
Utilising 3D Gaussian Splatting for PointNet object classification
Exploring the potential of volume rendering techniques without using meshes

Dirk van Dale

Supervisor(s): Dr. Xucong Zhang

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Dirk van Dale
Final project course: CSE3000 Research Project
Thesis committee: Michael Weinmann, Xucong Zhang

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

The demand for high-quality 3D visualizations has
surged across various professional fields,
prompting significant advancements in computer
graphics. One such advancement is 3D Gaussian
Splatting, a technique evolving from Lee
Westover’s splatting concept introduced in 1990.
This study investigates the potential of 3D
Gaussian Splatting to enhance PointNet
classification techniques for 3D objects. Utilizing
the Princeton ModelNet10 dataset, I convert 3D
models into point clouds, applying 3D Gaussian
Splatting to generate optimized Gaussian
representations. These representations are used to
train PointNet++ models with various feature
configurations, including position, scale, rotation,
opacity, and spherical harmonics. Our findings
reveal that while 3D Gaussian Splatting enables
effective 3D object classification, it does not
outperform traditional methods that utilize ground
truth data directly sampled from object surfaces.
Nonetheless, the method demonstrates comparable
accuracy, suggesting its viability in scenarios
where initial meshes are unavailable. This
research highlights the potential and limitations of
3D Gaussian Splatting in advancing 3D object
classification.

1 Introduction
In recent years, the need for 3D visualizations has been
rapidly increasing across a multitude of professional fields,
including geospatial analysis, meteorology and medical
imaging. Zhou et al. states ”medical experts are often not
aware of the many advanced three-dimensional (3D) medical
image visualization techniques that could increase their
capabilities in data analysis and assist the decision-making
process for specific medical problems” [1]. This growing
demand for high-quality and performance 3D rendering
techniques has resulted in significant advancements in the
field of Computer Graphics.

One such advancement is the development of 3D
Gaussian Splatting, an evolution of the splatting technique
initially introduced by Lee Westover in 1990 [2]. Westover’s
original concept involved using small pre-integrated kernels
to represent volumetric elements and calculate their
contribution to the final image. Over the years, the technique
has seen substantial improvements, primarily due to
technological advancements and increased computational
power. In the paper on 3D Gaussian Splatting by Kerbl et al.
[3], the technique is extensively explained. In their
implementation, which is based on an alternative method
called Neural Radiance Fields (NeRF) [4], they managed to
achieve high-quality rendering results comparable to other
well-known methods, while having significantly lower

training times.

The next challenge lies in further utilizing the high-quality
3D scenes obtained via Gaussian Splatting, such as
segmenting and classifying different objects using available
Machine- or Deep-Learning techniques. Studies on this
already exist, such as the paper ”Segment any 3D
Gaussians” by Cen et al. [5], but advancements regarding
classification have yet to be further explored. This research
aims to dive deeper into this particular topic by applying
PointNet classification techniques onto 3D Gaussian
Splatted common household objects.

The research question can be defined as such: Can 3D
Gaussian Splatting be used to improve the performance of
training a PointNet classification model?. Being able to
achieve higher classification accuracy would be of great
interest to a wide range of scientific fields, such as medical
imaging [1].

The paper is structured as follows: Section 2 will describe
the work related to this research, including 3D Gaussian
Splatting, PointNet and its extension, PointNet++. Section 3
will then explain the methodology used to obtain the results,
which can subsequently be found in section 4. Section 5 will
discuss the ethical aspects of the research and on its
reproducibility. Section 6 will reflect on the results and the
work done and discuss further possible improvements on the
research. Finally, section 7 will present the conclusion, and
subsequently answer the research question using the results.

2 Related Work
This research builds upon the work of Kerbl et al. and Qi et
al., who developed 3D Gaussian Splatting and the PointNet
architecture, respectively. This section will briefly cover
these two concepts including their papers, and describe why
they will be used for this research.

2.1 3D Gaussian Splatting
As mentioned in the introduction, this research is based upon
a recently developed novel volumetric rendering technique
introduced as ”3D Gaussian Splatting” in a paper by Kerbl et
al. [3]. In the paper, they describe the elements used to
achieve their state-of-the-art optimization and rendering
algorithm. In essence, 3D Gaussian Splatting builds upon
similar volumetric rendering methods such as Neural
Radiance Fields (NeRF) [4], which optimize a Multi-Layer
Perceptron using volumetric ray marching for novel-view
synthesis of scenes. This synthesis is done by using multiple
images from different angles of the scene, otherwise known
as photogrammetry, and producing Structure-from-Motion
sparse point clouds. Where 3D Gaussian Splatting
differentiates from other volume rendering techniques, is
that it transforms each point into a Gaussian kernel. Known
primarily for its applications in mathematics and statistics,
the Gaussian function describes a type of probability
distribution characterized by a peak at its mean, with values
tapering off symmetrically as they move away from the

1



mean. A 3D Gaussian extends this concept into three
dimensions, forming an ellipsoid where the density
decreases with distance from the center. Kerbl et al. describe
3D Gaussians as being an excellent choice for scene
representation, since they are a differentiable volumetric
representation allowing for gradient-based optimization,
supporting the computation of gradients with respect to their
parameters. These parameters, mainly including position,
scale, rotation, opacity and spherical harmonics, characterize
3D Gaussians in their respective space, and allow for smooth
and continuous 3D scene representation.

The splatting part of the process refers to the process of
projecting these 3D Gaussians onto a 2D image plane to
generate a rendered image. The contribution of each
Gaussian to the final image is computed based on its
parameters and the camera view. The second key element of
the technique consists of the following optimization process,
where the generated image is compared to the original view
and a reconstruction loss is calculated. This loss is
subsequently used to calculate new weights for the different
parameters, to eventually get the most optimal representation
of the scene. The optimization also utilises ”interleaved
density control”, which consists of occasionally adding and
removing 3D Gaussians present in the cloud. Finally, the
paper explores the development of a ”fast visibility-aware
rendering algorithm that supports anisotropic splatting and
both accelerates training and allows real-time rendering”,
making use of the optimized 3D Gaussians, including
spherical harmonics for visibility-awareness. The rendering
process is parallelizable allowing for high quality
reconstructions which can be interacted with in real-time.
The resulting optimization and rendering algorithms allow
for state-of-the-art visual quality while maintaining low
training times.

2.2 PointNet/PointNet++
Classification of three-dimensional models has been
researched using several techniques, including mesh-based
methods (MeshCNN [6]), voxel-based methods (NormalNet
[7]), and multi-view based methods (MVCNN [8]).
However, none of these methods methods use point clouds
as input directly. PointNet, introduced by Qi et al. in 2017
[9], is a deep learning architecture designed specifically for
directly processing point clouds. This offers several
advantages over the aforementioned traditional methods for
3D object classification and segmentation. One of these
advantages is preserving the permutation invariance,
meaning it is designed to be invariant to the order of points
in the input. Since point clouds are unordered sets of points,
this property is crucial. PointNet achieves this by using
symmetric functions to aggregate features from individual
points, ensuring that the network’s output is not affected by
the order of the input points.

PointNet++ is an extension of the original PointNet
architecture, developed by the same group of researchers
[10]. PointNet++ expands upon the original framework by
addressing its limitations, particularly the handling of local

structures at different scales within a point cloud. PointNet
treats each point independently, which means it does not
explicitly capture these local structures formed by
neighboring points. This can be a limitation when dealing
with complex geometries where local context is important.
PointNet++ introduces a hierarchical learning approach
similar to how convolutional neural networks operate on
images. This hierarchy allows the network to capture
fine-grained local features and combine them to form
higher-level features. For this reason, I will be using the
PointNet++ architecture for this research.

3 Methodology
The methodology will mostly cover the classification aspect
of the research, with less emphasis on the 3D Gaussian
Splatting performed on the data. The aim of the research is
to find out what the implications of this technique, which has
been researched extensively in the paper by Kerbl et al. [3]
and briefly explained in section 2.1, are on object
classification.

Data for the purpose of applying 3D Gaussian Splatting
and subsequently classifying three-dimensional objects
should comply to a set of pre-determined specifications. For
3D Gaussian Splatting, a dataset that consists of 3D Models
or point clouds is needed. On top of that, the data should
contain sufficient enough object examples for the purpose of
training a classification model. In the end, a dataset
containing hundreds of 3D models or point clouds,
categorized into multiple classes, each split into a training
and test set is needed.

The Princeton ModelNet10 dataset [11] is a subset of the
ModelNet dataset specifically designed for 3D object
recognition and classification tasks. Described in a paper by
Wu et al. on the representation of volumetric shapes [11],
the dataset was manually constructed with the goal of
providing researchers in computer graphics with a clean
collection of 3D CAD models. The dataset contains
hundreds of said models, categorized into ten object classes
of the most common objects in the world, including chairs,
tables, bathtubs, etc. A sample of each can be found in fig. 1.
Each category is divided into a training and test set, for the
purpose of training object recognition models, this split was
defined by Wu et al. in their paper [11] and can be
considered as the default split for training a model using the
dataset. I will therefore also be using this same split. The
exact amount of models per category and this split can be
found in table 1.

The 3D Gaussian Splatting optimizer described in the
paper by Kerbl et al. [3] requires point clouds as input, not
meshes. To account for this, their repository1 provides a
converter to extract undistorted images and
Structure-from-Motion information from input images.
These images are obtained by executing a Python script on
each model in Blender [13]. This script first loads the mesh

1https://github.com/graphdeco-inria/gaussian-splatting

2



Class Name Train Test Total
Bathtub 106 50 156

Bed 515 100 615
Chair 889 100 989
Desk 200 86 286

Dresser 200 86 286
Monitor 465 100 565

Nightstand 200 86 286
Sofa 680 100 780
Table 392 100 492
Toilet 344 100 444

Table 1: Amount of models per category in the Princeton
ModelNet10 [11] dataset

Figure 1: A sample model from each category of the ModelNet10
dataset [12]

into the scene, applies a texture and then normalizes the
scale, to keep the data as consistent as possible. Multiple
light sources are placed in the scene, allowing for brightness
variation per face of the mesh, needed when using the
spherical harmonics of the 3D Gaussians as features for
training. A camera is then rotated around the model in
question in a smooth spiralling motion, while constantly
facing the object, capturing a series of views. These views
can then be used as input for the converter, resulting in SfM
sparse point clouds. Next, the optimizer is run on the
resulting sets of point clouds to get the best possible
parameters for the 3D Gaussians. Figure 2 shows the result
for a sample object, including the Gaussians at different
scales.

Figure 2: Visualization of 3D Gaussian Splatting point cloud
of sample ModelNet10 bathtub object. (Left) The Gaussians at
minimal scale. The red colors indicate denser areas of points,
usually where more Gaussians are used for complex geometry.
(Right) The Gaussians at maximal scale.

PointNet++ [9][10], the chosen classification framework
that was covered in section 2.2, also uses sparse point clouds
as input. However, the point clouds that 3D Gaussian
Splatting produces contains different amounts of points per
model, which means they need to be normalized for the
classification accuracy to be realistic. This normalization is
done via sampling a particular amount of points from every
model. While there are multiple different types of sampling
to choose from, the Furthest Point Sampling method seemed
to be the most fitting for this research. Furthest Point
Sampling (FPS) is a sampling method used to select a subset
of points from a larger set by iteratively choosing the point
that is the farthest away from the already selected points.
This ensures that the sampled points are spread out as evenly
as possible, covering the entire space of the original point
cloud effectively. While this means that the overall shape of
the object is captured as best as possible, the complex
geometries of smaller elements present in the model might
not be captured fully. However, the uniformity ensures that
important geometric features are well represented and no
region is overly neglected, providing provide a structured
representation of the point clouds, which is essential for the
effective performance of PointNet. Figure 3 shows the
results of the Furthest Point Sampling method with 8192
points on the same bathtub ModelNet10 model.

Figure 3: Furthest Point Sampling (FPS) visualized. The left image
shows the original 3D Gaussian Splatted point cloud. The right
image shows a sampling of 8192 points having been applied.

The PointNet++ classification architecture uses an nx3
array as the input of features by default, corresponding to the
x, y and z positions of the n points present in the cloud.
However, the amount of columns of this input array can be
modified to allow for more than three channels. 3D
Gaussians, on top of a position (R2), also contain a scale
(R3), rotation (R4), opacity (R1) and spherical harmonics
(R45), which define how the Gaussian should react to the
angle it is viewed from regarding the different light sources
in the scene. Combined, these parameters total up to 56
possible features. This means that our final input array
becomes nx56. To extract these values from the .ply files that
the 3D Gaussian Splatting optimizer created as output, I use
the plyfile2 module in Python. While the original

2https://pypi.org/project/plyfile/

3



PointNet++ implementation3 developed by Qi et al. [10]
uses TensorFlow as the machine learning framework, this
research will be using a different implementation, developed
by Xu Yan4 using PyTorch instead. The main reason for this
is that I personally am more familiar with the PyTorch
framework than I am with TensorFlow, and it is generally
better supported, with a large amount of libraries integrating
well with it, such as NumPy.

4 Results
Before presenting the results obtained from classifying the
3D Gaussian Splatted point clouds in section 4.2, the specific
PointNet configurations used for producing these results will
be showcased in section 4.1.

4.1 Training Setup
As mentioned in the section 3, the architecture of the
PointNet++ framework uses an nx3 array as the input of
features. However, it allows the user to increment the
amount of columns of the array, otherwise known as the
channels, corresponding to the amount of features used for
training the model. As 3D Gaussian Splatting transforms
every point present in the cloud into a Gaussian with extra
parameters, these channels need to be increased to allow for
the extra features that 3D Gaussian Splatting introduces.
Training a classification model on just the position features
wouldn’t justify the use of 3D Gaussian Splatting. This
research thus requires us to train multiple models using these
different features obtained by the method.

To answer the research question proposed in the
introduction, multiple PointNet++ models will be trained,
each using a different amount of parameters present in the
Gaussians. Specifically, I will train on four different
configurations, each one adding a new set of features on top
of the old ones. The goal is to find out which set of features
has the most significant impact on the accuracy of the trained
models. The performance of these models will be compared
to the model trained on point clouds sampled directly from
the mesh surfaces of the original ModelNet10 dataset, using
Furthest Point Sampling, which can be considered as the
baseline. As these point clouds do not make use of 3D
Gaussians yet, the only features used for training this model
are the x, y and z positions of the points. To ensure a fair
comparison, both the proposed models and the baselines
have been sampled using FPS, with every point cloud
containing exactly 8192 points.

4.2 Classification Results
As previously mentioned, classification results will be
compared to a baseline, which can be found in table 2. This
table shows the performance of training a PointNet++ model
on point clouds directly sampled from the surfaces of the
ModelNet10 meshes as training data, using Furthest Point
Sampling. As these point clouds have no notable features
other than the x, y and z positions of the points, the presented

3https://github.com/charlesq34/pointnet
4https://github.com/yanx27/Pointnet Pointnet2 pytorch

accuracy can be considered as a definite baseline.

All of the training done in this research is using 200 epochs
and a learning rate of 0.001. These numbers are the default
values for PointNet++ training, and no significant changes
in the results seem to appear when increasing the amount of
epochs or decreasing the learning rate.

Network Features Accuracy
PointNet++ Positions 0.952

Table 2: Classification results of a PointNet++ model trained on
points sampled directly from the ModelNet10 meshes. These results
can be considered as the baseline for this research.

Network Features Accuracy
PointNet++ Positions 0.866
PointNet++ + Scale & Rotation 0.887
PointNet++ + Opacity 0.890
PointNet++ + Sp. Harmonics 0.889

Table 3: Classification results of the PointNet++ trained on different
configurations of 3D Gaussian Splatted ModelNet10 data

Looking at the results in table 3, one can immediately
observe that all of the results from applying PointNet++
classification on 3D Gaussians are significantly lower than
that of training on points sampled from the surfaces of the
meshes. The reason for this is that the baseline is trained
using points sampled directly from the surface of the object
mesh, which can be considered as the ground truth. In
contrast, the Gaussians obtained from 3D Gaussian Splatting
are an approximation of the actual scene. As expected,
classification of an approximation will almost never surpass
the accuracy of training on the ground truth, sampled or not.
Moving on to the performance differences between the
different configurations, there is a difference of 0.024 in
accuracy between the best and worst performing
configurations, the best performing configuration using
positions, rotations, scales and opacity as features. The
significant deviation between the classification results of the
first and second configuration in the table seems to suggest
that the scale and rotation of the 3D Gaussians add the most
amount of information regarding the general shape of the
object. As opacity is eventually used during Gaussian
Splatting to fine-tune the rendering, the model seems to be
able to use this information for slightly improving the
accuracy. Even more remarkable, adding 45 more channels
for spherical harmonics as features for training seems to
have no effect on the classification accuracy, and even
decreases it by 0.001. All models in the dataset have a
similar texture applied to them, and the light sources present
when capturing the different views are positioned in the
exact same location, which means that visibility-awareness
does not seem to have as much effect as it would in
real-world scenarios. However, the training time is

4



significantly longer when using these extra 45 features,
implying that the best configuration for our particular dataset
seems to be the use of positions, scale, rotation and opacity
as features. Further research using non-synthetic data
captured in the real world, can be done to determine the
impact of spherical harmonics on classification results.

5 Responsible Research
While ethical and responsible aspects of this research may not
immediately seem obvious to the reader, there are still certain
elements present worth reporting, mainly regarding the data
used for this research and its experiments.

5.1 Ethical Research
Ethical aspects of research arise fairly often when Artificial
Intelligence is involved. In this research, I have been training
multiple deep learning models with the goal of classifying
common household objects. The data used for this is
completely synthetically generated, which safely eliminates
the need for real-world subjects. Keeping in mind that the
data used fully consists of non-living objects, privacy and
security norms and concerns do not play a significant role in
this research. Nonetheless, it is important to remember that
further research on this topic may involve actual real-world
subjects and scenes, in which case these ethical aspects
should be actively taken into consideration and respected.
Researchers on this topic must ensure informed consent
from all participants, maintain data confidentiality, and
implement robust security measures to protect sensitive
information. The ethical deployment of machine- and
deep-learning technologies in real-world scenarios demands
consideration of potential biases in the data and algorithms.

5.2 Data Ethics
While the details of ModelNet10 [11] have already been
thoroughly explained, the chosen dataset for this research, in
section 3, I have not yet examined the ethical aspects
regarding its contents, or data in general, which also apply
here. The most prominent aspect considered here is the
reusability of the data, as stated by the FAIR principles5.
These principles provide guidelines for achieving optimal
reuse possibilities of data. First of all, the original dataset is
easily Findable, as the Princeton ModelNet10 dataset is used
by a wide range of similar research, mostly on the
classification of 3D objects. In section 3 I explained how this
dataset was further processed by applying 3D Gaussian
Splatting to every single model. This process was actually
performed by another student in the same research project
group: Andrei Simionescu, who subsequently uploaded this
dataset, around 300GB, to an external data repository6. The
next principle, Accessibility, is therefore also satisfied. The
original ModelNet10 is publicly available for download,
with no authentication required whatsoever. Similarly, the
3D Gaussian Splatted dataset is available on the
aforementioned external repository. Interoperability of the
data, the next principle, is achieved by the ability to be

5https://www.go-fair.org/fair-principles/
6https://doi.org/10.4121/3eabd3f5-d814-48be-bbff-b440f2d48a2b

integrated with other data. All the data used in this research
is either available in .off or .ply models, both considered as
universal 3D model file formats, able to be imported and
utilised in most, if not all available 3D modelling, or point
cloud manipulation software. The final principle,
Reusability, is satisfied with the inclusion of relevant
metadata.

5.3 Responsible Integrity
To achieve optimal reproducibility for this research, code
and data used during the experiments are fully provided. On
top of that, section 3 has extensively explained the
methodology used during the experiments, along with the
dataset used to generate synthetic input for the algorithms.
This allows for full reproducibility of the experiments and
subsequent validation of the results, reinforcing the integrity
of my research. All of the code used during this research can
be found here:
https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-q4/Zhang/
dvandale-Multi-view-image-recognition-through-3D-Gaussian/
-/ tree/main/ .

6 Discussion
This research is based on the premise that 3D Gaussian
Splatting might positively impact PointNet classification due
to the increased quality of scenes. The highly realistic scenes
produced by 3D Gaussian Splatting create the assumption
that it should subsequently improve classification
performance. This is particularly relevant because the input
is not based on meshes but on point clouds directly obtained
using Structure from Motion (SfM) techniques. These point
clouds preserve permutation invariance, unlike point clouds
obtained from sampling meshes. Our baseline uses Furthest
Point Sampling on both the ModelNet10 meshes and the
point clouds obtained from 3D Gaussian Splatting, which
should have a less negative effect on the 3D Gaussian
splatted point clouds compared to the original mesh point
clouds. As presented in section 4.2, the baseline training,
which is based on the original ModelNet10 3D CAD model
meshes and subsequently sampling a set of points from the
surface of these meshes, results in a staggering 0.952
classification accuracy on the test data. In contrast, training
on 3D Gaussian splatted data results in a performance
decrease to between 0.860 and 0.890 test instance accuracy,
implying that 3D Gaussian Splatting affects PointNet
classification in a negative manner. However, It is crucial to
keep in mind that this ground truth data is usually
inaccessible in real-world scenarios. 3D Gaussian Splatting
is based on approximations. The input data for the process is
a series of views of the scene or object, which can usually be
obtained ”on-the-go.” The average phone camera can be
considered the bare minimum for obtaining the required data
for applying 3D Gaussian Splatting. A dataset consisting of
actual meshes on the other hand is significantly more
difficult to obtain when looking at real-world scenes,
especially if it perfectly represents the ground truth. It is
therefore crucial that not all focus should be placed on these
results, but also on the context surrounding the obtaining of
the data.

5

https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-q4/Zhang/dvandale-Multi-view-image-recognition-through-3D-Gaussian/-/tree/main/
https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-q4/Zhang/dvandale-Multi-view-image-recognition-through-3D-Gaussian/-/tree/main/
https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-q4/Zhang/dvandale-Multi-view-image-recognition-through-3D-Gaussian/-/tree/main/


7 Conclusion
In this research, I explored deep learning possibilities
created by the development of 3D Gaussian Splatting. Kerbl
et al. proposed the use of differentiable volumetric kernels,
named Gaussians, for representing a scene, allowing for
gradient-based optimization. This new form of volumetric
scene representation gave rise to new opportunistic
challenges, including the possibility of applying well-known
classification techniques on 3D Gaussians. In the end, I
proposed the use of the PointNet(++) architecture to classify
common household objects represented using 3D Gaussian
Splatting, to find out whether the use of Gaussians could
improve upon classification performance. Specifically, I
performed multiple model training experiments using
different configurations of features, including positions,
scale & rotation, opacity and spherical harmonics, created
and optimized using 3D Gaussian Splatting. The results are
then compared to a baseline, consisting of a model trained
on points sampled from the surface of the original meshes,
where no 3D Gaussian Splatting has been applied. The final
results seem to suggest that the use of Gaussians for
classification do not directly improve performance, with
accuracies hovering between 0.860 and 0.890, with the best
performing configuration using positions, scales, rotations
and opacity as features. These results are, however,
significantly lower than the baseline of 0.952. 3D Gaussian
Splatting approximates a scene with differentiable
volumetric elements, meaning that it is unlikely to perform
better than applying the same classification process on the
ground truth of the scene, which samples points directly
from the meshes surface. However, the Gaussian
classification still achieves results comparable to
state-of-the-art trained models, suggesting that using this
new representation is not completely unthinkable, especially
considering the fact that no initial mesh is required. The
results are completely based on synthetically generated
views, using methods that can be applied in real-world
scenarios as well. From these results it can be safely
concluded that 3D object classification using 3D Gaussian
Splatting is definitely possible, but it does not achieve
optimal performance when compared to non-approximated
scenes.

In this research, I managed to find an answer to my
research question. However, there are still opportunities
available for further research. This research mainly used
synthetically generated data, obtained from publicly
available 3D Models. To further prove that 3D Gaussian
Splatting is a significant advancement in the field of
Computer Graphics, real-world data could be used instead.
While this would require significantly more time to obtain
compared to generating synthetic data, the results would be
very valuable for determining the overall utility of 3D
Gaussian Splatting.

References
[1] Liang Zhou, Mengjie Fan, Charles Hansen, Chris

Johnson, and Daniel Weiskopf. A review of

three-dimensional medical image visualization. Health
Data Science, 2022:1–19, 04 2022.

[2] Lee Westover. Footprint evaluation for volume
rendering. Proceedings of the 17th annual conference
on Computer graphics and interactive techniques, 1990.

[3] Bernhard Kerbl, Georgios Kopanas, Thomas
Leimkühler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM
Transactions on Graphics, 42(4), July 2023.

[4] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for
view synthesis, 2020.

[5] Jiazhong Cen, Jiemin Fang, Chen Yang, Lingxi Xie,
Xiaopeng Zhang, Wei Shen, and Qi Tian. Segment any
3d gaussians. arXiv preprint arXiv:2312.00860, 2023.

[6] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes,
Shachar Fleishman, and Daniel Cohen-Or. Meshcnn: a
network with an edge. ACM Transactions on Graphics,
38(4):1–12, July 2019.

[7] Cheng Wang, Ming Cheng, Ferdous Sohel, Mohammed
Bennamoun, and Jonathan Li. Normalnet: A
voxel-based cnn for 3d object classification and
retrieval. Neurocomputing, 323:139–147, 2019.

[8] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and
Erik Learned-Miller. Multi-view convolutional neural
networks for 3d shape recognition, 2015.

[9] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J.
Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation, 2017.

[10] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas.
Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. arXiv preprint arXiv:1706.02413,
2017.

[11] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu,
Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes,
2015.

[12] Lorenzo Luciano and A. Ben Hamza. Deep similarity
network fusion for 3d shape classification. The Visual
Computer, 35, 06 2019.

[13] Blender Online Community. Blender - a 3D modelling
and rendering package. Blender Foundation, Stichting
Blender Foundation, Amsterdam, 2018.

6


	Introduction
	Related Work
	3D Gaussian Splatting
	PointNet/PointNet++

	Methodology
	Results
	Training Setup
	Classification Results

	Responsible Research
	Ethical Research
	Data Ethics
	Responsible Integrity

	Discussion
	Conclusion

