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ABSTRACT Inrecent years, several common-ground switched-capacitor transformerless (CGSC-TL) dc—ac
multilevel power converters have been introduced, providing advantages such as multilevel output voltage,
voltage boosting, and mitigated leakage current. However, these structures mostly suffer from drawbacks,
such as limited output voltage levels (like only five levels), lack of voltage-boosting capability, and high
charging current spikes of the capacitors. This article proposes a new single-stage CGSC-TL nine-level
(9L) multilevel inverter (MLI) with voltage-boosting capability and limited spikes of charging current of
the capacitor, designed to be employed as a single-stage power-electronics-based interface device between
renewable energy sources, such as photovoltaic (PV) systems and power grid and/or load. The proposed MLI
provides several merits, such as a common-ground structure that suppresses PV-to-ground leakage current
associated with PV parasitic capacitances, active and reactive power support, a wide input voltage range,
and higher output voltage levels (9L) compared with other structures in the same class. Comprehensive
comparative analyses, as well as simulation and experimental results, are presented to verify the performance
of the proposed inverter.

INDEX TERMS Common ground (CG), current spikes, leakage current elimination, multilevel dc—ac in-

verter, renewable energy, single stage, solar energy, switched capacitor (SC), voltage boosting.

I. INTRODUCTION

These days, power-electronics-based devices such as power
converters are broadly employed in many industrial applica-
tions [1], [2], [3], [4]. In recent years, among several types of
power converters, multilevel inverters (MLIs) have attracted
much attention and have been broadly employed in numer-
ous medium- and high-power applications such as renewable
energy source (RES)-based systems such as electric vehicles,
photovoltaic (PV) systems [5], [6], [7], [8], and flexible ac
transmission systems [9], [10]. With the growing penetration

of RESs in power systems, transformerless (TL) inverters with
common-ground (CG) structures have been widely studied
for grid-connected applications. These topologies are credited
with suppressing leakage current, improving overall effi-
ciency, and providing favorable power density relative to both
size and cost. It is noteworthy that in these inverters, the leak-
age current is eliminated since their input dc voltage source
and the grid/load have a CG [11], [12], [13], i.e., their negative
and neutral points are connected. On the other hand, ensuring
compatibility between the grid-voltage peak value and the dc
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voltage source from renewable resources such as PV string
panels is another important objective. In addition, as another
objective, the power quality enhancement (PQE) problem
should be considered here. The PQE has an undeniable impact
on both the filter design and the quality of the current injected
into the main grid [11]. So far, several TL inverters with
a CG structure have been introduced, which are capable of
providing a static voltage gain (equal to one) [14], [15].

In such topologies, a dc-link capacitor is required and is
charged during the first half-cycle and discharged during the
second half-cycle of the grid voltage. During the second half-
cycle, the voltage stored in the first half-cycle is delivered
to the output port. However, these inverters typically provide
only two or three output voltage levels, which can adversely
affect PQE. In [16] and [17], two- and three-level (2L and
3L) TL inverters with the CG feature have been, respec-
tively, developed. A flying inductor is used in these topologies
rather than the virtual dc-link capacitor. In [18], a five-level
(5L) CG-based TL inverter has been introduced, which is
not based on the virtual dec-link capacitors or flying inductor
concepts. This inverter employs an inductor-based switched-
boost (SB) module with a dc-link capacitor-based dual T-Type
cell. All these structures achieve the feature of dynamic volt-
age gain, which is an invaluable achievement in single-stage
energy conversion operations. However, these converters are
large due to their flying or SB-module-based inductors and
may cause an inappropriate total power density per output
power.

To enhance the static voltage gain, flying capacitors and/or
switched-capacitor (SC) networks can be incorporated into
conventional CG-TL inverters, including the 3L designs
of [19] and [20], the 5L designs of [21] and [22], and
the seven-level (7L) design of [23]. With these integrations,
fewer PV modules are required on the dc side to meet
the grid-voltage amplitude. However, achieving this boosting
capability is accompanied by undesirable charging current
spikes that occur when the capacitors are charged in parallel
with the dc input source [24], [25]. Consequently, the appli-
cability of CGSC-TL inverters is constrained for low-power
grid-connected systems. Recent CGSC-TL implementations
typically provide only a 5L output voltage. Adopting an ex-
tendable structure is therefore advantageous, as it enables a
higher number of output voltage levels and yields notable
improvements in PQE and reliability [26].

In summary, for PV grid-tied systems, several CG-TL in-
verter topologies have been introduced to eliminate leakage
current while maintaining high efficiency [11], [12], [13],
[14], [15]. However, early CG structures were mainly limited
to 2L or 3L output voltages [16], [17], leading to poor out-
put quality and large filter requirements. To overcome this,
multilevel CG inverters with SC or SB modules were devel-
oped [18], [19], [20], [21], [22]. These inverters can offer
higher output voltage levels and voltage-boosting capabil-
ity. Nevertheless, they often suffer from drawbacks, such as
excessive charging current spikes in capacitors, increased
device stress, and limited scalability [23], [24], [25], [26].
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Recently, several advanced CG-SC inverter topologies have
emerged. Azad et al. [27] introduced a 9L CG-SC inverter that
effectively suppresses leakage currents, although its boosting
gain and device count remain limiting factors. In [28], a 7L
CG inverter with triple boosting and natural voltage balancing
is presented, suffering from higher capacitor stress. Moreover,
in [29], a self-balanced CG-SC inverter with a single dc source
is introduced, but its voltage gain is restricted to lower values.
Liu et al. [30] addressed dc bias and asymmetry in CG-SC
inverters, focusing on waveform quality without considering
boosting limitations. In 2025, a single-source 7L CG inverter
was introduced, demonstrating good leakage suppression but
still limited in boosting [31]. More recently, a CG boosting
inverter with lower switch stress is presented in [32]; however,
this structure faces tradeoffs in terms of increased switching
losses.

Based on the literature, while progress has been made in
integrating boosting, leakage elimination, and CG features,
there is still a need to develop a topology that can simulta-
neously provide advantages such as a high number of output
voltage levels (equal to or higher than nine), substantial boost-
ing gain (approximately 2x), elimination of leakage current,
suppression of capacitor charging current spikes, and a com-
petitive component count with moderate device stresses. For
this aim, this article proposes a new CGSC-TL MLI, em-
ploying eight power switches for modern applications such
as RESs. This inverter can provide nine voltage levels at the
output port, which is higher than most of the previously intro-
duced structures, with fewer or a comparable number of power
components. The main advantages of the proposed MLI can
be listed as follows:

1) employing fewer/comparable number of components;

2) being CG, leading to leakage current elimination;

3) voltage-boosting ability;

4) active and reactive power supporting capability;

5) limited capacitors’ charging current spikes (CCCS) re-
sulting in lower power losses, longer life cycle for
capacitors, and mitigated electromagnetic interference
(EMI);

6) extensive input voltage capability;

7) TL structure;

8) no sensors for balancing the voltages of capacitors;

9) lower or similar voltage stress on the components.

Clearly, these advantages make the proposed MLI a strong
candidate for modern industrial applications such as PV
applications. It is noteworthy that compared to previously
published MLIs, the proposed MLI is a 9L SC-TL MLI that
simultaneously provides both CG and CCCS features. For
validating the performance of the converter, thorough analy-
sis, comparisons, and simulation and experimental results are
presented.

The rest of this article is organized as follows. Section II
introduces the proposed inverter and its operating princi-
ples. Section III provides detailed comparisons with existing
topologies. Section IV discusses the simulation and experi-
mental results. Finally, Section V concludes this article.
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Circuit configuration of the proposed CGSC-TL 9L MLI.

Here, the configuration, operating principles, and main analy-
sis of the proposed MLI are presented.

A. PROPOSED 9L MLI

In Fig. 1, the circuit configuration of the proposed CGSC-TL
MLI is presented. This topology can generate a 9L output
voltage by employing a new SC cell consisting of eight power
switches and three diodes. It is noteworthy that the switches
used here include seven unidirectional (S, S2, S3, S4, Ss, S7,
and Sg) and one bidirectional switch (S5). Here, it is essential
to use this bidirectional switch due to its bipolar voltage stress.
To obtain boosting capability for the proposed inverter, three
capacitors (Cy, C>, and C3), paralleled with a single input dc
source (Vyc), are used in this MLI, as seen in Fig. 1. Besides,
for reducing the capacitor current spikes as one of the main
problems in SC-based inverters, this MLI employs two units,
including one inductor paralleled with one diode (L,; with D,
and L,» with D), in the capacitors’ charging current path. As
seen in Fig. 1, the grid neutral point is directly connected to
the negative terminal of the source, classifying this MLI as a
CG inverter. This feature, important for TL grid-tied systems,
enables the mitigation of the leakage current in this MLI.
Furthermore, both reactive and active power exchange with
the grid are supported.

B. OPERATING MODES

The operating modes of the proposed MLI are presented and
discussed here. Fig. 2 illustrates these modes along with their
current paths. In each charging mode, the capacitors C| and
C, are charged to 0.5Vy4., while the capacitor C3 is charged
to 2Vy.. Detailed descriptions of the operating modes are pro-
vided in the following.

1) MODE 1

The first operating mode for both half-cycles is illustrated in
Fig. 2(a). In the negative half-cycle (Viero, ), the zero voltage
level is produced with Sg and D; conducting. In the positive
half-cycle (Vyero.p), the zero level is obtained with Sy, S4, and
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Sg turned ON. With Sy, S4, and D; ON, the charging loop is
formed, as indicated by the blue dashed path in Fig. 2(a).
In this configuration, C3 is connected in series with Cy, Cs,
and the input dc source, thereby allowing C3 to be charged to
2V4c. The voltage relations for this operating mode are given
as follows:

Ves = Ver + Vea + Vie = 2V (D
Vzero,N =0 (2)
Viero,p = —Vae — V1 — Voo + Vi3 = 0. 3)

2) MODE 2

The second operating mode, which provides the first out-
put voltage level in the positive half-cycle, is illustrated in
Fig. 2(b). In this mode, S>, Ss, S7, and D, are turned ON. To
charge C and C; to 0.5V, S» and S3 are placed in conduction.
During the charging interval, the capacitors’ charging current
(blue dashed path) flows through L,;, thereby limiting the
charging spike. In this mode, C3 is isolated from both the dc
and ac sides. The stored energy in C is delivered to the output,
establishing the first voltage level in the positive half-cycle.
The voltage relations for this mode are given as follows:

Vc,' = O.SVdC for i = 1, 2 (4)
Vout = Ver = 0.5Vqe. &)

3) MODE 3

Mode 3 is shown in Fig. 2(c). The second output voltage level
in the positive half-cycle is obtained by directly connecting
the dc source (Vg.) to the output with S3, S4, and S7 turned
ON. In this mode, no capacitor is included in the load current
path (red dashed line). As indicated in Fig. 2(c), C; and C;
are recharged to 0.5Vg. (Vo = Ve = 0.5V ) by switching S»
and S3 ON. The voltage equations for this mode are given as
follows:

Vout - Vdc . (6)

4) MODE 4

As illustrated in Fig. 2(d), the third output voltage level in the
positive half-cycle is obtained with Sy, Ss, and S7 turned ON.
The output voltage is obtained by summing the voltages of
the capacitor C; and the dc source, that is, Voyr = 1.5Vg.. In
this mode, C is in discharging operation, while C, and C3 are
isolated from the circuit. The voltage relation for this mode is
expressed as follows:

Vout = Vae + Ver = 1.5Vge. (N

5) MODE 5

This mode’s equivalent circuit is illustrated in Fig. 2(e), where
the fourth output voltage level in the positive half-cycle is
generated. In this condition, Dy, St, S4, and S7 are conducting,
and the output voltage is formed by adding the voltages of Cy,
(>, and the dc source. In this mode, C; is being charged. The
voltage relation for this mode is obtained by the following
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equation:

Vour = Vo1 + Vez + Ve = 2Vie. (®)

6) MODE 6

Fig. 2(f) illustrates this operating condition, under which the
first negative output level (—0.5V.) is produced. In this con-
figuration, Sy, Ss, Sg, and D, are placed in the ON state, and C|
and C3, together with the input source, are connected in series
and applied to the inverter output port. As shown in Fig. 2(f),
C> remains isolated from the circuit. The voltage relation for
this mode can be written as follows:

Vour = —Ve3 + Ver + Vae = —0.5V. )

7) MODE 7

This operating condition is depicted in Fig. 2(g), wherein the
second output voltage level during the negative half-cycle is
established with S3, S4, Sg, and D, placed in the ON state. As
indicated in Fig. 2(g), activation of S> and S3 connects C; and
C to the dc source, and each capacitor is charged to 0.5V,.
During this charging interval, the blue dashed current path is
routed through L,, by which the charging spike is limited. In
the same mode, C; operates in discharge. The output voltage
for this mode is therefore obtained as follows:

Vour = Ver = Vez + Ver = —Vae. (10)
8) MODE 8

The eighth operating mode of the proposed MLI is illustrated
in Fig. 2(h) and generates the third negative level of the output
voltage waveform. In this condition, C| and C3 are placed in
series with S», Ss, Sg, and D, conducting. In addition, S3 is
held ON, whereby C> and C; are charged. Accordingly, the
inverter output-port voltage is given by the following relation:

Vout = —Vez + Ve = —1.5Vg. (11)
9) MODE 9

In this mode, the fourth output voltage level during the neg-
ative half-cycle is provided. This operation is depicted in
Fig. 2(i), where Sg, Sg, and D, are turned ON, thereby dis-
charging C; to the inverter output port. Consequently, the
peak output voltage equals twice the dc source voltage, which
realizes the voltage-boosting feature of the proposed MLI.
Meanwhile, with S> and S3 ON, C; and C, are placed in
series with the dc input source and brought to 0.5V, (blue
dashed path). During this interval, C3 remains in discharging
operation. The voltage equations for this mode are given as
follows:

Ver = Vea = 0.5V
Vout = _VCB = _2Vdc-

12)
13)

Table 1 lists the operational modes of the proposed MLI
and related switching states, figures, and equations.
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TABLE 1. Operational Modes of the Proposed MLI and Related Switching States, Figures, and Equations

Modes Generated output voltage On-state Switching Capacitors in | Disconnected Fioure Voltage
level | +/- half-cycle Value devices charging state capacitors g equations
+ Vout = Vzero,P =0 S1, 54, S8, D1 Cs NA : (1),(2),(3)
! Zero - Vout = Vzero,N =0 Sl7 S47 587 Dy C3 NA Flg. 2(3) NA
2 Ist + Vout = 0.5Vg, Sa, 85,57, Dr1,S3 C1,C2 C3 Fig. 2(b) 4),(5)
3 2nd + Vout = Ve S2,S3,S54, 57 C1,Co Cs Fig. 2(c) (6)
4 3rd + Vout = 1.5V, S1,S5,S7 NA C2,C3 Fig. 2(d) (7)
5 4th + Vout = 2V D1,S51,S54,S7 Cs NA Fig. 2(e) (8)
6 1st - Vout = —0.5V. S1,S5,Ss, D C1 Ca Fig. 2(f) )
7 2nd - Vout = —Vae Dy, 52,53, 54, Ss C1,Cs NA Fig. 2(g) (10)
8 3rd - Vout = _1-5Vdc SQ,Sg,S5,Ss,D 2 Cl,CQ NA Fig. Z(h) (11)
9 4th - Vout = =2V, S2,S3, D2, Sg, S C1,Co NA Fig. 2(i (12),(13)
g.2()
Vout s vg
w L+ Ve Vout
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FIGURE 3. Output voltage of the proposed MLI, the grid voltage, and the operating zones of the proposed MLI.

C. DUTY CYCLE CALCULATIONS FOR SWITCHES

In this section, the switching duty cycles for the various oper-
ating modes of the proposed MLI are derived. Fig. 3 depicts
the voltage waveform of the inverter output and the grid over
both half-cycles, with four zones defined for each half-cycle
(Zones I-1V for the positive half-cycle and N Zone I-N Zone
IV for the negative half-cycle). The inverter maximum switch-
ing frequency and the sampling frequency are denoted by fs
and fsa, respectively, with fsa = 2 fs. By applying the induc-
tor volt—second balanced (IVSB) method to the voltage across
the output-filter inductor (L) over the full switching period
(Ty), the duty cycles for these zones are obtained by (16)—(27).
Generally, the grid voltage and current can be, respectively,
written as follows:

(14)
5)

Vg(t) = Vg max sin(wt)

ig(t) = g max sin(wt).

Note that Vo, i, and vg, respectively, denote the inverter’s
output voltage and the grid’s current and voltage. In addition,

90

Iy max> and Vg max, respectively, present the maximum values
of the grid’s current and voltage.

1) ZONE |

As indicated in Fig. 3, the inverter output voltage in this zone
lies between 0 and 0.5Vy.. By applying the IVSB principle
to the output inductor voltage over the sampling interval, the
inverter duty cycle d;() is obtained as (16)—(18) for 0 <t <
|

di T Ts
f (—vg+0.5Vdc)dt+[ (—vg)dt =0 (16)
0 d\Ts
di(t) = —2 (17)
! 0.5Vee

Using (14) in (17), the duty cycle of Zone I is acquired as
follows:

2V max sin (wt )

di(t) =
1(1) Vi

(18)

VOLUME 7, 2026



IEEE Open Journal of the
Industrial Electronics Society

TABLE 2. Applied PCC Operation Approach of Switching Pulses for Positive Half-Cycle

Positive half-cycle
Zones Active power mode Reactive power mode
Vg >0& tpey >0 Vg >0& iy <0
ig > iref 1g < ir‘ef ig < i,,-ef 1g > ir'ef
Zone I: 0 < Vg < 0.5V, S1,S54,S8 S2,S53,S5,S7 S2, 53,55, S7 S1,S54,S8
Zone II: 0.5V, < Vg < Vg, S2,53,S55,57 | S2,S53,S54,S7 S2,S53,54,57 | S2,S53,S55,S7
Zone III: V. < Vg < 1.5V, S2,S53,S54, 57 S1,S5, 57 S1,S5,S7 S2,S3, 54,57
Zone IV: 1.5V, < Vg < 2V, S1, S5, S7 S1,S84,S7 S1,8S84,S7 S1, S5, 57

2) ZONE Il

As seen in Fig. 3, in Zone II, the inverter’s output voltage lies
between 0.5Vy. and V.. By applying the IVSB principle to
the output-filter inductor’s voltage over the sampling interval,
the duty cycle (d»(¢)) is obtained, for t| <t < 1, as follows:

drTg Ts
/ (—vg+VdC)dt +/
0 dy Ty

do(1) = <2(;Tg) _ 1) - (%mv—(jm(“”) _ 1). (20)

(=vg +0.5Vye)dt =0 (19)

Considering (18), (20) can be rewritten as

do(t) = di(t) — 1. 1)

3) ZONE lll

As indicated in Fig. 3, the inverter output voltage in Zone I1I
lies between Vg, and 1.5Vy4.. By applying the IVSB principle
to the output-filter inductor voltage over the sampling interval,
the duty cycle d3(¢) is obtained, for o, <t < t3, as follows:

d3Ty Ts
/ (1.5Vge — vg) dt + / (Vae —vg)dt =0 (22)
0 3Ty
2v 2V, max Sin (wt)
di(t) = (—g - > = (g— —2). (23)
Vdc Vdc
Using (20), (23) can be expressed as follows:
di(t) =dy(t)— 1. 24)

4) ZONE IV

As illustrated in Fig. 3, the inverter’s output voltage in Zone
IV lies between 1.5V and 2Vy.. By applying the IVSB prin-
ciple to the output-filter inductor voltage over the sampling
interval in this zone, the duty cycle d4(¢) is obtained, for
Bn<t< (% — 13), as follows:

dyTg Ts
f (2Vige — vg) dt + f (1.5Vge —vg)dt =0 (25)
0 dyTg
dat) = 2v, — 3V _ 2V, max sin (wt) — 3Vdc' 26)
Vdc Vdc
Based on (23), (26) can be expressed as follows:
da(t) = ds(t) — 1. (27)
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In (27), based on Fig. 3, #;, where k = 1, 2, 3, can be defined
as

= lsin—1<—Vg’max > (28)
1) 0.5k (Vye)

In the proposed MLI, for handling both reactive and active
powers and also generating the switches’ gate pulses (S;—Sg),
the strategy of the peak current controller (PCC) is used [19].
Table 2 shows the applied PCC operating approach of switch-
ing pulses for the positive half-cycle. It is noteworthy that the
switching zones of the negative half-cycle can be obtained by
performing the similar done for the positive half-cycle.

As previously discussed, a key advantage of the proposed
9L MLI is its capability to inject power into the grid over
a wide range of input dc voltages. In general, the boosting
capability of the inverter imposes a first theoretical lower
bound on the required dc-link voltage. This bound, however,
is not sufficient on its own, because the highest output voltage
level of the inverter before the output filter must exceed the
grid peak voltage. For example, for a 220-V RMS grid (with
a peak voltage of 311 V), this boosting-based criterion yields
a theoretical minimum dc-link voltage of 156 V, whereas the
actual dc-link voltage must be selected higher than this limit
in order to satisfy the aforementioned design requirement.
To verify this advantage, precise simulations have been per-
formed using MATLAB/Simulink. The obtained results are
presented in Fig. 4. This figure shows that the input voltage
varies between 175 and 725 V. In proportion to this change,
the output voltage changes from 9L to 3L, so that the proposed
topology can properly inject power into the grid under this
condition. As seen in Fig. 4, by step changing the input voltage
from 175 to 250 V at r = 120 ms, the output voltage changes
from 9L to 7L. In addition, this figure shows that changing
the input voltage from 250 to 370 V att = 160 ms changes the
output voltage from 7L to 5L. Besides, when the input voltage
changes from 550 to 625 V at r = 240 ms, the output voltage
changes from a 5L to a 3L waveform; in other words, the
proposed MLI can operate with a broad input voltage range
if application requires it.

D. SIZING CAPACITORS AND OUTPUT FILTER

Initially, the capacitors of the proposed MLI are sized accord-
ing to each device’s longest discharging cycle (LDC). For Cy,
(>, and C3, the LDC occurs during the positive and negative
half-cycles, respectively. The peak discharging current for a
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Simulation results of the proposed MLI for a wide input voltage.

capacitor over its LDC is obtained as

dQc d
ICap = dtap = E (/ ICapdt) .

Furthermore, the sizes of Cy, C», and C3 are determined by cal-
culation [33]. Here, I max denotes the maximum amplitude of
the injected current. In addition, ¢ is the phase shift between
the injected current and the voltage of grid. The output voltage
is modeled as a multilevel waveform; therefore, the maximum
charge drawn from capacitor C; during the half-cycle is given
as follows:

(29)

Oci = / Ig max sin (wt — ¢)dt (30)
(At;)

where i =1, 2, 3; Ig max is the peak injected grid current, T’
is the grid-voltage period, and the fundamental angular fre-
quency of the output voltage is represented by w. The interval
At corresponds to the LDC of each capacitor, which differs
for Cy, Gy, and C3. With AVp,x taken as the permissible
voltage ripple, the required capacitance satisfies the following:

C.
Copt,i = Q :

Vo (31)
In the proposed system, the maximum current ripple of the
output-filter inductor occurs at unity power factor and at the
peak of the injected grid current (r = T /4). Att = T /4, the
proposed MLI operates in mode 5 with Vo, = 2V4.. Over one
switching period, the inductor current is obtained as

1 t
iL_f(l‘) = L_f/(; VLfdt + l.Lf(O) (32)

where V¢ is the output-filter voltage. From (32), the output-
filter current ripple is calculated as follows:

(2Vae — Ve)da (1)

Ay =ipp(dyT) —ipp(0) = Lifs

(33)
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with dy(t) the Zone IV duty cycle given in (26). Accordingly,
Ly is obtained as

. 4V, max sin(wt) — 6Vye + 3V max sin(wt)

Ly
Alpyfs
2(Vg max sin(wt))> 34
Alpy fsVac
For the maximum inductor current ripple, L evaluates to

TV max — 6Va 2(Vg max )’

Lf _ g,max c g,max ) (35)

AILf,mafo AILf,mafoVdc

Here, the proposed 9L MLI is thoroughly compared with dif-
ferent previously published MLIs employing a single dc input
source. Table 3 lists the main parameters and characteristics
of the MLIs involved in this section. In Table 3, V.G, Ly,
Ns, Nc, and Np, respectively, denote the voltage gain, and
the number of output voltage levels, capacitors, diodes, and
switches. In addition, NA, NP, and CCCS, respectively, stand
for Not Applicable, Not Provided, and Capacitors’ Charging
Current Spikes. As seen, the proposed inverter uses even com-
parable number of switching devices compared to some of the
MLIs, providing fewer output voltage levels. For instance, the
proposed MLI employs eight switches, which is less than or
comparable to that of SL MLI of [33], and 7L MLIs of [34],
[35], and [36]. It is worth noting that apart from [23], other SL.
and 7L MLIs have a switch-per-level ratio (Ns/L) larger than
1. Clearly, this ratio for the proposed MLI is less than 1.

To compare the proposed MLI fairly, the main focus should
be on the MLIs with similar output voltage levels. As clearly
seen, in most of the 9L SC-based MLISs, including [37], [38],
[39], [40], [41], [42], [43], [44], [45], [46], [47], the number of
switches is greater than their number of output voltage levels.
In other words, the switch-per-level ratio (Ns/L) of these
MLIs is greater than 1. In the case of inverters of [48], [49],
[50], and [51], this ratio is equal to 1. Among these MLIs,
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TABLE 3. Comparing the Proposed MLI With the Previously Published Single-Phase MLIs
MLIs | Ly Ng Np N¢ “,107’ TSV, V.G NPCor CG | CCCS C' (mF) s (kHz) Vie— Vo,maz (V) 1n% & Po (W) & f4 (Hz)
25 5 6 2 2 1.5 2 Yes No 1.0+0.47 20 180—360 98.2 & 600 & 50
33 9 0 1 NA 2 No No 33 25 100—200 97.9 & NP & 50
23 6 4 3 2 3 Yes No 022x2+4 25 130—390 96.13 & 800 & 50
34 7 10 0 1 0.67 NA 1.5 Yes No 0.47 25 200—300 96.0 & 1000 & 50
35 9 0 2 .33 NA 1.5 Yes No 47%x2 5 100— 150 98.3 & 150 & 50
36 8 0 1 0.67 NA 0.67 1.5 Yes No 4.4 - (ffm) 50— 150 96.76 & 250 & 60
37 11 0 3 1 NA 0.5x2+0.25 4 No No 43x2+2 20 80—320 96.0 & 1000*& 50
38 19 0 3 0.25 NA 025x3 4 No No 47%x3 2 48—192 88.93 & NP & 50
52 8 1 2 0.25 0.25x2 2 No No 1.0x2 NP 200—400 95.5 & 1000 & 50
39 10 0 2 NA 0.25x2 2 No No 47%x2 2.5 160—320 NP & 400 & 50
53 8 4 4 1.5 05x2+025x2 4 No No 23x2+47x2 4 70—280 92.75 & 1000 & 50
54 8 3 3 1.25 05x2+025 4 No No 33x2+33 4 80—320 93.0 & 500 & 50
48 9 3 3 0.75 0.75 025%x2+0.75 4 Yes No 1.0x2+33 10 100—400 95.2 & 1000 & 50
49 9 0 4 NA 05x2+025x2 1 No No 22x2+47x2 25 200—200 97.4 & 500%& 50
40 17 4 4 NP 025 x4 4 Yes No 4.7 x4 5 40—227 (160 rms) NP & 275 & 50
41 9 10 NA 3 NA 05+025x2 2 No No 22x3 25 70— 140 97.8 & 100 & 50
55 8 2 3 1 025+05x2 2 No No 1.6 x3 2 100—200 NP & NP & 50
42 10 3 3 0.75 0.25x3 4 No Yes 47x3 3 80—320 (221.15 rms) 96 & 1400 & 50
43 12 0 2 NA 025+0.5 4 No No 22+33 2.5x8 + (ffm) x4 75—300 NP & 1500 & 50
44 11 0 3 NA 05+025x2 2 No No 22x2+47 NP 100—200 95.5 & 250 & 50
45 10 3 2 1.25 0.5+0.25 4 No No 47+33 HFx8 + (ffm) x2 100—400 95.2 & 989.4 & 50
46! 14 0 2 NA 0.5+0.25 4 No No 22x2 2 30—120 93 & 250 & 50
47 10 0 2 NA 0.25x2 2 No No 47+34 25 120—240 96.5 & 480 & 50
50 9 2 2 NP 0.25x2 2 No No 1T+1 40 200—400 96.4%& 1000%& 50
51 9 1 3 1 0.25+0.5x2 2 Yes No 0.33x2+048 20 200—400 97.5 & 1200 & 400
[P] 8 3 3 1 I+025x2 2 Yes Yes 1.0x2+22 20 200—400 97.9% & 250 & 50
TABLE 4. Parameters Used in the Simulations capacitors are equal to 0.25, 0.25, and 1. Moreover, the ratio of
maximum voltage stress on its switches is equal to 1, which
Parameter mbol I . . .
aramete Symbe Value is less than that of other inverters. For synthesizing both the
Grid Voltage (rms) Vg 220V :
First and second Switched-Capacitor | C1 & Ca 12 mF voltage stresses and numbers of the semiconductors, the nor-
Third Switched-Capacitor Cs 2.2 mF malized values of total standing voltages (TSVs) of the diodes
Grid Frequency fq 50 Hz and switches are, respectively, defined as follows:
Switching Frequency fs 30 kHz
Output Filtering Inductor Ly 2 mH | Np
Charging Current’s Spike Inductor Ly &L 0.3 mH
sing P r1 & Lr2 TSV4 (pu.) = § Vyi (36)
0,max
1
. Ng
the MLIs of [49] and [50] also do not have CG topologies. In TSV ( 1 v 37)
! W) = —— > V.
terms of the number of power switches, the best MLIs are the sw P dsi

proposed MLI and the inverters of [52], [53], [54], and [55];
the ratio of Ng/L is less than 1 for these converters. Although
the number of switches employed by the inverters of [52],
[53], [54], and [55] is equal to the proposed one, their struc-
tures are not CG, unlike the proposed MLI. This means that
they (see [52], [53], [54], and [55]) cannot eliminate the leak-
age current of PV panels, making them inappropriate options
for solar applications. According to Table 3, the proposed
converter is the only inverter that provides both CCCS and CG
features, leading to advantages like less EMI, longer life cycle
for capacitors, and leakage current elimination. These merits
make the proposed MLI the best option for modern industrial
applications like solar systems among the MLIs in the same
class.

As seen in Table 3, the ratio of maximum voltage stress
on the components to the maximum value of the output volt-
age is used to have fair comparisons, i.e., Vs max/Vo,max and
Ve max!Vo,max- Here, Vg max, Ve max, and Vj, max, respectively,
denote the maximum voltage stress on the switches, maximum
voltage stress on the capacitors, and the maximum output
voltage value. According to Table 3, in terms of the ratio of
maximum voltage stress on the power switches (with mini-
mum and maximum values of 0.25 and 1.33) and the ratio
of maximum voltages of the capacitors (with minimum and
maximum values of 0.25 and 1), the proposed MLI is compa-
rable to the previously published structures. In the proposed
MLI, the ratios of maximum voltage stress on its different
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o,max "

As seen in Table 3, considering all of the compared MLIs,
the maximum and minimum values of TSV, and TSV, are,
respectively, equal to (4 and 7.667) and (0.25 and 2). For the
proposed inverter, these values are less than the maximum
values of these parameters. By focusing on only 9L MLIs,
the maximum values of these parameters, i.e., TSV, and
TSV, are, respectively, equal to 6.5 and 1.5. This means
that the proposed MLI imposes voltage stresses less than the
maximum values of 9L MLIs. As seen, the proposed MLI
provides a lower TSV, compared to 9L MLIs introduced
in [37], [39], [40], [42], [47], [49], [50], and [52]. In terms
of TSV, the proposed MLI provides a lower or comparable
value compared with the MLIs in [45], [51], [53], [54], and
[55]. The lowest TSV, values are achieved by Barzegarkhoo
et al. [52], followed by the authors in [42] and [48]. In ad-
dition, the sizes of capacitors used in these MLIs are listed
in Table 3. As seen, the sizes of the capacitors used in the
proposed MLI are also close to or smaller than those of other
MLIs.

For RES applications like solar energy, it is essential for
TL inverters to eliminate the leakage current of PV panels.
Considering this fact, the proposed MLI and the inverter of
[40], [48], and [51] are the only structures that are suitable for
the mentioned application. However, in contrast to the pro-
posed MLI, the MLIs of [40], [48], and [51], suffer from high
charging current spikes of their capacitors, causing serious
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Block diagram of the employed PCC.

drawbacks like increased power losses, higher EMI, and short-
ening the life cycle of their capacitors. Besides the proposed
MLLI, only the MLI of [42] can provide CCCS. However, this
MLI employs more switches and power components than the
proposed one and does not have a CG structure. Notably,
the MLI of [55] employs a much larger number of switches
and components than the proposed one. Compared to these
four MLISs, i.e., [40], [48], [51], and [55], the voltage stress
on the switches, diodes, and capacitors, and the size of the
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passive components of the proposed MLI are close or less. It
is noteworthy that in the case of the MLI of [51], the sizing of
the capacitors has been done by considering the network/grid
frequency of 400 Hz. Considering f, = 50Hz and based
on [51], these capacitors will be sized as 2.62, 2.62, and 3.84
mF. In addition, the proposed inverter has a high efficiency
among 9L inverters based on Table 3. Hence, the proposed
MLI is the superior option for RES applications, like solar PV

systems.
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FIGURE 6. Block diagram of the test system used in the simulation.

IV. RESULTS AND DISCUSSIONS
A. SIMULATION RESULTS
Here, simulation results are presented to demonstrate the per-
formance of the proposed MLI. All results are obtained in
MATLAB/Simulink environment using nonideal device and
passive models. The parameters used in the simulations are
listed in Table 4. The block diagram of the test system, con-
taining the designed closed-loop controller, is shown in Fig. 6.
This controller can inject the required active and reactive
power into the grid if their reference values (Pt and Qrer)
are given. The closed-loop controller presented in [50] is
used here. The switching pulses are generated based on the
current controller. Fig. 5 shows the controller workflow in
detail. In general, at each sampling instant, the grid current
(ig) is measured and compared with the reference current. The
modulation zone is determined from the instantaneous grid
voltage, and the two admissible voltage levels are identified; if
lig] < lirefl, select the upper level; otherwise, select the lower
level. Finally, the corresponding switching state is generated
and sent to the inverter. This direct comparison-based logic
provides fast current tracking with low computational burden
and maintains robust operation under varying conditions due
to sample-by-sample updates and zone-based voltage selec-
tion. In this article, the sinusoidal reference current i.s is
generated from the commanded active/reactive powers (Pref,
Qref)~

In the context of TL PV inverters, leakage current typically
refers to the PV-to-ground common-mode leakage current.
This current flows through the parasitic capacitances between
ground and PV. In Fig. 6, the parasitic capacitors of the PV
panel are represented by Cpy; and Cpy». It is noteworthy that
the sizes of these capacitors are very small. For Cpy;, the
voltage across its terminals is zero, i.e.,

dvcpvz (1)
dt

Vepy, 1) =0 = iy, (t) = Cpv2 =0 (39
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which means no leakage current flows through Cpy,. For
Cpy1, the voltage across the capacitor is constant and equal
to the dc-link voltage V., hence

dUva](t) _ C dVdC
a Var

which results in only a negligible current. Therefore, the CG
structure of the proposed converter ensures an effective re-
duction of the leakage current associated with these parasitic
capacitances. To be more specific, the proposed CG struc-
ture maintains a constant common-mode voltage across the
modeled PV parasitic capacitances, thereby suppressing the
dominant PV-to-ground leakage current component linked to
these capacitances. It should be noted that, in practice, the
CG structure significantly reduces the PV-to-ground leakage
current compared with conventional TL topologies without a
CG feature, while acknowledging that small residual leakage
may still exist through other parasitic paths.

The simulation results of the proposed MLI are illustrated
in Fig. 7. Unlike Fig. 7(a) and (b) where only active power
injection into the grid is aimed, the proposed MLI exchanges
both reactive and active powers with respect to the grid in
Fig. 7(c) and (d). As seen in Fig. 7(a), the proposed inverter
has a desirable and stable performance under applying a step
change in input dc voltage (Vy), i.e., increasing dc voltage
from 190 to 200 V at t = 0.86 s does not affect the output
voltage and current. In Fig. 7(b), the reference active power is
suddenly increased from 325 to 525 W att = 0.905 s, leading
to an increase in the amplitude of the injected current into
the grid. As clearly shown, the proposed inverter can maintain
its stable performance under this step change. As seen in
Fig. 7(c), the proposed MLI can operate properly even under
the step changes of both reference active and reactive powers.
As seen, the applied step change in reactive power leads to a
remarkable change in the injected current’s phase angle into
the grid. In Fig. 7(d), the amplitude of the apparent power
injected into the grid is constant, and the step change has been
applied in the phase angle of the injected current into the grid,
leading to a step change only in the injected reactive power. In
Fig. 7(e), the pure reactive power performance of the proposed
MLI is demonstrated. It can be observed that the inverter
maintains desirable operation even when a step change in
the reactive power reference occurs att = 1.065 s. Moreover,
Fig. 7(f) illustrates that the proposed MLI can successfully
sustain the injected current into the grid unchanged, even
in the presence of a grid disturbance, here represented by a
sudden voltage drop (10% sag) of the grid-voltage amplitude.
In Fig. 8, the proposed inverter’s performance in mitigating
the CCCS is shown. As mentioned, the diodes D,; and D,;
along with the inductors L, and L, are used for this aim. In
other words, while charging the capacitors, the current passes
through the mentioned inductors, leading to the mitigated
CCCS. Unlike Fig. 8(a) where the proposed inverter circuit
lacks the mentioned components (D,, D,2, L,1, and L,7),
it is clearly shown in Fig. 8(b) that the proposed MLI can
remarkably mitigate CCCS. This can lead to several merits,

~0

icpy, (1) = Cpvi (39)
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Simulation results of the proposed MLI demonstrating dynamic performance under various operating conditions. (a) Step change in the input
dc voltage. (b) Step change in the reference active power. (c) Step change in both active and reactive power references. (d) Step change in the reference
reactive power. (e) Injection of pure reactive power into the grid with a step change in its reference. (f) Response to a grid disturbance (10% voltage sag)

during pure active power injection.

such as less EMI, higher efficiency, and longer life cycle
of the capacitors. In particular, the reduction of high-di/dt
currents suppresses high-frequency components, which are a
major contributor to EMI. Moreover, the decrease in current
spikes reduces both conduction and switching losses, thereby
improving the overall efficiency. Finally, the reduction of rip-
ple current stress in electrolytic capacitors alleviates thermal
aging, which is a well-known determinant of their service
life. These advantages are widely recognized in the power
electronics literature [56], [57], [58]. It should be noted that
the observed voltage ripple is inherent to SC operation and
does not contradict the self-balancing property.

96

In Fig. 9, the harmonic spectra of the injected grid current
are illustrated for three different operating conditions of the
proposed 9L MLI. In the case of pure active power injection
(325 W), the total harmonic distortion (THD) is found to be
0.98%, which satisfies the grid interconnection standards. For
pure reactive power injection (323 Var), the harmonic content
increases, leading to a THD of 3.36%. When both active
and reactive powers are injected simultaneously (281 W and
162 Var), the measured THD is 1.30%. These results confirm
that the proposed inverter maintains low distortion levels un-
der various loading scenarios, thereby ensuring high-quality
current injection into the grid.
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TABLE 5. Parameters and Components Used in the Experiments

Parameter/component Symbol Value Description
Load Voltage (rms) %3 220V load voltage
Ist and 2nd Switched-Capacitors Ch,Co 1.2 mF Electrolyte capacitors
3rd Switched-Capacitor C3 2 mF Electrolyte capacitors
Fundamental Frequency fq 50 Hz -
Switching Frequency fs 20 kHz -
Output Filtering Inductor Ly 1.5 mH Ferrite core inductor
Charging Current’s Spike Inductors Ly1, Lyo 0.3 mH -
Power Switches S1, ..., S8 - IPW65R041CFD MOSFETSs
Power Diodes Dy, Dypo & Dy - C3D10060A power diodes
Micro-controller DSP - TMS320F280049 DSP controller
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FIGURE 8. Simulation results of the proposed MLI including voltages and Frequency ()
currents of its capacitors. (a) Without CCCS. (b) With CCCS. (b)
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In Fig. 10, the efficiency of the proposed converter for 025+ :
different output powers and power loss breakdown per compo- s
T 02- il
nents are shown. As seen, the results are acceptable. It should
. . S
be noted that shown power loss breakdown is obtained when §0 15k ]
the output power, dc voltage, and maximum inverter voltage 3
are, respectively, considered around 325 W, 200 V, and 400 V. g 0.1 1
At this stage, the capability of the proposed MLI for bidi- = 005
rectional operation is evaluated. In Fig. 1, by replacing D ‘
with a power switch equipped with a body diode, the pro- 0
. . .. . 0 100 200 300 400 500 600 700 800 900 1000
posed inverter can also operate in the bidirectional mode. The Frequency (Hz)
switching pattern of this additional switch follows that of D;. (©)

In other words, during the intervals when D is expected to
conduct (i.e., the voltage levels of £ half-cycle zero and the
+fourth level, corresponding to modes 1 and 5 in Table 1),
the switch is turned ON, and vice versa. The simulation results
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FIGURE 9. THD of the injected current to the grid by the proposed 9L MLI
under different power injection scenarios. (a) Pure active power injection
(325 W). (b) Pure reactive power injection (323 Var). (c) Active and reactive
power injection (281 W and 162 Var).
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FIGURE 10. Power loss distribution of the proposed MLI. (a) Breakdown

by components. (b) Efficiency versus output power for different dc-link
voltages.
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FIGURE 11. Simulation results of the proposed MLI (D, replace by a
power switch) for bidirectional operation.

presented in Fig. 11 confirm this bidirectional capability. As
observed, the grid voltage and current are 180° out of phase,
meaning that active power is transferred from the grid side
back to the input dc side. Hence, the proposed structure can
function as an active rectifier simply by replacing a single

diode with a power switch.

Consequently, the proposed 9L CGSC-TL MLI has a de-
sirable performance under different operating conditions, in-
cluding the step changes of the input dc voltage source and the
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FIGURE 13. For resistive load, (a) load current (i, (t)) and the output
voltage of the inverter (vout(t)) and (b) load current and voltage (i, (t) and
u(£))-

reference values of the active and reactive power that should
be generated by the inverter and injected into the power grid.

B. EXPERIMENTAL RESULTS

Here, thorough experimental results for proving the perfor-
mance of the proposed MLI are presented in the presence of
different types of local loads. Fig. 12 shows the experimen-
tal setup implemented to obtain the results. In Table 5, the
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FIGURE 14. Voltage waveforms of different components of the proposed MLI. (a) vs; (t) and vs; (t). (b) vs3(t) and vsg(t). (c) vsa(t) and vss(t). (d) vss(t) and

vg1(t)- (€) ver (t) and vea (£)- (f) ves (t) and vs; (t).

parameters and components description used in the experi-
mental setup are listed.

In the following, the experimental results are presented
and discussed in detail. Note that the input dc voltage is
equal to 180 V. Initially, the performance of the proposed
MLI is proved while having a pure resistive load equal to
R = 86 Q2. This means that only active power is generated
by the inverter. Note that the load is in parallel with a 1-uF
capacitor. Fig. 13(a) shows the output voltage of the inverter,
and the current of load. As clearly seen, the proposed MLI

VOLUME 7, 2026

can successfully generate a 9L output voltage with a peak
value of 360 V. Here, the load current’s peak value is equal
to 3.6 A. The load voltage is shown in Fig. 13(b) whose
amplitude is about 310 V. As a result, the inverter generates
the active power of about 560 W. In Fig. 14, the voltages of the
different components of the proposed MLI are presented. As
shown, the voltages of the switches and diodes align with the
analysis. Based on the results, the maximum value of vg; (),
Us2(1), vs3(1), vsa(t), vss(t), vse(?), vs7(1), vsg(r), and vy (7)
are, respectively, about 180, 180, 180, 180, 90, 360, 360, 360,
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FIGURE 15. Load current (i, (t)) and the load voltage (v.(t)) (a) for a
resistive-inductive load (b) for a resistive-capacitive load.

and 360 V. In other words, these values are the maximum
voltage stress on the switching devices of the proposed MLI
whose minimum and maximum values are equal to 90 and
360 V, respectively. As seen in Fig. 14(e) and (f), the capac-
itors Cy, C>, and C3 are charged to about 90, 90, and 360 V,
which are desirable. These experimental waveforms further
demonstrate that the capacitor voltages remain close to their
intended average values, with bounded ripple and no long-
term drift. Hence, the self-balancing feature of the inverter is
proved.

The performance of the inverter in the presence of resistive—
inductive and resistive—capacitive loads is shown in Fig. 15.
As seen in Fig. 15(a), the proposed MLI is able to prop-
erly supply a resistive—inductive load (R = 110 Q and L =
0.117 H), where the load current lags behind the voltage of
the load. Besides, as shown in Fig. 15(b), the proposed inverter
can properly operate in the presence of the resistive—capacitive
load (R =110 Q and C = 30 mF), where the load current
leads its voltage. In Fig. 16, the experimental results of the
proposed MLI in the case of occurring step changes in the
load are shown. In Fig. 16(a), the sudden load decrease from
R =110 to R =86 Q leads to a step change in the load
current’s amplitude (2.5 to 3.6 A). In Fig. 16(b), the sudden
load increase from R =86 2 to R = 110 Q2 leads to a step
change in the load current from 3.6 to 2.5 A. As seen, the
inverter is able to generate the desired 9L output voltage
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FIGURE 16. Load current (i, (t)) and voltage (v.(t)) in presence of step
change (a) decreasing load (b) increasing load.

leading to a sinusoidal current. Hence, the proposed MLI
is able to maintain its proper operation despite the changes.
All experimental results are obtained on a laboratory proto-
type of the proposed inverter supplying local loads at 220 V,
50 Hz, chosen to emulate typical grid-connected operating
conditions. Although the prototype was operated with these
grid-equivalent loads rather than being directly tied to the
utility grid, full-scale grid-connected operation (such as the
minimum dc-link voltage requirement, active and reactive
power injection, and behavior under voltage sag) is analyzed
and validated through the detailed simulation studies pre-
sented in the previous sections. Consequently, based on both
experimental and simulation results, which are all in complete
agreement with the analysis, the proposed CG-TL 9L MLI has
desirable dynamic performance, making it a suitable option
for practical modern applications such as renewable energy
systems.

V. CONCLUSION

In this article, a new eight-switch 9L CGSC-TL MLI is
proposed. This inverter can provide advantages, such as em-
ploying fewer or comparable number of components, having
CG structure resulting in the elimination of leakage current,
voltage-boosting ability (maximum value of gain equal to
2), active and reactive power supporting capability, limited
CCCS resulting in lower power losses, longer life cycle for
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capacitors, and mitigated EMI, extensive input voltage capa-
bility, TL structure, no sensors needed for balancing of the
voltages of capacitors, and less/close voltage stress on the
components. These merits are all proved by comprehensive
comparison results. The performance of the proposed MLI
is validated in MATLAB/Simulink environment. As proved,
under step changes in input dc voltage and reference active
and reactive power injection into the grid, the dynamic per-
formance of the inverter is completely desirable. In addition,
comprehensive experimental results are presented to prove the
performance of the proposed inverter. The aforementioned
features make the proposed CGSC-TL 9L MLI a superior
option for renewable energy applications such as solar PV
systems.
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