obtained by artificially
adding measurement noise to the ground-truth data. A second
simulation with the 10-dimensional model will be performed
to obtain INS measurements with bias. Logically, the process
noise wk is now nonzero. From this second simulation, the
INS states are extracted. These will be used as INS measure-
ment data. This process of noise injection is a broadly adopted
way of simulating noise in order to validate localization
algorithms [42], [43], [44].

This noise injection method requires some fixed values for
the matrices Q and R. The process noise covariance matrix
Q can be chosen at the hand of sensor specifications. It is
dynamic because of the rotation matrix Cn

b, that depends on
the yaw angle φz,k at time k. Both the accelerometer and
the gyroscope experience noise- and bias errors, which are in-
cluded as standard errors σa, σω , σb,a and σb,ω , respectively.
For the state vector of (16) the process noise model, with
wk ∼ N(0,Qk), then has the following covariance matrix:

Qk =




03 03 03 03 03
03 Cn

b,k 03 03 03
03 03 Cn

b,k 03 03
03 03 03 I3 03
03 03 03 03 I3







0
σ2

a

σ2
ω

σ2
b,a

σ2
b,ω




(27)

For the measurement noise covariance matrix R, the speci-
fications of a considered GNSS device can be used as follows:

R =

[
I3 σ

2
pos 03

03 I3 σ
2
vel

]
(28)

The positioning and velocity standard error vectors are
denoted as σpos and σvel, respectively. Their values, together
with the entries for matrix Q, can be found in Table II.

Standard error type Symbol Value Unit
GNSS position σpos 4 m
GNSS velocity σvel 1 m/s
Accelerometer noise σa 0.03 mg

√
Hz

Accelerometer bias σb,a 0.015 mg

Gyroscope noise σω 0.006 /s
√

Hz
Gyroscope bias σb,ω 3 /h

TABLE II
STANDARD ERRORS BASED ON THE SENSOR SPECIFICATIONS OF [45].

Data from a GNSS device is generated by adding the noise
sequence of Table III to the ground truth data. For the GNSS
noise, the simulation period is split up into 7 sectors, each with
a different type of measurement noise. These noise types, and
the environments in which they might occur, are as follows:
Gaussian (sector I, open sky environments), Gaussian mixture
(sector II, outlier measurements due to change in number of
receivable satellites), Gaussian with varying variance (sector
III, urban environments), flicker noise (sector IV, changing
reception conditions), Gaussian with extremely high variance
(sector V, GNSS outages), Random Walk (sector VI, multipath
phenomena) and again Gaussian (sector VII). The occurrence
of these noise types in specific environments has been studied
in [41], [46], [47], [48]. A mathematical description of these
noise types can also be found in Table III.
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Sector Time period Mathematical description
Sector I 0s-40s vk ∼ N (0,R)
Sector II 40s-80s vk ∼ 0.9N(0,R) + 0.1N (0, 300R)
Sector III 80s-120s vk ∼ N (0, αR) , α ∈ [1, 5]
Sector IV 120s-160s S(f) ∝ 1

f
Sector V 160s-170s vk ∼ N (0, 100R) ,
Sector VI 170s-210s vk = 0.6 vk−1 + β, β ∼ N (0,R)
Sector VII 210s-240s vk ∼ N (0,R)

TABLE III
SETTINGS FOR THE GNSS MEASUREMENT NOISE SEQUENCE.

3) Results in terms of localization errors: The goal of
the GNSS/INS-integration is to find an accurate location at
the hand of a set of GNSS and INS measurements. As a
performance metric in achieving this goal, the RMSE between
the true position and the position that is estimated by the filters,
is used. The localization RMSE is calculated in the Cartesian,
local navigation frame (n-frame) as follows:

RMSEpos =
1

N

N∑

k=1

√(
(xk − x̂k)

2
+ (yk − ŷk)

2
)

(29)

For two simulations, the GNSS location data, as well as
the INS location data, are given in Fig. 8 below. As can
be seen in the x,y-plane of the graphs, the INS drifts away
from the GNSS track. The period of GNSS outage (noise with
extremely high variance) can be spot easily.
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Fig. 8. In the x,y-plane; GNSS and INS location measurements of two
randomly generated paths in east direction.

A total of 25 separate Monte Carlo runs are performed.
The filters that will be used for evaluation are: a standard
cubature Kalman filter (CKF), a particle filter (PF), a cubature
particle filter (CKFAPF), an innovation-based adaptive estima-
tion unscented Kalman filter (IBAE-UKF) and the proposed
particle-aided cubature Kalman filter (PACKF). The cubature
particle filter has a proposal distribution that is provided by a
cubature Kalman filter output. Thus, in this case, the proposal
distribution also includes information on the latest observation.
The particle filter has the exact same settings as the one
in the proposed method; the proposal distribution of (10),
a multinomial resampling strategy and the same number of
particles (Np = 50). The resampling process usually starts
when a threshold NT for the effective sample size is exceeded:

N̂eff =
1

∑Np

i=1

(
wik
)2 ≤ NT (30)

with wik as particle weights. Regular particle filters resample
or re-use particles from the previous time step. This would be
a good approach for systems with large process uncertainty. In

our specific case, however, it makes more sense to intensively
resample around the predictions, since these are already very
accurate. Re-using old particles would lead to very high resam-
pling rates, since they quickly become inaccurate compared
to the predictions. One might then as well just resample
all particles around the predictions at every time step. This
is basically a sequential-importance-resampling (SIR) particle
filter with a high threshold NT = Np.
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Fig. 9. The x-position estimation errors for several filtering methods. Though
the algorithms perform similarly in earlier sectors, there is a clear difference
in performance in the later sectors. The sector with GNSS outage seems,
however, still problematic for the proposed filtering method.

For sectors I-VI, the estimation errors of the x-position and
y-position of the local n-frame are presented in Fig. 9. The
particle filter estimate and, to a lesser extent, the particle-
aided cubature Kalman filter estimate stand out by their noisy
character. It is suspected that this is a result of our choice
for the proposal distribution and resampling strategy. After
all, we do not re-use any knowledge from the last time step.
So the final estimate is sensitive to the current measurements.
We see, however, that lower thresholds NT lead to higher
inaccuracy, since particle degeneracy happens rather quickly.
The estimation errors turn out to be the lowest with these
settings.

Filter RMSE
CKF 6.42
PF 3.20
CKFAPF 5.49
IBAE-UKF 10.93
PACKF 2.26

TABLE IV
AVERAGE RMSE VALUES OVER THE ENTIRE SIMULATION PERIOD.
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Fig. 10. The average RMSE of 25 Monte Carlo runs at the end of each
sector. The proposed filter has the lowest errors in all but one sector.

Let it be noted that the standard particle filter performs
adequate in the non-Gaussian domain. Under Gaussian mea-
surement noise, however, it performs much worse than the
other algorithms. Since it is expected that the majority of
the measurement noise will be (close to) Gaussian, particle
filters would not be that competitive under normal circum-
stances. Furthermore, the innovation-based adaptive estimation
unscented Kalman filter experiences problems with most non-
Gaussian noise types. It adjusts its setting for R to reduce the
estimation errors, but the innovation does not become much
smaller after a while, due to the non-Gaussian nature that can
not be captured. It seems as if the standard algorithm suffers
from this feature, rather than that it is serving it.

VI. CONCLUSION

GNSS/INS-based vehicle localization is considered to be
a key element of future automated driving systems. One of
the problems of this approach, is that the GNSS measurement
noise statistics are highly dynamic and, depending on the spe-
cific environment, might follow a non-Gaussian distribution.
To overcome this problem, a hybrid filtering architecture has
been proposed. The proposed particle-aided cubature Kalman
filter exploits a soft switching strategy, an adaptive, instru-
mental matrix Q̃ and a kernel density estimation algorithm.
After generating ground-truth data and injecting common
non-Gaussian noise sequences in the measurement data, the
proposed particle-aided cubature Kalman filter is implemented
in a loosely coupled GNSS/INS-integration architecture. The
results in terms of localization errors are reviewed, and the
proposed method shows to beat traditional filtering methods.
It is suspected that the noisy character of the filtered estimates
is the results of the choice for our proposal distribution and
resampling strategy. Future research could focus on revising
these filter settings, applications of the hybrid filter is other
domains, or could concentrate on learning approaches to
mitigate the effects of GPS outages.

APPENDIX A: FULL ALGORITHM DESCRIPTION

A square-root version of the cubature Kalman filter is used
[12]. This implementation has a better numerical stability.
The Tria-operator denotes any arbitrary triangularization
algorithm, such as the Cholesky factorization [49].

Cubature Kalman filter prediction

1. Decompose last covariance

Sk−1|k−1 = Tria
(
Pk−1|k−1

)

2. Calculate cubature points

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1

3. Propagate through f

X∗i,k|k−1 = f
(
Xi,k−1|k−1

)

4. Predict state

x̂k|k−1 =
1

m

m∑

i=1

X∗i,k|k−1

5. Calculate centered matrix

X ∗k|k−1 =
1√
m

[
X∗1,k|k−1 − x̂k|k−1 · · · X∗m,k|k−1 − x̂k|k−1

]

6. Calculate Q̃k

Qk = ρỹTk−1|k−1ỹk−1|k−1In + ηIn

7. Decompose Q̃k

SQ,k = Tria
(
Q̃k

)

8. Square-root of covariance

Sk|k−1 = Tria
([
X ∗k|k−1 SQ,k

])

9. Calculate covariance

Pk|k−1 = Sk|k−1S
T
k|k−1

Particle filter

10. Draw particles from proposal distribution

xik ∼ q(xk | zk,xk−1)

11. Update particle weights

wik ∝ wjk−1 ·
p
(
zk | xik

)
p
(
xik | xjk−1

)

q
(
xik | x

j
k−1, zk

)

12. Calculate particle filter estimate

x̂pf
k|k ≈

N∑

i=1

wik|kx
i
k

13. Propagate through h

zpf
k = h

(
x̂pf
k|k

)
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Cubature Kalman filter update

14. Evaluate cubature points

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1

15. Propagate through h

Zi,k|k−1 = h
(
Xi,k|k−1

)

16. Predict measurement

ẑk|k−1 =
1

m

m∑

i=1

Zi,k|k−1

17. Calculate centered matrix

Zk|k−1 =
1√
m

[
Z1,k|k−1 − ẑk|k−1 · · · Zm,k|k−1 − ẑk|k−1

]

18. Decompose R̃k

SR,k = Tria ((1− µk) R)

19. Decompose ỹ covariance

Szz,k|k−1 = Tria
([
Zk|k−1 SR,k

])

20. Calculate centered matrix

Xk|k−1 =
1√
m

[
X1,k|k−1 − x̂k|k−1 · · · Xm,k|k−1 − x̂k|k−1

]

21. Calculate cross-covariance

Pxz,k|k−1 = Xk|k−1ZTk|k−1
22. Determine Kalman gain

Kk =
(
Pxz,k|k−1/S

T
zz,k|k−1

)
/Szz,k|k−1

23. Calculate observation

z̃k|k = (1− µk) zk + µk zpf
k

24. Calculate state estimate

x̂k|k = x̂k|k−1 + Kk

(
z̃k|k − ẑk|k−1

)

25. Square-root of covariance

Sk|k = Tria
([
Xk|k−1 −KkZk|k−1 Kk Tria(R)

])

APPENDIX B: TRUE ANGLE RATE DESCRIPTION (δωN
IN)

δωn
in = FavδV

n + Fapδp =



− δVN
Rn+h

+ δh VN
(Rn+h)

2

−δLωie sinL+ δVE
Re+h

− δh VE
(Re+h)

2

δLωie cosL+ δVE
Re+h

tanL+ δL VE
Re+h

sec2 L− δh VE tanL
(Re+h)

2




APPENDIX C: LOCALIZATION RMSE PER SECTOR

Sector I II III IV V VI VII
CKF 0.77 3.54 5.31 8.37 7.57 11.40 10.06
PF 1.54 3.74 2.39 4.89 9.00 2.90 1.76
CKFAPF 0.68 2.88 3.99 8.24 7.76 9.28 8.25
IBAE-UKF 0.78 2.14 4.53 21.44 31.72 18.28 15.19
PACKF 0.61 2.44 1.43 3.93 7.34 1.97 1.21

TABLE V
AVERAGE RMSE VALUES OF THE GNSS/INS INTEGRATION PROCESS FOR

25 MONTE CARLO RUNS.
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