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We theoretically show that IV–VI semiconducting compounds with low-temperature rhombohedral
crystal structure represent a new potential platform for topological semimetals. By means of minimal k · p
models, we find that the two-step structural symmetry reduction of the high-temperature rocksalt crystal
structure, comprising a rhombohedral distortion along the [111] direction followed by a relative shift of the
cation and anion sublattices, gives rise to topologically protected Weyl semimetal and nodal line semimetal
phases. We derive general expressions for the nodal features and apply our results to SnTe, showing
explicitly how Weyl points and nodal lines emerge in this system. Experimentally, the topological
semimetals could potentially be realized in the low-temperature ferroelectric phase of SnTe, GeTe, and
related alloys.
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Introduction.—The recent discovery of topological semi-
metals [1–8], the most prominent examples of which are
Weyl semimetals (WSMs) and Dirac semimetals [9–13],
has attracted huge interest in gapless topological phases of
matter [14–24]. Generally speaking, topological semimet-
als are systems where the conduction and the valence bands
have robust crossings in the Brillouin zone (BZ). In WSMs,
these robust crossings—the so-called Weyl nodes—are
isolated, twofold degenerate points and generically require
the absence of either time-reversal or inversion symmetry
[13,14]. Furthermore, Weyl points represent monopoles of
the Berry flux and, therefore, carry a topological charge
[10,13]. The topological nature of Weyl nodes leads, by the
bulk-boundary correspondence, to the presence of surface
Fermi arcs [25] possibly coexisting with surface Dirac
cones [26]. In Dirac semimetals, instead, both the con-
duction and the valence bands are twofold degenerate and
cross at isolated fourfold degenerate points in the BZ. As
opposed to Weyl nodes, Dirac points are typically unstable
degeneracies and can be regarded as the parent semi-
metallic state generating a WSM by inversion or time-
reversal symmetry breaking [27]. Various WSM materials
have been predicted theoretically [4,14,17,25,28–34] and
realized experimentally [3,5–8,35–38]. These include both
binary and ternary compounds [39]. Nevertheless, in view
of potential applications, it is important to seek new
material platforms and novel mechanisms for the realiza-
tion of WSMs.
A different class of topological semimetals features

conduction and valence bands crossing each other along
closed lines in the BZ [40–44]. These nodal line semimetals
are midway between semimetals with point nodes and

metals with a two-dimensional Fermi surface. One of the
typical features of nodal line semimetals is the presence of
drumhead surface states bounded by the surface projection
of the nodal lines, whose stability is guaranteed by the
presence of, for instance, mirror symmetries [42,45,46]. In
contrast to WSMs, only a few candidate materials for
topological nodal line semimetals have been put for-
ward [43].
In this Letter, we show that both nodal line and WSM

phases can potentially appear as a result of a structural
distortion in group-IV tellurides with high-temperature
rocksalt crystal structure, such as SnTe, GeTe, and related
alloys [47–49]. A crystal symmetry reduction to a rhom-
bohedral phase via an elastic strain along the (111)
direction reduces the point-group symmetry of a subset
of L points in the BZ [50]. We show that this leads to bulk
Dirac points close to these high-symmetry points that
evolve either into pairs of Weyl nodes or into mirror-
symmetry protected nodal loops upon breaking inversion
symmetry. The latter is naturally realized, for instance, via a
relative shift of the anion and cation sublattices during a
ferroelectric distortion. Our analysis is based on effective
k · pmodels describing the low-energy physics close to the
L points of the BZ. In particular, we derive general
expressions for Weyl points and nodal lines and apply
our general results to a specific model based on SnTe. We
show explicitly howWeyl points and nodal lines appear and
calculate topological invariants associated with the semi-
metallic phases.
Dirac points by strain engineering.—IV–VI narrow band

gap semiconductors have a high-temperature rocksalt
lattice structure with a face-centered-cubic BZ [51]. The
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BZ is bounded by six square faces and eight hexagonal
faces. The centers of the latter, commonly denoted by L,
represent high-symmetry points in the BZ with D3d point-
group symmetry [50], which is generated by inversion, aC3

axis along ΓL, and a mirror plane containing Γ and two L
points, hereafter dubbed as L and L0, related by a C4

rotation [51].
Since the fundamental band gap of group-IV tellurides is

located at the four equivalent L points related by the point-
group symmetries of the lattice [52], the band structure
close to the Fermi level can be captured within an effective
four-band low-energy k · p model [51]. We start out by
taking this continuum model and augment it by terms
quadratic in the momentum k. Taking into account all
symmetry constraints, including time-reversal symmetry
(see Refs. [53,54] and Supplemental Material [55]), the
model reads

H0ðkÞ ¼ mσz þ νðk1s2 − k2s1Þσx þ ν3k3σy

þ ck23σz þ fðk21 þ k22Þσz; ð1Þ

where, without loss of generality, we have neglected all
terms proportional to the identity, since they correspond
either to a rigid shift of all energies or to a balanced change
in the curvature of all bands. Therefore, they do not affect
the band topology. In the chosen coordinate system, k1 is
perpendicular to the mirror plane, and k3 points along the
C3 axis going through the L point. The σi are Pauli matrices
in orbital space spanned by the p orbitals of the cation (Pb,
Sn, Ge) and anion (Te), whereas the si are Pauli matrices in
spin space. Because of the simultaneous presence of
inversion and time-reversal symmetry, all states are twofold
degenerate.
Contrary to the trivial semiconductors PbTe and GeTe,

for SnTe it is well known that an inverted band gap at the L
points gives rise to a crystalline topological-insulating
phase protected by mirror symmetry [51]. Now, we show
that, independent of the band ordering, a structural dis-
tortion to a rhombohedral phase via an elastic strain along
the cube diagonal, i.e., the [111] direction, can lead to the
emergence of bulk Dirac points, i.e., generic fourfold
degenerate band crossing points.
The rhombohedral distortion breaks the C4 symmetry

of the face-centered-cubic lattice [see Fig. 1(a)].
Consequently, the square faces of the BZ distort into
rectangles, and the hexagonal faces are no longer identical
as is illustrated in Fig. 1(b). Equivalently, the corresponding
elastic strain acts differently on different L points [50]: It
does not affect the symmetry of the L point in the [111]
direction. However, in the local coordinate system of the
point L0, which was previously related to L by a C4

rotation, the strain acts in the ½111̄� direction. In contrast to
L, this lowers the symmetry group at L0 from D3d to C2h:
The C3 symmetry with respect to an axis going through
L0 is explicitly broken, whereas mirror and inversion

symmetry are still preserved. Equivalently, the symmetry
group at the other two L0 points is lowered to C2h. As a
result, there are now one L point with D3d symmetry and
three L0 points with C2h symmetry.
The reduction of point-group symmetry at the L0 points

gives rise to additional symmetry-allowed terms in the
corresponding k · p theory. Up to second order in k, they
read

H1ðkÞ ¼ δνðk1s2 þ k2s1Þσx þ λ1k1s3σx þ λ2k2σy

þ λ3k3s1σx þ δfðk21 − k22Þσz þ gk2k3σz: ð2Þ

We now show that the extended model given by H̃ ¼
H0 þH1 gives rise to isolated bulk Dirac points. The
energies of H̃ can be written as

E2 ¼ ðf1k21 þ f2k22 þ gk2k3 þ ck23 þmÞ2 þ k21ðλ21 þ ν21Þ
þ ðk2λ2 þ k3ν3Þ2 þ ðk3λ3 − k2ν2Þ2; ð3Þ

where we have defined ν1;2 ¼ ν� δν and f1;2 ¼ f � δf.
The spectrum is symmetric under E → −E. Hence, Dirac
points, if present, will be located at E ¼ 0. It is straightfor-
ward to see that the spectrum has Dirac points if E is of the
form �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðak2 −mÞ2

p
. This implies that all binomials under

the square root have to vanish, except the first. From this,
we determine the single condition λ2λ3 ¼ −ν2ν3, which can
be satisfied by tuning the external strain magnitude. Under
this condition, Dirac points, if present, will be located in the
mirror plane on the line parametrized by k3 ¼ ν2k2=λ3
and k1 ¼ 0.
To focus only on the essential mechanism leading to the

existence of Dirac points, we will neglect all terms in H1

that do not enter the conditions above explicitly; i.e., we set
g ¼ λ1 ¼ 0, f1 ¼ f2 ¼ f, and ν1 ¼ ν2 ¼ ν. We empha-
size that this is done merely to simplify our analytical
considerations. The results presented below can, however,

FIG. 1. (a) Crystal structure of rhombohedrally distorted SnTe.
(b) Rhombohedral Brillouin zone with high-symmetry points L
and L0, a local coordinate system at one of the L0 points, and the
strain direction (red arrow) responsible for the distortion from a
face-centered-cubic to a rhombohedral lattice. Also highlighted is
one of the three mirror planes spanned by Γ, L, and L0.
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be generalized also to the full model. With this and the
constraints given above, the spectrum along the line
k ¼ ð0; k; νk=λ3Þ becomes

E�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��

cν2

λ23
þ f

�
k2 þm

�
2

s
: ð4Þ

This has the desired form and we infer that Dirac points
exist if m and the term before k2 have opposite signs. This
can be realized by tuning the band massm, e.g., by alloying
or pressure [56]. The Dirac points are located at �k0

with ðk0;1; k0;2; k0;3Þ ¼ (0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−mλ3=ðcν2 þ fλ23Þ

p
;ν=λ3k0;2).

Moreover, an expansion of H̃ around the Dirac points to
leading order in k shows that the effective Hamiltonian is
indeed of Dirac form (see Supplemental Material [55])
with, in general, anisotropic dispersion.
We now apply our general results to a specific system by

means of numerical calculations. To obtain realistic values
for the k · p parameters of our model, we fit the parameters
of the Hamiltonian H0 in Eq. (1) to density functional
theory data of SnTe presented in Ref. [51]. From that, we
determine the following values (in eV): m ¼ −0.07,
ν ¼ 2.4, ν3 ¼ 0.95, c ¼ 0.9, and f ¼ 4.5. Next, we intro-
duce a rhombohedral distortion in our SnTe model by
tuning λ2 and λ3 away from zero until the Dirac-point
condition λ2 ¼ −νν3=λ3 is established. The resulting spec-
trum along a cut through the local coordinate system is
shown in Fig. 2(a). We find two Dirac points in agreement
with the analytical prediction.
Weyl points and nodal lines.—Bulk Dirac points are, in

general, unstable features and can be gapped out by small
perturbations. Nonetheless, it is well known that a bulk
Dirac point can be split into a pair of stable Weyl points
of opposite charge by breaking inversion symmetry.

Furthermore, if mirror symmetry is still present, a Dirac
point can also evolve into a nodal line protected by this
symmetry [57]. These conditions are naturally realized in
the ferroelectric phase of SnTe and GeTe: Below a critical
temperature [58] Tc ¼ 98 K (Tc ¼ 670 K), SnTe (GeTe)
undergoes a structural transition from a rocksalt structure
with space group Fm3̄m to a rhombohedral lattice with
space group R3m [47,48]. This transition occurs via a two-
step symmetry reduction [47–49]. First, an elastic strain
along the cube diagonal introduces a rhombohedral dis-
tortion and breaks the C4 symmetry. This is identical to the
symmetry-reduction process discussed above. Second, a
relative displacement of the Sn (Ge) and Te sublattices
breaks spatial inversion symmetry, a necessary condition
for the semimetallic phases considered in this work, while
preserving mirror and C3 symmetries. The distorted lattice
is illustrated in Fig. 1(a).
To incorporate the second step of the symmetry-reduc-

tion procedure into our model, we note that inversion-
symmetry breaking reduces the symmetry group of the L0
points further from C2h to Cs; i.e., only the mirror plane
remains. In total, there are ten additional symmetry-allowed
terms (see Supplemental Material [55]). Here, we restrict
our consideration to the following terms:

HαðkÞ ¼ ασx; ð5Þ
HβðkÞ ¼ βðk1s2 − k2s1Þ; ð6Þ

because each of them gives rise to one of the nodal features
described above in a straightforward fashion. We note,
however, that also the other inversion-symmetry-breaking
terms give rise to the same features.
We next show that the term Hα in Eq. (5) splits the Dirac

point into two stable Weyl points. For that, we expand the
Hamiltonian H̃ þHα around the Dirac point at k0 up to
leading order in momentum. The effective Hamiltonian
(see Supplemental Material [55]) has the following spec-
trum:

E2 ¼ ð2fk0;2κ2 þ 2ck0;3κ3Þ2 þ
ν23
λ23

ðλ3κ3 − νκ2Þ2

þ
�
α�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ3κ3 − νκ2Þ2 þ ðνκ1Þ2

q �
2

: ð7Þ

Since we are again looking for zero-energy states, all terms
in parentheses in the equation above must simultaneously
vanish. We already know that this is the case for α ¼ 0.
Keeping all parameters fixed except α, this implies that
zero-energy states must satisfy κ2 ¼ κ3 ¼ 0 even for
nonzero α. Finally, we obtain zero-energy solutions of
Eq. (7) for

kW ¼ ð�α=ν; k0;2; k0;3Þ: ð8Þ
The solutions are distinct for α ≠ 0, and each of them is
twofold degenerate. Furthermore, the Weyl points are

FIG. 2. Spectra of SnTe models with λ2 ¼ −1.14 eV and λ3 ¼
2.0 eV along a line through the local momentum-space coor-
dinate system centered at L0. (a) With inversion symmetry: The
two bands are each twofold degenerate and cross at two isolated
Dirac points. (b) Without inversion symmetry and α ¼ 0.1 eV:
The spectrum features four separate Weyl points. The insets show
spectra along a perpendicular plane in k space going through one
of the band crossings in the associated main panel. Energies E are
given in eV. Momenta k are displayed in units of π=a with the
lattice constant a.
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mapped onto each other by reflection about the mirror
plane. Since reflection flips the topological charge of a
Weyl node [57], we further infer that their topological
charge must be opposite. These general findings are
confirmed by numerical results as we show in Fig. 2(b):
The two Dirac points split into four twofold degenerate
states, two on each side of the mirror plane. Furthermore,
we calculate the topological charge of each nodal point
numerically [59] and obtain nontrivial values of �1.
We emphasize that, due to their topological charge, the

Weyl nodes are robust features of the system and, thus,
must appear in an extended region in the parameter space.
This implies that we can now explicitly violate the
condition λ2λ3 ¼ −ν2ν3, which led to the existence of
Dirac points, or switch on other parameters without
gapping out the Weyl nodes (see Supplemental Material
[55]). Hence, the Weyl nodes are not subject to parameter
fine-tuning, which is in stark contrast to the parent Dirac
points.
Because of the presence of mirror symmetry, the decay

of a Dirac point into two Weyl points is not the only
possible process. In fact, a Dirac point can also evolve into
a topologically protected nodal loop located in the mirror
plane [57]. We now show that this is exactly what happens
using Hβ from Eq. (6) to break inversion symmetry.
As before, we first expand the Hamiltonian H̃ þHβ

around the Dirac point at k0 (see Supplemental Material
[55] for the resulting effective Hamiltonian). Let us look at
this Hamiltonian along the k1 direction perpendicular to the
mirror plane. The spectrum along this line is

Eðκ1; 0; 0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβk0;2Þ2 þ κ21ðβ � νÞ2

q
; ð9Þ

which is always nonzero for κ1 ≠ 0, even for infinitesimally
small values of β. Zero-energy states are therefore expected
to be located in the mirror plane at k1 ¼ κ1 ¼ 0.
To obtain the energies in the mirror plane, we look at the

spectrum along arbitrary lines through the Dirac point. We
parametrize these lines by their slope η; i.e., we look at lines
of the form ð0; κ; ηκÞ. We obtain

EηðκÞ ¼ �ðκ þ k0;2Þ �
ffiffiffiffiffi
Aη

p
λ3

κ; ð10Þ

where Aη ¼ 4λ23ðfk0;2 þ ck0;3ηÞ2 þ ðν − λ3ηÞ2ðλ23 þ ν23Þ.
From this, we determine the location of zero-energy states

kN;η ¼
−λ3βk0;2

λ3β �
ffiffiffiffiffi
Aη

p ð0; 1; ηÞ: ð11Þ

Each state is twofold degenerate similar to the Weyl-point
solutions above. However, the structure of the solutions is
qualitatively different as we show in Supplemental Material
[55]: The set of zero-energy states forms a closed line.

We again check our analytical findings against numerical
results for our SnTe model. The spectrum along a cut
through the BZ is shown in Fig. 3 along with the E ¼ 0
Fermi surface in the mirror plane k1 ¼ 0. In accordance
with our analytical study, the Dirac points evolve into
elliptical twofold degenerate lines located in the mir-
ror plane.
The nodal lines are topologically protected by mirror

symmetry [43,57]. The mirror plane at k1 ¼ 0, accommo-
dating the nodal lines, is invariant under reflection.
Therefore, the mirror operator M and the system
Hamiltonian HðkÞ commute for all momenta in this plane
and all states can be assigned a well-defined reflection
eigenvalue ξ ¼ �i. This is illustrated with different colors
in Fig. 3(a). We observe that the reflection eigenvalues of
occupied states inside the nodal ellipses are different from
the ones outside the ellipses; namely, ξin ¼ f∓ i;∓ ig and
ξout ¼ f∓ i;�ig (for k≷0). These values cannot change
unless the bulk energy gap closes locally, which happens
along the nodal lines. Therefore, the nodal lines are
protected. The corresponding topological invariant is com-
puted from the difference of occupied states with mirror
eigenvalue −i inside and outside the ellipses [43]. We
obtain νline ¼ �1 for k≷0.
Conclusions.—We have shown that systems in the SnTe

material class are a new potential platform for Weyl and
nodal line semimetals. The key ingredients are a rhombo-
hedral distortion, induced by an elastic strain along the
[111] direction, followed by inversion-symmetry breaking.
By deriving and analyzing a minimal k · p model, we have
demonstrated how this two-step symmetry-reduction proc-
ess leads to the appearance of topologically stable Weyl
nodes. Complementary, we find that the mirror symmetry

FIG. 3. Spectrum of the SnTe model with λ2 ¼ −1.14 eV,
λ3 ¼ 2.0 eV, and β ¼ 0.4 eV (broken inversion symmetry) in
the local momentum-space coordinate system centered at L0.
(a) Dispersion along a line parametrized by k ¼ ð0; k; 1.2kÞ:
There are four twofold degenerate band crossings at zero energy.
The mirror eigenvalues of the bands have been indicated in green
(þi) and red (−i). (b)E ¼ 0Fermi surface (blue lines) in themirror
plane at k1 ¼ 0. The spectrum features two nodal loops. For
comparison, the approximate analytical solutions for the nodal
lines have been indicated (dashed orange lines). The black dashed
line represents the momentum-space cut shown in (a). Energies E
are given in eV. Momenta k are displayed in units of π=a.
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in group-IV tellurides also gives rise to a semimetallic
phase featuring topologically protected nodal lines, a class
of systems for which only a few candidate materials have
been put forward.
There are various, feasible ways to realize our proposal

experimentally. First, the conditions for the symmetry
reduction are naturally provided in the low-temperature
ferroelectric phase of SnTe and GeTe, which could there-
fore represent novel Weyl ferroelectric semimetals [60,61].
Moreover, additional external strain, pressure, or alloying
[48,49,62–65] could be employed to tune the parameters of
the systems. In fact, a recent experimental report supports
the existence of semimetallic phases in Pb-alloyed SnTe
under pressure [66]. Another route is the use of substrates
with different lattice structures. This could induce an
inhomogeneous strain close to the substrate interface
mimicking a ferroelectric distortion.
Finally, our proposal could also be applied to group-V

semimetals such as Bi and Sb [67]. These materials are in
the rhombohedral space group R3̄m with an inversion
center and have a similar band structure as group-IV
tellurides [68]. To realize Weyl nodes or nodal lines, one
could therefore use thin films where inversion symmetry
can be broken by either using substrates, as explained
above, or externally applying a perpendicular electric field.
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