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Abstract

Satellite radar interferometry (InSAR) techniques can monitor the ground deformation

with millimeter precision. With Time-series InSAR (TInSAR) methodology, the ground

deformation time series can be derived from InSAR observations. One of the important

ways to analyze the InSAR deformation time series is to parameterize the InSAR defor-

mation time series with deformation models.

The previous ways of modelling InSAR deformation time series are usually point-

wise, i.e. they focus on the deformation models of single InSAR measurement points.

The deformation model of each point is either assumed to be a linear function of time,

or is selected from the predefined alternative models. The point-wise modeling method-

ologies can well interpret the deformation behavior of each point, but is limited on mod-

eling the spatial deformation patterns.

In this study, we design and implement methodologies to model the spatio-temporal

deformation patterns, based on given spatial smoothness information of the deforma-

tion. We introduce a work flow to digest the spatial smoothness information from ex-

ternal sources, and use the information to improve the functional and stochastic model.

We also propose a model selection methodology based on hypothesis testing to select

the the most probable spatio-temporal deformation model from given potential mod-

els. The spatio-temporal deformation modeling methodology is applied to the simulated

data, as well as the real InSAR measurements. We apply the spatio-temporal deformation

methodology to study the deformation in a hydrocarbon production field in California,

and successfully detect the instantaneous uplifting and subsiding events. Based on the

simulation and real case study, we conclude that given proper contextual information,

spatio-temporal deformation modeling is able to derive the deformation model in both

temporal and spatial domain, and has a good performance on parameterizing the non-

linear deformation behavior in the temporal domain.
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1
Introduction

1.1. Motivation
Satellite radar interferometric techniques can provide deformation time series of ground

targets. The deformation time series can be parameterized in order to detect the spatial

and temporal pattern/change. In this work, we focus on the improvement of the param-

eterization of deformation time series, given relevant contextual knowledge.

1.2. Background
Satellite radar interferometric techniques (InSAR, Interferometric Synthetic Aperture

Radar) has evolved into an important geodetic tool in the last few decades (Masson-

net, 1994; Bamler and Hartl, 1998; Hanssen, 2001a). InSAR techniques do not require an

in-situ survey and can monitor the ground deformation in all weather condition, with

high spatial resolution, medium temporal resolution, in a large scale. It has been ap-

plied to measure various deformation phenomena of earth surface, such as earthquakes

(Massonnet et al., 1993), groundwater flow (Amelung et al., 1999; Abidin et al., 2005), ice

motion (Goldstein et al., 1993; Gray et al., 1999), and land slides (Rott et al., 1999) and so

on.

The inherent limitations of InSAR technique is the decorrelation effect mainly caused

by three factors (Hanssen, 2001a; van Leijen, 2014; Samiei Esfahany, 2017): 1) the dis-

turbance of atmospheric noise (atmospheric decorrelation), 2) the change of ground

scattering characteristics (temporal decorrelation), and 3) the different imaging geome-

tries due to the satellite repeat orbits are too far apart (geometric decorrelation). These

limitations have been overcome by the development of the time-series InSAR (TInSAR)

methodologies, which use a stack of radar acquisitions of the same area. The typi-

cal methodologies of TInSAR are Persistent Scatterer Interferometry (PSI) method (Usai,

1997; Usai and Hanssen, 1997; Ferretti et al., 1999a, 2000c), the Small BAseline Subset

(SBAS) method (Berardino et al., 2002; Mora et al., 2003), and hybrid methods (Lanari

et al., 2004; Hooper, 2008; Ferretti et al., 2011). These approaches are based on assump-

tions regarding the spatial and/or temporal smoothness of the deformation signal, and

derive the deformation time series based on InSAR phase observations.

1
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The TInSAR methodologies have evolved in the last decade (Berardino et al., 2004;

Ketelaar, 2009; Ferretti et al., 2011; van Leijen, 2014), and have been applied to study the

deformation phenomena of a large variety of objects, for instance volcano region(Usai

et al., 2003; Hooper et al., 2007; Papoutsis et al., 2013), earthquakes (Lanari et al., 2010),

permafrost (Bell et al., 2008; Chen et al., 2012), oil/gas production activities (Ketelaar,

2009), flooding risk (Dixon et al., 2006), mining activities (Caro Cuenca et al., 2013), and

civil infrastructures (Zeni et al., 2011; Chang et al., 2014). The ground deformation be-

havior is represented by the deformation time series of InSAR measurement points.

When interpreting the InSAR deformation time series, two basic components can be

recognized: the component caused by the deformation phenomena, which is known as

the deformation signal, and the component contributed by other effects, such as topo-

graphic residual or atmospheric residual, which is recognized as noise.

TInSAR methodologies provides deformation time series for all InSAR measurement

points, on all observation epochs. However, interpreting the deformation time series

point by point, epoch by epoch, may not always be an optimal way to study the defor-

mation behavior based on InSAR deformation time series. Because 1) To numerically

analyze the InSAR deformation time series, the parameterization is required. 2) The In-

SAR observation per epoch is not purely signal without any noise. Therefore interpreting

InSAR deformation time series epoch by epoch may result into interpreting noise. 3) In

case of a large volume of InSAR measurement points, point-wisely analyzing deforma-

tion time series may lead to a large computational effort. Due to 1), 2) and 3), we attempt

to explore an efficient and systematic strategy to parameterize the InSAR deformation

time series.

By applying parameterization, one assumes that the deformation signal of interest

exists in the deformation time series, and follows a certain deformation model. All the

differences between this deformation model and the deformation signal are interpreted

as noise. The parameter(s) of the deformation model can be estimated from the defor-

mation time series. Then the deformation behavior can be interpreted by the deforma-

tion model parameters. In this way, one does not need to interpret the deformation of

all InSAR measurement points at all epochs.

A common way to parameterize the deformation time series is to assume that the

deformation of every InSAR measurement point is a linear function of time, and esti-

mate the deformation velocities for every point (Teunissen, 2003b, 2006; Caro Cuenca,

2012). However, for some points with a non-linear component in their deformation time

series, the linear deformation model may misinterpret the non-linear deformation com-

ponent as noise. To better parameterize their temporal behavior of a single InSAR mea-

surement point, the kinematic time series modeling (i.e. deformation modeling) method

has been proposed, which selects the optimal deformation model for an InSAR mea-

surement point from the predefined most probable models (Chang and Hanssen, 2015;
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Chang, 2015). The model selection is based on the theory of multiple hypothesis test-

ing (Teunissen, 2000b). This method has been successfully applied on monitoring civil

infrastructure (Chang et al., 2014; Chang, 2015).

In some cases, besides InSAR observations, one may also have apriori information on

the spatial smoothness of deformation signal. This information is acquired from exter-

nal sources,i.e. from expert knowledge experience or extra observations. They describes

the spatial similarities of the deformation behavior of InSAR measurement points. For

instance, one may know that several InSAR measurement points follow the same defor-

mation model because they locate on the same building. This contextual information on

spatial smoothness have not been properly utilized for deformation time series model-

ing, since the existing modeling methods, such as kinematic time series modeling, tend

to model the deformation for each single InSAR measurement point. This thesis will

focus on the improvement of the InSAR deformation time series modeling, given infor-

mation on the spatial smoothness of deformation signal.

1.3. Problem statement
The kinematic time series modeling method has a good performance on modeling the

deformation time series of a single InSAR measurement point. However, it is limited on

taking into account the spatial smoothness between InSAR measurement points. This

smoothness results into spatial correlation between InSAR measurement points.

The spatial correlation can be recognized from two aspects in InSAR deformation

time series modeling. 1) From the stochastic model aspect, some certain types of noise

in the InSAR measurements, e.g. atmospheric noise, are spatially correlated (Hanssen,

2001a; Samiei-Esfahany and Hanssen, 2013). When modeling the deformation time se-

ries per InSAR measurement point, the spatial correlation of noise cannot be specified

by the stochastic model. 2) From the functional model aspect, the deformation behavior

may show spatial correlation, e.g. in a deformation bowl, the variation of deformation

velocity may follow a spatial model (Ketelaar, 2009). This spatial variation cannot be pa-

rameterized in the functional model, if the InSAR measurement points are treated to be

independent.

As a result, when modeling InSAR deformation time series per InSAR measurement

point, the apriori stochastic model will be defective, because of ignoring the spatially

correlated noise, and the functional model will not be able to represent the spatial be-

havior of deformation. If the apriori knowledge on the spatial smoothness is not avail-

able, modeling deformation point by point will be the only option. However when cor-

rect information on the spatial smoothness is given, modeling the InSAR deformation

time series per InSAR measurement point is no longer an optimal way to parameterize

the deformation behavior. In this case, to extract reliable geometrical information from

InSAR observations, the spatial smoothness information should be integrated.
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1.4. Research objectives
In order to resolve the research problem mentioned in section 1.3, this study focuses on

developing and demonstrating methodologies for deformation modeling, particularly in

the spatial domain. The main research question is defined as:

How to optimally digest spatial smoothness information of the presumed deforma-

tion signal in the mathematical model, to estimate the spatio-temporal deformation

of InSAR measurements points, and assess the quality of the results?

In the scope of this main question, three research questions are considered:

1. What is the optimal functional model and stochastic model?

The first research question focuses on the parameterization of deformation time

series of all InSAR measurement points. The functional model refers to the (lin-

earized) spatio-temporal relationship between the deformation time series com-

puted by TInSAR and the (unknown) deformation parameters. The stochastic

model is expressed as a variance-covariance matrix (VCM), which describes the

noise of the InSAR observations. To design the optimal functional and stochastic

model, we use the Gauss-Markov model to describe the functional and stochastic

relations (Gauss, 1809), and we use hypothesis testing to determine the optimal

functional model.

2. How to digest spatial smoothness information?

The estimation of the spatio-temporal deformation relies on the apriori informa-

tion on the spatial smoothness of the deformation signal. We recognize the spatial

similarities between InSAR measurement points based on the contextual infor-

mation on the spatial smoothness of the deformation signal. The methodology of

digesting contextual information will be developed in this study.

3. How to assess quality of results?

The quality of the modeling results can be assessed from two aspects: 1) Precision,

which represents the fit of deformation model to the InSAR data. 2) Reliability,

which represents the imperfection of the chosen model.

1.5. Research limitations
This study will neither address any of the TInSAR data processing techniques (Berardino

et al., 2004; Ferretti et al., 2011; Hooper, 2008; van Leijen, 2014; Samiei Esfahany, 2017),

but rather focus on the post-processing techniques, using the output of the TInSAR pro-

cessing chain. We will also not focus on improving the deformation modeling of every

single InSAR measurement point (Chang, 2015; Chang and Hanssen, 2016), but a better

model of the deformation behavior for the whole area of interest, taking into account the

spatial smoothness information. The contextual information on the spatial smoothness
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of InSAR measurements will be used to aid the spatio-temporal deformation modeling.

However, this study will not focus on how to acquire contextual information, but focus

on how to digest it when it is given, and import this information into deformation mod-

eling.

1.6. Thesis roadmap
Chapter 2 gives a review of radar interferometry and the mathematical methodologies

used in this study. The InSAR principle and the existing TInSAR methodologies will be

introduced. Also, the linear model estimation method will be presented.

Chapter 3 focuses on the theory of spatio-temporal deformation modeling. We pro-

pose a modeling method to select the optimal spatio-temporal model for the deforma-

tion of the area of interest. We provide a generic way to introduce the spatial smoothness

information into deformation modeling. The methodology of quality assessment is in-

troduced.

Chapter 4 applies the spatio-temporal deformation modeling method to simulated

data and assesses its performance, given different kinds of spatial smoothness informa-

tion.

Chapter 5 applies the spatio-temporal deformation modeling method to real InSAR

measurements, and analyzes the deformation over a hydrocarbon production area.

The conclusions, contributions, and recommendations for future research are pre-

sented in Chapter 6.

An overview of the road map of this thesis is shown in Fig. 1.1.
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Figure 1.1: Thesis roadmap



2
State of the Art

This chapter introduces the background knowledge on radar interferometric techniques

(InSAR), and basic estimation theory used in this study. Section 2.1.1 provides a brief

review of InSAR, and particularly introduces time-series InSAR technique. Section 2.2

presents an introduction to the mathematical methodology used for deformation mod-

eling.

2.1. SAR interferometry
SAR Interferometry (InSAR), including time-series InSAR (TInSAR) techniques, such as

the Persistent Scatterer Interferometric (PSI) method (Ferretti et al., 2000c, 2001), the

Small BAseline Subset (SBAS) method (Berardino et al., 2002) and the hybrid methods

(Lanari et al., 2004; Hooper, 2008; Ferretti et al., 2011) are among the rapidly developing

new technologies for Earth observation from space since the late 20th century. This sec-

tion briefly introduces the InSAR principle in Section 2.1.1, and focuses on the TInSAR

methodologies in Section 2.1.2.

2.1.1. InSAR principle
A radar image can be acquired by a side-looking radar sensor, which can be mounted

on a ground based, airborne or spaceborne platform. The radar sensor transmits a

radar signal/pulse to the ground objects, and measures the complex return of the back-

scattered pulses (See Fig. 2.1(a), adapted from Bamler and Hartl (1998)). A single com-

plex return creates raw data, i.e. a so-called real aperture radar (RAR) image. Due to

the limitation of the antenna (aperture) size, the RAR images usually have a very coarse

resolution. Exploiting the fact that every ground target reflects many radar pulses dur-

ing the sensor trajectory, the raw data are subsequently combined (or focused) by signal

processing techniques in order to artificially build a long antenna and create a Synthetic

Aperture Radar (SAR) image with much higher resolution (Bamler and Schättler, 1993;

Cumming and Wong, 2005; Massonnet and Souyris, 2008).

Every pixel in a SAR image is associated with a resolution cell on Earth, sampled in

the azimuth (i.e. flight direction) and slant-range coordinate system. Each pixel of an

7
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SAR image records the signal information in the form of single-look complex (SLC). To-

gether these pixels form an SLC image. The value of every pixel in an SLC can be ex-

pressed as a complex phasor C ,

C = Re(C )+ j Im(C ) = A exp( jψ), (2.1)

where j is the imaginary unit. Re(C ) and Im(C ) denote the real and imaginary parts of the

complex phasor C . A represents the amplitude of C , which measures the magnitude of

the radar reflection. ψ is the fractional phase of the received radar signal. The amplitude

A can be computed by

A =
√

Re(C )2 + Im(C )2. (2.2)

The SLC phase ψ mainly has four components,

ψ=W {Ψrange +Ψatmo +Ψscat +Ψnoise}, (2.3)

where W {·} is the modulo-2πwrapping operator, andψ is the wrapped SLC phase. Ψrange

is the range-dependent phase. The "range" refers to the distance between the radar sen-

sor and the effective phase center of the resolution cell on the ground. Ψatmo is the phase

delay caused by atmosphere. Ψscat is the scattering phase that is related to the distribu-

tion of all scatterers within a resolution cell. Ψnoise is the noise-related phase, caused by

system or thermal noise which is dependent on sensor specifications.

Interferometric SAR (InSAR) exploits the phase differences between two SLC (SAR)

images to get the information about the position or the displacement of the ground ob-

jects. The interferometric process refers to the complex conjugate multiplication be-

tween two SLC images. It results into a complex image, known as an interferogram. To

create an interferogram, one of the two SLCs (slave image) will be coregistered to the

other SLC (master image). If C master and C slave are a pair of coregistered master and

slave SLC, the interferogram IMS can be computed by

IMS =C master(C slave)∗ = Amaster Aslave exp j (W {ψmaster −ψslave}), (2.4)

where Amaster and Aslave are the amplitude of the master and the slave SLC, respectively.

The operator ∗ denotes the complex conjugate. ψmaster and ψslave are respectively the

SLC phase of the master and slave image. Considering Eq. (2.3), the interferometric

phase of a pixel in the interferogram can also be written as the summation of the same

four components

φw
intf =W {ψmaster −ψslave} =W {φrange +φatmo +φscat +φnoise}, (2.5)

where φw
intf is the wrapped interferometric phase. The four unwrapped components,

i.e. φrange, φatmo, φscatter and φnoise, are contributed by the differences of four compo-

nents in the master and the slave, i.e. the range, atmospheric delay, scattering phase,

and interferometric noise component, respectively



2.1. SAR interferometry

2

9

The atmospheric phaseφatmo is the result of the difference between the atmospheric

phase components in master and slave acquisitions. It has been studied by Goldstein

(1995); Zebker et al. (1997); Massonnet and Feigl (1998); Hanssen (2001a); Ding et al.

(2008) and Liu (2012).

The scattering phase φscatter is induced by the difference in scattering phase be-

tween the master and slave acquisitions. This difference degrades the interferometric

coherence, known as decorrelation. It has been studied by Zebker and Villasenor (1992);

Hanssen (2001a).

The interferometric noise phase φnoise is due to different noise contributions comes

from the system thermal noise and processing-induced noise (Samiei Esfahany, 2017).

When monitoring ground deformation using InSAR, one wants to extract deforma-

tion component from InSAR observation. The deformation is related to the ground tar-

get moving away/toward the satellite between the master and slave acquisition. This

movement is one of the contributions to the change of slant-range. Therefore the de-

formation should be derived from φrange, and the other components in φw
intf will be con-

sidered as noise. The phase component φrange can be further decomposed into three

components: 1) the flat earth phase φflat, the topographic phase φtopo and the deforma-

tion phase φdefo. φrange can be written into the summation of the three components, as

(Hanssen, 2001a; Samiei Esfahany, 2017)

φrange =φflat +φtopo +φdefo. (2.6)

To derive the deformation component φdefo from φrange, we investigate InSAR imaging

geometry as shown in Fig. 2.1(b), which is adapted from Bamler and Hartl (1998).

As shown in Fig. 2.1(b), in a repeat-pass InSAR imaging, the SAR sensor at height Hsat

acquires the master and slave from different positions in space and at different times,

forming a spatial baseline B , which can be decomposed into two orthogonal compo-

nents: 1) B∥ in the satellite’s line of sight (LOS) direction, which represents the parallel

baseline, and 2) B⊥ in the orthogonal direction of the LOS direction, which represents

the perpendicular baseline. The baseline orientation angle α is the angle between B

and the horizontal plane. Satellite radar looks at ground surface with a looking angle θ,

and θi nc is the incidence angle of radar signal w.r.t. the reference ellipsoid surface. The

ground object has an elevation of H w.r.t. the reference ellipsoid. Three components of

range-dependent phase φrange can be computed:

• Flat earth phase φflat: This phase component is the effect of a reference surface,

and exclusively depends on the viewing geometry. It can be approximated based

on the so-called far-field approximation (Zebker and Goldstein, 1986; Hanssen,

2001a), as:

φflat = 4π

λ
B∥ =

4π

λ
Bsin(θ−α), (2.7)

where λ is the wavelength of radar signal.
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Figure 2.1: (a) SAR and (b) repeat-pass InSAR imaging geometry, adapted from Bamler and Hartl (1998). (a):

The satellite at height Hsat moves along the azimuth direction, and the on-board radar transmits radar signal

along the range direction, forming a footprint of a single purse. As the satellite flying, a swath along the azimuth

direction can be imaged. (b): Two SAR sensors, master and slave are at a distance, i.e. baseline B , which

can be decomposed into the parallel baseline B∥ along the LOS direction, and the perpendicular baseline B⊥
perpendicular to the LOS direction. The angle between the baseline B and the horizontal plane is defined

as the baseline orientation angle α. The incidence angle θi nc is the incidence angle of radar signal w.r.t. the

reference ellipsoid surface. The ground object has an elevation of H w.r.t. the reference ellipsoid.

• Topographic phaseφtopo: This component is the effect of the surface height above

the reference surface. Similar to the flat earth component, it solely depends on the

viewing geometry, and can be computed as (Zebker and Goldstein, 1986; Hanssen,

2001a):

φtopo = −4π

λ

B⊥
Rsin(θi nc )

H , (2.8)

where R is the distance from the ground target to the satellite sensor of the master

acquisition.

• Deformation phase φdefo: This component is the effect of the displacement be-

tween the acquisitions of master and slave. It can be computed as

φdefo = −4π

λ
DLOS, (2.9)

where DLOS is the deformation along radar LOS direction.

InSAR processing estimates the LOS deformation DLOS from the interferometric

phase φw
intf. In the processing, the apriori information (e.g. external DEM, precise or-

bit data) are required. Also, proper algorithms (e.g. corregistration, filtering and phase

unwrapping algorithms) need to be applied. Many researchers have been working on

InSAR processing methods, see the examples as Goldstein et al. (1988); Lee et al. (1994);

Bamler and Hartl (1998); Kampes and Usai (1999); Hanssen (2001a); Ferretti et al. (2007);
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Sandwell et al. (2011). Note that detailed explanation of InSAR processing steps is be-

yond the scope of this study.

2.1.2. Time-series InSAR techniques
As introduced in Section 1.2, the application of InSAR on deformation monitoring can

be limited by three factors (Hanssen, 2001a; van Leijen, 2014; Samiei Esfahany, 2017):

1) the disturbance of atmospheric noise (atmospheric decorrelation), 2) the change of

ground scattering characteristics (temporal decorrelation), and 3) the different imaging

geometry due to the satellite repeat orbits are too far apart (geometric decorrelation).

To cope with these limitations, the time-series InSAR (TInSAR) methodologies have been

developed, which systematically exploit a number of interferograms from the same area.

TInSAR methodologies separate the atmospheric effect by stacking methods

(Sandwell and Price, 1998; Wright et al., 2001; Lyons and Sandwell, 2002), based on the

fact that atmospheric effects are mostly uncorrelated temporally, but correlated spatially

(Hanssen, 2001a). Based on these spatio-temporal characteristics, the atmospheric ef-

fects can be separated from other signals. And in this way the atmospheric decorrelation

can be mitigated.

Figure 2.2: Point scattering versus distributed scattering in case of coherence or incoherence. Top) Scattering

objects within a resolution cell at two acquisitions (indicated by the black and gray reflecting objects). A large

object corresponds to a strong reflection, whereas the small objects represent weak reflections. Middle) Pha-

sors for the two acquisitions (again in black and gray). Bottom) Examples of scattering objects. Adapted from

van Leijen (2014).
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There are in general two ways to cope with the temporal and geometric decorrela-

tion: one is to discriminate the pixels which are minimally affected by decorrelation ef-

fects, and exclusively analyze these pixels. Another way is to include the pixels affected

by decorrelation, and reduce/filter the decorrelation effect. These two ways lead to two

different kinds of TInSAR methodologies, optimized towards two types of pixels with dif-

ferent scattering mechanisms: one is the persistent scatterer (PS) which is a predominant

point scatterer within a resolution cell, and its scattering characteristics are coherent in

time. The other one is the distributed scatterer (DS), which does not contain a dominant

point scatterer, but a large number of small scattering objects in a resolution cell. DS is

affected by the decorrelation effects, and may show incoherent. van Leijen (2014) illus-

trates the PS and DS in coherent/incoherent cases, see Fig. 2.2. In general, the TInSAR

methodologies 1) exclusively analyze coherent point scatterers, i.e. PS, or 2) use proper

methodologies to process DS and mitigates the decorrelation effects, or 3) apply a hybrid

approach of 1) and 2).

The details of TInSAR processing methodologies are not within the scope of this

study. Here we demonstrate the three key steps of TInSAR methodologies:

• Pixel selection. The pixels, i.e. PS or DS which will be processed by TInSAR

methodologies are selected in this step. A PS-pixel is commonly selected based

on two criteria: 1) the spatial and/or temporal amplitude variation of the pixel

(Ferretti et al., 2001; Kampes and Adam, 2004), and 2) the spatial and/or temporal

phase variation of the pixel (Ferretti et al., 2001; Hooper et al., 2004; Kampes and

Hanssen, 2004; Kampes and Adam, 2006; Hanssen et al., 2008). A DS-pixel is often

selected by estimating the spatial coherence or spatial phase consistency (Touzi

et al., 1999; Hooper, 2008). The selected pixels can be recognized as the InSAR

measurements points, which will be analyzed to extract the deformation signal.

• Phase unwrapping. The interferometric phase merely contains the phase frac-

tion of the (actual) absolute phase, as it is wrapped in 2π, see Eq. (2.5). The phase

unwrapping process is to reconstruct the absolute phase via estimating the num-

ber(s) of phase ambiguity. From an estimation point of view, the unwrapping

problem is inherently ill-posed, and hence the solution is non-unique (Ferretti

et al., 2000b; Samiei Esfahany, 2017). As a consequence, it is impossible to solve

the unwrapping problem without any apriori knowledge or assumption about the

signal of interest. The common unwrapping methods usually apply assumptions

on the spatio-temporal deformation behavior of nearby PS-pixels (or arcs) (Fer-

retti et al., 2001; Adam et al., 2003; Kampes, 2005; Hooper, 2006; van Leijen, 2014),

e.g. the difference between the phase of two adjacent pixels is not more than half a

wave cycle (Goldstein et al., 1988; Bamler and Hartl, 1998). The result of phase un-

wrapping is the unwrapped time-series per InSAR measurements point, w.r.t. the

reference point and the same reference epoch (the same master).
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• Atmospheric-signal mitigation. The effects of the atmospheric signal, i.e. the at-

mospheric phase screen (APS), need to be mitigated for all the interferograms in an

InSAR stack. The most common approach of APS estimation is presented in Fer-

retti et al. (2000c), which is adopted by Berardino et al. (2002); van Leijen (2014).

By this method, the topographic phase and deformation phase are estimated and

subtracted from the time series of the unwrapped interferometric phase. A high-

pass filter is applied on the residuals of time series per point to acquire the at-

mospheric and other noises, because the atmospheric delay is a high-frequency

signal in the temporal domain. Then the APS per interferogram is estimated using

an interpolation method such as Kriging (Krige, 1951), since the atmospheric sig-

nal is a low-frequency signal in the spatial domain. In this way, the atmospheric

signal is mitigated.

Using TInSAR, the time series of the unwrapped deformation phase can be gener-

ated. In order to detect the spatial and temporal patterns/changes, the deformation time

series need to be parameterized. The theory of parameterization of InSAR deformation

time series will be discussed in Section 2.2.

2.2. Mathematical methodology
In this section, we focus on the mathematical methodology of modeling the InSAR de-

formation time series. Given InSAR measurements, the unknown deformation model

parameters can be estimated based on certain mathematical criteria. This section pro-

vides a brief review of the mathematical methodology used for InSAR deformation time

series modeling.

2.2.1. Least-squares estimation
To investigate the signal of interest of a certain object, e.g. the deformation of a point

target, one usually needs to build a mathematical model to describe the behavior of the

signal of interest. This process is the so-called ’modeling’ of the signal of interest. To

perform modeling, one can usually follow a typical 5-step procedure: (Tarantola, 2005):

1) define parameters, 2) build a functional model, 3) acquire measurements and build a

stochastic model, 4) estimate parameters, 5) assess quality.

At the start of modeling, one should define which parameters to use to form up the

model. The model should have a sufficient number of parameters to describe the signal.

On the one hand, if a model does not contain enough parameters, it will lose the de-

scription of some details of the signal. On the other hand, if a model contains too many

parameters, it will result into an overestimation. Excluding the unnecessary parameters

may cause losing certain details of the signal, but as long as the model still captures the

main signal behavior, this sacrifice can be considered acceptable. According to the prin-
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ciple of Ockham’s razor (Jefferys and Berger, 1992), the model with fewest parameters

that still explains the observation equally well should be preferred.

Suppose we define n unknown parameters to describe the signal, then a parameter

vector x =
[

x1 x2 · · · xn

]T
is built to represent all unknown parameters.

After the parameters are defined, the functional model is built to define a quantitative

relation between the defined parameters and the measurements, as in

E {y} = f (x), (2.10)

where E {.} expresses the expectation operator. The vector y is the vector of the mea-

surements. The function f defines the mathematical relation between E {y} and x. If f

represents a linear relation, Eq. (2.10) can also be written as (Gauss, 1809; Markoff, 1912):

E {y} = Ax, (2.11)

where A is the so-called "design matrix" with the size of m ×n. In case of a nonlinear

functional model, f should be linearized. This linearization is usually achieved based

on Taylor’s theorem (Taylor, 1717).

The measurements y in Eq. (2.11) are acquired by performing observations on

the physical process related to the signal of interest x and m measurements, as y =[
y

1
y

2
· · · y

m

]T
1.

The underline of y indicates that the measurements are contaminated by stochastic

noise. The behavior of the noise can be described by the stochastic model, i.e. an m ×m

Variance Covariance Matrix (VCM) Qy y , which can be written as:

D{y} =Qy y =


σ2

11 · · · σ2
1m

...
. . .

...

σ2
m1 · · · σ2

mm

 , (2.12)

where D{.} denotes the dispersion operator. The diagonal elements of Qy y are the mea-

surements’ noise, and the off-diagonal elements are the covariances between the mea-

surements’ noise.

Then the parameter estimation should be performed to estimate the unknown pa-

rameters. This requires us to solve Eq. (2.11), which provides the relation between E {y}

and x. However Eq. (2.11) cannot always be solved straightforwardly by multiplying A−1,

since the design matrix A is not always a square matrix, i.e. when the number of the mea-

surements m equals to the number of the unknown model parameters n. When m > n,

the problem is well-posed. When m < n, the problem is ill-posed. In this study,we will

focus on the well-posed problem.

1Note that in this chapter, the notations {1. . .m} indicates the order of all measurements, but not the epochs of

acquisitions as in Chapter 3. When the vector y represents the InSAR deformation measurements, it indicates

the InSAR deformation time series of one or more InSAR measurement points.
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In the over-determined situation, an approximate solution to Eq. (2.11) is obtained

by the Best Unbiased Linear Estimation (BLUE) (Gauss, 1809; Markoff, 1912), as in:

x̂ = (AT Q−1
y y A)−1 AT Q−1

y y y , (2.13)

where x̂ is the BLUE of the unknown parameters x, which meets the following criteria:

• The estimator x̂ is a linear function of the measurements ("Linear" criterion).

• The expectation of x̂ equals to the true value ("Unbiased" criterion):

E {x̂} = x,∀x. (2.14)

• Among all linear and unbiased estimators, the BLUE x̂ minimizes the residual sum

of squares (Least-Squares, LS) among all linear and unbiased estimators ("Best"

criterion):

‖Ax̂ − y‖2
Q−1

y y
= min, (2.15)

where ‖Ax̂ − y‖2
Q−1

y y
denotes the weighted norm (Ax̂ − y)T Q−1

y y (Ax̂ − y).

After the BLUE x̂ is computed, quality control is required to evaluate the quality of

the estimation. For example, the precision of the estimated parameters can be used as

an indicator to assess the quality, given by

Q x̂ x̂ = (AT Q−1
y y A)−1. (2.16)

where Q x̂ x̂ is the VCM of x̂. Its diagonal elements indicate the variances of the corre-

sponding parameters in x̂, while the off-diagonal elements represents the covariances

between the elements of x̂.

2.2.2. Constrained least-squares estimation
In Section 2.2.1, we derived the BLUE x̂ based on Eq. (2.13). This means that x̂ is esti-

mated fully based on the measurements y . In some situations, observations from ex-

ternal sources are also available, besides y . These extra observations can provide infor-

mation on the functional or stochastic behavior of the unknown parameter x. A way to

formalize and exploit this knowledge of the model is to subject the least-squares estima-

tion results to the external information, by using constrained least-squares estimation.

The functional behavior of x given by apriori information can be expressed by:

E {d} = g (x), (2.17)

where d is the vector of pseudo observations. The knowledge of d is acquired from ex-

ternal information and not from real measurements as y in Eq. (2.10). The function g



2

16 2. State of the Art

defines the relation between the unknown model parameters x and the expectation of

extra observations d . When Eq. (2.17) is linear, it can be written into

E {d} =Gx, (2.18)

where the matrix G is the design matrix of the functional model. In case that Eq. (2.17) is

non-linear, it can be linearized into Eq. (2.18) using Taylor’s theorem.

Similar as Eq. (2.12), the uncertainties of the extra observations d are defined by:

D{d} =Qdd , (2.19)

where Qdd is the VCM of the extra observations.

With the constraints given by Eqs. (2.18) and (2.19), we estimate the unknown param-

eter x following the three criteria of BLUE (see Section 2.2.1), but also subjected to the

estimation with external information. Therefore, one needs to choose whether the esti-

mation should have a better fit to the observations y , or the estimation is more subjected

to the constraint (Eq. (2.18)). One way to do this is to give a regularization parameter

(Tikhonov, 1963; Tikhonov et al., 1977). Another way is to determine this balance based

on the given VCMs, i.e. Qy y and Qdd . The "Best" criterion in Eq. (2.15) will be defined as:

‖Ax̂ − y‖2
Q−1

y y
+‖Gx̂ −d‖2

Q−1
dd

= min,∀x, (2.20)

where x̂ denotes the class of all linear and unbiased estimators. In Eq. (2.20), ‖Ax̂ −
y‖ and ‖Gx̂ −d‖ denotes the residuals of functional model to the observations y and

the pseudo observations d . The VCMs Qy y and Qdd serve as the metrics of weight in

Eq. (2.20). Based on Eq. (2.20), the BLUE x̂ is subjected to the pseudo observations, and

can be written as

x̂ = (AT Q−1
y y A+GT Q−1

ddG)−1(AT Q−1
y y y +GT Q−1

dd d). (2.21)

The constrained least-squares estimation allows one to import the extra information

on the functional model. If the apriori knowledge on the signal of interest is available,

e.g. given the difference of deformation velocities of two InSAR measurement points

equals to the value v0 and its variance σ2
0, then the least-squares estimation can be sub-

jected to this contextual information. If the contextual information is correct, then tak-

ing into account this information into modeling can help one to derive more physical

realistic model.

In the particular case of modeling InSAR deformation time series, the constrained

least-squares estimation imports extra information to the functional and stochastic

model of deformation. Taking into account the correct contextual information can im-

prove the modeling results.
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2.3. Summary
In this chapter, we reviewed the InSAR principle and the mathematical methodolo-

gies for InSAR deformation modeling. We introduced the generic TInSAR processing

procedure, and presented the modeling theory based on least-squared estimation and

constrained least-squared estimation. In Chapter 3 we introduce the functional and

stochastic model of modeling InSAR deformation time series.





3
Spatio-Temporal Deformation Modelling

TInSAR processing derives the deformation time series of InSAR measurements points.

To study the deformation behavior of a large area with a huge number of InSAR mea-

surement points, analyzing the InSAR deformation time series point-by-point is ineffi-

cient. As mentioned in Section 2.2.1, the deformation behavior, which is the physical

phenomenon of interest in this study, can be represented by a set of deformation model

parameters, e.g. deformation velocities. These parameters can be estimated from the

InSAR deformation time series, given certain apriori knowledge and assumptions.

In this chapter, a spatio-temporal modeling algorithm of InSAR deformation time

series is introduced.

3.1. Point-wise deformation modeling
A number of temporal deformation models can be suggested by using apriori informa-

tion to describe the deformation behavior of an InSAR measurement point. Choosing

the "optimal" model among these remains a challenge. In this study, hypothesis test-

ing is applied to select the optimal model of an InSAR measurement point among all

possible models. This process is referred to as point-wise deformation modeling (Chang

and Hanssen, 2016). In Section 3.1.1, the functional model of the point-wise modeling

is introduced. In 3.1.2 we introduce how to build up the stochastic model. In 3.1.3, the

theory of selecting optimal model using hypothesis testing method is introduced.

3.1.1. Functional model
Given m +1 SLC acquisitions, using TInSAR processing, the InSAR measurement points

are selected and their deformation time series with m epochs can be established

w.r.t. the same reference point r and the same reference epoch o. Then for an InSAR

measurement point p, the InSAR observations representing the deformation time series

can be written as:

y p =
[

y p
1

y p
2

· · · y p
m

]T
, (3.1)

where the vector y p is an m ×1 vector representing the deformation time series of point

p, where y p
i

, i ∈ [1,m] is the deformation of p at the epoch i , w.r.t. the reference epoch o

19
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and the reference point r .

Conventionally, the deformation time series of p can be represented by a linear func-

tion of time (Teunissen, 2003a, 2006; Caro Cuenca, 2012), as in:

E {y p
i

} = ti · v p , (3.2)

where ti is the temporal baseline of the i th epoch w.r.t. the reference epoch o, and v p

is the deformation velocity of InSAR measurement point p. Eq. (3.2) is also referred to

as "constant velocity function", which is sufficient to facilitate phase unwrapping effi-

ciently.

However, due to the potential combination of driving mechanisms, the constant ve-

locity function may not be adequate for all the InSAR measurement points. When non-

linear components exist in the deformation time series of p, then the expectation of y p
i

can be written as:

E {y p
i

} = ti · v p +µp
i , (3.3)

where µp
i represents the non-linear deformation of InSAR measurement point p at the

i th epoch, w.r.t the reference epoch o and reference point p1. The term µ
p
i can be for-

mulated in different forms due to the combination of different driving mechanisms of

deformation, e.g. temperature variation (Chang et al., 2014), ground water extraction

(Sinclair, 1982) or gas production (Ketelaar, 2009). To describe the deformation behav-

ior, a library of canonical functions (Chang, 2015; Chang and Hanssen, 2016) can be es-

tablished. These canonical functions can be used as basic "building blocks" to describe

any type of deformation behavior. The canonical functions are listed as below:

• Breakpoint function. For some cases, the deformation velocity v p may not be a

constant value along time, but have several different values for specific time spans.

This deformation behavior is observed when the ground motion is directly cou-

pled to the production volumes of water or hydrocarbons (Ketelaar, 2009). The ve-

locity changes between two time spans are referred to as the "breakpoint" (Chang

et al., 2014). To describe the deformation behavior, one can regard the deforma-

tion velocity v p as the velocity before any breakpoint occurs, and model the de-

formation velocity change w.r.t vp after every breakpoint appear. For instance, if

only one breakpoint occurs at the bth epoch in the deformation time series of p,

as shown in Fig. 3.1, the breakpoint function can be expressed as:

µ
p
i (δv p ) =

0, ti < tb

δv1(ti − tb), ti Ê tb

, (3.4)

where µp
i (δv p ) is the contribution of the breakpoint function to the nonlinear de-

formation term µ
p
i in Eq. (3.3). Before the bth epoch no breakpoint exist, therefore

1Note that the non-linear deformation componentµ
p
i is an unknown deterministic parameter, and should not

be confused with a stochastic error component of the measurements.
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the velocity change equals to 0. The term δv1 indicates the velocity change after

the breakpoint at the bth epoch. The term tb is the temporal baseline for the bth

epoch w.r.t. the reference epoch o.

Figure 3.1: An example of the breakpoint function. The blue dots indicate the deformation

times series computed with TInSAR processing. The red line is the estimated deformation

model with both constant velocity function and breakpoint function. One breakpoint occurs

at the June 8th of 2011. The deformation time series are derived from actual Radarsat-2 SAR

data with 5.6cm wavelength.

Now we extend Eq. (3.4) to the case of multiple breakpoints. Given nb breakpoints

which occur at epoch [b1,b2, ...,bnb ], where nb ∈ [1,m − 2] since the breakpoint

cannot occur at the first and the last epoch of the time series. Then the breakpoint

function can be written as:

µ
p
i (δv p ) =



0, ti < tb1

δv1(ti − tb1 ), tb1 É ti < tb2

δv1(tb2 − tb1 )+δv2(ti − tb2 ), tb2 É ti < tb3

· · ·
δv1(tb2 − tb1 )+·· ·+δvnb (ti − tbnb

), tbnb−1 É ti < tbnb
,

(3.5)

where [δv1,δv2, · · · ,δvnb ] are the velocity changes of the nb time spans after the first

breakpoint occurs.

• Step function. Sometimes the instantaneous events or unwrapping errors may
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Figure 3.2: An example of the step function together with constant velocity function. The blue

dots indicates the deformation times series computed with TInSAR processing. The red line

is the estimated deformation model with both constant velocity function and step function.

One step occurs at May 1st, 2012. The deformation time series are derived from Radarsat-2

SAR data with 5.6cm wavelength.

reveal themselves as jumps in deformation time series. In this situation a step

function can be introduced. If one step occurs at the sth epoch in the deformation

time series, as shown in Fig. 3.2 the step function is

µ
p
i (4p ) =H(ti , ts )4p , (3.6)

where µp
i (4p ) is the contribution of the step function to the nonlinear deforma-

tion term µ
p
i in Eq. (3.3). The term ts is the temporal baseline of the sth epoch

w.r.t. the reference epoch o. The scalar 4p
s represents the step magnitude at the

sth epoch of InSAR measurement point p. The Heaviside step function H (Weis-

stein, 2008) is written as

H(ti , ts ) =
0, ti < ts

1, ti Ê ts

, (3.7)

where the value of the Heaviside step functionH(ti , ts ) can only be either 0 or 1.

Now we extend Eq. (3.6) to multiple steps situation. Given ns steps which occur

at epoch [s1, s2, ..., sns ], where ns ∈ [1,m −2] since the step cannot occur at the first

and the last epoch of the time series. Then the step function can be expressed as

µ
p
i (4p ) =H(ti , ts1 )4p

s1
+H(ti , ts2 )4p

s2
+·· ·+H(ti , tsns

)4p
sns

, (3.8)
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Figure 3.3: An example of the outlier function together with constant velocity function. The

blue dots indicates the deformation times series computed with TInSAR processing. The

red line is the estimated deformation model with both constant velocity function and out-

lier function. One step occurs at Dec 22nd, 2009. The deformation time series are derived

from Radarsat-2 SAR data with 5.6cm wavelength.

where [4p
s1

,4p
s2

, · · · ,4p
sns

] are the magnitude of all steps occurring in the deforma-

tion time series of InSAR measurement point p.

• Outlier function. A jump can also exist at a single epoch in the time series, which

is referred to as the "outlier function" in this study. The outlier function does not

only describe errors in the deformation time series, e.g. unwrapping errors, but

can also represent the instantaneous offset due to actual physical events. Given

nε outliers at the epoch [ε1,ε2, ...,εnε ] in the deformation time series of the InSAR

measurement point p, the offset function can be written as

µ
p
i (Dp ) =K(ti , tεk )Dp

i , (3.9)

where µp
i (Dp ) represents the contribution of the outlier function to the nonlinear

deformation term µ
p
i in Eq. (3.3), and Dpi is the magnitude of the outlier at epoch

i . K(ti , tε) is the Kronecker delta (Kaplan, 1952) as in

K(ti , tε) =
1, ti = tε,

0, el se
, (3.10)
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where the outliers occur at epoch tε and nε ∈ [0,m −2] is the total number of out-

liers.

• Sinusoid function. When studying the deformation over peatland and permafrost

area, the sinusoid function (Kampes, 2005; van Leijen and Hanssen, 2008) can be

applied to describe the deformation, (Brown and Kupsch, 1974; Wu et al., 2002;

Glaser et al., 2004) as in

µ
p
i (Sp ,C p ) = sin(2πti ) ·Sp + (cos(2πti )−1) ·C p , (3.11)

where µp
i (Sp ,C p ) is the contribution of the sinusoid function to the nonlinear de-

formation term µ
p
i in Eq. (3.3). The coefficients Sp and C p represents the seasonal

periodic deformation with the amplitude
√

(Sp )2 + (C p )2. Note that ti here has the

unit of year.

• Exponential function. For post-seismic deformation (Savage et al., 2003), land-

slides (Montgomery et al., 1998) or soil settlement or compaction (Verruijt and

Van Baars, 2007), an exponential function may be the optimal parameterization,

µ
p
i (κp ,βp ) = (1−exp(− ti

βp )) ·κp , (3.12)

where µp
i (κp ,βp ) is the contribution of the exponential function to the nonlinear

deformation term µ
p
i in Eq. (3.3). The term κp scales the function, and the charac-

teristic time βp is associated with the decreasing relaxation in time.

The exponential function is a non-linear function of time. Therefore it needs to be

linearized by Taylor expansion (Taylor, 1717) in order to estimate the parameters

(Teunissen, 1989). Such nonlinear least squares estimation is prone to a biased

estimation, i.e. E {x̂} 6= x, due to the neglect of the second- and higher-order terms

of Taylor expansion. Therefore, in some cases, the piecewise linear model can be

considered as an alternative approach.

Based on the library of canonical functions, the nonlinear term µ
p
i in Eq. (3.3) can be

expressed as one particular canonical function, or the combination of several canonical

functions in the library. Therefore one needs to decide the optimal model to parameter-

ize the deformation behavior of the InSAR measurement point p. The hypothesis testing

can be applied to make this decision, which will be introduced in Section 3.1.3.

3.1.2. Stochastic model
When no priori knowledge about the noise in the observations y p is available, we can

start to build a simple stochastic model as

D{y p } =Qp =σ2
VUWRy y , (3.13)



3.1. Point-wise deformation modeling

3

25

where Qp is the m × m VCM of the deformation time series at all epochs of InSAR

measurement point p. The diagonal entries represent the variances of y p , and the

off-diagonal entries describe the covariances, i.e. the correlated noises. The stochastic

model consists of a variance of unit weight σ2
VUW and a cofactor matrix Ry y . If we assume

all InSAR measurements to be equal weighted and independent, then Ry y = I , where

I is an diagonal unit matrix. The variance of unit weight σ2
VUW can be fixed from expe-

rience, e.g. 9 mm2 for TerraSAR-X, or 25 mm2 for RADARSAT-2 (Ketelaar, 2009; Chang

et al., 2014).

An alternative way to build the stochastic model of y p is based on apriori information

on the two major components of the InSAR measurement noise: the Scattering noise and

the Atmospheric noise, (Hanssen, 2001a) which are introduced as below:

• Scattering noise is a combination of the thermal noise, the scattering mechanism,

and the resampling/coregistration errors. The scattering noise has been well-

studied in the InSAR community (Marinkovic et al., 2008; Ferretti et al., 2007).

Given InSAR measurement point p, we use σψ to represent the phase standard

deviation caused by scattering noise in the SLC phase observations of point p.

According to previous studies (Ferretti et al., 2001), the standard deviation σψ is

assumed to have a strong correlation with the normalized amplitude dispersion

Da , as in

Da = σa

µa
≈σψ, (3.14)

where Da is the normalized amplitude dispersion of p. The terms µa and σa are

respectively the temporal mean and standard deviation of the amplitude time se-

ries of p. The phase standard deviation is in rad, and is converted to meters as:

σn = λ

4π
σψ, (3.15)

where σn is the standard deviation in meters, and λ is the radar wavelength. The

scattering noise in the SLC observations of InSAR measurement point p is consid-

ered to be independent between each other (Ferretti et al., 2001; Marinkovic et al.,

2008). However for y p , which is the InSAR observations on deformation time se-

ries , each of its elements, i.e. y p
i

is the double difference between the SLC obser-

vation of point p at the i th epoch w.r.t. the reference epoch o and the reference

point r . Therefore the scattering noise in y p is correlated between epochs, due to

sharing the same reference epoch and reference point. Then the scattering noise

component in the full matrix VCM of y p will be:

Qp
scat =


σ2

scat(1o, pr ) σ2
scat(12, pr ) · · · σ2

scat(1m, pr )

σ2
scat(21, pr ) σ2

scat(2o, pr ) · · · σ2
scat(2m, pr )

...
...

. . .
...

σ2
scat(m1, pr ) σ2

scat(m2, pr ) · · · σ2
scat(mo, pr )

 , (3.16)
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where Qp
scat is the VCM of y p caused by scattering noises. Its element σ2

scat(i j , pr ),

with i , j ∈ [1,m] can be written as: (Hanssen, 2001a; Samiei-Esfahany and

Hanssen, 2013)
σ2

scat(i o, pr ) = 4σ2
n

σ2
scat(i j , pr ) = 2σ2

n ,
(3.17)

where σ2
scat(i o, pr ) denotes the scattering noise variance of y p

i
, and σ2

scat(i j , pr ) is

the covariance between two double difference observations y p
i

and y p
j

.

• Atmospheric noise is one of the dominant error sources in InSAR data (Hanssen,

2001a). It is mainly caused by the heterogeneity of the wet component of atmo-

sphere, which delays in the transition of radar signal. Previous studies (Hanssen

and Klees, 1998; Emardson et al., 2003) show that the variability of atmospheric

noise between two points increases with distance between the points, which can

be described by a variogram model as in(Hanssen, 2001a; Liu, 2012)

zi (l ) =σ2
wi

e
(− l

Lwi
)
, (3.18)

where zi (l ) represents the variogram of atmosphere delay between two points at

the epoch ti , with l the distance between the two points. The term σ2
wi

represents

the atmosphere variance factor at the epoch ti , and Lwi the decorrelation distance

at the epoch ti . The two parameters of the variogram model, i.e. σwi and Lwi can

be estimated from the atmospheric data, which can be acquired by atmosphere

filtering in TInSAR processing. Considering the double differences, based on error

propagation law, the atmosphere component in the full matrix VCM of y p is

Qp
atm =


σ2

atm(1o, pr ) σ2
atm(12, pr ) · · · σ2

atm(1m, pr )

σ2
atm(21, pr ) σ2

atm(2o, pr ) · · · σ2
atm(2m, pr )

...
...

. . .
...

σ2
atm(m1, pr ) σ2

atm(m2, pr ) · · · σ2
atm(mo, pr )

 , (3.19)

where Qp
atm is the VCM of y p caused by atmospheric noise. Its element

σ2
atm(i j , pr ), with i , j ∈ [1,m] can be written as: (Samiei-Esfahany and Hanssen,

2013)

σ2
atm(i o, pr ) = 2σ2

wi
+2σ2

wo
−2σ2

wi
e

(− lpr
Lwi

) −2σ2
wo

e
(− lpr

Lwo
)

σ2
atm(i j , pr ) = 2σ2

w j
−2σ2

wi
e

(− lpr
Lwi

)
,

(3.20)

where σ2
atm(i o, pr ) denotes the variance of y p

i
caused by atmospheric noise, and

σ2
atm(i j , pr ) is the covariance between two double difference observations y p

i
and

y p
j

.
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After Qp
scat and Qp

atm are acquired, we can use the sum of these two major component

of the VCM of y p to establish the apriori stochastic model

D{y p } =Qp =Qp
scat +Qp

atm, (3.21)

where Qp is the VCM of the InSAR deformation time series y p . Note that in Eq. (3.21),

some effects caused by the InSAR processing were not taken into account. For instance,

applying atmospheric filtering will affect the spatial-temporal correlation. One way to

improve the apriori stochastic model is to use a Monte Carlo approach to account for

these effects(Samiei-Esfahany and Hanssen, 2013).

3.1.3. Point-wise multiple hypothesis testing
In Section 3.1.1 and 3.1.2 the functional model and stochastic model of the point-wise

modeling are given. In order to determine a most probable deformation model behav-

ior of a single InSAR measurement point p, Multiple Hypothesis Testing (MHT) (Chang

et al., 2014) is applied per point.

Based on the combinations of canonical functions stated in Section 3.1.1, one can set

a null hypothesis H0 as the most likely deformation model of InSAR measurement point

p. A set of alternative hypotheses H j ’s are established besides H0, which are the alterna-

tive deformation models of p. Without loss of generality, the mathematical expressions

for H0 and all H j ’s, ∀ j are expressed as linear systems of observation equations (Chang

et al., 2014)

H0 : E {y p } = Ap
0 xp

0 ; D{y p } =Qp

H j : E {y p } = Ap
0 xp

0 +C p
j ∇

p
j ; ∇ j 6= 0 D{y p } =Qp ,

(3.22)

where H0 and H j are the null and alternative hypothesis, respectively. The matrix Ap
0 de-

notes the design matrix of the null hypothesis, and xp
0 is the unknown parameter vector

of the null hypothesis. A specification matrix C p
j and an additional vector of unknown

parameters ∇p
j are introduced in the alternative hypothesis.

We use the "constant velocity model" as the null hypothesis H0, as the deformation

behavior of most InSAR measurement points can be described as a linear function of

time (Teunissen, 2003a, 2006; Chang et al., 2014).

We follow a Detection-Identification-Adaption (DIA) procedure (Teunissen, 1990) to

select the optimal deformation functional model of p, from the library of canonical func-

tions. First, we determine whether the default model H0 can be sustained. In case of H0

is rejected, the most probable hypothesis Hb in all H j ’s will be identified. The final de-

cision on whether rejecting H0 will be made by comparing H0 with Hb . The rejection of

H0 directly leads to sustaining Hb .

An Overall Model Test (OMT) is first applied to the null hypothesis H0. The OMT
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follows a test statistic T p
0 , which is (Teunissen et al., 2005)

T p
0 = (êp

0 )
T

(Qp )−1êp
0 (3.23)

where êp
0 = y p − Ap

0 x̂p
0 is the residual between the functional model of the null hy-

pothesis and the observations, and x̂p
0 is the BLUE of xp

0 . The test statistic T p
0 fol-

lows a Chi-squared distribution T p
0 ∼ χ2(q0,λ0), where q0 is the degree of freedom ap-

plied in the OMT, which can be determined by the number of redundant observations,

i.e. q0 = m −n0 where m is the number of observations and n0 the number of unknown

parameters in H0. The term λ0 is the level of non-centrality applied of the Chi-squared

distribution of T p
0 , and for H0 we have λ0 = 0 (Teunissen et al., 2005).

The decision of whether starting MHT is made by comparing T p
0 to a critical value:

K0 =χ2
α0

(q0,0), (3.24)

where K0 is the critical value of OMT. It is computed based on the Chi-squared distri-

bution of T p
0 , given level of significance α0, which refers to the Type-I error: rejecting

H0 while it is true (Teunissen, 2003b). A smaller α0 would result in a lower possibility of

wrongly rejecting H0. The choice ofα0 is dependent on the cost of making a Type-I error,

and can be different in the application cases. Here we suggest setting α0 based on the

external source of information.

The MHT will start if T p
0 > K0, otherwise H0 will be sustained. The test of every alter-

native hypothesis H j follows a test statistics T p
j

T p
j = (êp

0 )
T

(Qp )−1êp
0 − (êp

j )
T

(Qp )−1êp
j , (3.25)

where êp
j = y p −(Ap

0 x̂p
0 +C p

j ∇̂
p
j ) is the residual between the functional model of the alter-

native hypothesis and the observations, and ∇̂p
j is the BLUE of ∇p

j . In Eq. (3.25), the value

of T p
j is always non-negative, since the model will have a better fit to the observations

when more additional parameters are added, making (êp
0 )

T
(Qp )−1êp

0 ≥ (êp
j )

T
(Qp )−1êp

j .

The test statistics of alternative hypotheses follow a Chi-squared distribution as T p
j ∼

χ2(q j ,λ j ),∀ j , where the degree of freedom q j = n j , and n j is the number of additional

parameters of H j . The term λi is the level of non-centrality, and λ j 6= 0,∀ j .

The criterion of selecting the "optimal" alternative hypothesis Hb is based on com-

paring T p
j ’s. However, when the alternative hypotheses have different degrees of free-

dom q j , the distributions of T p
j ’s are different, which makes it impossible to compare

the T p
j ’s directly. One way to normalize the test statistics is to divide it by its critical value

χ2
α j

(q j ,λ j ), as

Tp
j =

T p
j

χ2
α j

(q j ,λ j )
(3.26)
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where Tp
j is the test ratio of H j . In Eq. (3.26), the critical value χ2

α j
(q j ,λ j ) relates to the

level of significance α j , the degree of freedom q j , and the level of non-centrality λ j . In

MHT, the aim is to choose the optimal alternative hypothesis Hb among all H j ’s. There-

fore one should make sure that the probability of accepting each alternative hypothesis,

knowing that it is true, is identical for all alternative hypotheses. This probability is re-

ferred to as the power of test, also called the discriminatory power, γ. We apply the same

γ on the test of all alternative hypothesis. This testing method is known as the B-method

of testing (Baarda, 1968), whose essence is to fix the discriminatory power and calculate

the uniform non-centrality parameter, i.e. λ j =λ0, ∀ j (Teunissen et al., 2005)

λ0 =λ(γ,α0, q0), (3.27)

where α0 is the initial level of significance, and q0 = 1 is the initial degree of freedom

(Chang et al., 2014). Then λ0 and γ are fixed. A loop runs over all H j ’s, and for each

alternative hypothesis a new α j is computed as

α j =α(λ0,γ, q j ). (3.28)

Then we can use Eq. (3.26) to compute the test ratio for all H j ’s. The null hypothesis

H0 will be rejected if

Tp
a > 1 and Tp

a = max{Tp
j }, ∀ j (3.29)

where Tp
a is the test ratio of the "optimal" hypothesis Hb from all H j ’s. Note that when

Tp
a ≤ 1, the test statistic Tp

j does not exceed the corresponding critical value χ2
α j

(q j ,λ j ),

as the result the "optimal" alternative hypothesis Hb is not more probable than than the

null hypothesis H0, therefore H0 will not be rejected and Hb will be discarded (Chang

et al., 2014).

3.2. Cluster-wise deformation modeling
In the point-wise modeling, the deformation model of each InSAR measurement point

has been determined separately, which means that until now we consider the deforma-

tion time series of all InSAR measurement points to be independent. However, in reality,

the deformation time series of some InSAR measurement points show spatial smooth-

ness in a certain degree, which results in the spatially correlation of the InSAR measure-

ments. This spatial correlation shows in two aspects:

• The InSAR noise is spatially correlated. In Section 3.1.2 we built the stochastic

model for point-wise deformation modeling, taking into account the temporal

correlation caused by sharing the same reference epoch o. However, the spatial

correlation of noise has not been included in the stochastic model. The InSAR

noise can be spatially correlated due to: 1) the TInSAR processing produces InSAR

deformation time series w.r.t. the same reference point r (van Leijen, 2014), and 2)
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the atmospheric noise follows a "power law" in spatial domain (Hanssen, 2001a),

therefore is spatially correlated (Samiei-Esfahany and Hanssen, 2013).

• The deformation signal between InSAR measurement points can be spatially cor-

related, because some InSAR measurement points are likely to be measuring the

same deformation behavior, due to the same deformation mechanism (Ketelaar,

2009). In Section 3.1.1 and 3.1.3, we chose the optimal deformation model for ev-

ery InSAR measurement point by applying MHT, based the library of canonical

functions. However, the choice of deformation model for every InSAR measure-

ment point is independent of other InSAR measurement points. In reality, some

InSAR measurement points may measure the deformation caused by the same

driving mechanism, e.g. they measure the deformation of the same civil construc-

tion, or the same deformation feature such as a deformation bowl. These measure-

ments provide extra redundancy when estimating the deformation model which

is driven by the same deformation mechanism.

Previous studies have been done on specifying the noise-related spatial correlations, by

building up a full-matrix VCM as the stochastic model (Hanssen, 2001a; Samiei-Esfahany

and Hanssen, 2013). On the other hand, to take into account the signal-related spatial

correlation, the apriori spatial smoothness information is required. When the spatial

correlation of deformation signal is properly considered, the deformation modeling re-

sults will be more physically realistic. To import the spatial correlation into deformation

modeling, in this Section, we propose a method to group the InSAR measurement points

and model their deformation based on the given information of the spatial smoothness

of deformation signal. This group of InSAR measurement points is referred as a cluster,

and we introduce the cluster-wise modeling method in this Section.

In Section 3.2.1, the definition of a cluster will be introduced. The functional and

stochastic model of cluster-wise modeling will be introduced in Section 3.2.2 and Section

3.2.3, respectively. The model selection methodology for the cluster will be introduced

in Section 3.2.4.

3.2.1. Definition of a cluster
To take into account the spatial correlation, mainly on the signal aspect, the InSAR mea-

surement points will form the so-called "clusters", and the deformation behavior of each

cluster in the area of interest will be modeled. The spatio-temporal correlation of the In-

SAR measurement points within each cluster will be taken into account. We define a

cluster as:

A group of InSAR measurement points within a same pre-defined area, and their

deformation behavior can be described by a single spatio-temporal deformation

model.
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Then two essential questions need to be answered when defining a cluster:

• How to define the extent of a cluster? The InSAR measurement points in a same

cluster should be within the same pre-defined area. This criterion comes from the

assumption that the deformation signal is only correlated within a certain spatial

range. The extent of the area of a cluster should be defined based on this spatial

correlation range. Therefore the area of the cluster should be defined from the

spatial smoothness information of the deformation signal.

• What deformation model should be applied to describe the deformation behav-

ior of a cluster? The InSAR measurement points in the same cluster should also

follow the same deformation model. This criterion is based on the assumption

that if the InSAR measurement points are spatially close and have the same defor-

mation model, then they are likely to be measuring the same deformation behav-

ior, therefore are spatially correlated on the signal aspect. The knowledge on the

deformation behavior is then needed to answer this question.

Therefore, to define a cluster, one needs to have the apriori spatial smoothness infor-

mation on two aspects: 1) To define the spatial extent of a cluster, the knowledge of the

correlation range of deformation signal should be provided; 2) To determine the defor-

mation model that all InSAR measurement points in a cluster follow, the knowledge on

the deformation behavior of the area of interest is required. However, the above knowl-

edge cannot be acquired from InSAR observations without any information from the

external sources. To define a cluster, the contextual information is required, which can

be provided by the following sources:

• Expert knowledge or experience. A relevant domain expert can provide knowl-

edge on the background of deformation. For instance, the previous studies have

been done using the InSAR observations to yield the parameters of the elastic

Earth model (Vasco et al., 2010). In the study, the expert knowledge provides apri-

ori knowledge on the spatial smoothness of the signal, as well as the deformation

behavior in the area of interest.

• Extra observations. Extra observations can be InSAR observations from a different

track/sensor (Ketelaar et al., 2007), or observations using other methods such as

GPS or leveling (Odijk et al., 2003; Poland et al., 2006).

Due to the various sources and different forms of the contextual information, its utiliza-

tion is usually case dependent. We propose a generic way to import the contextual in-

formation on the spatial smoothness of deformation signal into the functional model, by

using it to define the cluster. More specifically, the information will define 1) the extent

of a cluster; 2) the deformation model of a cluster.
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The extent of a cluster

To define the extent of the area of a cluster, there are three options to extract the spatial

smoothness information from the spatial smoothness information:

Figure 3.4: An example of the cluster defined using the Option 1. The coloured dots are the InSAR

measurement points. Each red rectangle with dash lines is a cluster, which is defined based on the

extent of the ground buildings. The base map provides information on the extent of the buildings,

which is the contextual information in this case and directly defines the clusters. This definition is

based on the expert knowledge and the experience that the same building has the same deformation

driving mechanism.

Option 1. The knowledge on the extent of the ground targets is given externally. Then

the extent of a cluster can be defined based on the extent of each ground tar-

get. This is based on the assumption that if the InSAR measurement points

located on the same ground target, they will share the common deforma-

tion driving mechanism, and therefore be spatially correlated. As an example

shown in Fig. 3.4, if the contextual information gives the extent of a building

or a deformation bowl, the InSAR measurement points located on the same

building or in the same deformation bowl can be grouped into the same clus-

ter.

Option 2. An expert spatio-temporal variogram of deformation time series is given, as

well as the maximum threshold of the variogram. We assume that if some

InSAR measurement points are in a same cluster, the differences of their de-

formation should be smaller than the given threshold. Based on this assump-

tion, we divide the area of interest into equal-size grid cells, and each grid

cell is a cluster. As an example shown in Fig. 3.5, one can find the range rcls
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Figure 3.5: An example of the cluster defined using the Option 2. The right figure indicates

the simulated 50×50 InSAR measurement points which are evenly distributed in a 10×10 km

area. All InSAR measurement points follow the constant velocity model. The left figure shows

a given variogram of the deformation velocity. The black line in the left graph indicates the

threshold of the variogram given by the contextual information, which corresponds to the

spatial range rcls = 1421 m. According to the information of the left figure, the right figure

is divided into equal-size squared cells with the size of 1421 m with each squared cell is a

cluster.

corresponding to the maximum variogram threshold, and group all the InSAR

measurement points in the area of interest into equal-size grid cells with the

size of rcls, and each grid cell will be a cluster.

Option 3. When the variogram in Option 2 is not given, but given the assumption that

the deformation signal is the dominant component in InSAR observations,

and the threshold of the variogram is given, then one can compute the spatio-

temporal variogram of the deformation time series of all InSAR measurement

points in the area of interest, and find the range rcls corresponding to the max-

imum variogram threshold. Then we divide the area of interest into equal-

size square grid cells with the length of rcls, and each grid cell will be a cluster.

The extent of the cluster is defined using one of the above three options, all based

on the given information on the spatial smoothness of the deformation signal. If the

extent of the cluster cannot be defined using the above three options, then this means

the available contextual information is not sufficient for the cluster-wise modeling. In

this case, the deformation will be modeled point-wisely, as introduced in Section 3.1.

The deformation model of a cluster

There are two options to define the deformation model of a cluster, depends on the given

information:

Option 1. The functional model, or several possible alternative models of a cluster, is

given by the contextual information. If multiple possible models exist, the
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multiple hypothesis testing method should be applied for the cluster, to select

the optimal model.

Option 2. The knowledge is given that the deformation of the cluster can be described

by the canonical functions introduced in Section 3.1.1. And the multiple hy-

pothesis testing method should be applied to the cluster to select the optimal

combination from the library.

The deformation model of the cluster should be given by one of the above two options.

Otherwise, the cluster cannot be defined, and the deformation should be modeled point-

wisely, as introduced in Section 3.1.

If the proper contextual information is given, the functional model and the stochastic

model can be built for a cluster. This will be introduced in Section 3.2.2 and Section 3.2.3.

3.2.2. Functional model
Given a cluster C, within which N InSAR measurement points [p1, p2, . . . , pN ] are situ-

ated, the deformation time series of all InSAR measurement points in C can be repre-

sented by a vector y 2, as in

y = [y p1 , y p2 , . . . , y pN ]T

= [y p1

1
, . . . , y p1

m
, y p2

1
, . . . , y p2

m
, . . . , y pN

m
]T ,

(3.30)

where y
p j

i with i ∈ [1,m], j ∈ [1, N ] denotes the deformation of point p j at the i th epoch,

w.r.t. the reference epoch o and the reference point r . Here we narrow down Eq. (2.11) to

the functional model of the deformation of cluster C

E {y} = Ax, (3.31)

where A and x are the design matrix and unknown parameters, respectively. Eq. (3.31) is

an generic expression of the functional model of the cluster C. The structure of A and x

is dependent on the definition of the cluster C.

When pseudo observations on deformation is available, the constrained least-

squares estimation (see Section 2.2.2) can be applied. Then Eq. (3.31) can be written

into:

E {

[
y

d

]
} =

[
A

G

]
x, (3.32)

where d is the vector of the pseudo observations, and G is the design matrix which de-

fines the relation between the extra observations d and the deformation model parame-

ters x. The extra observations d can either be the real observations from external source,

or the pseudo observation defined by contextual information.

2In chapter 2, the vector y generally indicates the measurement vector. Here we narrow down its meaning to

the deformation time series of one or more InSAR measurement points in the cluster.
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The functional model, i.e. Eq. (3.31) or Eq. (3.32) defines the relation between the In-

SAR deformation time series and the deformation model parameters of the cluster C. It

describes the variation of deformation in both temporal and spatial domain. The struc-

ture of the functional model should be specified by the contextual information.

More than one alternative function may exist for this new functional model. This

can happen when multiple possible deformation models for the cluster C are given, or

given the knowledge that the deformation of the cluster can be described by the canon-

ical functions introduced in Section 3.1.1. The optimal deformation model of C will be

selected by cluster-wise MHT, which will be introduced in Section 3.2.4.

3.2.3. Stochastic model
Similar as point-wise modeling, the stochastic model of the cluster-wise modeling will

also be divided into the scattering noise component and the atmospheric noise compo-

nent. When building up the stochastic model for the cluster C, the spatial correlation of

noise needs to be taken into account.

Figure 3.6: An illustration of the double difference. The InSAR deformation time series of two

InSAR measurement points, i.e. p and q , are the double differences w.r.t. the same reference

point r and the same reference epoch o. Due to sharing the same reference epoch/point, the

noise in the deformation time series of point p and q is spatially correlated.
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The definition of the spatio-temporal stochastic model of multiple InSAR measure-

ment points has been studied(Samiei-Esfahany and Hanssen, 2013). Considering the

double difference w.r.t. the reference epoch o and the reference point r , as shown in

Fig. 3.6, the scattering noise component Qscat is:

Qscat =


σ2

scat(1o, p1r ) . . . σ2
scat(1m, p1pN )

...
. . .

...

σ2
scat(m1, p1pN ) · · · σ2

scat(mo, pN r )

 , (3.33)

where σ2
scat(i j , pk pl ), i , j ∈ [1,m] and k, l ∈ [1, N ] denotes the (co)variance of double

difference caused by the scattering noise between the observation on the deformation

time series of InSAR measurement points pk at epoch i and pl at the epochs j . The

elements in Eq. (3.33) can be written into

σ2
scat(i o, pk r ) = 4σ2

σ2
scat(i o, pk pl ) = 2σ2

σ2
scat(i j , pk r ) = 2σ2

σ2
scat(i j , pk pl ) =σ2

. (3.34)

Considering the double differences, the atmospheric noise component Qatm is

(Samiei-Esfahany and Hanssen, 2013)

Qatm =


σ2

atm(1o, p1r ) . . . σ2
atm(1m, p1pN )

...
. . .

...

σ2
atm(m1, p1pN ) · · · σ2

atm(mo, pN r )

 , (3.35)

where σ2
atm(i j , pk pl ), i , j ∈ [1,m] and k, l ∈ [1, N ] denotes the (co)variance caused by the

atmospheric noise. The covariance is between the InSAR observations on the deforma-

tion time series of two InSAR measurement points at two epochs: pk at epoch i and pl

at the epochs j . The elements in Eq. (3.35) can be written into

σ2
atm(i o, pk r ) = 2σ2

wi
+2σ2

wo
−2σ2

wi
e

(− lpk r
Lwi

) −2σ2
wo

e
(− lpk r

Lwo
)

σ2
atm(i j , pk r ) = 2σ2

wi
+2σ2

w j
−2σ2

wi
e

(− lpk r
Lwi

) −2σ2
w j

e
(− lpk r

Lw j
)

σ2
atm(i o, pk pl ) =σ2

wi
+σ2

wo
+σ2

wi
e

(− lpk pl
Lwi

) +σ2
wo

e
(− lpk pl

Lwo
)

−σ2
wi

e
(− lpk r

Lwi
) −σ2

wo
e

(− lpk r
Lwo

) −σ2
wi

e
(− lpl r

Lwi
) −σ2

wo
e

(− lpl r
Lwo

)

σ2
atm(i j , pk pl ) =σ2

wo
+σ2

wo
e

(− lpk pl
Lwo

) −σ2
wo

e
(− lpk r

Lwo
) −σ2

wo
e

(− lpl r
Lwo

)

, (3.36)

where lpk pl denotes the deformation between point pk and pl . The atmospheric decor-

relation distance Lwi and the variance σ2
wi

are derived from the variogram of the atmo-
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spheric data at epoch i . This atmospheric data can be computed by atmospheric fil-

tering algorithms when applying TInSAR processing (van Leijen, 2014; Samiei-Esfahany

and Hanssen, 2013).

Then the stochastic model for the clusterC is computed by the sum of Qscat and Qatm

D{y} =Qy y =Qscat +Qatm. (3.37)

Same as the VCM Qp in Eq. (3.21), the effects caused by the InSAR processing on the

spatial-temporal correlation are not taken into account in Qy y . A Monte Carlo approach

can be used to improve the apriori stochastic model (Samiei-Esfahany and Hanssen,

2013).

In this way, a spatio-temporal stochastic model for cluster C has been built. The

spatial apriori information from InSAR data itself, i.e. the spatial correlation of noise,

has been integrated into the deformation modeling.

3.2.4. Cluster-wise multiple hypothesis testing
As introduced in Section 3.2.2, based on apriori information, usually there will be more

than one alternative functional model exists for the deformation of a cluster C.Therefore

one needs to select the optimal deformation model from all the alternative models. In

this section, we introduce a way to select the optimal deformation model for cluster C,

using MHT method.

When the deformation of all InSAR measurement points in C can be represented by

the same deformation model, one can use the model combinations from the library of

the canonical functions to model deformation of C, as introduced in Section 3.1.1. In

this case, one can follow the point-wise MHT procedures to determine the optimal func-

tional model.

When spatial variation exists in the deformation of C, its functional model of defor-

mation should be specified manually in advance, based on the apriori knowledge of the

deformation properties of the area of interest. If several possible spatio-temporal defor-

mation model exists, we use cluster-wise MHT to select the optimal model from all the

potential models.

We follow the DIA procedure to perform the hypothesis testing. First we will attempt

to model the deformation of C with the simplest deformation model. Therefore we set

the the null hypothesis H0 as a "steady state", i.e. the deformation time series of the the

cluster C is a constant value. Several alternative hypotheses H j ’s are established beside

H0, which are the predefined potential models. Without loss of generality, also consider-

ing the apriori information may also provide the knowledge on the pseudo observations,

see Section 2.2.2, the mathematical expressions for H0 and all H j ’s, ∀ j , are expressed as:
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H0 : E {

[
y

d

]
} =

[
A0

G0

]
x0; D{

[
y

d

]
} =

[
Qy y

Qdd

]

H j : E {

[
y

d

]
} =

[
A0

G0

]
x0 +

[
C j

G j

]
∇ j ; D{

[
y

d

]
} =

[
Qy y

Qdd

]
,

(3.38)

where the constant scalar x0 indicates the constant value of deformation, and A0 is the

design matrix. A certain alternative hypothesis H j is defined by a new design matrix

C j and a new vector of additional unknown parameters ∇ j . The stochastic model is

given by the VCM Qy y . The vector d is the vector of the pseudo observations. G0 is the

design matrix of the constraint for the null hypothesis H0, and G j is the design matrix

of the constraint for an alternative hypothesis H j . Qdd is the VCM of d . If the apriori

information gives d , it can be integrated into the cluster-wise MHT using constrained

least-squares estimation introduced in Section 2.2.2.

Note that in Eq. 3.38, the vector of pseudo observations d may not always be given,

since it is the information from the external sources. And d can be given only for the null

hypothesis, or for some of the alternative hypothesis. E.g. if d is the velocity estimation

given by external source, then it is only valid for the alternative hypotheses with a defor-

mation velocity in ∇ j . If d is not given for H0 or any of H j ’s Eq. (3.38) can be written into

its special case without constrained least-squares estimation, as

H0 : E {y} = A0x0; D{y} =Qy y

H j : E {y} = A0x0 +C j∇ j ; D{y} =Qy y .
(3.39)

First we will apply the OMT to test whether the null hypothesis H0 holds. The OMT

follows the test statistic T 0, which is

T 0 = (ê0)T (Qy y )−1ê0, (3.40)

where ê0 = y − A0x̂0 is the residual between the functional model of the null hypothesis

and the observations, and x̂0 is the BLUE of x0. The decision of whether starting MHT is

made by comparing T 0 to a critical value:

K0 =χ2
α0

(1,0), (3.41)

where α0 is the given the level of significance. Similar as the point-wise MHT, α0 de-

pends on the cost of making the type I error. This cost varies in different cases on the

deformation modeling. In practice, we determine α0 based on experience, or based on

the given contextual information.

If H0 is rejected, the cluster-wise MHT will be triggered to select the "optimal" model

from H j ’s.
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To determine the optimal functional model for the spatio-temporal deformation of

C by cluster-wise MHT, first we select out the most probable hypothesis Hb from all pos-

sible hypotheses (i.e. H0 and H j ’s).

The selection of Hb follows a test statistic T j , which is the test statistic of H j , and

computed as

T j = êT
0 (Qy y )−1ê0 − (ê j )T (Qy y )−1ê j (3.42)

where T j ∼ χ2(q j ,λ j ),∀ j . The degree of freedom q j equals to the dimension of H j , and

λ j = λ(γ,α j , q j ) is the degree of non-centrality of H j . Following the conception of the

B-method of testing, a uniform power of test γ is applied for all alternative hypothesis,

and compute λ j for all H j , which is the B-method of testing introduced in Section 3.1.3.

The test statistics are normalized by dividing the corresponding critical value:

T j =
T j

χ2
α j

(q j ,λ j )
(3.43)

where T j is the test ratio of H j . The optimal alternative hypothesis Hb is selected by the

criterion

Tb > 1 and Tb = max{T j },∀ j (3.44)

where Tb is the test ratio of Hb . When Tb > 1, Hb is more probable than H0. In this way

the most probable hypothesis Hb among all H j ’s and H0 are selected. When ∀ j , Tb < 1,

then no alternative hypothesis is more preferred than the null hypothesis.

3.3. Quality Control
We have presented the theory of spatio-temporal deformation modeling. After the re-

sults are required, one should also assess the quality of the estimated parameters for the

validation of the results.

The quality of the estimated deformation model parameters are usually assessed by

two aspects: the level of noise, and the imperfection of the model. The former is de-

pendent on the existing noise in the InSAR measurements, while the latter relies on the

selection of the deformation model we use to describe the deformation behavior. In this

study, we use two indexes to assess the quality of the deformation modeling: the preci-

sion and the reliability.

3.3.1. Precision
The precision describes the consistency of the modeling results. It shows the noise in-

fluence on the final estimation of the model parameters. We can use the VCM as an

indicator of the precision. According to the error propagation law, the precision of the

estimated model parameters can be written as

Q x̂ x̂ = (AT Q−1
y y A)−1, (3.45)



3

40 3. Spatio-Temporal Deformation Modelling

where the diagonal entries of Q x̂ x̂ denote the variances of the estimation of the model

parameters, while the off-diagonal entries denote the covariances. A predefined thresh-

old can be set for the variances of each parameter, and the quality of an estimation will

be considered acceptable when the variance is smaller than the threshold value.

Once Q x̂ x̂ is derived, the precision of the adjusted deformation observations ŷ = Ax̂

reads

Q ŷ ŷ = AQ x̂ x̂ AT (3.46)

and the VCM of the estimations of residuals reads

Qê ê =Qy y −Q ŷ ŷ (3.47)

where ê = y − ŷ are the residuals.

3.3.2. Reliability
The precision only assesses the consistency of the estimated parameters, but it is not

sensitive to the imperfection of the deformation model itself. The concept of reliability

is introduced to describe the model misspecification, which can be detected with a dis-

criminatory power γ. In this study, we introduce the Minimal Detectable Value (MDV)

(Teunissen, 1998) as an indicator of the reliability.

The MDV specify an additional parameter that should be included in the functional

model. Suppose we already decide to model the deformation of a cluster C with mathe-

matical model model H0 : E {y} = Ax, D{y} =Qy y , then the alternative model is

H j : E {y}
mN×1

= A
mN×n

x
n×1

+ C
mN×q

∇
q×1

D{y} =Qy y , (3.48)

where ∇ is a vector with dimension q , representing the additional parameters under the

alternative hypothesis H j , i.e. the imperfection of the model. To assess the imperfection

of a given model specified by H0, an important value to consider is the minimum value

of the additional parameters ∇, which is detectable with a fixed discriminatory power γ.

We refer to this minimal value as the Minimal Detectable Value, represented by ∇MDV .

The MDV describes how significant a certain additional parameter in an alternative

hypothesis is, under a certain discriminatory power γ. With a fixed discriminatory power

γ, the true (but unknown) additional parameter is larger than ∇MDV , we can state that

this parameter is detectable with the discriminatory power γ.

From the perspective of γ, if we set γ to a high value, this means we only decide to

accept the model imperfection only with a high certainty. As a result, we can only detect

it when its value is high.

When the dimension of additional parameters q = 1, this means the design matrix C

in Eq. (3.48) reduces to an m ×1 vector c, and ∇ reduces to a scalar. Then the MDV can
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be found as (Teunissen, 2000a)

|∇MDV |
1×1

=
√

λ(γ,α, q)

cT Q−1
y y Qê êQ−1

y y c
, (3.49)

where |∇MDV | is the MDV of ∇, The VCM Qê ê is the VCM of the residuals as in Eq. (3.47).

The operator λ derives the non-centrality parameter via a given discriminatory power γ,

the level of significance α and the dimension q .

When q > 1, ∇ becomes a vector instead of a scalar. To derive the MDV, we can con-

sider ∇ as an q dimension vector and re-parametrize ∇ as in (Teunissen, 2000a)

∇
q×1

= ||∇||
1×1

d
q×1

, (3.50)

where ||∇|| is an scalar indicates the length (Euclidean norm) of vector ∇, with the unit

vector d varying in all dimensions. Then the MDV of ∇ can be represented as:

||∇MDV ||
1×1

=
√

λ0

d T C T Q−1
y y Qê êQ−1

y y C d
, (3.51)

where the vector d moves through a circle when q = 2, an sphere when q = 3, and a

hypersphere when q > 3.

3.4. Procedures of spatio-temporal deformation modeling
To describe the deformation behavior of the area of interest, we proposed two methods

to parameterize the deformation behavior with spatio-temporal deformation models,

i.e. the point-wise deformation modeling, as introduced in Section 3.1 and the cluster-

wise modeling, as introduced in Section 3.2. The former method models only the tem-

poral deformation behavior per InSAR measurement point, the later method models the

deformation behavior in both spatial and temporal domain. The choice between the two

methods depends on the level of the spatial smoothness information. In Section 3.3 the

quality control method has been introduced. In this section we introduce the generic

procedures based on the theory introduced in Section 3.1-3.3 of spatio-temporal defor-

mation modeling, see also Fig. 3.7.

Step 1. Based on the available InSAR deformation time series of all InSAR measure-

ment points, and the available spatial smoothness information, define the

cluster C. To define C, 1) the extent of C and 2) the deformation model(s) of C

should be defined.

Step 2. Apply cluster-wise deformation modeling for all clusters, as introduced in

Step 3-4. For the InSAR measurement points not in any cluster, apply point-

wise deformation modeling per InSAR measurement point, as introduced in

Step 5-6.
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Figure 3.7: The flowchart of spatio-temporal deformation modeling.

Step 3. For each cluster C, if multiple possible deformation models exist, the optimal

deformation model should be selected using cluster-wise MHT, as introduced

in Section 3.2.

Step 4. Build the functional model and stochastic model for each C. Estimate the

deformation model parameters x.

Step 5. For the InSAR measurement points not in any cluster, their deformation be-

havior will be modeled using point-wise deformation modeling method. For

each InSAR measurement point p, first the OMT is applied to test the validity

of the constant velocity model for each InSAR measurement point. If rejected,
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then the optimal deformation model will be selected using point-wise MHT,

from the combinations of the library of canonical functions.

Step 6. Build the functional model and stochastic model for each InSAR measure-

ment point p. Estimate the deformation model parameters xp .

Step 7. Assess the quality of the deformation modeling. Compute the VCM Q x̂ x̂ to

assess the precision, and the minimal detectable value ∇MDV to assess the

reliability.

The spatial-temporal deformation behavior of the area of interest will either be de-

scribed by the deformation model of the clusters, or the deformation model of every

InSAR measurement point. The application of spatial-temporal deformation modeling

on data will be presented in Chapter 4 and Chapter 5.





4
Application on Simulated Data

In this Chapter, we demonstrate the possibility of spatio-temporal deformation model-

ing using simulated InSAR deformation time series. We simulate the time-series InSAR

measurements on a deformation bowl, polluted by simulated atmospheric noise and

scattering noise. Both point-wise deformation modeling and cluster-wise deformation

modeling are applied on the simulated data, see Section 3.1 and Section 3.2. Since the

actual deformations are known in simulation, we compare the modeling results with ac-

tual deformation signal to assess the performance of deformation modeling.

Section 4.1 introduces the simulation of InSAR data used in this chapter. Section

4.2 presents the application of point-wise deformation modeling on the simulated data.

Section 4.3 focuses on the application of cluster-wise deformation modeling, given dif-

ferent types of contextual information.

4.1. Description of simulated data
We simulate the InSAR deformation time series of 104 InSAR measurement points, uni-

formly distributed in an area with a size of 10×10 kilometers. For each point, we simulate

the InSAR measurements on 49 acquisitions, with an 11-day repeat cycle. The defor-

mation of the area of interest (AoI) shows a deformation bowl in space. such a spatial

deformation pattern is often observed in an area where the deformation is driven by

hydrocarbon production or ground water extraction (Yerkes and Castle, 1969; Ketelaar

et al., 2007; Bell et al., 2008).

To simplify the problem, we assume the orbit error and topography component in

the InSAR observations are already properly removed, and the phase unwrapping is

properly performed. Also, we assume no atmospheric filtering is applied. Then we only

consider three major components in the InSAR observations: deformation signal, scat-

tering noise, and atmospheric noise (Hanssen, 2001a). We first simulate the three com-

ponents on each acquisition. Then based on the simulated acquisitions, we compute

the InSAR measurements over the AoI. Each acquisition has a size of 100×100 pixels. All

pixels will be selected as InSAR measurement points.

The simulated deformation signal in all acquisitions is shown in Fig. 4.1. The center

45
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Figure 4.1: Simulated actual deformation 49 acquisitions over an 10×10 km AoI, with an

11-day temporal resolution. The deformation time series show as a deformation bowl.

The center of this deformation bowl locates on the center of the AoI. The temporal and

spatial behavior of the deformation are given in Eqs. (4.1) and (4.2). For the first acquisi-

tion in the stack we assume there is no deformation.

of deformation bowl locates at the center of the AoI. The deformation time series of the

deformation bowl center follows

z(pc , ti ) = v pc Bti , (4.1)

where z(pc , ti ) is the deformation of pc at epoch ti . pc is the center point of the defor-

mation bowl. v pc is the deformation velocity of point pc . Bti is the time at epoch ti

w.r.t. the first epoch, i.e. the temporal baseline. It is assumed no deformation exists at

the first epoch t0 and the subsidence bowl center pc locates at the center of the AoI. We

set v pc = 15 mm/yr.

In spatial domain, the actual deformation time series follows a Gaussian function as

z(p, ti ) = z(pc , ti )exp(−κd 2

L2 ), (4.2)

where z(p, ti ) is the actual deformation time series of point p. The distance d is the dis-

tance between p and the deformation bowl center pc , and L is the decorrelation range.

The κ is the coefficient. Here L = 2 km and κ= 0.8.

For all points, their actual deformation time series have constant velocities. From the

center to the edge of the AoI, the deformation velocities gradually decrease. This spatial

decreasing follows a Gaussian function, which can be derived from Eqs. (4.1) and (4.2),

as

v p = v pc exp(−κd 2

L2 ), (4.3)

where v p is the deformation velocity of point p.
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The noise is simulated for every acquisition. Following Section 3.1.2 and Sec-

tion 3.2.3, we assume that the scattering noise follows the normal distribution, as in

nscat(p, ti ) ∼ N (0,σ2
s ), (4.4)

where nscat(p, ti ) represents the scattering noise p at epoch ti , and σs is the standard

deviation of the scattering noise. Then the simulated scattering noise is shown in Fig. 4.2.

Figure 4.2: Simulated time series of the scattering noise of each acquisition. The scatter-

ing noise is assumed to follow a normal distribution as nscat (p, ti ) ∼ N (0,σ2
s ).

The atmospheric signal is simulated following the "power law" behavior (Goldstein,

1995; Ferretti et al., 1999b; Hanssen, 2001b). According to the power law, the 2-D power

spectrum of the atmospheric signal can be described by three regimes, depending on

the wavelength of the atmospheric signal, as in

P ti
W (λ) =


P ti

0 λ
β

1 for λ≥ 2 km

P ti
0 λ

β
2 for 0.5 km ≤λ< 2 km

P ti
0 λ

β
3 for 0.01 km ≤λ< 0.5 km,

(4.5)

where P ti
W (λ) is the power density of the atmospheric. P ti

W (λ) is a function of the wave-

length λ and P ti
0 is the power density where the wavelength λ= 1 km. Three exponents

β
1

, β
2

and β
3

respectively denote the steep power exponents of three regimes where

λ ≥ 2 km, 0.5 km ≤ λ < 2 km and 0.01 km ≤ λ < 2 km. The empirical values of the three

steep power exponents are respectively suggested by InSAR observations as 8/3, 11/3

and 5/3 (Hanssen, 2001b). For a better representation of the reality, we set P ti
0 , β

1
, β

2

and β
3

to be stochastic instead of deterministic. The power density P ti
0 follows a Gaus-

sian distribution as
P ti

0 ∼ N (E {P ti
0 },σ2

P0
)

E {P ti
0 } = 15+15 · sin(

ti

365
π),

(4.6)
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Figure 4.3: Simulated time series of atmospheric delay screens. In total 49 screens are

simulated, following the three-regime power-law. The overall power of the simulated

atmospheric signal shows a seasonal variation as in Eq. (4.6), with three power exponents

following Gaussian distribution as in Eq. (4.7)

.

where the expectation of P ti
0 , i.e. E {P ti

0 } is a sinusoid function of the time ti . The unit of

E {P ti
0 } and ti are respectively mm2 and day. The variance of P ti

0 is set to be 5 mm2. Using

Eq. (4.6) we give a seasonal variation of the scale of the atmospheric signal.

The steep power exponents β
1

, β
2

and β
3

of the three regimes follow a Gaussian

distribution as:

β
1
∼ N (

8

3
,

1

6
)

β
2
∼ N (

11

3
,

1

6
)

β
3
∼ N (

5

3
,

1

6
).

(4.7)

Using Eqs. (4.6) and (4.7), we simulate the power spectrum of the atmospheric signal for

each acquisition, and compute the atmospheric signal using the inverse Fourier Trans-

form, expressed as

natm(ti ) =F−1(P ti
W ), (4.8)

where F−1(·) indicates the inverse Fourier Transform operation. The atmospheric

screen at epoch ti , i.e. nti
atm are shown in Fig. 4.3. In this way all atmospheric signal

of 49 acquisitions are simulated. Then we select all pixels as InSAR measurement points.

The sub-pixel positioning is not applied, and we simply use the center of the pixel as the

position of InSAR measurements points. We select the first acquisition of the stack as the

master image, and select the point at the up-left corner as the reference point. Then the
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Figure 4.4: Simulated time series of InSAR deformation observations, with 100×100 In-

SAR measurement points evenly covering the 10×10 km area. The points are visualized

as pixels here. In total 48 epochs are simulated from 49 acquisitions. All the deformation

time series are the double differences w.r.t the first epoch and the InSAR measurement

point at the up-left corner. No sub-pixel positioning is applied.

double-differenced InSAR deformation time series can be computed as

y(p, ti ) =[z(p, ti )− z(p, t0)]− [z(r, ti )− z(r, t0)]

+ [nscat(p, ti )−nscat(p, t0)]− [nscat(r, ti )−nscat(r, t0)]

+ [natm(p, ti )−natm(p, t0)]− [natm(r, ti )−−natm(r, t0)]

(4.9)

where y(p, ti ) is the double-differenced InSAR observation of the InSAR measurement

point p at epoch ti , w.r.t the reference point r and the reference epoch t0. Fig. 4.4 shows

the simulated InSAR observations. In Section 4.2 and Section 4.3, we will apply point-

wise and cluster-wise deformation modeling to the simulated data. Since the deforma-

tion and noise component are known, we can easily build up a stochastic model, and

compare the modeling results with the actual deformation time series.

4.2. Point-wise deformation modeling
In this section we apply the point-wise deformation model to the simulated InSAR de-

formation time series.

By definition in Eqs. (4.1) and (4.1), the deformation of all InSAR measurement points

is a linear function of time, i.e. they follow the constant velocity model. The actual defor-

mation velocities of all InSAR measurement points can be computed by Eq. (4.3), shown

in Fig. 4.5.

In this simulation, as introduced in Section 4.1, it is already known by definition that

the actual deformation model of all InSAR measurement points are constant velocity

model, therefore, when applying the point-wise modeling, we will not focus on select-



4

50 4. Application on Simulated Data

Figure 4.5: Velocity map of the actual deformation of all InSAR measurement points,

computed following Eq. (4.3). By definition every InSAR measurement point in the sim-

ulation should follow a constant velocity deformation model.

ing the optimal model for each InSAR measurement point, but focus on assessing the

accuracy of estimated velocity of each InSAR measurement point.

The functional model of the point-wise modeling can be built up following the ap-

proach in Section 3.1.1, with all InSAR measurement points following a constant velocity

model.

We use two alternative ways to define the stochastic model, resulting in two scenarios

of the results:

• Scenario A: Using Eq. (3.13), we consider all InSAR measurements of all points and

all epochs to be independent from each other. Then we build the stochastic model

with a cofactor matrix Ry y = I , and a variance of unit weight σ2
VUW = 36 mm2.

• Scenario B: Using Eqs. (3.14) to (3.21), we take into account the (known) scattering

noise and atmospheric noise, and build up the stochastic model. Also, we take

into account the double-difference effect, therefore the temporal correlation exists

between epochs due to sharing the same reference epoch. The spatial correlation

will not be considered in point-wise deformation modeling.

Here we illustrate the structure of the stochastic model for the selected 6 points, see

Fig. 4.6. In Scenario A, the stochastic model is a diagonal VCM, with all diagonal ele-

ments equal to the variance of unit weight, i.e. σ2
VUW = 36 mm2. In Scenario B, the scat-

tering noise and atmospheric noise is taken into account. Then the diagonal of the VCM
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will not be the same value. The temporal correlation exists between epochs.

Figure 4.6: An visualization of VCMs of deformation time series of 6 InSAR measurement

points. Left: the VCM built up following Scenario A, where the VCM is a diagonal matrix,

with all diagonal elements equal to σ2
VUW = 36 mm2. Right: the VCM built up following Sce-

nario B, where the off-diagonal matrix elements are not all zero. The diagonal elements are

different, due to different atmospheric signal at each epoch. The temporal correlation exists

between epochs of the same InSAR measurement point. The correlation between the InSAR

measurement points are ignored in the point-wise deformation modeling.

The estimated deformation velocities for Scenarios A and B are shown in Fig. 4.7.

Figure 4.7: Estimated deformation velocity maps. Left: the estimated deformation velocity

map for Scenario A, where a diagonal VCM with all diagonal element equal toσ2
VUW = 36 mm2

is used as the stochastic model. Right: the estimated deformation velocity map for Scenario

B, where the atmospheric noise and scattering noise are taken into account.

We assess the performance of the point-wise deformation modeling by comparing

the estimated velocity map with the real velocity map in Fig. 4.5. Figs. 4.8a and 4.8b

show the differences between the estimated deformation velocity maps and the actual

deformation velocity map. The RMS values are 2.14 mm/yr and 1.16 mm/yr, respectively.

Fig. 4.8b, i.e. the estimated velocities for Scenario B, have smaller differences than the

results for Scenario A.

In Fig. 4.8b spatial patterns exist. These patterns are expected to be caused by the
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(a) Differences between Scenario A

and the real velocity.

(b) Differences between Scenario B

and the real velocity.

(c) Deformation velocity estimated

from atmospheric

double-differenced time series.

Figure 4.8: The differences of the estimated velocity map and the actual deformation signal.

(a): the differences between the results for Scenario A and the actual deformation velocity

map, with an RMS of 2.14 mm/yr; (b): the differences between the results for Scenario B

and the actual deformation velocity map, with an RMS of 1.16 mm/yr; (c): the deformation

velocity estimated only from the atmospheric double-differenced time series. Figs. (b) and

(c) have a correlation of 0.46;

atmosphere residuals in the deformation velocity estimations, because the stochastic

model in point-wise deformation modeling does not specify the correlation between the

InSAR measurement points, while the atmospheric signal shows the spatial correlation.

To investigate this, we compute the time series of the double-difference atmospheric

signal based on the atmospheric delay time series shown in Fig. 4.3, w.r.t. the first epoch

and the up-left point. Using this double-difference atmospheric signal, we estimate a

linear velocity map purely from the double-differenced atmospheric signal, as shown

in Fig. 4.8c. Then we compare Fig. 4.8b with Fig. 4.8c, and find a correlation of 0.46

between them. According to such a relatively high correlation, we conclude that the

ignorance of spatial correlation in the stochastic model of the point-wise deformation

modeling leads to the residuals of the atmospheric signal in the estimated deformation

model parameters.
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4.3. Cluster-wise deformation modeling
Following the instructions in Section 3.2, we apply the cluster-wise deformation model-

ing to the simulated deformation time series. Based on different levels of available infor-

mation on the spatial smoothness of deformation signal, the cluster-wise deformation

modeling is applied following two scenarios:

• Scenario A: the area is divided into four rings, as shown in Fig. 4.9, each ring is

defined as a cluster. For each ring, a deformation velocity is given before hand.

Then we use the constrained least-squares estimation as introduced in Section

2.2.2 to estimate the deformation velocities of each ring.

• Scenario B: the entire AoI is defined as a cluster, and provides four alternative

models to describe the deformation. The cluster-wise MHT will be applied to se-

lect the optimal model from all the alternatives. This scenario simulates the scene

that a domain expert has a request to describe the deformation of the AoI with a

geological model, and offers the possible models.

The results for Scenario A will be presented in Section 4.3.1. The results for Scenario

B will be presented in Section 4.3.2.

4.3.1. Scenario A: constrained least-squares estimation
In Scenario A of cluster-wise modeling, we assume that a domain expert provides the

apriori estimation of the deformation velocity over the AoI. We build up this apriori

knowledge base on the known actual deformation signal as shown in Fig. 4.1. Based

on the given apriori knowledge, the AoI is divided into four rings, as shown in Fig. 4.9. All

four rings are centered at the center of the AoI, i.e. the center of the deformation bowl.

The properties of the four rings are listed below:

• Ring 1: with the distance to the center > 2000 m. The given deformation velocity

from contextual information is 0 mm/yr, with a variance of 1.2 mm2/yr2.

• Ring 2: with the distance to the center from 1000 m to 2000 m. The given de-

formation velocity from contextual information is −6 mm/yr, with a variance of

24.3 mm2/yr2.

• Ring 3: with the distance to the center from 500 m to 1000 m. The given defor-

mation velocity from contextual information is −12 mm/yr, with a variance of

7.1 mm2/yr2.

• Ring 4: with the distance to the center < 500 m. The given deformation velocity

from contextual information is −14.4 mm/yr, with a variance of 0.8 mm2/yr2.
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Figure 4.9: Four rings defined by the contextual information. All four rings are centered at the

center of AoI. Four apriori estimated velocities are given to the four rings by contextual infor-

mation, which are 0 mm/yr, −6 mm/yr, −12 mm/yr and −14.4 mm/yr respectively for Ring

1 to Ring 4. The variance of the four velocities are 1.2 mm2/yr2, 24.3 mm2/yr2, 7.1 mm2/yr2

and 0.8 mm2/yr2 respectively. The velocities are computed from the average real velocity of

each ring, and the variances is derived from the variances of the real velocity of each ring.

The given apriori velocities are derived from the mean actual deformation velocities

of each ring, which will be unknown in reality. The variances of the velocities are equal

to the variance of actual velocities of each ring. Together they are introduced into the

functional model and the stochastic model of the constraint part. Then for each ring,

the functional model for the cluster-wise deformation modeling can be written as

E {

[
y

d

]
} =

[
A

G

]
x =



Bt1

Bt2

...

Bt48

. . .

Bt1

...

Bt48

1
. . .

1


(49nring)×nring


v1
...

vnring


nring×1

, (4.10)

where the observation y is an 48nring × 1 vector denoting the InSAR deformation time

series of all InSAR measurement points at all epochs, where nring is the number of InSAR

measurement point in the ring. The pseudo observations d is an nring ×1, with all ele-

ments equal to the apriori estimated velocity. Bti is the temporal baseline at epoch ti ,
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w.r.t. the reference epoch. The unknown parameter vector x = [v1, v2, . . . , vnring ] are the

deformation velocities of all InSAR measurement points in the ring, i.e. the cluster. In

Eq. (4.10), each ring is defined as a cluster, and its deformation model is represented by

the separated deformation velocities of all InSAR measurement points in the cluster.

The stochastic model is defined as

D{

[
y

d

]
} =

[
Qy y 0

0 Qdd

]
, (4.11)

where Qdd is the VCM of the pseudo observations, which is a diagonal matrix with the

diagonal elements equal to the variance of the apriori estimated velocity. Qy y is the VCM

of the InSAR observations, which is defined following Section 3.2.3. We define the spatial

correlation only exists within the distance of 1 km, c.f. Cuenca et al. (2011). We select 6

InSAR measurement points as shown in Fig. 4.7, and visualize the VCM of InSAR defor-

mation time series of these InSAR measurement points, shown in Fig. 4.10

Figure 4.10: The VCM of the deformation time series of 6 InSAR measurement points. Con-

sidering spatio-temporal correlation. To make the size of VCM manageable, we define the

spatial correlation only exists within the distance of 1 km.

Then for each ring, its deformation model parameters are estimated using Eq. (2.21).

Then the cluster-wise modeling results into estimating the deformation velocities of all

InSAR measurement points, but taking into account the spatio-temporal correlation.

The results are shown in Fig. 4.11.

In Fig. 4.11b, traces of the four predefined rings can be found. This indicates that

the given spatial smoothness information, which defines the extent and the deforma-
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(a) Deformation velocity map

estimated from Scenario A.

(b) Differences of estimated velocity

map to the real velocity map.

Figure 4.11: The results of the cluster-wise deformation modeling for Scenario A. (a): the estimated deforma-

tion velocity map. (b) the differences of the estimated deformation velocity map and the actual deformation

velocity map. The effect of the four pre-defined rings can be found in (b). The RMS of (b) is 0.76 mm/yr.

tion model of the four clusters, are stringent but not reliable. It constrains the deforma-

tion velocity of each ring to a single value, which may not be representative to all the

InSAR measurement points in the cluster. As the result, the estimated velocity may be

constrained to a value close to the real value, because the spatial smoothness is given

based on the actual deformation map. However, the differences to the actual velocity

map show the artificial traces due to the too stringent contextual information.

4.3.2. Scenario B: cluster-wise MHT
In Scenario B of the cluster-wise modeling, we assume that a domain expert proposes

four possible deformation model to describe the spatio-temporal deformation in the

AoI. The entire AoI is defined as a cluster, and the deformation model of the cluster is

given, i.e. the four possible deformation models. Based on the simulated measurements,

the optimal deformation model can be selected.

Following the instructions of Section 3.2.4, we use the cluster-wise MHT to select the

optimal deformation model. The null hypothesis and four alternative hypotheses are

established using Eq. (3.39), where y is the vector of the deformation time series of all

InSAR measurement points in the AoI. The stochastic model Qy y is built up following

the instructions in Section 3.2.3. The alternative hypotheses H j , j ∈ [1,4] are alterna-

tive hypotheses given by the contextual information. No pseudo observations are given,

therefore d , G and Qdd are empty.

The four alternative hypotheses give the functions describing the spatio-temporal

deformation y(p, ti ), which represent the deformation of an InSAR measurement point

p at epoch ti . We assume the deformation of the AoI can be represented by a deforma-

tion bowl centered at the center of AoI for the four alternatives. The shapes of deforma-

tion bowls of the four alternatives are different. The four functions given by alternative
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hypotheses are:

• The Gaussian model:

H1 : y(p, ti ) = vc exp(−κ
d 2

p

L2
g

)Bti , (4.12)

which is the model that the actual deformation signal follows. dp is the distance

of the InSAR measurement point p to the center of the AoI, and Bti is the temporal

baseline at the epoch ti . The unknown parameters to be estimated are the center

deformation velocity vc , the exponent coefficient κ, and the correlation length Lg .

• The exponential model:

H2 : y(p, ti ) = vc exp(−ι
d 2

p

Le
)Bti , (4.13)

where the unknown parameters are the center deformation velocity vc , the expo-

nent coefficient ι, and the correlation length Le .

• The quadratic model:

H3 : y(p, ti ) = ad 2
p Bti +bdp Bti + vc Bti , (4.14)

where the unknown parameters are the polynomial coefficients a, b and the center

deformation velocity vc .

• The linear model:

H4 : y(p, ti ) = kdp Bti + vc Bti , (4.15)

where the unknown parameters are the gradient k and the center deformation ve-

locity vc .

Note that among all four alternative hypotheses, H1 and H2 are not linear. Therefore

the linearization should first be applied based on Taylor’s theorem (Taylor, 1717).

According to the test strategy, see Section 3.2.4, the OMT is first applied to test

whether the null hypothesis H0 holds. We use initially define the level significance α

as 0.05. This is a relatively large α since we consider the quality of the simulated obser-

vation is high, and prefer the detection of anomalies in the null hypothesis.

In the OMT, The null hypothesis is rejected, and the cluster-wise MHT is applied to

select the optimal model from all alternative models.

Following Section 3.2.4, we estimate the deformation model parameters of all four al-

ternative hypotheses, compute the test ratio T j based on Eq. (3.43), and select the alter-

native hypothesis following Eq. (3.44), i.e. the test ratio is larger than 1 and is the largest

among all four test ratios.
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(a) H1: Gaussian model (selected). (b) H2: Exponential model (rejected).

(c) H3: Quadratic model (rejected). (d) H4: Linear model (rejected).

Figure 4.12: The deformation velocity map of the estimated deformation models of the four

alternative hypothesis. The alternative hypothesis shown in (a), i.e. the Guassian model is

selected as the optimal deformation model.

Table 4.1: The estimated deformation model parameters and the test ratios of the four alternative hypotheses.

Model Estimated parameters Test ratio T j

H1: Gaussian model

(accepted)

v̂c =−14.5 mm/yr

κ̂=−0.7828

L̂g = 1884 m

3.7

H2: exponential model

(rejected)

v̂c =−14.3 mm/yr

ι̂= 0.55

L̂ = 1309 m

2.2

H3: quadratic

(rejected)

â =−6.60×10−13 mm−1yr−1

b̂ = 6.9×10−6 yr−1

v̂c =−18.0 mm/yr

2.9

H4: linear

(rejected)

k̂ = 3.3×10−6 yr−1

v̂c =−14.4 mm/yr
2.1
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The estimated deformation model of all four alternative hypotheses are shown in

Fig. 4.12. Table 4.1 lists the values of estimated parameters and the test ratios.

The test ratios of all alternative models are higher than 1, which means that they are

all more probable than the null hypothesis H0.

Fig. 4.13 shows the west-east profiles of the estimated deformation models and the

actual deformation signal. The Gaussian model, which is selected as the optimal defor-

mation model, shown in red in the bottom figure of Fig. 4.13. The selected model is the

same type of the actual deformation model. However, due to the influence of the noise,

the values of model parameters are not the same as the actual deformation model.

In Scenario B, based on given spatial smoothness information, we define the extent

of the cluster as well as the alternatives of the deformation model. This contextual infor-

mation is not as stringent as Scenario A, which assigns a fixed value of the deformation

velocity to the entire cluster, Scenario B gives fewer constraints to the deformation model

of the cluster, and use the cluster-wise MHT to select the optimal model. When the cor-

rect model (Gaussian model) is within the alternative models, the cluster-wise MHT se-

lects it. When this optimal model is not within the alternative models, the cluster-wise

MHT will choose the model which fits the observation best.

Based on Scenario A and B of the cluster-wise deformation modeling, it can be con-

cluded that the given spatial smoothness information plays an important role in the

cluster-wise deformation modeling, as it defines the extent as well as the deformation

model of a cluster. The stringent but unreliable contextual information brings a bias to

the results of cluster-wise deformation modeling. The fact is that how to introducing the

contextual information into the existed mathematical model is also of importance.

In this chapter, we apply spatio-temporal deformation modeling on simulated In-

SAR deformation time series. Its performance is assessed by comparing the modeling

results with actual simulated deformation, given different types of available contextual

information. In Chapter 5, we will apply spatio-temporal deformation modeling on real

InSAR data, over the hydrocarbon production area.
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Figure 4.13: The profile of the deformation models of the four alternative hypotheses.

The black line in the upper figure shows the range of the profile. In the lower graph, the

profile of the actual deformation shows in blue, and the profile of Gaussian model, which

is accepted as the optimal model, shows in red. The rejected alternative models show in

grey.



5
Application on Real Data: Hydrocarbon

Production Region Monitoring

This chapter demonstrates the feasibility of using Spatio-temporal deformation mod-

eling to monitor the deformation in a hydrocarbon production region. We present a

case study over the South Belridge hydrocarbon field, California, the USA, where the

deformation in the area is found closely related to oil/gas production and steam/water

injection activities (Bawden et al., 2003). In this case study, we use spatio-temporal de-

formation modeling to detect local instantaneous deformation, based on the InSAR de-

formation time series computed from TerraSAR-X data.

5.1. Introduction of the study area
South Belridge is a large hydrocarbon field in the west San Joaquin Valley, Kern County. It

was discovered in 1911, and has more than 12000 active wells at the time of 2015 (DOG-

GER, 2016). Extraction of large volumes from shallow depths causes reduction in pore

pressure and subsequent compaction in this region. Due to the production activities,

surface subsidence is found to be a common occurrence in the field (Chase Jr et al., 1989;

van der Kooij and Mayer, 2002). The ground surface subsidence may result in damage to

civil infrastructure, mostly damage to hydrocarbon production facilities(De Rouffignac

et al., 1995; Dale et al., 1996; Fredrich et al., 2000). Monitoring ground surface subsidence

is important to manage the hydrocarbon production activities, and avoid geological dis-

asters in this region.

Previous studies have been performed measuring the subsidence in this region using

ERS-1 and ERS-2 InSAR observations (van der Kooij, 1997; Fielding et al., 1998). The

results of these studies show that the maximum subsidence rates in this region can be

more than 400mm/yr, in the period from 1992 to 1996. These results have been validated

also by comparing them to GPS observations in this region (van der Kooij and Mayer,

2002).

Apart from the subsidence phenomena in the area, the deformation behavior at

South Belridge field can also appear as uplift, due to local injection activities in the pur-

pose of driving the underground hydrocarbon reservoir (Patzek et al., 1992). This uplift

61
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has been observed by InSAR observations (Fielding et al., 1998) as well as GPS and sur-

face tiltmeter observations (Wolhart et al., 2005). The uplift may cause the failures of

injection wells. Monitoring the uplift is important to manage the injection activities in

this region.

The deformation in this area, including both subsidence and uplift, may also show in

the form of instantaneous change (Patzek et al., 1992), i.e. significant deformation may

occur over a short time period, due to the sudden change of pore pressure and subse-

quent compaction.

Figure 5.1: An overview of the study area. The area located in the California, USA, which is

shown in the upper-left map. The red rectangle dashed indicates the extent of the chosen

study area, with an approximate size of 500×500 meters. The overall land cover type of the

study area is dessert. The hydrocarbon production infrastructure, e.g. production wells and

pipelines are visible in the satellite optical image over the study area.

Therefore, due to the existence of both uplift and subsidence, and the existence of

possible instantaneous deformation, the conventional steady state (constant velocity)

model will not be sufficient to describe the deformation behavior of this area. In this

study, we choose a hydrocarbon production region with an approximate size of 500×
500 meters, see Fig. 5.1, and apply the proposed spatio-temporal deformation modeling

method as introduced in Chapter 3 to parameterize the deformation behavior in this

region.
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5.2. Methods
We investigate the deformation behavior in the selected area using InSAR phase observa-

tions of coherent scatterers (Ferretti et al., 2000a, 2001) in the area. These phase observa-

tions are double-differenced to the same reference epoch and the same reference point.

Then the differential deformation obtained by multiplication of the phase differences

with the radar wavelength, correcting the for two-way travel of radar pulse (Hanssen,

2001a), see Section 2.1.1. The coherent scatterers in the study area are primarily selected

from the targets which have high interferometric coherence. The temporal behavior of

these selected coherent scatterers is represented as deformation time series, which is

explored to study the deformation behavior of the study region.

5.2.1. Radar interferometry
We use an image stack of 22 TerraSAR-X SAR images, see Table 5.1, which are acquired

between March 9, 2016 and November 17, 2016 (Track: 167, ascending track) to generate

the interferograms, see Table 5.1. The radar aboard the TerraSAR-X satellite operates in

X-band (31 mm wavelength), HH polarization mode.

We use an Equivalent Single Master method (Ferretti et al., 2011; Samiei Esfahany,

2017) to derive the deformation time series of the study area. We manually set the first

acquisition of stack, i.e. the acquisition on March 9, 2016, as the reference epoch. We

select temporally coherent InSAR measurement points in the study area. For each point,

we derive its deformation time series w.r.t the epoch 20160309 and the reference point

to represent the deformation of the area of interest.

We identify the temporally coherent points based on the interferometric coherence,

which is estimated using a series of adaptive directional windows centered at a given

point, over all interferograms, as (Touzi et al., 1999; Hanssen, 2001a)

γ̂intf =

∣∣∣∣∣∣∣
∑M

i=1

∑N
j=1 C master

i , j (C slave
i , j )∗√∑M

i=1

∑N
j=1 C master

i , j (C master
i , j )∗

∑M
i=1

∑N
j=1 C slave

i , j (C slave
i , j )∗

∣∣∣∣∣∣∣ , (5.1)

where γ̂intf is the estimated interferometric coherence, C master
i , j and C slave

i , j are the complex

values of the master and slave images respectively, at a given point and a given interfero-

gram. The superscript {*} is the sign for the complex conjugate. M and N are respectively

the number of interferograms and the number of points in the adaptive window.

In Eq. (5.1) we compute the estimated interferometric coherence γ̂intf per interfero-

gram (from 1 to M) and per point in the adaptive window (from 1 to N ). It should be

noted that not all possible interferograms between all SAR images are computed. For

instance, if one interferogram is linearly correlated with other interferograms, it will not

be computed. In this study, for each image, we compute 3 interferograms with other

images. The computed interferograms should 1) not be linearly correlated with other in-
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Table 5.1: Terrasar-X data sets used in this study (Track: 167, ascending track). The temporal

baseline Bt and the perpendicular baseline B⊥ are relative to the master image.

Nr. Acquisition dates B⊥ [m] Bt [days]

1 20160309 (master) 0 0

2 20160320 -162.40 11

3 20160331 -111.00 22

4 20160411 -159.20 33

5 20160503 -65.00 55

6 20160514 -122.70 66

7 20160525 -119.90 77

8 20160605 -81.10 88

9 20160616 -46.60 99

10 20160627 -132.50 110

11 20160708 -125.60 121

12 20160719 106.40 132

13 20160730 -40.30 143

14 20160810 -209.30 154

15 20160821 -273.10 165

16 20160901 -146.70 176

17 20160923 -234.80 198

18 20161004 155.10 209

19 20161015 355.00 220

20 20161026 79.50 231

21 20161106 52.80 242

22 20161117 235.60 253

terferograms; 2) have minimum unwrapping errors among all possible interferograms.

In the study of the deformation behavior in South Belridge hydrocarbon field, the

instantaneous deformation may significantly reduce the estimated interferometric co-

herence, and result into underestimating the quality of the InSAR measurements and

wrongly rejecting points. To maintain a sufficient number of measurements in the area

of interest, we estimated the interferometric coherence value over the time period from

March 9, 2016, to August 21, 2016, using in total 15 out of 22 acquisitions. We assume

that in this time period, no instantaneous deformation occurs due to the production or

injection activity. Then we select points with higher than 0.8 estimated interferometric

coherence, and compute the deformation time series for these points. If the above as-

sumption does not hold for an InSAR measurement point, i.e. instantaneous deforma-

tion occurs during the mentioned period, the consequence will be the underestimation

of the quality and wrongly rejecting this point, but not wrongly including a point with



5.2. Methods

5

65

low quality.

Figure 5.2: The deformation time series of the selected InSAR measurement points of the

500×500 study area. In total 6321 InSAR measurement points have been selected to represent

the temporal deformation behavior in the area of interest. All the deformations are double-

differenced to the same reference epoch and the reference point. All estimated DEM phase,

atmospheric phase and reference point noise are removed.

After the temporal coherent points are identified, we follow the Equivalent Single

Master method (Ferretti et al., 2011; Samiei Esfahany, 2017) to derive InSAR deformation

time series of InSAR measurement points in the study area. The topographic phase is re-

moved from the deformation time series based on a 30m resolution DEM (Shuttle Radar

Topography Mission, SRTM) (van Zyl, 2001) and the precise orbit data. The atmospheric

phase screen is estimated by using an Ordinary Kriging method (Wackernagel, 1995),

and is subtracted from the deformation time series. The reference point noise (RPN) is

estimated and subtracted from the deformation time series. Then the deformation time

series of all temporally coherent points are obtained, see Fig. 5.2, and are explored to

study the deformation of the area of interest.

5.2.2. Spatio-temporal deformation modeling
To investigate the deformation behavior in the area of interest, we parameterize the

multi-epoch InSAR outputs, i.e. InSAR deformation time series with a deformation

model. The conventional way is to model the deformation time series with the constant

velocity (steady-state) model, as shown in Fig. 5.3.

Fig. 5.3 shows the deformation velocity map with a constant velocity of every InSAR
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Figure 5.3: Deformation velocity map estimated from the deformation time series of the se-

lected InSAR measurement points. All InSAR measurement points are considered to be inde-

pendent, and all InSAR observations have the same weight.

measurement point. When the temporal deformation of each InSAR measurement point

is a linear function of time, the velocity map can well describe the deformation behav-

ior of the study area. However, this is not the case in the South Belridge hydrocarbon

field because instantaneous deformation behavior is reported in this area. Therefore

the deformation time series of the InSAR measurement points are unlikely to follow the

constant velocity model. In Fig. 5.4, the daisy-chain deformation time series of the study

area is presented, in which the deformation time series at each epoch is with reference to

the previous epoch. Two significant instantaneous deformation events can be observed:

1) On 23 September 2016, a significant uplift is observed in the overall study area; 2)

On 4 October 2016, a sudden subsidence is observed. These instantaneous deformation

events can provide important information for the management of hydrocarbon produc-

tion. Therefore they cannot be parameterized by a constant velocity model.

In order to choose the optimal deformation model to describe the deformation be-

havior, we apply spatio-temporal deformation modeling as introduced in Chapter 3. We

will model the deformation both point-wisely and cluster-wisely to compare their re-
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Figure 5.4: Daisy-chain deformation time series of the selected InSAR measurement points

over the study area. The deformation time series are w.r.t. the previous epoch. Significant

uplift can be observed on 23 September 2016, followed by an instantaneous subsidence on 4

October 2016.

sults.

5.2.3. Point-wise deformation modeling
For a single InSAR measurement point p in the study area, we use the combinations of

deformation functions from the canonical function library (Chang and Hanssen, 2016)

to model its deformation time series, as introduced in Section 3.1. To optimize the com-

putational efficiency, and considering the deformation signature of interest is an instan-

taneous change in the temporal deformation behavior, we choose three canonical func-

tions to build up the multiple hypotheses: 1) breakpoint model, 2) step model, 3) outlier

model. To optimize the computational efficiency, we limit the maximum number of the

breakpoints and the steps to be 3, to avoid testing a model with too many parameters.

Considering all possible combinations, if the constant velocity model is rejected, the

number of alternative hypotheses can be computed as:

Nmodel = (C 20
1 +C 20

2 +C 20
3 )3 ≈ 2.46×109, (5.2)

where the operator C a
k = a!

k !(a−k)! computes the number of combinations of choosing k

elements from a elements. Nmodel is the number of possible combinations of deforma-

tion model.
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The selection of the level of significance is related to the cost of making Type-I error:

reject the null hypothesis while it is true, i.e. raise a "false alarm". In this study, we are

more confident in the default model (steady state model) than the other models, there-

fore we initiate a relatively small level of significance as α= 0.02.

When the null hypothesis is rejected, we follow the B-method of testing to choose

the optimal deformation model for each point. For each alternative hypothesis, we stay

neutral on whether accepting it or not. Therefore we use the power of test γ= 0.5.

The results of point-wise deformation modeling will be presented in Section 5.3.

5.2.4. Cluster-wise deformation modeling
We apply cluster-wise deformation modeling to take into account the spatio-temporal

correlation between InSAR measurement points.

We define the extents of the clusters following Option 3 among the three options to

define the extent of a cluster, as introduced in Section 3.2.1. By this option, we assume

that the deformation signal is the dominant component of the InSAR observations, and

compute the spatio-temporal variogram of InSAR observations to decide the size of clus-

ters. The experience value of standard deviation of TerraSAR-X InSAR measurements is

3 mm, therefore we apply a predefined variogram threshold of 9 mm2. Given the prede-

fined threshold of the variogram, the corresponding correlation range rcl s = 17.98 m can

be derived. Then we define the study area into equal sized square grid cells. Each grid is

sized as rcl s × rcl s , as shown in Fig. 5.5b. To utilize all InSAR measurement point in the

area of interest, in this study we divide the area of interest into 30×30 equal sized grid

cells, with the length of edge 16.67 m. We define each grid cell as a cluster.

Figure 5.5: a): the spatio-temporal experimental variogram of the deformation time series

of all InSAR measurement points locate in the study area. b): the variogram of deformation

time series at zero time difference. The red line in the right figure indicates the fitted vari-

ogram function with exponential function. The green line indicates the variogram threshold

(9 mm2) we apply for the case study, which corresponds to the distance 17.98 m.
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The definition of the deformation model within a cluster follows Option 2 among the

two options introduced in Section 3.2.1, i.e. we assume that the deformation time series

of each cluster can be described by a linear combination of functions from the canonical

function library. Cluster-wise MHT is applied to choose the optimal deformation model.

We stick to the level of significance α = 0.02 as an initial value and the power of test

γ= 0.5 for cluster-wise MHT, as the same as point-wise MHT.

The results of cluster-wise deformation modeling will be presented in Section 5.3.

5.3. Results and discussions
5.3.1. Point-wise deformation modeling
The hypothesis testing method is applied to select the optimal deformation model of ev-

ery InSAR measurement point in the study area. For each InSAR measurement point, we

first test the constant velocity function as the null hypothesis of the deformation model

of the clusters. If the null hypothesis is rejected, we will apply MHT to select the opti-

mal deformation model from the alternative hypotheses. Each alternative hypothesis is

formed up by a combination of a breakpoint function, a step function, and an outlier

function. For each InSAR measurement point, we assume that the maximum number of

steps, breakpoints, and outliers should be 3.

Figure 5.6: Left: the classification map of the deformation model of all InSAR measurement

points in the study area. Right: the histogram of the number of point following each model.

The constant velocity function is accepted for most of the InSAR measurement points. The

step model is selected by point-wise MHT for most of InSAR measurement points which don’t

follow the linear model. For all InSAR measurement point, the maximum number of the

breakpoints or steps in their deformation model is 1.

We classify the InSAR measurement points by their deformation models, as shown

in Fig. 5.6. Most of the InSAR measurement points follow the constant velocity model,

shown as grey points in Fig. 5.6. Among the points for which the constant velocity points

are rejected, MHT selects the step model as the optimal model for many (918) of the
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InSAR measurement points. Only 18 points follow the breakpoint model, and 2 points

have both a step and a breakpoint in their deformation time series. Note that for all the

points which do not follow the constant velocity model, the maximum number of steps

and breakpoints is 1, as shown in Eq. (3.26).

Figure 5.7: The time series of instantaneous deformation (steps) computed by point-wise

MHT. Each epoch shows the instantaneous uplift or subsiding relative to the previous epoch.

The positive numbers (shown in blue) indicate uplift, while the negative numbers (shown

in red/yellow) indicate subsidence. On 23 September, 2016 a significant number of points

are tested to have instantaneous uplift, while on 4 October, 2016 many InSAR measurement

points show instantaneous subsidence.

Fig. 5.7 shows the step magnitude time series of all InSAR measurement points. Each

epoch in the figure shows the magnitude of the step deformation relative to the previ-

ous epoch, where the positive numbers (shown in blue) indicate uplift, and the negative

numbers (shown in red/yellow) indicate subsidence. The majority of the uplift steps oc-

cur on 23 September 2016, while the majority of subsiding occur on 4 October 2016.

Fig. 5.4, shows that on 23 September 2016, the uplift occurs in a round area which

covers a large part of the area of interest. On 4 October 2016, a relatively smaller round

region shows an instantaneous subsidence. The deformation shows significant spatial

patterns on these two epochs. However, as shown in Fig. 5.7, on these two epochs, only

the steps at the south-west region is accepted by MHT, for most of the points, the con-

stant velocity model still holds.

In order to assess the performance of point-wise deformation modeling, we will com-

pare the point-wise deformation modeling results with the results of cluster-wise mod-

eling.
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5.3.2. Cluster-wise deformation modeling
We divide the area into 30×30 equal sized grid cells, and define each grid cell as a cluster.

The cluster-wise deformation modeling, as introduced in Section 3.2, is applied to each

cluster. We assume the deformation behavior of each cluster can be represented by the

combination of functions with steps, breakpoints, and outliers, and apply cluster-wise

MHT to select the optimal deformation model for each cluster.

In total 546 out of 900 clusters have at least one step in their deformation time series,

as a result of cluster-wise MHT. Fig. 5.8 shows the classification map of the deformation

models of all clusters. The number of steps in the cluster ranges from 0 to 3 in the cluster.

The maximum number of breakpoints is 1.

Figure 5.8: a): classification map of the deformation models of all clusters. b): the number of

steps of each cluster. The number of steps of each cluster ranges from 1 to 3. The maximum

number of breakpoints is 1. Clusters following the null hypothesis, i.e. the constant velocity

model, are transparent in the two figures.

In Fig. 5.9 we show the step time series of all 900 clusters in the area of interest, where

each epoch shows the magnitude of steps w.r.t. the previous epoch.

As shown in Fig. 5.9, 503 out of 900 clusters show an instantaneous uplift on 23

September 2016. On both 4 October 2016 and 15 October 2016, the number of clusters

showing instantaneous subsiding are 306 out of 900 and 196 out of 900 respectively.

We select three typical clusters to illustrate the performance of cluster-wise defor-

mation modeling, as shown in 5.10. The InSAR measurement points in all three clusters

show similar temporal deformation behavior. Cluster 1 has a single-step deformation

model, cluster 2 has a three-step and one-breakpoint deformation model. Cluster 3 has

a two-step deformation model. The parameters of the deformation models of the three

clusters are shown in table 5.2. In the cluster-wise deformation modeling, if the null

hypothesis is rejected, the cluster-wise MHT is able to assign more than one steps to a

cluster. For instance, the selected optimal functional model of Cluster 2 has three steps

and one breakpoint, and has a good fit to the InSAR measurements

In Section 5.3.4, we will compare the difference between the results of point-wise

modeling and cluster-wise deformation modeling, and assess their performance.



5

72 5. Application on Real Data: Hydrocarbon Production Region Monitoring

Figure 5.9: The time series of instantaneous deformation (steps) computed by cluster-wise

MHT. The deformation time series of 900 clusters are modeled. Each epoch shows the mag-

nitude of instantaneous uplift or subsiding relative to the previous epoch. The positive num-

bers (shown in blue) indicate uplift, and the negative numbers (shown in red/yellow) indicate

subsidence.

Table 5.2: Deformation model parameters of the three selected clusters. The positions and

the deformation time series of these clusters are shown in Fig. 5.10. The non-applicable pa-

rameters are indicated as "-".

Deformation model

parameters
Cluster 1 Cluster 2 Cluster 3

Deformation velocity

v [mm/yr]
−73.7 −141.6 −112.5

Step on 20160923

s0923 [mm]
14 50 37

Step on 20161004

s1004 [mm]
- −20 −14

Step on 20161015

s1015 [mm]
- −5 -

Velocity change on 20161015

δv1015 [mm/yr]
- 104.2 -

5.3.3. Quality control
The stochastic model in point-wise deformation modeling and cluster-wise deformation

modeling is built up following the instructions of Section 3.1.2 and Section 3.2.3. Based
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(a) Location of three clusters.

(b) Cluster 1. Single step model.

(c) Cluster 2. Two-step and one-breakpoint model. (d) Cluster 3. Two-step model.

Figure 5.10: Deformation time series of three typical clusters. (a): the location of the three

clusters, with the velocity map Fig. 5.3 as base map. (b), (c) and (d): the deformation time se-

ries of Cluster 1, Cluster 2 and Cluster 3 respectively. The red solid line in Fig. (b), (c) and (d)

indicates the posteriori deformation time series of the chosen optimal deformation model.

The lower images in (b), (c) and (d) show temporal evolutions of the points in each cluster.

The InSAR measurement points in the same cluster show similar temporal deformation be-

havior.

on error propagation law, we estimate the variance-covariance matrix of the deforma-

tion model parameters computed from point-wise deformation modeling and cluster-

wise deformation modeling respectively, as an indicator of precision. The estimation of

the precision follows Section 3.3. Fig. 5.11 shows the variance of three types of defor-

mation parameters estimated using both point-wise deformation modeling and cluster-

wise modeling method, for every point/cluster, if applicable: 1) deformation velocity; 2)

step on epoch September 23, 2016; 3) step on epoch October 4, 2016.

In Section 5.3.4, we compare the precision of point-wise deformation modeling re-

sults and cluster-wise modeling results.

5.3.4. Discussion
The deformation time series of the InSAR measurement points are modeled by the

point-wise deformation modeling method and the cluster-wise deformation modeling

method. We compare the differences between the results from the two methods from

the following aspects:
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Figure 5.11: The variances of the estimated deformation model parameters. Fig. a), c) and

e) are the variances of point-wise deformation modeling results. Fig. b), d) and f) are the

variances of cluster-wise modeling results. a): variances of the deformation velocity of each

InSAR measurement point. b): variances of deformation velocity of each cluster. c): variances

of each InSAR measurement point, which has step on September 23, 2016. d): variances of

each cluster, which has step on September 23, 2016. e): variances of each InSAR measure-

ment point, which has step on October 4, 2016. f): variances of each cluster, which has step

on October 4, 2016.

• The correlation between the deformation time series of spatial close InSAR mea-

surement points. Based on apriori knowledge, the InSAR measurement points in

the area of interest are assumed to share the same deformation driving mecha-

nism, i.e. due to the shallow compaction caused by hydrocarbon production ac-
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tivity. By definition, the cluster-wise modeling taking into account this contex-

tual information by modeling the deformation per clusters rather than per point,

and therefore its results shows more spatial consistency. If the apriori information

is correct, i.e. the real deformation signal has spatial correlation due to the same

driving mechanism in this area, then the point-wise deformation results will not

be physically realistic, because point-wise deformation modeling does not take

into account the spatial correlation information.

• The dimension of deformation model. The point-wise deformation modeling re-

sults contain no more than 1 step and 1 breakpoint, in the deformation model of

each InSAR measurement point. On the other hand, the cluster-wise deformation

modeling is able to model the deformation time series of a cluster using a deforma-

tion model with multiple steps. This is due to the property of the B-method of test-

ing, which chooses the model with less parameter but fits the observations equally

well. The point-wise deformation modeling use less observations than cluster-

wise deformation modeling. Therefore, under the same level of significance and

power of the test, point-wise modeling will tend to choose a model with fewer pa-

rameters, than having a good fit to the data. This prevents the modeling results

from over-fitting the measurements. While in cluster-wise deformation modeling,

more observations are taken into account, the misfit to the data will be more sig-

nificant in the modeling. In this situation, a model with more parameters may be

accepted.

• The resolution of the output. Point-wise modeling results describe the deforma-

tion behavior of the area of interest using the deformation time series of 6321 In-

SAR measurement points. The cluster-wise modeling divides the area of interest

into 900 grid cells, and use the deformation grid cells to describe the deformation

behavior of the area of interest, assuming the deformation behavior in each clus-

ter can be represented by the same model. Therefore the cluster-wise deformation

modeling sacrifices the resolution of the results for a more physically realistic re-

sult.

The case study on South Belridge hydrocarbon filed shows that, comparing to point-

wise deformation modeling, the cluster-wise modeling is able to take into account the

contextual information on the spatial correlation of deformation signal. Given the cor-

rect contextual information, InSAR measurement point can be grouped into clusters,

and within each cluster on assuming all points follow the same deformation model. One

can use the deformation models of clusters to represent the deformation of the area of

interest. The advantage of the cluster-wise deformation modeling is that under the same

level of significance and the power of test, based on the correct contextual information

on spatial correlation, the deformation model of each cluster can have more parameters
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than the deformation model of a single point, and modeling results show better spa-

tial consistency, by definition of cluster-wise modeling. This is at the cost of resolution,

i.e. by applying cluster-wise modeling, the InSAR observations of all InSAR measurement

points within a same cluster will be used as the observations of the cluster. This may re-

sult in losing details describing the deformation behavior.



6
Conclusions and Recommendations

6.1. Conclusions
The main objective of this study is to develop and demonstrate methodologies to detect

spatio-temporal patterns/changes in InSAR deformation time series. The key is to prop-

erly integrate the external knowledge, especially on spatial smoothness, into InSAR time

series mathematical models. Hereby, the study focuses on the main research question:

How to optimally digest spatial smoothness information of the presumed deforma-

tion signal in the mathematical model, to estimate the spatio-temporal deformation

of InSAR measurements points, and assess the quality of the results?

The estimation of the spatio-temporal deformation relies on the apriori information

on the spatial smoothness of the deformation signal. The information presumes the

similarities in the deformation behavior between adjacent InSAR measurement points.

Based on it, one can extend the deformation modeling from a point-wise process to

a cluster-wise process. The spatial smoothness information is a contextual informa-

tion, which can come from two external sources, see Section 3.2.1, 1) expert knowl-

edge or experience or, 2) extra observations. We developed methodologies based on spa-

tial smoothness information to construct/improve the functional model and stochastic

model of spatial-temporal deformation modeling.

The main research question is subdivided into three specific research questions,

which we will discuss subsequently.

1. What is the optimal functional model and stochastic model?

We define the "optimal model" as the best model which can be derived based on

given InSAR observations and apriori knowledge. We derive the optimal func-

tional model and stochastic model in two ways. 1) By default, we apply point-

wise deformation modeling to every InSAR measurement point, and determine its

most probable deformation model based on multiple hypothesis testing (MHT)

and the B-method of testing, see Section 3.1. 2) When knowledge on the spatial

smoothness of deformation is available, we apply cluster-wise deformation mod-

eling, which groups a number of spatially correlated InSAR measurement points

into a so-called "cluster" based on the given spatial smoothness information, see

77



6

78 6. Conclusions and Recommendations

Section 3.2. This method assumes that all points in the cluster have identical de-

formation models, i.e. they follow the same deformation model. The deformation

model parameters of the cluster are estimated based on the deformation time se-

ries of all InSAR measurement points within the cluster.

The point-wise deformation modeling follows Chang et al. (2014); Chang and

Hanssen (2016). The optimal functional model per point is selected using the MHT

method, see Sections 3.1.1 and 3.1.3. The steady-state (constant velocity) func-

tion is used as the null hypothesis. If the null hypothesis is rejected, the optimal

functional model will be chosen from the combinations of canonical deformation

models (Chang and Hanssen, 2016), by applying MHT per point. We consider two

major error sources in the InSAR measurements: the atmospheric noise and the

scattering noise, and build up the stochastic model, see Section 3.1.2. The tem-

poral correlation of noise, mainly due to the sharing of the same reference epoch,

is taken into account in the stochastic model. Yet, the spatial correlation of the

neighboring points have not been introduced into the functional and stochastic

model, which makes it hard to detect the spatial patterns straightforwardly.

The application of cluster-wise deformation modeling are introduced in Section

3.2. Based on given knowledge on the spatial smoothness of deformation, the ex-

tend and thr deformation model of a cluster is defined see Sections 3.2.1 and 3.2.2.

When multiple possible functional models exist, the cluster-wise MHT is applied

to select the optimal model for the cluster. We built up the stochastic model in

a similar way as point-wise modeling, i.e. we take into account the atmospheric

noise and the scattering noise, but considering the spatial correlation of noise,

see Section 3.2.3. Benefit from the cluster-wise deformation modeling, the spatio-

temporal deformation patterns can be directly detected.

Note that both in point-wise and cluster-wise modeling, the selected "optimal"

functional model is the optimal model from all pre-defined models. These pre-

defined models stem either from the library of canonical functions (Chang and

Hanssen, 2016) or from other contextual information, e.g. given alternative spatio-

temporal deformation models of a deformation bowl, as in Section 4.3.2. This

means if the actual optimal functional model is not pre-defined in the null and

alternative hypotheses, it cannot be selected during the modeling process.

2. How to digest spatial smoothness information?

Spatial smoothness information is digested by importing it into the func-

tional/stochastic model. Since it can be given by two sources, we proposed two

ways to digest it respectively, listed below:

• Cluster-wise deformation modeling. Spatial smoothness information from

the expert knowledge or experience are introduced to conduct the cluster-wise
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deformation modeling, see Section 3.2.1. We propose to define the extent

and the deformation model of a cluster based on given spatial smoothness

information. Introducing this contextual information results in affecting the

structure of the design matrix A and the vector of unknown parameters x in

the functional model.

The cluster-wise deformation modeling offers the possibility to import the

external spatial smoothness information into the deformation modeling.

This external information can describe the correlations between InSAR mea-

surement points, and help to improve the functional model to describe the

deformation in the area of interest.

• Introducing pseudo observations. The spatial smoothness information pro-

vided by extra observations can be integrated by treating them as pseudo ob-

servations of deformation modeling, i.e. it provides the pseudo observation

d and its stochastic model Qdd , see Eqs. (2.18) and (2.19) in Section 2.2.2.

In Section 4.3.1, we demonstrate this approach by a simulation where the

presumed velocities of the four rings of a deformation bowl are given. The

given presumed velocities are treated as pseudo observations, and integrated

into the deformation modeling. Therefore, introducing pseudo observations

provides the possibility to integrate the extra observations in to deforma-

tion modeling, which is an improvement on both functional and stochastic

model.

In the two ways, spatial smoothness information are digested and introduced to

the spatio-temporal modeling, by importing them into the functional/stochastic

model. Given correct spatial smoothness information, the precision and the relia-

bility of the deformation modeling will be improved.

3. How to assess the quality of the results?

The quality of the spatio-temporal deformation modeling results are assessed

from two aspects: 1) the misfitting of the model to the InSAR observations, and 2)

the imperfection of deformation model itself. The former is related to the noise in

the observations, and is represented by the precision of the estimated parameters.

The latter is related to the misspecification of the deformation model parameters,

which can be represented by the reliability.

We introduced the Variance-covariance matrix (VCM) of the estimated parameters

as a metric of the precision, see Section 3.3.1. The VCM can be computed using

error propagation based on the apriori VCM of the observations.

The misspecification of the model parameters is closely related to the choice of

the deformation model. We introduced the Minimal Detectable Value (MDV) as a
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metric of the reliability, see Section 3.3.2. The MDV is computed to a specific alter-

native hypothesis. Therefore MDV varies in terms of different degrees of freedom

for alternative hypotheses. It should also be noted that the MHT is applied based

on a predefined level of significance α and a power of test γ. The choice of α and γ

are usually based on the cost of making Type-I and the detectability power of any

alternative hypothesis, which is different between cases. The different choice of α

and γ will also influence the value of MDV.

6.2. Contributions
The main contributions of this study are summarized as follows,

• We design and implement a spatio-temporal (cluster-wise) deformation modeling

methodology to parameterize the InSAR deformation time series, based on multi-

ple hypothesis testing (MHT) and B-method of testing in both temporal and spa-

tial domain.

• We introduce a work flow to introduce apriori spatial smoothness information into

InSAR time series mathematical model, by importing the apriori information into

the functional/stochastic model of spatio-temporal deformation modeling.

• We demonstrate a methodology to apply the spatio-temporal deformation model-

ing on the deformation monitoring caused by hydrocarbon production activities,

and assessed its performance.

• We detect the spatial uplifting and subsiding patterns over the hydrocarbon pro-

duction area.

6.3. Recommendations
We propose four recommendations for further research,

• Considering the temporal filtering effect in the stochastic model. In this study,

we constructed the stochastic model taking into account scattering noise and at-

mospheric noise. However, based on the assumption that the atmospheric noise

is temporal uncorrelated (Hanssen, 2001a), it is common to apply a temporal low-

pass filter to InSAR deformation time series during TInSAR processing (van Lei-

jen, 2014; Samiei Esfahany, 2017), to mitigate atmospheric noise. The effect of

this temporal filtering of InSAR deformation time series is ignored during the con-

struction of the stochastic model. The temporal filtering may result in increasing

temporal correlation between epochs (Hanssen, 2001a; Samiei Esfahany, 2017),

and may also bring bias. When the temporal filtering is applied, this correlation is

required to be introduced into the stochastic model.
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• Adding spatial parameters into the canonical deformation models. The defor-

mation model of the cluster is either directly given based on contextual informa-

tion, or chosen from the combination from the canonical function library pro-

posed by Chang and Hanssen (2016). However, this library only presents the func-

tions for a single InSAR measurement point, therefore when selecting a deforma-

tion model for a cluster from this library, we should make the assumption that the

deformation of the cluster does not vary spatially. This assumption may not hold

in case a cluster covering a large area. On the other hand, we consider that the

spatial deformation patterns, e.g. deformation bowls, can also be written into the

combinations of several canonical functions. In future research, the possibility of

building up such a library needs to be investigated.

• Improving the computation efficiency. When selecting the optimal deformation

model from the library of canonical functions, the possible combinations for an

InSAR measurement point or a cluster can increase exponentially as the dimen-

sion (i.e. the number of unknown parameters) of deformation model increase. As

a result, the total amount of the models can easily reach to an enormous number.

For example, for an InSAR deformation time series with 50 epochs, if it is assumed

that only 1 breakpoint exists in the time series, the possible number of deforma-

tion models is 48 (considering the breakpoint does not occur on the first and the

last epoch). If we assume two breakpoints and one step exist, the number of possi-

ble models will dramatically increase to: (48×47/2)×48 = 54114. A smarter testing

strategy is required to improve the computation efficiency.

• Developing a quality metric for the contextual information. The contextual in-

formation on the spatial smoothness of deformation signal plays an important role

in the spatio-temporal deformation modeling. The quality of pseudo observations

are specified by the VCM Qdd . However, the contextual information given by ex-

pert knowledge or experience is applied based on the assumption that they are cor-

rect. A formal metric to asses the quality of contextual information is needed for

selecting the input contextual information. The development of this metric re-

quires further study.
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