
A Comparative Study on Pseudo Random Number
Generators in IoT devices

Efe Alkan
Daily Supervisor: Miray Aysen

Responsible Professor: Dr. Zekeriya Erkin
Cyber Security Group, Department of Intelligent Systems

Delft University of Technology

Abstract

Pseudo-random number generators are the essential part of many security protocols such as
signature schemes, key-exchange protocols and encryption algorithms. The security of these
protocols is usually dependent on the quality of the generators they use. The generation of
unpredictable random numbers supplies refreshment to the protocols, which makes them harder
to break. In this paper, an extensive comparative study made on some of the well known and
some interesting pseudo-random generators. These generators consist of xorshift, xorshiftStar,
PCG, CMWC and Fortuna. They are tested according to some criteria, which consists of
efficiency, security and statistical randomness quality. Possible IoT usages are suggested for each
generator according to their results. In the end, for the xorshift and xorshiftStar generators,
improvements are suggested to increase their statistical quality and security.

1 Introduction
Internet is one of the most fastest-growing technology with more than 3 billion increase in usage in
the past twenty years [1]. With internet usage, many life-impacting technologies such as messaging
systems, e-commerce, web technologies, cloud systems exist. However, these technologies cannot be
used without a device. We can combine all the devices that can connect to the internet under a
paradigm called the Internet of Things (IoT). This paradigm refers to the connection of physical
devices with virtual networks. IoT devices connect to the internet using wireless networks that
generate massive amounts of data using their sensors/actuators and shares data with other devices
with or without human intervention [2].

In the last decade, the number of IoT devices has increased significantly. These devices are es-
sential as they are used as an integral part of almost every field, ranging from healthcare to the
manufacturing industry to smart homes to wearable technology [3]. Nowadays, even the most es-
sential appliances such as coffee machines or microwaves can connect to the internet and controlled
by smartphones.

Unfortunately, every IoT device is vulnerable to cyber-attacks. Data gathered by IoT devices might
be considered sensitive information, including personal and private information such as the camera
view of someone’s home, personal messages, log consisting of date and time of someone being at
home and many more. DoS (Denial of Service), MITM (Man-In-The-Middle), and modification-
of-message [3] are some examples of the attacks which can thread someone’s social/personal life or

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



security. Thus, security protocols such as authentication protocols, signature schemes and encryp-
tion algorithms are used in IoT devices to protect the devices against cyberattacks. These security
protocols all have one common property, that is, they all use Random Number Generators (RNG).

RNG’s are an integral part of the security protocols because they should provide random and
unpredictable sequences of bits to be used as initialization vectors, keys and nonces for these proto-
cols. RNG’s refresh the algorithms by changing the inputs of the algorithm every time the algorithm
is used. RNG’s are essential for obtaining high levels of security because if an attacker breaks the
RNG for some protocol, then the attacker can bypass the protocol by guessing the states and keys
in most cases.

There are two types of Random Number Generators; True Random Number Generators (TRNG)
and Pseudo-Random Number Generators (PRNG) [4]. TRNG’s are defined to be non-deterministic
generators that are dependent on the hardware. Properties like nuclear decay, photons, thermal
noise and atmospheric noise influence the true randomness. However, in practice, generating true
randomness with computers is not possible. Thus, in computer software, PRNG’s are used to
simulate TRNG’s by generating pseudo-random numbers [4]. PRNG’s are defined as determinis-
tic, meaning that if a computer can generate a number, another computer can generate the same
number with the same inputs. However, lack of true randomness does not influence security since
pseudo-randomness with great unpredictability is usually enough.

In the IoT world, the biggest challenge is efficiency. Algorithms used in IoT have to work effi-
ciently due to IoT device’s low computational power and memory. Thus, all algorithms used in IoT
devices, including PRNG’s have to be efficient as possible to decrease the load on the device and
the memory consumption.

In this paper, PRNG’s are compared in a detailed way to suggest a suitable usage for these in IoT
devices. Four PRNG’s are chosen, consisting of Complementary-Multiply-With-Carry (CMWC),
Permuted Congruential Generator (PCG), xorshift and xorshiftStar. Although there are many
studies on the xorshift family, there are very few in-depth comparative studies that include most of
these selected PRNG’s.

Later in this paper, we do investigate the usage of lightweight block ciphers as PRNG’s to pos-
sibly ensure more unpredictability compared to the traditional PRNG’s studied in this paper. The
lightweight block cipher used as a PRNG that is discussed in this paper is called Fortuna. There are
some other examples of lightweight block cipher usage as a PRNG, such as the Yarrow algorithm,
AES-CTR. However, Fortuna is chosen for this study because it is one of the most recent and known
ones. This paper aims to be a comparative study of these PRNG. The comparison criteria consist
of the following; security, empirical statistical randomness, time and space efficiency.

The structure of the paper is the following; section 2 gives brief background information about
the studied PRNG’s. The main properties and structures of the studied PRNG’s are described to
serve as preliminary knowledge. The section 3 is about the responsible research where the ethical
implications of this research are discussed. The following section is about the methodology and the
results of the experiment. This section describes the experiment and the comparison criteria. In
this section, results and the observations are presented as well. Then in section 5, results presented
in the previous chapters are discussed to derive conclusions for the studied PRNG’s. Section 6 gives
future recommendations about the possible improvements related to the studied PRNG’s. Last but
not least, in the section 7, a conclusion is given, which summarises the results obtained.

2



2 Background Information
In this section, brief information about the structure and the properties of the PRNG’s, xor-
shift(star), CMWC, PCG and Fortuna, are given.

2.1 Xorshift
Xorshift is a pseudo-random number generator that George Marsaglia designed in 2003. It is similar
to linear-shift-feedback registers (LSFR) [5] as it only uses xor (exclusive or) and shift operations
without requiring complex mathematical operations. Since xor and shift operations are fast to
perform in computers, xorshift can generate a 32-bit random number super fast and efficiently. As
can be seen in Figure 5 in the appendix, Xorshift generates the initial number by first seeding a
32-bit arbitrary value to the state and then taking the xor of the state and the shifted-bit version
of itself three times. (Note that, "∧" is the xor operation, "�" is the left shift and "�" is the
right shift). The number of shifts (ex. 13, 17, 5) used in xorshift is suggested by the Marsaglia, but
the implementer can change them. The result of xor and shift operations becomes the generated
random number. Finally, xorshift overrides the value of the state with the generated number. The
algorithm uses the updated version of the state to generate future random numbers.

2.2 XorshiftStar
There are multiple improved versions of xorshift where they all aim to add some non-linearity;
xorshiftstar is one of them. XorshiftStar uses the xorshift with an additional non-linear multiplica-
tive operation. As can be seen from Figure 6 in the appendix, in xorshiftStar, after the algorithm
overrides the value of the state, it applies an arbitrary multiplication to the generated number.
Only after this operation, the algorithm returns the generated number. This way, it adds confusion
to the state. There are multiple versions of xorshiftStar, such as xorshiftStar64, xorshiftStar128,
xorshiftStar1024, where the numbers represent the bit-length.

As a side note, improved versions of xorshift does not mean xorshift cannot be used anymore.
The usage of these generators all depends on the application’s purposes. If the security has no pri-
ority, then people can still use xorshift to generate a random number. More about this is discussed
in section 5.

2.3 Permutated Congruential Generator
Linear-Congruential-Generators (LCG) [6] are not cryptographically secure and easy to predict due
to their linear structure. Permutated Congruential Generator (PCG) is a pseudo-random number
generator based on the classical LCG. It was developed in 2014 by M.E O’Neill with an aim to
improve the statistical properties of the classical LCG.

Figure 7 in the appendix shows the structure of the PCG. First, the state is initialized in the
Initialization step by summing the random seed with an arbitrary increment value, as can be seen
from the inner structure of the Initialization step from Figure 8 in the appendix. PCG consists of
two main parts; one called the state transition function, and the other called the output function [7].
PCG uses the classical LCG in its state transition function to generate a number. In the transition
function, first, the state for the next round gets calculated, then the number is generated from
XORing and shifting the old state (inner structure of transition function from Figure 8). Then the
rotation value is generated, which is used in its output function (inner structure of output function
from Figure 8). The non-linearity comes in with its output function where the generated number is

3



distorted by using the rotation value, bit-shift, AND and OR operations.

There are multiple types of PCG; XSH-RR, XSL-RR, RXS-M-XS [8]. The most significant dif-
ference between these types is the bit lengths of the seed value and the output value. XSH-RR
starts with a 64-bit seed value and outputs a 32-bit number, XSL-RR starts with a 128-bit seed
value and outputs a 64-bit number, and RXS-M-XS starts with a 32-bit (or 64-bit) seed value and
outputs a 32-bit (or 64-bit) number. The type that is considered in this paper is XSH-RR.

2.4 (Complementary) Multiply-with-Carry
Multiply-with-Carry (MWC) is a pseudo-random number generator that George Marsaglia discov-
ered in 1994. Marsaglia even mentioned MWC as the mother of all PRNG due to its simplicity and
efficiency. Later in the 1997’s, R. Couture and P. L’Ecuyer improved the MWC and came up with
the Complementary Multiply-with-Carry generator.

It consists of two parts; initialization and the generator. In the initialization part, like all other
PRNG’s, arbitrary seed values are initialized. However, the number of the seeds is more than one
and generally equals the cycle length, which is suggested as 4096 by the designer [9]. Also, the
numbers "a" and "b" must be chosen before starting the generation process. All of the initially
chosen values must not be consists of zero’s.

The idea of the generator comes with the following equation;

xn = (b− 1)− (a · xn−r + cn−1) mod b, cn = ba · xn−r + cn−1

b
c,

where "r" is the seed that is being used, "b" is the base, and "a" is the multiplication value [9].
"xn" is the output of the generator where "n" represents the index of the generated number.

2.5 Fortuna
Fortuna is a pseudo-random number generator developed by Bruce Schneier and Niels Ferguson in
2003. It is an improved alternative to the Yarrow algorithm [10]. Figure 1 shows the structure of
Fortuna, which consists of two main parts; generator and entropy accumulator [11].

As a generator, it uses a secure block cipher such as AES [12], but choosing the block cipher is
open to users. The block cipher works in the counter mode, which uses block cipher as a stream
cipher. In counter mode, the block cipher generates the keystream in a blockwise fashion. The
counter is a function, and the algorithm uses it as an input taking a different value every time the
block cipher generates a new keystream. The algorithm regenerates the key after every usage to
prevent exposing the older outputs.

Fortuna uses an entropy accumulator to collect data from different sources such as computer-
dependent events, time, mouse movement and more. It stores the data in its pools, waiting to
(re)seed the generator. In Fortuna’s original design, there are 32 pools, but the implementer can
alter this number. The algorithm uses the pools with lower id’s more frequently, while the pools
with higher id collect random data. Once there are enough random data in the pools, it can seed
the generator and generate a random number.

4



Figure 1: Structure of the Fortuna generator using AES [13].

3 Responsible Research
This research aims to compare certain PRNG comparatively. This is done by first literature survey,
and then implementation and testing the PRNG according to some criteria mentioned before. The
main possible ethical problems with this paper could be biased analysis due to mistakes in imple-
mentations or picking one PRNG and representing it in a better way than it is. To prevent these
kinds of possible issues, all implementations are implemented using multiple references to reduce
possible misunderstandings and mistakes. The tests have been performed using a well-respected
test suite correctly by first understanding their introductive examples. The results of the CPU time
measures are the mean of hundred trials to be more precise. None of the PRNG’s except the im-
proved xorshift family is done by us, so we tried to be concise and unbiased as much as we can. We
analyzed the PRNG by using the results of the tests and the information found by literature surveys
to minimize the bias towards a certain PRNG. All of the test results are presented throughout the
paper.

4 Results and Methodology
In the results section, the results of the tests and the observations made about the studied PRNG’s
are presented to be later discussed in section 5.

In this experiment, the studied PRNG algorithms are implemented in the C programming language.
An empirical randomness test suite called TestU01 [14] is used to test the implemented PRNG’s.
We chose to use TestU01’s Big Crush test suite because it is one of the most well-respected test
suites in the industry for testing the randomness of the generators. Big Crush test contains 106
different tests, and for some tests, it uses different parameters, making the total test count 160. For
every test, it calculates a p-value. For the test to be a pass, its p-value needs to be in the range
which is [0.001, 0.999] by default. One drawback of this test suite is that it only accepts 32-bit
inputs meaning that generators producing numbers more than 32-bits cannot be used directly [18].
Thus, if the generated number has more than 32-bits, then the generated number needs to be split
into pieces, and these pieces need to be tested individually. Out of all the studied PRNG’s in this
experiment, only the xorshiftStar generates a 64-bit number. Therefore, the 64-bit output is split
into lower and upper bits, tested individually and then combined.

We measured the CPU time it took to generate a hundred million numbers in hundred trials and
took the mean of these trials. We also included the file sizes of the implemented PRNG in the

5



results section. Even though the file sizes are implementation-dependent, they still give average
comparative results.

All of the tests have been performed on Ubuntu virtual machine with a 4GB ram in windows
based Hp-laptop with an i7 processor, 16GB ram and GTX 1050 graphics card. In order to run the
Big Crush test suite, TestU01’s source package needs to be downloaded from their website [15].

Table 1: Big crush test results, showing the number of test failures and the names of the
systematic failures. Higher number means it’s randomness statistics is worse.

Big Crush Test Results
Name of the
PRNG

Number of
test fails for
higher bits

Number of
test fails for
lower bits

Total num-
ber of test
fails

Systematic Test
Failures

Xorshift-32 (59/160) - (59/160) MatrixRank,
LinearComp, Per-
mutation, Close-
Pairs, Fourier,
CollisionOver,
SerialOver, Gap,
MaxOft

Xorshiftstar-64 (1/160) (4/160) (5/160) MatrixRank,
LinearComp,
BirthdaySpacings

PCG (1/160) - (1/160) PeriodsInStrings

CMWC (0/160) - (0/160) -

Fortuna - - - -

Table 2: Shows the time the generators take to generate hundred million numbers and the total
file sizes of the algorithms.

Comparison Table
Name of the
PRNG

CPU time to gener-
ate 108 numbers (in
sec)

Total file size (in
bytes)

Xorshift-32 1.93 563

Xorshiftstar-64 1.95 897

PCG 1.96 1200

CMWC 2.11 2300

Fortuna - -

6



5 Discussion
In this section the results that are presented in section 4 are discussed to find possible vulnerabilities
and then suggest possible usages of the studied PRNG’s in IoT device usage.

Secure generators and cryptographically secure generators (CSPRNG) do not have the same mean-
ing. A secure generator means a non-cryptographically secure generator (NCSPRNG) that performs
great on statistical randomness tests. The outputs of some NCSPRNG might represent true random-
ness with possibly having a somewhat high unpredictability with no or minimal patterns between
the numbers. However, this does not mean they are not entirely unpredictable. For an average
user who has very little or no knowledge of the security topics, the outputs of NCSPRNG can look
genuinely random and unpredictable. However, an experienced attacker might break NCSPRNG
and predict the bits to be generated next. Some NCSPRNG’s are easier to break, while other
NCSPRNG’s can be more challenging to break. The difficulty of breaking NCSPRNG depends on
how they are designed structurally (number of periods, non-linearity, state). All NCSPRNG are
designed to be used for different purposes, so it is essential to consider their usage purposes.

In applications where security is essential, it is crucial to use CSPRNG instead of NCSPRNG
[17]. Generally, CSPRNG’s are tough to break unless the attacker learns the inner state of the
generator. Most CSPRNG’s use a secure encryption algorithm as their generators that follow block
or stream cipher structure. These encryption algorithms are usually combined with different kind of
entropy sources. Thus, when analyzing the studied PRNG’s, it is vital to cover both their security
levels and the efficiency in order to suggest proper usage in IoT devices.

5.1 Xorshift
The xorshift fails 59 test cases of Big Crush, as can be seen in Table 1. It is the worst one perform-
ing out of all the studied PRNG’s. It fails all the cases (with different parameters) of MatrixRank,
CollisionOver, SerialOver, ClosestPairs and LinearComp tests. We can call these failures systematic
failures because their p-values are less than 10−10, which are way out of the expected range; [0.001,
0.999]. These high number of systematic failures indicate a severe problem with the randomness
of the xorshift generator. For example, the SerialOver test divides the interval [0, 1) into d pieces
and uses the PRNG to generate n vectors with overlaps [14]. Then it maps these vectors to the
divided pieces to compare the number of corresponding vectors. Failure of SerialOver indicates that
some of the generated numbers by the xorshift generator are closer to each other than the rest. This
means users may find patterns between the generated numbers which can lead to high predictability.

Xorshift is not cryptographically secure due to its design. The next and previous numbers can
easily be predicted due to their linear structure. As described in section 2, it contains three consec-
utive xor and shift operations without any non-linear operation. This makes the xorshift generator
easily guessable.

According to Table 2, the xorshift generator is the fastest in terms of CPU time to generate a
number out of all the studied PRNG’s. Its file size is 563 bytes which are the smallest compared
to the other studied PRNG’s. The reason for xorshift to be very fast and very small in code size
is because of its design; it is designed to be super-fast [18]. Computers can perform the operations
xorshift uses, meaning bit-wise operations, even faster than arithmetic operations.

Even though xorshift generators are very speed and time-efficient, they should not be used in any
IoT application due to their security concerns. There are some improved versions of xorshift; one is

7



called xorshiftStar, which is discussed next.

5.2 XorshiftStar
XorshiftStar is the improved version of the xorshift with the additional multiplicative operation as
described in section 2. Since the version of the XorshiftStar used in this experiment produces a
64-bit output, we had to divide the output as higher and lower bits. When we run the Big Crush
tests on the higher bits, it fails only 1 test case called BirthdaySpacings as can be seen in Table 1.
However, when we run the lower bits, 4 test cases of the Big Crush fail. These failures indicate, its
lower bits are more vulnerable and predictable. These failed tests are called the MatrixRank and
LinearComp tests. When we combine the results, it fails a total of 5 tests of the Big Crush. These
failures are systematic failures since most of the p values of the failed tests are less than 10−300,
which are immensely out of the expected range. However, we can see that a simple arbitrary mul-
tiplicative operation adds a massive improvement to the xorshiftStar generator as it fails five tests,
whereas the original xorshift generator fails 59 tests. With this operation, xorshiftStar can hide its
state from the users.

According to the statistical tests, the xorshiftStar generator performs worse than PCG and CMWC.
According to the Table 2, the xorshiftStar generator is the second-fastest in generating a number
and the most size efficient after the xorshift. The slight difference between these two generators
is that they are mainly similar except for a multiplicative operation and the generated output bit
length. The reason for xorshiftStar to be faster than the rest of the studied PRNG’s is that it has
a simpler structure compared to the rest. The other studied PRNG’s are designed to require more
complex operations instead of having just three shit, xor and a multiplicative operation.

Although xorshiftStar performs not bad in statistical tests and contains a non-linear operation,
it is still considered as an NCSPRNG because it is designed to provide high-quality and fast num-
ber generation [18] instead of providing cryptographic security. Thus, xorshiftStar should be used
in IoT applications where security is not the main priority, but speed and memory efficiency is
essential. Any IoT application that contains vulnerable or personal private data should not have
the xorshiftStar generator as their PRNG. The applications for xorshiftStar could be smart lighting
systems (LED animation shows), personal robotics projects, smart appliances such as smart coffee
machines, smart fridges and such.

5.3 PCG
PCG is the most recent generator out of all the studied PRNG’s. It has a more complex design
than the xorshift family and CMWC, using two primary functions as described in section 2. The
version we used in this study is XSH-RR, which is initialized with 64-bit numbers and produces
32-bit outputs. For this reason, we do not need to split the output into lower and higher bits.

PCG performs excellent on the Big Crush test, failing only 1 test called PeriodsInStrings as can be
seen in Table 1. The p-value of the failing test is 3.1 ∗ 10−4, which is close to the expected range
[0.001, 0.999]. Since the p-value of the test is too close to the expected range, we run the Big Crush
for PCG five times, and out of all the three rounds, PeriodsInStrings fail with a similar p-value
while it does not fail in the other two runs. It is not possible to detect the reason why sometimes
it fails and sometimes not, but we believe that this failure difference is happening because of either
two reasons; one is due to the initial seed value, which is implemented as dependent to the time,
and the other one is that the Big Crush shows some bias or false-positives towards some results or
seeds for the PCG. Thus, it is not right to call this failure directly a systematic failure, but we still

8



keep this test as a fail since it fails half the time. PCG performs better than the xorshift family and
slightly worse than CMWC in statistical quality.

According to the Table 2, the CPU time to generate a hundred million numbers takes 1.96 sec-
onds, which is nearly the same as the xorshiftStar’s. The file size of PCG is slightly more than the
xorshiftStar, with a total size of 1200 bytes. However, if we compare the CPU time and file size of
the PCG and the xorshiftStar, PCG is the winner. PCG takes 1.96 seconds with a code size of 1200
bytes, whereas xorshiftStar takes 1.95 seconds with a code size of 897. These numbers show that
even though the structure of the PCG contains more operations than the xorshiftStar’s, PCG is
more speed efficient with larger code size. The reason for xorshiftStar being less efficient compared
to the PCG could be that it becomes slowed down while running three parallel 64 bit XOR and
shift operations consecutively using a single core (Although all of the implementations are tested in
the same environment).

PCG generators are designed to be fast general-purpose generators that perform great on statistical
tests [19]. The output function provides high non-linearity better than xorshiftStar and CMWC by
revealing only some tiny part of the state. However, this does not mean that an attacker cannot
crack them. According to the designer of PCG, it is very challenging to break the PCG [20]. There
is not much study and information on breaking the PCG, but according to a study made in 2020,
they predicted the secret information of the PCG using 2.3 CPU years of computation [20]. Thus,
PCG is considered as an NCSPRNG with high toleration to attacks more than most of the other
NCSPRNG. After considering the tests and the security of the PCG, we recommend that PCG
can be used in all IoT applications where xorshiftStar can be used, plus in applications where the
security and the efficiency needs a balance. These applications can include personal and private
data that has not much importance in case of an attack. Examples of IoT applications for using the
PCG could be smart home systems like home entertainment systems, interactive systems like smart
public route guides, smart airport guides or machines like smart farm irrigation systems.

5.4 CMWC
CMWC is the oldest generator in this study and the best one performing in the Big Crush test
with 0 failing tests, as can be seen in Figure 1. To ensure the correctness of the test result, we
performed the test a couple of times, resulting in the same result. This result shows that the ran-
domness of the generated numbers is perfect, with minimal patterns between the generated numbers.

Figure 2 shows that the CPU time it takes to generate a hundred million numbers is 2.11 sec-
onds with a large file size of 2300 bytes. These numbers are the larges ones in Figure 2, although
this generator is mentioned as a simple and efficient generator by its designer. However, if we com-
pare the ratio of the code size and CPU time, just like we did in the PCG section, CMWC becomes
the winner. PCG generates a hundred million numbers in 1.96 seconds with a code size of 1200 bytes
(1200÷ 1.96 = 612), whereas CMWC takes 2.11 seconds with a 2300 bytes (2300÷ 2.11 = 1090).

One of the biggest advantages of the CMWC comes with its period. Its period length can reach
up to 10453 efficiently, depending on the chosen "a", "b" and "r" values [21]. Every program must
end up before starting to repeat itself, and the number of this is called the period. A higher period
means larger amounts of non-repeating numbers, which is one of the aspects we want from a PRNG.

Although CMWC has many advantages mentioned previously, it is considered as an NCSPRNG,
meaning that it is not secure for cryptographical applications. Even though it has extensive peri-
ods, an attacker can still predict the numbers by exposing its states. This is, however, not easy as

9



breaking the xorshift or xorshiftStar.

We can see that CMWC is similar to PCG in terms of results and security. We cannot decide
which one is more secure as it requires more in-depth cryptoanalysis knowledge, but we believe they
are similar to each other due to their states and inner structures. CMWC is actively being used in
games. However, we can suggest that CMWC can be used in applications where PCG can be used.
The choice of using either PCG or CMWC depends entirely on the user. If the size of the program
is essential, PCG should be used, but if the overall efficiency is important, then we suggest CMWC.

5.5 Fortuna
Fortuna is the only generator that uses a block cipher in this study. It is considered one of the nicest
CSPRNG’s out there. It might seem like an unfair comparison with the other studied PRNG’s. How-
ever, we believe that this comparison is valid as all of these PRNG’s have different usage purposes
due to their security and efficiency levels. The main focus is to see which one should be used for
what purpose. One of the drawbacks of this comparison is that we do not have the Big Crush and
efficiency results for Fortuna. One of the main reasons this is the case is that implementing the very
complex structure of the Fortuna and using it with the Big Crush test is a very challenging and
problematic process that we could not manage to finish in the given time. Thus, we primarily use
references to other studies to discuss Fortuna.

One of the main advantages of Fortuna is the usage of AES as its generator. AES is proven to
be one of the most secure generators of all time. It gives a massive advantage in terms of security as
it is impossible to gain the state of the generator just by analyzing the output [17]. If an attacker
cannot find out the state, then they have very, very little chance to guess the previous or future
generated numbers. Another advantage of the Fortuna comes with its pools. Thirty-two pools seed
the generator, and these pools can take up several years before being emptied [22]. This means that
when an attacker attacks with an injection attack to the pools, it is very challenging for them to
control all of the pools at once. Thus, if an attacker cannot control all of the pools, the generator
continues to be secure as it can use its other untouched pools to seed the generator.

One of the main drawbacks of the Fortuna comes with its greatest advantage. AES has a de-
terministic nature [4], which means an attacker can predict all of the future generated numbers once
they get to learn the inner state. To prevent the exploitation of the inner state values, the key used
for the AES has to be randomly changed every time the generator is used.

According to a study, hardware implementation of the Fortuna instead of software implementa-
tion increases its security [13]. It is because when information about the state and the pools are
stored inside of the RAM, it becomes more challenging for the attacker to access them [13].

Fortuna is designed to be used in cryptographical-secure applications, unlike the other studied
PRNG’s. Thus, Fortuna is the most secure PRNG studied in this paper. However, although we
do not have concrete test measures, we believe that the efficiency (CPU time to generate numbers
and file size) of the Fortuna is the worse out of all the studied PRNG’s. It is because, as can be
seen in section 2, its structure is the most complicated with 32 pools, pool manager, key generation
and a block cipher, namely AES-256, while the other PRNG’s contain basic mathematical opera-
tion such as AND, OR, XOR, bit-wise shift, multiplication and addition operations, which are fast
to perform in computers. Thus, Fortuna should be used when security has very high importance,
while efficiency has a lower priority. These IoT applications can include sensitive private data that
others should not know. Examples for these applications can be home monitor systems (camera’s),

10



smart-watches, home interaction systems (Alexa, Siri), smart electric cars, and public systems such
as train, bus schedule monitoring.

6 Possible Improvements and Recommendations
In this section, we are discussing the improvements that are made for the xorshift and xorshiftStar
generators and presenting the results of these improved versions.

Xorshift and xorshiftStar generators are high-speed and efficient generators but weak in terms
of security. The main goal was to improve their non-linearity by making their structure more con-
fusing. We came up with an idea and implemented it in C language to see whether it differs in
statistical tests. We discuss only the statistical aspect and the possible drawbacks of these improve-
ments. Since we are not experts in cryptanalysis, we cannot say that the improvements increase the
security of the generator or not, but we can only give suggestions. Thus, all of the improvement
ideas mentioned in this chapter should be further studied by a cryptanalysis expert.

The main idea is to combine these generators with secure S-boxes. S-boxes are usually used in
encryption ciphers to distort the data [23]. For an S-box to provide confusion, it must be designed
in a way that it should be resistant against cryptoanalysis attacks. The security of many block
ciphers are dependent on many things but most importantly, their underlying S-boxes. We aimed
to increase the non-linearity of these PRNG’s, and we decided to achieve these by combining the
generators with S-boxes. That is because security proven S-boxes can create high amounts of con-
fusion by substituting the data. This is already done with many existing block ciphers but not with
a single NCSPRNG’s. Thus, we wanted to test the combination of S-Box’s with xorshift family
generators to see if they actually work. One reason why this approach has not been used could be
that NCSPRNG’s are usually designed for speed and efficiency instead of providing high security.
Our initial thought was that by adding S-boxes, generators efficiency would decrease, making their
design and usage’s quite different from their original design, but we believe that it would make them
more unpredictable. These implementations are tested and compared later in this chapter.

One other important point to consider is that designing secure S-boxes is challenging even for
cryptography experts. These boxes are tested with many cryptoanalysis attacks before being used
in applications. Thus, we chose to use an S-box of an existing secure cipher called PRESENT [24].
It uses a 4x4 S-box as can be seen in Figure 2.

Figure 2: 4x4 S-Box used in PRESENT block cipher [25].

We could have chosen a larger secure S-Box such as AES’s 8x8 S-box, but the larger the S-box
becomes, the heavier the process works. Although we aim to improve the unpredictability, we also
try to keep a balance between security and efficiency.

As can be seen in Figure 3, our version of the xorshiftStar adds additional steps after the multipli-
cation operation. After the multiplication, either the higher 32-bits or, the lower 32-bits (depending
on which we want to test) is selected. Then selected bits are divided into 4 bytes in order to be
used in a 4x4 S-Box. These 4 bytes are individually fed into the S-Box, and then the resulting

11



outputs of the S-Box are combined in a permutated order. The state has to be used for later num-
ber generations. Thus, protecting the state of the generator is trivial for the security of a PRNG.
After saving the state for the subsequent usage, with the help of multiplicative operation plus the
additional S-Box and permutation, we distort the state to become different from the original state.
Thus, it becomes harder to trace back to the original state, increasing its unpredictability for future
generated numbers.

Figure 3: Structure of the improved xorshiftStar.

The idea for the xorshift is similar to the one we did on xorshiftStar but in a more complex and
heavier way. The structure that we applied to the xorshiftStar did not increase the complexity of
the xorshift generator the way we expected. In the statistical tests, there was an improvement of
16 tests (59 fails reduced to 43 fails), but this was not enough for our aims. We wanted to achieve
a clear improvement in statistical tests, reducing most of the systematic failures. We did not want
to add multiplicative or additive operation between the S-Box and xorshift steps because they are
already done in xorshiftStar and xorshiftPlus generators. After tons of trial and errors, we decided
to use two S-Boxes; one is the original S-Box of the PRESENT, and the other one is the inverse of
it, which made the structure way complicated.

As can be seen in Figure 4, the structure after the xorshift part is the following; first of all 32-
bit number is divided into 4 bytes and fed into the initial S-Box. Then two of the resulting bytes
are fed into the same S-Box again. However, the other two bytes are fed into the inverse of the
S-Box. Additional S-Box is used to separate two of the bytes selected randomly to create more
confusion. After all of the bytes are fed into the S-Boxes, we take the xor of the outputs of the
S-Boxes with some of the initial bytes that were calculated before the S-Box step. These xor steps
are performed between different rounds to reduce the probability of re-tracing the S-Boxes. These
steps are repeated 20 times before they are combined in permutated order, and returned to the user.

12



Figure 4: Structure of the improved xorshift.

As can be seen from the Table 3, improved versions of the generators increase the statistical quality
of the original generators. Improved xorshiftStar fails zero tests of Big Crush while the original one
fails five tests. This statistical improvement comes with a new and more non-linear structure, as
described before. We believe that the improved version is more secure than their original version,
and the other studied NCSPRNG’s (This claim is just a suggestion that should be further studied!).
The generated numbers are confused and distorted in a way that it becomes harder to find patterns.
Re-tracing the state of the generator becomes more challenging due to a more compact structure.
Thus, the non-predictability of the improved version can be higher than its original version. One
problem could be that if the inner structure gets exposed, it can become weaker, just like some block
ciphers or any other PRNG’s because an attacker can simulate the generation process and possibly
expose the state. Thus, it is essential to protect the inner structure (the seed, multiplicative value,
and the permutation logic) to provide high security.

Table 3: Comparison of the Big Crush test results of the original Xorshift(Star) and our version.

Big Crush Test Results
Name of the
PRNG

Number of total
test fails for the
original version

Number of total
test fails for our
version

Xorshift-32 (59/160) (8/160)

Xorshiftstar-64 (5/160) (0/160)

The improved xorshift fails eight tests of Big Crush, while the original version fails 59 tests. These
results show a substantial statistical improvement as the original xorshift is considered a weak
generator in security and statistical quality. Even though the structure of the improved xorshift is

13



more complicated than the improved xorshiftStar, xorshiftStar still performs better than it. The
main difference between the two is that one contains arbitrary multiplicative operation and the
other does not. For testing purposes, we also tried improved xorshift (Figure 4) with an additional
multiplicative operation in between the S-Box and xorshift steps, and the result of the Big Crush
was higher (0 failing tests). As a side note, the original xorshiftStar performs even better than the
improved xorshift. Thus, it can be concluded that a single arbitrary operation that the users do
not know can create huge differences. We believe that it is the case because by multiplicating the
number k with number b, we can end up with a number z that is way different and far away from
the original number. Thus, predicting the final number becomes challenging when the users do not
know the multiplication and the original state.

Table 4: Comparison of the GPU times and file sizes of the original Xorshift(Star) and our
version.

Comparison Table
Name of the
PRNG

GPU time to
generate 108

numbers for
the original
version (in
sec)

GPU time to
generate 108

numbers for
our version
(in sec)

Total file size
for the orig-
inal version
(in bytes)

Total file
size for our
version (in
bytes)

Xorshift-32 1.93 7.35 563 2800

Xorshiftstar-64 1.95 2.32 897 2100

Table 4 shows the time the generators take to generate a hundred million numbers and their total
file sizes. Xorshift generator family is originally designed for speed and efficiency. However, with
our improvement’s, this is not further the case. We mainly focused on increasing their security,
which resulted in less efficiency than the original versions and the other studied PRNG’s. Improved
xorshiftStar generates a hundred million numbers in 2.32 seconds while the original takes 1.95 sec-
onds with an increase of 0.38 seconds. However, the improved xorshift is even performing worse in
terms of efficiency as it takes 7.35 seconds while the original version takes 1.93 seconds, an increase
of 5.42 seconds due to its heavier structure.

After testing the improved xorshift with 20 rounds, we played with the number of rounds and
found that rounds larger than 10 give the same statistical results. Thus, to increase efficiency, we
could use ten rounds instead of 20. When we use ten rounds, the time it takes to generate a hundred
million numbers decreases to 4.5 seconds from 7.35 seconds. However, this number is still too large
for a PRNG that was initially designed for speed.

If we look at both the statistical quality and the efficiency, improved xorshift does not add many
benefits compared to the improved xorshiftStar. Thus, we do not recommend the usage of the im-
proved xorshift until it is further studied to be more efficient. However, we think that the improved
xorshiftStar becomes the perfect PRNG compared to the other studied PRNG’s for IoT device usage.
This is because it performs a perfect score on the statistics, and we believe that the combination of
multiplicative operation and the additional S-Box structure makes the generator more secure than
the PCG, CMWC and xorshift (note that an expert should further study this claim!). Even though
it performs quite lower on efficiency scores, the difference between the other studied PRNG’s is not
that much. Thus, for IoT applications requiring a balance between security and efficiency, improved

14



xorshiftStar usage is recommended. Maybe further development of this improvement idea can turn
the NCSPRNG xorshiftStar into a CSPRNG xorshiftStar.

A similar structure applied to xorshiftStar may be applied to PCG or CMWC as well. However, due
to the time limit, we do not consider these cases in this study. Thus, it could be a beneficial future
study to test and experiment with the PCG and CMWC generators using the S-Box structure.

7 Conclusion
This research aims to compare PRNG’s straightforwardly by analyzing their statistical quality, se-
curity and efficiency. It has been done using literature studies and with actual testings. All of the
studied PRNG’s are designed for specific purposes where their security and efficiency levels differ.
For a PRNG to be secure, its inner state must not be exploited, and the resulting outputs must be
unpredictable with minimal or no visible patterns. As a result, we see that xorshift is a not-secure
but most efficient generator, which should not be used in IoT applications where security is essen-
tial. XorshiftStar is the improved version of xorshift, which is more secure than the original one
but still can be breakable. PCG is one of the most balanced NCSPRNG in terms of security and
efficiency, which can be used in most IoT applications where security and efficiency needs a balance.
The results of the CMWC is very similar to PCG, just with larger code size. Fortuna is the only
CSPRNG studied in this paper, and because of its design (usage of pools and AES-256), it is the
most secure PRNG out of all studied PRNG’s. However, due to its complex and heavy structure,
it is the least efficient one.

As a possible improvement, xorshift and xorshiftStar generators are combined with S-Box struc-
ture to increase their complexity and confusion. We see that these improvements increased their
statistical quality but decreased their efficiency. We also believe that these improvements made
them more secure than the original versions, but a cryptoanalysis expert should further study this
claim.

A Figures

Figure 5: Structure of the Xorshift-32.

15



Figure 6: Structure of the XorshiftStar-64.

Figure 7: Structure of the PCG XSH-RR. (Note that output is 32-bit instead of 64-bit)

Figure 8: Inner structures of the PCG Functions.

References
[1] M.Roser, H.Ritchie, E. Ortiz-Ospina (2015). Internet [Online]. Available:

https://ourworldindata.org/internet

16



[2] P. Sethi and S. R. Sarangi, âInternet of Things: Architectures, Protocols, and Applications,â
Journal of Electrical and Computer Engineering, vol. 2017, pp. 1â25, 2017.

[3] V. Rao and K. V. Prema, âA review on lightweight cryptography for Internet-of-Things based
applications,â Journal of Ambient Intelligence and Humanized Computing, 2020.

[4] T. Prescot, "Random Number Generation Using AES," 2011.

[5] Richard P. Brent, "Journal of Statistical Software, Oxford University," Oxford University, 2004.

[6] S. Tezuka, âLinear Congruential Generators,â Uniform Random Numbers, pp. 57â82, 1995.

[7] M. E. O’Neill, âPCG, A Family of Better Random Number Generators,â PCG, A Better Random
Number Generator, 20-Aug-2014. [Online]. Available: https://www.pcg-random.org/.

[8] M.E. O’Neill, "PCG, A Family of Simple Fast Space-Effecient Statistacilly Good Algorithms for
Random Number Generation," CA 91711, USA, 2014.

[9] âMultiply-with-carry pseudorandom number generator,â Wikipedia, 06-
May-2021. [Online]. Available: https://en.wikipedia.org/wiki/Multiply-with-
carry_pseudorandom_number_generatorComplementary-multiply-with-carry_generators.

[10] J. Kelsey, B. Schneier, and N. Ferguson, âYarrow-160: Notes on the Design and Analysis of
the Yarrow Cryptographic Pseudorandom Number Generator,â Selected Areas in Cryptography,
pp. 13â33, 2000.

[11] T. Kohno, N. Ferguson, and B. Schneier, Cryptography engineering: design principles and
practical applications. Indianapolis, IN: Wiley Pub., Inc., 2010.

[12] A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, and E. Tischhauser, âALE: AES-Based
Lightweight Authenticated Encryption,â Fast Software Encryption, pp. 447â466, 2014.

[13] R. McEvoy, J. Curran, P. Cotter, and C. Murphy, âFortuna: cryptographically secure pseudo-
random number generation in software and hardware,â IET Irish Signals and Systems Conference
(ISSC 2006), 2006.

[14] P. LâEcuyer and R. Simard, "A Software Library in ANSI C for Empirical Testing of Random
Number Generators," Universite de Montreal, 2013.

[15] âTestU01,â Empirical Testing of Random Number Generators. [Online]. Available:
http://simul.iro.umontreal.ca/testu01/tu01.html.

[16] TestU01 Installation Guide. [Online]. Available: http://simul.iro.umontreal.ca/testu01/install.html.

[17] A. Rock, "Pseudorandom Number Generators for Cryptographic Applications," Paris-Lodron-
Universitat Salzburg, 2003.

[18] S. Vigna, âAn Experimental Exploration of Marsaglia’s xorshift Generators, Scrambled,â ACM
Transactions on Mathematical Software, vol. 42, no. 4, pp. 1â23, 2016.

[19] M. E. O’Neill, âPredictability,â PCG, A Better Random Number Generator, 17-Oct-2014.
[Online]. Available: https://www.pcg-random.org/predictability.html.

[20] C. Bouillaguet, F. Martinez, and J. Sauvage, âPractical seed-recovery for the PCG Pseudo-
Random Number Generator,â IACR Transactions on Symmetric Cryptology, pp. 175â196, 2020.

17



[21] M. Goresky and A. Klapper, âEfficient multiply-with-carry random number generators with
maximal period,â ACM Transactions on Modeling and Computer Simulation, vol. 13, no. 4, pp.
310â321, 2003.

[22] âFortuna (PRNG),â Wikipedia, 13-Jan-2021. [Online]. Available:
https://en.wikipedia.org/wiki/Fortuna_(PRNG).

[23] H. M. Heys, "A Tutorial on the Implementation of Block Ciphers: Software and Hardware
Applications," Memorial University of Newfoundland, St. John’s, Canada, 2020.

[24] D. Irwin, P. Liu, S. R. Chaudhry, M. Collier, and X. Wang, âA Performance Comparison of the
PRESENT Lightweight Cryptography Algorithm on Different Hardware Platforms,â 2018 29th
Irish Signals and Systems Conference (ISSC), 2018.

[25] A. Bogdanov, I.R Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B Robshaw, Y. Seurin
and C. Vikkelsoe, "PRESENT: An Ultra-Lightweight Block Cipher," Horst-Gortz-Institute for
IT security, Germany and Technical University Denmark, 2007.

18


	Introduction
	Background Information
	Xorshift
	XorshiftStar
	Permutated Congruential Generator
	(Complementary) Multiply-with-Carry
	Fortuna

	Responsible Research
	Results and Methodology
	Discussion
	Xorshift
	XorshiftStar
	PCG
	CMWC
	Fortuna

	Possible Improvements and Recommendations
	Conclusion
	Figures

