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1. Introduction

With the increasing demand for transition to renewable energy and products, the
prediction of thermodynamic properties of organic chemicals is critical for the de-
sign, simulation, and optimization of chemical processes as well as the design of new
products with improved environmental properties [1]. Accurate and reliable property
predictions are crucial for applications ranging from reaction and separation processes
to energy storage and sustainable chemical production [2, 3]. For example, sustain-
able aviation fuel (SAF), as an alternative for reducing greenhouse gas emissions from
the aviation sector, requires various production pathways, such as hydroisomerization
and hydrocracking of long-chain alkanes, for tailoring the properties to meet strin-
gent performance and environmental requirements [4]. To enable accurate modeling
and process design for SAF production, it is essential to understand the thermody-
namic properties of both linear and branched hydrocarbons involved in these catalytic
transformations [5]. The experimental determination of thermodynamic properties of
branched hydrocarbons can be costly, time-intensive, and impractical for many com-
pounds, particularly for large branched molecules [6].

Group contribution methods (GCMs) have become a widely-used approach for es-
timating thermodynamic properties based on the total summation of contributions of
molecular substructures [7]. In these methods, the properties of a compound are esti-
mated as a summation of the contributions of simple aspects of the structural groups,
which are named as first order groups. In this way, properties can be gained fast
by just examining the molecular structure. GCMs provide the important advantage
of quick estimates without requiring substantial computational resources [8]. These
methods have evolved significantly and incorporated first order and more complex
groups, namely higher order groups, to enhance accuracy and account for molecular
complexities such as branching and isomerism [6]. GCMs are versatile and capable
of predicting a wide range of thermodynamic and transport properties. Commonly
estimated properties are the critical temperature (Tc), pressure (Pc), volume (Vc),
boiling (Tb) and melting points (Tm), Gibbs energies of formation (G0 → H

0(0K)),
enthalpies of formation (H0 →H

0(0K)), absolute entropies (S0), Gibbs free energies
of formation (!Gf ), enthalpies of formation (!Hf ), and constant pressure heat ca-
pacities (c0p). The temperature over which GCMs can be applied normally covers a
range of 298 to 1500K but GCMs made specifically for temperature outside this range
are scarce as GCMs are developed based on experimental data [9].

Despite the success in short-chain organic compounds and mixtures, classical meth-
ods, in which a compound is estimated as a summation of the contributions of first
order groups that can occur in the molecular structure, often face limitations in pre-
dicting properties for highly branched compounds, long-chain molecules, or systems
with incomplete group libraries [10]. Recent advancements [11–13] have focused on
improving these methods by refining group contributions, integrating statistical mod-
els, and enhancing computational power. A key innovation has been the development
of approaches that use higher order group interactions, which refers to interactions
beyond isolated functional group like the influence of neighboring atoms or branches
on a central group, to capture molecular intricacies more e”ectively and accurately
[5, 8]. These methods have demonstrated enhanced accuracy for complex systems, of-
ten exceeding the precision of earlier models, while reducing the reliance on extensive
parameterization.

In this paper, to support the urgent need for more advanced GCMs, the research
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status of GCM was reviewed and some of the most representative GCMs will be ex-
amined for a better reference for the application at di”erent scenario. The review
is organized into several key sections, beginning with the fundamental principles of
GCMs, followed by a detailed evaluation of classical and modern methods, including
Lydersen, Joback, CG94, and Sharma models. The review also introduces applications
in pure components, mixtures, and process design, before concluding with recent ad-
vancements and future research directions.

2. Fundamentals of group contribution methods

2.1. Principles and approaches

The fundamental principle of a GCM is that the physical properties of a molecule
are determined by its molecular structure and the interactions and chemical bonds
between its atoms. In an ideal scenario, if a complete understanding of the interac-
tions acting on each atom is known, all the physical and chemical properties of a
molecule can be accurately determined. However, approximations are necessary be-
cause of the complexity of the intramolecular interactions and intermolecular interac-
tions. Intramolecular interactions, such as steric hindrance, resonance, and ring strain,
play a key role in determining properties related to internal energy and flexibility of
the molecular structure like Tc, S0, while intermolecular interactions significantly af-
fect properties like Tb and enthalpy of vaporization, where the strength of interactions
between molecules determine phase behavior.

Since the energy of atoms is mainly a”ected over very short distances, it is gener-
ally assumed that an atom is primarily influenced by its immediate neighboring atoms.
This implies that if an atom has the same local environment in di”erent molecules, it
should behave similarly, regardless of the overall molecular structure. For instance, a
carbon atom bonded to three hydrogen atoms and one nitrogen atom exhibit the same
contribution to the properties of a molecule whether it is part of N-methylpyrrolidine
or trimethylamine. This approximation forms the basis of GCMs. It is worth mention-
ing that GCMs provide an empirical approximation to the full quantum mechanical
(QM) solution by capturing average structural contributions rather than explicitly
solving the Schrödinger equation for each molecule. Therefore, GCMs are typically
more e”ective for estimating intramolecular properties like !Gf and !Hf , but may
be less accurate for properties that strongly depend on intermolecular interactions,
such as Tb and Tm [14].

In GCMs, specific atomic arrangements, namely ”groups” that can consist of one or
more central carbon atoms, are assigned numerical values representing their contribu-
tions to a given molecular property. By adding up the contributions of all functional
groups within a molecule, the total sum correlates with or directly determines the
overall physical properties of the molecule. This approach simplifies the property pre-
diction and is widely used in computational chemistry and molecular design [15]. To
determine the numerical values of group contributions, linear or non-linear regres-
sion analysis is commonly applied in the development of GCM. A set of experimental
property data for known molecules is used to fit a linear (or non-linear) model, where
the contribution of each functional group is treated as a regression coe#cient. The
general form of the equation used is:
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P =
∑

i

GiNi + ω (1)

where P is the target physical property or a function of the target property, Gi repre-
sents the contribution of each functional group, Ni is the number of times that group
appears in the molecule, and ω is a fitting parameter that also determines P . By ap-
plying statistical methods, such as least-squares regression, the optimal values of Gi

are obtained. One of the main di#culties in this approach is that an extremely large
number of groups would be required to describe all possible combinations of atoms
and nearest neighbors. Even if these groups could be identified, the lack of su#cient
experimental data would prevent statistically significant estimates of their contribu-
tion values. To address this, further approximations are made. One key assumption is
that the contributions of many groups are not highly dependent on the exact identity
of all nearest neighbors as organic compounds often include di”erent types of atoms
[15]. For instance, in the case of a carbon atom bonded to three hydrogen atoms and
one nitrogen atom, its contribution to molecular properties could be approximated as
a carbon bonded to three hydrogen atoms and any non-hydrogen atom, rather than
specifically a nitrogen atom. This simplification reduces the number and complexity
of group definitions and increases the statistical reliability of contribution values [16].

2.2. First order group contributions

In GCMs, first order groups represent basic functional groups in a molecule that con-
tribute to the estimation of physical properties. These groups typically consist of single
atoms or small clusters of atoms that define the primary structure of a molecule, with-
out considering more complex interactions. First order groups are directly assigned
contribution values, which are summed up to estimate pure component properties like
Tb, Tc, and H

0→H
0(0K). These groups are independent of the molecular environment

and contribute the same value to the properties of a molecule , regardless of the rest
of the molecular structure [17]. Examples of first order groups can be a methyl group
(→CH3), a methylene group (→CH2→), a hydroxyl group (→OH) and a carboxyl group
(→COOH). Each of these groups has a predefined numerical value Gi (see Eq. 1) that
contributes to the calculation of various thermodynamic and physical properties. The
simplicity of first order groups lies in the use of pre-determined values, eliminating
the need for complex calculations. Property estimation is achieved by directly sum-
ming the contributions of all first order groups, without relying on additional QM
calculations or extensive experimental data [18]. While first order groups are highly
useful for simple molecules, the limitation in capturing molecular interactions, such
as hydrogen bonding, isomers or steric e”ects, results in the failure of being accu-
rate for polar compounds and complex molecular structures. To improve the accuracy
and applicability of GCM, higher order group corrections that capture more complex
interactions are often necessary.

2.3. Second order group and higher order contributions

The limitations of early GCMs arise because first order groups treat each functional
group without accounting for the influence of neighboring atoms or groups, which
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can lead to a decreased predictive accuracy in systems where intergroup interactions,
steric hindrance, conjugation, or electronic delocalization significantly a”ect thermo-
physical properties. A simple example is the comparison between 2-methylhexane
and 2-ethylpentane with the same molecular formula (C6H14). Although these two
compounds have di”erent structures, first order GCMs do not adequately distinguish
because only the number of first order groups, such as CH3 or CH2, is considered
and the configuration of connectivity of these groups is ignored. Second order groups
solve this issue by considering not just the group itself, but also the nature of its
neighboring atoms, which allows the model to better account for branching and other
structural e”ects, thereby improving the prediction of isomer-specific properties.

Second order group contributions are introduced to address these limitations and
extend the first order approximation by capturing the interactions between adjacent
first order groups. Importantly, second order groups are not merely refinements and
are based on underlying molecular theories, which consider how the local chemical
environment modifies group behavior. For example, in the group CH2(CH3)(CH), the
central CH2 is influenced by both neighboring substituents CH3 and CH, captur-
ing branching e”ects more accurately than first order representations. Such groups
can be identified using QM calculations [18]. One of the earliest methods to consider
corrections beyond simple first order additivity was proposed by Benson [9], which
introduced systematic rules for estimating thermodynamic properties, including the
heat of formation, using group contributions while explicitly incorporating symmetry
and steric e”ects as corrections to the standard group additivity framework. This can
be viewed as an initial conceptual foundation for higher order contributions, espe-
cially in the context of heat of formation, by recognizing the importance of molecular
topology and electronic structure in modifying group behavior.

Multiple definitions of second order groups of hydrocarbons exist in the literature,
depending on the structural phenomena being captured—such as steric bulk (e.g.,
the tert-butyl group –C(CH3)3), symmetry, or resonance [19]. These groups are some-
times parameterized through ab initio calculations or detailed structural enumeration,
o”ering corrections to first order GCMs and helping reduce systematic bias [20]. In
addition, statistical methods like sensitivity analysis can be used to evaluate the im-
pact of each second order group on the overall prediction performance by analyzing
how small changes in the presence or frequency of specific groups a”ect the error of
the model [21]. In this way, which groups contribute most significantly to predictive
accuracy can be identified.

Higher order group based on second order groups contributions go even further
by considering long range intramolecular interactions, molecular topology, three-body
e”ects, and even connectivity indices. These are particularly valuable for modeling
properties in large, branched hydrocarbons or macromolecules, where simple addi-
tive models break down [22]. Higher order terms based on molecular theories help
capture the non-linearity and cooperative e”ects that first and second order GCMs
may miss, making them useful in fields such as drug design, polymer science, and
advanced material development [23]. Nevertheless, it is worth noting that property
estimation methods beyond second order groups (third order, fourth order, etc.) in-
troduce a large number of model parameters which can satisfactorily regenerate the
experimental data used to be introduced, but have questionable extrapolating behav-
iors. Despite the potential to improve accuracy, second and higher order GCMs come
at the cost of increased complexity and are more di#cult to parameterize. As the
number of interactions and structural variations grows, so too does the number of re-
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quired parameters and the size of the training dataset needed for reliable calibration.
To overcome this, recent advances advocate for hybrid models that combine GCM
frameworks with data-driven techniques—including machine learning and Artificial
Intelligence (AI) [24]. These approaches allow for flexible parameter tuning, auto-
mated feature discovery, and scalable correction models that preserve interpretability
while improving performance [11, 25]. At the same time, it should be emphasized that
high interpolation accuracy does not guarantee reliable extrapolation performance.

3. Applications of group contribution methods for pure component

properties of hydrocarbons

The number of possible molecular structures increases exponentially with carbon num-
ber (Table 1), making it practically impossible to synthesize and experimentally mea-
sure all compounds [25]. For instance, there are over 75,000 isomers of branched alka-
nes with ten or more carbon atoms. This complexity is particularly relevant in the
context of hydroisomerization processes, where accurate thermodynamic property es-
timation is essential for designing optimal reaction conditions [5]. GCM has developed
rapidly over the past half decade and many mature models have emerged as a con-
venient way to provide estimations of thermodynamics proprieties for pure organic
molecules lack of experiment data [7]. More information is provided to three group
contribution methods [8, 15, 26] which, based on the literature [27] have been evolu-
tionary in the development of group contributions and have been extensively used. A
GCMs developed specifically for alkanes [5] is also examined, which exhibits improved
predictive performance for branched isomers and o”ers valuable insights for advancing
the development of structurally sensitive GCM frameworks.

3.1. Lydersen Method

The Lydersen [26] method is one of the earliest GCMs used to predict properties for
organic compounds where critical parameters Tc, Vc and Pc were investigated and
equations of groups contributions of these properties were given as:

Vc /[cm3
/mol] = 40 +

∑
GiNi (2)

Pc /[bar] =
Mw

(0.34 +
∑

GiNi)
2 (3)

Tc /[K] =
Tb

0.567 +
∑

GiNi → (
∑

GiNi)
2 (4)

where Gi is the numberical values of group contributions (see Eq. 1) which are shown
in Table 2 Ni is the occurrence of the groups and Mw is the molar mass of molecule
in [g/mol]. It is worthy mentioning that equation for Tc was gained based on Guld-
berg Rule [28] that Tb expressed in Kelvin is approximately two-thirds of Tc. The
Lydersen Method is simple and widely used for estimating critical properties when
experimental data is unavailable. Comparisons with experimental data show that the
calculated values deviated by less than 1% for Tc and 3.8% for Pc [15]. However, the
method lacks high accuracy when it came to highly branched or heteroatomic com-
pounds where molecular interactions and steric e”ects shall be considered [15]. One
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major disadvantage of this method is that the experimental value of Tb is required to
estimate Tc, which may not always be available. Nevertheless, Lydersen method has
been considered as the prototype for and ancestor of many new models like Joback
[15], Constantinou and Gani [8] and others [29, 30].

3.2. Joback method

The Lydersen method is refined in the Joback Method [15] to improve accuracy and
applicability through the incorporation of additional molecular features that had pre-
viously not been considered. While the Lydersen method was built on first order
groups that assumed the group contribution of each functional as independent con-
tribution to the whole molecule, Joback introduced topological corrections for cyclic
systems, conjugated bonds, and hydrogen bonding e”ects, which is a significant im-
provement over the original model of Lydersen where simple additivity was assumed
without considering more detailed molecule features. In addition to improving the
estimation for the critical parameters, Joback method expands to 12 thermodynamics
properties, namely Tc, Pc, Vc, Tb, Tm, ideal gas heat capacity Cp, !Hf, !Gf, heat of
vaporization (!Hvap), entropy of vaporization (!Svap), heat of fusion (!Hfus) and
some transport properties like the liquid dynamic viscosity (εL). Joback investigated
a broader and more detailed set of first order groups that covered more heteroatoms,
such as nitrogen and halogens, and more functionalized carbon groups, like aromatic
carbon. Groups specific to cyclic structures, conjugated systems, and double/triple
bonds were also considered. The Joback method provides special attention to polar
groups like →OH, →NH2 and →COOH, which strongly influence intermolecular in-
teractions like hydrogen bonding. These groups have more complex contributions to
properties a”ected by intermolecular forces, particularly to εL, heat of vaporization
!Hvap and Tb.

Although the Joback method is still based on first order group contributions, the
design of the group values implicitly reflects common neighboring e”ects without
formally including second order groups, based on the assumption that groups are de-
fined narrowly enough that the surrounding environment is partially accounted for
and adjusted group definitions to capture the influence of ring strain in small cyclic
molecules, resonance e”ects in conjugated systems such as aromatics, and branch-
ing penalties by distinguishing between groups in branched and linear environments.
These considerations allow the method to be more structurally aware and sensitive
that reflected complex molecular geometries and interactions without explicitly in-
troducing higher order interaction terms called ”pseudo-second order” e”ect within a
first order framework, which provided a new path for definition of high-order groups
for future models.

Some of the thermodynamics properties equations derived by Joback are shown
below:
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Tm/[K] = 122.5 +
∑

GiNi (5)

Tb/[K] = 198 +
∑

GiNi (6)

Tc/[K] = Tb

[
0.584 + 0.965

∑
GiNi →

(∑
GiNi

)2
]→1

(7)

Unlike Lydersen method where Tb was used empirical data, the Joback method directly
provided an equation for estimating Tb when experimental values are not available.
The critical volume and pressure were given:

Vc /[cm3
/mol] = 17.5 +

∑
GiNi (8)

Pc /[bar] =
[
0.113 + 0.0032Na →

∑
GiNi

]→2
(9)

where Ni is the number of groups of type i in the molecular structure. This equation
improved on Lydersen method by incorporating the impact of molecular structure,
ensuring that branched and cyclic molecules were handled with better accuracy.

As mentioned before, Joback also investigated some new properties like !Hvap and
!Hfus. Notably, the method was extended to include certain transport properties,
such as liquid viscosity εL at standard temperature and pressure, broadening the
applicability of GCMs beyond just thermodynamic properties:

!Hvap/[kJ/mol] = 15.30 +
∑

GiNi (10)

!Hfus/[kJ/mol] = →0.88 +
∑

GiNi (11)

εL/[Pa · s] = Mw exp

[
(
∑

εaNi → 597.82)

T
+

∑
εbNi → 11.202

]
(12)

where Mw is the molecular weight in [g/mol]. The values Gi for Joback method are
shown in Table 3. The Joback method extended group contribution methods by en-
abling the estimation of a broader set of thermodynamic properties. Compared with
the Lydersen method, the Joback method introduced improved group definitions and
took the structural e”ects like branching, and ring strain into account to enhance the
accuracy for a wider variety of organic compounds. Nevertheless, while the Joback
Method improved performance for moderately complex molecules, newer develop-
ments in GCMs have revealed its limitations in extrapolating to large and complex
molecules, as well as in handling strongly associating groups [15]. These shortcomings
are likely due to the relatively small and limited database used by Joback and Reid
to derive the group parameters [31]. It also has unrealible extrapolating behaviour for
properties such as Tc and Pc [8]. Despite these limitations, Joback Method remains a
widely used group contribution method due to its wide applicability and simplicity,
and one of the most influential of the original framework of Lydersen.
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3.3. Constantinou and Gani method (CG94)

The Constantinou-Gani Method [8] (CG94) was proposed in 1994. Based on
the foundational work of earlier models such as Lydersen and Joback methods,
which relied on first order group contributions and assumed additive behavior of
independent functional groups, the CG94 was developed to overcome the limi-
tations of earlier GCMs. While Lydersen and Joback methods provided decent
and reasonable accuracy for small, simple molecules, these methods struggle with
molecules containing multiple functional groups, isomeric variations, and extended
conjugated systems where localized interactions and structural dependencies could no
longer be neglected [30]. Constantinou and Gani introduced a more systematic and
theoretically grounded group contribution framework capable of accounting for the
e”ects of molecular topology, neighboring group interactions, and the e”ect of specific
bonding arrangements on thermodynamic properties. The method was designed to
estimate a broad range of critical and thermodynamic properties, including Tc, Pc,
Vc, !Hf and !Gf, directly from molecular structure with improved accuracy and
wider applicability. By the incorporation of a hierarchical group definition system
and the more detailed consideration of molecular complexity, CG94 was seen as
an important step forward in the evolution of group contribution methodologies
and established a versatile and reliable tool for property prediction for a diverse
set of organic compounds to date cited more than 1000 times. The most notable
refinement made in CG94 is its two-level group contribution framework. In CG94,
first order groups were defined representing basic functional fragments of molecules
like those used in Lydersen and Joback methods, which captured the primary
contributions of individual atoms and small functional units. Constantinou and
Gani introduced second order groups to account for structural dependencies, local
interactions, and topological e”ects based on the principle that molecular properties
are not solely dictated by isolated groups but are also significantly influenced
by the surrounding molecular environment. These second order groups served as
correction factors that modify the contributions of first order groups based on specific
arrangements of neighboring groups, the presence of conjugation, and the molecu-
lar context in which a functional group exists. The proposed equation for CG94 equals:

f(X) =
∑

i

NiCi +W

∑

j

MjDj (13)

where where f(X) represents the function of estimated value of the target property
X, Ni and Mj are the occurrence of first order groups and second order groups, and
Ci and Dj represent the group contributions. W is assigned as follow:

W =

{
1, both first order and second order groups are used(full model)

0, only first order groups are used (basic model for a first order approximation)

(14)
The determination of the adjustable parameters and second order groups Ni and Mj

is achieved via a two-step and regression procedure designed to ensure accuracy and
independence between the two levels of group contributions:

(1) Regression analysis is performed exclusively on the first order groups, with the
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factorW set to zero, e”ectively deactivating the influence of second order groups.
This allows for the precise estimation of Ci based solely on the primary functional
groups present in the molecule without interference from structural corrections.

(2) The previously determined first order contributions Ci held constant, and the
second order approximation is activated and fitted by setting W = 1. With the
first order contributions fixed, regression is then used to determine the values
of the second order group contributions Dj . This sequential approach ensures
that the second order groups serve as optimization or corrections to the initial
first order approximation, capturing structural and topological e”ects such as
neighboring group interactions and conjugation.

By dividing the regression into two distinct phases, the method maintains the
independence of first order contributions while enhancing overall accuracy through
the systematic incorporation of second order corrections. The selection of second
order groups in the fitting method shall be considered carefully for a better accuracy
of the whole model beheavior. As mentioned before, the definition of first order
group in CG94 was similar to the previous methods, which involved small functional
units such as →CH3 and →CH2→. To be consistent with the group contributions for
mixtures, Constantinou and Gani used the UNIFAC [32] first order groups. Rather
than representing a unique atom or bond type, second order groups were characterized
as a structural relation or interaction between adjacent groups or atoms. These
include systems of conjugated double bonds, cyclic structures, and specific branching
patterns. The incorporation of second order groups enables the model to detect and
correct for structural motifs that influence physical properties beyond the sum of
isolated functional groups. One of the most important structural e”ects accounted
for in second order groups definition is conjugation, which refers to the delocalization
of ϑ-electrons across alternating single and multiple bonds and then creates a system
where electron density is spread over several atoms [33]. This delocalization stabilizes
molecules and change the physical and thermodynamic properties [34]. In CG94,
Constantinou and Gani incorporated conjugation by specific second order groups
that recognize conjugated patterns within the molecular structure based on ABC
approach (Atoms, Bonds, and Conjugates) [35], where conjugation was treated as a
core structural principle, knowing that many molecules exist as hybrids of multiple
conjugate forms. In this way, the classes of conjugate forms having the strongest
conjugation e”ects can be identified by analyzing the contributions of the associated
operators. The group identification focuses on the operators which correspond to the
important conjugate forms, that is, the operators with significantly higher contri-
bution than others. Using these principles, Constantinou and Gani have defined 30
second order groups. For parameter estimation and model calibration, Constantinou
and Gani used an extensive and diverse dataset composed of 370 organic compounds,
varying from hydrocarbons, alcohols, ketones, acids, esters, ethers, and amines, as
well as more structurally complex compounds such as aromatics, conjugated dienes,
and cyclic systems. Eight pure component properties including Tb, Tm and critical
parameters are investigated:
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exp

[
Tc/[K]

tc0

]
=

∑

i

NiCi +W

∑

j

MjDj (15)

(Pc/[bar]→ pc1)
→0.5 → pc2 =

∑

i

NiCi +W

∑

j

MjDj (16)

Vc/[cm
3
/mol]→ vc0 =

∑

i

NiCi +W

∑

j

MjDj (17)

with selected parameters shown in Table 4 and 5. By incorporating second order
corrections to account for structural complexities such as conjugation and branching,
the model achieved a high level of consistency for a diverse range of properties. For
critical properties, the method produced an average absolute percentage deviation of
0.89% for Tc, 2.89% for Pc and 1.79% for Vc, which shows a better performance than
Joback method.

In summary, CG94 represented a significant advancement in the field of GCMs
by introducing a systematic and comprehensive framework of second order groups,
which in a way addressed the limitations of earlier models. By the integration of both
first order and second order groups, this method successfully captured not only the
fundamental contributions of individual functional groups but also the critical influ-
ence of structural features such as conjugation, branching, and ring strain. A clear
set of principles for defining second order groups made sure that the method can
accurately represent localized molecular interactions essential for reliable property es-
timation. With its hierarchical design and consistent group structure applied across
multiple thermodynamic and physical properties, CG94 achieved a superior accuracy
and capability at that time. Its performance over a broad dataset and its ability to
maintain internal consistency across diverse properties established itself as one of the
most influential frameworks in GCMs [36]. Despite its significant contributions and
improved accuracy over earlier methods, the CG94 model has several major limita-
tions. First, its development was based on the experimental data available at the time,
which imposed a constraint on the diversity of compounds used for model calibration
[37]. For instance, the experimental data set used for the regression included a limited
number of complex aromatic, cyclic, and highly branched molecules, which may be
less accurate to such structures, despite its strong extrapolating performance. While
the model introduced second order groups to better account for local interactions, its
physical foundation is somewhat limited—only the second order terms were derived
based on structural theory and the first order contributions remained in the form of a
conventional additive group term (as per the group contribution principle) [38]. Due
to the sparsity of reliable data, several groups were not assigned any contribution val-
ues during regression, leading to gaps in model generality. The method also struggles
to fully describe long-range interactions and global molecular e”ects such as confor-
mational flexibility or electronic delocalization, which are critical for large or highly
interactive systems. As a result, CG94 may fail to capture the complexity of modern
molecular design challenges without further refinement or integration with hybrid,
data-driven approaches especially when distinguishing between branched alkane iso-
mers [5]. Therefore, CG94 requires additional reinforcement with molecular theories
to be in position to capture the reliably the estimation of very complex organic struc-
tures or isomer behaviours extensively. Nevertheless, CG94 still remained one of the
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most reliable and transferable approaches available and has laid the foundation for
the development of even more sophisticated GCMs. It introduces the second order
approximation and demonstrates how molecular theories can be embedded into group
contributions through second order groups without sacrificing the simplicity and ap-
plicability of group contributions [39]. It has also been implemented to one of the most
extensive list of pure component properties, properties of polymers, temperature de-
pendent properties and properties of mixtures [40, 41]. Finally, it was proved to have
robust extrapolating behaviour [42]. Building on the principles of CG94, Marrerro
and Gani [18] added a correction to the original model by introducing a third order
term. Using an extended database, the updated approach improved applicability in
interpolation behaviour. Nevertheless, it may not be able to distinguish among the
complex isomer structures, to extensively encounter molecular symmetry and steric
e”ects. Furthermore, the third order term introduced additional complexity and a very
big number of adjustable parameters in the regression disproportional to the number
of experimental data were used [43]. Finally, Stefanis and Panagiotou [44] successfully
adopted the CG94 method to the estimation of the Hansen solubility parameters .

3.4. Sharma Method

Recent GCMs have aimed to systematically include higher order structural e”ects
to improve predictive accuracy particularly for large and highly branched molecules,
which is essential to industrial processes such as hydroisomerization, hydrocracking,
and fuel production where precise knowledge of properties like !Gf and !Hf is essen-
tial for predicting reaction equilibria, optimizing catalyst performance, and designing
energy-e#cient processes [45]. In isomerization applications, where small structural
di”erences critically a”ect thermodynamic stability and equilibrium, conventional
GCMs fall short due to the inability to distinguish long-chain isomers as the reli-
ability of first order group counts ignores the positional and topological context of
each group. As a result, molecules with identical group compositions but di”erent
connectivity, such as linear and branched isomers, are often treated similarly, leading
to a less accuracy. [46]. To address these limitations, Sharma et al. [5] introduced
an advanced group contribution framework that fully relies on a comprehensive set
of second order groups into a linear regression scheme for the accurate prediction
of !Gf and !Hf of hydrocarbons. Unlike earlier models that often relied on pre-
defined functional or simple group contributions and limited structural corrections,
this method came up with an exhaustive enumeration of only second order groups
to account for the detailed local environments within a molecule, which can provide
greater structural sensitivity and enhanced predictive performance. The main feature
of the Sharma method is its comprehensive and systematic use of second order groups
to accurately represent the local structural environment for long-chain and highly
branched alkanes. Unlike previous group contribution methods that apply a limited
or heuristic selection of second order corrections, this model exhaustively enumerates
all the possible atom combinations surrounding a central atom and forms second order
groups present within a molecule. It captures the e”ects of adjacent group interac-
tions, branching patterns, and local connectivity, which are particularly important in
iso-alkanes where subtle variations in branching can significantly a”ect the thermo-
chemical properties. This complete representation of second order structural features
allowed the model to distinguish between molecules with identical first order group
compositions but di”erent topologies, addressing a major limitation of conventional
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GCMs when applied to large isomeric systems. The definition of second order groups
were built by identifying all the possible atom combinations surrounding a central
atom. These pairs account for direct connections between neighboring carbon atoms
with the respective substitution patterns to reflect the branching and connectivity.
The procedure required enumerating every bonded pair of carbons, recording the na-
ture of surrounding substituents of each pair to capture the subtle di”erences between
linear, branched, and highly branched structures. Through this exhaustive identifica-
tion of bonded pairs across the entire molecule, the model generates a complete set of
second order descriptors, ensuring that no significant local structural variation is over-
looked. This rigorous method allows the model to systematically capture the influence
of localized branching, steric e”ects, and chain topology, all of which are critical for ac-
curately estimating the thermochemical properties of long-chain and highly branched
alkanes.

The model was calibrated using a dataset of 970 long-chain alkane isomers. These
were selected from iso-alkanes ranging from C7 to C20 to ensure diversity in chain
length and branching. This calibration was enabled by the thermodynamic tables com-
piled by Scott [47]. These tables cover a broad range of linear and branched alkanes
based on high-level quantum chemical calculations and provide consistent and reliable
thermochemical data. Examples of second order group defined in the Sharma method
can be seen in the treatment of local environments surrounding a central CH2 unit,
as shown in Figure 1. In both cases (a) and (b), the central united atom is CH2, and
if only first order group contributions would be used, these two environments would
be treated identically, which may lead to inaccurate property predictions because the
influence of neighboring groups would be neglected. By defining second order groups
that explicitly incorporate the identities of adjacent groups, the model can distin-
guish between these environments. This di”erentiation distinguishes the variations in
branching and local connectivity, which can significantly a”ect thermochemical prop-
erties. By considering not only the central group but also its immediate neighbors, the
second order group contribution framework can improve structural sensitivity and en-
hance predictive accuracy, particularly for isomeric systems where subtle di”erences in
local structure have pronounced thermodynamic e”ects. Following this idea, 69 kinds
of second order groups are defined and can be found in Table 6.

Another important feature of the Sharma method is its implementation of
temperature-dependent group contributions through polynomial regression. The
model uses a quadratic polynomial function to each second order group, enabling
the accurate prediction of properties for a wide temperature range from 0 to 1000 K
based on the fact that the influence of structural features on thermodynamic proper-
ties varies with temperature. This approach allowed the model to move beyond the
fixed, temperature-independent parameters of traditional GCMs, and provided a more
flexible and physically consistent framework that accounts for the thermal behavior
of complex hydrocarbons. The resulting model is therefore highly tailored to the spe-
cific challenges of long-chain alkanes. The model demonstrated excellent predictive
accuracy for key thermochemical properties, achieving chemical accuracy within 1
kcal/mol for properties such as !Gf and !Hf. Despite these advances, the Sharma
method remains limited to alkanes and its applicability to other classes of compounds
is uncertain. This is because extending the second order group definitions to molecules
containing heteroatoms (such as oxygen, nitrogen, or sulfur) would require an explo-
sion in the number of group types, which significantly increases model complexity
and reducing practicality. While the single usage of second order groups e”ectively
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captured local interactions, the method does not explicitly account for long-range in-
tramolecular e”ects or global conformational changes, which can a”ect the properties
of very large or highly flexible molecules. In summary, Sharma et al. have provided
a new thought for GCMs by only defining a set of second order groups. Through its
systematic second order group framework, temperature-dependent corrections, and ro-
bust regression strategy, the method has successfully presented a significant progress
in predicting thermochemical properties for complex, branched hydrocarbons.

3.5. Applications for the Prediction of Thermodynamics Properties of
Pure Compounds

Presently, a large number of GCMs have been widely used for prediction and es-
timations of thermodynamic properties of pure compounds in both academics and
industry. One example is the work of Nannoolal et al. [31], who developed a refined
group contribution approach for estimating Tc, Vc and Pc. This method was particu-
larly applied to create a comprehensive and consistent database of critical properties
for a wide range of organic compounds for process design and simulation in the petro-
chemical industry where accurate critical property data are required for phase equi-
librium modeling, distillation column design, and safety assessments of hydrocarbons.
Similarly, Marrero and Gani [18] presented a group contribution framework to esti-
mate multiple thermophysical properties for the application of solvent screening for
separation processes, where hundreds of potential solvents must be evaluated for the
volatility, thermal stability, and compatibility with target solutes. In such design sce-
narios, GCMs enable rapid pre-screening of candidates based on predicted properties
before experimental validation, which can save significant time and resources. Another
example is from Rarey et al. [48], who focused on predicting the thermal conductivity
of organic liquids through group contributions. This model has been particularly rel-
evant in thermal management of heat transfer fluids, where the thermal conductivity
of potential components was investigated for designing e#cient heat exchangers, cool-
ing systems, and other thermal processes in the chemical and energy sectors. More
recently, Csemány et al. [12] evaluated various material property estimation methods,
including several GCMs, for alkanes with a focus on modeling droplet evaporation
processes in combustion applications. The study showed the importance of accurate
prediction of critical properties, vapor pressure, and transport properties (such as ther-
mal conductivity and viscosity) where experimental data are scarce, demonstrating
the continuing relevance of GCMs in the energy sector. Groniewsky and Hégely [49]
proposed an extension of CG94 through an automated group conversion procedure
to broaden the applicability of GCMs to predict vapor pressure and improve acentric
factor estimation, which is especially significant for applications in process engineer-
ing where accurate vapor-liquid equilibrium (VLE) data are essential, but traditional
GCM frameworks face limitations due to incomplete group databases. Overall, these
methods show a wide range of ways group contribution methods that are used across
di”erent industries, including petrochemical process design, separation technologies,
thermal systems, and sustainable chemical development. In all these fields, GCMs are
valuable because of the quick, reliable, and broadly applicable property predictions,
helping researchers and engineers make informed decisions when experimental data
are limited or unavailable.
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4. Applications to mixture property estimation

In industrial practice, most operations, like distillation, extraction, absorption, and
reaction, deal with complex mixtures rather than individual pure components [50].
As a result, understanding how pure component properties combine to define the be-
havior of mixtures is essential for accurate process simulation and equipment design.
In these situations, GCMs are commonly combined with excess Gibbs energy models
to predict mixture properties that are interamolecular like activity coe#cients and
phase equilibria [51]. These models use group contribution concepts to estimate the
non-ideal interactions between di”erent functional groups in a mixture [52]. Such pre-
dictions are especially important when dealing with multicomponent systems where
experimental data are unavailable or incomplete, as is often the case for new solvents,
specialty chemicals, or bio-based feedstocks. A typical example of mixture property
estimation using GCMs is in solvent recovery and recycling, where knowledge of VLE
behavior helps optimize distillation sequences and minimize energy consumption [53].
Another important application is in extractive distillation, where the interaction be-
tween solvent and solute molecules governs the separation e#ciency [54]. Fuller et al.
[55] developed one of the earliest and most widely adopted GCMs for estimating binary
gas-phase di”usion coe#cients, which introduced the concept of di”usion volumes as-
signed to molecular fragments and calculated the di”usion coe#cient via structural
information from each component. The method was calibrated against a large dataset
of 340 binary systems and remained favored in engineering applications due to its bal-
ance of simplicity, broad applicability, and reasonable accuracy. Similarly, in the design
of liquid-liquid extraction processes, GCM-based mixture models can help identify
suitable solvent systems by predicting phase separation and component distribution
without the need for exhaustive experimental testing [56]. A significant advancement
in predicting mixture properties, especially for systems involving complex and asso-
ciating molecules, has been the integration of GCMs with molecular-based equations
of state. One widely recognized framework is the Statistical Associating Fluid Theory
(SAFT) [57], which models fluids based on rigorous statistical thermodynamics by
considering molecular size, shape, polarity, and hydrogen bonding interactions explic-
itly [58]. Variants such as PC-SAFT (Perturbed Chain Statistical Associating Fluid
Theory) extend the SAFT framework by modeling molecules as chains of spherical
segments with explicit association sites, which enables the accurate description of long-
chain, associating, and polar compounds [40]. Papaioannou et al. [59] propose a novel
Group Contribution PC-SAFT methodology to predict the thermodynamic behavior
of complex heteronuclear molecules and multicomponent mixtures where group contri-
butions are defined to fit PC-SAFT parameters systematically, enabling the estimation
of key thermodynamic properties such as phase equilibria and densities even in the
absence of extensive experimental data. The approach proved particularly e”ective for
mixtures involving polar, associating, and long-chain components, thereby broaden-
ing the applicability of predictive molecular thermodynamics to challenging chemical
systems. GCMs can also be powerful tools for the estimation of activity coe#cients,
excess enthalpies, and phase equilibria in binary and multicomponent systems [41]. In
mixtures, GCMs like UNIFAC [60] (UNIQUAC [61] Functional-group Activity Coe#-
cients) and its variants (e.g., E”ective UNIFAC) can capture both combinatorial e”ects
(due to molecular size and shape) and residual interactions (due to energy di”erences
among functional groups), enabling accurate modeling of vapor–liquid, liquid–liquid,
and solid–liquid equilibria [61]. For instance, these methods can be used to predict
azeotropic behavior, miscibility gaps, and solubility of solids in solvents—all crucial
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in process design. When enhanced with more precise group definitions or hybridized
with data-driven models, GCMs o”er a versatile platform for handling the increasing
complexity of real-world mixture behavior [14]. Isamu Nagata and Jitsuo Koyabu [62]
presente a modified GCM—termed the E”ective UNIFACmodel—designed to improve
the estimation of activity coe#cients for predicting phase equilibria. Detailed group
volume and area parameters, group-interaction matrices, and validation examples such
as binary alcohol-hydrocarbon systems and ternary systems like ethanol–water–ethyl
acetate are included and predictions for solubility and excess enthalpy are provided.
This method is rooted in an extension of the e”ective UNIQUAC equation and is
tailored to handle vapor–liquid, liquid–liquid, and solid–liquid equilibria, especially in
complex binary and multicomponent mixtures. The model relies on group-interaction
parameters derived from experimental data and achieves improved prediction accu-
racy, particularly for systems involving alcohols, hydrocarbons, and polar components.

In summary, GCMs have proven to be a tool for the estimation of mixture prop-
erties, for accurate predictions of phase equilibria, activity coe#cients, and other
thermodynamic behaviors in multicomponent systems. By extending the principles of
pure component property estimation to mixtures, GCMs are capable for the modeling
of complex interactions between di”erent functional groups without requiring exten-
sive experimental data. By the integration of GCMs with established excess Gibbs
energy models, such as UNIFAC and its variants, these methods provide reliable and
transferable predictions that support process design, optimization, and scale-up across
a wide range of chemical industries.

5. Application to process and product design, optimization and reaction

kinetics

Besides the estimation of pure component and mixture properties, GCMs can also be
used in the broader context of process and product design and optimization [63]. In
modern chemical engineering, process development increasingly relies on predictive
models that can evaluate not only the feasibility of individual compounds but also
the performance of entire process systems. GCMs provide a critical foundation in this
regard by enabling the rapid estimation of key thermodynamic and physical proper-
ties that feed directly into process simulation, flowsheet design, energy integration,
and economic evaluation. By coupling GCMs with process modeling environments,
engineers can e#ciently explore a wide range of design scenarios, even when working
with hypothetical molecules or novel compounds for which no experimental data exist
[64]. This capability is particularly important in the early stages of process synthesis,
where screening thousands of possible chemical pathways requires fast and reliable
property predictions [19]. GCMs are also deeply integrated into Computer-Aided
Molecular Design (CAMD) frameworks to support the simultaneous optimization of
both molecular structure and process performance [65]. In such workflows, GCMs
allow the property estimation of candidate molecules to be directly linked to process
objectives such as minimizing energy consumption, maximizing product yield, or
reducing environmental impact [66]. Harper et al. [67] developed an extended CAMD
methodology by integrating traditional GCMs with molecular modeling tools and
including a structured approach that progressively refines candidate molecules
across four levels, from group vector assembly to atomic-level structure generation
and 3D molecular modeling using Chem3D. Two industrial application examples
were presented in Ref. [67]: the first involved the design of alternative solvents
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to replace toluene for phenol removal from wastewater, where candidate solvents
were generated, screened, and optimized based on multiple property constraints
including environmental impact and separation performance. The second example
focused on designing solvents for extractive distillation to separate a close-boiling
organic acid mixture, demonstrating the ability of the CAMD method to handle
complex molecular architectures and phase behavior modeling. This work shows how
combining GCMs with detailed molecular modeling can improve property prediction
accuracy, especially when traditional GCMs are insu#cient, and the potential for
CAMD in industrial solvent design, process optimization, and material innovation.
A key advantage of using GCMs in process optimization is the ability to support
multi-scale decision-making, bridging molecular design, mixture behavior, and
full-process performance. For instance, in the development of alternative refrigerants,
green solvents, or bio-based feedstocks, group contribution-based models are used not
only to predict the properties of new substances but also to evaluate the performance
within the overall process, accounting for separation e#ciency, energy demands, and
lifecycle emissions [68]. One example is the work of Gmehling [69], where GCMs were
applied to optimize complex distillation processes, including the design of distillation
columns and the selection of suitable solvents for azeotropic separations. These appli-
cations enabled e#cient process simulation and flowsheet development, particularly
when experimental data are limited or when working with multicomponent systems
that exhibit strong non idealities. This study also emphasized the potential for
further improvement of GCMs to handle increasingly complex mixtures and systems
encountered in industrial practice. Traditionally GCMs have been predominantly
used for the prediction of thermodynamic and physical properties. However, the
application has been successfully extended into the field of chemical kinetics. In
this context, GCMs are used to estimate kinetic parameters such as reaction rate
constants (k) and activation energies (Eact) by decomposing complex molecules into
functional groups whose individual contributions can be systematically summed
[70]. This approach enables the rapid prediction of reaction behavior for large sets
of molecules, significantly aiding in the design and environmental assessment of
chemical processes where experimental kinetic data may be sparse or unavailable [15].
Minakata et al. [70] applied a group contribution method to predict aqueous phase
hydroxyl radical reaction rate constants for various organic compounds, supporting
environmental assessments of pollutant degradation. Saeys et al. [71] propose an ”ab
initio group contribution method” for estimating activation energies in hydrogen
abstraction reactions, which combined quantum mechanical knowledge with group
contributions to improve reaction rate predictions. In these studies, GCMs have
proven e”ective in providing kinetic parameters across diverse reaction systems, from
biological networks to environmental processes and catalytic mechanisms. This fast,
transferable, and systematic way of estimating reaction kinetics based on molecular
structure is becoming a handy tool for both fundamental research and industrial
process development.

6. Future Directions and Research Opportunities

Recent advances in GCM have significantly improved the accuracy and generalizabil-
ity of property prediction, yet several challenges and opportunities remain. Second
order group contributions appear to be a particularly promising direction, which pro-
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vided an e”ective balance between structural complexity and model accuracy, captur-
ing critical local interactions such as branching, conjugation, and hydrogen bonding
[8, 39]. Current studies suggest that while second order groups considerably improve
model fidelity, pursuing higher order group contributions o”ers limited additional ben-
efit and often leads to diminishing returns with increased model complexity [72, 73].
Therefore, the focus remains on refining second order contributions rather than ex-
tending to higher orders [48]. A key priority is to reinforce the group contribution
framework with molecular-level theories while maintaining the second order approx-
imation. Quantum chemical calculations and statistical mechanics may help ground
the definition of second order groups in physically meaningful terms. This integration
can support the consistent treatment of e”ects like molecular symmetry, which is es-
pecially important for accurately modeling isomeric species and complex structural
motifs [74]. Such refinement would also help overcome one of the major current lim-
itations: the inability of many GCMs to distinguish between structurally similar but
functionally di”erent molecules. Despite the rapid adoption of machine learning and
AI in this field, human expertise remains essential, particularly in thermodynamics,
process design, and model interpretation. Chemical insight is still required to define
meaningful molecular fragments, detect thermodynamic inconsistencies, and guide ex-
trapolation in underexplored chemical domains [25]. Future e”orts should also focus on
strengthening extrapolation capabilities. While GCMs perform well in interpolation,
errors and failures occur when extended beyond original training domains. To address
this, better utilization of existing databases—for both interpolation and extrapola-
tion—is needed [7]. Group identification tools and robust similarity metrics can play
a key role in mapping new molecules to known group environments. Simultaneously,
the availability and coverage of property data must be improved, which in turn sup-
ports more reliable process simulation and inverse property estimation frameworks.
With these strengthened foundations, GCMs will be better positioned to contribute
to sustainable process and product development. Reliable property prediction enables
more informed decisions in solvent selection, material screening, and lifecycle design,
ultimately accelerating innovation in green chemistry and circular manufacturing.

One of challenges in GCMs is the ability to extrapolate to large hydrocarbons re-
liably beyond the range of data used for parameterization. While GCMs have proven
e”ective for predicting the properties of well characterized molecules within estab-
lished chemical families, the accuracy decreases when applied to compounds with
novel structural motifs, extreme operating conditions, or larger molecular sizes. This
limitation arises because traditional GCMs are often calibrated using datasets that
primarily cover small to medium-sized molecules, with limited diversity in functional
groups and topologies [32]. Future work must focus on the development of robust
extrapolation strategies that can extend the applicability of GCMs to broader chem-
ical spaces. One promising direction involves the use of hierarchical models, where
first order and second order contributions are complemented by additional correc-
tion terms that capture higher order interactions and long range structural e”ects
[75]. Hybrid approaches that integrate group contribution frameworks with physics-
based models, such as equations of state or molecular simulations, may provide better
extrapolative capabilities by grounding empirical contributions in more fundamen-
tal thermodynamic principles [76, 77]. As traditional GCMs largely rely on empirical
correlations derived from experimental data, most models often struggle with accu-
racy when applied to compounds with unusual electronic structures or rare functional
groups. Recent research [7, 13] has explored the integration of physical chemistry
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principles and quantum mechanical calculations into GCMs. This approach aims to
enhance the fundamental understanding of molecular interactions, thus improving
both the predictive accuracy and the transferability of GCMs to systems beyond the
range of available data. By combining quantum mechanical, such as electron density
distributions, orbital interactions, and non-covalent forces, phenomena like hydrogen
bonding, resonance stabilization, and polarizability features that are di#cult to cap-
ture using only first order additive group contributions can be better described. Hy-
brid models, which combine quantum chemical calculations with group contribution
schemes, o”er a pathway to generate group parameters grounded in first-principles cal-
culations rather than relying exclusively on experimental fitting. For example, Gani
[7] discussed how integrating QM-derived parameters into property estimation mod-
els helps to address cases involving highly polar, reactive, or strained molecules that
challenge conventional GCMs, the development of semiempirical quantum mechani-
cal methods, as shown by Christensen et al. [13], computationally e#cient ways to
calculate molecular interactions and thermodynamic properties can be incorporated
into GCMs to enhance the accuracy for systems involving non-covalent interactions.
In any case, the reinforcement of molecular theories to group contributions should
not be done at the expense of simplicity and wide applicability. Therefore, embedding
those theories into the definition of first and/or second order groups will maintain the
ability of group contributions to support any process and product design framework
in a simple and e”ective manner.

Another limitation of current GCMs is that the reliance on the availability of
high quality experimental data for parameter development and validation. Most ex-
isting GCMs are built on databases dominated by small, well-characterized organic
molecules containing common functional groups [42]. As a result, these models often
fail when applied to complex compounds, such as large biomolecules, polymers, ionic
liquids, pharmaceuticals, and heavily branched hydrocarbons, for which experimen-
tal property data are lacking. Without robust experimental data covering a diverse
range of chemical structures, the extrapolation of GCMs to new molecular spaces
becomes unreliable, compromising the accuracy and generalizability of property pre-
dictions. A key future direction is the systematic expansion of experimental data
libraries, focusing specifically on underrepresented compound classes and functional
groups. This includes generating accurate thermophysical and thermochemical prop-
erty data (such as critical properties, phase behavior, heat capacities, viscosities, and
enthalpies of formation) for structurally complex molecules. High-throughput exper-
imental techniques, along with advanced calorimetry, spectroscopy, and chromato-
graphic methods, are now making it more feasible to measure such properties across
larger chemical spaces [78]. Additionally, collaborative e”orts to develop standard-
ized and open-access databases are essential for ensuring broad usability of new data
for GCM development [79]. Recent initiatives such as the NIST ThermoData Engine
[80] and Dortmund Data Bank [52] have played critical roles in expanding accessible
datasets, but further e”orts are required to include more heteroatomic species, ionic
species, biodegradable compounds, and environmentally relevant pollutants. These en-
riched datasets will not only strengthen the accuracy of existing GCMs but also enable
the creation of next-generation models capable of handling the increasing molecular
diversity encountered in areas like biotechnology, green chemistry, and pharmaceuti-
cal design [81, 82]. Without su#cient experimental data, even the most sophisticated
GCMs are constrained in predictive power. Therefore, continuous expansion and cura-
tion of high-quality, diverse experimental data libraries remain essential to the future
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advancement of GCMs.

The future of GCMs is closely related to advanced computational techniques like
ML, AI and big data analytics. Traditional GCMs rely on linear and additive models,
which is e”ective for many systems yet can fail to capture the non-linear, multi-scale
interactions present in complex molecular systems. By combining GCM frameworks
with modern computational strategies, it is now possible to overcome these limita-
tions, improve predictive performance, and automate the development of new group
parameters [83]. ML algorithms, such as neural networks, decision trees, and support
vector machines, can analyze large molecular datasets to identify hidden patterns and
complex relationships between structural features and properties. These data-driven
models complement GCMs by refining group contributions, correcting systematic er-
rors, and providing corrections where traditional group-additive assumptions break
down. One example can be found in the work of Hwang [11] where the Group Contri-
bution Graph Convolution Neural Network (GC-gcn), a hybrid model that combines
the conventional GCM framework with graph convolution networks (GCNs) was intro-
duced to estimate pure component thermodynamic properties. Instead of representing
molecules with detailed atomic graphs, the GC-gcn model uses functional groups as
nodes, drastically reducing the number of adjustable parameters and making it fea-
sible to train accurate models even with limited thermophysical data. This showed
an opportunity to combine machine learning and modern computational science with
GCMs. Similarly, Mann et al. [84] propose a new perspective to address the limited
flexibility in capturing complex molecular phenomena of traditional GCMs by intro-
ducing the integration of deep learning models to dynamically define and adjust group
contributions, allowing more nuanced structural features to be encoded. In addition,
the framework emphasized the use of explainable AI (XAI) to ensure that the re-
sulting models retain physical interpretability, a crucial factor for reliable property
prediction. This hybrid approach aims to improve both the predictive accuracy and
generalizability of GCMs, especially for novel and diverse chemical spaces.

7. Conclusions

GCMs have been developed as a practical alternative tool to experimental meth-
ods that are often costly, time-consuming, or even impossible for complex and novel
molecules for the prediction of thermodynamic properties of organic compounds. In
this review, we have examined the development and evolution of GCMs, starting
from early models like the Lydersen and Joback methods, which focused on first or-
der groups, to more advanced approaches, such as CG94 and the Sharma method,
which used second order group corrections to capture intricate molecular interactions,
branching e”ects, and conjugation patterns. These innovations significantly improved
the accuracy and applicability of GCMs, particularly for large, highly branched, or
isomeric molecules. In Table 7, an overview of widely used and recently developed
GCMs is provided as a reference for the application to di”erent properties. Despite
these advances in GCMs, challenges still remain. Current GCMs face limitations when
extrapolating to new chemical spaces, handling extreme conditions, especially when
temperature is lower than 298K, or dealing with complex compounds lacking su#cient
experimental data, especially for isomers. Consequently, future research should focus
on enhancing extrapolation models, integrating quantum mechanical insights, expand-
ing experimental datasets for underrepresented molecules, and combining advanced
computational techniques, including machine learning, to build more robust, transfer-
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exhaustive experimentation impractical. GCMs provide a computationally e!cient al-
ternative by predicting properties from molecular structure. The accuracy of GCMs is
inherently limited by the quality of the experimental or QM data used for parameter
fitting. As expectations for predictive models grow, the gap between available exper-
imental accuracy and GCM output must be critically examined. Traditional GCMs
often show reduced reliability when extrapolated to complex molecules or multicompo-
nent systems while recent e”orts integrated ML with GCM frameworks enables models
to learn from data patterns and correct systematic errors [89]. Ultimately, aligning
the accuracy of GCM predictions with the fidelity of underlying data is critical for
advancing in reliable process modeling and sustainable chemical design. In evaluating
future directions for GCM development, it is essential to recognize the inherent trade-
o” between simplicity and accuracy. Simpler models that rely on fewer parameters
and o”er greater robustness and easier extrapolation to new chemical spaces albeit
sometimes at the expense of fine-grained predictive accuracy. In sharp contrast, more
advanced ML-enhanced approaches can achieve higher predictive accuracy but may
su”er from reduced extrapolation capabilities and risk overfitting to specific datasets
[87]. Therefore, the desired level of accuracy must be carefully considered based on
the application context, as di”erent engineering problems demand di”erent degrees of
precision in thermophysical property estimation. Balancing model simplicity, compu-
tational cost, interpretability, and the required predictive fidelity will remain a central
theme in advancing future GCM frameworks. In summary, GCMs continue to evolve
as powerful, adaptable tools that bridge the gap between molecular structure and
macroscopic properties. With rapid developments, GCMs are expected to play an
increasingly important role in advancing green chemistry, process optimization, and
the design of next-generation materials and fuels for more e!cient, sustainable, and
innovative chemical processes.
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Table 1. The number of structural isomers for linear and branched alkanes as a function of alkanes. The
exponential growth in isomer number with increasing chain length shows the combinatorial complexity of
molecular structures [87].

Molecular Formula Chain Length Total No. of Structural Isomers

C3H8 3 1

C4H10 4 2

C5H12 5 3

C6H14 6 5

C7H16 7 9

C8H18 8 18

C9H20 9 35

C10H22 10 75

C11H24 11 159

C12H26 12 355

C13H28 13 802

C14H30 14 1858

C15H32 15 4347

C16H34 16 10359

C17H36 17 24894

C18H38 18 60523

C19H40 19 148284

C20H42 20 366319

C21H44 21 910726

C22H46 22 2278658
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Table 2. Group contribution values used in the Lydersen Method for the estimation of Tc, Pc, and Vc as used
in Eqs. (2)–(4).

Group Tc /[K] Pc /[bar] Vc /[cm3/mol]

–CH3, –CH2– 0.020 0.227 55.0

>CH 0.012 0.210 51.0

–C< – 0.210 41.0

=CH2 0.018 0.198 45.0

=C<, =C= – 0.198 36.0

–CH2– (ring) 0.013 0.184 44.5

>CH– (ring) 0.012 0.192 46.0

>C< (ring) -0.007 0.154 31.0

–OH 0.082 0.060 18.0

–O– 0.021 0.160 20.0

–COOH 0.085 0.400 80.0

–NH2 0.031 0.095 28.0

–CN 0.060 0.360 80.0

–NO2 0.055 0.420 78.0

–S– 0.015 0.270 55.0

=S 0.003 0.240 47.0
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Table 3.: Joback method group contributions values (Gi) for vari-
ous thermodynamic properties including Tb, Tm, Tc, Pc, Vc, !Hf ,
!Gf ,!Hvap, !Hfus, and liquid viscosity coe”cients (ωa, ωb) (see
Eq. 9). Each Gi represents the additive contribution of the corre-
sponding structural group to the estimated property [15].

Group Tb/[K] Tm/[K] Tc/[K] Pc/[bar] Vc/[cm3
/mol] !Hf/[kJ/mol] !Gf/[kJ/mol] !Hvap/[kJ/mol] !Hfus/[kJ/mol] ωa ωb

–CH3 23.58 -5.10 0.0141 -0.0012 65 -76.45 -43.96 2.373 0.908 548.29 -1.719
–CH2– 22.88 11.27 0.0189 0.0000 56 -20.64 8.42 2.226 2.590 94.16 -0.199
-CH– 21.74 12.64 0.0164 0.0020 41 29.89 58.36 1.691 0.749 -322.15 1.187
-C- 18.25 46.43 0.0067 0.0043 27 82.23 116.02 0.636 -1.460 -573.56 2.307
=CH2 18.18 -4.32 0.0113 -0.0028 56 -9.63 3.77 1.724 -0.473 495.01 -1.539
=CH– 17.34 13.72 0.0065 -0.0010 41 12.95 34.72 1.000 0.000 n.a. n.a.
→CH 9.20 -11.18 0.0027 -0.0008 46 79.30 77.71 1.155 2.322 n.a. n.a.
=C= 26.15 17.78 0.0026 0.0028 36 142.14 136.70 2.661 4.720 n.a. n.a.
=C- 24.14 11.14 0.0117 0.0011 38 83.99 92.36 2.138 3.063 n.a. n.a.
–NH2 73.23 66.89 0.0243 0.0109 38 -22.02 14.07 n.a. n.a. n.a. n.a.
-NH (non-ring) 50.17 52.66 0.0295 0.0077 35 53.47 89.39 n.a. n.a. n.a. n.a.
–OH 63.56 20.09 0.0031 0.0084 63 -17.33 -22.99 n.a. n.a. n.a. n.a.
–S– (non-ring) 68.78 34.40 0.0119 0.0049 54 41.87 33.12 n.a. n.a. n.a. n.a.
–S– (ring) 52.10 79.93 0.0019 0.0051 38 39.10 27.76 n.a. n.a. n.a. n.a.
–NO2 152.54 127.24 0.0437 0.0064 91 -66.57 -16.83 n.a. n.a. n.a. n.a.
-F -0.03 -15.78 0.0111 -0.0057 27 -251.92 -247.19 -0.670 1.398 n.a. n.a.
-Cl 38.13 13.55 0.0105 -0.0049 58 -71.55 -64.31 4.532 2.512 625.45 -1.814
-Br 66.86 43.43 0.0133 0.0057 71 -29.48 -38.06 6.582 3.603 738.91 -2.038
-I 93.84 41.69 0.0068 -0.0034 97 21.06 5.74 9.52 2.724 809.55 -2.224
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Table 4.: First order group contribution values Ci for the estimation
of Tc, Pc, and Vc in CG94 [8]. These values represent the contribu-
tions (Gi) of each group to the respective thermodynamic property
and are used in linear summation models to predict critical prop-
erties.

Group Tc/[K] Pc/[bar] Vc/[cm3
/mol]

CH3 1.6781 0.019904 0.07504
CH2 3.4920 0.010558 0.05576
CH 4.0330 0.001315 0.03153
C 4.8823 -0.010404 -0.00034
CH2=CH 5.0146 0.025014 0.11648
CH=CH 7.3691 0.017865 0.09541
CH2=C 6.5081 0.022319 0.09183
CH=C 8.9582 0.012590 0.07327
C=C 11.3764 0.002044 0.07618
CH2=C=CH 9.9318 0.031270 0.14831
CHO 10.1986 0.014091 0.08635
CH3O 6.4737 0.020440 0.08746
ACH 3.7337 0.007542 0.04215
AC 14.6409 0.002136 0.03985
ACCH3 8.2130 0.019360 0.10364
ACCH2 10.3239 0.012200 0.10099
ACCH 10.4664 0.002769 0.07120
OH 9.7292 0.005148 0.03897
ACOH 25.9145 -0.007444 0.03162
CH3CO 13.2896 0.025073 0.13396
CH2CO 14.6273 0.017841 0.11195
CHO 10.1986 0.014091 0.08635
CH3COO 12.5965 0.029020 0.15890
CH2COO 3.8116 0.021836 0.13649
HCOO 11.6057 0.013797 0.10565
CH3O 6.4737 0.020440 0.08746
CH2O 6.0723 0.015135 0.07286
CH–O 5.0663 0.009857 0.05865
FCH2O 9.5059 0.009011 0.06858
CH2NH2 12.1726 0.012558 0.13128
CHNH2 10.2075 0.010694 0.07527
CH3NH 9.8544 0.012589 0.12152
CH2NH 10.4677 0.010390 0.09956
CHNH 7.2121 -0.000462 0.09165
CH3N 7.6924 0.015874 0.12598
CH2N 5.5172 0.004917 0.06705
ACNH2 28.7570 0.001120 0.06358
C5H4N 29.1528 0.029565 0.24831
C5H3N 27.9464 0.025653 0.17027
CH2CN 20.3781 0.036133 0.15831
COOH 23.7593 0.011507 0.10188
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Table 5.: Second order group contribution values Dj for the esti-
mation of Tc, Pc, and Vc in CG94 [8]. These corrections are added
to account for structural e#ects such as branching, ring strain, and
conjugation that are not captured by first order groups.

Group Tc/[K] Pc/[bar] Vc/[cm3
/mol]

(CH3)2CH -0.5334 0.000488 0.00400
(CH3)2C -0.5143 0.001410 0.00572
CH(CH3)CH(CH3) 1.0699 -0.001849 -0.00398
CH(CH3)C(CH3)2 1.9886 -0.005198 -0.01081
C(CH3)2C(CH3)2 5.8254 -0.013230 -0.02300
3 membered ring* -2.3305 0.003714 0.00401
4 membered ring* -1.2978 0.001171 -0.00851
5 membered ring* -0.6785 0.000424 -0.00866
6 membered ring* 0.8479 0.002257 0.01636
7 membered ring* 3.6714 -0.009799 -0.02700
CHn=CHm-CHp=CHk 0.4402 0.004186 -0.00781
CH3-CHm=CHn 0.0167 -0.000183 -0.00098
CH2-CHm=CHn -0.5231 0.003538 0.00281
CH-CHm=CHn or C-CHm=CHn -0.3850 0.005675 0.00826
Alicyclic side chain CcyclicCm (m> 1) 2.1160 -0.002546 -0.01755
CH3CH3 2.0427 0.005175 0.00227
CHCHO or CCHO -1.5826 0.003659 -0.00664
CH3COCH2 0.2996 0.001474 -0.00510
CH3COCH or CH3COC 0.5018 -0.002303 -0.00122
Ccyclic(=O) 2.9571 0.003818 -0.01966
ACCHO 1.1696 -0.002481 0.00664
CHCOOH or CCOOH -1.7493 0.004920 0.00559
ACCOOH 6.1279 0.000344 -0.00415
CH3COOCH or CH3COOC -1.3406 0.000659 -0.00293
COCH2COO or COCHCOO or COCCOO 2.5413 0.001067 -0.00591
CO–O–CO -2.7617 -0.004877 -0.00144
ACCOO -3.4235 -0.000541 0.02605
CHOH -2.8035 -0.004393 -0.00777
COH -3.5442 0.000178 0.01511
* Stress-strain ring corrections treated as second order terms.
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Table 6.: Second order group definitions used in the Sharma method
for branched alkanes [5].

Category Groups

No neighboring groups (CH4) CH4

1 neighboring group (CH3 as the
center atom)

CH3(C), CH3(CH), CH3(CH2), CH3(CH3)

2 neighboring groups (CH2 as the
center atom)

CH2(C)(C), CH2(C)(CH), CH2(C)(CH2), CH2(C)(CH3), CH2(CH)(CH), CH2(CH)(CH2), CH2(CH)(CH3),
CH2(CH2)(CH2), CH2(CH2)(CH3), CH2(CH3)(CH3)

3 neighboring groups (CH as the
center atom)

CH(C)(C)(C), CH(C)(C)(CH), CH(C)(C)(CH2), CH(C)(C)(CH3), CH(C)(CH)(CH), CH(C)(CH)(CH2),
CH(C)(CH)(CH3), CH(C)(CH2)(CH2), CH(C)(CH2)(CH3), CH(C)(CH3)(CH3), CH(CH)(CH)(CH),
CH(CH)(CH)(CH2), CH(CH)(CH)(CH3), CH(CH)(CH2)(CH2), CH(CH)(CH2)(CH3), CH(CH)(CH3)(CH3),
CH(CH2)(CH2)(CH2), CH(CH2)(CH2)(CH3), CH(CH2)(CH3)(CH3), CH(CH3)(CH3)(CH3)

4 neighboring groups (C as the
center atom)

C(C)(C)(C)(C), C(C)(C)(C)(CH), C(C)(C)(C)(CH2), C(C)(C)(C)(CH3), C(C)(C)(CH)(CH), C(C)(C)(CH)(CH2),
C(C)(C)(CH)(CH3), C(C)(C)(CH2)(CH2), C(C)(C)(CH2)(CH3), C(C)(C)(CH3)(CH3), C(C)(CH)(CH)(CH),
C(C)(CH)(CH)(CH2), C(C)(CH)(CH)(CH3), C(C)(CH)(CH2)(CH2), C(C)(CH)(CH2)(CH3), C(C)(CH)(CH3)(CH3),
C(C)(CH2)(CH2)(CH2), C(C)(CH2)(CH2)(CH3), C(C)(CH2)(CH3)(CH3), C(C)(CH3)(CH3)(CH3),
C(CH)(CH)(CH)(CH), C(CH)(CH)(CH)(CH2), C(CH)(CH)(CH)(CH3), C(CH)(CH)(CH2)(CH2),
C(CH)(CH)(CH2)(CH3), C(CH)(CH)(CH3)(CH3), C(CH)(CH2)(CH2)(CH2), C(CH)(CH2)(CH2)(CH3),
C(CH)(CH2)(CH3)(CH3), C(CH)(CH3)(CH3)(CH3), C(CH2)(CH2)(CH2)(CH2), C(CH2)(CH2)(CH2)(CH3),
C(CH2)(CH2)(CH3)(CH3), C(CH2)(CH3)(CH3)(CH3), C(CH3)(CH3)(CH3)(CH3)
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Table 7. A summary of GCMs applied to the prediction of thermophysical and thermochemical properties,
including rate constants (k) and activation energies (Eact) for hydroxyl radical reactions and hydrogen ab-
straction reactions, along with representative references

Property Method/Author Reference

Tb, Tm

Joback [15]

CG94 [8]

Marrero-Gani [18]

Hwang [11]

Nannoolal, et al. [75]

He et al. [88]

Xue et al. [89]

Hou et al. [90]

Simamora et al. [91]

Pc, Vc, Tc

Lydersen [26]

Joback [15]

CG94 [8]

Marrero-Gani [18]

Wilson-Jasperson [92]

Nannoolal et al. [31]

Lan et al. [93]

He et al. [88]

Mann et al. [2]

Xue et al. [89]

!Hf , !Gf

Benson [9]

CG94 [8]

Holderbaum-Gmehling [32]

Mann et al. [84]

Sharma method [5]

Hwang [11]

Liu et al. [94]

Li et al. [95]

Cp

Gardas [96]

Pietro et al. [97]

Han et al. [98]

Haghbakhsh et al. [99]

Ahmadi et al. [100]

Albert et al. [101]

CG94 [8]

Villazón-León et al. [102]

k, Eact

Minakata et al. [70]

Saeys et al. [71]

Liu et al. [103]
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Figure 1. Typical examples of second order groups (a) CH2(CH3)-(CH) and (b) CH2(CH)(CH) with CH2
as the central united atom. Both with CH2 as the central united atom. Each second order group includes the
central atom (green) and its two adjacent bonded fragments (blue) [5].
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1. Introduction

The accurate prediction of thermodynamic properties of hydrocarbons is a fundamen-
tal requirement for the design, simulation, and optimization of chemical processes, as
well as innovative products with improved environmental and safety properties, par-
ticularly in the context of the global transition toward sustainable fuels and chemicals
[1]. Iso-alkanes with high degrees of branching are preferred constituents in sustain-
able aviation fuels (SAF), lubricants, and phase change materials due to their desir-
able thermophysical properties such as high energy density, low freezing point, and
cold flow properties [2]. Consequently, catalytic processes such as hydroisomerization,
which convert linear alkanes into branched isomers inside shape-selective zeolites, are
of growing industrial relevance [3]. Experimental determination of thermodynamic
properties like the standard Gibbs free energy (!G

0
f ), standard enthalpy of formation

(!H
0
f ) and entropy (!S

0) for the myriad of possible branched alkanes, particularly
those with more than ten carbon atoms, is often infeasible due to the large number of
isomers and practical limitations of laboratory measurements [4, 5]. To address this,
group contribution methods (GCMs) have emerged as a widely-used and e”cient ap-
proach to estimate thermodynamic properties based on molecular structure [6]. These
methods predict properties by summing contributions from predefined structural frag-
ments, termed ”groups,” which are generally classified as first-order groups that are
basic functional units or higher order groups that capture local structural environ-
ments and neighboring atom e#ects [7].

Classical GCMs such as those of Lydersen [8], and Joback and Reid [9] have pro-
vided reasonably accurate predictions for small and moderately branched molecules.
The Constantinou and Gani (CG94) method [10] improved many of those deficiencies
by introducing a two-level structure: first-order groups capture basic functional frag-
ments, while another set of groups, i.e. second-order groups, account for local struc-
tural e#ects like branching and conjugation. This methodology managed to improve
accuracy and applicability of group contributions and partially capture the isomer
e#ect. In this method, through chemical intuition, the typical first-order groups for
alkanes are used, and second-order groups are defined by specifying a central atom or
group and its first neighboring atoms or groups, thereby encoding the local chemical
environment more explicitly. This allows for more accurate di#erentiation between
isomers and improves predictions for molecules with complex or branched structures.
Unfortunately, the accuracy of predictions still decreases for highly branched long-
chain alkanes [11]. This limitation often arises primarily from the reliance on first-order
groups and limited inclusion of second-order corrections [12]. Recent research [13–15]
has increasingly focused on refining group definitions, expanding group libraries to in-
tegrate more structural e#ects, and applying new computational advances to improve
the prediction of thermodynamic properties of complex isomers.

To overcome the shortcomings of existing GCMs, Sharma et al. [13] proposed
a novel linear regression-based second-order group contribution method for alkanes
that explicitly captures the interactions between neighboring atoms. By training the
model on a dataset of C1–C10 alkane isomers and systematically incorporating all pos-
sible second-order groups, an accuracy beyond 1 kcal/mol was achieved in predicting
!H

0
f and !G

0
f for alkanes longer than C10. While highly accurate, the Sharma et

al. method has certain limitations that lies in the complexity introduced by the use
of 69 distinct second-order groups to represent local atomic environments. Although
this comprehensive enumeration improves prediction for long and branched alkanes, it
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significantly increases the dimensionality of the model, which can make the regression
process more complex, and thus reduce interpretability.

This paper presents a novel idea that combines the basic principles of Constanti-
nou and Gani (CG94) [10] and the Sharma et al. methods [13] to maintain the ac-
curacy while reducing the complexity. By identifying and selecting the most relevant
second-order groups defined in the Sharma method, and adopting the second-order
approximation strategy of CG94 in a data-driven framework, we aim to balance model
accuracy and complexity. The proposed method holds potential to for predicting prop-
erties of more structurally complex hydrocarbons that contain additional functional
groups beyond those found in alkanes. This paper is organized as follows: first, the
theoretical background of linear regression, the CG94 framework, and the Sharma et
al. method are presented, followed by details of the methodology for selecting key
second-order groups through sensitivity analysis. We analyze the predictive accuracy
for both !H

0
f and !G

0
f for a wide temperature range from 0–1500K, and assess how

temperature a#ects outcomes and model robustness. This study concludes with a
summary of key findings and a discussion on the implications for a scalable and inter-
pretable GCM. We specifically focus on !H

0
f and !G

0
f due to the fundamental role

in determining chemical equilibrium and thermodynamic feasibility. Other important
properties such as critical constants (Tc, Pc), molar volume at standard condition
(Vm), and acentric factor (ω) are also included in this study. In the Supporting In-
formation, we provide detailed list of all training data. In SI1.xlsx, the sheet titled
DHf0 and DGf0 include training data of !H

0
f and !G

0
f from the Scott tables [16].

The critical temperature, critical pressure, and acentric factor sheets present experi-
mental values of Tc, Pc, and ω from Ref.[17] used for training our model. The liquid
density (298K) sheet provides density training data at 298K from Ref.[18], and the
molar volume (298K) sheet contains the corresponding molar volume values derived
from the liquid density data. SI1.xlsx also includes the predictions of these properties
using CG94 first-order group contribution method, CG94 second-order groups con-
tributions method, Sharma et al. method and our method. In SI2.xlsx, the first- and
second-order group contributions using di#erent methods for these properties will be
provided. SI3.py provides the script for capturing the first- and second-order groups
in CG94 from SMILE strings and Fig. 1 provides an example for using SI3.py.

2. Theory

2.1. Linear Regression

Linear Regression (LR) is commonly used to predict the thermochemical properties,
such as !H

0
f and !G

0
f , of alkanes, using the occurrences of first-order or second-order

groups as independent variables

y = K +
∑

i=1

CiNi (1)

where y is the target property, Ni is the occurrence of a first or a second-order group
i in the molecule, and Ci is the group contribution of the group i. K serves as fit-
ting residual. To know which variants, or ”groups”, are relatively more important, a
sensitivity analysis is used [19]. In a LR model of the form
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y = ε0 + ε1x1 + ε2x2 + · · ·+ εpxp + ϑ, (2)

the coe”cients εj indicate the marginal change in the response y per unit change in
the predictor xj keeping all other variables constant. When predictors are measured
on di#erent scales or units, as is common in GCMs for thermochemical properties,
direct comparison of εj values can be misleading. To assess sensitivity, all variables
are transform into standardized form

zj =
xj → x̄j

sj
, and zy =

y → ȳ

sy
, (3)

where x̄j and sj are the mean and standard deviation of predictor xj , respectively,
and similarly for the response y. The standardized regression model becomes

zy = ε
→
1z1 + ε

→
2z2 + · · ·+ ε

→
pzp + ϑ, (4)

where ε
→
j is the standardized coe”cient of predictor xj computed from εj via

ε
→
j = εj ·

sj

sy
. (5)

The standardized coe”cient ε→
j quantifies the number of standard deviations the re-

sponse will change given a one standard deviation increase in xj , keeping other vari-
ables constant. Therefore, the absolute value |ε→

j | gives a direct and interpretable
measure of the sensitivity of the output to that predictor [20, 21].

2.2. Constantinou and Gani method (CG94)

The Constantinou and Gani [10] (CG94) method, introduced in 1994, features both
first-order groups and second-order groups. first-order groups represent basic func-
tional units like -CH3 or -CH2-, while second-order groups serve as correction factors
that capture structural dependencies, such as branching, conjugation, and neigh-
boring group interactions [7]. The definition of the second-order groups was based
on the conjugation principle as presented in the open literature. When applied to
alkanes in a united-atom representation, only four first-order groups (CH3, CH2, CH
and C) and five second-order groups (shown in Fig. 2 (a)) are considered. An innova-
tive element of the CG94 is its two-step property estimation by using the model below:

f(X) =
∑

i

NiCi +W

∑

j

MjDj +K (6)

where where f(X) represents the function (linear or non-linear) of estimated value of
the target property X, Ni and Mj are the occurrence of first-order groups and second-
order groups, and Ci andDj represent the group contributions. Initially, the model fits
the contributions of first-order groups by ignoring second-order e#ects (W = 0). Once
these base values of Ci and K are established, second-order group contributions are
introduced and optimized in a separate regression step (W=1), while keeping Ci and
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K constant. This ensures that the second-order e#ects Dj are treated as corrections
to the first order approximation. Note that Ci, Dj and K are temperature-dependent
parameters, allowing the model to capture the thermodynamic variability of the target
property. This approach maintains the independence of first-order groups and allows
second-order groups to capture subtle topological and interaction-based corrections
without excessive adjustable parameters [7]. Despite its advancements over the earlier
GCMs, CG94 still requires some improvements in specific areas. For example, the
conjugation principle in CG94 does not always long-range interactions and overall
molecular e#ects like conformational flexibility or electronic delocalization, which are
important for modeling large or highly interactive molecular systems [22]. Therefore,
CG94 can be further supported by molecular-level theories in order to improve the
accuracy of the estimation of properties of highly complex organic structures and
accurately capture isomer-specific behavior [23].The CG94 provided the foundation
for several other e#orts in group contributions aiming to improve GCMs by refin-
ing group definitions, expanding group libraries, and incorporating more structural
e#ects. For example, Marrero and Gani [24] added a third order correction to the
Constantinou and Gani second order approximation model. However, this introduces
a significant number of additional adjustable parameters and implementation com-
plexity. Similarly, Constantinou et al. [25] and later researchers [15, 26–28] explored
approaches that integrate ring corrections, stereochemistry, and group interactions
beyond nearest neighbors of pure compounds and mixtures. These developments may
be perceived as as an intermediate stage, bridging classical dual-level models with
modern machine-learning frameworks. A comprehensive critical review of GCMs can
be found in Ref.[7].

2.3. Sharma et al. method

The Sharma et al. method [13] represents a recent advancement in CGMs specifically
designed to improve the prediction of thermodynamic properties for long-chain and
highly branched alkanes developed considering hydroisomerization as an application.
Unlike earlier models that rely primarily on first-order groups, the method uses a com-
prehensive and systematic enumeration of second-order groups as the sole molecular
descriptors. This method exhaustively enumerates all the possible atom combinations
surrounding a central atom and forms second-order groups present within a molecule.
In this way, 69 second-order groups are defined for branched alkanes. This definition of
second-order groups captures the influence of neighboring group interactions, branch-
ing patterns, and local connectivity, which are factors especially crucial in iso-alkanes
where small di#erences in branching can lead to significant changes in thermochemical
properties [7]. Unlike CG94 where both first and second-order groups are used in a two-
step regression, the Sharma et al. method exclusively considers second-order groups
in LR using the data set provided by Scott [16]. Each of the 69 defined second-order
groups is treated as an independent variable and its contribution is directly estimated
through the regression coe”cients. The extensive use of all 69 distinct second-order
groups introduces a notable level of complexity. While this richness and exhaust im-
proves the predictive accuracy, it also makes the model harder to interpret, more
data-intensive, and less generalizable. Although the Sharma et al. method marks a
significant leap in structural sensitivity, its high dimensionality raises challenges for
practical implementation and may limit scalability. Therefore, a sensitivity analysis is
used to determine which groups have more impact on predicting the thermodynamics
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properties.

3. Results and discussion

Fig. 3 shows the sensitivity analysis for !H
0
f at 500 K in the Sharma et al. method,

where each second-order group is characterized by its |ε→
j | and its occurrence for

all molecules provided by the Scott tables [16]. A higher value of |εj | indicates a
large sensitivity, meaning the corresponding group has a stronger influence on the
predicted thermodynamic property. The circles within the blue ellipses show both
high sensitivities, i.e. strong influence on predicted enthalpy and high frequency of
occurrence, which indicates that these groups are not structurally but statistically
significant, making them the most important contributors in the model. In sharp
contrast, many of the groups concentrated near the origin have either negligible |ε→

j |
values, low occurrence, or both. These groups contribute little to the overall variance in
!H

0
f and may be considered less relevant in terms of predictive power. It is also worth

mentioning that some groups have very low occurrence, which may be attributed to
the limitation of the training dataset, which includes only C1–C10 isomers and thus
lacks highly branched structures only found in heavier alkanes. The combination of
high |ε→

j | and high occurrence therefore serves as a useful criterion for identifying the
most influential structural motifs in the regression model. This trend was consistently
observed for all temperatures from 0K to 1500K, for both !H

0
f and !G

0
f , indicating

the robustness of group importance for thermal variations.

Based on the observation, the 12 second groups falling in the blue circles, which are
characterized by both high sensitivity and high frequency occurrence, are proposed
to be elected as a new representative set and are shown in Fig. 2 (b). This subset
captures the majority of group features while significantly decreasing model complex-
ity by reducing the number of second-order groups needed to fit. This reduced group
set (as denoted by: our new model) is then used to develop a new linear regression
model, which is systematically compared to the Sharma et al. method, which includes
all 69 second-order groups, and the CG94 method, which incorporates both first and
second-order groups. All five second-order groups defined in CG94 (Fig. 2 (a)) can
be fully represented using combinations of the more detailed second-order groups se-
lected in our new method (Fig. 2 (b)). For example, the CG94 group corresponding to
CH(CH3)2 can be assembled from two CH2(CH3) and one C(CH3) groups. Similarly,
the CG94 group CH(CH3)CH(CH3) corresponds to two CH2(CH3) units connected
via a central carbon. This demonstrates that the CG94 groups are a subset or sim-
plified combinations of the second-order groups selected through our sensitivity-based
approach. Therefore, our new set preserves the representational capacity of CG94
while o#ering a finer structural resolution.

While our sensitivity analysis is conducted specifically for !G
0
f and !H

0
f , this

focus is rooted in the original design of the Sharma et al. method, which was de-
veloped and calibrated mainly for these two thermodynamic properties. Since the 69
second-order groups in the Sharma et al. method were trained and validated using
!G

0
f and !H

0
f data, the selection of a reduced group set should start from the same

context. Interestingly, the selected subset of second-order groups emerging from our
analysis shows a high degree of chemical intuitiveness. Many of these groups rep-
resent prototypical local environments that reflect key branching and substitution
patterns, such as CH2(C)(CH3) or CH2(CH)(CH), which are expected to influence a
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wide range of thermodynamic and physical properties. This structural logic suggests
that the most influential groups for !G

0
f and !H

0
f may also play important roles in

other properties like critical parameters and the acentric factor (ω). Therefore, while
our method is derived from sensitivity analysis on a limited property domain, its gen-
eralizability is empirically plausible and chemically justifiable. In the later sections
of this work, we test whether this same set retains strong predictive performance for
multiple temperature-dependent properties, providing a first assessment of its broader
applicability. The fist- and second-order group contributions Ci adn Di of these 12
groups used in our method for !H

0
f and !G

0
f can be found in Tables 1, 2, 3 and 4.

The predicted !H
0
f at 500 K for various C6–C7 iso-alkanes using first-order group

contributions only and CG94 with the reference values from the Scott tables are shown
in Fig. 4 and compared. For molecules with simple or slightly branched structures,
such as C6, 2-m-C5, 3-m-C5, the first-order model performs reasonably well, showing
small deviations from the reference values. As branching increases, the accuracy of
the first-order model reduces significantly, while CG94, by incorporating second-order
structural correction, improves predictions for some isomers. CG94 still fails to fully
capture fine-grained structural e#ects. In particular, when second-order groups are
sparse or structurally ambiguous, the contribution may be undervalued. This still
shows the importance of using second-order groups as a correction. Capturing the
local structural environment and surrounding atom e#ects is essential for accurately
predicting thermochemical properties of complex branched isomers [29].

For a complete comparison, Figs. 5 and 6, show the predicted !G
0
f at 500K and

800K for six branched isomers. At 500K, all three models show reasonable results
to the training data, although clear distinctions begin to emerge. The Sharma et al.
method consistently aligns closely with the Scott tables, indicating its robustness in
capturing subtle structural e#ects using more fitted parameters. Our new method,
while slightly more variable, maintains comparable accuracy for most compounds.
For instance, prediction for 3,4,4-m-C7 is nearly identical to that from the Sharma
et al. method. One can not observe a huge distinction or advantage over CG94 as
both models use the same two-level LR procedure, and the main di#erence lies in
the new method incorporating a few additional fitted parameters, slightly enhancing
the accuracy. However, at 800K, the di#erences between models become much more
evident. The Sharma et al. method continues to yield excellent agreement with Scott
tables. Notably, our new method yields predictions that closely match those of the
Sharma et al. method and remain in good agreement with the Scott tables for nearly
all species, including highly branched structures. This suggests that at elevated tem-
peratures, where entropic contributions become more dominant and more uniformly
distributed, the reduced set of 12 high-sensitivity second-order groups remains su”-
cient to model structural e#ects e#ectively. In sharp contrast, CG94 deviates become
more pronounced at 800K, with overestimations reaching up to several kJ/mol for
some compounds. This further supports the idea that its second-order correction are
needed to accurately model the entropy-sensitive behavior of branched isomers, partic-
ularly when temperature amplifies structural contributions. While di#erences between
models are modest at 500K, our method shows predictive performance close to that
of the Sharma et al. method at 800K, despite using significantly fewer parameters.
This finding demonstrates that a carefully selected subset of second-order groups can
retain both sensitivity and accuracy for a broad temperature range.

To further assess the temperature dependence of model performance, Fig. 7
presents the R

2 values for !G
0
f and !H

0
f predictions, respectively, for a range of
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temperatures from 400K to 1500K. For both !G
0
f and !H

0
f , the Sharma et al.

method consistently maintains the highest R
2 values, exceeding 0.99 at nearly all

temperatures, which re-a”rms its robustness and accuracy. Our new method exhibits
a performance curve that closely follows that of Sharma et al. method, achieving R

2

values above 0.995 over a wide temperature range. Interestingly, its accuracy improves
steadily with temperature up to around 1000K, before a slight decline appears. In con-
trast, CG94 starts with significantly lower R

2 values, below 0.96 at 400K and then
shows a gradual rise, reaching a plateau around 0.996 at mid-range temperatures,
before dropping sharply at 1500K. For !H

0
f , a similar trend is observed. The Sharma

et al. method again delivers near-perfect R
2, while the our method remains stable

around 0.990 with minor fluctuations. CG94 shows improved accuracy with increas-
ing temperature but consistently underperforms relative to the other models. Notably,
the gap between our method and Sharma is slightly more pronounced for !H

0
f than

for !G
0
f , possibly reflecting that enthalpy is more sensitive to specific group contri-

butions. It is also worth noting that all three models exhibit a decline in R
2 values

for !G
0
f at 1500K. While still maintaining relatively high accuracy, this simultaneous

drop for all models suggests that prediction becomes inherently more challenging at
extreme temperatures. One possible explanation may be the increasing dominance of
entropic contributions at high temperatures [30]. R2 values for all temperatures can
be found in Tables 5 and 6.

The R2 analysis for a wide temperature range confirms that Sharma et al. method
shows the most accurate and consistent performance, which is expected as it used all
69 type of second-order group as fitted parameters. In sharp contrast, our new method,
despite using only four first-order and twelve ”important” second-order groups, man-
ages to achieve R2 values above 0.995 at most temperatures examined. This indicates
that the reduced model is not only significantly simpler but also highly e”cient in
capturing the essential structural e#ects. Compared to CG94, which shows notably
lower R2 values, particularly at lower and higher temperatures, our new method shows
a clear advantage in balancing model complexity with predictive reliability.

To better compare the model performance in practical applications, Fig. 8 presents
!H

0
f at 298 K for linear alkanes of C4 to C20 using these three di#erent GCMs. The

predictions for C4 to C10 represent the fitted results, while the experimental data
for C11 to C20 are extrapolated values, intended to evaluate generalizability of each
model beyond the training range. When extrapolated to longer alkanes, significant
di#erences in performance emerge. The Sharma et al. method exhibits the best con-
sistency with the experimental data, followed by our method, while the CG94 shows
the largest deviations, particularly for higher carbon numbers. This comparison shows
the improved extrapolation capability of our method over CG94.

Having demonstrated the strong performance of the reduced second-order group
set in predicting !G

0
f and !H

0
f for a wide temperature range, we next explored

whether this our method also retains predictive power for other key thermodynamic
properties. Specifically, we applied the same group framework to estimate critical
temperatures (Tc), critical pressures (Pc), acentric factors (ω), and liquid densities at
standard conditions (ϖl), to assess the broader applicability and structural relevance
of these selected groups. Unlike before, these properties require functional forms that
can accommodate diminishing returns or saturation as molecular size increases, which
shows non-linear beheviors [31]. This justifies fitting curves such as power-laws or
logarithmic relation rather than relying on a simple additive linear model. Such an
approach aligns with prior works [23, 32–34] in the field, where GCMs using nonlinear
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regression have successfully improved accuracy for critical properties of hydrocarbons.
The fitting equations for Tc, Pc and ω are as follows:

e
Tc
T0 =

∑

i

NiCi +W

∑

j

MjDj +K (7)

Pc = P0 +




∑

i

NiCi +W

∑

j

MjDj +K




a

(8)

ω = ϱ



ln




∑

i

NiCi +W

∑

j

MjDj +K








ω

(9)

These equations are fitted through non-linear regression using the curve fit function
from the scipy.optimize module in Python. All training data used in this non-
linear regression were obtained from Yaws’ Handbook [17]. Similarly, the regression
was conducted in a two-step procedure consistent with the philosophy illustrated in
Eq. 6. First, only first-order group parameters Ci were fitted with W = 0. Once
the contribution values for first-order groups Ci were established, second-order group
e#ects Di were introduced and optimized in a separate regression step by setting
W = 1. It is important mentioning that all the parameters, including T0, P0, a, ϱ, ε
and K, in Eqs. 7, 8 and 9 were fitted together with Ci (when K = 0) and these fitted
parameters can be found in Table 9. The group counts Ni and Mj are determined
from SMILES string using Python. The first- and second-order groups contributions
Ci and Dj for Tc, Pc and ω can be found in Tables 7 and 8. All the fitted parameters
can be found in the file SI2.xlsx in the Supporting Information.

Fig. 9 shows the parity plots of the predictive performance of our proposed model
for Tc, Pc and ω. For all three properties, the predicted values exhibit a strong lin-
ear correlation with experimental data, as evidenced by the close alignment of the
data points along the ideal y = x reference line. The distribution is particularly con-
centrated for ω, with minimal dispersion and virtually no systematic deviation. The
prediction of Tc and Pc also demonstrates excellent accuracy, although a few devi-
ations appear in more complex or highly branched compounds. This high degree of
agreement reflects the ability and robustness of our model to incorporate non-linear
structural e#ects through tailored functional forms. Quantitative performance met-
rics including R

2, the mean absolute error (MAE), and the average relative deviation
(ARD) for each property are summarized in Table 10, which shows a decent accuracy
for these three properties.

To analyze the liquid densties (ϖl) at 298K and 1 bar pressure of alkanes, we
followed an indirect regression procedure. First, we compiled a dataset of experimental
ϖl values from literature [18], which covers of a wide range of linear and branched
alkanes. Next, the values of ϖl were converted into molar volumes (Vm) using the
relationship:

Vm =
M

ϖl
(7)

where M is the molar mass. This transformation allowed us to use Vm as it is directly
proportional to molecular size and structure, while ϖl is a derived property influenced
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by both molecular structure and intermolecular packing, introducing less predictable
variations [35]. We then applied linear regression to model the Vm using the two-level
regression. Finally, the predicted Vm were converted back to ϖl for direct comparison
with the original training dataset. The first- and second-order groups contributions
Ci and Dj for Vm can be found in Tables 7 and 8. Fig. 10 shows parity plots of
the predictive performance of our proposed model for Vm and ϖl. For Vm, the figure
shows an almost perfect alignment with the experimental values, closely following
the ideal correlation line y = x. Since Vm correlates directly with molecular size and
structure, it is more suitable for additive modeling based on first- and second-order
group contributions. Its linear dependence on group counts enables accurate predic-
tion using regression techniques. In contrast, for the predicted ϖl, which were obtained
by converting the predicted values of Vm, larger deviations were found. This can be
partially attributed to the narrower range of ϖl values (0.66–0.78 g/ml), compared to
the broader range of Vm (125–300 ml/mol). Since ϖl is inversely proportional to Vm,
even small prediction errors in Vm may lead to amplified deviations in ϖl, especially at
higher density values. This aspect should be taken into consideration when evaluating
the overall model performance. While the overall trend remains strong, the scatter
around the ideal line is visibly larger than in the plot for Vm. This deviation arises
because density is a derived, nonlinear quantity, inversely proportional to volume, and
small errors in are amplified during the transformation. Moreover, ϖl can be a#ected
by complex molecular interactions. Together with the quantitative performance shown
in Table 10, these results confirm the advantage of modeling Vm as the primary re-
gression target. This approach not only yields more accurate and stable predictions,
but also better reflects the physical relationship between molecular structural and
thermodynamic properties. Together with the high predictive performance for Tc, Pc

and ω shown earlier, these results validate the applicability of our method to both
linear and nonlinear thermodynamic properties.

4. Conclusions

In this work, we proposed a simplified complexity CGM that applies the second-order
approximation approach of the Constantinou and Gani method [10] with a sensitivity-
guided selection of second-order groups inspired by the Sharma et al. method [13]. By
identifying twelve most impactful second-order groups based on sensitivity, we were
able to develop a new model that strikes a balance between predictive accuracy and
model simplicity. Our method shows a strong predictive performance for both !H

0
f

and !G
0
f of alkane isomers for a wide temperature range from 0–1500K. Notably, it

retains accuracy comparable to the Sharma et al. method, which uses 69 second-order
groups as fitting parameters, while using only 16 parameters. This shows that only a
reduced subset of second-order groups can be essential for capturing the key structural
variations relevant to thermochemical properties. Beyond linear regression of!H

0
f and

!G
0
f , we tested the broader applicability of this reduced group set by fitting Tc, Pc,

ω, and ϖl at 298K using nonlinear regression. The results showed excellent agreement
with experimental data, e.g., R2

> 0.996 for Tc, Pc, and ω, confirming the e#ectiveness
of our approach in modeling thermodynamic properties that require nonlinear fitting
procedures. These results collectively demonstrate that our methodology is not only
e”cient but also broadly applicable to both linear and nonlinear regression tasks in
group contribution modeling. The high accuracy for diverse property types validates
the robustness of our approach, and shows its potential use in industrial applications

9



where interpretability, scalability, and e”ciency are essential. This new methodology
has been implemented only to alkanes. Encouraged by the excellent results, future
work will expand its implementation to a wide range of pure organic compounds
and properties (thermodynamic, transport, environmental-related, safety related, etc.)
that would allow the availability of a powerful tool for process optimization and design
of molecules with properties of environmental importance.

5. Supporting Information

The Supporting Information consists of SI1.xlsx, SI2.xlsx and SI3.py. All training data
are listed in SI1.xlsx together with the first- and second-order model predictions. On
SI2.xlsx, the contributions, Ci and Di, of each group for each property and other fitted
parameters, including K, T0, P0, a, ϱ and ε in Eqs. 7, 8 and 9, are listed in the sheets
containing ’contributions’ in, and the predictions of each property listed are listed in
the sheets containing ’predictions’, respectively; in SI2.xlsx, the sheets starting with
’CG94’ show the group contributions and properties predictions for CG94 [10], the
sheets starting with ’Sharma’ show the group contributions and properties predictions
for the Sharma et al. method [13], and the sheets starting with ’New method’ show the
group contributions and properties predictions for our method. The code to convert
to the SMILES string and the code to count the groups for CG94 are in SI3.py.
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Table 1. First-order group contributions Ci of our method for !H
0

f
at di”erent temperature.

Temperature/[K] CH3 CH2 CH C

0 →4.473 →15.034 →24.509 →35.827

200 0.619 →0.645 →0.222 1.522

273 3.751 6.149 11.070 18.372

298 4.874 8.523 13.999 22.572

300 4.938 8.735 15.371 24.771

400 9.645 18.607 31.583 48.773

500 14.559 28.771 48.167 73.197

600 19.637 39.129 64.933 97.765

700 24.804 49.654 81.936 122.516

800 29.822 60.104 98.906 147.302

900 35.080 70.677 115.828 171.833

1000 40.217 81.277 132.910 196.507

1100 44.877 91.980 150.716 222.368

1200 50.419 102.514 167.050 245.820

1300 55.296 113.150 184.229 270.247

1400 60.422 123.745 201.228 294.585

1500 63.390 134.719 219.318 321.960
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Table 2. Second-order group contributions Dj of our method for !H
0

f
at di”erent temperature.

Temperature/[K] CH3(C) CH3(CH) CH3(CH2) CH2(CH)(CH) CH2(CH)(CH2) CH2(CH2)(CH2) CH2(C)(CH3) CH2(C)(CH2) CH2(CH)(CH3) CH2(C)(CH) CH2(C)(C) CH2(CH2)(CH3)

0 →0.132 0.677 5.086 →8.676 →4.500 →1.400 →1.819 →8.497 →3.206 →6.441 →1.475 →3.060

200 →0.129 0.734 5.392 →2.840 0.000 →1.254 →1.777 →3.582 →7.751 →1.343 →3.380 →1.819

273 →0.174 0.761 5.518 →8.077 →6.155 →1.369 →1.640 →9.019 →3.731 →8.142 →1.270 →3.521

298 →0.217 0.775 5.550 →8.012 →5.214 →1.387 →1.648 →0.929 →3.780 →2.823 →1.392 →3.567

300 →0.183 0.775 5.550 →8.012 →5.214 →1.387 →1.648 →0.929 →3.780 →2.823 →1.392 →3.567

400 →0.183 0.775 5.550 →8.012 →5.214 →1.387 →1.648 →0.929 →3.780 →2.823 →1.392 →3.733

500 →0.086 0.861 5.759 →3.963 →5.230 →1.453 →2.172 →0.993 →4.927 →1.753 →3.992 →3.992

600 →0.336 0.916 5.885 →8.999 →5.550 →1.480 →1.077 →0.981 →4.256 →10.117 →0.413 →3.920

700 →0.390 1.026 6.053 →8.608 →6.000 →1.460 →0.806 →0.916 →4.428 →10.613 →0.283 →3.976

800 →0.430 1.026 6.053 →8.608 →6.000 →1.460 →0.806 →0.916 →4.428 →10.613 →0.283 →3.976

900 →0.451 1.169 6.123 →9.084 →6.098 →1.918 →0.949 →0.978 →4.918 →11.064 →0.364 →4.054

1000 →0.507 1.287 6.251 →10.004 →6.538 →1.992 →1.046 →1.012 →4.538 →11.591 →0.456 →4.139

1100 →0.475 1.369 6.339 →10.240 →6.500 →1.431 0.092 →1.059 →4.535 →12.140 →0.542 →4.221

1200 →0.483 1.169 6.317 →10.240 →6.500 →1.431 0.092 →1.059 →4.535 →12.140 →0.542 →4.221

1300 →0.523 1.222 6.336 →10.641 →6.174 →1.309 0.369 →1.022 →3.807 →0.824 →4.322 →4.322

1400 →0.336 1.112 6.411 →10.806 →6.718 →1.411 0.370 →1.160 →4.066 →15.403 →1.579 →3.505

1500 →2.247 1.690 →0.669 →4.930 →8.023 →3.029 10.245 →3.875 3.416 →4.992 1.580 →2.781
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Table 3. First-order group contributions Ci of our method for !G
0

f
at di”erent temperature.

Temperature/[K] CH3 CH2 CH C

0 →4.473 →15.034 →24.509 →35.827

200 0.619 →0.645 →0.222 1.522

273 3.751 6.149 11.070 18.372

298 4.874 8.523 13.999 22.572

300 4.938 8.735 15.371 24.771

400 9.645 18.607 31.583 48.773

500 14.559 28.771 48.167 73.197

600 19.637 39.129 64.933 97.765

700 24.804 49.654 81.936 122.516

800 29.822 60.104 98.906 147.302

900 35.080 70.677 115.828 171.833

1000 40.217 81.277 132.910 196.507

1100 44.877 91.980 150.716 222.368

1200 50.419 102.514 167.050 245.820

1300 55.296 113.150 184.229 270.247

1400 60.422 123.745 201.228 294.585

1500 63.390 134.719 219.318 321.960
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Table 4. Second-order group contributions Dj of our method for !G
0

f
at di”erent temperature.

Temperature/[K] CH3(C) CH3(CH) CH3(CH2) CH2(CH)(CH) CH2(CH)(CH2) CH2(CH2)(CH2) CH2(C)(CH3) CH2(C)(CH2) CH2(CH)(CH3) CH2(C)(CH) CH2(C)(C) CH2(CH2)(CH3)

0 →0.132 0.677 5.086 →8.676 →4.500 →1.400 →1.819 →8.497 →3.206 →6.441 →1.475 →3.060

200 →0.129 0.734 5.392 →2.840 0.000 →1.254 →1.777 →3.582 →7.751 →1.343 →3.380 →1.819

273 →0.174 0.761 5.518 →8.077 →6.155 →1.369 →1.640 →9.019 →3.731 →8.142 →1.270 →3.521

298 →0.217 0.775 5.550 →8.012 →5.214 →1.387 →1.648 →0.929 →3.780 →2.823 →1.392 →3.567

300 →0.183 0.775 5.550 →8.012 →5.214 →1.387 →1.648 →0.929 →3.780 →2.823 →1.392 →3.567

400 →0.183 0.775 5.550 →8.012 →5.214 →1.387 →1.648 →0.929 →3.780 →2.823 →1.392 →3.733

500 →0.086 0.861 5.759 →3.963 →5.230 →1.453 →2.172 →0.993 →4.927 →1.753 →3.992 →3.992

600 →0.336 0.916 5.885 →8.999 →5.550 →1.480 →1.077 →0.981 →4.256 →10.117 →0.413 →3.920

700 →0.390 1.026 6.053 →8.608 →6.000 →1.460 →0.806 →0.916 →4.428 →10.613 →0.283 →3.976

800 →0.430 1.026 6.053 →8.608 →6.000 →1.460 →0.806 →0.916 →4.428 →10.613 →0.283 →3.976

900 →0.451 1.169 6.123 →9.084 →6.098 →1.918 →0.949 →0.978 →4.918 →11.064 →0.364 →4.054

1000 →0.507 1.287 6.251 →10.004 →6.538 →1.992 →1.046 →1.012 →4.538 →11.591 →0.456 →4.139

1100 →0.475 1.369 6.339 →10.240 →6.500 →1.431 0.092 →1.059 →4.535 →12.140 →0.542 →4.221

1200 →0.483 1.169 6.317 →10.240 →6.500 →1.431 0.092 →1.059 →4.535 →12.140 →0.542 →4.221

1300 →0.523 1.222 6.336 →10.641 →6.174 →1.309 0.369 →1.022 →3.807 →0.824 →4.322 →4.322

1400 →0.336 1.112 6.411 →10.806 →6.718 →1.411 0.370 →1.160 →4.066 →15.403 →1.579 →3.505

1500 →2.247 1.690 →0.669 →4.930 →8.023 →3.029 10.245 →3.875 3.416 →4.992 1.580 →2.781
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Table 5. Comparison of R2 values for predicted !H
0

f
at various temperatures using three di”erent GCMs:

CG94 [10], our method, and the Sharma et al. method [13].

Temperature/[K] R
2 (CG94) R

2 (our method) R
2 (Sharma et al. method)

0 0.943 972 0.976 717 0.999 988

200 0.965 040 0.985 654 0.999 987

273 0.969 607 0.987 911 0.999 993

298 0.970 933 0.988 487 0.999 995

300 0.971 017 0.988 528 0.999 995

400 0.975 165 0.990 045 0.999 997

500 0.977 978 0.990 901 0.999 986

600 0.979 905 0.991 340 0.999 956

700 0.981 066 0.991 520 0.999 935

800 0.981 887 0.991 299 0.999 915

900 0.982 585 0.991 432 0.999 896

1000 0.982 759 0.991 231 0.999 859

1100 0.982 753 0.991 009 0.999 842

1200 0.982 715 0.990 652 0.999 816

1300 0.982 599 0.990 334 0.999 805

1400 0.982 220 0.989 895 0.999 590

1500 0.981 967 0.989 441 0.999 742
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Table 6. Comparison of R2 values for predicted !G
0

f
at various temperatures using three di”erent GCMs:

CG94 [10], our method, and the Sharma et al. method [13].

Temperature/[K] R
2 (CG94) R

2 (our method) R
2 (Sharma et al. method)

0 0.943 976 0.976 705 0.999 880

200 0.244 684 0.671 566 0.995 275

273 0.791 147 0.919 019 0.997 689

298 0.865 462 0.947 700 0.998 270

300 0.869 337 0.949 164 0.998 313

400 0.959 663 0.983 684 0.999 167

500 0.979 919 0.991 594 0.999 422

600 0.987 419 0.994 528 0.999 543

700 0.991 061 0.995 952 0.999 598

800 0.993 089 0.996 761 0.999 641

900 0.994 359 0.997 251 0.999 675

1000 0.995 183 0.997 582 0.999 695

1100 0.995 812 0.997 809 0.999 690

1200 0.996 180 0.997 989 0.999 719

1300 0.996 533 0.998 127 0.999 730

1400 0.996 438 0.997 936 0.999 590

1500 0.969 542 0.970 780 0.975 832
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Table 7. First-order group contribution Ci for Tc, Pc, ω and Vm using our method.

Group Tc Pc ω Vm

CH3 1.571 0.456 0.538 19.725

CH2 1.681 0.405 0.005 15.942

CH 1.676 →0.623 →0.531 10.714

C 1.967 →1.282 →1.069 4.506
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Table 8. Second-order group contribution Dj for Tc, Pc, ω and Vm using our method.

Group Tc Pc ω Vm

CH3(C) →0.030 0.195 1.124↑ 10↑4 0.214

CH3(CH) 0.114 0.187 →1.488↑ 10↑4 →0.303

CH3(CH2) 0.223 0.001 →5.382↑ 10↑4 →1.320

CH2(CH)(CH) →0.909 →0.388 1.296↑ 10↑3 3.082

CH2(CH)(CH2) →0.486 →0.390 1.207↑ 10↑3 1.976

CH2(CH2)(CH2) →0.028 →0.391 5.621↑ 10↑5 0.554

CH2(C)(CH3) →0.688 →0.386 1.053↑ 10↑3 1.295

CH2(C)(CH2) 0.246 →0.204 →4.237↑ 10↑4 →0.426

CH2(CH)(CH3) →0.096 →0.203 1.036↑ 10↑4 0.414

CH2(C)(CH) →1.109 →0.384 8.907↑ 10↑4 3.622

CH2(C)(C) →1.051 →0.378 2.045↑ 10↑3 2.241

CH2(CH2)(CH3) 0.073 →0.210 →2.176↑ 10↑4 →1.037
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Table 9. Parameters fitted trough non-linear regression using Eqs. 7, 8 and 9.

T0/[K] P0/[bar] a ϱ ε

218.880 7.301 -5.364 2.938 0.575
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Table 10. The mean absolute error (MAE), the average relative deviation (ARD) and R
2 for Tc, Pc, and ω

using nonlinear regression (our method).

Property MAE ARD R
2

Tc 3.73 K 0.63% 0.9967

Pc 0.17 bar 0.70% 0.9974

ω 0.0091 2.43% 0.9968

Vm 0.95 ml/mol 0.50% 0.9968

ϖl 0.80 g/ml 0.51% 0.9667
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Figure 1. An example of using SI3.py to capture the first- and second-order groups for CG94[10]. One can use the SMILE string of a molecule as input to get the number of
first- and second-order groups defined in CG94.
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Figure 2. (a) five second-order groups used in CG94 [10] and (b) twelve second-order groups selected through sensitivity analysis. The original CG94 work defined only 5
second-order groups for alkanes, while 12 second-order groups featuring high sensitivity and high occurrence are chosen for our method from the 69 second-order groups defined
in the Sharma et al. method [13].
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Figure 3. Sensitivity analysis of second-order groups used in the Sharma et al. method [13] for predicting !H
0

f
at 500 K. Each point represents a second-order group, with

the vertical axis indicating its sensitivity (|ε↑
j |), and the horizontal axis showing its occurrence in the dataset. Groups within the blue ellipses are both highly sensitive and

frequently occurring, and were thus selected as the 12 most influential groups for our method to construct a reduced group set for further comparison with CG94 [10] and the
Sharma model [13]. Notably, only 46 out of the 69 second-order groups in the Sharma et al. method were detected from all the molecules listed in Scott tables [16].
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Figure 4. Comparison of predicted values of !H
0

f
at 500 K for various iso-alkanes using only first-order group contributions (pink rhomb), Sharma et al. method [13] (yellow

squares), CG94 [10] (green crosses), our method (red stars), and the training set from the Scott tables [16] (blue circles). Using only first-order groups provides reasonably
accurate predictions for less branched alkanes, the Sharma et al. method shows an excellent agreement with the Scott tables, CG94 a achieves a better accuracy for branched
isomers by incorporating local structural corrections via second-order group correction.
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Figure 5. Comparison of predicted values of !G
0

f
at 500K for selected branched iso-alkanes for decane using di”erent GCMs: using only first-order group contributions (pink

rhomb), CG94 [10] (green crosses), the Sharma et al. method [13] (yellow squares), and our method (red stars), and compared to reference data from Scott thermochemical
tables [16] (blue circles).
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Figure 6. Comparison of predicted values of !G
0

f
at 800K for selected branched iso-alkanes for decane using di”erent GCMs: using only first-order group contributions (pink

rhomb), CG94 [10] (green crosses), the Sharma et al. method [13] (yellow squares), and our method (red stars), and compared to reference data from Scott thermochemical
tables [16] (blue circles).
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Figure 7. Temperature-dependent coe#cient of determination (R2) for thermochemical property predictions
of CG94 (yellow), our method (blue), and the Sharma et al. method (green). (a) R2 values for !H

0

f
predictions

for a temperature range of 400–1500K. (b) R2 values for !G
0

f
predictions. The Sharma et al. method maintains

consistently high accuracy for all temperature, while our method exhibits strong performance with minor
deviations at high temperatures. In contrast, CG94 shows lower R2 values, particularly at lower temperatures,
reflecting its limited structural resolution.
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Figure 8. Prediction of !H
0

f (298K) for linear alkanes using three GCMs: Sharma et al. method [13] (yellow
squares), CG94 [10] (green crosses), and our method (red stars). The black circle line represents extrapolated
experimental values of C11–C20. The region on the left (purple ellipse) shows the fitted range C4–C10, while the
right region (blue ellipse) indicates the extrapolation zone. The dashed lines correspond to linear trendlines for
each method. Among the three models, the Sharma et al. method shows the best extrapolation performance,
followed by our method, while CG94 exhibits the largest deviation from the experimental data.
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Figure 9. Parity plots comparing predicted and experimental values for (a) critical temperatures (Tc), (b) critical pressures (Pc), and (c) acentric factors (ω) using the
proposed nonlinear regression. The red dashed line represents the ideal correlation (y = x). All three properties show strong agreement between predicted and actual values,
highlighting the accuracy and robustness of the model for a diverse range of hydrocarbon structures.
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Figure 10. Parity plots comparing predicted and experimental values of (a) Vm and (b) the values of ϑl. Vm were directly fitted using linear regression, while ϑl were obtained
by converting the predicted Vm values. The excellent agreement in (a) shows the suitability of Vm for linear regression CGMs while the slightly larger deviations in (b) reflect
the additional complexity inherent in density predictions.
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