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Abstract

Satellite radar interferometry (InSAR) techniques can monitor the ground deformation
with millimeter precision. With Time-series InSAR (TInSAR) methodology, the ground
deformation time series can be derived from InSAR observations. One of the important
ways to analyze the InSAR deformation time series is to parameterize the InSAR defor-
mation time series with deformation models.

The previous ways of modelling InSAR deformation time series are usually point-
wise, i.e. they focus on the deformation models of single InSAR measurement points.
The deformation model of each point is either assumed to be a linear function of time,
or is selected from the predefined alternative models. The point-wise modeling method-
ologies can well interpret the deformation behavior of each point, but is limited on mod-
eling the spatial deformation patterns.

In this study, we design and implement methodologies to model the spatio-temporal
deformation patterns, based on given spatial smoothness information of the deforma-
tion. We introduce a work flow to digest the spatial smoothness information from ex-
ternal sources, and use the information to improve the functional and stochastic model.
We also propose a model selection methodology based on hypothesis testing to select
the the most probable spatio-temporal deformation model from given potential mod-
els. The spatio-temporal deformation modeling methodology is applied to the simulated
data, as well as the real InSAR measurements. We apply the spatio-temporal deformation
methodology to study the deformation in a hydrocarbon production field in California,
and successfully detect the instantaneous uplifting and subsiding events. Based on the
simulation and real case study, we conclude that given proper contextual information,
spatio-temporal deformation modeling is able to derive the deformation model in both
temporal and spatial domain, and has a good performance on parameterizing the non-
linear deformation behavior in the temporal domain.






Nomenclature

List of acronyms
BLUE Best Linear Unbiased Estimation
DEM Digital Elevation Model
DePSI Delft implementation of Persistent Scatterer Interferometry
DIA Detection, Identification and Adaption
DInSAR Differential Interferometric SAR
DS Distributed Scatterer
ERS European Remote-Sensing Satellite
GNSS Global Navigation Satellite System
GPS Global Positioning System
LOS Line-Of-Sight
LSE Least Squares Estimation
MDV Minimally Detectable Value
MHT Multiple Hypothesis Testing
OMT Overall Model Test
PS Persistent Scatterer
PSI Persistent Scatterer Interferometry
Radar Radio Detection And Ranging
Radarsat Canada’s Radar Earth Observation Satellite
RMS Root Mean Square
SAR Synthetic Aperture Radar
SBAS Small Baseline Subset Method
SLC Single Look Complex
SRTM Shuttle Radar Topography Mission

TerraSAR-X German Radar Earth Observation Satellite
VCM Variance Covariance Matrix
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Nomenclature

List of symbols
cm Centimeter
km Kilometer
m Meter
mm Millimeter
rad Radian
yr Year
A Design matrix
B Baseline
C Complex phasor
C Cluster
D Amplitude dispersion;
Magnitude of outlier
d Pseudo observations
D{:} Dispersion operator
E{} Expectation operator
e Residual between model and observation
FL) Fourier Transform operator
Z~1() Inverse Fourier Transform operator
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Design matrix of regualrization
Null hypothesis

An alternative hypothesis
Number of observations
Number of unknown parameters
Reference epoch

InSAR measurement point
Variance-covariance matrix
Degree of freedom (dimension)
Number of ground targets
Reference point

Ground target

Test statistics

Test ratio

Epoch where breakpoints occur
Epoch where steps occur
Epoch where outliers occur
Deformation velocity

Phase wrapping operator



Nomenclature

IS S

Unknown parameters
Observations

Variogram

Level of significance;

Angle between two-satellite baseline and horizontal direction
Exponents of atmospheric magnitude
Velocity change after a breakpoint
Epoch where outlier occurs

Power of test (discriminatory power)
Wavelength of radar;

Noncentrality parameter;

Wavelength of atmospheric signal
Non-linear deformation

Standard deviation

Unwrapped SLC phase

Wrapped SLC phase

Wrapped interferometric phase
Unwrapped interferometric phase

Minimal detectable value
Magnitude of step
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Introduction

1.1. Motivation

Satellite radar interferometric techniques can provide deformation time series of ground
targets. The deformation time series can be parameterized in order to detect the spatial
and temporal pattern/change. In this work, we focus on the improvement of the param-
eterization of deformation time series, given relevant contextual knowledge.

1.2, Background

Satellite radar interferometric techniques (InSAR, Interferometric Synthetic Aperture
Radar) has evolved into an important geodetic tool in the last few decades (Masson-
net, 1994; Bamler and Hartl, 1998; Hanssen, 2001a). InSAR techniques do not require an
in-situ survey and can monitor the ground deformation in all weather condition, with
high spatial resolution, medium temporal resolution, in a large scale. It has been ap-
plied to measure various deformation phenomena of earth surface, such as earthquakes
(Massonnet et al., 1993), groundwater flow (Amelung et al., 1999; Abidin et al., 2005), ice
motion (Goldstein et al., 1993; Gray et al., 1999), and land slides (Rott et al., 1999) and so
on.

The inherent limitations of InSAR technique is the decorrelation effect mainly caused
by three factors (Hanssen, 2001a; van Leijen, 2014; Samiei Esfahany, 2017): 1) the dis-
turbance of atmospheric noise (atmospheric decorrelation), 2) the change of ground
scattering characteristics (temporal decorrelation), and 3) the different imaging geome-
tries due to the satellite repeat orbits are too far apart (geometric decorrelation). These
limitations have been overcome by the development of the time-series InSAR (TInSAR)
methodologies, which use a stack of radar acquisitions of the same area. The typi-
cal methodologies of TInSAR are Persistent Scatterer Interferometry (PSI) method (Usai,
1997; Usai and Hanssen, 1997; Ferretti et al., 1999a, 2000c), the Small BAseline Subset
(SBAS) method (Berardino et al., 2002; Mora et al., 2003), and hybrid methods (Lanari
et al,, 2004; Hooper, 2008; Ferretti et al., 2011). These approaches are based on assump-
tions regarding the spatial and/or temporal smoothness of the deformation signal, and
derive the deformation time series based on InSAR phase observations.



2 1. Introduction

The TInSAR methodologies have evolved in the last decade (Berardino et al., 2004;
Ketelaar, 2009; Ferretti et al., 2011; van Leijen, 2014), and have been applied to study the
deformation phenomena of a large variety of objects, for instance volcano region(Usai
etal., 2003; Hooper et al., 2007; Papoutsis et al., 2013), earthquakes (Lanari et al., 2010),
permafrost (Bell et al.,, 2008; Chen et al., 2012), oil/gas production activities (Ketelaar,
2009), flooding risk (Dixon et al., 2006), mining activities (Caro Cuenca et al., 2013), and
civil infrastructures (Zeni et al., 2011; Chang et al., 2014). The ground deformation be-
havior is represented by the deformation time series of InNSAR measurement points.

When interpreting the InSAR deformation time series, two basic components can be
recognized: the component caused by the deformation phenomena, which is known as
the deformation signal, and the component contributed by other effects, such as topo-
graphic residual or atmospheric residual, which is recognized as noise.

TInSAR methodologies provides deformation time series for all InNSAR measurement
points, on all observation epochs. However, interpreting the deformation time series
point by point, epoch by epoch, may not always be an optimal way to study the defor-
mation behavior based on InSAR deformation time series. Because 1) To numerically
analyze the InSAR deformation time series, the parameterization is required. 2) The In-
SAR observation per epoch is not purely signal without any noise. Therefore interpreting
InSAR deformation time series epoch by epoch may result into interpreting noise. 3) In
case of a large volume of InSAR measurement points, point-wisely analyzing deforma-
tion time series may lead to a large computational effort. Due to 1), 2) and 3), we attempt
to explore an efficient and systematic strategy to parameterize the InSAR deformation
time series.

By applying parameterization, one assumes that the deformation signal of interest
exists in the deformation time series, and follows a certain deformation model. All the
differences between this deformation model and the deformation signal are interpreted
as noise. The parameter(s) of the deformation model can be estimated from the defor-
mation time series. Then the deformation behavior can be interpreted by the deforma-
tion model parameters. In this way, one does not need to interpret the deformation of
all InSAR measurement points at all epochs.

A common way to parameterize the deformation time series is to assume that the
deformation of every InSAR measurement point is a linear function of time, and esti-
mate the deformation velocities for every point (Teunissen, 2003b, 2006; Caro Cuenca,
2012). However, for some points with a non-linear component in their deformation time
series, the linear deformation model may misinterpret the non-linear deformation com-
ponent as noise. To better parameterize their temporal behavior of a single InSAR mea-
surement point, the kinematic time series modeling (i.e. deformation modeling) method
has been proposed, which selects the optimal deformation model for an InSAR mea-
surement point from the predefined most probable models (Chang and Hanssen, 2015;
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Chang, 2015). The model selection is based on the theory of multiple hypothesis test-
ing (Teunissen, 2000b). This method has been successfully applied on monitoring civil
infrastructure (Chang et al., 2014; Chang, 2015).

In some cases, besides InSAR observations, one may also have apriori information on
the spatial smoothness of deformation signal. This information is acquired from exter-
nal sources,i.e. from expert knowledge experience or extra observations. They describes
the spatial similarities of the deformation behavior of InSAR measurement points. For
instance, one may know that several InSAR measurement points follow the same defor-
mation model because they locate on the same building. This contextual information on
spatial smoothness have not been properly utilized for deformation time series model-
ing, since the existing modeling methods, such as kinematic time series modeling, tend
to model the deformation for each single InNSAR measurement point. This thesis will
focus on the improvement of the InSAR deformation time series modeling, given infor-
mation on the spatial smoothness of deformation signal.

1.3. Problem statement

The kinematic time series modeling method has a good performance on modeling the
deformation time series of a single InSAR measurement point. However, it is limited on
taking into account the spatial smoothness between InSAR measurement points. This
smoothness results into spatial correlation between InSAR measurement points.

The spatial correlation can be recognized from two aspects in InSAR deformation
time series modeling. 1) From the stochastic model aspect, some certain types of noise
in the InSAR measurements, e.g. atmospheric noise, are spatially correlated (Hanssen,
2001a; Samiei-Esfahany and Hanssen, 2013). When modeling the deformation time se-
ries per InSAR measurement point, the spatial correlation of noise cannot be specified
by the stochastic model. 2) From the functional model aspect, the deformation behavior
may show spatial correlation, e.g. in a deformation bowl, the variation of deformation
velocity may follow a spatial model (Ketelaar, 2009). This spatial variation cannot be pa-
rameterized in the functional model, if the InSAR measurement points are treated to be
independent.

As a result, when modeling InSAR deformation time series per InSAR measurement
point, the apriori stochastic model will be defective, because of ignoring the spatially
correlated noise, and the functional model will not be able to represent the spatial be-
havior of deformation. If the apriori knowledge on the spatial smoothness is not avail-
able, modeling deformation point by point will be the only option. However when cor-
rect information on the spatial smoothness is given, modeling the InSAR deformation
time series per InNSAR measurement point is no longer an optimal way to parameterize
the deformation behavior. In this case, to extract reliable geometrical information from
InSAR observations, the spatial smoothness information should be integrated.
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1.4. Research objectives

In order to resolve the research problem mentioned in section 1.3, this study focuses on
developing and demonstrating methodologies for deformation modeling, particularly in
the spatial domain. The main research question is defined as:

How to optimally digest spatial smoothness information of the presumed deforma-
tion signal in the mathematical model, to estimate the spatio-temporal deformation
of InSAR measurements points, and assess the quality of the results?

In the scope of this main question, three research questions are considered:

1. What is the optimal functional model and stochastic model?

The first research question focuses on the parameterization of deformation time
series of all InSAR measurement points. The functional model refers to the (lin-
earized) spatio-temporal relationship between the deformation time series com-
puted by TInSAR and the (unknown) deformation parameters. The stochastic
model is expressed as a variance-covariance matrix (VCM), which describes the
noise of the InSAR observations. To design the optimal functional and stochastic
model, we use the Gauss-Markov model to describe the functional and stochastic
relations (Gauss, 1809), and we use hypothesis testing to determine the optimal
functional model.

2. How to digest spatial smoothness information?
The estimation of the spatio-temporal deformation relies on the apriori informa-
tion on the spatial smoothness of the deformation signal. We recognize the spatial
similarities between InSAR measurement points based on the contextual infor-
mation on the spatial smoothness of the deformation signal. The methodology of
digesting contextual information will be developed in this study.

3. How to assess quality of results?
The quality of the modeling results can be assessed from two aspects: 1) Precision,
which represents the fit of deformation model to the InSAR data. 2) Reliability,
which represents the imperfection of the chosen model.

1.5. Research limitations

This study will neither address any of the TInSAR data processing techniques (Berardino
et al., 2004; Ferretti et al., 2011; Hooper, 2008; van Leijen, 2014; Samiei Esfahany, 2017),
but rather focus on the post-processing techniques, using the output of the TInSAR pro-
cessing chain. We will also not focus on improving the deformation modeling of every
single InSAR measurement point (Chang, 2015; Chang and Hanssen, 2016), but a better
model of the deformation behavior for the whole area of interest, taking into account the
spatial smoothness information. The contextual information on the spatial smoothness
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of InSAR measurements will be used to aid the spatio-temporal deformation modeling.
However, this study will not focus on how to acquire contextual information, but focus
on how to digest it when it is given, and import this information into deformation mod-
eling.

1.6. Thesis roadmap

Chapter 2 gives a review of radar interferometry and the mathematical methodologies
used in this study. The InSAR principle and the existing TInSAR methodologies will be
introduced. Also, the linear model estimation method will be presented.

Chapter 3 focuses on the theory of spatio-temporal deformation modeling. We pro-
pose a modeling method to select the optimal spatio-temporal model for the deforma-
tion of the area of interest. We provide a generic way to introduce the spatial smoothness
information into deformation modeling. The methodology of quality assessment is in-
troduced.

Chapter 4 applies the spatio-temporal deformation modeling method to simulated
data and assesses its performance, given different kinds of spatial smoothness informa-
tion.

Chapter 5 applies the spatio-temporal deformation modeling method to real InSAR
measurements, and analyzes the deformation over a hydrocarbon production area.

The conclusions, contributions, and recommendations for future research are pre-
sented in Chapter 6.

An overview of the road map of this thesis is shown in Fig. 1.1.
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2

State of the Art

This chapter introduces the background knowledge on radar interferometric techniques
(InSAR), and basic estimation theory used in this study. Section 2.1.1 provides a brief
review of InSAR, and particularly introduces time-series InSAR technique. Section 2.2
presents an introduction to the mathematical methodology used for deformation mod-
eling.

2.1. SAR interferometry

SAR Interferometry (InSAR), including time-series InSAR (TInSAR) techniques, such as
the Persistent Scatterer Interferometric (PSI) method (Ferretti et al., 2000c, 2001), the
Small BAseline Subset (SBAS) method (Berardino et al., 2002) and the hybrid methods
(Lanari et al., 2004; Hooper, 2008; Ferretti et al., 2011) are among the rapidly developing
new technologies for Earth observation from space since the late 20th century. This sec-
tion briefly introduces the InSAR principle in Section 2.1.1, and focuses on the TInSAR
methodologies in Section 2.1.2.

2.1.1. InSAR principle
A radar image can be acquired by a side-looking radar sensor, which can be mounted
on a ground based, airborne or spaceborne platform. The radar sensor transmits a
radar signal/pulse to the ground objects, and measures the complex return of the back-
scattered pulses (See Fig. 2.1(a), adapted from Bamler and Hartl (1998)). A single com-
plex return creates raw data, i.e. a so-called real aperture radar (RAR) image. Due to
the limitation of the antenna (aperture) size, the RAR images usually have a very coarse
resolution. Exploiting the fact that every ground target reflects many radar pulses dur-
ing the sensor trajectory, the raw data are subsequently combined (or focused) by signal
processing techniques in order to artificially build a long antenna and create a Synthetic
Aperture Radar (SAR) image with much higher resolution (Bamler and Schittler, 1993;
Cumming and Wong, 2005; Massonnet and Souyris, 2008).

Every pixel in a SAR image is associated with a resolution cell on Earth, sampled in
the azimuth (i.e. flight direction) and slant-range coordinate system. Each pixel of an

7
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SAR image records the signal information in the form of single-look complex (SLC). To-
gether these pixels form an SLC image. The value of every pixel in an SLC can be ex-
pressed as a complex phasor C,

C =Re(C) + jIm(C) = Aexp(jy), 2.1)

where j is the imaginary unit. Re(C) and Im(C) denote the real and imaginary parts of the
complex phasor C. A represents the amplitude of C, which measures the magnitude of
the radar reflection. v is the fractional phase of the received radar signal. The amplitude
A can be computed by

A=+/Re(C)2+Im(C)2. (2.2)

The SLC phase ¥ mainly has four components,
u] — W{\Prange + \I,atmo + \Pscat + \I,noise} (23)

where W{-} is the modulo-27 wrapping operator, and v is the wrapped SLC phase. P8¢
is the range-dependent phase. The "range" refers to the distance between the radar sen-

sor and the effective phase center of the resolution cell on the ground. ¥3tme

is the phase
delay caused by atmosphere. W is the scattering phase that is related to the distribu-
tion of all scatterers within a resolution cell. ¥"°I%¢ is the noise-related phase, caused by
system or thermal noise which is dependent on sensor specifications.

Interferometric SAR (InSAR) exploits the phase differences between two SLC (SAR)
images to get the information about the position or the displacement of the ground ob-
jects. The interferometric process refers to the complex conjugate multiplication be-
tween two SLC images. It results into a complex image, known as an interferogram. To
create an interferogram, one of the two SLCs (slave image) will be coregistered to the
other SLC (master image). If C™2 and C%1a%¢ are a pair of coregistered master and

slave SLC, the interferogram Iyis can be computed by

Ins = Cmaster(cslave) * AmasterAslave expj(w{wmaster _ 1//slave})’ 2.4)

Amaster Aslave

where and are the amplitude of the master and the slave SLC, respectively.
The operator * denotes the complex conjugate. ™" and 8¢ are respectively the
SLC phase of the master and slave image. Considering Eq. (2.3), the interferometric
phase of a pixel in the interferogram can also be written as the summation of the same

four components

(Pw _ W{wmaster _ wslave} — W{(prange + (patmo + (pscat + (pnoise}’ (2.5)

intf —
where ¢’ . is the wrapped interferometric phase. The four unwrapped components,
i.e. prange MO pscatter gnq phoise are contributed by the differences of four compo-
nents in the master and the slave, i.e. the range, atmospheric delay, scattering phase,

and interferometric noise component, respectively
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The atmospheric phase ¢™° is the result of the difference between the atmospheric
phase components in master and slave acquisitions. It has been studied by Goldstein
(1995); Zebker et al. (1997); Massonnet and Feigl (1998); Hanssen (2001a); Ding et al.
(2008) and Liu (2012).

The scattering phase ¢*“"" is induced by the difference in scattering phase be-
tween the master and slave acquisitions. This difference degrades the interferometric
coherence, known as decorrelation. It has been studied by Zebker and Villasenor (1992);
Hanssen (2001a).

The interferometric noise phase ¢"°'* is due to different noise contributions comes
from the system thermal noise and processing-induced noise (Samiei Esfahany, 2017).

When monitoring ground deformation using InSAR, one wants to extract deforma-
tion component from InSAR observation. The deformation is related to the ground tar-
get moving away/toward the satellite between the master and slave acquisition. This
movement is one of the contributions to the change of slant-range. Therefore the de-
formation should be derived from ¢™"¢, and the other components in ¢’ . will be con-
sidered as noise. The phase component ¢'"8¢ can be further decomposed into three
components: 1) the flat earth phase ¢3!, the topographic phase ¢°P° and the deforma-
tion phase ¢3¢, ¢™"8¢ can be written into the summation of the three components, as
(Hanssen, 2001a; Samiei Esfahany, 2017)

(prange — (pﬂat + (ptopo + (pdefo‘ (2.6)

To derive the deformation component ¢3¢ from ¢™"8¢, we investigate InSAR imaging
geometry as shown in Fig. 2.1(b), which is adapted from Bamler and Hartl (1998).

As shown in Fig. 2.1(b), in a repeat-pass InSAR imaging, the SAR sensor at height Hg,¢
acquires the master and slave from different positions in space and at different times,
forming a spatial baseline B, which can be decomposed into two orthogonal compo-
nents: 1) By in the satellite’s line of sight (LOS) direction, which represents the parallel
baseline, and 2) B, in the orthogonal direction of the LOS direction, which represents
the perpendicular baseline. The baseline orientation angle « is the angle between B
and the horizontal plane. Satellite radar looks at ground surface with a looking angle 6,
and 0;,, is the incidence angle of radar signal w.r.t. the reference ellipsoid surface. The
ground object has an elevation of H w.r.t. the reference ellipsoid. Three components of
range-dependent phase ¢p""8¢ can be computed:

* Flat earth phase ¢f12%: This phase component is the effect of a reference surface,
and exclusively depends on the viewing geometry. It can be approximated based
on the so-called far-field approximation (Zebker and Goldstein, 1986; Hanssen,

2001a), as:
Y4
flat _ =%
¢ A

where A is the wavelength of radar signal.

4
By = TBsm(H -a), 2.7




10 2. State of the Art

Satellite flight
direction

Rnage
direction

ditrction

Figure 2.1: (a) SAR and (b) repeat-pass InSAR imaging geometry, adapted from Bamler and Hartl (1998). (a):
The satellite at height Hsat moves along the azimuth direction, and the on-board radar transmits radar signal
along the range direction, forming a footprint of a single purse. As the satellite flying, a swath along the azimuth
direction can be imaged. (b): Two SAR sensors, master and slave are at a distance, i.e. baseline B, which
can be decomposed into the parallel baseline B| along the LOS direction, and the perpendicular baseline B |
perpendicular to the LOS direction. The angle between the baseline B and the horizontal plane is defined
as the baseline orientation angle . The incidence angle 0; . is the incidence angle of radar signal w.r.t. the
reference ellipsoid surface. The ground object has an elevation of H w.r.t. the reference ellipsoid.

 Topographic phase ¢'°P°: This component is the effect of the surface height above
the reference surface. Similar to the flat earth component, it solely depends on the
viewing geometry, and can be computed as (Zebker and Goldstein, 1986; Hanssen,
2001a):

(Pmpo _ —A4x BJ_

———H, 2.8
A Rsin(@i,w) ( )
where R is the distance from the ground target to the satellite sensor of the master

acquisition.

* Deformation phase ¢9¢®: This component is the effect of the displacement be-
tween the acquisitions of master and slave. It can be computed as

_ax
pdefe = —Dios, 2.9)

where Dy g is the deformation along radar LOS direction.

InSAR processing estimates the LOS deformation Dips from the interferometric
phase ¢/0 .. In the processing, the apriori information (e.g. external DEM, precise or-
bit data) are required. Also, proper algorithms (e.g. corregistration, filtering and phase
unwrapping algorithms) need to be applied. Many researchers have been working on
InSAR processing methods, see the examples as Goldstein et al. (1988); Lee et al. (1994);

Bamler and Hartl (1998); Kampes and Usai (1999); Hanssen (2001a); Ferretti et al. (2007);
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Sandwell et al. (2011). Note that detailed explanation of InSAR processing steps is be-
yond the scope of this study.

2.1.2. Time-series InSAR techniques
As introduced in Section 1.2, the application of InSAR on deformation monitoring can
be limited by three factors (Hanssen, 2001a; van Leijen, 2014; Samiei Esfahany, 2017):
1) the disturbance of atmospheric noise (atmospheric decorrelation), 2) the change of
ground scattering characteristics (temporal decorrelation), and 3) the different imaging
geometry due to the satellite repeat orbits are too far apart (geometric decorrelation).
To cope with these limitations, the time-series InSAR (TInSAR) methodologies have been
developed, which systematically exploit a number of interferograms from the same area.
TInSAR methodologies separate the atmospheric effect by stacking methods
(Sandwell and Price, 1998; Wright et al., 2001; Lyons and Sandwell, 2002), based on the
fact that atmospheric effects are mostly uncorrelated temporally, but correlated spatially
(Hanssen, 2001a). Based on these spatio-temporal characteristics, the atmospheric ef-
fects can be separated from other signals. And in this way the atmospheric decorrelation
can be mitigated.

Coherent Incoherent Coherent Incoherent
point scattering point scattering distributed scattering distributed scattering
- S ST -
_ | 2= J,d
- —_Il = —_Il n __|l—_‘lJ 4 _Tl a]
47 J 0, Ja7A
Im Im Im Im
) )

Figure 2.2: Point scattering versus distributed scattering in case of coherence or incoherence. Top) Scattering
objects within a resolution cell at two acquisitions (indicated by the black and gray reflecting objects). A large
object corresponds to a strong reflection, whereas the small objects represent weak reflections. Middle) Pha-
sors for the two acquisitions (again in black and gray). Bottom) Examples of scattering objects. Adapted from
van Leijen (2014).




12 2. State of the Art

There are in general two ways to cope with the temporal and geometric decorrela-
tion: one is to discriminate the pixels which are minimally affected by decorrelation ef-
fects, and exclusively analyze these pixels. Another way is to include the pixels affected
by decorrelation, and reduce/filter the decorrelation effect. These two ways lead to two
different kinds of TInSAR methodologies, optimized towards two types of pixels with dif-
ferent scattering mechanisms: one is the persistent scatterer (PS) which is a predominant
point scatterer within a resolution cell, and its scattering characteristics are coherent in
time. The other one is the distributed scatterer (DS), which does not contain a dominant
point scatterer, but a large number of small scattering objects in a resolution cell. DS is
affected by the decorrelation effects, and may show incoherent. van Leijen (2014) illus-
trates the PS and DS in coherent/incoherent cases, see Fig. 2.2. In general, the TInSAR
methodologies 1) exclusively analyze coherent point scatterers, i.e. PS, or 2) use proper
methodologies to process DS and mitigates the decorrelation effects, or 3) apply a hybrid
approach of 1) and 2).

The details of TInSAR processing methodologies are not within the scope of this
study. Here we demonstrate the three key steps of TInSAR methodologies:

* Pixel selection. The pixels, i.e. PS or DS which will be processed by TInSAR
methodologies are selected in this step. A PS-pixel is commonly selected based
on two criteria: 1) the spatial and/or temporal amplitude variation of the pixel
(Ferretti et al., 2001; Kampes and Adam, 2004), and 2) the spatial and/or temporal
phase variation of the pixel (Ferretti et al., 2001; Hooper et al., 2004; Kampes and
Hanssen, 2004; Kampes and Adam, 2006; Hanssen et al., 2008). A DS-pixel is often
selected by estimating the spatial coherence or spatial phase consistency (Touzi
et al,, 1999; Hooper, 2008). The selected pixels can be recognized as the InSAR
measurements points, which will be analyzed to extract the deformation signal.

* Phase unwrapping. The interferometric phase merely contains the phase frac-
tion of the (actual) absolute phase, as it is wrapped in 27, see Eq. (2.5). The phase
unwrapping process is to reconstruct the absolute phase via estimating the num-
ber(s) of phase ambiguity. From an estimation point of view, the unwrapping
problem is inherently ill-posed, and hence the solution is non-unique (Ferretti
et al.,, 2000b; Samiei Esfahany, 2017). As a consequence, it is impossible to solve
the unwrapping problem without any apriori knowledge or assumption about the
signal of interest. The common unwrapping methods usually apply assumptions
on the spatio-temporal deformation behavior of nearby PS-pixels (or arcs) (Fer-
retti et al., 2001; Adam et al., 2003; Kampes, 2005; Hooper, 2006; van Leijen, 2014),
e.g. the difference between the phase of two adjacent pixels is not more than halfa
wave cycle (Goldstein et al., 1988; Bamler and Hartl, 1998). The result of phase un-
wrapping is the unwrapped time-series per InSAR measurements point, w.r.t. the
reference point and the same reference epoch (the same master).
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* Atmospheric-signal mitigation. The effects of the atmospheric signal, i.e. the at-
mospheric phase screen (APS), need to be mitigated for all the interferograms in an
InSAR stack. The most common approach of APS estimation is presented in Fer-
retti et al. (2000c), which is adopted by Berardino et al. (2002); van Leijen (2014).
By this method, the topographic phase and deformation phase are estimated and
subtracted from the time series of the unwrapped interferometric phase. A high-
pass filter is applied on the residuals of time series per point to acquire the at-
mospheric and other noises, because the atmospheric delay is a high-frequency
signal in the temporal domain. Then the APS per interferogram is estimated using
an interpolation method such as Kriging (Krige, 1951), since the atmospheric sig-
nal is a low-frequency signal in the spatial domain. In this way, the atmospheric
signal is mitigated.

Using TInSAR, the time series of the unwrapped deformation phase can be gener-
ated. In order to detect the spatial and temporal patterns/changes, the deformation time
series need to be parameterized. The theory of parameterization of InSAR deformation
time series will be discussed in Section 2.2.

2.2. Mathematical methodology

In this section, we focus on the mathematical methodology of modeling the InSAR de-
formation time series. Given InSAR measurements, the unknown deformation model
parameters can be estimated based on certain mathematical criteria. This section pro-
vides a brief review of the mathematical methodology used for InSAR deformation time
series modeling.

2.2.1. Least-squares estimation

To investigate the signal of interest of a certain object, e.g. the deformation of a point
target, one usually needs to build a mathematical model to describe the behavior of the
signal of interest. This process is the so-called 'modeling’ of the signal of interest. To
perform modeling, one can usually follow a typical 5-step procedure: (Tarantola, 2005):
1) define parameters, 2) build a functional model, 3) acquire measurements and build a
stochastic model, 4) estimate parameters, 5) assess quality.

At the start of modeling, one should define which parameters to use to form up the
model. The model should have a sufficient number of parameters to describe the signal.
On the one hand, if a model does not contain enough parameters, it will lose the de-
scription of some details of the signal. On the other hand, if a model contains too many
parameters, it will result into an overestimation. Excluding the unnecessary parameters
may cause losing certain details of the signal, but as long as the model still captures the
main signal behavior, this sacrifice can be considered acceptable. According to the prin-
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ciple of Ockham’s razor (Jefferys and Berger, 1992), the model with fewest parameters
that still explains the observation equally well should be preferred.
Suppose we define n unknown parameters to describe the signal, then a parameter

T
vector x=|x; X - xn] is built to represent all unknown parameters.

After the parameters are defined, the functional modelis built to define a quantitative
relation between the defined parameters and the measurements, as in

E{y}=f(0), (2.10)

where E{.} expresses the expectation operator. The vector y is the vector of the mea-
surements. The function f defines the mathematical relation between E{y} and x. If f
represents a linear relation, Eq. (2.10) can also be written as (Gauss, 1809; Markoff, 1912):

E{J_/} = Ax, (2.11)

where A is the so-called "design matrix" with the size of m x n. In case of a nonlinear
functional model, f should be linearized. This linearization is usually achieved based
on Taylor’s theorem (Taylor, 1717).

The measurements y in Eq. (2.11) are acquired by performing observations on

the physical process related to the signal of interest x and m measurements, as y =
., z
ZZ coe Zm 1 .
The underline of y indicates that the measurements are contaminated by stochastic

%

noise. The behavior of the noise can be described by the stochastic model, i.e. an m x m
Variance Covariance Matrix (VCM) Q,,,, which can be written as:

ofy Ol
D{X}:nyz ’ (2.12)
Opi " Omm

where D{.} denotes the dispersion operator. The diagonal elements of Q,,, are the mea-
surements’ noise, and the off-diagonal elements are the covariances between the mea-
surements’ noise.

Then the parameter estimation should be performed to estimate the unknown pa-
rameters. This requires us to solve Eq. (2.11), which provides the relation between E{y}
and x. However Eq. (2.11) cannot always be solved straightforwardly by multiplying AT,
since the design matrix A is not always a square matrix, i.e. when the number of the mea-
surements m equals to the number of the unknown model parameters n. When m > n,
the problem is well-posed. When m < n, the problem is ill-posed. In this study,we will
focus on the well-posed problem.

INote that in this chapter, the notations {1...m} indicates the order of all measurements, but not the epochs of
acquisitions as in Chapter 3. When the vector y represents the InSAR deformation measurements, it indicates
the InSAR deformation time series of one or more InSAR measurement points.
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In the over-determined situation, an approximate solution to Eq. (2.11) is obtained
by the Best Unbiased Linear Estimation (BLUE) (Gauss, 1809; Markoff, 1912), as in:

& _ TA-1 =1 AT N1
£=(ATQ,; A ATQ,y, (2.13)

where % is the BLUE of the unknown parameters x, which meets the following criteria:
e The estimator % is a linear function of the measurements ("Linear" criterion).

* The expectation of X equals to the true value ("Unbiased" criterion):

E{x} =x,Vx. (2.14)

° Among all linear and unbiased estimators, the BLUE X minimizes the residual sum
of squares (Least-Squares, LS) among all linear and unbiased estimators ("Best"
criterion):

1A%~ ylig., = min, (2.15)

where || A% — yllé_1 denotes the weighted norm (A% - )" Q; } (A% - y).
Pl ¥ Y

After the BLUE X is computed, quality control is required to evaluate the quality of
the estimation. For example, the precision of the estimated parameters can be used as
an indicator to assess the quality, given by

Qs =(ATQ; A7 (2.16)

where Qz; is the VCM of x. Its diagonal elements indicate the variances of the corre-
sponding parameters in X, while the off-diagonal elements represents the covariances
between the elements of %.

2.2.2, Constrained least-squares estimation

In Section 2.2.1, we derived the BLUE % based on Eq. (2.13). This means that X is esti-
mated fully based on the measurements y. In some situations, observations from ex-
ternal sources are also available, besides y_ These extra observations can provide infor-
mation on the functional or stochastic behavior of the unknown parameter x. A way to
formalize and exploit this knowledge of the model is to subject the least-squares estima-
tion results to the external information, by using constrained least-squares estimation.

The functional behavior of x given by apriori information can be expressed by:

E{d} = g(x), (2.17)

where d is the vector of pseudo observations. The knowledge of d is acquired from ex-
ternal information and not from real measurements as y in Eq. (2.10). The function g
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defines the relation between the unknown model parameters x and the expectation of
extra observations d. When Eq. (2.17) is linear, it can be written into

Eld} = Gx, (2.18)

where the matrix G is the design matrix of the functional model. In case that Eq. (2.17) is
non-linear, it can be linearized into Eq. (2.18) using Taylor’s theorem.
Similar as Eq. (2.12), the uncertainties of the extra observations d are defined by:

Di{d} = Qqua, (2.19)

where Q,, is the VCM of the extra observations.

With the constraints given by Egs. (2.18) and (2.19), we estimate the unknown param-
eter x following the three criteria of BLUE (see Section 2.2.1), but also subjected to the
estimation with external information. Therefore, one needs to choose whether the esti-
mation should have a better fit to the observations y, or the estimation is more subjected
to the constraint (Eq. (2.18)). One way to do this is to give a regularization parameter
(Tikhonov, 1963; Tikhonov et al., 1977). Another way is to determine this balance based
on the given VCMs, i.e. Qy, and Qg4. The "Best" criterion in Eq. (2.15) will be defined as:

A% - yI?_, +1GX—d|?_, =min,Vx, (2.20)

= = Qy = — Qu -
where % denotes the class of all linear and unbiased estimators. In Eq. (2.20), |AX —
vl and |GX — d| denotes the residuals of functional model to the observations y and
the pseudo observations d. The VCMs Qy,, and Qg4 serve as the metrics of weight in
Eq. (2.20). Based on Eq. (2.20), the BLUE £ is subjected to the pseudo observations, and
can be written as

&=(ATQ,A+G QG (AT Q) y + G Q. (2.21)

The constrained least-squares estimation allows one to import the extra information
on the functional model. If the apriori knowledge on the signal of interest is available,
e.g. given the difference of deformation velocities of two InSAR measurement points
equals to the value v, and its variance 03, then the least-squares estimation can be sub-
jected to this contextual information. If the contextual information is correct, then tak-
ing into account this information into modeling can help one to derive more physical
realistic model.

In the particular case of modeling InSAR deformation time series, the constrained
least-squares estimation imports extra information to the functional and stochastic
model of deformation. Taking into account the correct contextual information can im-
prove the modeling results.
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2.3. Summary

In this chapter, we reviewed the InSAR principle and the mathematical methodolo-
gies for InSAR deformation modeling. We introduced the generic TInSAR processing
procedure, and presented the modeling theory based on least-squared estimation and
constrained least-squared estimation. In Chapter 3 we introduce the functional and
stochastic model of modeling InSAR deformation time series.
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Spatio-Temporal Deformation Modelling

TInSAR processing derives the deformation time series of InSAR measurements points.
To study the deformation behavior of a large area with a huge number of InSAR mea-
surement points, analyzing the InSAR deformation time series point-by-point is ineffi-
cient. As mentioned in Section 2.2.1, the deformation behavior, which is the physical
phenomenon of interest in this study, can be represented by a set of deformation model
parameters, e.g. deformation velocities. These parameters can be estimated from the
InSAR deformation time series, given certain apriori knowledge and assumptions.

In this chapter, a spatio-temporal modeling algorithm of InSAR deformation time
series is introduced.

3.1. Point-wise deformation modeling

A number of temporal deformation models can be suggested by using apriori informa-
tion to describe the deformation behavior of an InSAR measurement point. Choosing
the "optimal" model among these remains a challenge. In this study, hypothesis test-
ing is applied to select the optimal model of an InSAR measurement point among all
possible models. This process is referred to as point-wise deformation modeling (Chang
and Hanssen, 2016). In Section 3.1.1, the functional model of the point-wise modeling
is introduced. In 3.1.2 we introduce how to build up the stochastic model. In 3.1.3, the
theory of selecting optimal model using hypothesis testing method is introduced.

3.1.1. Functional model
Given m+ 1 SLC acquisitions, using TInSAR processing, the InSAR measurement points
are selected and their deformation time series with m epochs can be established
w.r.t. the same reference point r and the same reference epoch o. Then for an InSAR
measurement point p, the InSAR observations representing the deformation time series
can be written as: ;

ey o vl (3.0)

where the vector y” is an m x 1 vector representing the deformation time series of point
p, where y?, i € [1, m] is the deformation of p at the epoch i, w.r.t. the reference epoch o
—1
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and the reference point r.
Conventionally, the deformation time series of p can be represented by a linear func-
tion of time (Teunissen, 2003a, 2006; Caro Cuenca, 2012), as in:

E{Zf} =ti-vP, 3.2)

where t; is the temporal baseline of the ith epoch w.r.t. the reference epoch o, and v”
is the deformation velocity of InSAR measurement point p. Eq. (3.2) is also referred to
as "constant velocity function", which is sufficient to facilitate phase unwrapping effi-
ciently.

However, due to the potential combination of driving mechanisms, the constant ve-
locity function may not be adequate for all the InSAR measurement points. When non-
linear components exist in the deformation time series of p, then the expectation of Zf
can be written as:

ElyPy=1;-vP + 7, (3.3)

where pf represents the non-linear deformation of InSAR measurement point p at the
ith epoch, w.r.t the reference epoch o and reference point p'. The term uf can be for-
mulated in different forms due to the combination of different driving mechanisms of
deformation, e.g. temperature variation (Chang et al., 2014), ground water extraction
(Sinclair, 1982) or gas production (Ketelaar, 2009). To describe the deformation behav-
ior, a library of canonical functions (Chang, 2015; Chang and Hanssen, 2016) can be es-
tablished. These canonical functions can be used as basic "building blocks" to describe
any type of deformation behavior. The canonical functions are listed as below:

* Breakpoint function. For some cases, the deformation velocity v” may not be a
constant value along time, but have several different values for specific time spans.
This deformation behavior is observed when the ground motion is directly cou-
pled to the production volumes of water or hydrocarbons (Ketelaar, 2009). The ve-
locity changes between two time spans are referred to as the "breakpoint" (Chang
et al,, 2014). To describe the deformation behavior, one can regard the deforma-
tion velocity v” as the velocity before any breakpoint occurs, and model the de-
formation velocity change w.r.t v, after every breakpoint appear. For instance, if
only one breakpoint occurs at the bth epoch in the deformation time series of p,
as shown in Fig. 3.1, the breakpoint function can be expressed as:

wary={ st , (3.4)

o (ti—tp), ti=ty
where yf (6vP) is the contribution of the breakpoint function to the nonlinear de-
formation term ,uf in Eq. (3.3). Before the bth epoch no breakpoint exist, therefore

INote that the non-linear deformation component /,tf) is an unknown deterministic parameter, and should not
be confused with a stochastic error component of the measurements.
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the velocity change equals to 0. The term dv; indicates the velocity change after
the breakpoint at the bth epoch. The term ¢, is the temporal baseline for the bth
epoch w.r.t. the reference epoch o.

30
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Figure 3.1: An example of the breakpoint function. The blue dots indicate the deformation
times series computed with TInSAR processing. The red line is the estimated deformation
model with both constant velocity function and breakpoint function. One breakpoint occurs
at the June 8th of 2011. The deformation time series are derived from actual Radarsat-2 SAR
data with 5.6cm wavelength.

Now we extend Eq. (3.4) to the case of multiple breakpoints. Given n; breakpoints
which occur at epoch [by, by, ..., by, ], where nj, € [1, m — 2] since the breakpoint
cannot occur at the first and the last epoch of the time series. Then the breakpoint
function can be written as:

0, i<ty

ov1(ti —ty), Iy SE;<Ip,

1l ©vP) =1 6uy (ty, — t,) + 802 (L — 1),y < 1; < Iy, (3.5)

OV (tp, = tp) + -+ + 00, (ti = 1, ), Ty, S Li<1p, ,

where [6v1,6v2,- -+, 6vy, ] are the velocity changes of the 7y, time spans after the first
breakpoint occurs.

 Step function. Sometimes the instantaneous events or unwrapping errors may
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Figure 3.2: An example of the step function together with constant velocity function. The blue
dots indicates the deformation times series computed with TInSAR processing. The red line
is the estimated deformation model with both constant velocity function and step function.
One step occurs at May 1st, 2012. The deformation time series are derived from Radarsat-2
SAR data with 5.6cm wavelength.

reveal themselves as jumps in deformation time series. In this situation a step
function can be introduced. If one step occurs at the sth epoch in the deformation
time series, as shown in Fig. 3.2 the step function is

pf (AP) = H(t;, t) AP, (3.6)

where ,uf (AP) is the contribution of the step function to the nonlinear deforma-
tion term ,uf in Eq. (3.3). The term ¢, is the temporal baseline of the sth epoch
w.r.t. the reference epoch o. The scalar A¥ represents the step magnitude at the
sth epoch of InSAR measurement point p. The Heaviside step function H (Weis-
stein, 2008) is written as

0, ti<ts

H(z, 1) = ) (3.7

1, =t

where the value of the Heaviside step function H(#;, ;) can only be either 0 or 1.

Now we extend Eq. (3.6) to multiple steps situation. Given ng steps which occur
atepoch [s1, $2,..., Sp,], where ng € [1, m — 2] since the step cannot occur at the first
and the last epoch of the time series. Then the step function can be expressed as

ul (AP) = H(t, 1) A5 +H(L, )AL, + -+ H(t, 15, ) A, (3.8)
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Figure 3.3: An example of the outlier function together with constant velocity function. The
blue dots indicates the deformation times series computed with TInSAR processing. The
red line is the estimated deformation model with both constant velocity function and out-
lier function. One step occurs at Dec 22nd, 2009. The deformation time series are derived
from Radarsat-2 SAR data with 5.6cm wavelength.

where [A, AL,---, AL, ] are the magnitude of all steps occurring in the deforma-
tion time series of INSAR measurement point p.

Outlier function. A jump can also exist at a single epoch in the time series, which
is referred to as the "outlier function" in this study. The outlier function does not
only describe errors in the deformation time series, e.g. unwrapping errors, but
can also represent the instantaneous offset due to actual physical events. Given
ne outliers at the epoch [e1,€2,...,€5,,.] in the deformation time series of the InSAR
measurement point p, the offset function can be written as

uf (DP) = K(t;, t,) DY, (3.9)

where ,uf (DP) represents the contribution of the outlier function to the nonlinear
deformation term uf in Eq. (3.3), and D, is the magnitude of the outlier at epoch
i. K(¢,t;) is the Kronecker delta (Kaplan, 1952) as in

1) tl = tEr
K(t, L) = , (3.10)
0, else
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where the outliers occur at epoch f; and n, € [0, m — 2] is the total number of out-
liers.

Sinusoid function. When studying the deformation over peatland and permafrost
area, the sinusoid function (Kampes, 2005; van Leijen and Hanssen, 2008) can be
applied to describe the deformation, (Brown and Kupsch, 1974; Wu et al., 2002;
Glaser et al., 2004) as in

uf(S’”, CP)=sin(2nt;)-SP + (cos(2nt;) —1) - CP, (3.11)

where uf (8P, CP) is the contribution of the sinusoid function to the nonlinear de-
formation term pf in Eq. (3.3). The coefficients SP and C” represents the seasonal
periodic deformation with the amplitude v/ (SP)? + (CP)2. Note that ¢; here has the
unit of year.

Exponential function. For post-seismic deformation (Savage et al., 2003), land-
slides (Montgomery et al., 1998) or soil settlement or compaction (Verruijt and
Van Baars, 2007), an exponential function may be the optimal parameterization,
ﬁ)) .KP (3.12)
B ’ '
where uf (xP, BP) is the contribution of the exponential function to the nonlinear
deformation term /Jf in Eq. (3.3). The term «” scales the function, and the charac-

ul ocP, Py = (1 - exp(~

teristic time B” is associated with the decreasing relaxation in time.

The exponential function is a non-linear function of time. Therefore it needs to be
linearized by Taylor expansion (Taylor, 1717) in order to estimate the parameters
(Teunissen, 1989). Such nonlinear least squares estimation is prone to a biased
estimation, i.e. E{X} # x, due to the neglect of the second- and higher-order terms
of Taylor expansion. Therefore, in some cases, the piecewise linear model can be
considered as an alternative approach.

Based on the library of canonical functions, the nonlinear term uf in Eq. (3.3) can be
expressed as one particular canonical function, or the combination of several canonical
functions in the library. Therefore one needs to decide the optimal model to parameter-
ize the deformation behavior of the InSAR measurement point p. The hypothesis testing
can be applied to make this decision, which will be introduced in Section 3.1.3.

3.1.2. Stochastic model
When no priori knowledge about the noise in the observations y” is available, we can
start to build a simple stochastic model as

D{y"} = Q" = 0%, Ryy, (3.13)



3.1. Point-wise deformation modeling 25

where QP is the m x m VCM of the deformation time series at all epochs of InSAR
measurement point p. The diagonal entries represent the variances of y”, and the
off-diagonal entries describe the covariances, i.e. the correlated noises. Th_e stochastic
model consists of a variance of unit weight o2, and a cofactor matrix Ry,. If we assume
all InSAR measurements to be equal weighted and independent, then Ry, = I, where
I is an diagonal unit matrix. The variance of unit weight g2, can be fixed from expe-
rience, e.g. 9 mm? for TerraSAR-X, or 25 mm? for RADARSAT-2 (Ketelaar, 2009; Chang
etal., 2014).

An alternative way to build the stochastic model of y? is based on apriori information
on the two major components of the InSAR measurement noise: the Scattering noise and
the Atmospheric noise, (Hanssen, 2001a) which are introduced as below:

* Scattering noise is a combination of the thermal noise, the scattering mechanism,
and the resampling/coregistration errors. The scattering noise has been well-
studied in the InSAR community (Marinkovic et al., 2008; Ferretti et al., 2007).
Given InSAR measurement point p, we use 0y to represent the phase standard
deviation caused by scattering noise in the SLC phase observations of point p.
According to previous studies (Ferretti et al., 2001), the standard deviation oy, is
assumed to have a strong correlation with the normalized amplitude dispersion
D,, asin

Oq
Dy=—"2 =0y, (3.14)

a
where D, is the normalized amplitude dispersion of p. The terms y, and o, are

respectively the temporal mean and standard deviation of the amplitude time se-
ries of p. The phase standard deviation is in rad, and is converted to meters as:

On= %Uu/, (3.15)
where o, is the standard deviation in meters, and A is the radar wavelength. The
scattering noise in the SLC observations of InSAR measurement point p is consid-
ered to be independent between each other (Ferretti et al., 2001; Marinkovic et al.,
2008). However for y” which is the InSAR observations on deformation time se-
ries , each of its elements, i.e. y’” is the double difference between the SLC obser-
vation of point p at the ith epoch w.r.t. the reference epoch o and the reference
point r. Therefore the scattering noise in y? is correlated between epochs, due to
sharing the same reference epoch and reference point. Then the scattering noise

component in the full matrix VCM of y? will be:
Ugcat(lo’ pr) O-scat(12 pr) - scat(lm pr)
p agcat@l’pr) scat(zo’pr) scat(zm pr)
Qgcat = : ) _ , (3.16)

agcat(ml’pr) Ugcat(mz’pr) Ugcat(mo’pr)
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where QScat
with i,j € [1,m] can be written as: (Hanssen, 2001a; Samiei-Esfahany and
Hanssen, 2013)

is the VCM of y” caused by scattering noises. Its element o2, (i j, pr),

2 . 2
Oscat(i0, pr) =407,

5 .. ) (3.17)
Uscat(l]’ pr) =20

where 2, (io, pr) denotes the scattering noise variance of y” and 02, (ij, pr) is

scal
the covariance between two double difference observations yf and y;’

Atmospheric noise is one of the dominant error sources in InSAR data (Hanssen,
2001a). It is mainly caused by the heterogeneity of the wet component of atmo-
sphere, which delays in the transition of radar signal. Previous studies (Hanssen
and Klees, 1998; Emardson et al., 2003) show that the variability of atmospheric
noise between two points increases with distance between the points, which can
be described by a variogram model as in(Hanssen, 2001a; Liu, 2012)

1
ail) =% e T, (3.18)

where z; () represents the variogram of atmosphere delay between two points at
the epoch #;, with [ the distance between the two points. The term o2, , Tepresents
the atmosphere variance factor at the epoch ¢;, and L, the decorrelatlon distance
at the epoch ¢;. The two parameters of the variogram model, i.e. o, and L, can
be estimated from the atmospheric data, which can be acquired by atmosphere
filtering in TInSAR processing. Considering the double differences, based on error
propagation law, the atmosphere component in the full matrix VCM of y” is

Uitm(lo'pr) Uitm(l&Pr) altm(lm pr)
Qp o.gtm(zL pr) Uﬁtm(Zo, pr) A atm(Zm pr) (3 19)
atm = . , .
atm(ml pr) Uatm(mz pr) 02 (mo, pr)
where Qatm is the VCM of yP caused by atmospheric noise. Its element

atm(l],pr), with i, j € [1,m] can be written as: (Samiei-Esfahany and Hanssen,
2013)

Ipr 1
_lpr. pr
Tw; ) 2 (= Lug )

2 2 2 2 [
Oam(io, pr) =207, +20y, —207,e —207y,€

(3.20)

- £)
2 e 2 2 i
aatm(z],pr):ZUW,—Zawie Wi,

where 02__(io, pr) denotes the variance of yp caused by atmospheric noise, and

atm

02,,(ij, pr) is the covariance between two double difference observations yp and

p
Y
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After Qspcat and thm are acquired, we can use the sum of these two major component

of the VCM of Z"’ to establish the apriori stochastic model
Diy"} = Q" = Qo+ Qi 3.21)

where QP is the VCM of the InSAR deformation time series y”. Note that in Eq. (3.21),
some effects caused by the InSAR processing were not taken into account. For instance,
applying atmospheric filtering will affect the spatial-temporal correlation. One way to
improve the apriori stochastic model is to use a Monte Carlo approach to account for
these effects(Samiei-Esfahany and Hanssen, 2013).

3.1.3. Point-wise multiple hypothesis testing
In Section 3.1.1 and 3.1.2 the functional model and stochastic model of the point-wise
modeling are given. In order to determine a most probable deformation model behav-
ior of a single InSAR measurement point p, Multiple Hypothesis Testing (MHT) (Chang
etal., 2014) is applied per point.

Based on the combinations of canonical functions stated in Section 3.1.1, one can set
a null hypothesis Hj as the most likely deformation model of InNSAR measurement point
p. A set of alternative hypotheses H;’s are established besides Hy, which are the alterna-
tive deformation models of p. Without loss of generality, the mathematical expressions
for Hy and all H;’s, V j are expressed as linear systems of observation equations (Chang
etal., 2014)

Ho: E{y"} = AQ xg; Diy"1=qQ”

(3.22)
H;j:E{yP} = Afxg + CIVY; V;#0 Diy"}=Q",

where Hy and H; are the null and alternative hypothesis, respectively. The matrix Ag de-
notes the design matrix of the null hypothesis, and xé) is the unknown parameter vector
of the null hypothesis. A specification matrix C;’ and an additional vector of unknown
parameters Vf are introduced in the alternative hypothesis.

We use the "constant velocity model" as the null hypothesis Hy, as the deformation
behavior of most InSAR measurement points can be described as a linear function of
time (Teunissen, 2003a, 2006; Chang et al., 2014).

We follow a Detection-Identification-Adaption (DIA) procedure (Teunissen, 1990) to
select the optimal deformation functional model of p, from the library of canonical func-
tions. First, we determine whether the default model Hj can be sustained. In case of Hy
is rejected, the most probable hypothesis Hj, in all H;’s will be identified. The final de-
cision on whether rejecting Hy will be made by comparing Hy with Hj,. The rejection of
H directly leads to sustaining Hj,.

An Overall Model Test (OMT) is first applied to the null hypothesis Hy. The OMT
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follows a test statistic Ié’ , which is (Teunissen et al., 2005)
T RN
Iy =@ "'ey (3.23)

where Q(’; = yP - Ag g{; is the residual between the functional model of the null hy-
pothesis and the observations, and X(I; is the BLUE of xé) . The test statistic Zg fol-
lows a Chi-squared distribution L’f ~ ¥?(qo, o), where qq is the degree of freedom ap-
plied in the OMT, which can be determined by the number of redundant observations,
i.e. go = m— ny where m is the number of observations and 7y the number of unknown
parameters in Hy. The term Ay is the level of non-centrality applied of the Chi-squared
distribution of Ig , and for Hy we have Ay = 0 (Teunissen et al., 2005).
The decision of whether starting MHT is made by comparing L’)’ to a critical value:

Ko = x2,(40,0), (3.24)

where Kj is the critical value of OMT. It is computed based on the Chi-squared distri-
bution of T, g , given level of significance @y, which refers to the Type-I error: rejecting
Hj while it is true (Teunissen, 2003b). A smaller @y would result in a lower possibility of
wrongly rejecting Hy. The choice of a( is dependent on the cost of making a Type-I error,
and can be different in the application cases. Here we suggest setting ao based on the
external source of information.

The MHT will start if L’; > Kjp, otherwise Hy will be sustained. The test of every alter-
native hypothesis H; follows a test statistics I;’

=@ Qe - @) Qe (3.25)

where _éj.’ = Z” - (A(‘;J 3_2('; + Cf ﬁf ) is the residual between the functional model of the alter-
native hypothesis and the observations, and ﬁf isthe BLUE of V? .InEq. (3.25), the value
of Z;’ is always non-negative, since the model will have a better fit to the observations
when more additional parameters are added, making (_éf)J )T(Q”)‘1 Qg > (_éi.J )T(Q”)‘1 Q? .
The test statistics of alternative hypotheses follow a Chi-squared distribution as If ~
12(q i»Aj), ¥ j, where the degree of freedom ¢; = nj, and n; is the number of additional
parameters of H;. The term A; is the level of non-centrality, and A1; # 0,V j.

The criterion of selecting the "optimal" alternative hypothesis Hj, is based on com-
paring I? 's. However, when the alternative hypotheses have different degrees of free-
dom g, the distributions of I;.’ ’s are different, which makes it impossible to compare
the If s directly. One way to normalize the test statistics is to divide it by its critical value
Xz,(dj,4)), as

"
T = ——— (3.26)
Xa;(qj,A))
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where 15.’ is the fest ratio of H;. In Eq. (3.26), the critical value Xij (qj,A;) relates to the
level of significance a, the degree of freedom q;, and the level of non-centrality A;. In
MHT, the aim is to choose the optimal alternative hypothesis Hj, among all H;’s. There-
fore one should make sure that the probability of accepting each alternative hypothesis,
knowing that it is true, is identical for all alternative hypotheses. This probability is re-
ferred to as the power of test, also called the discriminatory power, y. We apply the same
Y on the test of all alternative hypothesis. This testing method is known as the B-method
of testing (Baarda, 1968), whose essence is to fix the discriminatory power and calculate
the uniform non-centrality parameter, i.e. A; = Ag, Vj (Teunissen et al., 2005)

Ao = Ay, @o, o), (3.27)

where a is the initial level of significance, and ¢go = 1 is the initial degree of freedom
(Chang et al., 2014). Then A and y are fixed. A loop runs over all H;’s, and for each
alternative hypothesis a new a; is computed as

aj =a(loy,7, qj). (3.28)

Then we can use Eq. (3.26) to compute the test ratio for all H;’s. The null hypothesis
Hj will be rejected if
TV >1 and T)= max{I;’ LoV (3.29)

where T/ is the test ratio of the "optimal" hypothesis Hj, from all H i’s. Note that when
T/ <1, the test statistic I? does not exceed the corresponding critical value xi]_ @qj, 1),
as the result the "optimal" alternative hypothesis Hj, is not more probable than than the
null hypothesis Hy, therefore Hy will not be rejected and H, will be discarded (Chang
etal., 2014).

3.2. Cluster-wise deformation modeling

In the point-wise modeling, the deformation model of each InSAR measurement point
has been determined separately, which means that until now we consider the deforma-
tion time series of all InNSAR measurement points to be independent. However, in reality,
the deformation time series of some InSAR measurement points show spatial smooth-
ness in a certain degree, which results in the spatially correlation of the InSAR measure-
ments. This spatial correlation shows in two aspects:

* The InSAR noise is spatially correlated. In Section 3.1.2 we built the stochastic
model for point-wise deformation modeling, taking into account the temporal
correlation caused by sharing the same reference epoch o. However, the spatial
correlation of noise has not been included in the stochastic model. The InSAR
noise can be spatially correlated due to: 1) the TInSAR processing produces InSAR
deformation time series w.r.t. the same reference point r (van Leijen, 2014), and 2)
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the atmospheric noise follows a "power law" in spatial domain (Hanssen, 2001a),
therefore is spatially correlated (Samiei-Esfahany and Hanssen, 2013).

* The deformation signal between InSAR measurement points can be spatially cor-
related, because some InSAR measurement points are likely to be measuring the
same deformation behavior, due to the same deformation mechanism (Ketelaar,
2009). In Section 3.1.1 and 3.1.3, we chose the optimal deformation model for ev-
ery InSAR measurement point by applying MHT, based the library of canonical
functions. However, the choice of deformation model for every InSAR measure-
ment point is independent of other InSAR measurement points. In reality, some
InSAR measurement points may measure the deformation caused by the same
driving mechanism, e.g. they measure the deformation of the same civil construc-
tion, or the same deformation feature such as a deformation bowl. These measure-
ments provide extra redundancy when estimating the deformation model which
is driven by the same deformation mechanism.

Previous studies have been done on specifying the noise-related spatial correlations, by
building up a full-matrix VCM as the stochastic model (Hanssen, 2001a; Samiei-Esfahany
and Hanssen, 2013). On the other hand, to take into account the signal-related spatial
correlation, the apriori spatial smoothness information is required. When the spatial
correlation of deformation signal is properly considered, the deformation modeling re-
sults will be more physically realistic. To import the spatial correlation into deformation
modeling, in this Section, we propose a method to group the InSAR measurement points
and model their deformation based on the given information of the spatial smoothness
of deformation signal. This group of InSAR measurement points is referred as a cluster,
and we introduce the cluster-wise modeling method in this Section.

In Section 3.2.1, the definition of a cluster will be introduced. The functional and
stochastic model of cluster-wise modeling will be introduced in Section 3.2.2 and Section
3.2.3, respectively. The model selection methodology for the cluster will be introduced
in Section 3.2.4.

3.2.1. Definition of a cluster

To take into account the spatial correlation, mainly on the signal aspect, the InSAR mea-
surement points will form the so-called "clusters", and the deformation behavior of each
cluster in the area of interest will be modeled. The spatio-temporal correlation of the In-
SAR measurement points within each cluster will be taken into account. We define a
cluster as:

A group of InSAR measurement points within a same pre-defined area, and their
deformation behavior can be described by a single spatio-temporal deformation
model.
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Then two essential questions need to be answered when defining a cluster:

* How to define the extent of a cluster? The InSAR measurement points in a same
cluster should be within the same pre-defined area. This criterion comes from the
assumption that the deformation signal is only correlated within a certain spatial
range. The extent of the area of a cluster should be defined based on this spatial
correlation range. Therefore the area of the cluster should be defined from the
spatial smoothness information of the deformation signal.

° What deformation model should be applied to describe the deformation behav-
ior of a cluster? The InSAR measurement points in the same cluster should also
follow the same deformation model. This criterion is based on the assumption
that if the InSAR measurement points are spatially close and have the same defor-
mation model, then they are likely to be measuring the same deformation behav-
ior, therefore are spatially correlated on the signal aspect. The knowledge on the
deformation behavior is then needed to answer this question.

Therefore, to define a cluster, one needs to have the apriori spatial smoothness infor-
mation on two aspects: 1) To define the spatial extent of a cluster, the knowledge of the
correlation range of deformation signal should be provided; 2) To determine the defor-
mation model that all InNSAR measurement points in a cluster follow, the knowledge on
the deformation behavior of the area of interest is required. However, the above knowl-
edge cannot be acquired from InSAR observations without any information from the
external sources. To define a cluster, the contextual information is required, which can
be provided by the following sources:

* Expert knowledge or experience. A relevant domain expert can provide knowl-
edge on the background of deformation. For instance, the previous studies have
been done using the InSAR observations to yield the parameters of the elastic
Earth model (Vasco et al., 2010). In the study, the expert knowledge provides apri-
ori knowledge on the spatial smoothness of the signal, as well as the deformation
behavior in the area of interest.

* Extraobservations. Extra observations can be InSAR observations from a different
track/sensor (Ketelaar et al., 2007), or observations using other methods such as
GPS or leveling (Odijk et al., 2003; Poland et al., 2006).

Due to the various sources and different forms of the contextual information, its utiliza-
tion is usually case dependent. We propose a generic way to import the contextual in-
formation on the spatial smoothness of deformation signal into the functional model, by
using it to define the cluster. More specifically, the information will define 1) the extent
of a cluster; 2) the deformation model of a cluster.
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The extent of a cluster

To define the extent of the area of a cluster, there are three options to extract the spatial

smoothness information from the spatial smoothness information:

Figure 3.4: An example of the cluster defined using the Option 1. The coloured dots are the InSAR
measurement points. Each red rectangle with dash lines is a cluster, which is defined based on the
extent of the ground buildings. The base map provides information on the extent of the buildings,
which is the contextual information in this case and directly defines the clusters. This definition is
based on the expert knowledge and the experience that the same building has the same deformation
driving mechanism.

Option 1. The knowledge on the extent of the ground targets is given externally. Then

the extent of a cluster can be defined based on the extent of each ground tar-
get. This is based on the assumption that if the InSAR measurement points
located on the same ground target, they will share the common deforma-
tion driving mechanism, and therefore be spatially correlated. As an example
shown in Fig. 3.4, if the contextual information gives the extent of a building
or a deformation bowl, the InSAR measurement points located on the same
building or in the same deformation bowl can be grouped into the same clus-
ter.

Option 2. An expert spatio-temporal variogram of deformation time series is given, as

well as the maximum threshold of the variogram. We assume that if some
InSAR measurement points are in a same cluster, the differences of their de-
formation should be smaller than the given threshold. Based on this assump-
tion, we divide the area of interest into equal-size grid cells, and each grid
cell is a cluster. As an example shown in Fig. 3.5, one can find the range rs
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Figure 3.5: An example of the cluster defined using the Option 2. The right figure indicates
the simulated 50 x 50 InSAR measurement points which are evenly distributed in a 10 x 10 km
area. All InSAR measurement points follow the constant velocity model. The left figure shows
a given variogram of the deformation velocity. The black line in the left graph indicates the
threshold of the variogram given by the contextual information, which corresponds to the
spatial range r g = 1421 m. According to the information of the left figure, the right figure
is divided into equal-size squared cells with the size of 1421 m with each squared cell is a
cluster.

corresponding to the maximum variogram threshold, and group all the InSAR
measurement points in the area of interest into equal-size grid cells with the
size of r¢js, and each grid cell will be a cluster.

Option 3. When the variogram in Option 2 is not given, but given the assumption that
the deformation signal is the dominant component in InSAR observations,
and the threshold of the variogram is given, then one can compute the spatio-
temporal variogram of the deformation time series of all InNSAR measurement
pointsin the area of interest, and find the range rjs corresponding to the max-
imum variogram threshold. Then we divide the area of interest into equal-
size square grid cells with the length of r5, and each grid cell will be a cluster.

The extent of the cluster is defined using one of the above three options, all based
on the given information on the spatial smoothness of the deformation signal. If the
extent of the cluster cannot be defined using the above three options, then this means
the available contextual information is not sufficient for the cluster-wise modeling. In
this case, the deformation will be modeled point-wisely, as introduced in Section 3.1.

The deformation model of a cluster

There are two options to define the deformation model of a cluster, depends on the given
information:

Option 1. The functional model, or several possible alternative models of a cluster, is
given by the contextual information. If multiple possible models exist, the
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multiple hypothesis testing method should be applied for the cluster, to select
the optimal model.

Option 2. The knowledge is given that the deformation of the cluster can be described
by the canonical functions introduced in Section 3.1.1. And the multiple hy-
pothesis testing method should be applied to the cluster to select the optimal
combination from the library.

The deformation model of the cluster should be given by one of the above two options.
Otherwise, the cluster cannot be defined, and the deformation should be modeled point-
wisely, as introduced in Section 3.1.

If the proper contextual information is given, the functional model and the stochastic
model can be built for a cluster. This will be introduced in Section 3.2.2 and Section 3.2.3.

3.2.2. Functional model

Given a cluster C, within which N InSAR measurement points [py, p2,..., pn] are situ-
ated, the deformation time series of all InSAR measurement points in C can be repre-
sented by a vector y %, as in

y= [yplnyZ,””ypN]T
_:[;Pl,i.’ym’;m,_”'ylﬂzy_”'ylﬂN]T, 330
21 Zm =1 —-m -m
where yfj with i € [1,m], j€[1, N] denotes the deformation of point p; at the ith epoch,
w.r.t. the reference epoch o and the reference point r. Here we narrow down Eq. (2.11) to
the functional model of the deformation of cluster C

E{J_/} = Ax, (3.31)

where A and x are the design matrix and unknown parameters, respectively. Eq. (3.31) is
an generic expression of the functional model of the cluster C. The structure of A and x
is dependent on the definition of the cluster C.

When pseudo observations on deformation is available, the constrained least-
squares estimation (see Section 2.2.2) can be applied. Then Eq. (3.31) can be written
into:

X, (3.32)

where d is the vector of the pseudo observations, and G is the design matrix which de-
fines the relation between the extra observations d and the deformation model parame-
ters x. The extra observations d can either be the real observations from external source,
or the pseudo observation defined by contextual information.

2In chapter 2, the vector y generally indicates the measurement vector. Here we narrow down its meaning to
the deformation time series of one or more InSAR measurement points in the cluster.
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The functional model, i.e. Eq. (3.31) or Eq. (3.32) defines the relation between the In-
SAR deformation time series and the deformation model parameters of the cluster C. It
describes the variation of deformation in both temporal and spatial domain. The struc-
ture of the functional model should be specified by the contextual information.

More than one alternative function may exist for this new functional model. This
can happen when multiple possible deformation models for the cluster C are given, or
given the knowledge that the deformation of the cluster can be described by the canon-
ical functions introduced in Section 3.1.1. The optimal deformation model of C will be
selected by cluster-wise MHT, which will be introduced in Section 3.2.4.

3.2.3. Stochastic model

Similar as point-wise modeling, the stochastic model of the cluster-wise modeling will
also be divided into the scattering noise component and the atmospheric noise compo-
nent. When building up the stochastic model for the cluster C, the spatial correlation of
noise needs to be taken into account.

Figure 3.6: An illustration of the double difference. The InSAR deformation time series of two
InSAR measurement points, i.e. p and q, are the double differences w.r.t. the same reference
point r and the same reference epoch o. Due to sharing the same reference epoch/point, the
noise in the deformation time series of point p and q is spatially correlated.
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The definition of the spatio-temporal stochastic model of multiple InSAR measure-
ment points has been studied(Samiei-Esfahany and Hanssen, 2013). Considering the
double difference w.r.t. the reference epoch o and the reference point r, as shown in

Fig. 3.6, the scattering noise component Qgcg; is:

02 (o, p17) 02 (1m, p1pN)
Qscat = : . : , (3.33)

Ugcat(m]-)ple) Ugcat(mo’ er)

where Ugcat(ij,pkpl), i,j € [1,m] and k,! € [1,N] denotes the (co)variance of double
difference caused by the scattering noise between the observation on the deformation
time series of InSAR measurement points pj at epoch i and p; at the epochs j. The
elements in Eq. (3.33) can be written into

2 2
Oscat(10, pi1) =40

2 2
Oscat(10, pip1) =20
e , - (3.34)
Oscat(l], PkT) =20
Oecari )y Pkp1) = 0°
Considering the double differences, the atmospheric noise component Qi is
(Samiei-Esfahany and Hanssen, 2013)

om0, p11) o2m(1m, p1pn)
Qatm = ) (3.35)

o4 m(ml, p1pn) 02 (mo, pnT)

where aitm(ij, prkpD, i, j€ll,mland k,[ € [1, N] denotes the (co)variance caused by the
atmospheric noise. The covariance is between the InSAR observations on the deforma-
tion time series of two InSAR measurement points at two epochs: py at epoch i and p;
at the epochs j. The elements in Eq. (3.35) can be written into

2 2 2 ) 2 (-1
7 Lw: -
Oam (10, p1) =207, +207, —207y, e i =20y, e o
2 2 2 ), (WD, D
.. T :
Uatm(l]’pkr):Zawi+ZUWj_20wie wit =2 Wje “i
ep; Ipgp;
2 _ 2 2 2 (=) 2 (= ) (3.36)
Oam (@0, pep)) =04, + 0y, +05, e Vi +oy, e fwo ’
Ipr Ippr Ipyr Ip;r
2 T, 2 =5, ~Tw) (-5.-)
—oye Vii—oye v —oy,e -0y, e v
l l 1
2 (KL ) -2

2 .. _ 2 13 T 2 I
aatm(l],pkpl)—awo+awue wo " —gy, e tw'—gy, e lwo

where [, ,, denotes the deformation between point py and p;. The atmospheric decor-
relation distance L, and the variance 0%, are derived from the variogram of the atmo-
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spheric data at epoch i. This atmospheric data can be computed by atmospheric fil-
tering algorithms when applying TInSAR processing (van Leijen, 2014; Samiei-Esfahany
and Hanssen, 2013).

Then the stochastic model for the cluster C is computed by the sum of Qgcar and Qam

D{X} = Qyy = Qscat + Qatm- (3.37)

Same as the VCM Q7 in Eq. (3.21), the effects caused by the InSAR processing on the
spatial-temporal correlation are not taken into account in Qy,,. A Monte Carlo approach
can be used to improve the apriori stochastic model (Samiei-Esfahany and Hanssen,
2013).

In this way, a spatio-temporal stochastic model for cluster C has been built. The
spatial apriori information from InSAR data itself, i.e. the spatial correlation of noise,
has been integrated into the deformation modeling.

3.2.4. Cluster-wise multiple hypothesis testing

As introduced in Section 3.2.2, based on apriori information, usually there will be more
than one alternative functional model exists for the deformation of a cluster C.Therefore
one needs to select the optimal deformation model from all the alternative models. In
this section, we introduce a way to select the optimal deformation model for cluster C,
using MHT method.

When the deformation of all InSAR measurement points in C can be represented by
the same deformation model, one can use the model combinations from the library of
the canonical functions to model deformation of C, as introduced in Section 3.1.1. In
this case, one can follow the point-wise MHT procedures to determine the optimal func-
tional model.

When spatial variation exists in the deformation of C, its functional model of defor-
mation should be specified manually in advance, based on the apriori knowledge of the
deformation properties of the area of interest. If several possible spatio-temporal defor-
mation model exists, we use cluster-wise MHT to select the optimal model from all the
potential models.

We follow the DIA procedure to perform the hypothesis testing. First we will attempt
to model the deformation of C with the simplest deformation model. Therefore we set
the the null hypothesis Hy as a "steady state", i.e. the deformation time series of the the
cluster C is a constant value. Several alternative hypotheses H;’s are established beside
Hy, which are the predefined potential models. Without loss of generality, also consider-
ing the apriori information may also provide the knowledge on the pseudo observations,
see Section 2.2.2, the mathematical expressions for Hy and all H;’s, V j, are expressed as:
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y Ao Y Qyy
Hy:E(|Z]} = ; pilLly=
o {g} Go X0 {igl} [ Qua
(3.38)
y A() C]' y ny
H;:E{|=|}= Xo + Vi, D{|=|}= ,
J a Gy 0 Gj / d [ Qaa

where the constant scalar xy indicates the constant value of deformation, and Ay is the
design matrix. A certain alternative hypothesis H; is defined by a new design matrix
C; and a new vector of additional unknown parameters V;. The stochastic model is
given by the VCM Q. The vector d is the vector of the pseudo observations. Gy is the
design matrix of the constraint for the null hypothesis Hp, and G; is the design matrix
of the constraint for an alternative hypothesis H;. Qg4 is the VCM of d. If the apriori
information gives d, it can be integrated into the cluster-wise MHT using constrained
least-squares estimation introduced in Section 2.2.2.

Note that in Eq. 3.38, the vector of pseudo observations d may not always be given,
since it is the information from the external sources. And d can be given only for the null
hypothesis, or for some of the alternative hypothesis. E.g. if d is the velocity estimation
given by external source, then it is only valid for the alternative hypotheses with a defor-
mation velocity in V. If d is not given for Hy or any of H;’s Eq. (3.38) can be written into
its special case without constrained least-squares estimation, as

Hy: E{y} = Aoxo; Diyt=Qyy
Hj:E{X}:A0x0+CjVj; D{X}:Q}’J"

(3.39)

First we will apply the OMT to test whether the null hypothesis Hy holds. The OMT
follows the test statistic T, which is

To=" Q"8 (3.40)

where g, = y — ApX,, is the residual between the functional model of the null hypothesis
and the observations, and X, is the BLUE of xo. The decision of whether starting MHT is
made by comparing T, to a critical value:

Ko = x5,(1,0), (3.41)

where a is the given the level of significance. Similar as the point-wise MHT, a, de-
pends on the cost of making the type I error. This cost varies in different cases on the
deformation modeling. In practice, we determine @ based on experience, or based on
the given contextual information.

If Hy is rejected, the cluster-wise MHT will be triggered to select the "optimal" model
from Hj’s.
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To determine the optimal functional model for the spatio-temporal deformation of
C by cluster-wise MHT, first we select out the most probable hypothesis Hj, from all pos-
sible hypotheses (i.e. Hy and H;’s).

The selection of Hj, follows a test statistic T Iz which is the test statistic of H;, and
computed as

Tj=2(Qu) "8~ (€)" Q) 7'¢, (3.42)

where T~ xz(qj,/lj), Vv j. The degree of freedom g; equals to the dimension of Hj, and

Aj = Ay, aj,q;) is the degree of non-centrality of H;. Following the conception of the

B-method of testing, a uniform power of test y is applied for all alternative hypothesis,

and compute A; for all H;, which is the B-method of testing introduced in Section 3.1.3.
The test statistics are normalized by dividing the corresponding critical value:

I;

T, = (3.43)
1 X"éj(q]',/lj)

where T i is the test ratio of H;. The optimal alternative hypothesis Hj, is selected by the
criterion
T,>1 and T, = max{T ;},V j (3.44)

where T, is the test ratio of Hp. When T, > 1, Hj, is more probable than Hp. In this way
the most probable hypothesis H, among all H;’s and Hy are selected. When Vj, T; <1,
then no alternative hypothesis is more preferred than the null hypothesis.

3.3. Quality Control

We have presented the theory of spatio-temporal deformation modeling. After the re-
sults are required, one should also assess the quality of the estimated parameters for the
validation of the results.

The quality of the estimated deformation model parameters are usually assessed by
two aspects: the level of noise, and the imperfection of the model. The former is de-
pendent on the existing noise in the InNSAR measurements, while the latter relies on the
selection of the deformation model we use to describe the deformation behavior. In this
study, we use two indexes to assess the quality of the deformation modeling: the preci-
sion and the reliability.

3.3.1. Precision

The precision describes the consistency of the modeling results. It shows the noise in-
fluence on the final estimation of the model parameters. We can use the VCM as an
indicator of the precision. According to the error propagation law, the precision of the
estimated model parameters can be written as

Qi =(ATQ, A7, (3.45)




40 3. Spatio-Temporal Deformation Modelling

where the diagonal entries of Qz; denote the variances of the estimation of the model
parameters, while the off-diagonal entries denote the covariances. A predefined thresh-
old can be set for the variances of each parameter, and the quality of an estimation will
be considered acceptable when the variance is smaller than the threshold value.

Once Qz;z is derived, the precision of the adjusted deformation observations y = AX
reads

Qpy = AQsz AT (3.46)

and the VCM of the estimations of residuals reads

26 = Qyy — Qyy (3.47)

where @ = y — j are the residuals.

3.3.2. Reliability
The precision only assesses the consistency of the estimated parameters, but it is not
sensitive to the imperfection of the deformation model itself. The concept of reliability
is introduced to describe the model misspecification, which can be detected with a dis-
criminatory power y. In this study, we introduce the Minimal Detectable Value (MDV)
(Teunissen, 1998) as an indicator of the reliability.

The MDYV specify an additional parameter that should be included in the functional
model. Suppose we already decide to model the deformation of a cluster C with mathe-
matical model model Hp : E{y} = Ax, D{y}= Qyy, then the alternative model is

Hi:E{y}= A + C V. Diyt= , 3.48
] mIEIJ_:}l mennifl mNxqqx1 {X} ny ( )

where V is a vector with dimension ¢, representing the additional parameters under the
alternative hypothesis H}, i.e. the imperfection of the model. To assess the imperfection
of a given model specified by Hy, an important value to consider is the minimum value
of the additional parameters V, which is detectable with a fixed discriminatory power 7.
We refer to this minimal value as the Minimal Detectable Value, represented by Vpy.

The MDV describes how significant a certain additional parameter in an alternative
hypothesis is, under a certain discriminatory power y. With a fixed discriminatory power
7, the true (but unknown) additional parameter is larger than Vy;py, we can state that
this parameter is detectable with the discriminatory power y.

From the perspective of y, if we set y to a high value, this means we only decide to
accept the model imperfection only with a high certainty. As a result, we can only detect
it when its value is high.

When the dimension of additional parameters g = 1, this means the design matrix C
in Eq. (3.48) reduces to an m x 1 vector ¢, and V reduces to a scalar. Then the MDV can
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be found as (Teunissen, 2000a)

Aly,a,q)
IVympvl =1 - ———— _)1/ q_ , (3.49)
1x1 ¢t QyyQesQyyc

where [Vypy| is the MDV of V, The VCM Qg; is the VCM of the residuals as in Eq. (3.47).
The operator A derives the non-centrality parameter via a given discriminatory power v,
the level of significance a and the dimension g.

When g > 1, V becomes a vector instead of a scalar. To derive the MDV, we can con-
sider V as an g dimension vector and re-parametrize V as in (Teunissen, 2000a)

V =|V|ld, (3.50)
gx1 1x1 gx1

where ||V|| is an scalar indicates the length (Euclidean norm) of vector V, with the unit
vector d varying in all dimensions. Then the MDV of V can be represented as:

Ao
IVmpvIl = — — , (3.51)
1\ areretenaica

where the vector d moves through a circle when g = 2, an sphere when g = 3, and a

hypersphere when g > 3.

3.4. Procedures of spatio-temporal deformation modeling
To describe the deformation behavior of the area of interest, we proposed two methods
to parameterize the deformation behavior with spatio-temporal deformation models,
i.e. the point-wise deformation modeling, as introduced in Section 3.1 and the cluster-
wise modeling, as introduced in Section 3.2. The former method models only the tem-
poral deformation behavior per InNSAR measurement point, the later method models the
deformation behavior in both spatial and temporal domain. The choice between the two
methods depends on the level of the spatial smoothness information. In Section 3.3 the
quality control method has been introduced. In this section we introduce the generic
procedures based on the theory introduced in Section 3.1-3.3 of spatio-temporal defor-
mation modeling, see also Fig. 3.7.

Step 1. Based on the available InSAR deformation time series of all InSAR measure-
ment points, and the available spatial smoothness information, define the
cluster C. To define C, 1) the extent of C and 2) the deformation model(s) of C
should be defined.

Step 2. Apply cluster-wise deformation modeling for all clusters, as introduced in
Step 3-4. For the InSAR measurement points not in any cluster, apply point-
wise deformation modeling per InSAR measurement point, as introduced in
Step 5-6.
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Figure 3.7: The flowchart of spatio-temporal deformation modeling.
Step 3. For each cluster C, if multiple possible deformation models exist, the optimal

Step 4.

Step 5.

deformation model should be selected using cluster-wise MHT, as introduced
in Section 3.2.

Build the functional model and stochastic model for each C. Estimate the
deformation model parameters x.

For the InSAR measurement points not in any cluster, their deformation be-
havior will be modeled using point-wise deformation modeling method. For
each InSAR measurement point p, first the OMT is applied to test the validity
of the constant velocity model for each InSAR measurement point. If rejected,
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then the optimal deformation model will be selected using point-wise MHT,
from the combinations of the library of canonical functions.

Step 6. Build the functional model and stochastic model for each InSAR measure-
ment point p. Estimate the deformation model parameters x”.

Step 7. Assess the quality of the deformation modeling. Compute the VCM Qj; to
assess the precision, and the minimal detectable value V;py to assess the
reliability.

The spatial-temporal deformation behavior of the area of interest will either be de-
scribed by the deformation model of the clusters, or the deformation model of every
InSAR measurement point. The application of spatial-temporal deformation modeling
on data will be presented in Chapter 4 and Chapter 5.







4

Application on Simulated Data

In this Chapter, we demonstrate the possibility of spatio-temporal deformation model-
ing using simulated InSAR deformation time series. We simulate the time-series InSAR
measurements on a deformation bowl, polluted by simulated atmospheric noise and
scattering noise. Both point-wise deformation modeling and cluster-wise deformation
modeling are applied on the simulated data, see Section 3.1 and Section 3.2. Since the
actual deformations are known in simulation, we compare the modeling results with ac-
tual deformation signal to assess the performance of deformation modeling.

Section 4.1 introduces the simulation of InSAR data used in this chapter. Section
4.2 presents the application of point-wise deformation modeling on the simulated data.
Section 4.3 focuses on the application of cluster-wise deformation modeling, given dif-
ferent types of contextual information.

4.1. Description of simulated data

We simulate the InSAR deformation time series of 10* InNSAR measurement points, uni-
formly distributed in an area with a size of 10 x 10 kilometers. For each point, we simulate
the InSAR measurements on 49 acquisitions, with an 11-day repeat cycle. The defor-
mation of the area of interest (Aol) shows a deformation bowl in space. such a spatial
deformation pattern is often observed in an area where the deformation is driven by
hydrocarbon production or ground water extraction (Yerkes and Castle, 1969; Ketelaar
et al., 2007; Bell et al., 2008).

To simplify the problem, we assume the orbit error and topography component in
the InSAR observations are already properly removed, and the phase unwrapping is
properly performed. Also, we assume no atmospheric filtering is applied. Then we only
consider three major components in the InSAR observations: deformation signal, scat-
tering noise, and atmospheric noise (Hanssen, 2001a). We first simulate the three com-
ponents on each acquisition. Then based on the simulated acquisitions, we compute
the InSAR measurements over the Aol. Each acquisition has a size of 100 x 100 pixels. All
pixels will be selected as InNSAR measurement points.

The simulated deformation signal in all acquisitions is shown in Fig. 4.1. The center

45



46 4, Application on Simulated Data

t=o0d t=11d t=22d t=33d t=44q t=>55d t=66d t=77d t=88d t=99d

t=110d t=121d t=132d t=143d t=154d t=1650 t=176d t=187d t=198d t=209d

t=220d t=2310 t=242d t=253d t=264d t=2750 t=286d t=297d t=308d t=3190

t=330d t=341d =352 t=363d t=374d t=3850 t=396d t=407d t=418d t=a200

t=440d t=as1d t=462d t=473d t=484d t=a950 t=506d t=517d t=528d lm

m

10
| B

Figure 4.1: Simulated actual deformation 49 acquisitions over an 10 x 10 km Aol, with an
11-day temporal resolution. The deformation time series show as a deformation bowl.
The center of this deformation bowl locates on the center of the Aol. The temporal and
spatial behavior of the deformation are given in Egs. (4.1) and (4.2). For the first acquisi-
tion in the stack we assume there is no deformation.

of deformation bowl locates at the center of the Aol. The deformation time series of the
deformation bowl center follows

Z(prti) = Upthi) (41)

where z(p,, t;) is the deformation of p. at epoch ¢;. p. is the center point of the defor-
mation bowl. vP¢ is the deformation velocity of point p.. By is the time at epoch ¢;
w.r.t. the first epoch, i.e. the temporal baseline. It is assumed no deformation exists at
the first epoch #y and the subsidence bowl center p. locates at the center of the Aol. We
set vP¢ =15 mm/yr.

In spatial domain, the actual deformation time series follows a Gaussian function as

d2
z(p, t;)) = z(pc, ti)eXp(—Kﬁ), (4.2)

where z(p, t;) is the actual deformation time series of point p. The distance d is the dis-
tance between p and the deformation bowl center p., and L is the decorrelation range.
The « is the coefficient. Here L =2 km and x = 0.8.

For all points, their actual deformation time series have constant velocities. From the
center to the edge of the Aol, the deformation velocities gradually decrease. This spatial
decreasing follows a Gaussian function, which can be derived from Eqgs. (4.1) and (4.2),

as
2

d
vP = v’””exp(—KF), (4.3)

where v? is the deformation velocity of point p.



4.1. Description of simulated data 47

The noise is simulated for every acquisition. Following Section 3.1.2 and Sec-
tion 3.2.3, we assume that the scattering noise follows the normal distribution, as in

(p, i) ~ N(0,02), (4.4)

sca

where n...(p, ;) represents the scattering noise p at epoch t;, and o is the standard
deviation of the scattering noise. Then the simulated scattering noise is shown in Fig. 4.2.

Figure 4.2: Simulated time series of the scattering noise of each acquisition. The scatter-
ing noise is assumed to follow a normal distribution as n scarP L) ~ N, 0%).

The atmospheric signal is simulated following the "power law" behavior (Goldstein,
1995; Ferretti et al., 1999b; Hanssen, 2001b). According to the power law, the 2-D power
spectrum of the atmospheric signal can be described by three regimes, depending on
the wavelength of the atmospheric signal, as in

B(t)i AP forAz2km
Pi(M={Pliaf: foro5km=A<2km 4.5)
PiA%s for0.01km <A <0.5km,

where P (/1) is the power density of the atmospheric. PW(/l) is a function of the wave-
length A and P is the power density where the wavelength A = 1 km. Three exponents
ﬁ ﬁ and ﬁ respectlvely denote the steep power exponents of three regimes where
A =2 km, 0.5 km <A <2km and 0.01 km < A <2 km. The empirical values of the three
steep power exponents are respectively suggested by InSAR observations as 8/3, 11/3
and 5/3 (Hanssen, 2001b). For a better representation of the reality, we set Béi, él, éz
and és to be stochastic instead of deterministic. The power density Eéi follows a Gaus-

sian distribution as
Pj ~ N(E{Pg},0%)
(4.6)

E{P[1} =15+ 15-sin(—7),
{Py} sm(365n)
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Figure 4.3: Simulated time series of atmospheric delay screens. In total 49 screens are
simulated, following the three-regime power-law. The overall power of the simulated
atmospheric signal shows a seasonal variation as in Eq. (4.6), with three power exponents
following Gaussian distribution as in Eq. (4.7)

where the expectation of P/, i.e. E {B(tf} is a sinusoid function of the time #;. The unit of
E {Bé"} and t; are respectively mm? and day. The variance of Bé" is set to be 5 mm?. Using
Eq. (4.6) we give a seasonal variation of the scale of the atmospheric signal.

The steep power exponents ﬁl, ﬁz and ES of the three regimes follow a Gaussian
distribution as:

81

b ~NG, o)

111
~N(—, = 4.7
B,~ N2 (4.7)

51
~N(Z, ).
E% ( 3 6)
Using Egs. (4.6) and (4.7), we simulate the power spectrum of the atmospheric signal for
each acquisition, and compute the atmospheric signal using the inverse Fourier Trans-
form, expressed as

Ny (1) = F 1P, 4.8)

where #~!() indicates the inverse Fourier Transform operation. The atmospheric
screen at epoch ¢, i.e. Q;’tm are shown in Fig. 4.3. In this way all atmospheric signal
of 49 acquisitions are simulated. Then we select all pixels as InSAR measurement points.
The sub-pixel positioning is not applied, and we simply use the center of the pixel as the
position of InSAR measurements points. We select the first acquisition of the stack as the

master image, and select the point at the up-left corner as the reference point. Then the
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Figure 4.4: Simulated time series of InSAR deformation observations, with 100 x 100 In-
SAR measurement points evenly covering the 10 x 10 km area. The points are visualized
as pixels here. In total 48 epochs are simulated from 49 acquisitions. All the deformation
time series are the double differences w.r.t the first epoch and the InSAR measurement
point at the up-left corner. No sub-pixel positioning is applied.

double-differenced InSAR deformation time series can be computed as

Z(P; tl) =[Z(p) tl) - Z(p) t())] - [Z(rr tl) - Z(ry t(])]
+ Mg (P 1) = Nt (P 10)] = (Mg (1, 1) — g (T F0)] (4.9)

+ [P (P 1) = Ry (P, 10)] = [y, (7 1) — =R (7 B0)]

where y(p, t;) is the double-differenced InSAR observation of the InSAR measurement
point p_at epoch ¢;, w.r.t the reference point r and the reference epoch #. Fig. 4.4 shows
the simulated InSAR observations. In Section 4.2 and Section 4.3, we will apply point-
wise and cluster-wise deformation modeling to the simulated data. Since the deforma-
tion and noise component are known, we can easily build up a stochastic model, and
compare the modeling results with the actual deformation time series.

4.2, Point-wise deformation modeling
In this section we apply the point-wise deformation model to the simulated InSAR de-
formation time series.

By definition in Egs. (4.1) and (4.1), the deformation of all InSAR measurement points
is alinear function of time, i.e. they follow the constant velocity model. The actual defor-
mation velocities of all InSAR measurement points can be computed by Eq. (4.3), shown
in Fig. 4.5.

In this simulation, as introduced in Section 4.1, it is already known by definition that
the actual deformation model of all InSAR measurement points are constant velocity
model, therefore, when applying the point-wise modeling, we will not focus on select-
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Figure 4.5: Velocity map of the actual deformation of all InNSAR measurement points,
computed following Eq. (4.3). By definition every InSAR measurement point in the sim-
ulation should follow a constant velocity deformation model.

ing the optimal model for each InSAR measurement point, but focus on assessing the
accuracy of estimated velocity of each InSAR measurement point.

The functional model of the point-wise modeling can be built up following the ap-
proach in Section 3.1.1, with all InSAR measurement points following a constant velocity
model.

We use two alternative ways to define the stochastic model, resulting in two scenarios
of the results:

* Scenario A: Using Eq. (3.13), we consider all InSAR measurements of all points and
all epochs to be independent from each other. Then we build the stochastic model

with a cofactor matrix Ry = I, and a variance of unit weight 02, = 36 mm?.

* Scenario B: Using Eqgs. (3.14) to (3.21), we take into account the (known) scattering
noise and atmospheric noise, and build up the stochastic model. Also, we take
into account the double-difference effect, therefore the temporal correlation exists
between epochs due to sharing the same reference epoch. The spatial correlation
will not be considered in point-wise deformation modeling.

Here we illustrate the structure of the stochastic model for the selected 6 points, see
Fig. 4.6. In Scenario A, the stochastic model is a diagonal VCM, with all diagonal ele-
ments equal to the variance of unit weight, i.e. 2, = 36 mm?. In Scenario B, the scat-
tering noise and atmospheric noise is taken into account. Then the diagonal of the VCM
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will not be the same value. The temporal correlation exists between epochs.
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Figure 4.6: An visualization of VCMs of deformation time series of 6 InSAR measurement
points. Left: the VCM built up following Scenario A, where the VCM is a diagonal matrix,
with all diagonal elements equal to 02, = 36 mm?. Right: the VCM built up following Sce-
nario B, where the off-diagonal matrix elements are not all zero. The diagonal elements are
different, due to different atmospheric signal at each epoch. The temporal correlation exists
between epochs of the same InSAR measurement point. The correlation between the InSAR
measurement points are ignored in the point-wise deformation modeling.

The estimated deformation velocities for Scenarios A and B are shown in Fig. 4.7.
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Figure 4.7: Estimated deformation velocity maps. Left: the estimated deformation velocity
map for Scenario A, where a diagonal VCM with all diagonal element equal to 92, = 36 mm?
is used as the stochastic model. Right: the estimated deformation velocity map for Scenario
B, where the atmospheric noise and scattering noise are taken into account.

We assess the performance of the point-wise deformation modeling by comparing
the estimated velocity map with the real velocity map in Fig. 4.5. Figs. 4.8a and 4.8b
show the differences between the estimated deformation velocity maps and the actual
deformation velocity map. The RMS values are 2.14 mm/yr and 1.16 mm/yr, respectively.
Fig. 4.8b, i.e. the estimated velocities for Scenario B, have smaller differences than the
results for Scenario A.

In Fig. 4.8b spatial patterns exist. These patterns are expected to be caused by the
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Figure 4.8: The differences of the estimated velocity map and the actual deformation signal.
(a): the differences between the results for Scenario A and the actual deformation velocity
map, with an RMS of 2.14 mm/yr; (b): the differences between the results for Scenario B
and the actual deformation velocity map, with an RMS of 1.16 mm/yr; (c): the deformation
velocity estimated only from the atmospheric double-differenced time series. Figs. (b) and
(c) have a correlation of0.46;

atmosphere residuals in the deformation velocity estimations, because the stochastic
model in point-wise deformation modeling does not specify the correlation between the
InSAR measurement points, while the atmospheric signal shows the spatial correlation.
To investigate this, we compute the time series of the double-difference atmospheric
signal based on the atmospheric delay time series shown in Fig. 4.3, w.r.t. the first epoch
and the up-left point. Using this double-difference atmospheric signal, we estimate a
linear velocity map purely from the double-differenced atmospheric signal, as shown
in Fig. 4.8c. Then we compare Fig. 4.8b with Fig. 4.8c, and find a correlation of 0.46
between them. According to such a relatively high correlation, we conclude that the
ignorance of spatial correlation in the stochastic model of the point-wise deformation
modeling leads to the residuals of the atmospheric signal in the estimated deformation
model parameters.
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4.3. Cluster-wise deformation modeling

Following the instructions in Section 3.2, we apply the cluster-wise deformation model-
ing to the simulated deformation time series. Based on different levels of available infor-
mation on the spatial smoothness of deformation signal, the cluster-wise deformation
modeling is applied following two scenarios:

* Scenario A: the area is divided into four rings, as shown in Fig. 4.9, each ring is
defined as a cluster. For each ring, a deformation velocity is given before hand.
Then we use the constrained least-squares estimation as introduced in Section
2.2.2 to estimate the deformation velocities of each ring.

* Scenario B: the entire Aol is defined as a cluster, and provides four alternative
models to describe the deformation. The cluster-wise MHT will be applied to se-
lect the optimal model from all the alternatives. This scenario simulates the scene
that a domain expert has a request to describe the deformation of the Aol with a
geological model, and offers the possible models.

The results for Scenario A will be presented in Section 4.3.1. The results for Scenario
B will be presented in Section 4.3.2.

4.3.1. Scenario A: constrained least-squares estimation

In Scenario A of cluster-wise modeling, we assume that a domain expert provides the
apriori estimation of the deformation velocity over the Aol. We build up this apriori
knowledge base on the known actual deformation signal as shown in Fig. 4.1. Based
on the given apriori knowledge, the Aol is divided into four rings, as shown in Fig. 4.9. All
four rings are centered at the center of the Aol, i.e. the center of the deformation bowl.
The properties of the four rings are listed below:

* Ring 1: with the distance to the center > 2000 m. The given deformation velocity
from contextual information is 0 mm/yr, with a variance of 1.2 mm?/yr?.

° Ring 2: with the distance to the center from 1000 m to 2000 m. The given de-
formation velocity from contextual information is —6 mm/yr, with a variance of
24.3 mm?/yr?.

* Ring 3: with the distance to the center from 500 m to 1000 m. The given defor-
mation velocity from contextual information is —12 mm/yr, with a variance of
7.1 mm? /yr?,

* Ring 4: with the distance to the center < 500 m. The given deformation velocity
from contextual information is —14.4 mm/yr, with a variance of 0.8 mm?/yr?.
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Figure 4.9: Four rings defined by the contextual information. All four rings are centered at the
center of Aol. Four apriori estimated velocities are given to the four rings by contextual infor-
mation, which are 0 mm/yr, -6 mm/yr, —12 mm/yr and —14.4 mm/yr respectively for Ring
1 to Ring 4. The variance of the four velocities are 1.2 mm?/yr2, 24.3 mm? /yr?, 7.1 mm? /yr%
and 0.8 mm?/yr> respectively. The velocities are computed from the average real velocity of
each ring, and the variances is derived from the variances of the real velocity of each ring.

The given apriori velocities are derived from the mean actual deformation velocities
of each ring, which will be unknown in reality. The variances of the velocities are equal
to the variance of actual velocities of each ring. Together they are introduced into the
functional model and the stochastic model of the constraint part. Then for each ring,
the functional model for the cluster-wise deformation modeling can be written as

,Btl
By,
Bt48
V1
B2 = 2] 2= B, 2, (4.10)
d G 1 .
vnring
Tying %1
Bf48 ¢
1
1 4

(497ring) X Mring

where the observation y is an 48n;ing x 1 vector denoting the InSAR deformation time
series of all InSAR measarement points at all epochs, where 7;ing is the number of InSAR
measurement point in the ring. The pseudo observations d is an 7ing x 1, with all ele-
ments equal to the apriori estimated velocity. By, is the temporal baseline at epoch £,
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w.r.t. the reference epoch. The unknown parameter vector x = [v1, V2, ..., Un,,,] are the

deformation velocities of all InSAR measurement points in the ring, i.e. the cluster. In

Eq. (4.10), each ring is defined as a cluster, and its deformation model is represented by

the separated deformation velocities of all InNSAR measurement points in the cluster.
The stochastic model is defined as

Qy 0
0  Qaa

where Qg4 is the VCM of the pseudo observations, which is a diagonal matrix with the

y
== , 4.11
p } (4.11)

!

diagonal elements equal to the variance of the apriori estimated velocity. Qy, is the VCM
of the InSAR observations, which is defined following Section 3.2.3. We define the spatial
correlation only exists within the distance of 1 km, c.f. Cuenca et al. (2011). We select 6
InSAR measurement points as shown in Fig. 4.7, and visualize the VCM of InSAR defor-
mation time series of these InSAR measurement points, shown in Fig. 4.10
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Figure 4.10: The VCM of the deformation time series of 6 InSAR measurement points. Con-
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sidering spatio-temporal correlation. To make the size of VCM manageable, we define the
spatial correlation only exists within the distance of 1 km.

Then for each ring, its deformation model parameters are estimated using Eq. (2.21).
Then the cluster-wise modeling results into estimating the deformation velocities of all
InSAR measurement points, but taking into account the spatio-temporal correlation.
The results are shown in Fig. 4.11.

In Fig. 4.11b, traces of the four predefined rings can be found. This indicates that
the given spatial smoothness information, which defines the extent and the deforma-
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Figure 4.11: The results of the cluster-wise deformation modeling for Scenario A. (a): the estimated deforma-
tion velocity map. (b) the differences of the estimated deformation velocity map and the actual deformation
velocity map. The effect of the four pre-defined rings can be found in (b). The RMS of (b) is 0.76 mm/yr.

tion model of the four clusters, are stringent but not reliable. It constrains the deforma-
tion velocity of each ring to a single value, which may not be representative to all the
InSAR measurement points in the cluster. As the result, the estimated velocity may be
constrained to a value close to the real value, because the spatial smoothness is given
based on the actual deformation map. However, the differences to the actual velocity
map show the artificial traces due to the too stringent contextual information.

4.3.2. Scenario B: cluster-wise MHT

In Scenario B of the cluster-wise modeling, we assume that a domain expert proposes
four possible deformation model to describe the spatio-temporal deformation in the
Aol. The entire Aol is defined as a cluster, and the deformation model of the cluster is
given, i.e. the four possible deformation models. Based on the simulated measurements,
the optimal deformation model can be selected.

Following the instructions of Section 3.2.4, we use the cluster-wise MHT to select the
optimal deformation model. The null hypothesis and four alternative hypotheses are
established using Eq. (3.39), where y is the vector of the deformation time series of all
InSAR measurement points in the Aol The stochastic model Qyy is built up following
the instructions in Section 3.2.3. The alternative hypotheses H;, j € [1,4] are alterna-
tive hypotheses given by the contextual information. No pseudo observations are given,
therefore d, G and Qg4 are empty.

The four alternative hypotheses give the functions describing the spatio-temporal
deformation y(p, t;), which represent the deformation of an InSAR measurement point
p atepoch ¢; . We assume the deformation of the Aol can be represented by a deforma-
tion bowl centered at the center of Aol for the four alternatives. The shapes of deforma-
tion bowls of the four alternatives are different. The four functions given by alternative
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hypotheses are:

¢ The Gaussian model:
d2
. _ p
Hy: y(p, ti) = veexp(—x —) By, (4.12)

2
Lg

which is the model that the actual deformation signal follows. d, is the distance
of the InSAR measurement point p to the center of the Aol, and By, is the temporal
baseline at the epoch ¢;. The unknown parameters to be estimated are the center
deformation velocity v, the exponent coefficient x, and the correlation length Lg.

* The exponential model:

d2

H:y(p ;) = vcexp(—LL—p)Bti, (4.13)
- e

where the unknown parameters are the center deformation velocity v,, the expo-

nent coefficient ¢, and the correlation length L,.

° The quadratic model:
Hs:y(p, 1) = ad, B, + by By, + vcBy,, (4.14)

where the unknown parameters are the polynomial coefficients a, b and the center
deformation velocity v.

¢ The linear model:
Hy:y(p,ti) = kdpBy; + vcBy;, (4.15)

where the unknown parameters are the gradient k and the center deformation ve-
locity v,.

Note that among all four alternative hypotheses, H; and H> are not linear. Therefore
the linearization should first be applied based on Taylor’s theorem (Taylor, 1717).

According to the test strategy, see Section 3.2.4, the OMT is first applied to test
whether the null hypothesis Hy holds. We use initially define the level significance a
as 0.05. This is a relatively large a since we consider the quality of the simulated obser-
vation is high, and prefer the detection of anomalies in the null hypothesis.

In the OMT, The null hypothesis is rejected, and the cluster-wise MHT is applied to
select the optimal model from all alternative models.

Following Section 3.2.4, we estimate the deformation model parameters of all four al-
ternative hypotheses, compute the test ratio T j based on Eq. (3.43), and select the alter-
native hypothesis following Eq. (3.44), i.e. the test ratio is larger than 1 and is the largest
among all four test ratios.
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Figure 4.12: The deformation velocity map of the estimated deformation models of the four

alternative hypothesis. The alternative hypothesis shown in (a), i.e. the Guassian model is
selected as the optimal deformation model.

Table 4.1: The estimated deformation model parameters and the test ratios of the four alternative hypotheses.

Model Estimated parameters Testratio T,
. b, =-14.5mm/yr
H;: Gaussian model -
( ted) k=-0.7828 3.7
accepte L _ 1884 m
b, =-143 mm/
H,: exponential model | ¢ v
. 1=0.55 2.2
(rejected) R
1=1309m
. 4=-6.60x10"13 mmlyr!
Hj: quadratic Y 6. -1
. b=6.9x10"°yr 29
(rejected) -
b,=-18.0 mm/yr
Hj: linear k=33x10"0yr ! 51
(rejected) b, =-144mm/yr '
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The estimated deformation model of all four alternative hypotheses are shown in
Fig. 4.12. Table 4.1 lists the values of estimated parameters and the test ratios.

The test ratios of all alternative models are higher than 1, which means that they are
all more probable than the null hypothesis Hy.

Fig. 4.13 shows the west-east profiles of the estimated deformation models and the
actual deformation signal. The Gaussian model, which is selected as the optimal defor-
mation model, shown in red in the bottom figure of Fig. 4.13. The selected model is the
same type of the actual deformation model. However, due to the influence of the noise,
the values of model parameters are not the same as the actual deformation model.

In Scenario B, based on given spatial smoothness information, we define the extent
of the cluster as well as the alternatives of the deformation model. This contextual infor-
mation is not as stringent as Scenario A, which assigns a fixed value of the deformation
velocity to the entire cluster, Scenario B gives fewer constraints to the deformation model
of the cluster, and use the cluster-wise MHT to select the optimal model. When the cor-
rect model (Gaussian model) is within the alternative models, the cluster-wise MHT se-
lects it. When this optimal model is not within the alternative models, the cluster-wise
MHT will choose the model which fits the observation best.

Based on Scenario A and B of the cluster-wise deformation modeling, it can be con-
cluded that the given spatial smoothness information plays an important role in the
cluster-wise deformation modeling, as it defines the extent as well as the deformation
model of a cluster. The stringent but unreliable contextual information brings a bias to
the results of cluster-wise deformation modeling. The fact is that how to introducing the
contextual information into the existed mathematical model is also of importance.

In this chapter, we apply spatio-temporal deformation modeling on simulated In-
SAR deformation time series. Its performance is assessed by comparing the modeling
results with actual simulated deformation, given different types of available contextual
information. In Chapter 5, we will apply spatio-temporal deformation modeling on real
InSAR data, over the hydrocarbon production area.
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Figure 4.13: The profile of the deformation models of the four alternative hypotheses.
The black line in the upper figure shows the range of the profile. In the lower graph, the
profile of the actual deformation shows in blue, and the profile of Gaussian model, which
is accepted as the optimal model, shows in red. The rejected alternative models show in
grey.



D

Application on Real Data: Hydrocarbon

Production Region Monitoring

This chapter demonstrates the feasibility of using Spatio-temporal deformation mod-
eling to monitor the deformation in a hydrocarbon production region. We present a
case study over the South Belridge hydrocarbon field, California, the USA, where the
deformation in the area is found closely related to oil/gas production and steam/water
injection activities (Bawden et al., 2003). In this case study, we use spatio-temporal de-
formation modeling to detect local instantaneous deformation, based on the InSAR de-
formation time series computed from TerraSAR-X data.

5.1. Introduction of the study area

South Belridge is a large hydrocarbon field in the west San Joaquin Valley, Kern County. It
was discovered in 1911, and has more than 12000 active wells at the time of 2015 (DOG-
GER, 2016). Extraction of large volumes from shallow depths causes reduction in pore
pressure and subsequent compaction in this region. Due to the production activities,
surface subsidence is found to be a common occurrence in the field (Chase Jr et al., 1989;
van der Kooij and Mayer, 2002). The ground surface subsidence may result in damage to
civil infrastructure, mostly damage to hydrocarbon production facilities(De Rouffignac
etal., 1995; Dale etal., 1996; Fredrich et al., 2000). Monitoring ground surface subsidence
is important to manage the hydrocarbon production activities, and avoid geological dis-
asters in this region.

Previous studies have been performed measuring the subsidence in this region using
ERS-1 and ERS-2 InSAR observations (van der Kooij, 1997; Fielding et al., 1998). The
results of these studies show that the maximum subsidence rates in this region can be
more than 400mm/yr, in the period from 1992 to 1996. These results have been validated
also by comparing them to GPS observations in this region (van der Kooij and Mayer,
2002).

Apart from the subsidence phenomena in the area, the deformation behavior at
South Belridge field can also appear as uplift, due to local injection activities in the pur-
pose of driving the underground hydrocarbon reservoir (Patzek et al., 1992). This uplift

61
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has been observed by InSAR observations (Fielding et al., 1998) as well as GPS and sur-
face tiltmeter observations (Wolhart et al., 2005). The uplift may cause the failures of
injection wells. Monitoring the uplift is important to manage the injection activities in
this region.

The deformation in this area, including both subsidence and uplift, may also show in
the form of instantaneous change (Patzek et al., 1992), i.e. significant deformation may
occur over a short time period, due to the sudden change of pore pressure and subse-
quent compaction.
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Figure 5.1: An overview of the study area. The area located in the California, USA, which is
shown in the upper-left map. The red rectangle dashed indicates the extent of the chosen
study area, with an approximate size of 500 x 500 meters. The overall land cover type of the
study area is dessert. The hydrocarbon production infrastructure, e.g. production wells and
pipelines are visible in the satellite optical image over the study area.

Therefore, due to the existence of both uplift and subsidence, and the existence of
possible instantaneous deformation, the conventional steady state (constant velocity)
model will not be sufficient to describe the deformation behavior of this area. In this
study, we choose a hydrocarbon production region with an approximate size of 500 x
500 meters, see Fig. 5.1, and apply the proposed spatio-temporal deformation modeling
method as introduced in Chapter 3 to parameterize the deformation behavior in this
region.
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5.2. Methods

We investigate the deformation behavior in the selected area using InSAR phase observa-
tions of coherent scatterers (Ferretti et al., 2000a, 2001) in the area. These phase observa-
tions are double-differenced to the same reference epoch and the same reference point.
Then the differential deformation obtained by multiplication of the phase differences
with the radar wavelength, correcting the for two-way travel of radar pulse (Hanssen,
2001a), see Section 2.1.1. The coherent scatterers in the study area are primarily selected
from the targets which have high interferometric coherence. The temporal behavior of
these selected coherent scatterers is represented as deformation time series, which is
explored to study the deformation behavior of the study region.

5.2.1. Radar interferometry

We use an image stack of 22 TerraSAR-X SAR images, see Table 5.1, which are acquired
between March 9, 2016 and November 17, 2016 (Track: 167, ascending track) to generate
the interferograms, see Table 5.1. The radar aboard the TerraSAR-X satellite operates in
X-band (31 mm wavelength), HH polarization mode.

We use an Equivalent Single Master method (Ferretti et al., 2011; Samiei Esfahany,
2017) to derive the deformation time series of the study area. We manually set the first
acquisition of stack, i.e. the acquisition on March 9, 2016, as the reference epoch. We
select temporally coherent INSAR measurement points in the study area. For each point,
we derive its deformation time series w.r.t the epoch 20160309 and the reference point
to represent the deformation of the area of interest.

We identify the temporally coherent points based on the interferometric coherence,
which is estimated using a series of adaptive directional windows centered at a given
point, over all interferograms, as (Touzi et al., 1999; Hanssen, 2001a)

M N master ( ~slavey *
Yo X GG

M N master (~masteryx M N slave ( ~slavey =
VI DL et T T Gl

Vintt = , (5.1)

where 7, is the estimated interferometric coherence, C g‘ja“er and C?};.“’e are the complex
values of the master and slave images respectively, at a given point and a given interfero-
gram. The superscript {*} is the sign for the complex conjugate. M and N are respectively
the number of interferograms and the number of points in the adaptive window.

In Eq. (5.1) we compute the estimated interferometric coherence 7, per interfero-
gram (from 1 to M) and per point in the adaptive window (from 1 to N). It should be
noted that not all possible interferograms between all SAR images are computed. For
instance, if one interferogram is linearly correlated with other interferograms, it will not
be computed. In this study, for each image, we compute 3 interferograms with other
images. The computed interferograms should 1) not be linearly correlated with other in-
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Table 5.1: Terrasar-X data sets used in this study (Track: 167, ascending track). The temporal
baseline B; and the perpendicular baseline B are relative to the master image.

Nr. | Acquisition dates B, [m] By [days]
1 20160309 (master) 0 0
2 20160320 -162.40 11
3 | 20160331 -111.00 22
4 20160411 -159.20 33
5 20160503 -65.00 55
6 | 20160514 -122.70 66
7 | 20160525 -119.90 77
8 20160605 -81.10 88
9 20160616 -46.60 99
10 | 20160627 -132.50 110
11 | 20160708 -125.60 121
12 | 20160719 106.40 132
13 | 20160730 -40.30 143
14 | 20160810 -209.30 154
15 | 20160821 -273.10 165
16 | 20160901 -146.70 176
17 | 20160923 -234.80 198
18 | 20161004 155.10 209
19 | 20161015 355.00 220
20 | 20161026 79.50 231
21 | 20161106 52.80 242
22 | 20161117 235.60 253

terferograms; 2) have minimum unwrapping errors among all possible interferograms.
In the study of the deformation behavior in South Belridge hydrocarbon field, the
instantaneous deformation may significantly reduce the estimated interferometric co-
herence, and result into underestimating the quality of the InSAR measurements and
wrongly rejecting points. To maintain a sufficient number of measurements in the area
of interest, we estimated the interferometric coherence value over the time period from
March 9, 2016, to August 21, 2016, using in total 15 out of 22 acquisitions. We assume
that in this time period, no instantaneous deformation occurs due to the production or
injection activity. Then we select points with higher than 0.8 estimated interferometric
coherence, and compute the deformation time series for these points. If the above as-
sumption does not hold for an InSAR measurement point, i.e. instantaneous deforma-
tion occurs during the mentioned period, the consequence will be the underestimation
of the quality and wrongly rejecting this point, but not wrongly including a point with



5.2. Methods 65

low quality.

Figure 5.2: The deformation time series of the selected InSAR measurement points of the
500 x 500 study area. In total 6321 InSAR measurement points have been selected to represent
the temporal deformation behavior in the area of interest. All the deformations are double-
differenced to the same reference epoch and the reference point. All estimated DEM phase,
atmospheric phase and reference point noise are removed.

After the temporal coherent points are identified, we follow the Equivalent Single
Master method (Ferretti et al., 2011; Samiei Esfahany, 2017) to derive InSAR deformation
time series of InNSAR measurement points in the study area. The topographic phase is re-
moved from the deformation time series based on a 30m resolution DEM (Shuttle Radar
Topography Mission, SRTM) (van Zyl, 2001) and the precise orbit data. The atmospheric
phase screen is estimated by using an Ordinary Kriging method (Wackernagel, 1995),
and is subtracted from the deformation time series. The reference point noise (RPN) is
estimated and subtracted from the deformation time series. Then the deformation time
series of all temporally coherent points are obtained, see Fig. 5.2, and are explored to
study the deformation of the area of interest.

5.2.2. Spatio-temporal deformation modeling
To investigate the deformation behavior in the area of interest, we parameterize the
multi-epoch InSAR outputs, i.e. InSAR deformation time series with a deformation
model. The conventional way is to model the deformation time series with the constant
velocity (steady-state) model, as shown in Fig. 5.3.

Fig. 5.3 shows the deformation velocity map with a constant velocity of every InSAR
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Figure 5.3: Deformation velocity map estimated from the deformation time series of the se-
lected InSAR measurement points. All InNSAR measurement points are considered to be inde-
pendent, and all InSAR observations have the same weight.

measurement point. When the temporal deformation of each InSAR measurement point
is a linear function of time, the velocity map can well describe the deformation behav-
ior of the study area. However, this is not the case in the South Belridge hydrocarbon
field because instantaneous deformation behavior is reported in this area. Therefore
the deformation time series of the InNSAR measurement points are unlikely to follow the
constant velocity model. In Fig. 5.4, the daisy-chain deformation time series of the study
area is presented, in which the deformation time series at each epoch is with reference to
the previous epoch. Two significant instantaneous deformation events can be observed:
1) On 23 September 2016, a significant uplift is observed in the overall study area; 2)
On 4 October 2016, a sudden subsidence is observed. These instantaneous deformation
events can provide important information for the management of hydrocarbon produc-
tion. Therefore they cannot be parameterized by a constant velocity model.

In order to choose the optimal deformation model to describe the deformation be-
havior, we apply spatio-temporal deformation modeling as introduced in Chapter 3. We
will model the deformation both point-wisely and cluster-wisely to compare their re-
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Figure 5.4: Daisy-chain deformation time series of the selected InNSAR measurement points
over the study area. The deformation time series are w.r.t. the previous epoch. Significant
uplift can be observed on 23 September 2016, followed by an instantaneous subsidence on 4
October 2016.

sults.

5.2.3. Point-wise deformation modeling

For a single InSAR measurement point p in the study area, we use the combinations of
deformation functions from the canonical function library (Chang and Hanssen, 2016)
to model its deformation time series, as introduced in Section 3.1. To optimize the com-
putational efficiency, and considering the deformation signature of interest is an instan-
taneous change in the temporal deformation behavior, we choose three canonical func-
tions to build up the multiple hypotheses: 1) breakpoint model, 2) step model, 3) outlier
model. To optimize the computational efficiency, we limit the maximum number of the
breakpoints and the steps to be 3, to avoid testing a model with too many parameters.
Considering all possible combinations, if the constant velocity model is rejected, the
number of alternative hypotheses can be computed as:

Ninodel = (C2° +C3° + C2%)% = 2.46 x 10°, (5.2)

where the operator C} = ]C,(+l,€), computes the number of combinations of choosing k
elements from a elements. Nyo4e is the number of possible combinations of deforma-
tion model.
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The selection of the level of significance is related to the cost of making Type-I error:
reject the null hypothesis while it is true, i.e. raise a "false alarm". In this study, we are
more confident in the default model (steady state model) than the other models, there-
fore we initiate a relatively small level of significance as a = 0.02.

When the null hypothesis is rejected, we follow the B-method of testing to choose
the optimal deformation model for each point. For each alternative hypothesis, we stay
neutral on whether accepting it or not. Therefore we use the power of test y = 0.5.

The results of point-wise deformation modeling will be presented in Section 5.3.

5.2.4. Cluster-wise deformation modeling
We apply cluster-wise deformation modeling to take into account the spatio-temporal
correlation between InSAR measurement points.

We define the extents of the clusters following Option 3 among the three options to
define the extent of a cluster, as introduced in Section 3.2.1. By this option, we assume
that the deformation signal is the dominant component of the InSAR observations, and
compute the spatio-temporal variogram of InSAR observations to decide the size of clus-
ters. The experience value of standard deviation of TerraSAR-X InSAR measurements is
3 mm, therefore we apply a predefined variogram threshold of 9 mm?. Given the prede-
fined threshold of the variogram, the corresponding correlation range ;s = 17.98 m can
be derived. Then we define the study area into equal sized square grid cells. Each grid is
sized as rjs x r¢j5, as shown in Fig. 5.5b. To utilize all InNSAR measurement point in the
area of interest, in this study we divide the area of interest into 30 x 30 equal sized grid
cells, with the length of edge 16.67 m. We define each grid cell as a cluster.
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Figure 5.5: a): the spatio-temporal experimental variogram of the deformation time series
of all InSAR measurement points locate in the study area. b): the variogram of deformation
time series at zero time difference. The red line in the right figure indicates the fitted vari-
ogram function with exponential function. The green line indicates the variogram threshold
(9 mm?) we apply for the case study, which corresponds to the distance 17.98 m.
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The definition of the deformation model within a cluster follows Option 2 among the
two options introduced in Section 3.2.1, i.e. we assume that the deformation time series
of each cluster can be described by a linear combination of functions from the canonical
function library. Cluster-wise MHT is applied to choose the optimal deformation model.
We stick to the level of significance a = 0.02 as an initial value and the power of test
v = 0.5 for cluster-wise MHT, as the same as point-wise MHT.

The results of cluster-wise deformation modeling will be presented in Section 5.3.

5.3. Results and discussions

5.3.1. Point-wise deformation modeling

The hypothesis testing method is applied to select the optimal deformation model of ev-
ery InSAR measurement point in the study area. For each InSAR measurement point, we
first test the constant velocity function as the null hypothesis of the deformation model
of the clusters. If the null hypothesis is rejected, we will apply MHT to select the opti-
mal deformation model from the alternative hypotheses. Each alternative hypothesis is
formed up by a combination of a breakpoint function, a step function, and an outlier
function. For each InSAR measurement point, we assume that the maximum number of
steps, breakpoints, and outliers should be 3.

6000
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Figure 5.6: Left: the classification map of the deformation model of all InSAR measurement
points in the study area. Right: the histogram of the number of point following each model.
The constant velocity function is accepted for most of the InNSAR measurement points. The
step model is selected by point-wise MHT for most of InSAR measurement points which don't
follow the linear model. For all InSAR measurement point, the maximum number of the
breakpoints or steps in their deformation model is 1.

We classify the InSAR measurement points by their deformation models, as shown
in Fig. 5.6. Most of the InSAR measurement points follow the constant velocity model,
shown as grey points in Fig. 5.6. Among the points for which the constant velocity points
are rejected, MHT selects the step model as the optimal model for many (918) of the
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InSAR measurement points. Only 18 points follow the breakpoint model, and 2 points
have both a step and a breakpoint in their deformation time series. Note that for all the
points which do not follow the constant velocity model, the maximum number of steps
and breakpoints is 1, as shown in Eq. (3.26).
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Figure 5.7: The time series of instantaneous deformation (steps) computed by point-wise
MHT. Each epoch shows the instantaneous uplift or subsiding relative to the previous epoch.
The positive numbers (shown in blue) indicate uplift, while the negative numbers (shown
in red/yellow) indicate subsidence. On 23 September, 2016 a significant number of points
are tested to have instantaneous uplift, while on 4 October, 2016 many InSAR measurement
points show instantaneous subsidence.

Fig. 5.7 shows the step magnitude time series of all InSAR measurement points. Each
epoch in the figure shows the magnitude of the step deformation relative to the previ-
ous epoch, where the positive numbers (shown in blue) indicate uplift, and the negative
numbers (shown in red/yellow) indicate subsidence. The majority of the uplift steps oc-
cur on 23 September 2016, while the majority of subsiding occur on 4 October 2016.

Fig. 5.4, shows that on 23 September 2016, the uplift occurs in a round area which
covers a large part of the area of interest. On 4 October 2016, a relatively smaller round
region shows an instantaneous subsidence. The deformation shows significant spatial
patterns on these two epochs. However, as shown in Fig. 5.7, on these two epochs, only
the steps at the south-west region is accepted by MHT, for most of the points, the con-
stant velocity model still holds.

In order to assess the performance of point-wise deformation modeling, we will com-
pare the point-wise deformation modeling results with the results of cluster-wise mod-
eling.
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5.3.2. Cluster-wise deformation modeling

We divide the area into 30 x 30 equal sized grid cells, and define each grid cell as a cluster.
The cluster-wise deformation modeling, as introduced in Section 3.2, is applied to each
cluster. We assume the deformation behavior of each cluster can be represented by the
combination of functions with steps, breakpoints, and outliers, and apply cluster-wise
MHT to select the optimal deformation model for each cluster.

In total 546 out of 900 clusters have at least one step in their deformation time series,
as a result of cluster-wise MHT. Fig. 5.8 shows the classification map of the deformation
models of all clusters. The number of steps in the cluster ranges from 0 to 3 in the cluster.
The maximum number of breakpoints is 1.

et I J o m da N T

Figure 5.8: a): classification map of the deformation models of all clusters. b): the number of

1

steps of each cluster. The number of steps of each cluster ranges from 1 to 3. The maximum
number of breakpoints is 1. Clusters following the null hypothesis, i.e. the constant velocity
model, are transparent in the two figures.

In Fig. 5.9 we show the step time series of all 900 clusters in the area of interest, where
each epoch shows the magnitude of steps w.r.t. the previous epoch.

As shown in Fig. 5.9, 503 out of 900 clusters show an instantaneous uplift on 23
September 2016. On both 4 October 2016 and 15 October 2016, the number of clusters
showing instantaneous subsiding are 306 out of 900 and 196 out of 900 respectively.

We select three typical clusters to illustrate the performance of cluster-wise defor-
mation modeling, as shown in 5.10. The InSAR measurement points in all three clusters
show similar temporal deformation behavior. Cluster 1 has a single-step deformation
model, cluster 2 has a three-step and one-breakpoint deformation model. Cluster 3 has
a two-step deformation model. The parameters of the deformation models of the three
clusters are shown in table 5.2. In the cluster-wise deformation modeling, if the null
hypothesis is rejected, the cluster-wise MHT is able to assign more than one steps to a
cluster. For instance, the selected optimal functional model of Cluster 2 has three steps
and one breakpoint, and has a good fit to the InSAR measurements

In Section 5.3.4, we will compare the difference between the results of point-wise
modeling and cluster-wise deformation modeling, and assess their performance.
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Figure 5.9: The time series of instantaneous deformation (steps) computed by cluster-wise
MHT. The deformation time series of 900 clusters are modeled. Each epoch shows the mag-
nitude of instantaneous uplift or subsiding relative to the previous epoch. The positive num-
bers (shown in blue) indicate uplift, and the negative numbers (shown in red/yellow) indicate
subsidence.

Table 5.2: Deformation model parameters of the three selected clusters. The positions and
the deformation time series of these clusters are shown in Fig. 5.10. The non-applicable pa-

non

rameters are indicated as

Def ti del
clormation mode Cluster 1 | Cluster2 | Cluster 3
parameters
Deformation velocity
-73.7 -141.6 -1125
v [mm/yr]
Step on 20160923
14 50 37
So923 [mm]
Step on 20161004
- -20 -14
S1004 [Mm]
Step on 20161015 5
S1015 (mm]
Velocity change on 20161015
- 104.2 -

6v1015 [mm/yr]

5.3.3. Quality control

The stochastic model in point-wise deformation modeling and cluster-wise deformation
modeling is built up following the instructions of Section 3.1.2 and Section 3.2.3. Based
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(a) Location of three clusters.

(c) Cluster 2. Two-step and one-breakpoint model. (d) Cluster 3. Two-step model.

Figure 5.10: Deformation time series of three typical clusters. (a): the location of the three
clusters, with the velocity map Fig. 5.3 as base map. (b), (c) and (d): the deformation time se-
ries of Cluster 1, Cluster 2 and Cluster 3 respectively. The red solid line in Fig. (b), (c) and (d)
indicates the posteriori deformation time series of the chosen optimal deformation model.
The lower images in (b), (c) and (d) show temporal evolutions of the points in each cluster.
The InSAR measurement points in the same cluster show similar temporal deformation be-

havior.

on error propagation law, we estimate the variance-covariance matrix of the deforma-
tion model parameters computed from point-wise deformation modeling and cluster-
wise deformation modeling respectively, as an indicator of precision. The estimation of
the precision follows Section 3.3. Fig. 5.11 shows the variance of three types of defor-
mation parameters estimated using both point-wise deformation modeling and cluster-
wise modeling method, for every point/cluster, if applicable: 1) deformation velocity; 2)
step on epoch September 23, 2016; 3) step on epoch October 4, 2016.

In Section 5.3.4, we compare the precision of point-wise deformation modeling re-
sults and cluster-wise modeling results.

5.3.4. Discussion
The deformation time series of the InSAR measurement points are modeled by the
point-wise deformation modeling method and the cluster-wise deformation modeling
method. We compare the differences between the results from the two methods from
the following aspects:
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Figure 5.11: The variances of the estimated deformation model parameters. Fig. a), c¢) and
e) are the variances of point-wise deformation modeling results. Fig. b), d) and f) are the
variances of cluster-wise modeling results. a): variances of the deformation velocity of each
InSAR measurement point. b): variances of deformation velocity of each cluster. c): variances
of each InSAR measurement point, which has step on September 23, 2016. d): variances of
each cluster, which has step on September 23, 2016. e): variances of each InSAR measure-
ment point, which has step on October 4, 2016. f): variances of each cluster, which has step
on October 4, 2016.

* The correlation between the deformation time series of spatial close InSAR mea-
surement points. Based on apriori knowledge, the InSAR measurement points in
the area of interest are assumed to share the same deformation driving mecha-
nism, i.e. due to the shallow compaction caused by hydrocarbon production ac-
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tivity. By definition, the cluster-wise modeling taking into account this contex-
tual information by modeling the deformation per clusters rather than per point,
and therefore its results shows more spatial consistency. If the apriori information
is correct, i.e. the real deformation signal has spatial correlation due to the same
driving mechanism in this area, then the point-wise deformation results will not
be physically realistic, because point-wise deformation modeling does not take
into account the spatial correlation information.

* The dimension of deformation model. The point-wise deformation modeling re-
sults contain no more than 1 step and 1 breakpoint, in the deformation model of
each InSAR measurement point. On the other hand, the cluster-wise deformation
modelingis able to model the deformation time series of a cluster using a deforma-
tion model with multiple steps. This is due to the property of the B-method of test-
ing, which chooses the model with less parameter but fits the observations equally
well. The point-wise deformation modeling use less observations than cluster-
wise deformation modeling. Therefore, under the same level of significance and

power of the test, point-wise modeling will tend to choose a model with fewer pa-
rameters, than having a good fit to the data. This prevents the modeling results
from over-fitting the measurements. While in cluster-wise deformation modeling,
more observations are taken into account, the misfit to the data will be more sig-
nificant in the modeling. In this situation, a model with more parameters may be
accepted.

* The resolution of the output. Point-wise modeling results describe the deforma-
tion behavior of the area of interest using the deformation time series of 6321 In-
SAR measurement points. The cluster-wise modeling divides the area of interest
into 900 grid cells, and use the deformation grid cells to describe the deformation
behavior of the area of interest, assuming the deformation behavior in each clus-
ter can be represented by the same model. Therefore the cluster-wise deformation
modeling sacrifices the resolution of the results for a more physically realistic re-
sult.

The case study on South Belridge hydrocarbon filed shows that, comparing to point-
wise deformation modeling, the cluster-wise modeling is able to take into account the
contextual information on the spatial correlation of deformation signal. Given the cor-
rect contextual information, InSAR measurement point can be grouped into clusters,
and within each cluster on assuming all points follow the same deformation model. One
can use the deformation models of clusters to represent the deformation of the area of
interest. The advantage of the cluster-wise deformation modeling is that under the same
level of significance and the power of test, based on the correct contextual information
on spatial correlation, the deformation model of each cluster can have more parameters
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than the deformation model of a single point, and modeling results show better spa-
tial consistency, by definition of cluster-wise modeling. This is at the cost of resolution,
i.e. by applying cluster-wise modeling, the InSAR observations of all InNSAR measurement
points within a same cluster will be used as the observations of the cluster. This may re-
sult in losing details describing the deformation behavior.
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Conclusions and Recommendations

6.1. Conclusions

The main objective of this study is to develop and demonstrate methodologies to detect
spatio-temporal patterns/changes in InSAR deformation time series. The key is to prop-
erly integrate the external knowledge, especially on spatial smoothness, into InSAR time
series mathematical models. Hereby, the study focuses on the main research question:

How to optimally digest spatial smoothness information of the presumed deforma-
tion signal in the mathematical model, to estimate the spatio-temporal deformation
of InSAR measurements points, and assess the quality of the results?

The estimation of the spatio-temporal deformation relies on the apriori information
on the spatial smoothness of the deformation signal. The information presumes the
similarities in the deformation behavior between adjacent InSAR measurement points.
Based on it, one can extend the deformation modeling from a point-wise process to
a cluster-wise process. The spatial smoothness information is a contextual informa-
tion, which can come from two external sources, see Section 3.2.1, 1) expert knowl-
edge or experience or, 2) extra observations. We developed methodologies based on spa-
tial smoothness information to construct/improve the functional model and stochastic
model of spatial-temporal deformation modeling.

The main research question is subdivided into three specific research questions,
which we will discuss subsequently.

1. What is the optimal functional model and stochastic model?
We define the "optimal model" as the best model which can be derived based on
given InSAR observations and apriori knowledge. We derive the optimal func-
tional model and stochastic model in two ways. 1) By default, we apply point-
wise deformation modeling to every InSAR measurement point, and determine its
most probable deformation model based on multiple hypothesis testing (MHT)
and the B-method of testing, see Section 3.1. 2) When knowledge on the spatial
smoothness of deformation is available, we apply cluster-wise deformation mod-
eling, which groups a number of spatially correlated InSAR measurement points
into a so-called "cluster" based on the given spatial smoothness information, see

7
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Section 3.2. This method assumes that all points in the cluster have identical de-
formation models, i.e. they follow the same deformation model. The deformation
model parameters of the cluster are estimated based on the deformation time se-
ries of all InNSAR measurement points within the cluster.

The point-wise deformation modeling follows Chang et al. (2014); Chang and
Hanssen (2016). The optimal functional model per point is selected using the MHT
method, see Sections 3.1.1 and 3.1.3. The steady-state (constant velocity) func-
tion is used as the null hypothesis. If the null hypothesis is rejected, the optimal
functional model will be chosen from the combinations of canonical deformation
models (Chang and Hanssen, 2016), by applying MHT per point. We consider two
major error sources in the InSAR measurements: the atmospheric noise and the
scattering noise, and build up the stochastic model, see Section 3.1.2. The tem-
poral correlation of noise, mainly due to the sharing of the same reference epoch,
is taken into account in the stochastic model. Yet, the spatial correlation of the
neighboring points have not been introduced into the functional and stochastic
model, which makes it hard to detect the spatial patterns straightforwardly.

The application of cluster-wise deformation modeling are introduced in Section
3.2. Based on given knowledge on the spatial smoothness of deformation, the ex-
tend and thr deformation model of a cluster is defined see Sections 3.2.1 and 3.2.2.
When multiple possible functional models exist, the cluster-wise MHT is applied
to select the optimal model for the cluster. We built up the stochastic model in
a similar way as point-wise modeling, i.e. we take into account the atmospheric
noise and the scattering noise, but considering the spatial correlation of noise,
see Section 3.2.3. Benefit from the cluster-wise deformation modeling, the spatio-
temporal deformation patterns can be directly detected.

Note that both in point-wise and cluster-wise modeling, the selected "optimal"
functional model is the optimal model from all pre-defined models. These pre-
defined models stem either from the library of canonical functions (Chang and
Hanssen, 2016) or from other contextual information, e.g. given alternative spatio-
temporal deformation models of a deformation bowl, as in Section 4.3.2. This
means if the actual optimal functional model is not pre-defined in the null and
alternative hypotheses, it cannot be selected during the modeling process.

. How to digest spatial smoothness information?

Spatial smoothness information is digested by importing it into the func-
tional/stochastic model. Since it can be given by two sources, we proposed two
ways to digest it respectively, listed below:

* Cluster-wise deformation modeling. Spatial smoothness information from
the expert knowledge or experience are introduced to conduct the cluster-wise
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deformation modeling, see Section 3.2.1. We propose to define the extent
and the deformation model of a cluster based on given spatial smoothness
information. Introducing this contextual information results in affecting the
structure of the design matrix A and the vector of unknown parameters x in
the functional model.

The cluster-wise deformation modeling offers the possibility to import the
external spatial smoothness information into the deformation modeling.
This external information can describe the correlations between InSAR mea-
surement points, and help to improve the functional model to describe the
deformation in the area of interest.

 Introducing pseudo observations. The spatial smoothness information pro-
vided by extra observations can be integrated by treating them as pseudo ob-
servations of deformation modeling, i.e. it provides the pseudo observation
d and its stochastic model Qg,4, see Eqgs. (2.18) and (2.19) in Section 2.2.2.
In Section 4.3.1, we demonstrate this approach by a simulation where the
presumed velocities of the four rings of a deformation bowl are given. The
given presumed velocities are treated as pseudo observations, and integrated
into the deformation modeling. Therefore, introducing pseudo observations

provides the possibility to integrate the extra observations in to deforma-
tion modeling, which is an improvement on both functional and stochastic
model.

In the two ways, spatial smoothness information are digested and introduced to
the spatio-temporal modeling, by importing them into the functional/stochastic
model. Given correct spatial smoothness information, the precision and the relia-
bility of the deformation modeling will be improved.

3. How to assess the quality of the results?
The quality of the spatio-temporal deformation modeling results are assessed
from two aspects: 1) the misfitting of the model to the InSAR observations, and 2)
the imperfection of deformation model itself. The former is related to the noise in
the observations, and is represented by the precision of the estimated parameters.
The latter is related to the misspecification of the deformation model parameters,
which can be represented by the reliability.

We introduced the Variance-covariance matrix (VCM) of the estimated parameters
as a metric of the precision, see Section 3.3.1. The VCM can be computed using
error propagation based on the apriori VCM of the observations.

The misspecification of the model parameters is closely related to the choice of
the deformation model. We introduced the Minimal Detectable Value (MDV) as a
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metric of the reliability, see Section 3.3.2. The MDV is computed to a specific alter-
native hypothesis. Therefore MDV varies in terms of different degrees of freedom
for alternative hypotheses. It should also be noted that the MHT is applied based
on a predefined level of significance a and a power of test y. The choice of @ and y
are usually based on the cost of making Type-I and the detectability power of any
alternative hypothesis, which is different between cases. The different choice of «
and y will also influence the value of MDV.

6.2. Contributions
The main contributions of this study are summarized as follows,

* We design and implement a spatio-temporal (cluster-wise) deformation modeling
methodology to parameterize the InSAR deformation time series, based on multi-
ple hypothesis testing (MHT) and B-method of testing in both temporal and spa-
tial domain.

* We introduce a work flow to introduce apriori spatial smoothness information into
InSAR time series mathematical model, by importing the apriori information into
the functional/stochastic model of spatio-temporal deformation modeling.

* We demonstrate a methodology to apply the spatio-temporal deformation model-
ing on the deformation monitoring caused by hydrocarbon production activities,
and assessed its performance.

* We detect the spatial uplifting and subsiding patterns over the hydrocarbon pro-
duction area.

6.3. Recommendations
We propose four recommendations for further research,

* Considering the temporal filtering effect in the stochastic model. In this study,
we constructed the stochastic model taking into account scattering noise and at-
mospheric noise. However, based on the assumption that the atmospheric noise
is temporal uncorrelated (Hanssen, 2001a), it is common to apply a temporal low-
pass filter to InSAR deformation time series during TInSAR processing (van Lei-
jen, 2014; Samiei Esfahany, 2017), to mitigate atmospheric noise. The effect of
this temporal filtering of InSAR deformation time series is ignored during the con-
struction of the stochastic model. The temporal filtering may result in increasing
temporal correlation between epochs (Hanssen, 2001a; Samiei Esfahany, 2017),
and may also bring bias. When the temporal filtering is applied, this correlation is
required to be introduced into the stochastic model.
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» Adding spatial parameters into the canonical deformation models. The defor-
mation model of the cluster is either directly given based on contextual informa-
tion, or chosen from the combination from the canonical function library pro-
posed by Chang and Hanssen (2016). However, this library only presents the func-
tions for a single InSAR measurement point, therefore when selecting a deforma-
tion model for a cluster from this library, we should make the assumption that the
deformation of the cluster does not vary spatially. This assumption may not hold
in case a cluster covering a large area. On the other hand, we consider that the
spatial deformation patterns, e.g. deformation bowls, can also be written into the
combinations of several canonical functions. In future research, the possibility of
building up such a library needs to be investigated.

° Improving the computation efficiency. When selecting the optimal deformation
model from the library of canonical functions, the possible combinations for an
InSAR measurement point or a cluster can increase exponentially as the dimen-
sion (i.e. the number of unknown parameters) of deformation model increase. As
aresult, the total amount of the models can easily reach to an enormous number.
For example, for an InSAR deformation time series with 50 epochs, if it is assumed
that only 1 breakpoint exists in the time series, the possible number of deforma-

tion models is 48 (considering the breakpoint does not occur on the first and the
last epoch). If we assume two breakpoints and one step exist, the number of possi-
ble models will dramatically increase to: (48 x47/2) x48 = 54114. A smarter testing
strategy is required to improve the computation efficiency.

* Developing a quality metric for the contextual information. The contextual in-
formation on the spatial smoothness of deformation signal plays an important role
in the spatio-temporal deformation modeling. The quality of pseudo observations
are specified by the VCM Q,,. However, the contextual information given by ex-
pert knowledge or experience is applied based on the assumption that they are cor-
rect. A formal metric to asses the quality of contextual information is needed for
selecting the input contextual information. The development of this metric re-
quires further study.
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