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Abstract

Radar-based sensors are used to perceive their environment and objects of interest in a contactless manner
and with robust performance in all weather and light conditions. One of the main drawbacks is the energy
needed for the processing of radar data in order to extract its valuable information. Spiking neural networks
are an emerging type of neural networks that aim to reduce the energy footprint of their computations while
maintaining acceptable performance. To do so, the data is encoded through time in binary spikes to help
leverage the low cost of additions. This is in stark opposition to the much higher cost of multiplications
that are highly present in conventional artificial neural networks. The drawback of this energy gain is that
the rate encoding adds an extra time dimension, hence increasing the latency between the acquisition of the
radar data and the recognition of the corresponding gesture class.

More specifically, this work uses an air-marshalling dataset from the literature to exemplify a gesture-
recognition problem. The first step is to replicate the well-known radar processing pipeline, and classification
approach based on conventional neural networks to reach high classification accuracies. A validation accuracy
of 98.5% and a test accuracy of 59.8% are reached on the full dataset (11 classes) and 86.7% on their 5 best
classes (test set), which is about the same performance reported in the original dataset baseline.

The following steps propose an adaptation of this non-spiking pipeline to its spiking equivalent by op-
timising the trade-off between the model’s latency, its memory requirements and its accuracy. This work
also develops a strategy to tune spiking networks’ thresholds to make the process of developing a spiking
equivalent more efficient. For example, the spiking network can reach 94.5% validation accuracy using 100
encoding steps and only 5.7% of the initial memory requirements, and reach 46.8% on the test set. However,
this trade-off can be shifted towards lower latency, lower memory, or higher accuracy according to the desired
requirements.
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1. Introduction

1.1 Background

Gesture recognition using radar technologies targets a wide range of applications since such recognition enables
human-machine interfaces. This can be seen through devices such as smart TVs, smart homes, virtual reality,
etc. [1]. More specifically, radar systems can be used to detect human activities in an even wider variety of
applications, ranging from human activity recognition and fall detection to support vulnerable individuals, to
the automotive industry [2].

Indeed, autonomous driving requires an understanding of the environment over time, for example, to detect
people in the environment to decide how to react. The industry currently uses lidar, radar, and vision cameras
as sensors to do so. However, for the moment 10% of the energy usage of an automated car goes to its computing
system: more precisely 4% of the added energy in a medium automated vehicle goes to its radar system [3].
Thus, there is a pressing need to optimise computational and energy resources for these sensors.

1.1.1 Radar Sensors

Radar Object

(a) The red arrow represents a sinusoid with increasing fre-
quency.

Radar Object

(b) A few moments later, the attenuated sinusoid with in-
creasing frequency returns to the radar.

Figure 1: Transmission and reception of one chirp of a
FMWC signal.

The basic type of radar sensor is based on contin-
uous wave (CW) signals: the radar signal is trans-
mitted and the reflection from objects is received
back so that their velocity can be computed. How-
ever, this does not allow to find the object’s distance.
More complex systems use frequency-modulated con-
tinuous wave (FMCW). Figure 1 explains this con-
cept: the radar sends a signal of increasing frequency
(lighter to darker red) through time, this is called
a chirp. This signal is reflected against the object,
and the radar captures this attenuated version of the
frequency-modulated sinusoid. Repeating a series of
chirps through time allows the computation of the ob-
ject’s distance [2].

The common FMCW pipeline is provided in Figure
2, a chirp is one row of the raw map, and consequent
chirps are stacked next to each other. The process
used to extract the relevant information from the raw
input map has two main components. After an op-
tional pre-processing step (some of which are devel-
oped in the Literature review in Section 3.1), two Fourier transforms convert the data into a range-Doppler
(RD) map, which is a matrix where one dimension is proportional to the distance and the other is proportional
to the velocity of the objects in a scene. The second main component is a classification network that extracts
the relevant information from the RD map into the most probable gesture class.

The advantages of radar-based sensing are highlighted below ([2], [1], [4] and [5]):

• it is robust under all weather and light conditions since it can detect signals in darkness and through
clouds, while vision sensors are unable,

• it can reach accurate range and relative velocity measurements for distances up to 250m,
• it preserves privacy compared to vision sensors that inherently record readable images,
• its processing pipeline is relatively simple, being based on FTs as illustrated in Figure 2,
• its form factor has been miniaturised to fit in smartphones, wristbands, headphone devices, etc.

1.1.2 Neuromorphic Solutions

Although the above factors have made radar signal processing an indispensable technology for object detection,
the resolution increase needed for newer applications requires increasingly higher energy costs: for example,
higher resolution can be achieved by using a higher sampling frequency and the number of computations will
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Figure 2: Radar-processing pipeline (with example maps from the dataset used in this thesis): the raw map is
first pre-processed, then the frequency components are extracted by a first Range FT to obtain the distance
and a second Doppler FT to obtain the velocity, finally this range-Doppler map can be passed in a classification
algorithm to obtain the gesture class.

depend on how many more samples there are [3]. A recently proposed solution is to modify the usual radar
processing pipeline algorithm into one that can be implemented on neuromorphic hardware.

The rise of spiking neural networks implemented in neuromorphic hardware marks a significant leap beyond
deep neural networks (DNN). Although DNNs have excelled in computer vision, speech recognition, and natural
language processing, their energy efficiency remains a critical issue. The computational power needed for the
best deep learning models has increased by a factor of ten annually from 2012 to 2019. In stark contrast, the
human brain operates at approximately 12-20 W, efficiently managing complex tasks and sensory input [6].

Neuromorphic computing aims to design new technologies that resemble the human brain more closely compared
to conventional DNNs to attempt to copy its high energy efficiency [7]. The human brain contains about 1010

neurons that communicate via electrical signals that are known to have an all-or-nothing behaviour. This
implies that if the incoming signal is strong enough, a spike is emitted and transmitted to the following neurons,
otherwise, no signal is transmitted [8]. By greatly simplifying the biological process, its principal characteristics
can be retained and mathematically modelled as an artificial spiking neuron. Those principal characteristics are
the binary nature of the spikes and their sparsity, considered relative to a continuous signal that would always
be present.

An example of a spiking neuron is provided in Figure 3: this is an integrate-and-fire (I&F) neuron which is
the mathematically simplest artificial neuron, it uses rate encoding where larger numbers are represented by
more spikes. There are other spiking neurons and encoding types that are described in Section 2.2, however,
the simplest are represented here.

time

p
ot
en
ti
al

Uth

t

t

t

t

W
1

W2

W
3

Figure 3: Simplest type of artificial spiking neuron: the integrate-and-fire (I&F) neuron. Wi are the weights,
Uth is the firing potential. The spikes enter the neuron from the right to the left of the spike train through time
and the corresponding weights are added to the potential. When the membrane potential crosses a threshold,
the neuron emits a spike, the spikes at the right of the output train are emitted earlier.

In a similar way as in biological neurons, the artificial neurons possess a membrane potential that stores a value
over time. Each of these discrete time is called a time/encoding step and the resulting latency is one of the
main trade-off of SNNs. The incoming spikes increase the membrane potential by the value of their respective
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weights: for example, W3 is first added to the potential, at the following time step, W1 and W2 are added, etc.
This addition process happens until the potential reaches a pre-defined firing threshold. The neuron then fires
by emitting a spike and resetting its membrane potential. When the number of input spikes is proportional to
the magnitude of the analogue input, Section 2.2 explains how the output number of spikes is also proportional
to the magnitude of the analogue output in the corresponding non-spiking network [9].

SNNs have the following advantages ([1], [3], [4] and [10]):

• their high energy efficiency is useful for low-power edge applications, [11] shows a leakage power reduction
of 34× and a dynamic power reduction of 49× when neurons spike for 10% of time steps (relative to
the non-spiking equivalent). This is because they only process addition operations and no multiply-and-
accumulate (MAC) operations to the opposite of DNNs where MAC operations consume the majority of
their energy,

• their accuracies approach that of a normal ANN with simpler operations. For example, the literature
research in Section 3.4 proves that the spiking version can drop less than 1% accuracy,

• they implement highly parallel processes through asynchronous computations,
• they are sparse and can process the data asynchronously,
• they aim at solving the memory bottleneck caused by the von Neumann architectures by making the infor-
mation processing local, since the memory (synaptic weights) are close to the computing units (neurons).

Due to the requirement for lower energy requirements for radar processing, it is important to find the SNN
equivalent for all stages of the processing pipeline to avoid issues linked to the conversion from non-spiking to
spiking stages. This conversion challenge includes two aspects. On one side, there is an algorithmic decision: it
might be more optimal to modify the way the computation is achieved if it is to be implemented on neuromorphic
hardware. On the other hand, a spiking implementation requires the tuning of more parameters since the
thresholds of the neurons need to be defined, and an optimal encoding strategy from continuous data to discrete
spikes must be chosen. Furthermore, as per [7] and [6]:

• training an SNN is more complicated since the spikes are Dirac deltas which are not differentiable, gradient
descent can therefore not be directly deployed without additional techniques such as surrogates,

• since the spike events are discrete, a loss occurs if the data that should be represented in a fraction of a
spike is ignored,

• there is an added time dimension to accumulate the spikes that requires the definition of a trade-off
between the performance and the time taken for the computation.

1.2 Contributions

As shown in the literature review in Chapter 3, to the best of knowledge, no paper has been found that fully
implements a full-body gesture recognition pipeline in its spiking form. Therefore, this thesis attempts to
address this gap by presenting an example of this full spiking pipeline by tackling the following objectives:

• a technique to tune the neurons’ thresholds,
• a method to decide on the quantised precision to give to each spiking step of the pipeline,
• an analysis on how to reduce the memory footprint.

An example of the final spiking pipeline reaches 94.1% validation accuracy and 46.8% test accuracy while using
100 encoding steps and only 4.7% of the initial memory requirements.

This thesis is organised as follows:

• Chapter 2 lays down the mathematical background of radar sensors, more specifically for FMCW signals,
it also develops the general radar-processing pipeline that will be used throughout this work. Following
this, it explains the fundamentals of spiking neural networks, it first describes the different encoding
strategies and describes the types of spiking neurons available,

• Chapter 3 is a literature research about each step of the radar processing pipeline and spiking neural
networks, several gaps are highlighted that will be exploited in the following chapters,

• Chapter 4 selects the techniques from the literature research that will be further investigated, it outlines
the methods and mathematical bases upon which the following implementations will build. More precisely,
it analyses the procedures used in the literature and expands on them to incorporate SNNs into the initial
processing pipeline,

• Chapter 5 applies the previous methods to an air-marshalling gesture dataset published in [12]. This
proves the correctness of the methods outlined in Chapter 4 and demonstrates how to define the trade-off
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between the desired accuracy and memory/energy performance. It also provides a small example of a
hardware implementation of a spiking network in comparison to a non-spiking network,

• Chapter 6 finalises this thesis work and highlights different ways this work could be continued and im-
proved.
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2. Background

This chapter outlines the background on three separate subjects. First, Section 2.1 explains the theory behind
radar processing. Then, Section 2.2 describes the theory of SNNs. Finally, since the final aim is to reduce the
full pipeline’s footprint, Section 2.3 outlines how values can be quantised.

2.1 Radar Signal Processing

Radar

O1

O2

xT xR

xT

xR

Figure 4: Sketch of a radar setting (O1 and O2 are ob-
jects to detect), the red xT represent the transmitted
radar signals, these signals are then reflected against
the objects and return to the radar as the blue signals
xR.

a

This section describes how FMCW radar signals carry
information about objects’ distance and velocity. As
shown in Figure 4 a FMCW radar works by send-
ing towards and receiving a sequence of electromg-
netic waveforms from the objects to detect. Sub-
section 2.1.1 mathematically describes these signals
called chirps. Sub-section 2.1.2 then explains how the
transmitted and received chirps are mixed together so
that the output signal contains information about the
object’s distance and velocity, which is stored in a
range-Doppler (RD) map. Sub-section 2.1.3 then out-
line how to obtain the maximum values of the range
and velocity represented in the RD map.

2.1.1 Chirp

A transmitted chirp xT (t) is a modulated waveform
whose frequency increases or decreases linearly over time t from a minimum fc to a maximum fa. Linear
modulation can have different waveforms, but the most common is a sawtooth function as shown in Figure 5
[5]. This signal is mathematically represented in Equation 1: B is the bandwidth of the chirp defined as the
difference between the minimum and the maximum frequency B = (fa−fc) and Tc is the time taken by a chirp.

xT (t) = cos

(
2πfct+ π

B

Tc
t2
)

(1)

0 Tc 2Tc

fc

fa

B

td1

td2

Time [s]

F
re
q
u
en
cy

[H
z]

xT
xR1
xR2

Figure 5: FMCW chirp frequency through time for a
transmitted signal xT and its corresponding received sig-
nal xR when the signal modulation is a sawtooth func-
tion.

When the chirp bounces off a static object and returns
to the radar, it can be modelled as a delayed and at-
tenuated version of xT (t) [5]. The transmitted signal
is attenuated by αatt and the round-trip delay is td
which can be expressed in terms of the distance be-
tween the radar and the object d as given in Equation
2 where c is the speed of light. The returning signal
is therefore expressed as xR(t), shown in Equation 3
[5].

td =
2d

c
(2)

xR(t) = αattxT (t− td)

= αatt cos

(
2πfc(t− td) + π

B

Tc
(t− td)

2

)
(3)

Figure 5 illustrates the time delay td for the received
signal xR obtained from static objects O1 and O2
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(from Figure 4). Since object O2 is further away, the signal will take longer to arrive at the radar, as de-
picted by the longest delay td2 relative to td1.

2.1.2 Intermediate Frequency Signal

The returning signal xR(t) from one object is mixed with the transmitted signal xT (t) at the in-phase receiver
of the radar to create the intermediate signal, which is drawn in Figure 6. When this signal is low-pass-filtered,
the frequency component fc is removed to create the filtered intermediate frequency (IF) signal r(t) shown in
Equation 4. More details of this calculation and the following calculations can be found in Appendix 7.1.

r(t) = LPF
[
xT (t)xR(t)

]
=

αatt

2
cos

2π
B

Tc
td︸︷︷︸

fR

t+ 2πfctd︸ ︷︷ ︸
ΦR

 (4)

This signal r(t) can be analysed in two ways to extract both the object’s range and its velocity.

Range

xT (t)

xR(t)

LPF r(t)

Figure 6: Generation of the IF signal r(t) from the
mixing and low-pass-filtering og the transmitted signal
xT (t) and its reflection xR(t).

The frequency fR of r(t) in Equation 4 is propor-
tional to the delay td. According to Equation 2, the
frequency is therefore proportional to the distance or
range d, as shown in Equation 5 [5]. This means that
one chirp’s frequency spectrum, obtainable via a FT,
shows peaks at frequencies corresponding to the dis-
tances between the radar and objects. When many
objects are present, the low-passed-filtered signal con-
tains a series of peaks at frequencies corresponding to
the distances of the objects. More details are found
in Appendix 7.1.

fR =
B

Tc
td =

B

Tc

2d

c
(5)

Velocity

The above highlighted how to obtain the range from the frequency of the IF signal of a single chirp. Given that
the distance travelled between chirps is ∆d and that the corresponding time delay is ∆td according to Equation
2, then the velocity is expressed as v = ∆d/Tc,diff = (c∆td)/(2Tc,diff ) where Tc,diff is the time between
chirps. By renaming the IF signal of each chirp i by ri(t), then Equation 6 shows how this extra distance ∆d is
proportional to the frequency fD of the IF signal across the chirps [3]: λ is the wavelength of the radar signal.
The details of the calculation are found in Appendix 7.1.

ri =
αatt

2
cos
(
2π fc∆t︸ ︷︷ ︸

fD

·i+ 2πtd,0fc︸ ︷︷ ︸
ΦD

)
v =

∆d

Tc,diff
=

c∆td
2Tc,diff

=
cfD

2fcTc,diff
=

λ

2Tc,diff
fD (6)

To summarise, a Fourier transform applied along the samples will provide the objects’ distances, which is called
the range Fourier transform. Another applied along the chirps will provide their velocity, which is called the
Doppler Fourier transform.
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2.1.3 Maximum Range and Velocity

Range

In the range dimension, the maximum frequency that can be obtained is the Nyquist frequency fN , which avoids
aliasing, which is equal to half of the sampling frequency. Using Equation 5, the maximum range detected is
therefore expressed in Equation 7 [4].

dmax =
cTc

2B
· fN =

cTc

2B
· fs
2

(7)

Velocity

The velocity information is saved in the IF signal’s phase ΦR and, by definition, phases are bounded ΦR ∈
[−π, π], the equivalent frequency is hence bounded by fD ∈ [−1

2 , 1
2 ]. This enables the maximum velocity to be

found in Equation 8.

vmax =
λ

2Tc,diff
fD,max =

λ

2Tc,diff

1

2
=

λ

4Tc,diff
(8)
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2.2 Spiking Neural Networks

Neuromorphic algorithms work with binary spikes that encode information through time instead of using the
value’s magnitude. This is an inspiration from the brain since biological neurons communicate through electrical
impulses of about the same amplitude. Figure 7 illustrates the difference between a non-spiking ANN neuron
in Figure 7a and a spiking neuron in Figure 7b. The output of the ANN is a series of MAC operations between
the inputs Xi and the weights Ai,j : the inputs Xi are analogue and the output Yj too. On the other hand, the
spiking neuron only sums the weights Ai,j when there is an incoming spike SXi

coming from the corresponding
neuron: both the inputs SX,i and output SY,j are binary spikes. The advantage of spike-based calculations is,
therefore, that there are no multiplications of the input. This process will be further developed in Sub-section
2.2.2 [6].

In this work, it is assumed that the reader is aware of the theory behind non-spiking ANNs. For more informa-
tion, the reader can read the book ”Dive into Deep Learning” [13] which explains the mathematics of neurons,
neural layers, weight training strategies, etc.

The first step in generating an SNN is to encode the data, there are two main ways to do so which are ex-
plained in Sub-section 2.2.1. As stated above, Sub-section 2.2.2 outlines the different spiking neurons and their
mathematical expressions. Following this, Sub-section 2.2.3 explains how the weights of an SNN are selected.

MAC ReLU Yj

Xi

A
i,j

Xi+1

Ai+1,j

Xi+2

A
i+

2,
j

(a) Non-spiking neuron

+ spike SYj
[t]

SX,i[t]

A
i,j

SX,i+1[t]
Ai+1,j

SX,i+2[t]

A
i+

2,
j

(b) Spiking neuron

Figure 7: Example non-spiking and spiking neurons: Ai,j are the weights between the neurons of the previous
layer and the illustrated neurons, Xi are the un-encoded values and SX,i[t] are the encoded spikes of X, Yj is
the output of the non-spiking neuron and SYj [t] are the spikes representing Yj .

2.2.1 Encoding and Normalisation

Since SNNs require the inputs to be binary, there needs to be an encoding process to generate the discrete
spikes from the continuous inputs. Decoding is then used to extract the information from the output spikes [3].
There exists two types of such coding that are compared in Table 1. The following describes how they work in
more detail.

Coding Advantages Disadvantages

Time-to-
first-spike
(TTFS)

• Fewer spikes.
• Faster inference.
• Better information disentangling due to fewer
spikes.

• Only reaches high accuracies for simple
tasks and shallow architectures.

• More sensitive to noise since the redun-
dancy is low.

Rate
• Higher performance/accuracies
• More robust to noise since there is more re-
dundancy due to the larger number of spikes.

• Requires more encoding steps containing
a higher density of spikes which makes it
more computationally intensive.

Table 1: Encoding comparison ([3], [4], [14], [15] and [16])
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(a) Rate encoding of a normalised input for T = 5
and T = 10 steps, using an increasing number of steps
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(b) TTFS encoding of a normalised input for T = 5,
T = 10 and T = 15 steps
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(d) TTFS decoding for a range of values when the
normalised input had been encoded with 5 time steps,
the decoded value is given as x.

Figure 8: Rate and TTFS encoding and decoding comparative examples.

Rate Coding

Rate encoding translates the continuous input into the firing rate of an associated spike source according to
Equation 9 1 where T is the number of encoding steps: the higher the magnitude of the input X the higher
the rate [3]. This rate defines the probability that there is a spike at each time step t ∈ [0, T [. For example, if
rate = 0 then no spikes are fired, if rate = 1 then all T spikes are fired, if rate = 0.5 then T

2 spikes are fired,
etc. To ensure that all values can be represented by the number of chosen steps, the input is first normalised
to Xn using the maximum and minimum values of X: Xmax and Xmin. Figure 8a shows how the normalised
input is encoded in the rate: the higher the number of time steps, the smaller the error between the encoded
value and the input.

rate =
⌊XnT ⌋

T
(9)

Decoding is achieved by taking the average number of spikes. If Sx[t] is the encoded value at time t, then the
normalised decoded signal Xn and its denormalised decoded signal X are shown in Equation 10. Figure 8c

1The floor operation b = ⌊a⌋ transforms the number a to its integer value b by rounding it down.
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illustrates how the decoded value is obtained from the rate when 5 time steps are used.

Xn =
1

T

T∑
t=1

Sx[t] =
X −Xmin

Xmax −Xmin

X = Xmin + (Xmax −Xmin) ·
1

T

T∑
t=1

Sx[t] (10)

Latency Coding

Temporal coding translates the analogue input X into a spike timing. The most common is time-to-first spike
(TTFS) coding where higher values are typically mapped to shorter onset times from a given time reference,
which is illustrated in Figure 8b. Other temporal codings include rank-order coding where the order of spikes
from different neurons encodes information, and phase coding where an internal oscillatory signal provides a
reference signal [3]. Equation 11 shows TTFS spike encoding where the analogue input X is first normalised to
Xn: the higher the magnitude of the input X, the faster the spike appears.

time = T − ⌊XnT ⌋ (11)

Decoding is achieved by the timing of the output spikes. Figure 8d illustrates how the decoded value is obtained
from the spike time when 5 time steps are used.

2.2.2 Types of Neurons

The main structural difference between ANNs and SNNs is the type of neuron used. While an artificial neuron
sums its weighted inputs and passes them through an activation function, an SNN neuron integrates its weighted
input over time and saves it as a membrane potential. It then spikes once its potential reaches a certain threshold
voltage Uth, which makes it work similarly to biological neurons.

A range of models exist to define those neurons. Figure 9 shows the main spiking neurons in order of biological
realism. While realistic neurons are good at reproducing electrophysiological results, they are more complex
and are hence much more difficult to implement in hardware [6].

Integrate-
and-Fire

(I&F) neuron

Leaky-integrate-
and-Fire

(LIF) neuron

Current-based
(CuBa)
neuron

Hodgkin-Huxley
(HH) neuron

+ leakage
+ conductance

variation
+ biological

realism

Figure 9: Spiking neurons from least complex to most complex.

The leaky integrate-and-fire (LIF) neuron is the standard choice: although much simpler than conductance-
based models, it is computationally efficient and easy to train with gradient-based techniques. Similar accuracy
levels can be reached by LIF-based SNNs compared to ANNs as later shown in the accuracies reached by ANNs
and SNNs in Section 3.4 of the literature research.

Equation 12 describes the mechanism of a LIF neuron where β represents the leakage factor, the extreme cases
being β = 0 with the maximum leakage without memory from time step to time step, and β = 1 without leakage
and a fully preserved membrane potential between time steps. In this latter case, the LIF neuron is simplified
to a an I&F neuron. The new membrane potential U [t]′ is given by the leaked potential of the previous step
βU [t− 1] plus the input current I[t]. The input current I[t] is the sum of the weights when their corresponding
input neuron spikes. Then, if the membrane potential reaches a threshold Uth it emits a spike S[t] [6].

U [t]′ = βU [t− 1] + I[t]

S[t] =

{
1 if U [t]′ > Uth

0 if U [t]′ < Uth

(12)

Once the spike has been emitted, there are two reset mechanisms shown in Equation 13. Soft reset subtracts
the threshold voltage Uth, and hard reset sets the membrane potential back to zero. In general, soft reset leads
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to higher performance [6], this is because there is no loss of information and the remaining membrane potential
will be used to influence future spikes.

Soft reset: U [t] = U ′[t]− Uth · S[t]

Hard reset: U [t] =

{
0 if U [t]′ > Uth

U ′[t] if U [t]′ < Uth

(13)

2.2.3 Training

(a) Standard error back-propagation

(b) Surrogate gradients

Figure 10: Training a SNN, both figures are taken
from [6]: L is the loss, S is the spike, S̃ is a
surrogate spike function to be used during back-
propagation, U is the membrane potential), I is
the current, W is the weight

One main issue with SNNs is to find the best way to train
their weights. Standard error back-propagation is not appli-
cable to SNNs. Figure 10a illustrates the issue: the deriva-
tive of the spike with respect to the membrane potential
δS/δU is either 0 or ∞ which makes the gradient meaning-
less for weight update [6].

Three methods that counter this problem are highlighted
in Table 2. Two of them train the network from scratch:
unsupervised learning with spike-time dependent plasticity
(STDP) and supervised learning using surrogate gradients
during back-propagation through-time (BPTT). BPTT re-
places the spike function by a surrogate function that
smoothens the function δS/δU , an illustration is provided
in Figure 10b. Secondly, an unsupervised bio-inspired al-
ternative to BPTT is STDP, which enforces correlation be-
tween two neurons by increasing the weight of their con-
nection for neurons that fire causally within a time window
[6].

The last one trains an ANN first and then converts the
weights to an equivalent SNN. This requires the activation
function to be a ReLU and the SNN to follow a rate-based
encoding, since the spiking action inherently cuts off all neg-
ative values. Since there is no training done on the SNN,
this method leverages all advances found for traditional
DNNs. It is especially meaningful to use it if the training
efficiency is not important and that the focus is on reduc-
ing inference costs. However, the conversion process might
not benefit from all advantages of SNNs since more steps
are usually needed compared to network trained through
BPTT [6], which is because the converted SNN might have
benefited from different weights that would have been found
by training the SNN for a lower number of encoding steps.

Training type Biological plau-
sibility

Achieves state-
of-the-art accu-
racy

Ease of use Stable Scalable

STDP High No No No No
BPTT with
surrogate gra-
dients

Low Yes Medium Yes Yes

ANN-SNN con-
version

Low Yes 2 Yes Medium Medium

Table 2: SNN weight training comparison [9] [10]

2although it is now outperformed by BPTT with surrogate gradients.
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2.3 Quantisation

According to [17], using quantisation is one of the most effective ways to reduce computational time and energy
consumption of neural networks: for example, a simple reduction from 32 to 8 bits reduces the memory needs
by ×4 and the cost for multiplication by ×16.

It is possible to directly train the neural networks with fewer bits, which is called quantisation-aware training.
However, it is also possible to train the network with full-precision and then reduce the number of bits, which
is called post-training quantisation [17].

Another point to consider is to choose which type of representation to use. Although floating-point numbers are
able to represent a wider range of values with more precision than fixed-point numbers, floating-point arithmetic
uses more energy for the same operation [17].

Asymmetric quantisation is expressed in Equation 14 3: xint represents the integer version of x in terms of
the scale factor s, the zero-point z and the bit-width b. The zero-point aims to map all numbers to positive
values so that they can be represented with integers. The scaling factor s sets the step size of the quantiser, so
it characterised the precision held in one bit of information. The approximated real-value is given by x̂ which
shows that quantising limits the values to x̂ ∈ [−sz, s(2b − 1 − z)]. There is a trade-off between this clipping
error and the rounding error caused by the scale factor s [17].

xint = clamping
(
round

(x
s

)
+ z; 0; 2b − 1

)
x̂ = s(xint − z) (14)

Symmetric quantisation is a special case of the previous quantisation method where z = 0. However, this pre-
vents negative values from being represented with the previous method, it can hence be modified to incorporate
signed integers as shown in Equation 15 [17].

xint =

{
clamping

(
round

(
x
s

)
; 0; 2b − 1

)
for unsigned integers

clamping
(
round

(
x
s

)
;−2b−1; 2b−1 − 1

)
for signed integers

x̂ = s · xint (15)

Another special case is power-of-two quantisation which is when the scale factor s is restricted to a power of 2.
In that case operations can be implemented as bit shifting which are more efficient in hardware. The drawback
is that it is harder to optimise for the error between the un-quantised and quantised value [17].

The choice on the quantisation type depends on the data type. If the output can only be positive such as at
the output of a ReLU layer, then unsigned symmetric quantisation is meaningful. If the distribution is centered
around zero, then it is better to use signed symmetric quantisation.

Those quantisation schemes can be applied to a neural network with different granularity where different sets of
quantisation parameters can be defined for different parts of the network. Per-tensor quantisation has one set of
parameters for the weights and another for the activations and per-channel quantisation contains the two sets of
parameters for each channel. Per-channel quantisation is especially useful if the magnitude of the weights varies
from channel to channel. However, not all hardware is designed to be able to incorporate different quantisation
parameters.

3The notation clamping(a; b; c) clamps the value a between b and c.
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3. Literature Review

This chapter is a literature review to summarise what has been achieved so far to transform the radar-processing
pipeline for gesture recognition into its spiking equivalent. Figure 11 illustrates the different steps in the radar-
processing pipeline and states which section explains which step. Section 3.5 reviews these findings to identify
the gaps and paths worth exploring to address such gaps.

Section 3.1:
Pre-processing

Section 3.2:
Frequency domain

analyses

Section 3.3:
Post-processing

Section 3.3:
Target dection

Section 3.4:
Classification

Figure 11: Gesture recognition radar pipeline stating how the sections of the literature review are organised.

3.1 Pre-processing Steps

Once the low-passed-filtered IF signal (Equation 4) is received, it needs to be pre-processed before the FTs
are applied. Table 3 shows a series of strategies that are used in common radar processing pipelines in the
literature. As shown by [4] which also implements a full spiking hand-gesture recongition pipeline, the effects
of pre-processing are much more significant for SNNs than they are on ANNs of the same topology in terms of
reaching higher classification accuracy.

Pre-processing
type

Explanation Benefits Costs Source

Delta filter Subtracting each chirp from
the one preceding it to re-
move the signal appearing in
both.

Removes static ob-
jects since the DC
components cancel
each other out.

This can increase
AC noise.

[12] [4]

Moving target indi-
cation (MTI) filter-
ing

Substracting from each chirp
a running average of the pre-
vious chirps to remove con-
stant signal.

Also removes static
objects but with
averaging over
more chirps to
obtain a more
accurate DC base-
line.

More parameters
needs to be defined
such as the forget
factor of the run-
ning average.

[12] [18]

Level cross-
ing/thresholding

Thresholding to fixed values
of -1 below a certain value,
1 above another and 0 in be-
tween.

The output is
binary which saves
on memory and re-
moves noise while
maintaining all fre-
quency spectrum
information.

Loses information
but this loss does
not impact the
classification accu-
racy significantly.

[12]

Hann windowing Multiplication by a factor to
minimise the effects of the
non-idealities of a finite FFT
over an infinite one.

Outputs a more
ideal FT with
reduced side lobe
levels.

Additional compu-
tations (except if
the FT coefficients
are pre multiplied
by the Hann coeffi-
cients)

[4] [12]

Table 3: Pre-processing steps comparison

Filtering and level-crossing are easily implemented in neuromorphic hardware since they only need subtraction
and comparison operations. Hann windowing adds a correction factor to the FT, the FT weights can be
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multiplied by those factors with no added computations during inference. For coherent pulse integration, there
is a division due to the averaging, however it could be transformed by a simple sum to avoid the multiplication.

3.2 Frequency-domain Analyses

The next step is to feed the pre-processed signals into the FTs to extract the distance and velocity components
of the gesture contained in the signal. The main ways to do so are RD maps and µDoppler signatures.

In both cases, the first FT is done along the sample dimension to extract the range as has been explained in
Sub-section 2.1.2. The second FT is applied along the chirps for both methods but in a different manner. To
construct a RD map, this FT is applied along consecutive chirps. However, to construct a µDoppler signature,
the FT is applied along the chirps in consecutive frames where a frame is a fixed number of chirps [4]. The
choice greatly depends on the dataset type, for example, if most gestures occur repeatedly in consecutive frames,
and that the aim is to detect this periodic motion, then using µDoppler signatures is more meaningful. [5].
Examples of usages of both methods are provided in Table 4.

Algorithm type Explanation Training type Source

µDoppler signature Distance FT along the
sample dimension fol-
lowed by another FT on
the frame dimension

Mathematically defined for an SNN
using I&F neurons and rate encoding

[4]

RD map Distance FT along the
sample dimension
followed by a Doppler
FT on the chirp
dimension

[4] [19]
Mathematically defined for an SNN
using I&F neurons and latency encod-
ing, using a spiking FT

[20] [20]

Resonate and Fire neurons where
each neuron spike contains informa-
tion about their eigenfrequency, am-
plitude and phase

[3]

Table 4: Frequency-domain analyses comparison

3.3 Post-processing

A certain number of papers have added techniques that are implemented before the RD map is fed into the
classification network. Table 5 highlights two of them.

Processing type Explanation Source

Doppler axis cropping. Keeps only the portion of the Doppler axis
whose corresponding velocity is within possible
values for the target object.

[4][12]

Normalisation of the absolute value of the RD
map between 0 and 1, they can be normalised
one at a time by taking each RD map’s maxi-
mum value, or the full dataset can be normalised
at once by taking its maximum value.

Makes the maps more comparable between each
other. While this is optional for an ANN imple-
mentation, it is mandatory for an SNN as ex-
plained in Section 2.2.1

[4]

Table 5: Further processing comparisons

Another step that can be included between the FT and the classification are target detection algorithms. These
are used to identify the cells or pixels containing target signatures and reject those containing noise or clutter.

The most basic method is to simply apply a detection constant threshold on the data defined by a constant
number, such as the weighted mean [18], zero [5] or the kth largest value [4]. This works well if the data is
homogeneous and the noise value is constant on the full RD map. It is also a computationally efficient method
since there are no addition/multiplication operations, there are only a number of comparison operations equal
to the number of pixels.
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Constant false alarm rate (CFAR) algorithms are more complex since the threshold depends on the immediate
surroundings of the pixel being thresholded. Figure 12a shows that for each pixel under test (red), Nguarding

cells (orange) are ignored and the following Nneighbouring cells (yellow) are taken for comparison. Cell-averaging
constant false alaram rate (CA-CFAR) takes the average of those neighbouring cells as the threshold, whereas
ordered statistics constant false alarm rate (OS-CFAR) takes their kth largest value where k has to be found
[3]. Figure 12b illustrates a possible output for a CFAR algorithm given the provided RD map.

Table 6 shows examples where these target detection techniques are implemented in their spiking form, both of
which are latency encoded. To the best of the author’s knowledge, no rate encoded version has been found in
the literature. The study in [3] shows that both spiking CFAR algorithms can reach near-perfect performance
compared to their non-spiking version when enough time steps are used. These spiking version are, however,
much more computationally intensive than their non-spiking equivalents as illustrated by the second column.

Algorithm
type

Number of operations per output pixel Performance

CA-CFAR Ncfar + T ’add’ operations and T ’compare’
operations ( Ncfar ’add’ operations and 1
’compare’ operations for the non-spiking ver-
sion)

Quickly rising sensitivity and precision (with
number of time steps) → 99% sensitivity and
99% precision for 500 time steps.

OS-CFAR
Ncfar ’add’ operations and T ’compare’
operations ( 0 ’add’ operations and T + 1
’compare’ operations for the non-spiking
version)

Perfect precision even for few time steps,
worse sensitivity than the CA-CFAR →
100% precision even for few time steps and
99% sensitivity for 100 time steps (with log-
arithmic conversion, 95% sensitivity for 800
time steps otherwise)
Able to detect all three targets with
Nguarding = 48, Nneighbouring = 176, k = 9
and a scale factor α = 0.2

Table 6: Target detection comparison, Ncfar is the number of cells taken for the comparison (Ncfar =
(Nneighbouring +Nguarding)

2 −N2
guarding) and T is the number of encoding steps [3].

RD map

(a) Schematic of a CFAR algorithm,
the red cell is the one being thresh-
olded, the orange cells are the guard-
ing cells, the yellow cells are the neigh-
bouring cells and the white cells are
not considered for thresholding. In this
specific example Nguarding = 1 and
Nneighbouring = 2.

(b) Example of a CFAR algorithm where the left figure represented the RD map
while the right figure is the RD map after being thresholded. This is a modified
version of a figure taken from [3].

Figure 12: Illustration of a CFAR using a graphical explanation and an example with a real RD map.
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3.4 Classification

Classification networks can be implemented in many ways. For 2D radar images, it is meaningful to at least
use a convolutional layer to extract 2D features, and it will also at least require a fully-connected layer for the
output. Table 7 shows the results from a certain number of classification architecture where the data is rate
encoded. Table 8 does the same but for data that is latency encoded. The following provides a short explanation
for the datsets used in those tables:

• CARRADA: automotive dataset containing RD maps recorded by a 77GHz radar. Its drawback is that
it is limited in size, complexity and variety since it is recorded with low environmental noise [3],

• Soli: RD maps obtained from a 60GHz radar containing 11 different hand gestures performed by 10
different people, each person repeated each gesture 25 different times to reach a total of 2 750 samples [5],

• Dop-NET: µDoppler signatures containing 4 different gestures performed by 6 different people at about
30cm from the radar,

• PSCAL VOC: visual image with annotation around the target, it contains 20 object categories for a total
of about 3 000 images [21],

• MS COCO: visual images with annotations abou the type of target, it contains 164 000 images [22],
• Iris: 150 images of iris flowers containing three iris species,
• MNIST: handwritten digits with 70 000 samples [23].

Algorithm type Training type Indicative per-
formance

Computational
efficiency

Dataset Source

Extract the regions
that have detected
objects and feed them
into an SNN with two
convolutional layers,
one fully-connected
layer and one output
layer.

BPTT with
surrogate gra-
dients

90% on the
SNN version
compared o
94% on the
ANN version

4k SNN synap-
tic events com-
pared to 1M
ANN MAC op-
erations

CARRADA [3]

Feed the RD/Doppler
signatures into an SNN
with IF neurons that
has one convolutional
layer, one max-pooling
layer and 2 fully con-
nected layers.

BPTT with
Gaussian sur-
rogate gradient

Custom arm
gestures at 2m
of the 8Ghz
radar

[4]

Liquid state machine +
simple classifier (logis-
tic regression, random
forest, SVM)

Random
weights for the
LSM neurons
and training
for the readout
neurons with
cross-validation

98.8% with
SVM classifier

460 neurons
(but the ac-
curacy can
be nearly as
good even with
about 150 neu-
rons)

Soli and Dopl-
NET

[5]

Feed the RD maps into
one convolution layer,
one fully connected
layer and one output
layer, all with LIF
neurons

BPTT with
surrogate
gradients
(SoftLIF
activation)

99.50% com-
pared to
86.25 − 99.63%
for equivalent
ANNs

75kB for
compared to
375k − 12MB
for equivalent
ANNs

Custom hand
gestures col-
lected from 5
different people
for a total of
4 800 gestures.

[18]

Spiking-YOLO: spiking
version of Tiny YOLO

ANN-SNN
conversion

51.83% com-
pared to a
target 53.01%

2000 times less
energy than its
non spiking
equivalent

PASCAL VOC
and MS COCO

[9]

25.66% com-
pared to a
target 26.24%

Table 7: Spiking classification comparison - rate encoded
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Algorithm type Training type Indicative per-
formance

Computational
efficiency

Dataset Source

Feed the latency-encoded in-
puts into a network with one
input, one hidden and one out-
put layer using a sTTFS (syn-
chronous TTFS) encoding

Based on the
equivalent
ANN

98% accuracy ≈ 40% of the
area and 55%
of the power of
the equivalent
ANN, but 15 −
18 times higher
energy due to
higher latency

Iris
[16]

Feed the latency-encoded in-
puts into a network with one in-
put, one hidden and one output
layer using a TTFS encoding

BPTT 96% accuracy ≈ 40% of the
area and 50%
of the power of
the equivalent
ANN, but ≈
5 times higher
energy due to
higher latency

Feed the latency-encoded in-
puts into two fully connected
layers

BPTT 96.90% accu-
racy

3.5 times more
power efficient
than the rate-
encoded equiv-
alent

MNIST [24]

Table 8: Spiking classification comparison - latency encoded

The previous tables provide indicative performances that give information about the order of magnitude of how
well the papers’ algorithm behaves for their given dataset. It is not possible to perform a direct comparison
between them since they do not classify data from the same distributions, but the indicative performance helps
to make informed guesses about the type of architectures that could be used in this work. From this literature
search, it can be concluded that rate-encoded networks are more common and are more easily implemented that
their latency-encoded versions. Furthermore, using an ANN-SNN conversion appears to be the easiest way to
implement the spiking implementation, as it can make use of all advantages of the training with a non-spiking
network.

3.5 Gaps and Solutions

From the literature study presented in this chapter, the following challenges are extracted:

• the papers present parts of the pipeline, which means that some outline rate-encoded methods, others show
latency-encoded ones, but the impact of the loss from one to the next is not systematically investigated
in a step by step manner on the same dataset. Furthermore, the data needs to be normalised before
being encoded, however, it might not be necessary to be able to represent all values, especially larger
ones. There might be normalisation methods that are better than others, but there is no comprehensive
description of this process,

• there is very little explanation about how to tune the spiking versions of the algorithms, in particular this
includes the thresholds and the number of encoding steps,

• many papers emphasise the advantage of using temporal encoding to become sparser by using fewer spikes,
and hence saving on the cost of computations. However, few implement algorithms using it since rate
encoding provides better results,

• the comparison between the different model’s computational efficiencies is complicated due to different
metrics, for example: the number of encoding steps, the memory requirements, the number of neurons
regardless of the other memory needs, the energy, the area, the power.
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Based on the above open challenges, the work outlined in the following chapter of this thesis focuses on developing
a strategy to optimise the conversion of the non-spiking pipeline to its spiking equivalent from start to end. It
aims to define the trade-off between the number of encoding steps, the memory requirements and the resulting
accuracy by:

• ensuring that the spiking accuracy resembles the non-spiking one, including by selecting thresholds result-
ing in a good ANN-SNN correspondence.

• reducing the memory footprint, for example by implementing quantisation strategies,

• attempt to design both the ANN and SNN hardware.
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4. Methodology

This chapter describes the theoretical steps to be taken to reach a pipeline that balances the trade-off between
the accuracy of the gesture classification and the resources needed to reach this accuracy. The aim of this
chapter is to develop the mathematics behind the equations referenced in Chapter 5 when these mathematics
are applied to a real dataset.

Section 4.1 extends the theory from Chapter 2 to explain the mathematical bases for the conversion between any
non-spiking network to its spiking equivalent. Section 4.2 explains how to implement a spiking FT. Finally,
Section 4.3 describes how to merge a batch normalisation layer with its preceding layer.

4.1 Spiking Neural Networks

MAC ReLU
Y ′
2

X1
A
1

X2
A2

X3

A
3

MAC ReLU
Z ′

Y1

B
1

Y2

B2

Y3

B
3

Z

(a) Non-spiking neurons using a ReLU activation function: Xi represent
the inputs to the first layer, Yj the outputs of this first layer fed to
the second layer and Z is the output of the second layer, Y ′

j and Z′

represent the values between the MAC operation of the neuron and the
ReLU activation function.
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(b) Spiking neurons: SX,i[t]/SY,j [t]/SZ [t] represents the encoded version
of Xi/Yj/Z at time t of the encoded spike train, the current added at
time t to the membrane potential is provided as IY,j [t]/IZ [t], and the
neuron spikes when its membrane potential reached Uth,Y /Uth,z.

Figure 13: Spiking/non-spiking neurons equivalence: each neuron
represents one layer where the weights Ai are those of the first layer
and the weights Bj are those of the second layer

Section 2.2.2 explained that the LIF neu-
ron is usually used which adds an addi-
tional parameter: the leak term. This
work uses the simplified I&F neuron since
it is the spiking neuron with the fewer
hyper-parameters to find, and because it
results in an easy ANN-SNN conversion as
is explained in this section [25].

In non-spiking ANNs, the only parame-
ters to optimise during training are the
weights. However, in SNNs using I&F neu-
rons, there are two more parameters to
find: the thresholds and the number of
encoding steps. When implementing an
ANN-SNN conversion, the weights are al-
ready decoupled from the spiking parame-
ters since they are simply copied from the
independent ANN. However, the thresh-
olds, the number of encoding steps, and
the quantisation scheme should also be de-
coupled from each other so they can be se-
lected independently from each other.

Sub-section 4.1.1 develops a mathematical
relationship of the non-spiking output in
terms of the spikes of the equivalent spik-
ing neuron. From there, Sub-section 4.1.2
explains how to find good thresholds. Sub-
section 4.1.3 then describes how to esti-
mate the performance of a spiking neural
network with different numbers of encoding
steps.
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4.1.1 Neurons

Figure 13a shows two non-spiking neurons using a ReLU activation function and weights Ai/Bj for the first/sec-
ond layer. The analogue inputs are Xi where i iterates over all values incoming the neuron, the outputs of the
first layer are Yj where j iterates over the inputs of the neurons of the second layer, and the output of the second
layer is Z. Those are expressed in Equations 16 and 17. It is assumed that the non-spiking neurons have no
biases: as will be described in Section 4.2, the FT implementation does not require biases, and the non-spiking
classification network is trained without any.

Yj = ReLU(Y ′
j ) = ReLU

(∑
i

XiAi,j

)
(16)

Z = ReLU(Z ′) = ReLU

∑
j

YjBj

 (17)

Figure 13b shows two spiking neurons. The following steps provide an equivalence between the spiking neuron
outputs SY,j [t]/SZ [t] and the non-spiking ones Yj/Z for the two layers.

1. Spiking currents in terms of the incoming spikes: The current IY,j [t] modifies the membrane
potential of the neuron j of the first layer at time step t. IZ [t] does the same for the neuron of the second
layer.

These currents are expressed in Equations 18 and 19 as the MAC operations of the incoming spikes
SX,i[t]/SY,j [t] with their respective weights Ai,j/Bj . Since the spikes are either worth 0 or 1, in practice,
this is equivalent to adding the weights when the corresponding spiking input is a 1. While the non-spiking
networks do not have biases, spiking biases are necessary for the spiking networks to be equivalent. These
biases are expressed as ai for the first layer and b for the second layer, their values are found in step 2.

IY,j [t] =
∑
i

SX,i[t]Ai,j + aj (18)

IZ [t] =
∑
j

SY,j [t]Bj + b (19)

2. Pre-ReLU non-spiking output in terms of the sum of the spiking currents: For the first layer,
the current from Equation 18 is summed through time to provide an equivalence between the current sum∑

t IY,j [t] and the non-spiking pre-ReLU value Y ′
j , the result is provided in Equation 20. It is assumed

that the spiking values are rate encoded which allows Equation 10 to be used in the simplification. For
simplicity, the upper and lower bounds of the sum through time t are omitted, but they always represent
the sum from the first time step t = 1 to the final time step t = T .∑

t

IY,j [t] =
∑
t

(∑
i

SX,i[t]Ai,j + aj

)
︸ ︷︷ ︸

Equation 18

=

[∑
i

(∑
t

SX,i[t]

)
Ai,j

]
+ T · aj

=

[∑
i

(
T · Xi −Xmin

Xmax −Xmin︸ ︷︷ ︸
by Equation 10

)
Ai,j

]
+ T · aj

=
T

Xmax −Xmin
·
∑
nx

Xnx
Ai,j︸ ︷︷ ︸

Equation 16

−T · Xmin

Xmax −Xmin
·
∑
i

Ai,j︸ ︷︷ ︸
aj

+T · aj

=
T

Xmax −Xmin
· Y ′

j

Y ′
j = (Xmax −Xmin)

1

T

∑
t

IY,j [t] (20)
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A similar calculation can be applied to the second layer to obtain the relation in Equation 21 between the
spiking current through time

∑
t IZ [t] and the pre-ReLU non-spiking Z ′.

Z ′ = (Ymax − Ymin)
1

T

∑
t

IZ [t] with b =
Ymin

Ymax − Ymin
·
∑
ny

Bj (21)

In the case where Ymin = 0, then Equation 21 is simplified as shown in Equation 22. This hypothesis is
satisfied for all layers that contain a ReLU in the non-spiking form, which is the case here.

Z ′ =
Ymax

T

∑
t

IZ [t] with b = 0 (22)

3. Sum of spikes in terms of the sum of spiking currents: Equations 20 and 22 provided the non-
spiking pre-ReLU output in terms of the sum of the currents, the aim is now to replace the sum of the
currents wit the sum of the spikes. Equation 23 provides the relationship between the sum of currents
and the sum of spikes for any spiking neuron. This uses Equation 12 that provided the equation for a LIF
neuron (β is set to 1 for an I&F neuron) and Equation 13 that provided the reset mechanisms (soft reset
is used here).

This general equation assumes a total number of time steps T , a threshold voltage of Uth, a membrane
potential at time t ∈]0, T ] of U [t], and a spike value at time t ∈]0, T ] of S[t].

lim
T→∞

1

T

T∑
t=1

I[t] = lim
T→∞

1

T

T∑
t=1

(
U [t]− U [t− 1] + Uth · S[t]

)
︸ ︷︷ ︸

by Equations 1213

= lim
T→∞

finite︷ ︸︸ ︷
U [T ]− U [0]

T︸ ︷︷ ︸
=0

+ lim
T→∞

Uth

T
·

T∑
t=1

S[t] = lim
T→∞

Uth

T
·

T∑
t=1

S[t]

1

T

T∑
t=1

I[t] ≈ Uth

T
·

T∑
t=1

S[t] (23)

Adapting the general Equation 23 to the example spiking neurons from Figure 13b provides the relation-
ships in Equation 24 and 25 where Uth,Y is the threshold voltage of the first layer and Uth,Z the threshold
voltage of the second layer. ∑

t

SY,j [t] =
1

Uth,Y

∑
t

IY,j [t] (24)

∑
t

SZ [t] =
1

Uth,Z

∑
t

IZ [t] (25)

4. Non-spiking output in terms of the sum of the spikes: Equation 26 incorporates Equation 24 into
Equation 20 to obtain a relationship between the non-spiking output of the first layer and the output
of the spiking neuron. The ReLU is automatically included since the spiking neuron will only spike for
positive values if its threshold is positive. The same is achieved for the second layer by incorporating
Equation 25 into Equation 22.

Yi =
Uth,Y · (Xmax −Xmin)

T

∑
t

SY,i[t] (26)

Z =
Uth,Z · Ymax

T

∑
t

SZ [t] (27)
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4.1.2 Thresholds

SX,i[t] IY,j [t] =
∑

i SX,i[t]Wij + aj SY,j [t]

Xi = Xmin −
Xmax −Xmin

T

∑
t

SX,i[t]︸ ︷︷ ︸
by Equation 10

Yj = ReLU

(
Xmax −Xmin

T

∑
t

IY,j [t]︸ ︷︷ ︸
Y ′
j by Equation 20

)
Yj =

Uth,Y · (Xmax −Xmin)

T

∑
t

SY,j [t]︸ ︷︷ ︸
by Equation 26
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Figure 14: Diagram showing the relations between the different steps of an I&F spiking neuron and its non-
spiking equivalent. The top part represents the spiking operations, and the bottom part represents the non-
spiking equivalents that can be obtained through the vertical dotted ”Decoding” lines. The ”Encoding” line
shows how the non-spiking Yj can be rate encoded to the spikes SY,j [t].

The previous section describes the spiking equivalence of a two-layer non-spiking network. However, the thresh-
olds are not yet defined. Figure 14 illustrates how to find the best threshold value for the first layer. The top
of the diagram with solid lines represents the spiking network. The current IY,j [t] is calculated from the inputs
spikes SX,i[t] by Equation 18. Then this current is added to the membrane potential, and after the integrate
and fire actions of the I&F neuron, the spikes SY,j[t] are emitted.

The black vertical dotted line provides the equation to decode the spiking inputs SX,i into their non-spiking
values Xi. The blue vertical dotted line extracts the non-spiking output Yj from the current IY,j [t]. The red
vertical dotted line also calculates the non-spiking output Yj but using the spikes SY,j . The red diagonal dotted
line shows how to encode the values Yj if they were encoded from the non-spiking values (as a reminder, it is
hypothesised that Ymin = 0).

In the perfect case, the relationship between the non-spiking Yj and its spikes SY,j [t] should be the same for its
encoding from its non-spiking values to its spikes (across the red diagonal dotted line), and for its decoding from
its spikes SY,j [t] to its non-spiking values Yj (across the red vertical dotted line). This equivalence is stated in
Equation 28 to extract the corresponding threshold voltage.

Yj =
Ymax

T

∑
t

SY,j [t] ⇔ Yj =
Uth,Y · (Xmax −Xmin)

T

∑
t

SY,j [t]

Uth,Y =
Ymax

Xmax −Xmin
(28)

An equivalent diagram for all following layers is given in Figure 46 in Appendix 7.2, and the same logic can be
applied to find any layer’s threshold. In the case of the second layer’s whose output is Zk, the equivalence and
thresholds are provided in Equation 29.

Zk =
Zmax

T

∑
t

SZ,k[t] ⇔ Zk =
Uth,Z · Ymax

T

∑
t

SZ,k[t]

Uth,Z =
Zmax

Ymax
(29)

More generally, the general form for the nth threshold is provided in Equation 30.

Uth,1 =
max(output layer 1)

max(input) - min(input)

Uth,n =
max(output layer n)

max(output layer n− 1)
(30)
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4.1.3 Pseudo-spiking Equivalent

A pseudo-spiking model of the network is defined as an intermediary version between the non-spiking and the
spiking networks. In Figure 14, the pseudo-spiking equivalent is expressed by the blue path: it maintains the
ReLU activation function, but it iterates over steps without spiking. An example is given below in the case of
a convolutional layer:

• non-spiking in Algorithm 1: the output y is simply the ReLU of the convolutional layer applied to the
input x,

• spiking in Algorithm 2:
– the input x is first rate encoded with T time steps to generate the spike train encoded x,
– this spike train is sent one time step at a time through the convolution layer to output the current

t current,
– the current t current is fed into the function lif to update the membrane potential and output the

spikes t spikes,
– the output y is decoded as shown by Equation 26,

• pseudo-spiking in Algorithm 3:
– the input x is first rate encoded in the same way as the spiking case,
– the spike train is also sent one time steps at a time through the convolution layer to output the

current t current,
– instead of feeding the current t current into the lif function, it is directly added to pseudo spikes,
– the pseudo spikes are decoded by using the equation from Figure 14.

Algorithm 1 Non-
spiking

y = ReLU(conv(x))

Algorithm 2 Spiking

encoded x = rate encoding(x, steps=T)
pseudo spikes = []

for t in range(steps):
t current = conv(encoded x[t])
pseudo spikes.append(t current)

sum pspikes = sum(pseudo spikes)
decoded x = (Xmax - Xmin) / T

* sum pspikes
y = ReLU(decoded x)

Algorithm 3 Pseudo-spiking

encoded x = rate encoding(x, steps=T)
spikes = []

for t in range(steps):
t current = conv(encoded x[t])
t spikes, mem = lif(t current, mem)

spikes.append(t spikes)

sum spikes = sum(spikes)
y = Uth * (Xmax - Xmin) / T * sum spikes
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Figure 15: Neural network for the FT. The input neu-
rons are the sampled inputs of the signal expressed
through time r[n] ∀ n ∈ [0, N ]. The output neu-
rons represent the frequency components of the signal
R[k] ∀ k ∈ [0, N ] where N is the number of input
samples. The weights W [k, n] are defined in Equation
32: the network represents the real part of the FT if
the weights are cosines (W [k, n] = Wℜ[k, n]), and it
represents the imaginary part if the weights are sines
(W [k, n] = Wℑ[k, n]).

Since this pseudo-spiking equivalent contains the
steps but not the thresholds, it models the loss of
information obtained for fewer steps. By analysing
how the performance improves with increasing num-
ber of encoding steps, an optimal number of steps can
be chosen so that it performs well with reasonable la-
tency.

4.2 Fourier Transforms

The following explains how to implement a spiking
FT as developped by [19]. The discrete FT R[k] of
a signal r[n] is given in Equation 31 where k is the
frequency bin index, n is the time bin index, N is the
total number of bins, and j is the imaginary number.

R[k] =

N∑
n=0

r[n]e−2πj k·n
N

=

N∑
n=0

r[n] cos

(
−2π

k · n
N

)

+ j ·
N∑

n=0

r[n] sin

(
−2π

k · n
N

)
(31)
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Figure 16: SNN for the Range FT, there are 4
convolutional layers to convert the chirp-sample
map to its frequency components for the real-
positive Abs(ℜ(Y )), real-negative Abs(−ℜ(Y )),
imaginary-positive Abs(ℑ(Y )) and imaginary-negative
Abs(−ℑ(Y )) values. Abs(x) represents the absolute
value of x. The lines represent the multiplication
by the matrix

[
Wℜ Wℑ

]
as shown in Equation 33:

Abs(ℜ(Y )) and Abs(−ℜ(Y )) use the same weights Wℜ
and Abs(ℑ(Y )) and Abs(−ℑ(Y )) use the same weights
Wℑ.

The FT is given as the sum of its real and imagi-
nary parts. For both parts, the FT is equivalent to
a weighted sum of the samples of the signal r: the
weights are cosines for the real part and sines for the
imaginary part. Figure 15 exemplifies how such a
weighted sum is equivalent to a fully-connected layer
in an ANN where the weights are pre-defined and not
learned, which is better expressed in Equation 32.

ℜ[R[k]] =

Ns∑
n=0

r[n]Wℜ[k, n]

ℑ[R[k]] =

Ns∑
n=0

r[n]Wℑ[k, n]

Wℑ[k, n] = sin

(
−2π

k · n
Ns

)
Wℜ[k, n] = cos

(
−2π

k · n
Ns

)
(32)

The input chirp-sample map is called X, the first
FT outputs a Range map Y , which is expressed in
a matrix form in Equation 33. To obtain the Range-
Doppler map Z from the Range map Y , the Range
map first needs to be transposed so that the FT is ap-
plied along the chirps rather than along the samples.
Then it can be fed back into a similar fully-connected
layer that contains its corresponding weights, this is
highlighted in Equation 34. Figure 17 shows a graph-
ical representation of these equations with the sizes
of each matrix when the chirp-sample map has a size
Nc × Ns (Nc is the number of chirps and Ns is the
number of samples per chirp).

[
ℜ(Y ) ℑ(Y )

]
= X

[
Wℜ −Wℑ

]
(33)[

ℜ(Z) ℑ(Z)
]
=
[
ℜ(Y )T ℑ(Y )T

] [ Wℜ Wℑ
−Wℑ Wℜ

]
(34)

4.2.1 Spiking Fourier Transform

To transform the FTs into their spiking version, each
neuron of the fully-connected layer becomes an I&F
neuron. However, since a neuron can only spike or
not spike, it cannot represent both positive and neg-
ative values. As a consequence, the number of neu-
rons needs to be duplicated so that, for a single value,
there is a neuron to represent positive values, and an-
other to represent negative values. An example for
the Range FT is shown in Figure 16.

For the spiking version of the Range and Doppler Fourier transforms, the following claims can be made:

• since there is no learning as the weights are known, the precision loss between a spiking and a non-spiking
RD map is only dependent on the number of time steps used,

• the thresholds of the I&F neurons are the only tweakable parameters,
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• a ’substract’ reset mechanism is used so that the integrate step of the I&F neuron has no losses. This
means the sum of all integrated membrane voltages pre-spike is exactly equal to the true output value,
hence the number of spikes is directly proportional to the true output value (assuming that the last time
step’s remaining membrane potential is negligible),

• normalising the input between 0 and 1 to rate encoded it forces a meaningless DC component to appear,
a bias is added to each I&F neuron of the Range fully-connected layer the cancel it.

X

Ns

Nc × Wℜ −Wℑ

Ns Ns

Ns = ℜ(Y ) ℑ(Y )

Ns Ns

Nc

(a) Matrix Range Fourier transform: the chirp sample map X is multiplied by
[
Wℜ Wℑ

]
to obtain the range map Y

as expressed more compactly in Equation 33

ℜ(Y )T ℑ(Y )T

Nc Nc

Ns ×

Wℜ Wℑ

-Wℑ Wℜ

Nc Nc

Nc

Nc

= ℜ(Z)T ℑ(Z)T

Nc Nc

Ns

(b) Matrix Doppler Fourier transform: the transposed range map
[
ℜ(Y )T ℑ(Y )T

]
is multiplied by

[
Wℜ Wℑ
−Wℜ Wℜ

]
to

obtain the transposed RD map
[
ℜ(Z)T ℑ(Z)T

]
as expressed more compactly in Equation 34

Figure 17: Visual matrix representation of the Range-Doppler Fourier transforms with the shape of each matrix

4.3 Batch Normalisation Layer

Most architectures contains batch normalisation layers to help it converge faster. In a spiking network, such a
layer is complicated to implement since the output of each I&F neuron would need to be multiplied by definition
of the normalisation.

However, once a network is trained, the weights from the convolutional and the following batch normalisation
layer can be merged so that the batch normalisation layer is no longer necessary [17]. If the input of the
convolutional layer is X and its output Y , Equation 35 provides the convolutional operation between them
where K is the matrix of kernel weights and b is the matrix of biases.

If Ỹ is the output of the batch normalisation layer, Equation 36 shows how Ỹ can be re-expressed as a fully
convolutional layer where the weights and bias are only scaled and shifted with the following parameters: µ is
the average of the batch, σ is the standard deviation of the batch, β and γ are learnable factors, K̃ is the new
kernel weight matrix and b̃ is the new bias matrix. Equation 37 provides these new weights and bias.

Y [i, j] =

k/2∑
m=−k/2

k/2∑
n=−k/2

X[i+m, j + n]K[m,n] + b[i, j] (35)

Ỹ [i, j] = γ · Y [i, j]− µ

σ
+ β

= γ ·

(∑k/2
m=−k/2

∑k/2
n=−k/2 X[i+m, j + n] ·K[m,n] + b[i, j]

)
− µ

σ
+ β

=

k/2∑
m=−k/2

k/2∑
n=−k/2

X[i+m, j + n] · γ
σ
K[m,n]︸ ︷︷ ︸
K̃[m,n]

+
γ

σ
(b[i, j]− µ) + β︸ ︷︷ ︸

b̃[i,j]

(36)

⇒K̃[m,n] =
γ

σ
K[m,n] and b̃[i, j] =

γ

σ
(b[i, j]− µ) + β (37)
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5. Results
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Figure 18: Complete pipeline schematic stating which step is explained in which section. The blue text represents
the information extracted from the step, the solid black lines represent the steps that are analysed independently
from one another, and the red dotted line represents the complete final pipeline. Reading from left to right
follows the conversion from non-spiking to spiking.
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This chapter presents the implementation and analysis of the proposed gesture-recognition pipeline from start to
end. Section 5.1 provides information about the dataset used from [12] and the results that the authors obtain
on a non-spiking pipeline. Sections 5.2, 5.3 and 5.4 provide the individual steps of the pipeline where the spiking
output is compared to the non-spiking equivalent. Section 5.5 suggests a way to optimise the obtained pipeline in
terms of memory usage. Section 5.6 describes how the pipeline can be quantised, and finally Section 5.7 brings
together the spiking FT and classification to create the complete spiking pipeline. Figure 18 illustrates which
section addresses which part of the pipeline.

5.1 Dataset

The dataset used has been published by [12], it contains ADC signals generated by an 8GHz FMCW radar for
a diverse range of air-marshalling gestures. Further work has been performed on the same dataset by [26], this
paper’s results will therefore also be considered as a baseline for comparison. This dataset has been created
with the following characteristics:

• low temporal resolution ADC signals (the signal has a bandwidth of 750MHz sampled only 512 times per
chirp) to enable the exploration of compression strategies and low-precision encodings,

• 11 aircraft marshalling signals (10 movements plus a ’no movement’ class): complex whole-body gestures
that engage more than one fundamental feature for recognition,

• a range of 8 different distances from the radar at three different locations (conference room, foyer, and
open-space), which makes the dataset rich in spatio-temporal content and allows for high generalisation,

• 13 different people are performing the gestures.

The initial dataset comes as two folders: a test dataset and a ’training’ dataset that is then subdivided into train
and validation sets for this thesis. For a more in-depth representation of the dataset, Figure 48 in Appendix 7.4
shows the chirp distribution of who made the gestures, in which location and at which distance. An interesting
point to make is the high variation between the train and the test sets.

Each gesture is performed by a specific person at a specific location. The radar signal is then recorded for 192
chirps. These chirps are then grouped in frames, an example of a frame had been provided as the raw map
in Figure 2. The data comes as a series of frames organised in 3D tensors: the first dimension represents the
frames, then the chirps and finally the number of samples per chirp.

Figure 19: Label distribution per frame for the train, validation and test sets. The train and validation sets
used in this thesis are made from a 80%− 20% distribution of the train dataset from [12].
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Since different gestures take different amounts of time, it is not possible to know in advance how many chirps
represent one gesture. Furthermore, different gestures might require different amounts of time. Nevertheless,
as will be shown in Section 5.3.1, using 5 frames (equivalent to 960 chirps) represents enough for each gesture
to give accurate results. For clarity, all chirps in a set of 5 frames will hence be considered one data point.

When using 5 frames per data point, the total number of training data is reduced by 5× compared to the case
where each frame is considered one data point. To counter this, a data augmentation technique is used: a
window of size 960 chirps (equivalent to 5 frames) is slid across the 3D data matrix with a step of 192 chirps
(equivalent to 1 frame) so that each data point is made out of 5 frames and differs from its neighbour by one
frame. The gestures are performed repetitively within a 3D block of frames which makes this augmentation
meaningful.

Figure 19 shows the number of frames used in each of the train, validation, and test sets when 960 chirps per
frame are used. The dataset initially contains a train and a test folder with respectively 66 560 and 4 736
frames. The initial train folder is separated into a train and a validation set with an 80%− 20% split.

Sub-section 5.1.1 highlights the specifications of the dataset while Sub-section 5.1.2 provides the results obtained
on the dataset by its authors as well as highlighting the pre-processing steps used.

5.1.1 Specifications

As explained above, the data contains frames where each row represents a chirp, the columns are the chirp’s
samples. They have the following specifications:

• centre frequency: fC = 7.3GHz,

• carrier wavlength: λ = 41.1mm,

• bandwidth: B = 750MHz,

• chirp time: Tc = 40.96µs,

• time between chirps: Tc,diff = 1.3ms,

• chirps per frame: Nc = 192,

• ADC samples per chirp: Ns = 512,

• sampling frequency: fs = 12.5MHz,

• range maximum: dmax = 76.288m,

• range resolution: ∆d = 0.149m,

• velocity maximum: vmax = 15m/s,

• velocity resolution: ∆v = 0.5m/s.

Using Equations 7 and 8 as well as the above information, the maximum distance and velocity are calculated
in Equations 38 and 39 4.

dmax =
(3 · 108m/s) · (40.96µs)

2 · (750MHz)

12.5MHz

2
= 51.2m (38)

vmax =
3 · 108m/s

7.3GHz

1

4 · 1.3s
= 7.9m/s (39)

5.1.2 Processing Pipeline and Results

The authors in [12] apply two different non-spiking processing pipelines to the dataset resulting in the 11-
gestures test accuracy results shown in Table 9. The accuracy of the ResNet18 model will be considered since
the EfficientNet-B1 is a more complex architecture which hence requires many more parameters to be tuned.

Paper [12] pre-processes the data by applying a first-order delta filter on the raw frames shown in Equation
40: the processed chirp xdelta(nchirp, nsample) is found by substracting the raw chirp x(nchirp, nsample) by the
previous raw chirp x(nchirp−1, nsample). This is followed by a thresholding described in Equation 41 where the
output xbinary(nchirp, nsample) is obtained by thresholding xdelta(nchirp, nsample) with the standard deviation
σ.

xdelta(nchirp, nsample) = x(nchirp, nsample)− x(nchirp − 1, nsample) (40)

xbinary(nchirp, nsample) =


1 if xdelta(nchirp, nsample) > σ

−1 if xdelta(nchirp, nsample) < −σ

0 otherwise

(41)

4There are some discrepancies between the maximum range and maximum velocity compared to what is stated in [12], which
is, to the best of the author’s knowledge, probably due to some correction factor used in that paper.
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Paper [26] demonstrates that its classification algorithm is performing twice as well on the raw data that has
been pre-processed with delta filtering (50.0% test accuracy) compared to using pure raw data (25.1% test
accuracy). This makes sense since the filtering has removed the static objects by removing the DC components,
leaving out only the relevant signal.

This work therefore uses delta filtering for increased accuracy. It also implements thresholding, since this
involves a binary input to the spiking Fourier transform which means fewer encoding steps are necessary.

Processing Classification 11-class test
network accuracy

• Range-Doppler map with Hann windowing.
• Doppler axis cropping to the maximum velocity.

ResNet18 59.1%

EfficientNet-B1 64.6%

• First-order delta filter.
• Level-crossing.
• Range-Doppler map with Hann windowing
• Doppler axis cropping to the maximum velocity.

EfficientNet-B1 63.31%-64.58%

Table 9: Accuracies obtained by [12] on their dataset for different classification networks and processing steps.

5.2 Frequency-domain Analyses

The literature research in Section 3.2 shows that there exist two main ways of extracting the frequency content
of the radar signals: µDoppler signatures and RD maps. This work uses RD maps since the study done in [26]
on the same dataset shows 57.5% 11-gestures test accuracy for µDoppler-signatures compared to 67.7% for RD
maps.

Furthermore, the authors of the initial paper [12] use Hann windowing to minimise the non-idealities of the finite
FT. However, paper [26] shows that omitting windowing on the same dataset results in comparable accuracies,
which is true for Hanning, Hamming and Blackman Harris windowing, hence it is also dropped in this work.
However, if another dataset would make use of a windowing technique, the windowing coefficients could be
easily multiplied by the FT coefficients with no added memory needs nor added operations.

Sub-section 5.2.1 provides the results from the pseudo-spiking equivalent of the FT which is used to approximate
the error that will be obtained on the spiking network. Following this, Sub-section 5.2.2 calculates the theoretical
thresholds. It also proves their relevance by showing that the spiking FT using those thresholds achieves about
the lowest error between the spiking FT and the Python built-in FT. Furthermore, this lowest error is the one
predicted by the pseudo-spiking network, proving the validity of the definition of the pseudo-spiking network.

5.2.1 Non-spiking and Pseudo-spiking Fourier Transforms

Figure 20: Normalised error per pixel of the RD maps
created by the pseudo-spiking network relative to a
built-in Python FT for a range of encoding steps.

The methodology behind the design of the spiking
(Range and Doppler) FTs has been explained in Sec-
tion 4.2. The pseudo-spiking equivalent of the FT
is built according to the explanations in Sub-section
4.1.3. Figure 20 shows how the per-pixel normalised
error of the pseudo-spiking network evolves with the
number of encoding steps. This is used as a prediction
for the number of encoding steps to use for spiking
network, the validity of this error curve with respect
to the spiking error is explained later.

Throughout this work, the error is considered as the
per-pixel average difference between the modulus of
the spiking RD map and the modulus of the Py-
Torch FT-generated RD map. Furthermore, since the
dataset does not provide units for the raw data, all
pixel values for the raw map, the pre-processed map,
the Range map and the RD map are considered as
unitless intensities.

29



The normalised average error between the built-in PyTorch FT and a non-spiking FT neural network is 6 · 10−6

per RD map pixel for the dataset from [12]. This is caused by the non-idealities of the discrete implementation
causing side-lobes. In theory, an infinite number of encoding steps would therefore result in an error of 6 · 10−6

per pixel compared to a continuous FT.

5.2.2 Spiking Fourier Transforms

Range map pixel value Range map pixel value

99.9th percentiles 99.9th percentiles

(a) Range maps distribution, the 99th percentile of these distributions is taken as the maximum clamping value Ymax,
which is here 123.5.

RD map pixel value RD map pixel value

99.9th percentiles 99.9th percentiles

(b) Range Doppler maps distribution, the 99th percentile of these distributions is taken as the maximum clamping value
Zmax, which is here 2880.0.

Figure 21: Distribution of the maps used to find the maximum value to be represented by the spiking FT
network based on the train set.

The next step is to decide on the thresholds for the Range and Doppler FTs fully-connected layer I&F neurons
by using the theory developed in Section 4.1.2.

Equation 30 shows that the theoretical threshold of the first layer of a spiking neural network is expressed in
terms of the minimum Xmin and maximum Xmax of the input of that layer and of the maximum output Ymax

of that layer. In this case, the first layer calculates the range FT. The input’s maximum and minimum are
Xmin = −1 and Xmax = 1 due to the level-crossing pre-processing of the raw map. To find Ymax, Figure 21a
shows the distribution of the real and imaginary parts of the range maps. Since the distributions contains very
large/small values that are very improbable, Ymax is taken as the 99.9th percentile of the distributions which
is Ymax = 123.5. The percentile could be chosen as other values, but an analysis of which percentile to choose
is kept as future work. As a reminder, some neurons are in charge of the positive values, and others of the
negative values. The latter ones also use Ymax = 123.5 since they are processed in the absolute form. Equation
42 then calculates the theoretical range threshold Uth,Y from these values.

The same process is achieved for the second spiking layer representing the Doppler FT. As discussed, the input
of the layer is set as Ymax = 123.5. To find the maximum output of the second layer Zmax, the distribution
of the pixel values of the RD maps are provided in Figure 21b. Taking again the 99.9th percentile results in
Zmax = 2880.0, which enables the calculation of the Doppler threshold Uth,Z as presented in Equation 43.
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Uth,Y =
Ymax

Xmax −Xmin
=

123.5

2.0
= 61.8 (42)

Uth,Z =
Zmax

Ymax
=

2880.0

123.5
= 23.3 (43)

Figure 22a shows the error when 100 steps are used for a range of different thresholds. The following can be
noted:

• when the thresholds are those theorised, the normalised per-pixel error is predicted by the pseudo-spiking
curve in Figure 20: the error for the theorised thresholds is 0.0112 per pixel, which is nearly the minimum
obtained error on the spiking network (0.0107 per pixel), and very close to the error predicted by the
pseudo-spiking curve (0.0100 per pixel),

• the predicted thresholds are not the only ones where the minimum error is achieved. There are two reasons
for this:

– the theoretical thresholds assume certain maximum values (Ymax and Zmax), here chosen as the
99.9th percentiles. While a datapoint for which it is important to represent those maximum values
will perform the best with those predicted thresholds, another datapoint which has lower maximum
points would have performed better with its corresponding thresholds. Overall, since not all data
points have the same significant maximum values, a range of threshold pairs can perform as well as
each other given that the data points with high errors are compensated by others,

– as shown on Figure 14, the decoded spiking output depends on a factor Uth ·
∑

t S[t]. Decreasing the
threshold generates more spikes (hence increasing

∑
t S[t]) and vice versa, this factor can hence stay

constant for a range of thresholds while maintaining low error. This could have been a tuning knob
to increase sparsity, however, Figure 22b shows that the number of operations is about constant for
thresholds reaching low error. Furthermore, it must be noted that the resulting encoding is no longer
’perfect’ (in the sense that a number encoded with full spikes represents Ymax/Zmax as described in
Sub-section 4.1.2), which means that if more layers following this double FT were to be added the
theoretical thresholds of the following layers would no longer be well defined,

• as explained in the previous point, low sparsity is obtained for low error, there is hence no trade-off to
be reached, this is further highlighted in Figure 49a in Appendix 7.4 which provides the error-number of
operations Pareto front of the data in Figure 22.

(a) Average normalised error per RD map relative to the
built-in Python FT

(b) Number of add operations per RD map

Figure 22: Threshold tuning for the spiking FT neural network using 100 encoding steps: threshold1 = Uth,Y and
threshold2 = Uth,Z , those values are averaged over all training data. The red crosses represent the theoretical
thresholds: Uth,Y = 61.8 and Uth,Z = 23.3.

The last step to characterise the FTs fully is to express how the number of encoding steps impacts both the
number of operations and the error as shown in Figure 23, which uses when the theoretical thresholds. These
graphs show the trade-off between the error and the number of operations.
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(a) Normalised error (b) Number of add operations

Figure 23: Number of operations - error trade-off of the spiking Fourier Transforms using the theoretical
thresholds Uth,X = 61.8 and Uth,Y = 23.3.

A comparison between the error in the pseudo-spiking network (Figure 20) and the spiking network (Figure
23a) reveals that the pseudo-spiking method effectively approximates the minimum achievable error and the
thresholds required to attain it. It must be noted that it only works for enough encoding steps, which is because
the spiking neurons will retain some part of the information in their membrane potential at the last step that
will not lead to any spikes. If fewer steps are used, then this information is more significant than for the cases
with more steps. This is not the case for the pseudo-spiking equivalent since it does not spike.

In Figure 18, the current section has found the following:
• no windowing should be used,
• the minimum theoretical FT error which is 6 · 10−6V ,
• the number of encoding steps per acceptable error for the FT network is predicted in Figure 20,
• the FT theoretical thresholds are validated as Uth,Y = 61.8 and Uth,Z = 23.3.

5.3 Non-spiking Classification

This section focuses on how the non-spiking classification neural network is designed so that it reaches a good
trade-off between its complexity and accuracy. Starting from the ResNet18 from [12], each of the following sub-
sections provides a simplification of the network to reduce the computational requirements. Table 10 provides
the baseline from [12], as well as this work’s baseline defined as the replication of the ResNet18 from [12], and
summarises the results obtained in each sub-section.
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Architecture
Val.

accuracy
Test Accuracy Computational requirements Sub-

section
11-

gestures
11-

gestures
Top

5-gestures
Memory

(number of
weights)

FLOPS 5

ResNet18 from [12] - 59.1% 86.9% - - -
ResNet18

replication - baseline
98.5% 59.8% 86.7% 11.2M 17.1G 5.3.1

ResNet18 with RD
map cropping (input

size reduced to
0.7%)

98.3% 58.3% 82.8% 11.2M 154.7M 5.3.2

Architecture
simplification to one
convolutional and
one fully-connected

layer

97.0% 48.1% 79.6% 138k 7.5M 5.3.3

Normalised input
with regularisation

97.0% 50.7% 77.6% 138k 7.5M 5.3.5

Total change −1.5% −8.4% −9.3% 1.2% of
baseline

0.04% of
baseline

-

Table 10: Accuracies and computational resources for the non-spiking classification

5.3.1 ResNet

The authors in [12] test their dataset on a ResNet18 architecture which obtains 86.9% on their five best classes
and 59.1% on all eleven classes. More detailed explanation about the ResNet18 architecture can be found in
Appendix 7.3: Table 21 shows the parameters of a ResNet18 architecture and Table 22 shows the sizes of the
outputs of each layer.

Figure 24: Accuracies through the training epochs (non-
cropped maps)

Since there is no information about good hyper-
parameters and regularisation methods in [12], a
search is performed to tune the batch size, the learn-
ing rate, dropout and weight decay. Figure 24 shows
the training curve the ResNet18 achieves for the val-
ues given in Table 11. These parameters are chosen
by looking for a high maximum validation accuracy as
well as for a smooth curve to ensure that the learning
rate is well-tuned. Early-stopping can be applied at
45 epochs where the validation accuracy is 98.5%.

Figure 25a shows how well each gesture from the test
set is classified, the 11-classes accuracy is 59.8% which
is nearly equal to the accuracy reached in [12] (59.1%).
The 5-best-classes accuracy is 86.7% (also very similar
to the accuracy in [12] which is 86.9%) where the 5
best classes are: ’move ahead’, ’move back v1’, ’move
back v2’, ’start engines’ and ’stop engines’.

Batch size Learning rate Dropout Weight decay

120 1 · 10−5 0.05 4 · 10−5

Table 11: ResNet18 hyperparameters

5Approximation ignoring the max-pooling layers as the library calculating FLOPS does not include them.
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(a) All people and locations (total of 965 test samples) (b) Only the people (2, 3 and 5) and location (conference
room) present in the train/validation set (total of 470 test
samples)

Figure 25: ResNet18 confusion matrices on the test set

As shown in Figure 48 in Appendix 7.4, the test set contains very different data compared to the training set,
hence explaining the large accuracy drop. To exemplify this, Figure 25b only uses test samples that are taken
in the same condition as the training and validation set: it samples data done by people and in locations that
are present in the training/validation data. In this case, the accuracy increases to 69.1%

[# chirps]

(a) Maximum train and validation accuracies obtained for
different numbers of chirps per RD map on ResNet18.

[# bins]

(b) Maximum train and validation accuracies obtained
by training with inputs of reduced sizes. The RD maps
Doppler bins are gradually removed on both the positive
and negative Doppler frequencies, the x-value ’cropping’
above represents the number of such bins that are removed
before training. The number of remaining Doppler bins is
hence 960− 2 · cropping bins.

Figure 26: ResNet18 accuracies for cropped RD map and RD maps with different number of chirps
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[# chirps] [# chirps]

Figure 27: Train (left) and validation (right) recall per gesture class obtained on ResNet18 for different numbers
of chirps per RD frame.

The previous training has been achieved by using 960 chirps per data point. Figure 27 shows the maximum train
and validation recalls obtained using different numbers of chirps, which validates the choice of using 5 frames
(equivalent to 960 chirps) per data point since the gain increase starts to plateau from that value onwards. For
a more detailed analysis, Figure 27 shows how the recall of each gesture class evolves with the number of chirps.
This graph shows that some gestures are shorter gestures: for example ’move back v2’ which has a high recall
even when using only 192 chirps. On the other hand other gestures are much longer: for example ’turn right’
which requires the 960 chirps to be well classified.

Since the classification network requires an input of constant size, the 960 chirps are hence used for the final
architecture. However, it would be interesting to investigate other models that would be able to take advantage
of this, such as a having a first model based on fewer frames which would make a first decision, then based
on how certain the algorithm is of its prediction, it could decide to trust it or pass the frame along to a more
complex classification model. This would reduce the energy usage if most gestures can be classified with fewer
chirps, while maintaining the accuracy high by using more resources only when needed.
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5.3.2 Cropping

(a) Example RD map (Nc = 960 and Ns = 512).

(b) Example RD map with cropped velocity (Nc = 160 and
Ns = 512).

(c) Example RD map with cropped velocity and half the
range (Nc = 160 and Ns = 23).

Figure 28: Example of an RD map before and after crop-
ping with the correspsing map sizes (Nc is the number
of chirps and Ns the number of samples per chirp).

In the range dimension, the authors in [12] specify
that the gestures are performed at a maximum of
4.5m. When the range frequencies are translated to
distances, this shows that only 45 out of 512 range
bins should be kept. Furthermore, the input data of
the FTs are real values which makes the output sym-
metric. As a consequence, only half of these range
bins should be kept. In the Doppler dimension, there
is no maximum velocity defined in [12], however, there
must be an upper bound since human gestures’ speed
is limited.

In the following, ’cropping’ refers to removing fre-
quency bins in both the positive and corresponding
negative frequencies.

An example of an RD map is shown in Figure 28a.
To crop the RD map in the Doppler dimension, Fig-
ure 26b shows how the train and validation accuracies
evolve as the input frame is cropped along the Doppler
bins. It can be seen that up to 400 bins can be re-
moved on both sides without significant accuracy drop
hence leaving 960 − 2 · 400 = 160 Doppler frequency
bins. The resulting RD map is shown in Figure 28b.

As explained above, since the range map is symmet-
ric, half of the Range bins are kept. Those remaining
23 Range bins are exemplified in Figure 28c. The RD
map, initially with 512 range bins and 960 Doppler
bins, has been reduced to 23 and 160 bins, respec-
tively. This is equivalent to only 0.7% of the initial
RD map.

5.3.3 Architecture Simplification

While this ResNet18 architecture reaches good vali-
dation accuracies relative to [12], it requires a large
number of operations as shown in the number of lay-
ers and the output sizes shown in Tables 22 and 21 in
Appendix 7.3, Figure 47 provides the architecture.

The particularity of ResNet architectures are to use
residual connections, the architecture of ResNet18 can
be summarised as follows :

• an input convolutional layer,
• a maxpooling layer,
• a series of sub-blocks containing:

– convolutional and batch
normalisation layers,

– residual connections between
the block’s input and output,

• a maxpooling layer,
• a fully connected layer.
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It has been tested that removing the residual connections does not decrease the train and validation accuracies.
A series of tests were made by adapting the number of pooling layers and convolutional layers, and it has been
found that using as little as one convolutional layer reaches high accuracies. Figure 29 shows an architecture
with a first optional average pooling layer, a convolutional layer with its batch normalisation layer, a second
optional average pooling layer and the final fully connected layer. It has been decided to use only average
pooling layers instead of max-pooling layers since the conversion to the spiking equivalent is direct for the
average pooling but not for the max-pooling layer.

A number of experiments are run to test for the best parameters. The pooling layers are added or removed
from the architectures in those experiments to test the best arrangement. The batch size and learning rate are
also added as hyper-parameters for a first approximation, this will be refined in Sub-section 5.3.5.

In order to take into consideration the trade-off between the number of operations and the accuracy, the Pareto
front is extracted for a range of tested architectures. Figure 30 shows the following architecture cases with only
one convolutional layer:

• No Avgpool1/No Avgpool2: Input → Conv → FC,

• No Avgpool1/With Avgpool2: Input → Conv → Avgpool2 → FC,

• With Avgpool1/No Avgpool2: Input → Avgpool1 → Conv → FC,

• With Avgpool1/With Avgpool2: Input → Avgpool1 → Conv → Avgpool2 → FC.

(AvgPool1)
Conv

Batch norm (Avpool2) FC
RD map

11
neurons

Figure 29: Customisable classification architecture containing: a first optional average pooling layer, a manda-
tory convolutional layer with batch normalisation, a second optional average pooling layer, and a mandatory
fully-connected layer that contains 11 output neurons for the gesture classes.

chosen architecture

Figure 30: Pareto front for the architecture in Figure 29 with or without the first and second average pooling
layers.

Figure 30 shows that it is possible to reach 98.4% validation accuracy, which is as high as was achieved by the
initial ResNet18. It is hence more than enough to focus on an architecture using only one convolutional layer.

37



To obtain more insight into which architecture to choose, Figure 31 shows the distribution of operations across
layers for validation accuracies reaching more than 95% (the others can be found in Figure 50 in Appendix 7.4).
While the FLOPS-accuracy trade-off shows one side of the argument, it ignores the memory aspect. To satisfy
this, Figure 31b illustrates how the number of parameters per layer evolves with the increasing accuracy for
validation accuracies above 95% (the full figure can be found in Figure 50 in Appendix 7.4). Both the number
of operations and the number of parameters show a logarithmic increase with the validation accuracy.

It is decided that a good accuracy-flops-memory trade-off is achieved by the architecture reaching 97.0% val-
idation accuracy. Its parameters are given in Table 12 and the sizes of the outputs of each layer are given in
Table 13. With further inspection, the average pooling is practically selecting one every two pixels from the
Doppler bins since it has a kernel size of 1 and a stride of 2. In practice, which means that the pooling layer
can be removed and the convolutional layer’s stride can be modified.

The chosen architecture can be compared with the ResNet18 (Tables 21 and 22 in Appendix 7.3) and the
simplification of the classification architecture is significant.

Layer Conv Avgpool2 FC

P
ar
am

et
er
s Kernel size 26 1

11
Padding 2 0

Stride 4 2

Output kernels 158 158

Table 12: Final architecture parameters per layer.

Input Conv Avgpool2 FC

Height 160 35 18

11Width 23 1 1

Kernels 1 158 158

Table 13: Final architecture sizes of outputs.

(a) Number of operations per layer for the architectures
in Figure 30 for validation accuracies above 95%.

(b) Number of parameters per layer for the architectures
in Figure 30 for validation accuracies above 95%.

Figure 31: Pareto front operations and memory comparisons (the architectures reaching below 95% accuracy
are shown in Figure 50 in Appendix 7.4).
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5.3.4 CFAR

The literature review in Section 3.3 provides examples where a CFAR algorithm is used to remove noise by
thresholding the RD map.

To test the utility of a CFAR step in this pipeline, the simplified network is re-trained with the input that has
been passed through the CA-CFAR tuning through different αcfar, number of neighbouring cells and number
of guarding cells. Two sets of tuning have been used, the first binarises the data, and the second applies a mask
according to Equation 44.

outputbinary[x, y] =

{
1 if αcfar input[x, y] > average(neighbouring input cells)

0 otherwise

outputmask[x, y] =

{
input[x, y] if αcfar input[x, y] > average(neighbouring input cells)

0 otherwise
(44)

In the tuning of the number of neighbouring cells, guarding cells and αcfar, the maximum validation accuracy
is 28.9% for the binary case and 54.3% for the masking case, Figures 51a and 51b in Appendix 7.4 display the
hyper-parameter search done to obtain those values. Using an OS-CFAR could have reached better results since
it is more sensitive, which is because it does not take the average but the kth largest neighbouring cell as the
comparison. However, the OS-CFAR is much slower and would have likely not reached validation accuracies
as high as 97.0%. For this reason, the CFAR algorithm is no longer taken into consideration in the rest of the
work in this thesis.

5.3.5 Normalisation and Regularisation

The final non-spiking classification architecture has been selected in the previous section, the weights need to
be re-trained for the spiking equivalent. Since the input RD map needs to be rate encoded, it first needs to be
normalised between 0 and 1. While the raw data for the FT was easy to normalise since it was contained in the
values {−1, 0, 1}, the RD map contains a larger range of inputs between 0 and 37 185. The aim is to clamp RD
map input can be clamped 6 the RD map to a maximum value to increase the precision of its rate encoding so
that fewer encoding steps will be needed to reach the non-spiking accuracy.

In the same hyper-parameter tuning, the optimal learning rate and the batch size are found again since the
input’s magnitude has been reduced by normalising it. Finally, in an attempt to increase generalisation on the
test set, regularisation terms are investigated. This includes a weight decay factor which reduces the magnitude
of the weights and prevents the model from reacting strongly to small changes in the input. The second
regularisation technique is to add some dropout, this is the removal of a certain percentage of weights during
training, the effect is that the model learns to rely on the full network and not only on certain weights, it hence
makes it more robust.

From a tuning on the maximal input value before normalisation, the batch size, the learning rate, the percentage
of dropped weights, a weight decay factor, and different weight initialisation strategies (uniform and normal
distributions), the following analysis is observed:

• a batch size in the range 50− 200 is optimal. It is better to use a smaller batch size since the model sees
fewer data points between weight updates and the data is hence more varied. The resulting noise creates
a form of regularisation which could be beneficial for a better generalisation on the test set,

• the best learning rates are between 6.9 · 10−3 − 0.02 when the validation accuracy is above 97.0%,

• dropout starts to impact the valisation accuracy significantly from 0.4,

• weight decay should not be used since even very small decays impact the validation accuracy considerably.
The magnitude of the decay can be compared to the average weight which is 0.24,

• the type of weight initialisation has little impact, but the best is ’normal’ initialisation,

• the RD map is clamped to a maximum value of 1000.

The largest validation accuracy from this tuning is 97.7% with the parameters shown in the first line of Table
14. However, the weights reaching 97.0% with the parameters on the second line of this table are chosen since

6Clamping refers to setting all values above/below a certain maximum/minimum number to that value.
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they have a higher dropout which should entail a higher generalisation on the test set. It also stops the training
at 41 epochs to prevent the model from overfitting too much. The corresponding training curve is given in
Figure 32a.

Validation
accuracy

Batch size Learning
rate

Dropout Weight
decay

Weight
initialisa-

tion

Number of
epochs

Input
clamp

97.7% 68 0.8 · 10−3 0.32 1.89 · 10−6 normal 58 999
97.0% 50 0.8 · 10−3 0.5 0 normal 41 1000

Table 14: Regularisation and training of other hyper-parameters, the parameters reaching 97.0% validation
accuracy are kept for the following work.

Epoch

V
a
li
d
a
ti
o
n
a
cc
u
ra
cy

(a) Training curve (b) Confusion matrix on the test set

Figure 32: Simplified architecture on normalised RD maps.

Finally, the test accuracy can be obtained on this final architecture. The confusion matrix for the test set is
shown in Figure 32b. The 11-gestures accuracy is 50.7% and the 5-best gestures accuracy is 77.6%. This shows
that although a smaller architecture can perform as well as the initial ResNet18 on the validation set, it does
not generalise as well on the test set since there is about a 10% accuracy reduction of the 11 and 5-best classes
compared to ResNet18.

Since the test set comes from a different distribution compared to the train/validation sets, it is possible that the
simplified model detects enough features to classify the validation set as well as ResNet18, but that it doesn’t
detect enough features to differentiate gestures in the test set distribution. It is also possible that the model
overfits. However, since the aim of this thesis is to model the spiking pipeline, an in-depth analysis of overfitting
is left as possible further work, such as for example, the best early-stopping parameters.

In Figure 18, the current section has found the following:
• the minimum number of chirps per data point required to perform all gestures,
• the acceptable range and velocity cropping,
• a simplified classification network providing weights.
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5.4 Spiking Classification

In a similar way to what has been done is Chapter 5.2, the classification network defined needs to be adapted to its
spiking equivalent. Sub-section 5.4.1 creates the pseudo-spiking classification and Sub-section 5.4.2 transforms
it into the spiking version.

5.4.1 Pseudo-spiking Classification

Figure 33: Classification validation accuracy for the
pseudo-spiking network for a range of encoding steps.

As given in Table 14, the input has been clamped
to 1000 before normalising. In a similar way the out-
puts of the convolutional and full-connected layers are
clamped in a way that does not impact the validation
accuracy. By swiping through maximum clamping
values, the following are found while maintaining a
validation accuracy of 97.0%:

• input: Xmax = 1 (since the network has been
trained with the normalised values),

• convolutional layer output: Ymax = 1.2,

• fully connected layer output: the maximum
value is 2 and the minimum is −2.5 since there
is no ReLU on the fully-connected layer of the
non-spiking network. However, since this out-
put is only proportional to the probability it can
be shifted with no accuracy loss by adding a
bias of 2.5 so that Zmax = 4.5. Training the
non-spiking with a ReLU following the fully-
connected is very inefficient in terms of the validation accuracy reached so this solution is more optimal.

A pseudo-spiking equivalent is built and Figure 33 shows how it predicts that the validation accuracy is impacted
by the number of steps.

5.4.2 Spiking Classification

Using the maximum values obtained from clamping, the theoretical thresholds Uth,conv and Uth,fc are provided
in Equations 45 and 46.

Uth,conv =
Ymax

Xmax
=

1.2

1
= 1.2 (45)

Uth,fc =
Zmax

Ymax
=

4.5

1.2
= 3.8 (46)

(a) Validation accuracy (b) Number of add operations per input RD map

Figure 34: Threshold tuning for the spiking classification network using 100 encoding steps (threshold1 =
Uth,conv and threshold2 = Uth,fc), a zoomed out version can be found in Figure 52 in Appendix 7.4. The red
crosses represent the theoretical thresholds: Uth,conv = 1.2 and Uth,fc = 3.8.
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From these theoretical thresholds, it can be seen that normalising the input before training has the advantage
that both thresholds are in the same order of magnitude. For example if Xmax = 1000 then Uth,conv would have
been three orders of magnitude smaller. To counter this, the weights would have also needed to be three orders
of magnitude smaller. If fixed-point numbers are used to represent the values, then both very large numbers for
the input and very small numbers for the weights should be representable. Many more bits would consequently
be necessary.

A threshold tuning is performed once more to prove that the theoretical thresholds are meaningful. Figure
34 shows how the validation accuracy and the number of operations is impacted by the thresholds of the
convolutional layer and the fully connected layer when 100 steps are used (Figure 49b in Appendix 7.4 provides
the corresponding Pareto curve). The pseudo-spiking curve in Figure 33 predicts a validation accuracy of
96.2% and the accuracy obtained for the theoretical thresholds is 96.1%. Similar conclusions to those given in
Sub-section 5.2.2 can be made, however, the following can be added.

(a) Validation accuracy (b) Number of add operations per input RD map

Figure 35: Number of operations - error trade-off of the spiking classification network using using Uth,conv = 1.2
and Uth,fc = 3.8

The thresholds can be much larger than the theoretical thresholds. Figure 52 in Appendix 7.4 shows that they
can be as large as Uth,conv = 25 and Uth,fc = 40. A gesture class is predicted by the neuron spiking the most,
however, this does not mean it has to spike a lot, only more than the others. While using the theoretical
threshold will create an output representing the output from the non-spiking classification, this is not an end on
its own. Nevertheless, Figure 34b shows that the differences in the number of operations that can be obtained
by varying the thresholds is not significant. This means that in the following, the theoretical thresholds will be
used.

The next step is to characterise how the validation accuracy and the number of operations are impacted by the
number of encoding steps. Those are provided in Figure 35. The evolution of the accuracy is nearly the same
as in Figure 33 which proves the relevance of the pseudo-spiking network.

In Figure 18, the current section has found the following:
• the number of encoding steps for a certain validation accuracy of the classification network is
predicted in Figure 33,

• the classification theoretical thresholds are validated as Uth,conv = 1.2 and Uth,fc = 3.8.
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5.5 Fourier-Transform and Classification Co-optimisation

In the previous Sections 5.2 and 5.3, the FT and the classification neural networks were optimised individually
from each other. This was to reduce the number of parameters to be optimised at once. However, this avoids a
significant area of optimisation since the type of RD map transferred to the classification has not been optimised
on. This section hence focuses on the trade-off between the computational costs of both algorithms.

Sub-section 5.5.1 analyses how the number of range samples can be sub-sampled before applying the FTs while
Sub-section 5.5.2 observes how the pixels fed into the FTs can be pre-cropped so that the RD only contains those
that are processed in the classification network.

5.5.1 Sub-sampling

Equation 7 shows that the maximum range that can be observed in the RD map is directly proportional to the
sampling frequency. However, [12] states that no gestures are performed beyond 4.5 meters. While the strategy
in Section 5.3 is to crop between the FT and the classification to reduce the input size to the classification
architecture, the chirp-sample map could be cropped before the FT. By using dmax = 4.5, the following shows
that the necessary sampling frequency is 1.1MHz (Equation 47) which is 9.2% of the initial sampling frequency
(12MHz). As a consequence, it is expected that keeping about 1 in 10 range samples would be equivalent to
cropping after the FT.

fs =
4B

cTc
· dmax =

4 · (750MHz)

(3 · 108m/s) · (40.96µs)
· (4.5m) = 1.1MHz (47)

Figure 36: Validation accuracy for different range bins
subsampling. Subsampling is defined by selecting 1 in
’subsampling’ range bins.

Figure 36 tests whether this hypothesis holds on the
architecture defined in Table 12. The chirp-sample
maps are first subsampled 7 in the range dimension,
then both FT are performed and the resulting RD
maps are fed into the classification network. Subsam-
pling by a factor of 10 reaches 94.4% validation ac-
curacy which is in the same order of magnitude com-
pared to when the RD map was cropped after the FT.
It is probable that with a further tuning of other pa-
rameters such as regularisation terms, this accuracy
could have reached 97.0% as well.

Subsampling fewer than that increases the validation
accuracy above that reached with all previously tested
networks, which is surprising since the initial ResNet
had shown no accuracy drop when the initial RD map
had been cropped to the maximal distance of 4.5m.
A hypothesis for this is that the signals appearing be-
yond 4.5m give extra information about the gesture
while not being the gesture itself, for example, reflec-
tions from the gesture.

In terms of the number of output pixels, it would have
been equivalent to crop (hence cropping more range
bins) without subsampling first. However, the advantage of subsampling is to reduce the size of the input
chirp-sample map which helps reduce the memory needs. Nevertheless, this is not investigated further since it
only leads to a small memory gain by reducing the size of the input map, and that it would require the full
network to be re-trained.

5.5.2 Cropping

Instead of sub-sampling, or on top of sub-sampling, it is also possible to pre-crop the RD maps. In Figure 26b,
the RD maps are cropped before they are injected into the classification. However, all pixels that are cropped
have been calculated for no reason, hence wasting energy and memory. Figure 37 shows how to keep only the
parts of the maps that are useful. Starting from the second matrix in Figure 37c, the red area represents the

7Subsampling refers to selecting in 1 in x frequency bins which is equivalent to reduducing the sampling frequency of the signal
by a factor x.
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parts of the real and imaginary parts of the RD map that are kept after cropping. The blue rectangle represents
which part of the map represents positive range and positive velocities. The first matrix in Figure 37c is the
matrix before shifting the 0Hz frequencies to the middle of the image, these areas can be followed backwards
through the FT to select the parts of the maps and weights that are needed, all of these are surrounded by red
rectangles.

In Sub-section 5.3.2, it has been found that the Doppler bins can be cropped by 400 pixels in the high and low
frequencies. Furthermore, only 23 of the Range bins are necessary. Table 15 shows the number of values to be
saved in the case where the map is pre-cropped with those values in comparison to when it is not, the result is
that only 17.6% of the memory is needed.

Chirp-
sample map

Range
weights

Range map Doppler
weights

RD map Total

No
pre-cropping

491 520 524 288 983 040 3 686 400 983 040 6 668 288

With
pre-cropping

491 520 23 552 44 160 614 400 3 726 1 177 358

Table 15: Number of values to be saved for the pre-cropped FT in comparison to when the RD map is cropped
afterwards.
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(a) Matrix Range Fourier transform, representative of Equation 33.
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(b) Matrix Doppler Fourier transform representative of Equation 34.
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(c) Frequency shift: the 0Hz frequencies are shifted towards the centre in both the range and Doppler dimensions.

Figure 37: Visual representation of the Range-Doppler Fourier transforms with cropping: the blue square
represents the position of the origin (0Hz frequency for the range and Doppler bins), it is directed towards the
positive directions, the red rectangles represent the necessary pixels to consider to only obtain the cropped area
in the final RD map.

In Figure 18, the current section has found the following:
• updated range and velocity cropping.

44



5.6 Quantisation

Section 5.2 reduced the number of elements to save when generating the RD map and Section 5.3 attempted to
reduce the complexity of the classification network, all in an attempt to decrease the memory requirements of
the gesture-recognition pipeline. However, the previous calculations have been done using 32-bit floating point
numbers, the final step is hence to lower this footprint further by using quantisation, the following sections first
investigate how to quantise the FTs, then the classification network, and finally verifies the accuracy obtained
by the quantised pipeline.

The following sub-sections use power-of-two quantisation since it is the most efficient in hardware. The quan-
tisation schemes are applied with per-tensor granularity since the search space is smaller.

This section analyses how this quantisation can be applied to the FTs in Sub-section 5.6.1 and to the classification
network in Sub-section 5.6.2. Sub-section 5.6.3 provides some quantisation schemes for the complete non-spiking
pipeline.

5.6.1 Fourier Transforms

Figure 38: Validation accuracy reached for the non-
spiking FT for fixed-point quantisation with different
numbers of bits for the weights and memory maps, the
dotted line represents the 97.0% validation accuracy
reached on the un-quantised network.

A tuning process is applied to the non-spiking FT
network by selecting varying bit quantities for differ-
ent network components. The total bit count is de-
termined by summing the number of bits across the
following components:

• the quantised input chirp-sample-map,

• the quantised range weights and biases,

• the quantised range map,

• the quantised Doppler weights,

• the quantised RD map.

Figure 38 shows the validation accuracy obtained
when the quantised RD map are passed along in the
non-spiking un-quantised classification network. Ta-
ble 16 shows an example of quantisation without any
accuracy loss in its second line, and the third line gives
a quantisation where some accuracy is traded against
a higher memory saving.

Precision
Range layer Doppler

layer
Input

Range
FT

Doppler
FT

Total
Relative
total 8

Validation
accuracy

weights biases weights output output

Reference 32 32 32 32 32 32 37.8M 100.0% 97.0%
Higher 12 32 11 12 12 14 13.6M 36.0% 97.0 %
Lower 7 32 6 7 12 14 7.9M 21.0% 96.8%

Table 16: FT quantisation, the first line represents the 32-bit floating point baseline, and the ’higher’ and ’lower’
precision represent fixed-point quantised representations.

Quantising the spiking FT is similar with the exception that the outputs of the spiking neurons only hold 2
bits (since it should be able to represent ±1). The membrane potential is also kept un-quantised since the
quantisation library Brevitas [27] is not well defined for spiking neurons, however, this could be considered in
future work. The same quantisation is kept for the spiking network as those given in Table 16. It is probable
that those are not optimal, but it would require a quantisation tuning for each number of encoding steps. An
example of a spiking quantisation tuning is given in Section 5.7.

8Relative to the non-spiking equivalent 32-bit floating-point architecture
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5.6.2 Classification

Figure 39: Validation accuracy reached for the non-
spiking classification for fixed-point quantisation with
different number of bits for the weights and memory
maps, the dotted line represents the 97.0% validation
accuracy reached on the un-quantised network

In a similar manner to what has been done for the
FT, the following can be quantised:

• the quantised input RD map,

• the quantised convolutional weights and biases,

• the quantised convolutional layer output,

• the quantised FT weights and biases,

• the quantised FT output.

Figure 39 shows how the validation accuracy increases
with increasing memory footprint. The blue curve
represents the non-spiking network and the blue dot-
ted line is the 97.0% validation accuracy for full-bit
precision. Table 17 shows in its second line that
using 32.6% of the memory footprint maintains the
same validation accuracy as the non-quantised net-
work, however the third line shows that with a loss
of 1% accuracy this can be reduced to up to 16.0%.
The same comment about spiking quantisation that
has been made on the FT can be made for the classi-
fication network.

Precision
Conv. layer FC layer

Input
Conv. FC

Total
Relative Validation

weights biases weights biases output output total 9 accuracy

Reference 32 32 32 32 32 32 32 4.6M 100% 97.0%
Higher 11 32 9 16 7 9 10 1.5M 32.6% 97.0%
Lower 5 32 5 16 6 9 10 744k 16.0% 96.0%

Table 17: Classification quantisation, the first line represents the 32-bit floating-point baseline, and teh ’higher’
and ’lower’ precision represent fixed-point quantised representations (selected from Figure 39).

5.6.3 Full Non-spiking Pipeline Quantisation

Table 18 summarises the memory gains achieved in the previous sections. The second line shows the non-
spiking pipeline with the simplified architecture (Section 5.3) and the discrete FT (Section 5.2.1). The third
line provides the memory requirements when the pre-cropping is applied on the FT (Section 5.5.2), and the
fourth line gives the requirements when both FT and classification are quantised in a way that does not impact
the accuracy. This is feasible since the number of bits at the output of the FT is higher than that needed at
the input of the classification network. The fifth line gives an example of sacrificing some accuracy and saving
memory by quantising more than in the previous case.

9Relative to the non-spiking equivalent 32-bit floating-point architecture
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Network types
FT bits Classification bits

Total Relative
Validation

Absolute Relative Absolute Relative accuracy

Non-spiking replication
from [12] 10

Built-in function 360M-
1.1G

- - 98.5%

Non-spiking with the
simplified classification

213.3M 100% 4.6M 100% 217.9M 100% 97.0%

Non-spiking with
pre-cropped map

37.8M 17.7% 4.6M 100% 42.4M 19.5% 97.0%

Non-spiking quantised
higher precision

13.6M 6.4% 1.5M 32.6% 15.1M 6.9% 96.9%

Non-spiking quantised
lower precision

7.9M 3.7% 744k 16.0% 8.6M 4.0% 95.8%

Table 18: Memory requirement and validation accuracy for the full non-spiking pipeline using different memory-
reducing strategies.

In Figure 18, the current section has found the following:
• quantisation schemes for the non-spiking FTs,
• quanitsation schemes for the non-spiking classification network.

10The line is given to obtain the scale of the size of the classification architecture. The lower bound is calculated by multiplying
the number of weights from Table 10 by 32 (for 32-bit floating points). However, there is no straight-forward way to quantify the
exact memory required since it depends on how the hardware saves the values between the layers. The upper bound is calculated
by simply adding all values to be saved by using the sizes of the inputs from Table 22 which results in an extra 800Mbits. Due to
this large range, and that the FT are only implemented as a built-in function, all following relative sizes are calculated relative to
the second line of the table
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5.7 Full Gesture Recognition Pipeline

Figure 40: Function finding the number of encoding
steps from the error of the pseudo-spiking RD map

The previous sections analysed how to design each
step of a gesture-classification pipeline. To recap,
they explained how to decouple the different hyper-
parameters of the pipeline to investigate each one in-
dependently of the others by making use of the fol-
lowing:

• the non-spiking pipeline to define different
quantisation parameters in Sub-sections 5.6.1
and 5.6.2,

• the pseudo-spiking pipeline to approximate the
achieved validation accuracy/error that can be
obtained for a certain number of encoding steps
in Sub-sections 5.2.1 and 5.4.1,

• the theoretical thresholds using the theory ex-
plained in Sub-section 4.1.2. The analysis done
in Sub-sections 5.2.2 and 5.4.2 has also shown
that the number of operations is about as low
as possible for those thresholds too.

This chapter focuses on merging the results to create
the full spiking pipeline, illustrated in red in Figure
18. The following procedure is used to join the pa-
rameters listed above:

1. a relationship between the number of
steps and the error of the FT network
is extracted from Figure 40. This is
a similar graph to Figure 20, with
the difference that it is updated by
the maximum clamping of the in-
put (1000) and different quantisation
schemes, the relationship for these
quantisation levels are modelled by
the fitted exponential functions as fol-
lows:

• no quantisation:
time steps = 0.1311 · error−1.924,

• high-precision quantisation:
time steps = 0.0920 · error−2.137,

• lower-precision quantisation:
time steps = 0.0854 · error−2.128.

Figure 41: Spiking pipeline validation accuracy for the high-
precision quantised network for a range of FT and classifica-
tion encoding steps

2. independently of step 1 above, random noise of increasing intensity is added to the input of the non-spiking
classification networks, this noise is representative of the error caused by the spiking FT. The result is
a validation accuracy-noise curve which can be transformed into validation accuracy-FT error using the
relationships from step 1. Figure 42 shows this accuracy-error curve in green,

3. this noise addition is repeated for a certain number of encoding steps on the pseudo-spiking classification
algorithm. Figure 42 shows examples with 5, 10, 50 and 100 steps. The green non-spiking curve is an
upper bound to the validation accuracy that can be reached with the pseudo-spiking classification for a
given FT error (x-axis),

4. the number of encoding steps and the quantisation type for the each of the FT and classification networks
are chosen relative to the desired validation accuracy, the available memory as well as the acceptable
latency. The aim here is not to assume that the spiking pipeline will perform as given by the pseudo-
spiking pipeline, but to observe for which number of encoding steps it starts to saturate. When that
happens, then the pseudo-spiking approximation is relevant,
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5. the theoretical thresholds for both spiking networks are found, which enable the full spiking pipeline to
be built.

(a) No quantisation (b) High-precision quantisation (c) Lower-precision quantisation

Figure 42: Graphs to help decide which number of FT encoding steps, classification encoding steps, and quan-
tisation to choose for a given validation accuracy. The red arrows provide the predicted accuracy mentioned in
Table 19

The above stated how to select the thresholds, number of encoding steps and the quantisation type in order
to obtain the desired validation accuracy. Figure 41 shows how the validation accuracy evolves for the high-
precision quantisation pipeline with varying number of encoding steps. As explained above, the expected pseudo-
spiking validation accuracies can be trusted for encoding steps when the accuracy stagnates. For example, the
beginning of stagnation can be taken when both FT and classification use 100 encoding steps: Figure 42b
predicts a validation accuracy worth ≈ 94.7% and the spiking network reaches 94.1%. This is given in the
second line of Table 19, the other two lines provide the cases when the values are un-quantised and quantised
to a lower precision.

This table shows that there is a small discrepancy between the predicted validation accuracy and the obtained
spiking validation accuracy. This is probably caused by the quantisation scheme that is based on the non-spiking
network which does not model the behaviour of the quantised number interacting with the spiking neurons.
To test this hypothesis, a hyper-parameter on the spiking quantisation parameters is achieved using 100 steps
for both FT and classification. This reaches 94.5% for 12.4Mb (the precise parameters are in Tables 23 and
24 in Appendix 7.4). This is about the same validation accuracy compared to the expected accuracy for the
high-precision pipeline but for even smaller memory requirements. This can be compared to the blue and green
dots that represent the expected values from Table 19.

Figure 43a shows the confusion matrix for this specific case, and Figure 43b provides the test set’s matrix.
The 11-gestures test accuracy is 46.8% and the 5-best-gestures test accuracy is 72.8%. While the validation
accuracy has been allowed to be reduced by 2.5% in comparison to the non-spiking un-quantised pipeline, the
test accuracy reduced by 4% and the 5-best-gestures by 5%.

Overall, it is concluded that the method decoupling all hyper-parameters is efficient in reaching accuracies close
to that of the non-spiking pipeline, where the accuracy gap could be decreased if the latency-memory-accuracy
trade-off was shifted towards accuracy. While the test accuracy is quite lower to that from [12], it must be noted
that this is a result of the simplification from a ResNet18 architecture to the simpler classification: although the
validation accuracy barely dropped by 1.5%, the 11-gestures test accuracy decreased to 50.7%, most probably
due to the large difference in distribution between the validation and test sets.
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Network types
FT bits Classification bits

Total Relative 11 Validation Predicted
Absolute Relative

1
Absolute Relative

1
accuracy validation

accuracy

Spiking with
pre-cropped map
un-quantised

37.8M 17.7% 4.6M 100% 42.4M 19.5% 94.8% 95.6%

Spiking quantised
high-precision

15.2M 7.1% 1.6M 34.8% 16.8M 7.7% 94.1% 94.7%

Spiking quantised
lower-precision

9.6M 4.5% 812k 17.6% 10.4M 4.7% 91.6% 93.7%

Table 19: Memory requirement and validation accuracy for the full spiking pipeline using different memory-
reducing strategies

(a) Validation set (b) Test set

Figure 43: Confusion matrices for 100 encoding steps for the FT and classification networks.

11Relative to the non-spiking FT, classification and full-pipeline for the un-quantised non-spiking algorithms given in the first
line of Table 18.
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5.8 Hardware

The following section presents an example of a hardware implementation until the post-synthesis stage for a
spiking and a non-spiking network. The aim is to prove the energy gains of the former relative to the latter.
It presents a smaller case of the Range and Doppler FT algorithm and highlights different ways this HDL code
should be modified for the hardware to truly represent the full pipeline. This smaller example contains an input
chirp-sample map where Ns = 3 (number of samples) and Nc = 3 (number of chirps), with T = 3 (number of
encoding steps) for the spiking case, the values are quantised with 8 fractional and 8 integer bits.

Figure 44: High-level hardware diagram for the spiking and non-spiking FTs, the blue parts are only present
in the spiking hardware. The value n bits represents the number of bits used to save the values in the input
input map, and all resulting maps, which is in the example case n bits = 16. The example case also contains
the following variables: Ns = 3, Nc = 3, and T = 3.

Figure 44 shows a high level hardware diagram of the FTs. This diagram only shows the signals required to
calculate the RD map and removes all flags and signals used to write the weights and input map into registers,
as well as those used to read the output RD map. Once the reset has been activated to initialise all neurons,
the enable signal is activated to start calculating the FTs. The non-spiking case is quite straight-forward:

• the Range FT sub-block calculates the range map of the input map input map and stores it in a local
register,

• when the range FT is done, the flag range ft done is activated and the wire range map contains the
range map,

• the Doppler FT sub-block calculates the Doppler map of the transposed range map called transposed -

range map and stores it in a local register,
• when the Doppler FT is done, the flag doppler ft done is activated and the wire rd map transposed

contains the transposed RD map,
• when both range ft done and doppler ft done are activated which activates the output flag done,
• the output RD map is calculated by taking the magnitude of the real and imaginary parts of the rd -

map transposed, it is then stored in the register decoded rd map.

For the spiking case, the following happens:

• time steps has been initialised to 0,
• the Range FT sub-block calculates the range map of the first step of the map input map,
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• when the first step of the range FT is done, the first bit of the flag range ft done is activated and the
wire range map contains the range map of the first step,

• the Doppler FT sub-block calculates the Doppler map of the first step of transposed range map. Si-
multaneously, the Range FT sub-block calculates the range map of the second step of the input map
input map,

• when the first step of the Doppler FT is done, the first bit of the flag doppler ft done is activated, and
when the first step of the range FT is done then the second bit of the flag range ft done is activated,

• the first step has been fully processed so time step is incremented,
• this processed is repeated where the Range FT sub-block calculates the previous step and Doppler FT

calculates the following one while incrementing time step.
• both range ft done and doppler ft done are fully activated then all steps have been processed for both
FTs which activates the output flag done,

• the output RD map is calculated by summing the spikes across the steps and taking the magnitude of the
real and imaginary parts of the rd map transposed, it is then stored in the register decoded rd map.

Figure 45: Hardware diagram for the FTs, the blue parts are only
present in the spiking hardware. If this is the range FT: N 1 =
Nc ·Ns, N 2 = N 3 = N 4 = N 5 = ·Nc ·Ns. If it is the Doppler
FT: N 1 = N 2 = N 3 = N 4 = N 5 = 2 ·Nc ·Ns.

Figure 45 shows more details about the
hardware design for the FTs. There are
two registers with the saved weights and
biases. Furthermore, there are as many
neurons as there are pixels in the output
of the FT which is 2 · Nc ∗ Ns for both
the range map and the RD map (as a re-
minder, this is illustrated in Figure 17).
The address is incremented at each clock
cycle to fetch a new element from the input
input map and a weight from the weights
register.

For the non-spiking case of the range/-
Doppler FT, it requires one cycle to fetch
the first weight, Ns/2 · Nc cycles to fetch
the next weight and simultaneously per-
form the MAC operation, and a remaining
two cycles to write the element in a regis-
ter and to activate the done flag. This is
illustrated in the computation of the total
number of clock cycles given in Equation
48. This equation also shows that there
needs to be one initial cycle for initialisa-
tion in the sense that it notices that the
enable flag of Figure 44 is activated.

The spiking case is very similar with the
difference that the time step variable se-
lects the input map at the right step to
perform the FT. Furthermore, the wait

variable is a flag used to halt the calculation. This is useful when one of the range or Doppler FT takes
fewer time than the other and it must pause so that both FTs only differ by one time step. The number of
clock cycles for T time steps is provided in Equation 49. It shows that the first time step requires 1 +Ns + 3
cycles. The first cycle is required to extract the first weight, the Ns next ones computes the current by adding
the weights when there is an incoming spike, and the following three cycles are used to add the current to the
membrane potential, verify if it is greater than the threshold and if it is write the spike to the output map.
Performing the Doppler FT for one step follows the same logic and requires 1+2Nc+3 cycles. For the following
T − 1 steps, the range and Doppler FT overlap which means that it will take as long as the longest of the two.
When over, there is still one final time step to calculate for the Doppler FT of the last time step.
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Nnon−spiking = 1︸︷︷︸
Initialise

+(1 +Ns + 2)︸ ︷︷ ︸
Range FT 12

+(1 + 2Nc + 2)︸ ︷︷ ︸
Doppler FT 12

+ 1︸︷︷︸
Update

(48)

Nspiking = 1︸︷︷︸
Initialise

+(1 +Ns + 3)︸ ︷︷ ︸
Range FT 13

first step

+(T − 1) ·max (Ns + 4, 2Nc + 4)︸ ︷︷ ︸
The faster between the Range

and Doppler FT 13 waits
for the slower one

+(1 + 2Nc + 3)︸ ︷︷ ︸
Doppler FT 13

last step

+ 1︸︷︷︸
Update

(49)

For more details about the hardware description of the spiking and non-spiking neurons, their schematics are
in Figure 53 in Appendix 7.5. Furthermore, the final state machines are available in Figures 54, 56 and 55.

The two hardware designs are synthesised to extract their power and area requirements, which are summarised in
Table 20, more details about the power distribution is summarised in Table 25 in Appendix 7.5. The constraints
used are highlighted in Appendix 7.5, and the designs are assumed to be clean since all slacks are positive.

Non-spiking Spiking Spiking/Non-
spiking

Total power (µW )
No clock gating 1063.5 834.4 0.784

With clock gating (94.1%) 495.9 181.2 0.365
Total area (µm2) Total 40 734 26 340 0.647

Number of clock cycles 17 39 2.17
Energy estimation if 100 clock cycles are used (nJ) 0.8 18.3 22.9

Table 20: Non-spiking vs spiking hardware specifications

Table 20 shows that the spiking hardware’s power requirements are a third of those of the non-spiking one when
clock gating is used. Clock gating is much more efficient on the spiking network since the neurons’ outputs only
change when they spike. The total area is also smaller for the spiking case since both hardware have the same
memory requirements for the weights and biases but lower requirements for the input map, the range map and
the RD map since their values are binary. When scaling to more encoding steps, the power should not vary
much since the same operation is just repeated for longer. The area will increase since the input map, the range
map and the RD map sizes are proportional to the number of steps.

Table 20 shows an energy estimation for the non-spiking case Enon−spiking which is calculated in Equation 50
where P is the power, t is the total time and Tclk is the time per clock period. As proven in Section 5.7, using
about 100 steps results in a validation accuracy of 94.5%. An energy estimation for 100 steps is provided in
Equation 51: the spiking network uses 22.9× the energy of the non-spiking one.

Enon−spiking = P · t = P · Tclk ·Nnon−spiking = (495.9µW ) · (100ns) · (17) = 0.8nJ (50)

Espiking = P · t = P · Tclk ·Nspiking = (181.2µW ) · (100ns) · (1009) = 18.3nJ (51)

This large energy requirement can be caused by multiple factors. First, the example input map contains a
high percentage of 1s relative to 0s. This is because it was initialised to contain random 1s and 0s while a
real input map would contain a higher percentage of 0s. This is because the distribution of values is skewed
towards smaller numbers as shown in Figure 21, as a result the rate encoded values will contain fewer spikes.
In consequence, the switching power should decrease.

Another cause is that the combinational logic calculates some values continuously such as the output RD map
from the real and imaginary part. If more conditions were used in the design to only compute useful values,
the internal power could be reduced.

For ease of implementation and to access all weights in parallel, registers have been used for this first hardware
exploration. Toward practical deployment and scalability, future work will investigate the use of SRAM instead.
Furthermore, to implement the classification, the fully-connected layer can be designed in the same way with a
modified version to represent the convolutional layer.

12fetch first weight + (compute current and fetch next weight) +(write map and set flag to done))
13fetch first weight + (compute current and fetch next weight) + (add to membrane + spike + write map))
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6. Conclusion and Future Work

6.1 Conclusion

This work describes how to implement a gesture classification algorithm based on radar data, and how to
transform it into its spiking neural network form. It highlights the different trade-offs to be optimised and
exemplifies them on an air-marshalling gesture dataset.

The pipeline contains two parts to be designed: a double FT implementing first a range and then a Fourier
transform that transforms the pre-processed map into a RD map, which is followed by a classification algorithm
that extracts the gesture from the RD map (Figure 2). The first step of the procedure is to optimise the
non-spiking pipeline:

1. the work done in [12] is taken as a reference, the replicated pipeline reaches 98.5% validation accuracy
and 59.8% 11-gestures test accuracy, this is similar to the 59.1% validation accuracy obtained by [12],

2. the FTs are initially built-in Python Fourier transforms, they are first modelled into an ANN and then
simplified to only process the distance and velocity frequency bins that are required by the classification,

3. the classification network is initially a ResNet18, it is simplified to only contain a convolutional and a
fully-connected layer while trading a 1.5% validation accuracy loss. There is a much higher cost on the
test accuracy which drops by 11.7% as shown in the 4th line of Table 10,

4. the FTs and classification networks are joined to generate the full pipeline with accuracies provided in the
5th line of Table 10: the validation accuracy is 97.0% and the 11-gestures test accuracy is 50.7%,

5. superfluous areas of the RD map are removed and the networks are quantised to fixed point numbers to
reduce the memory requirements as highlighted in Table 18.

The second step is to adapt the non-spiking pipeline to its spiking equivalent. A spiking implementation has more
parameters to tune that are interdependent to some extend: the neurons’ thresholds, the number of encoding
steps, the quantisation schemes, the network weights. This work has decoupled the previous parameters so that
they could be tuned independently of one another:

1. the non-spiking weights are used,

2. the thresholds are mathematically defined so that the number of spikes emitted corresponds to the non-
spiking equivalent output of these neurons in the optimal rate-encoded manner, given the specified number
of time steps.

3. the pseudo-spiking graphs are used to estimate the number of encoding steps required, and the non-spiking
quantisation scheme is used to estimate the number of bits required, the estimations obtained are illustred
in Figure 42,

4. the quantisation scheme is fine-tuned for the number of encoding steps chosen, the spiking results are
provided in Table 19.

An example of the trade-off achieved for the spiking pipeline reaches a validation accuracy of 94.5% and an
11-gestures test accuracy of 46.8% when it is implementated with 100 steps for both FTs and classification while
using only 5.7% of the memory of the initial non-spiking un-quantised and un-simplified pipeline. Comparing
with the second line of Table 10 which is the replicated pipeline from [12], the validation accuracy drops by 4%.
The 11-gestures test accuracy drops by 12.3% and the 5-best-gestures test accuracy drops by 14.1%. The large
gap between the validation and test accuracy losses is a consequence of the difference in distribution between
the train/validation sets and the test set. This causes the simplified architecture to perform significantly worse
on the test set although it performs nearly as well on the validation set compared to the baseline ResNet18.

However, these accuracies, latency and memory needs can be shifted towards lower latency, lower memory or
higher accuracy according to the desired requirements. In theory, the elimination of MAC operations should
save on energy by considerably reducing the power so that the added latency is compensated, an example of
such results have been obtained by [11] which achieves more than 30× power reduction as has been highlighted
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in the introduction. This work presents a hardware exploration which reaches only a power reduction of 3×.
When the latency is factored in, the energy is therefore still higher for the spiking version.

6.2 Future work

From the spiking implementation, several aspects could be improved or modified. The following lists some ideas:

• there is a poor generalisation on the test set when simplifying the ResNet18 architecture into its simpler
form. This was not visible when choosing hyper-parameters based on the validation set since the validation
set and test set come from different distributions as shown in Figure 48 in Appendix 7.4. Different
generalisation strategies could have been used. For example the scale of the dataset could have been
increased by applying transformations to attempt to increase the accuracy (in the same way as [26]),

• the simplified classification network uses square kernels since this reduces the number of parameters to be
tuned. However, since the chirp-sample map input is very rectangular (Nc = 160 and Ns = 23) it might
be more efficient to use rectangular kernels. It is probable that those kernels would be smaller, hence
reducing the number of weights to save,

• the implemented pipeline requires to decode and encode between the FT and the classification. This is
because the absolute value of the RD cannot be calculated from the coded real and coded imaginary parts.
It would be interesting to investigate an approximation to this absolute value equation to avoid decoding
and re-encoding to save on energy,

• the current work used rate-encoded data since it leads to higher accuracies, but it would be interesting to
implement the pipeline using latency encoding. For example, [28] implements a latency-encoded FT, which
demonstrates how to only use 1 spike per value while obtaining low error compared to the non-spiking
version,

• the weights in the FT are pre-defined which means that only an ANN-SNN conversion can be used.
However, the weights of the classification could be trained. It is possible that using BPTT to train the
spiking network would require fewer encoding steps for the same accuracy,

• the hardware exploration should be developed to use a full size input map and about 100 time steps to
prove the energy gains of a SNN in comparison to its equivalent ANN.
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7. Appendix

7.1 Intermediate Frequency Calculations

The mixing of the transmitted signal xT (t) from Equation 1 with the received signal xR(t) from Equation 3,
can be expanded as follows.

xT (t)xR(t) = cos
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The orders of magnitudes under the values are obtained from Section 5.1.1: t and td are the same magnitude
as Tc since t, td ∈ [0, Tc]. This shows that the first cosine contains frequencies much higher than those of the
second cosine, and when a low-pass filter is applied, it removes this first cosine. This outputs the IF signal r(t).
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The following shows that, with the same orders of magnitude, the equation is further simplified by observing
that the last parameter is much smaller than the two others.
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The previous equation demonstrates that the frequency fR is proportional to the delay td, and hence proportional
to the distance (according to Equation 5), which means that the spectrum of one chirp shows peaks at the
frequencies corresponding to the distances between the radar and objects.

Velocity
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In the situation where several chirps are collected, each chirp can be denoted by its subscript i. In this case,
orders of magnitude are again used to simplify the equation.
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The delay is expressed relative to a reference delay td,0 which is the delay for the first chirp. If the object moves
between two chirps, then the delay will change from one chirp to the next by time ∆td,i. If the object accelerates,
then ∆td,i is variable, however, if the velocity is assumed constant between two chirps, then ∆ti = ∆t ∀i and
td,i = ∆td · i. This provides a new frequency fD that is observed between the chirps.
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This frequency fD can be related back to the velocity of the object using v = ∆d
Tc,diff

since the velocity is

equivalent to the extra distance of the signal between two chirps by the time that occurred between those
chirps.
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7.2 Spiking Neural Network Thresholds - 2nd Layer and Above

Figure 46 provides an adapted version of Figure 14 for the second layer of the neurons in Figure 13. The logic
developped holds for all layers that follows the second one since the input (Yj in the example of the second
layer) would have also passed first into the previous layer’s ReLU, hence setting its minimum value to 0.
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∑
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Figure 46: Diagram showing the relations between the different steps of an I&F spiking neuron and its non-
spiking equivalent for the second layer. The top part represents the spiking operations, and the bottom part
represents the non-spiking equivalents that can be obtained throught the vertical dotted ”Decoding” lines. The
”Encoding” line shows how the non-spiking Z can be rate encoded to the spikes SZ [t]
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7.3 ResNet18 Parameters

Tables 21 and 22 provide the number of parameters per layer and the sizes of the outputs of each layer for a ResNet18 architecture given in Figure 47 when it is
fed with the un-cropped RD map. These tables are given to provide a comparison with the simplified architecture.

Layer
C
o
n
v

M
a
x
p
o
o
l Block 1 Block 2 Block 3 Block 4

A
v
g
p
o
o
l

F
C1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2

Conv Conv Conv Conv Conv Conv Conv Conv Conv Conv Czonv Conv Conv Conv Conv Conv

P
a
ra
m
et
er
s Kernel

size
7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

A
d
a
p
ti
ve

8

5
1
2
to

1
1

Padding 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Stride 2 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1

Output
Kernels

64 64 64 64 64 64 128 128 128 128 256 256 256 256 512 512 512 512

Table 21: ResNet18 parameters per layer [29]

In
p
u
t

C
o
n
v

M
a
x
p
o
o
l Block 1 Block 2 Block 3 Block 4

A
v
g
p
o
o
l

F
C1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2

Conv Conv Conv Conv Conv Conv Conv Conv Conv Conv Conv Conv Conv Conv Conv Conv

Height 960 480 240 240 240 240 240 120 120 120 120 60 60 60 60 30 30 30 30 1

11Width 512 256 128 128 128 128 128 64 64 64 64 32 32 32 32 16 16 16 16 1

Kernels 1 64 64 64 64 64 64 128 128 128 128 256 256 256 256 512 512 512 512 512

Table 22: ResNet18 sizes of outputs

Convolutional + Batch normalisation layers

Pooling layer

Fully-connected layer

Residual connection

Block 1

Block 2

Block 3

Block 4

R
D

m
a
p

Figure 47: ResNet18 architecture diagram
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7.4 Extra Figures - Results

This section provides figures that further illustrate the points made in the main text. Figure 48 shows the
distribution of the initial raw train set (that has not yet been divided into the train / validation sets used in
this thesis) and the test set in terms of the person who performs the gesture, where the gesture is performed
and at which distance from the radar. Figure 49 provides a Pareto curve representation of the trade-off between
the number of operations and the error/accuracy obtained for the FTs and classification networks, they contain
the same data as that provided in Figures 22 and 34. Figure 50 shows all architectures on the Pareto curve
between the number of operations/parameters in terms of the accuracy reached by the simplified architecture
from Figure 29. All architectures reaching above 95.0% validation accuracy are those provided in the main text
in Figure 30. Figure 51 exemplify the tuning that has been done in Section 5.3.4. Figure 52 provides a threshold
tuning for the classification network for a larger range of thresholds compared to Figure 34.

Figure 48: Distribution of the number of chirps per person, distance and location between the training set (the
raw training set from [12] that contains both the train and validation sets used in this thesis) and the test set.
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(a) Error vs number of operations for a spiking FT with
100 encoding steps using different thresholds, this is a
Pareto front of the data in Figure 22

(b) Error vs number of operations for a spiking classi-
fication with 100 encoding steps using different thresh-
olds, this is a Pareto front of the data in Figure 34

Figure 49: Operations vs error/accuracy curves for the spiking FT and classification networks

(a) Number of operations per layer for the architectures in Figure 30 in order of increasing accuracy

(b) Number of parameters per layer for the architectures in Figure 30 in order of increasing accuracy

Figure 50: Pareto front operations and memory comparisons
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(a) Binary CA-CFAR tuning

(b) Masked CA-CFAR tuning

Figure 51: Validation accuracy for the tuning of the parameters of binary/masked CA-CFAR

(a) Validation accuracy (b) Number of add operations per input data

Figure 52: Threshold tuning for the classification network using 100 encoding steps (threshold1 = Uth,conv and
threshold2 = Uth,fc)

Conv. layer FC layer
Input

Conv. FC
weights biases weights biases output output

12 32 9 16 7 6 16

Table 23: Final quantisation parameters for the spiking classification

Range layer Doppler layer
Input

Range FT Doppler FT
weights biases weights output output

8 8 11 9 7 14

Table 24: Final quantisation parameters for the spiking FT
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7.5 Extra Figures - Hardware

This section provides figures that further illustrate the points made in the main text. Figure 53 show how the
memory is organised for a non-spiking and a spiking neuron. Figures 54, 55 and 56 provide the corresponding
final state machines. Table 25 provides the power distribution between the leakage, internal and switching
power for both spiking and non-spiking cases.

The constraints used in the hardware synthesis are the following:

• clock period: 100ns,
• clock uncertainty: 0.25ns,
• maximum input/output delay: 5ns,
• minimum input/output delay: 0ns,
• all inputs that are not linked to the direct calculation of the RD map, so those used to write the weight-
s/inputs and read the output, are set as false paths since their timings are not critical,

• clock gating is enabled since it provides additional energy gains,
• activity annotation is enabled since it allows the power reports to be more reliable, since the hardware is
very small, it is possible to calculate activity annotation for the full calculation of the smaller RD map.

Category Non-spiking Spiking
Leakage
(µW )

Internal
(µW )

Switching
(µW )

Leakage
(µW )

Internal
(µW )

Switching
(µW )

Register 3.9 182.3 12.5 3.8 61.9 1.5
Logic 19.0 110.7 114.1 10.0 28.4 19.2
Clock 0.1 32.0 21.3 0.2 42.1 14.2

Sub-total 23.0 325.0 147.9 13.9 132.4 34.9
Total 495.9 181.2

Table 25: Power consumption distribution for the non-spiking and spiking hardware
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(a) Non-spiking neuron hardware diagram

(b) Spiking neuron hardware diagram

Figure 53: Hardware diagrams for the neurons: the inputs that are not linked to anything are used in com-
binational logic, those links are removed for the diagrams to remain readable, the numbers of bits needed per
register are provided in the register schematics (n bits represents the number of bits kept after quantisation)
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(a) Non-spiking neuron FSM

(b) Spiking neuron FSM

Figure 54: FSMs for the spiking and non-spiking neurons, the colour code is as follows: red → utility of each FSM state, green → number of clock cycles at each
step, purple → conditions to move to the next state, blue → states what happens when the condition is satisfied (those are only highlighted when it cannot be
deducted from the following state)
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Figure 55: FSM for the Range (then NUMBER = Ns) and Doppler FT (then NUMBER = 2 ·Nc), the colour code is as follows: red → utility of each FSM
state, green → number of clock cycles at each step, purple → conditions to move to the next state, blue → states what happens when the condition is satisfied
(those are only highlighted when it cannot be deducted from the following state), the underlined text applied to both spiking and non-spiking, the underline italic
text applied only to the spiking case and the non-underlined non-italic text applied only to the non-spiking case
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(a) Non-spiking FT FSM

(b) Spiking FT FSM

Figure 56: FSM for the full algorithm (Range and Doppler FTs), the colour code is as follows: red → utility of each FSM state, purple → conditions to move to
the next state, blue → states what happens when the condition is satisfied (those are only highlighted when it cannot be deducted from the following state)
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