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ABSTRACT

Metamaterials are a new class of materials where the properties crucially depend on the
design of the unit cell that is periodically repeated in space. In this study a new metama-
terial unit cell concept has been proposed, inspired by a class of space structures known
as deployable masts. The ability of these structures to contract to a fraction of their size
made them suitable candidates for energy absorbing applications. One of the main de-
sign targets of energy absorbers is the ability to tune the material response to specific ap-
plications. Tunability of the mechanical response of the metamaterial concept requires
deep understanding of the influence of design parameters. The prime focus of this study
was to gain this understanding via data-driven insights.

Conventionally, the design of a new material is carried out by making educated guesses
about the design parameters and subsequently performing expensive and time-consuming
experiments. In this work computational simulations were utilized to create databases of
mechanical responses. These databases are later used to model the relationship between
the inputs and the output response. This generated the issue of how and what method
to use to effectively determine this relationship. This work explored state-of-the-art ma-
chine learning methods to enhance a recently proposed data-driven framework with the
goal of designing a new super-compressible metamaterial with large energy absorption.
Importantly, the data-driven design process included the influence of manufacturing
imperfections on the mechanical response of the metamaterial.

The study revealed that by tuning the design parameters, significantly different mechan-
ical response of the structure was achievable. The proposed learning model has enabled
mapping of the influence of design parameters in the design space, moreover the sensi-
tivity to those parameters varied across the design space. The increased energy absorp-
tion has been attributed to the resistance to bending of the main load carrying compo-
nents of the design. It was demonstrated that the number of those components and the
elastic modulus were scaling factors for the quantities of interest. Based on the insights
gained, a unit cell metamaterial design with significantly improved energy absorbing ca-
pability was proposed.
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PREFACE

The way science has given us new discoveries has in principle not changed over cen-
turies. Innovators create scientific breakthroughs based on years of experience within
a given field, intelligence, intuition and often, luck. This process is often time and re-
source consuming, yet it is the main path towards scientific revelations. In some cases,
after years of such tried and tested trial-and-error approach, the results are somewhat
disappointing. However, in recent years data-driven approaches have opened avenues
for new discoveries. Moreover, rapid advancement of these new tools makes ideas once
unthinkable, possible. For example, in materials sciences, the advent of high precision
and flexible additive manufacturing technologies along with ever increasing use of com-
putational analysis methods creates new pathways for cutting-edge research. The for-
mer makes long standing dogmas refutable while the latter allows for relatively rapid
and cost-efficient verification of new ideas. Moreover, the recent outburst of artificial in-
telligence techniques makes the computational approach even more effective as models
that were once too complicated are now within grasp. This work is merely a trivial ex-
ample of how this new approach to discovery of novel materials can be utilised. It is my
sincere hope that this work may serve as an inspiration for other researchers to achieve
feats far greater than obtaining a Master’s degree diploma.

Piotr Stanislaw Glowacki
Delft, March 2019
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1
INTRODUCTION

T HIS thesis contributes to the design of a new energy absorbing material by using ma-
chine learning to study the influence of the unit cell parameters on buckling and

post-buckling of the structure. On the path to achieve this, we quantify the uncertainty
of post-buckling response and compare the performance of recent sparse Gaussian pro-
cesses – new Bayesian machine learning methods that are found herein to be well suited
for mechanical metamaterial design.

The traditional approach to design new materials is based on finding (often) simple rela-
tionships between the mechanical properties of a given material and the chemical com-
position as well as microstructure morphology. However, along with rapid advancement
of additive manufacturing, alternative possibilities have emerged for the design of novel
materials. With high precision additive manufacturing, it is conceivable to design struc-
tures with purposely defined spatial orientation, like buildings but on several orders of
magnitude smaller scale. The properties of these materials mostly depend on the archi-
tecture of the unit cell that is periodically repeated in space, rather than their chemical
composition. These materials are broadly referred to as metamaterials.

Energy absorption is an important property that finds use in many engineering appli-
cations fields such as military, aerospace, automotive, and civil, to name just a few. A
wealth of energy absorbing materials already exists. Yet increasing energy absorption
of a material requires the improvement of two key competing properties: strength and
deformation. Moreover, the exact requirements of materials in general, and energy ab-
sorbers in particular, depend on the structural applications where they are used. For
example, in automotive crashworthiness, the optimal material may not necessarily be
ultra-strong and highly deformable, since an impact on such a material could lead to
high forces transferred onto the passengers upon impact. Thus, the target in materials
design can be not only the optimization of contrasting properties, but also the ability to
tune the material response to specific applications. In the case of periodic metamate-
rials, due to their design freedom, the geometry of their unit cell plays a critical role in
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their mechanical response. In this project, inspiration for the unit cell has been taken
from a class of space structures referred to as the deployable mast. These structures are
lightweight, able to resist significant loads and may be retracted to a fraction of their size
in comparison to when they are employed. If the concept can be miniaturized, i.e. if
it is scalable, then it could offer an ideal setting for data-driven design of this unit cell
in order to optimize both strength and deformability to achieve unprecedented energy
absorption via super-compressibility.

Despite the apparent simplicity of the unit cell, it would be significantly time-consuming
to design it and optimize its response for such a demanding application by using a purely
trial-and-error approach driven by experiments. Therefore, in this work, computational
simulations using the finite element method have been employed to generate tens of
thousands of different designs that were later investigated by artificial intelligence meth-
ods, to derive data-driven insights about the influence of the unit cell design parameters
on the mechanical response of the metamaterial.

This thesis is organized as follows. Chapter 2 contains the literature review on prior work
on buckling metamaterials, energy absorbing materials, the deployable mast structure
and sparse gaussian processes. All the necessary information regarding the methods
used to conduct this study can be found in Chapter 3, while the main results are pre-
sented in Chapter 4. An in-depth discussion of the aforementioned results is provided in
Chapter 5. Conclusions and recommendations for future work concerning the design of
the metamaterial unit cell are included in Chapter 6.



2
LITERATURE REVIEW

D ATA-DRIVEN research requires to articulate knowledge from multiple fields. This
literature review chapter begins with Section 2.1 describing the aerospace structure

that served as inspiration for the data-driven design of a new metamaterial. Section 2.2
provides a broad overview of current state-of-art of metamaterials. The topic of energy
absorbing materials and structures is presented in Section 2.3. Finally, selected topics
in machine learning and gaussian process algorithms are briefly discussed in Section
2.4.

2.1. INSPIRATION FROM SPACE STRUCTURES: THE DEPLOYABLE

MAST

Space structures have strict design requirements due to the limits imposed on cargo di-
mensions by current launchers, despite the ever-increasing efforts and considerable re-
duction in the cost per kilo of cargo sent into space. This constraint is problematic, as
it sets a theoretical limit on the capability and configuration of apparatus we send into
space, in particular the focal lengths and aperture diameters of telescopes [1]. The pri-
mary requirements of the deployable space structure are deployability, compactability
and structural acceptability [2]. Many deployable concepts have already been created
and investigated, and some have been used in aerospace missions. Deployable masts
(booms) are notable solutions frequently used as critical structural components in satel-
lites [2, 3].

Deployable masts are a class of structures that can be stowed into a small volume and
expanded into long, slender, and stable booms: they can typically be packed to under
5% of their deployed length [5]. Masts are compacted in the launch vehicle and may be
deployed in a sequential or synchronous way, by expanding promptly or gradually [2],
when the satellite goes into orbit [6]. Deployable masts have the potential to offer an

3
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Figure 2.1: An example of a deployable structure [4].

ideal solution for telescopes of large apertures (>10 m diameter) and medium baselines
(from 15 to 50 m) [1]. Consequently, the payload capability is not limited by dimensions
of the launcher’s fairing, but rather by the usable volume.

Apart from telescopes, applications of deployable mast are various and include, mag-
netic sensor’s masts for scientific satellite, long range navigation antennas masts, telecom-
munication antennas, and energy absorbing structures [7–10]. provides a qualitative
summary of the different types of deployable masts. As can be inferred from the table,
there is a trade-off between obtaining a light and compact mast or a high precision and
strong mast but with higher weight. One of the design concepts, the coilable mast, is
particularly interesting because it seems to find a balance between the relevant proper-
ties, i.e. achieving good deploying accuracy and post deployment stability, significant
flexibility in terms of dimensions, and reasonable load bearing capability

Table 2.1: Relative comparison of deployable mast technologies [1, 5, 10].

Type of Deployable Mast
Property Inflatable Telescopic SMC Articulate Truss Coilable

Mass GOOD BAD GOOD BAD BAD GOOD
Load Capacity BAD GOOD BAD GOOD GOOD MEDIUM

Accuracy BAD GOOD BAD GOOD GOOD MEDIUM
Stability BAD GOOD BAD GOOD GOOD MEDIUM

Packaging Ratio GOOD BAD MEDIUM BAD MEDIUM GOOD

Figure 2.2 shows approximate comparisons between the different designs, where truss
and telescopic structures are characterized by a sharp increase in boom diameter with
increasing length of the mast, while the coilable mast is believed to be the one that can
span larger deployable lengths from 1 to 100 m.

Another important parameter is the bending stiffness, as shown in Figure 2.3. Truss
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Figure 2.2: Mast diameter as a function of deployable length [1].

structures and articulated booms have the highest bending stiffness, whereas Shape
Memory Composite and inflatable booms overlap with the coilable boom. According
to the literature, coilable booms offer far wider range of properties than other technolo-
gies. Truss structures also have a relatively wide range of lengths at high stiffness, yet at
the cost of increased mass.

Figure 2.3: Bending stiffness as a function of deployable length [1].
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The design flexibility, high packaging ratio and wide range of mechanical properties as-
sociated to the coilable mast make it an interesting design concept to explore and adapt
when designing a new super-compressible material by a data-driven approach, as pro-
posed herein.

2.1.1. THE COILABLE MAST

Coilable masts are conventional one-dimension deployable structures with high pack-
aging ratio and strength-to-weight ratio, widely applied in spacecraft [11]. Typically,
they are lattice trusses with equilateral triangular cross section, designed specifically for
purely elastic folding [2, 3]. A coilable mast may be stowed to 2% of the deployment
length [12, 13].

Figure 2.4: Schematic representation of
coilable mast [14].

Concepts of coilable masts have been de-
veloped since the late 1980’s, most notably
the Astromast [15] and the Simplex Mast
[14]. A Simplex Mast consists of at least
three continuous longerons, radial spacers
and supporting diagonal wires [14]. The
longerons form the edges of a truss and the
radial spacers are essentially battens hinged
to the longerons [3]. According to approx-
imate analytical predictions and extensive
experimental investigation, the truss struc-
ture is divided into bays by the battens with
the length of the bay being approximately
0.6 times the diameter of a deployed mast
[3]. The diagonals increase the bending stiff-
ness of the truss. A transition (transfer zone)
zone is formed during deployment between
the stowed section and the fully deployed
section, this is shown schematically in Fig-
ure 2.4 [15].

Stored elastic strain energy, triggers the de-
ployment of the mast with a lanyard in ten-
sion as the controlling element [3, 13]. The
lanyard applies force axially and torque to
the top plate, once the mast starts coiling,
the lanyard provides the necessary force to
fully retract the mast. The stress changes
considerably during a full deployment-
retraction cycle, with abundant drop after
the retraction begins [3, 14].

Despite varied iterations, the design princi-
ple is the same. Longerons are the primary load carrying elements, they determine the
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performance characteristics of the whole mast [13]. The battens buckle and thus ten-
sion the diagonals that are responsible for correct alignment of the longerons both radi-
ally and axially. It is possible to select different materials for the longerons, battens, and
diagonals to manipulate the properties.

Longeron material determines the bending stiffness and bending strength of the mast as
they are function of the Young’s modulus, distance from mast center, longeron section
and bay length. Diagonal material greatly influences the shear and torsional stiffness of
the structure as they are function of the elastic modulus and angle within the bay. More-
over, shear and torsional strength are determined by the buckling strength of battens
[13].

The design of the coilable mast has been modified over the years, with most notable
iteration being the “Hingeless” mast. In this concept, the hinged joints of battens to
longerons were removed and replaced by elastic deformation of the batten itself [14],
presented in Figure 2.5. The design had several advantages [14]:

• Increased alignment due to fixed joints

• Simplified manufacturing process

• Reduced number of components by 75%

• Reduced mass by 66%

• Lower total cost

Yet, at the time the main problem of the new design was the appropriate batten geometry
and material selection for the battens. As masts may undergo plasticity, strain harden-
ing and fatigue [5], relevant selection criteria should consider fatigue properties, creep
properties and the material should preferably be a tried space-material [14].

Figure 2.5: Left: Simple mast with hinges. Right: Hingeless mast with rigid joints [14].

Furthermore, one of the main problems of a coilable mast is that it generally has low
base frequency and tends to vibrate under both external and internal force in space [12].
These oscillations are unfavorable as it may take a long time for the mast tip to stabi-
lize and function properly after deployment. Additional mass at the tip of the mast has
largest influence on this phenomenon. The bending and extensional frequencies tend
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to decrease at high rate with the increase of mass at the tip. Torsional stiffness is not af-
fected as the additional mass does not change the moment of inertia along the Z axis of
the mast [12].

The most characteristic feature of a coilable mast is the transition zone, where the mast
is not fully deployed and not fully retracted. This behavior is possible owing to the local
coil mode phenomenon.

2.1.2. LOCAL COIL MODE

Figure 2.6: Left: Local coil mode.
Right: Helix Mode [11].

Essentially, there are two possible deployment
modes for a coilable mast: helix mode and the
local coil mode, shown in Figure 2.6. The helix
mode lacks the discrete separation into the de-
ployed, transition and coiled zones. Instead the
entire structure resembles a transition zone. The
local coil mode is always preferred over the helix
mode, as the mast has higher lateral load resistance
during deployment and retraction [11, 14]. On the
contrary, a mast in helix mode is characterized by a
global instability and low resistance to side forces.
As mentioned previously, the elastic strain energy
of longerons and battens is the source of deploy-
ment forces [14]:

PD = 6E I I I

D2 − 3π2[G J ]s

4pD
(2.1)

A good selection of values for batten to batten bay length and the stiffness ratio between
longerons and battens gives the desired local coil mast appropriate fatigue and creep
properties [14].

Figure 2.7:
Initial bot-
tom helical
angle [11].

In order to obtain local coil mode, the mast must be deployed from a
fixed bottom first with the longerons uncoiling subsequently from bot-
tom to the top [11]. This ensures global deployment in the local coil
mode, regardless of the final length of the mast. Therefore, a longeron
boundary condition θi ni affects the bottom deployment mode [11]. The
angle θi ni is presented in Figure 2.7. If we take into consideration only
the longeron section from the bottom to the first batten, the longerons
may be analyzed as twisted elastic rods constrained to a cylinder [11].
Based on the θi ni and bottom deformation analysis, the bottom critical
helical angle θcr i t may be obtained. If the bottom helical angle chang-
ing rate along the longeron curvilinear coordinate is zero, then the mast
is in critical state and θcr i t value can be determined [11].

An experimentally determined condition of θi ni < θcr i t with a −13.7%
margin could ensure bottom deployment in the local coil mode and thus a successful



2.2. METAMATERIALS

2

9

deployment of the entire coilable mast in local coil mode [11]. However, a transition zone
with more bays, requires greater θi ni . This is impractical, as the more bays are included
into the transition zone, the more the deployment mode resembles the helix mode in
2.6. As stated previously, this leads to lowered stability and lateral bending stiffness of
the mast.

2.2. METAMATERIALS

In traditional materials science, materials have been subdivided into three categories:
metals, polymers and ceramics. This division is derived from similarity of properties
within categories and stark differences between them [16]. As material properties are
function of structure and the structure is largely dependent on material chemistry, the
types of bonds between atoms determine material properties. Metallic materials are
characterized by metallic bonding and are malleable and prone to corrosion. Thanks
to ionic bonding in ceramics, they have high melting points, hardness and corrosion
resistance yet poor toughness. Polymers are characterized by covalent bonds within the
chains and intermolecular forces in between them, therefore they exhibit time-dependent
deformation and are lightweight but have lower strength and poor high temperature per-
formance [16]. Later, a fourth category of materials was added, composites. A composite
material is formed by combining at least two different constituents with complementary
properties with the goal of improving the overall behavior of the material [17].

Recently, a novel category of materials has been intensely researched. Metamaterials are
carefully structured materials, often consisting of periodically arranged building blocks,
that exhibit properties and functionalities that differ from and surpass those of their con-
stituent materials rather than simply combining them [18]. By this definition, meta-
materials bear resemblance in their purpose with composites, however they achieve
their functionality by means of meticulous spatial morphology of the constituent phases.
Over the last 20 years metamaterials that achieve extraordinary acoustic, thermal and
optical properties were demonstrated [18–24].

Mechanical metamaterials are man-made materials, usually consisting of repeating unit
cells which are engineered to achieve extreme mechanical properties, often beyond those
found in most natural materials [25]. Motion, deformations, stresses and mechanical en-
ergy are of prime interest in this class of metamaterials [18]. They are characterized by a
set of unusual or extraordinary properties such as negative Poisson ratio [20–22], nega-
tive incremental stiffness [26, 27] , negative compressibility [28, 29], bi-stability [30, 31],
shape morphing [18, 20, 32], topological protection [18, 20], and nonlinear responses
[18, 25], to name just a few.

The so called meta atoms, are the building blocks of metamaterials. Adjacent blocks act
jointly to generate collective response [18]. The linchpin to the design of mechanical
metamaterials are slender structural elements [18] such as beams, struts, rods and ties.
They enable large deformations that lead to geometric nonlinearities, and are vulner-
able to elastic instabilities, such as buckling and snapping. As the bending stiffness of
slender elements scales with the third power of their thickness, powerful stiffness het-
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erogeneities can be designed and fabricated using additive manufacturing techniques
[18]. These heterogeneities are the reason for qualitative differences in properties be-
tween metamaterials and their constituent materials.

There are several classes of mechanical metamaterials:

1. Linear mechanical metamaterials [33, 34].

2. Mechanism-based metamaterials [31, 35, 36].

3. Instability-based metamaterials [19, 25, 37, 38].

4. Topological metamaterials [18, 20].

This division between metamaterials is fluid. Linear metamaterials are characterized by
unusual parameters of rank-four elastic tensor Ci j kl . They consist of conventional elas-
tic elements to create metamaterials with any form of elastic tensor that is not forbidden
by thermodynamics [18]. Auxetics are an example of linear mechanical metamaterials.
They are characterized by a negative value of Poisson ratio i.e. they contract in the trans-
verse direction under compressive loading regimes. However despite linear response,
research has focused on instability induced auxetics [19, 21, 22, 24, 30, 37–40].

Mechanisms are collections of rigid elements linked by flexible hinges that have a geo-
metric design that allows for a zero-energy, free-body motion [18]. This family of meta-
materials encompasses various Origami and Kirigami-based planar and spatial struc-
tures. They have the ability to change shape upon mechanical trigger and can find fu-
ture applications for actuation purposes [20, 36, 41–43]. Just as in the previous case,
mechanism-based metamaterials can possess auxetic behavior [21]. Topological meta-
materials. These metamaterials display properties that are topologically protected. They
are not affected by smooth deformations of the underlying geometry or by the presence
of disorder [18, 20].

Lastly, instability-based metamaterials. In conventional bulk materials, instabilities are
undesirable as they may lead to failure [38] or hinder functioning of product. In instability-
based metamaterials, the instabilities are exploited to design advanced materials with
innovative properties [25]. This type of metamaterials are the main focus of this work, so
they will be reviewed in further detail next.

2.2.1. INSTABILITY-BASED METAMATERIALS

Elastic instabilities and large deformations allow for the achievement of strongly nonlin-
ear relations between macroscopic stresses and strains, even if the material remains in
the near-linear regime. Upon application of small forces, slender elements may respond
with large displacements, which results in so-called geometric nonlinearities. Symmet-
ric slender elements are prone to buckling instabilities that result in strong yet reversible
nonlinearities under precisely set loading conditions [37, 38, 42, 44].

Conventional porous materials, such as metallic foams, are composed of a disordered
array of beam-like elements. Their functioning depends on the microscopic geometry
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and deformation mechanism of the beam-like ligaments, which buckle under compres-
sion at relatively low strains and create irreversible deformations in the form of collapse
bands that provide an efficient energy-absorbing mechanism [18]. As buckling in elastic
architected cellular materials may trigger dramatic homogeneous and reversible pattern
transformations , it is now possible to exploit this phenomenon to create improved en-
ergy absorbing structures [38]. An excellent example of architected cellular structures
and periodic structures are ultralight micro and nano lattices [37, 45–49].

Micro lattices are ordered, periodical tubular structures with a minimum scale of ap-
proximately 100 nm, created via different additive manufacturing techniques [45]. More-
over, these structures have controlled hierarchy, each of the elements may be set inde-
pendently to a largely different dimension of structural features, as presented in Figure
2.8.

Figure 2.8: Architectural elements of microlattices [45].

These metallic microlattices experience 98% recovery from strains exceeding 50% for
the first loading and unloading cycle. However, energy dissipation due to local buckling
and node cracking is substantial after the first cycle, see Figure 2.9. Significant damage
is made to the lattice in the first cycle, that results in a drop of mechanical properties
and subsequent stabilization at the next cycles. The drop was observed to be larger for
increased density and tube wall thickness [45].

The observation that scaling down improves the performance lead to emergence of nanolat-
tices [46–48]. The concept was explored further by scaling the lattice down with technical
ceramics replacing nickel as the parent material. As seen in Figure 2.10, a new unit cell
was considered using Titanium Nitride as parent material with a grain size between 10
and 20 nm and the wall thickness of 75 nm. The result was very high local von Mises
stress of 2.5 GPa in a single unit cell, a value close to the theoretical strength of the par-
ent material [46, 47]. This highly unusual behavior for a ceramic material has been ex-
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Figure 2.9: Mechanical properties of microlattice as function of number of cycles [45].

plained by a lower probability of finding flaws of critical size. At the length scales of the
nano lattice, the critical flaw stress concentration magnitude may be comparable to the
one found at grain boundary triple junctions [46, 47]. Moreover, similar cyclic tests have
been performed on the nanolattice as on the micro lattice with noticeable performance
improvements. The observed hyper elastic behavior was assigned to a purely structural
response and not a material response [48].

Figure 2.10: Design of nano lattice (A) Whole lattice with unit cell marked (B) Lattice
parameter L (C) Hollow tube cross section dimensions [22].

Changing the parent material to alumina, did not change the nature of mechanical re-
sponse of the lattice. The theoretically brittle metamaterial still showed almost full re-
coverability after 50% strain [24, 48]. Thickness to semi major axis ratio t/a was cor-
related with the deformation mode and recoverability [24, 48]. Thick walled structures
with t/a ≤ 0.03 failed catastrophically in a brittle way in the linear elastic regime [22],
as expected for the conventional ceramic material. However, thin walled structures with
t/a ≤ 0.02 were characterized by ductile like behavior. After yielding, deformation was
accommodated through wrinkling and local buckling of the tube walls [11, 22], as pre-
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sented in Figure 2.11. Nano lattices with 0.02 ≤ t/a ≤ 0.03 showed intermediate behavior
in relation to the two extremes.

Figure 2.11: Mechanical response of nano lattices (A-E) Thin walled (F-J) Thick walled
[22].

Three competing failure mechanisms exist for hollow-tube lattice structures: fracture
of the tube wall, beam buckling of a truss member, and shell buckling of the tube wall.
Thick walled structures were found to be failing by tube wall fracture, whereas thin walled
structures deformed via the shell buckling of tube wall. Reducing the t/a ratio below a
critical value, results in deformation mode transition to local shell buckling [11]. As the
ratio is further reduced this mode is activated at lower stress, reducing the probability of
failure [22].

The examples of micro- and nano-lattices demonstrate that instability-based metama-
terials can lead to unusual and often counterintuitive mechanical responses. These re-
sponses arise from the combination of length scales chosen for the mechanical elements
and their geometrical arrangement to achieve synchronized deformation. The impor-
tance of the length scales is evidenced by the change from brittle to ductile macroscopic
failure of the material. Therefore, manipulating the characteristic dimensions of the unit
cell of the metamaterial leads to significantly altered mechanical response and therefore
architectural features of instability-based metamaterials play vital role in achieving the
desired material properties [11, 19–23].

2.2.2. BISTABLE SNAPPING METAMATERIALS

Whereas the hollow lattices discussed above store the elastic energy and spring back
after the load removal, there are instability based metamaterials that have more than one
energetically stable configuration, These materials often explore a rapid and irreversible
snap-through instability, allowing them to retain their deformed shape after unloading
[18, 25, 50, 51]. Figure 2.12 illustrates the concept of a constrained beam [18, 51].

Constrained beam elements are specifically designed to enable large, local bistable de-
formations and have the ability of trapping in most of the energy inserted into the system
during loading. The amount of trapped energy is simply the difference between the en-
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Figure 2.12: Comparison between elastic beams and constrained beams, dashed lines
for force controlled bistability [18].

ergy absorbed during deformation and the energy required for the beam to snap back to
prior configuration [50, 51]. Figure 2.13 presents an example of tilted constrained beam
element used in architected materials that exhibits controlled trapping of elastic energy
via bistable snapping. The mechanical response and thus the trapped energy may be
tuned by modifying beam slenderness t/L and tilt angle θ [50, 51].

The stress strain curve in Figure 2.13 (b) clearly indicates that as the tilt angle increases,
so does the amount of trapped energy. This is further illustrated by the energy maps.
For low angle θ, no snapping occurs, and upon increasing the angle, snapping without
bistability occurs, no energy is trapped. At nearly vertical angles, likewise no energy is
trapped due to lack of snapping. The bistability range is narrowing down for decreasing
beam slenderness. The highest energy trapping occurs for t/L high ratio and tilt angles
between 50-60o . The highest snap back energy occurs for the slenderest beams within
60-70o range. Intuitively one would choose high energy trapping and low energy cost
for snap back to maximize energy absorption, however in the case small geometric im-
perfections, this system may lose the ability to maintain the snapped configuration as
the ability arises only from spatial configuration and is both substrate material as well as
loading rate independent [51].
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Figure 2.13: Mechanical response of a tilted and constrained elastic beam (a) Character-
istic dimensions of the beam (b)Normalized force displacement curves for different tilt
angles θ (c) Energy absorbed map (d) Energy cost for snapback map [51].

Figure 2.14: Building block of the snapping metamaterial (a) Two stable configurations
of a constrained beam (b) Characteristic dimensions of the unit cell [3].

Whereas buckling metamaterial work in compressive regimes, harnessing snapping in-
stability allows to extend the instability-based metamaterials to tensile regimes. As an
example, a metamaterial built from periodically arranged snapping units with tunable
tensile behavior, capable of large extension caused by sequential, layer-by-layer, snap-
through instabilities [25, 50].

Similarly, to the hollow lattices, the snapping metamaterial also has a unit cell, based on
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the constrained beam, see Figure 2.14. The constrain conditions are released on both
ends to create a periodic array of snapping unit cells [25]. At critical stress the lower
(green) segment snaps through, and the material responds with a pattern switch from a
wavy-shaped structure to a diamond-like arrangement [25]. By manipulating the ampli-
tude a/l of the unit cell, the transformation may be continuous or discretized [25].

Figure 2.15: Stress strain curves for snapping metamaterial (a) a/l=0.2 (b) a/l=0.3 (c)
a/l=0.4 (d) Response of a single unit cell for each amplitude [25].

The stress-strain curves obtained for different a/l amplitudes exhibit three regions, Fig-
ure 2.15 [25]:

1. Linear elastic bending in snapping segments up to a critical strain

2. Snapping strain regime, where a further stretching triggers elastic instabilities with
negative slope - a negative incremental stiffness.

3. Stiffening regime, dominated by tensile stretching

For a/l = 0 the response is monotonic, and the snapping behavior vanishes. The higher
the amplitude the more discontinuous the snapping is and for large amplitudes, the in-
stabilities localize.
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Many similarities may be observed between the discussed metamaterials. Just as in the
case of hollow lattices, characteristic dimensions of material structure allow to manip-
ulate its properties. Unique properties are derived from spatial morphology and elastic
deformation modes. Moreover, significant strains coupled with bistability make them
suitable candidates for energy absorption and deployable structures, to achieve con-
trolled sequential displacement [25, 50, 51].

2.3. ENERGY ABSORBERS

An energy absorber is a system that converts, entirely or partially, the kinetic energy into
a different form of energy (potential energy, heat). The converted energy is either irre-
versible, in the case of plastic deformation, or reversible like in the case of elastic strain
energy in solids [52]. Additionally, it is desirable for energy absorbers to lower the inten-
sity of an impulsive load by extending its duration [53]. Conventionally, energy absorbers
are thin walled collapsible metallic structures that work in compression, that dissipate
the most of the kinetic energy of an impact [52]. The conversion of the kinetic energy
into plastic deformation depends, among other factors, on the magnitude and method
of application of loads, transmission rates, deformation or displacement patterns and
material properties [54]. Moreover, performance of these structures is highly depen-
dent on properties such as: mode of collapse, strain hardening and strain rate effects
[52].

Figure 2.16: Direct inversion of
frustum upon applied load [52].

Among these thin walled metallic structures an in-
teresting case is the frustum. Frusta are truncated
circular cones that exhibit more stable plastic be-
havior than cylinders when deformed axially [52].
The post-buckling behavior of frusta is character-
ized by square proportionality of buckling load in-
crease with a unit increase of cone wall thickness
and a decrease of post buckling load with incre-
ment of semi-apical angle [55]. One possible mode
of deformation of frusta is the direct inversion, see
Figure 2.16 [52].

The objective function with many energy absorbers
is maximizing the energy absorption per unit vol-
ume or per unit mass. This calls for materials
with high stiffness, preferably constant deforma-
tion stress as well as a maximum densification
strain εD [53].

Generally, the energy absorbed per unit volume and per unit mass may be expressed by
the following equations, respectively [53]:

UV =
∫ εD

0
σdε (2.2)
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UM =
∫ εD

0

σ

ρ
dε (2.3)

Figure 2.17a shows the idealized energy absorber stress strain curve as well as the stress-
strain curve for an actual generic energy absorber [53], in In reality the constant crushing
stress “plateau” [56] is difficult to achieve, as most metals harden or soften past yield
point.

Therefore, the goal of energy absorbing structures is then to maximize the absorbing
efficiency defined as the ratio between the hatched and grey colored area U/Umax as
presented in Figure 2.17b.

(a) Ideal response (b) Real response

Figure 2.17: Response of an energy absorbing material [53].

Typically the strength and energy absorption of conventional tubes, columns and frusta
would be increased by thickening their walls [52, 56, 57]. However, this approach leads to
a significant increase in weight comparing to the gain in energy absorption. A substan-
tial increase in energy absorption has been reported in [57] by creating a grid of inner
walls with the same thickness as the outer walls, although the weight increase is still
considerable in these designs. For applications where minimizing weight is one of main
design criterions an alternative filler material for tubes and columns has been proposed
using foams [56, 57].

As reported in [56, 58, 59] low density metal filler leads to superior specific energy ab-
sorption of thin walled columns comparing to increasing wall thickness. The foam filler
in these structures acts as an elastic cushion and causes a decrease of buckling length
of sidewalls, which in turn raises the buckling load [57]. In a different study [59], frusta
shaped thin-walled structures energy absorption capability with and without metallic
foam filler were compared, see Figure 2.18.

The results demonstrated superior performance of foam-filled thin walled structures in
comparison to structures without foam-filling [59]. In addition, the buckling load and
energy absorption increase significantly as the foam density increases and the increase
of semi-apical angle of frustum also contributes to higher energy absorption [59].
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Figure 2.18: Effect of crushing velocity on empty and foam filled frusta [59].

Foams themselves are not a recent innovation [58, 60], yet their mechanical response
makes this class of materials desirable for energy absorption. A typical compressive
stress–strain curve, Figure 2.20, of a foam material consists of three regions: a linear-
elastic region, a plateau region with deformation at almost constant stress, and a den-
sification region where the cells crush together [57, 60]. The mechanical properties of
foams depend, above all else, on the relative density, ρ/ρs , where ρ is the density of the
foam and ρs of the solid of which the foam is made [58, 60]. The stiffness scales quadrat-
ically with the density E ∼ ρ2, therefore the range of moduli available by foaming spans a
factor of 104 [60]. Thus, higher relative densities lead to higher stresses under compres-
sion, however they reduce the range of the plateau regime [58]. This is pictured in Figure
2.21 which shows stress strain curves of elastomeric foams for different relative densities
[60].

Despite extensive research over the years, the energy absorbing properties are far from
the ideal described in Figure 2.17. Manmade cellular foams described so far, except hon-
eycomb structures, exhibit random architecture that results in isotropic mechanical re-
sponse [45, 60]. Additive manufacturing methods have opened new research pathways
to find materials with higher specific energy absorption via designing structures with or-
dered cellular architecture. Relevant metamaterial examples are discussed next.

Ultralight metallic microlattices, discussed for example in [45], are a promising way for-
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Figure 2.19: Examples of manmade foams [59].

Figure 2.20: Stress strain curves for elastomeric foams with varied relative density [60].

ward in this field. These microlattice structures can be tuned for different mechanical
responses depending on the chosen application. Figure 2.22 shows that despite the or-
dered structure the mechanical response of a microlattice depends highly on the density
of the structure. Similarly to foams, structures with higher density exhibit higher strength
but lack the plateau-like behavior. An important addition and advantage over foams is
partial recoverability of the material after first deformation cycle and a stabilization of
performance over several cycles. Kinetic energy is only partially dissipated, and the re-
mainder is stored as elastic energy.

The idea of microlattices for energy absorption has been experimentally explored by dif-
ferent authors. Schaedler et al. [53] explored the use of hierarchical cellular architec-
tures across different length scales to obtain different stress-strain responses. As de-
picted in Figure 2.23 to achieve a more plateau-like stress-strain response, vertical struts
have been added to each unit cell of the lattice. This resulted in superior energy absorp-
tion per unit mass and increased absorption efficiency up to 70% [53]. This microlattice
design can be compared to conventional energy absorbing materials by a dimensionless
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Figure 2.21: Stress strain curves for elastomeric foams with varied relative density [60].

normalized mass-based energy absorption,

UM , nor m = ρs
∫ εD

0 σdε

ρσy
(2.4)

which is introduced in order to distinguish between the effect of architecture from sub-
strate material properties [53]. This design outperforms typical foams due to organized
spatial structure and serves as a compromise between the efficiency of precrushed hon-
eycomb and the energy absorption of regular honeycomb.

Table 2.2: Comparison of energy absorbing materials under quasi-static load [53].

Material ρ [kg.m−3] ρ/ρs [%] εD [%] η [%] UM ,n

Microlattice 97 1.1 81 54 0.15
Al Foam 185 6.8 55 34 0.07

EPS Foam 66 6.2 69 37 0.12
Al Honeycomb 35 1.3 84 40 0.16

Precrushed Honeycomb 38 1.4 80 63 0.13

Most of the materials discussed up to this point were characterized by irreversible con-
version of kinetic energy into heat, mainly via plastic deformation. However, the origi-
nal microlattices discussed in [45] have approximately 50% recoverability via trapping of
elastic strain energy. Novel metamaterials, that feature almost full recoverability [25, 31,
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(a) Ideal response (b) Real response

Figure 2.22: Stress stain response of a microlattice with density of (A) 14 mg/cm3 (B) 43
mg/cm3 [45].

Figure 2.23: Stress strain response of microlattices with vertical posts and different rela-
tive densities [53].

51, 61], exploit the concept of bistable snapping of beams discussed previously in this
work. Rather than dissipating the kinetic energy in the form of heat, novel architected
metamaterials lock-in energy in elastic energy, thus loading process is completely re-
versible with energy absorption unaffected by the loading rate [49]. Moreover, just as mi-
crolattices these materials have tunable properties, hence being suitable for application-
specific optimization.

Phase transforming cellular materials [31] are a further extension of the concept. In-
stead of two stable configurations, this class of materials consist of unit cells with mul-
tiple stable configurations. The base material of those metamaterials does not neces-
sarily exhibit phase transformations at the atomic level, instead the unit cells comprise
compliant bistable or metastable mechanisms [31]. Virtually any material may be used
as substrate if it’s yield strength is higher than the stress at any point of unit cell during
phase transformation. The stress strain response of these metamaterials is characterized
by a serrated plateau region, see Figure 2.24 [31]. The reason for serrated stress-strain
behavior is most probably the chosen lengthscale of the unit cell, as presented in Fig-
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Figure 2.24: Stress strain curves of phase transforming metamaterial [31].

ure 2.25, reducing the size of unit cell would possibly result in a more continous curve,
yet the advantage of this length scale it is facile to distinguish descrete snapping events
responsible for energy absorption.

Figure 2.25: Corresponding deformation of phase transforming metamaterial at differ-
ent strains [31].

Another example of exploiting bistable elastic beams are shape-reconfigurable materi-
als, based on multistable structural unit cells encompassing living hinges [61]. In these
cases the unit cell consist of multiple triangular frames in closed and open configura-
tions, so that the bistable hinge mechanism is obtained for every frame. This is the basis
for more complicated multi-stable structures with full recoverability. In order to increase
the energy absorption capacity, an inclined beam with constant cross section has been
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replaced with a stepped beam consisting of a relatively thick and rigid section in the
middle and two sections of equal length with smaller cross section on the two sides as
presented in Figure 2.26. As parameter R approaches unity, the strain energy localizes
at the hinges. Snap-through strength increases with R, however this makes hinge design
critical and limits the available substrate materials [61], also fatigue considerations must
be taken into account.

Figure 2.26: Load displacment response of incline guided beam with rigid middle section
of different length ratios R [61].

The aspect ratio of hinges t/L plays a crucial role on the structural integrity and mechan-
ical response of the shape-reconfigurable materials, as the strain at the hinges must be
lower than the fracture or yield strain of a substrate material. Figure 2.27 depicts the en-
ergy density of a stack of unit cells until full densification of the metamaterial. Apart from
maximizing parameter R, extending the total length of the beam L and lowering the criti-
cal thickness of the hinge lead to high energy absorption per unit volume.The aim is then
to find extraordinary output performance from ordinary substrate materials.

It is instructive to compare different materials discussed in this work as well as con-
ventional materials using an Ashby type plot of energy absorption per unit volume as
function of compressive strength in Figure 2.28. The plot includes shape-reconfigurable
metamaterials with different substrate materials as well as: energy trapping metamate-
rials [37], ultralight metallic microlattices [45], snapping mechanical metamaterials [25],
hierarchical ceramic lattices [45], and phase transforming metamaterials [31].



2.3. ENERGY ABSORBERS

2

25

Figure 2.27: Logarithmic-scale contour plot of absorbed energy per unit for the 1D
shape-reconfigurable metamaterial as a function of parameters R and α [61].

Figure 2.28: Ashby plot of Energy density as function of compressive strength [61].

Rather surprisingly, in this case, TPU based shape-reconfigurable metamaterials out-
perform metal and ceramic based, owing to the hinge strength limitations discussed.
Overall there is still room in the design space for new or better metamaterial designs for
energy absorption.
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2.4. MACHINE LEARNING

Before focusing on Machine Learning we will first define Pattern Recognition. It is the
study of how machines can observe the environment, learn to differentiate patterns of
interest from their background, and make sound and reasonable decisions about the
categories of the patterns [62, 63].

Possibly the best pattern recognizers that we know are humans, however it is difficult
to understand how humans depict patterns [62]. Humans rely on their intelligence for
pattern detection that is in turn critical to decision making. In the broadest sense we
can define intelligence as a measure of an agent’s ability to achieve goals in a wide range
of environments [64]. This is one of the reasons that Pattern Recognition falls into the
broad spectrum of Artificial Intelligence (AI) [63, 65, 66].

Computers are well capable of preforming iterative tasks, therefore they can be also
trained to detect patterns, where pattern may be defined “as opposite of chaos, a vaguely
defined entity that could be given a name” [62]. Having a pattern, its detection may be
fundamentally separated into two types of tasks [62]:

• Supervised detection– input pattern is identified as a member of a predefined class

• Unsupervised detection– also called clustering, where the pattern is assigned to a
previously unknown class.

This distinction will be discussed further in reference to Machine Learning, however it is
important that this differentiation refers to prior knowledge of the class, in other words
whether one knows what to look for or not. According to Vapnik [67], the problems of
pattern recognition, regression estimation and density estimation are similar in nature.
That is why most of definitions herein based on classification still hold for regression
problems, with the distinction that in classification has a finite set of classes at disposal
whereas in regression problems the set of classes is virtually infinite and consists of real
numbers.

There exists a wide variety of applications for pattern detection systems, some are sum-
marized in Table 2.3. The common denominator in the presented examples is that the
available features need to be extracted and optimized via data-driven approaches rather
than respective experts in their fields.

Table 2.3: Examples of pattern detection applications.

Field Application Input Output
Bioinformatics [68] Sequence analysis DNA sequence Known types of gene
Data Mining
[65, 69]

Finding meaningful
patterns/relations

Points in multi-
dimensional space

Clusters/Predefined
Values

Speech recognition
[70–72]

Chat-bots Soundwave Spoken Words

Image analysis [73,
74]

Face recognition Pixels Personal Identity
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The demand for automatic pattern detection systems has rapidly risen in recent years
due to availability of data to analyze and interpret, at the same time computational speed
is key [62, 65, 75, 76], that is why pattern detection approach must be tailored to the
task at hand. There are four most commonly known approaches for pattern recognition
[62]:

1. Template matching

2. Statistical Recognition

3. Structural Matching

4. Neural Networks

Often, these approaches intertwine and overlap in many aspects, sometimes leading to
hybrid approaches arising from the technological advance of pattern detection tech-
niques. Neural networks are perhaps the most well-known method as they are valid and
commonly used to classify and regress extremely large datasets, in the field referred to
as deep learning. Neural networks are out of the scope of this work and the reader is re-
ferred to excellent sources for further information [63, 67, 71, 77–79], as a starting point.
For the purpose of this work, emphasis is put on the field of data mining using statistical
recognition.

It is not uncommon to find terms data mining and machine learning used interchange-
ably in literature. All these terms befit the activity, yet their meaning is slightly different.
Data Mining can be defined as the process of problem solving by analyzing and discov-
ering patterns in data already present in databases [65, 69]. There are three conditions
for data mining [65]:

(a) The process is automatic or semiautomatic.

(b) The patterns discovered need to be relevant (provide edge)

(c) The data is easily accessible and readily available in substantial quantities

Patterns that provide edge make it possible to make major predictions on new data and
lead to insights that create value, they generate knowledge [69]. That is why Data Mining
is a term that answers the question ‘What?’ we are doing with given data, whereas Ma-
chine Learning is the term to describe ‘How?’ one can perform Mining operations.

A crude definition of automated learning, more commonly referred to Machine Learn-
ing is that we want to program the computers to “learn” from the input (data) at their
disposal [75]. A more concise definition of Machine Learning is provided by Mitchell
[79]:

Remark 1 A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance in tasks in T as measured
by P, improves with experience E.

One can observe that Machine Learning is inherently tied to performance rather than
knowledge, things learn when they change their behavior in a way that makes them per-
form better in the future [65]. The crucial concept is that of ‘learning’. Generally, learning
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may be referred to many activities, including mindless actions. In the context of pattern
detection, learning implies thinking and purpose, an intention [65]. Without the intent
‘learning’ may be referred to as ‘training’ and the latter is only one of the components of
the Machine Learning framework. A successful learner ought to be capable to progress
from individual examples to broader generalization, to perform inductive reasoning [75].
However, inductive inference does not imply Artificial Intelligence, as it misses a crucial
component from the definition formulated by Mitchell [79], the experience. To fix this
problem, prior knowledge must be incorporated, that biases the learning mechanism,
the so-called inductive bias [75, 78, 79]. Now, if intelligence was previously defined as
measure of adaptability, one can see that Machine Learning is an AI technique, as the
performance improves with experience. In other words, Machine Learning allows for
conversion of examples into knowledge in an intelligent way [66].

It is fair to pose a question, when to use Machine Learning, rather than simply design
program to carry out a task? The limiting factor of conventional programs is their rigidity
[66, 75], they are not intelligent as they are not able to adapt to changing circumstances.
Most common tasks that are too convoluted for ordinary algorithms (not machine learn-
ing) include [75, 79]:

1. Tasks Performed by Humans – these include routine tasks such as include driving,
speech recognition, facial recognition.

2. Tasks beyond Human Capabilities – these include analysis of very large and com-
plicated datasets; the more data is generated the more difficult it is for human to
analyze it.

3. Tasks with variable conditions – in the domains where algorithm must dynami-
cally adapt to changing circumstances

Let us focus on the second task, as this is the domain of Data Mining using Machine
Learning [79]. The most common data mining tasks involve a statistical approach. In
this approach every pattern is represented in terms of d features or measurements and
is viewed as a point in d-dimensional space. The challenge is to choose the features
that that allow pattern vectors belonging to different categories to occupy compact and
disjoint regions in a d-dimensional feature space [62]. One can identify an issue with a
conventional approach when dealing with patterns in 2 dimensions or even in 3 dimen-
sions, but it difficult to fathom determining patterns in a 100-dimensional space using
conventional methods. Typically, decision boundaries are determined by the probabil-
ity distributions of the patterns belonging to each class, which must either be specified
or learned (respectively in supervised and unsupervised recognition), alternatively dis-
criminant analysis path can be implemented where parametric form of decision bound-
ary is specified, then the optimal decision boundary of specified form is determined
based on classification of training pattern, using for instance the mean squared error
criterion [62, 67, 79].

A typical Machine Learning workflow may be represented in the form of PDCA Deming
cycle in Figure 2.29. Firstly, a dataset of interest is selected for preprocessing of the data.
Generally, preprocessing consists of subprocesses such as labeling the data, normaliza-
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Figure 2.29: Simplified PDCA workflow for Machine Learning.

tion and various transformations [69, 75, 79]. In other words, preprocessing is a set of op-
erations performed on data in order to separate pattern of interest from background and
define a condensed representation of the pattern [62]. The data, so-called learners’ in-
put, after preprocessing and prior to training has the following structure [66, 75]:

• Input Set – an arbitrary set, X . This is the set of points/observations/attributes/instances
that correspond to the values in the output set. Input points are represented by
a d-dimensional vector of features. The input set is also referred to as instance
space.

• Output Set – in the case of discretized outputs, y , also referred to as labels, it is
typically a two-element set of {0,1} or {−1,1}, whereas for continuous outputs it is
an infinite set {− inf, inf} of values.

• Training Set – a proportion of instances T = ((X1, yn)...(X1, yn)) is a finite sequence
of pairs in (X , y) that is, a sequence of labeled input instances, randomly chosen
from the dataset.

• Test Set – typically a smaller residual proportion of instances U = ((X1, ym)... (X 1, ym))
from dataset, is a finite sequence of pairs in (X , y) that is, a sequence of labeled
input instances.

In this way if we combine the input set with output set or training set with test set, one
ends up with the starting dataset. After postprocessing, the training set is passed for
training, this is the ‘learning’ part of machine learning, however as discussed previously,
this is merely training phase and the cycle is a learning process. The output of training is
[75]:

• Prediction rule – is a function of form h : X → y also called a predictor, hypoth-
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esis, regressor or classifier. This hypothesis can be used to predict values of new
instances, in other words out put = pr edi ctor (i nput ), i.e. it provides a mapping
U = pr edi ctor (T ).

Following the training, testing of the predictor is perform to determine the quality of
the prediction rule. To perform testing, a performance measure must be established. A
popular choice within the Machine Learning community for regression problems is the
mean squared error function [69, 75]:

MSE = 1

k

k∑
i=1

(Yi −Y p
i )2 (2.5)

where Yi is an output point from the Test set and Y p
i is the predicted output for the

same test instance X . This gives a simple measure where the lower the MSE the better
quality of the predictor. If one is content with the performance of the predictor, the
model may be deployed for predictions on new input points. If one is not satisfied, the
cycle is repeated starting with improving preprocessing of the data. There are numerous
methods of improving the model, however for a given learning method, quality of the
data is important for improving performance of the model [65].

Problems where both input set and output set are already predefined are known as Su-
pervised Learning. If the desired output consists of one or more continuous variables,
then it is a regression task. In this work, emphasis is put on a regression method, the
Gaussian Process Regression.

2.4.1. GAUSSIAN PROCESS REGRESSION

There are two possible approaches to the problem of supervised learning. The first ap-
proach is to consider a restricted class of functions, whereas the second is to give a prior
probability to every function, assuming higher probabilities are given to functions that
are more likely [80, 81]. A Gaussian Process uses the second approach, as it is a general-
ization of a Gaussian probability distribution. It is a stochastic process that governs the
properties of functions [80]. This second approach due to being a stochastic process,
makes use of Bayesian theory [63].

If one was to consider a regression problem in one dimension, depicted in Figure 2.30
[80], that is the mapping of input x to output f (x), the shaded area represents the prob-
ability distribution over functions [81]. To the left of the figure, several random func-
tions are drawn at random from the prior distribution over functions that specified by a
Gaussian process that promotes smooth functions, as the prior represents one’s beliefs
of expected functions before observing any datapoints. It is also assumed that the av-
erage value over sample functions is in fact zero [80]. It is possible to characterize the
variability of sample functions at any value of x by computing the variance at that point.
In Figure 2.30 it may be observed that the prior variance does not depend on the input
x.
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Figure 2.30: (a) Set of random function that fulfill the prior (b) Functions adapted to pass
through the two added datapoints creating a posterior distribution [82].

Now looking to the right at Figure 2.30 (b), if one considers functions that pass exactly
through two points, the dashed lines show functions consistent with the added points
and the solid line is the mean value of these functions, as well as the contraction of the
probability distribution at the data points [80]. Combining prior and the likelihood asso-
ciated with the data points leads to a posterior distribution over functions [63, 66, 69, 80].
The functions in Figure 2.30 (a) are smooth and stationary, as induced by the covariance
function of the gaussian process. The task of machine learning using gaussian processes
is the problem of optimizing parameters of the covariance function.

To understand the importance of the covariance function it is imperative to introduce
the kernel. Generally speaking, most of machine learning techniques are parametric,
in that they learn so-called weights vector and the training data is made redundant for
predictions [63]. The exception are algorithms, which utilize stored training instances for
making predictions. These memory-based methods require a measurement of similarity
between any two vectors in the input space and generally are rapid to train yet stagnant
at making predictions [63, 81]. Some parametric models can be transformed into an
equivalent ’dual representation’, where the predictions are based on linear combinations
of kernel function evaluated at training instances. Given a fixed nonlinear feature space
mapping ϕ(x), the kernel functions is defined [63]:

κ(x, x ′) =ϕ(x)Tϕ(x ′) (2.6)

A kernel is a symmetric function of its inputs so that κ(x, x ′) = κ(x ′, x). There are many
forms of kernel functions available. In order for a kernel function to be valid it must be
symmetric and positive semidefinite, and a suitable form of similarity between x and
x ′ is required [63]. Stationary kernels are a function of the difference between argu-
ments, κ(x, x ′) = κ(x − x ′) and are invariant to translations in the input space [63, 80].
Furthermore homogeneous or Radial Basis Kernels, are distance dependent, κ(x, x ′) =
||κ(x −x ′)||.
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The ’dual representation’ may be shown by the example of linear regression. Expressing
the sum of squares error in a linear regressor as [63]:

J (w) = 1

2

N∑
n=1

{wTϕ(xn)− tn}2 + λ

2
wT w (2.7)

Setting the gradient of J (w) to zero, the solution for w is a linear combination of vectors
ϕ(xn) and the coefficients are functions of vector w :

w =ϕT a (2.8)

In the equation above ϕ is the design matrix with row n given by ϕ(xn) and the vector
a = (a1, . . . , aN )T as well as having [63]:

an =− 1

λ
{wTϕ(xn)− tn} (2.9)

It is possible now to obtain the ’dual representation’ by substituting the parameter in
place of the weights vector using the equation (3):

J (w) = 1

2
aTϕϕTϕϕT a−aTϕϕT t+ 1

2
tT t+ λ

2
aTϕϕT a (2.10)

where t = (t1, . . . , tN )T . If one was to define a symmetric N ×N matrix of form K =ϕϕT

with elements Knm = κ(xn , xm) then if κ is the covariance function, K is the covariance
matrix. Now we may reformulate J :

J (w) = 1

2
aT KKa−aT KKt+ 1

2
tT t+ λ

2
aT KKa (2.11)

Establishing a zero gradient of J (a) one obtains a = (K +λIN )−1t and substituting back
in the regression model, a prediction for the new input x is:

y(x) = wTϕ(x) = aTϕ(x) = κ(x)T (K+λIN )−1t (2.12)

In this case the least-squares problem is composed only of the covariance function κ,
and a prediction at new input x is given by linear combination of output values from the
training set [63]. Within the dual formulation the parameter vector a is determined via
inversion of K, this is computationally expensive however it is completely expressed in
terms of kernel function κ. This allows to operate directly on kernels and skip the intro-
duction of feature vectorϕ(x), thus essentially allowing to use feature spaces of virtually
infinite dimensionality [63, 80–82]. The duality may be also shown between probabilis-
tic linear models for regression and the Gaussian Processes method [63]. A valid kernel
corresponds to a scalar product in some attribute space, it is therefore fundamental to
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Gaussian Process Regression. In the Gaussian process framework, the parametric model
is discarded and a prior is defined over functions directly [63].

The linear regression task in the Bayesian framework may be summarized in the follow-
ing way, assuming an independent constant gaussian noise variance componentσ2

n :

y(x) = wTϕ(x)+ε (2.13)

where ε∼N (0,σ2
n).

This gives rise to the probability density of the observations given parameters, also called
likelihood:

p(y|ϕ,w) =N (wTϕ,σ2
n I) (2.14)

With the Bayes rule stating:

posterior = likelihood×prior

marginal likelihood
⇔ p(w|y,ϕ) = p(y|ϕ,w)p(w)

p(y|ϕ)
(2.15)

To calculate the posterior, it is necessary to specify a gaussian prior in terms of mean and
covariance matrix:

w ∼N (0,K) (2.16)

with the normalizing constant referred to as the marginal likelihood being independent
of the weight vector w :

p(y|ϕ) =
∫

p(y|ϕ,w)p(w)dw (2.17)

The posterior then combines all the knowledge about the parameters and takes Gaussian
form [80]:

p(y|ϕ) ∼N

(
1

σ2
n

A−1ϕy, A−1
)

(2.18)

where A =σ−2
n ϕϕ

T +K−1

For any given gaussian posterior, the mean of the posterior corresponds to the mode
of the distribution, this property is referred to as the maximum a posteriori (MAP) es-
timate of weight vector w. In Bayesian framework the MAP plays no role, however in
non-Bayesian setting the MAP point it the penalized maximum likelihood estimate of
the weights [63].
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Considering inference directly in the function-space, a Gaussian process is a collection
of random variables, any finite number of which have a joint Gaussian distribution [63,
80, 81].

A gaussian process is completely specified in terms of expectations, by the mean and
covariance function:

m(x) = E
[

f (x)
]
κ(x, x ′) = E

[
( f (x)−m(x))( f (x ′)−m(x ′)

]
(2.19)

Therefore the gaussian process takes the form [63, 80]:

f (x) ∼GP
(
m(x),κ(x, x ′)

)
(2.20)

One can see that if one was to assume the mean function to be zero, gaussian process is
completely specified by the kernel. The marginalization property of gaussian processes
means that the examination of larger set of points must result in the same distribution
as in a smaller sub-set, a submatrix of the covariance matrix is consistent with the parent
matrix.

The most common choice for the kernel is the Squared Exponential kernel also referred
to as the Gaussian kernel [63].

S E = κ(x, x ′) = exp

(
−1

2
|x −x ′|2

)
(2.21)

This kernel is also very often referred to as the Radial Basis Function in literature [80].
The main property of this kernel is the infinite differentiability, thus the process is in-
finitely mean square differentiable [80]. The kernel may be controlled by normalizing
the distance between points by a constant l to change the length scale of the process
and by a positive constant σ f before the exponent to modify the variance of the pro-
cess. Considering the gaussian noise as defined previously one can rewrite the square
exponential kernel in one dimension as:

S E =σ2
f exp

(
− 1

2l 2 |x −x ′|2
)
+σ2

n (2.22)

These three parameters, namely the length scale, process variance and noise variance,
can be varied and optimized, one may refer to them as the hyperparameters and the
learning process in the framework of gaussian processes is about adapting the hyperpa-
rameters of the kernel to suit a given task.

The key predictive equation for gaussian process regression is the posterior process:

f∗|X , y, X∗ ∼N (E[ f∗|X , y, X∗],K(X∗, X∗)−K(X∗, X∗)[K(X , X )+σ2
n I]−1K(X , X∗) (2.23)
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The term K(X∗, X∗) is the prior covariance matrix. Having the prediction for the func-
tion f (x) it is straightforward to compute the predictive distribution of the noise cor-
rupted output by adding a diagonal noise matrix to the process variance [80].

The expression for log marginal likelihood is:

log
(
p(y |X )

)=−1

2
yT (K+σ2

n I)−1y− 1

2
log |K+σ2

n I|− n

2
log(2π) (2.24)

In non-Bayesian setting the model is trained by minimizing the loss function, such as the
MSE introduced before. In Bayesian framework, there is no distinction between the like-
lihood used for training and the loss function, as the likelihood describes the deviation
of noisy measurements from the noiseless function [80].

2.4.2. SPARSE GAUSSIAN PROCESS REGRESSION

While Gaussian Process framework has numerous advantages, uncertainty quantifica-
tion being the major one, the serious drawback is that it suffers from cubic time com-
plexity to training size O (n3) [63, 80, 83–91]. This complexity arises from the necessity
to calculate the determinant and inverse of the n ×n covariance matrix Knn = κ(x, x ′)
[80, 83, 90]. This essentially limits the applicability of GPs to datasets of size less than
O (104) [83]. Recently however, much research has been devoted to solving this limita-
tion by introducing the scalable GP that aims at improving the scalability of a full GP
while retaining satisfactory prediction quality for large datasets [83].

Broadly speaking, the scalable GPs may be divided into Global approximations and Local
approximations [83]. The difference lies in the approach taken, whereas the former ap-
proximate the covariance matrix through global refining, the latter take so-called divide-
and-conquer approach to focus on local subsets of data [83]. As a result the global ap-
proximations ignore local deviations in favor of capturing global patterns and local ap-
proximations focus on local patterns risking local overfitting and discontinuous predic-
tions. Due to software availability and the fact that global approximations work well
with slow varying features with high spatial correlations [83], global approximations will
be further considered.

As may be inferred from Figure 2.31, the global approximations may be categorized fur-
ther down. Three main method categories arise [63, 80, 89]:

• Subset-of-Data – where a random subset of training data m, with m << n, is se-
lected for actual training resulting in a smaller covariance matrix Kmm

• Sparse Kernels – where unimportant entries of the covariance matrix are replaced
by zeros resulting in a sparse covariance matrix Knn where most of entries are ze-
ros.

• Sparse approximation – where a low rank representation is measured between m
inducing points and n training points resulting in exact or modified Nystrom ap-
proximation of form Knn ≈ KnmKmmKmn
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Figure 2.31: Left: Proportion of methods falling into global and local approximations.
Right: Subdivision of global approximations [83].

The sparse approximations may be further subdivided into prior approximations where
prior is modified but the inference is exact, and posterior approximations where the
prior is exact but the posterior distribution is approximated [63, 85, 89]. The complexity
for prior and posterior approximations is reduced to O (nm2) [83–85, 90]. Very recently
developed methods in which inducing points are organized into Kronecker structure
achieve complexity of O (n) or approaches utilizing stochastic optimization with com-
plexity of O (m3) [83, 92].

Figure 2.32: Comparison of scalability and capability of GP approximations and Full GP
[83].

As one may observe in Figure 2.32 sparse kernels are a relatively poor scalable alternative
as the minor complexity reduction results in lower model capability at prediction. Subset
of data has the same scalability as stochastic variational sparse approximation but low
model capability. Most of the scalable models are in the middle of axis with complexity
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O (nm2), this is also the complexity of local approximations. One can also observe that
local approximations can achieve higher model capability, but as mentioned before this
comes at a risk of overfitting the model. Further emphasis will be put on global prior and
posterior approximations.

2.4.3. SPARSE PRIOR APPROXIMATIONS

All sparse approximations rely on the Nystrom approximation for the covariance ma-
trix.

Knn ≈Qnn = KnnK −1
mmK T

mn (2.25)

Yet, this approach has a design flaw that it may result in negative prediction variances
[80]. This is caused by two factors: it is not a generative probabilistic model as the ap-
proximation is applied only to training data and it can not guarantee positive semidef-
inite covariance matrix [83]. All of the prior approximations aim at modifying the Nys-
trom approximation into GP to produce unifying and principled generative probabilistic
model [63, 83, 84, 90]. The sparsity is achieved by m inducing points that represent the
entire training data. Now, introducing the set of inducing inputs as Xm and the corre-
sponding inducing variables as fm as well as function values of a gaussian process f for
training cases and f ∗ for test cases [83, 89]. The inducing variables are assumed to be sta-
tistically sufficient for f and are always marginalized out of the predictive distribution,
however the choice of the inducing inputs does affect quality of the model [83, 89]. In
some algorithms inducing inputs are a subset of the training set whereas in other meth-
ods they are not [89]. Due to consistency of GPs we can recover p( f , f ∗) by integrating
out fm from the joint GP prior p( f , f ∗, fm) [89]:

p( f , f ∗) =
∫

p( f , f ∗| fm)p( fm)d fm (2.26)

where p( fm) =N (0, Kmm).

All prior approximations approximate the joint prior p( f , f ∗) but perform exact in-
ference [83]. Quinonero-Candela and Rasmussen [83] provide an excellent review and
comparison of sparse prior approximations, for the purpose of this work relevant frag-
ments will be presented.

In sparse prior approximations, equation (22) is fundamental for all the methods. One
approximates the joint prior assuming f , f ∗ are conditionally independent given fm .

p( f , f ∗) ≈ q( f , f ∗) =
∫

p( f , fm)q( f ∗, fm)p( fm)d fm (2.27)

The variable fm is an inducing variable since the dependencies between f and f ∗ are
induced only through fm [89]. The proposed inference methods place additional as-
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sumptions on the inducing conditionals q( f | fm) and q( f ∗| fm) of the integral [89]. Now
the training and test conditionals are given as [83, 89]:

p( f , fm) =N
(

f |Knm K−1
mm fm ,Qnn

)
(2.28)

p( f , fm) =N
(

f |k∗
m K−1

mm fm ,Q∗∗)
(2.29)

Essentially Q quantifies how much information does the inducing variable provide about
f or f ∗ [89]. The log marginal likelihood is approximated as [83]:

log
(
q(y)

)=−n

2
log(2π)− 1

2
log |Q̃nn +Qnn +σ2

εInn |− 1

2
yT (

Q̃nn Qnn +σ2
εInn

)−1
y (2.30)

Again, the two methods presented shortly will correspond to different approximations
of the conditionals in equations (22) and (23) [80, 83, 89].

The Deterministic Training Conditional (DTC) also called Projected Latent Variables [81]
or Projected Process Approximation [80] imposes a deterministic training conditional
but retains the exact test conditional:

qDT C (f|fm) =N
(
f|Knm K−1

mm fm ,0
)

(2.31)

qDT C (f|fm) = p(f∗|fm) (2.32)

Due to inconsistent conditionals the DTC approximation is not an exact GP. The method
relies on likelihood approximation [80]:

p(y | f ) ≈ q(y | fm) =N (KnmK−1
m m fm , σ2

εI) (2.33)

The DTC was an important step but it is a rather crude estimation and does not perform
well due to the strict assumption Qnn = 0 that arises if one compares equations (23) and
(26) [89].

The second relevant sparse prior approximation is the Fully Independent Training Con-
ditional (FITC) [83, 85], originally referred to as the Sparse Gaussian Process using Pseudo
Inputs (SGPP) [90, 93]. FITC imposes a fully independence assumption to remove the
dependency among { fi }n

i=1 such that given Vnn = Knn −Qnn [84, 90]:

qF I TC (f|fm) =Πn
i=1p( fi | fm) =N

(
f|Knm K−1

mm fm ,di ag [Vnn]
)

(2.34)

qF I T C (f|fm) = p(f∗|fm) (2.35)
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One can see that the same test conditional is used as in the DTC approximation. FITC
approximation does not impose a deterministic relation between f and fm . It proposes
an approximation to the training conditional distribution of f given fm as a further in-
dependence assumption [84]. The main difference between FITC and DTC is that it re-
places the approximate covariances of DTC by exact ones on the diagonal. The com-
putational complexity is exactly the same as for DTC approximation [84, 90]. The FITC
approximation proposes a more sophisticated likelihood approximation with enhanced
covariance [83]:

p(y |f) ≈ q(y |fm) =N
(
Knm K−1

mm fm ,di ag [Vnn]+σ2
εI

)
(2.36)

FITC may be viewed as a standard GP with a non-stationary covariance function parametrized
by inducing inputs [83]. The covariance component di ag [Vnn] represents the posterior
variances of latent variables f given the inducing variables fm . These varying variances,
which are zeros at inducing points, enable FITC to capture noise heteroscedasticity (vari-
able noise component per input point) [84, 90]. This property comes at a cost of produc-
ing severe underestimation of noise variance and sacrificing the accuracy of prediction
mean [83]. Another drawback is that FITC is relatively expensive to train as the optimiza-
tion over inducing inputs introduces m×d parameters and makes inference a computa-
tionally intractable task due to the high dimensional space [90]. The heteroscedasticity
of FITC implies that it attempts to achieve a desirable predictive accuracy at low comput-
ing cost, rather than truthfully recovering the regular GP with increasing m [83]. Learn-
ing inducing points via the optimization of log marginal likelihood may produce poor
predictions just as in the case of DTC approximation [83]. Most of the issues of the sparse
prior approximations are addressed by the sparse posterior approximations.

2.4.4. SPARSE POSTERIOR APPROXIMATIONS

Just as in the case of prior approximations, posterior approximations rely on the Nystrom
relation. The basis for posterior approximations is the Variational Free Energy (VFE) ap-
proximation formulated by Titsias [83–85, 88]. It utilizes variational inference to approx-
imate the true posterior distribution [84]. The fundamental assumption behind this ap-
proximation is that the inducing inputs are defined as variational parameters which are
selected by minimizing the so-called Kullback-Leibler (KL) divergence between the ex-
act GP posterior and the inferred variational GP distribution over latent function values
[88]. This addressed some of the drawbacks of the prior approximations as VFE formu-
lation avoids overfitting and rigorously approximates the exact GP model by minimizing
the distance between the sparse GP and conventional GP [83, 85, 88].

The whole idea of VFE approximation is to directly approximate the posterior distribu-
tion p( f , fm |y) with a variational distribution q( f , fm |y) [88]. Then the goal is to reduce
the difference between these two distributions using the KL divergence [85–88].
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KL
(
q(f, fm y)

) ||p (
ffm |y)

)=〈
log

p(y, f, fm)

q(f, f∗,y)

〉
q(f, f∗|y)+ log

(
p(y)

)=−Fq + log
(
p(y)

)
(2.37)

In this equation quantity Fq is the so-called Evidence Lower Bound (ELBO), also referred
to as the Variational Free Energy [88]. ELBO is the crucial component that allows for
joint optimization of variational parameters and model hyperparameters [88]. Since
log

(
p(y)

) = const , minimization of KL divergence is equal to maximization of ELBO.
This guides the approximation to match the true posterior distribution p(ffm |y) and the
marginal likelihood p(y). The variational distribution q(ffm |y) may be broken down to
[88]:

q(f, fm |y) = p(f, fm)q(fm ,y) (2.38)

The inducing points in q(fm ,y) are treated as variational parameters, not as model pa-
rameters [85]. In order to obtain a tight ELBO the variational calculus allows us to find
an optimal q∗(fm ,y) to remove the dependency of variational free energy on q(fm ,y)
[85, 87, 88]:

Fq ≤ FV F E = log
(
qDT C (y)

)− 1

2σε
Tr [Vnn] (2.39)

In this equation FV F E is the collapsed Fq therefore VFE is often referred to as collapsed
posterior sparse approximation in GP literature [83, 84, 88]. Yet again VFE may be re-
ferred to as variational DTC [85]. One may also notice that the only difference between
the DTC approximation and VFE is the trace term 1

2σε
Tr [V[nn]], that represents the total

variance of predicting f given fm [83, 84, 88]. Reduction of the trace term simultane-
ously maximizes Fq , in the extreme case when the trace term is zero f = fm and the full
GP is recovered [85]. Therefore, the VFE approximation can only match the full GP and
will never lead to overfitting compared to a full GP, as the trace term acts as regularizer
[85]. Additionally, the trace term provides a suitable inducing set and always improves
the ELBO estimation with increasing m [86]. Predictions obtained by VFE are smoother
than predictions of a full GP model [88]. The VFE model approximates well the covari-
ance structure of a full GP [84]. In comparison to the prior FITC approximation the VFE
overestimates the noise variance while FITC underestimates it [83, 84]. When the ELBO
is maximized, the hyperparameters of the model are regularized [88].

Due to KL mechanism in the variational formulation, the VFE always improves with ad-
ditional inducing points whereas FITC may deteriorate as in the latter an inducing input
may be in a nonoptimal location causing lower approximation quality. Both models are
prone to unexpected behavior when inducing points are placed on top of each other [83].
Moreover the VFE approximation has a tendency to under-fit, although this is not a flaw
of the model but rather of the optimization routine [83].
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DATA-DRIVEN FRAMEWORK

U NDERSTANDING the influence of the various design parameters on the performance
of the metamaterial is a nontrivial task, given the high dimensionality of the design

space. Furthermore, the metamaterial undergoes buckling and post-buckling which
are imperfection-sensitive phenomena. In order to tackle these issues, this work ex-
tends the data-driven framework proposed by Bessa et al. [76, 94] by investigating new
machine learning methods that are capable of uncertainty quantification within high-
dimensional spaces and large databases. In this work special emphasis is given to a
new Bayesian machine learning method called Sparse Gaussian Processes, which en-
ables predicting the response of the metamaterial for a large number of input design
parameters while taking into account the imperfection-sensitivity of the properties of
interest. The general framework consists of the steps outlined in Figure 3.1 and is dis-
cussed subsequently within the context of the proposed design.

3.1. PROPOSED METAMATERIAL CONCEPT

The considered unit cell design consists of two concentric rings joined by at least 3
longerons via barrel hinges, with D1 and D2 being respectively the bottom diameter and
the top diameter of a given unit cell design. For the purpose of this study, the unit cell of
the metamaterial is specified by the following set of material properties and geometric
parameters:

1. The cross-section area of the longeron A

2. The Shear Modulus G

3. The Young’s Modulus E

4. Second moment of inertia around x axis of the longeron cross section Ix .

5. Second moment of inertia around y axis of the longeron cross section Iy .

41
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Figure 3.1: Schematic of data-driven framework (adapted from [94]).

6. The torsion constant of the longeron cross-section Jτ

7. Pitch (also referred to as Height) of the design P

8. The ratio of ring diameters DR defined as: DR = D1−D2
D1

The orientation of the longeron cross section, with some of the possible realistic cross
sections and their characteristic dimensions is presented in Figure 3.2.

3.2. DESIGN OF EXPERIMENTS

This part of the framework has been modified to emphasize the role of modelling of
imperfections in imperfection-sensitive applications. Due to ease of measurement and
verification on experimental models, as well as dissimilarity between the first two buck-
ling eigenvalues (second eigenvalue approximately twice the first), this work focuses on
creating imperfections based on the first buckling mode of the structure when subjected
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(a) Metamaterial concept.
(b) Top view highlighting general

cross-section of longerons.

Figure 3.2: Metamaterial concept, highlighting the generality of the longerons’
cross-section.

to a uniaxial compression load. All the Design Samples were generated using an in-house
code implemented in MATLAB® [95].

3.2.1. CONSTANT VARIABLES

In the beginning, the Design of Experiments (DoE) [76, 94, 96] is carried out to sample
the design space without prior awareness of the link between input variables and the
output Quantities of Interest (QoI). The input space for of the metamaterial design is
comprised of constants and continuous variables.

Throughout this work, a single set of constant parameters was used. These constants
were:

1. The number of longerons set to 3;

2. The Young’s modulus value E = 1826 MPa;

3. The bottom diameter of the design D1 = 100 mm.

The number of longerons is constant due to the superposition principle in elasticity. As
the longerons are the main load carrying component, increasing their number leads to
a proportional increase of the resistant load of the structure. Recall that this is valid
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because the simulations do not model self-contact of longerons. However, if the number
of longerons is large this assumption is not true after considerable deformation of the
metamaterial.

The modulus of elasticity also remains unchanged in the DoE, since the goal is to an-
alyze a recoverable energy absorber with linear elastic behavior of the base material.
Therefore, the elastic constants act as linear scaling factors of the local deformation, not
adding information to the mechanical response. The value of the base diameter D1 is
also kept constant because every geometric dimension of the structure is defined rela-
tive to D1.

3.2.2. CONTINUOUS VARIABLES

For the set of constant parameters, a specified number of DoE points J was generated.
The bounds of the DoE were selected for validation purposes to incorporate the bounds
of a pre-existing response database, created exclusively for the circular longeron cross
section. The bounds for the seven continuous variables are presented in Table 3.1.

Table 3.1: Bounds of continuous input variables for every point.

Variable A [mm4] G/E Ix [mm4] Iy [mm4] Jτ [mm4] P [mm] DR
Lower Bound 0.1171 0.335 0.011 0.011 0.0014 25 0.0
Upper Bound 40.96 0.45 140 140 676.7 150 0.8

Similarly to the diameter ratio DR , the parameters describing the longeron cross-section
and the height of the design were normalized by the bottom diameter D1 = 100 mm. This
normalization allows the response database to be applicable to an arbitrary longeron
cross section. Ultimately, the bounds for DoE points J are presented in Table 3.2. These
bounds have been used for generating all the databases and experiments in this work.

Table 3.2: Normalized bounds for Design of Experiments points J .

Variable A/D4
1 G/E Ix /D4

1 Iy /D4
1 Jτ/D4

1 P/D1 DR
Lower Bound 1.17E-5 0.335 1.128E-11 1.128E-11 1.353E-11 0.25 0.0
Upper Bound 4.1E-03 0.45 1.4E-6 1.4E-6 7.77E-6 1.5 0.8

Once the design variables and their bounds are established, the design space needs to
be sampled accordingly [96]. Without the assumption of any preceding knowledge of
the problem to be solved or between input and output information, space-filling de-
signs that treat distinctive regions of input space commensurately are particularly suit-
able [96]. In accordance with past investigations [76, 94] the Sobol [97] sequence is used
also in this work, as it offers a fair balance between regularity and randomness as well as
eases the Machine Learning process later [96]. The effect of using the Sobol sequence for
sampling on three arbitrary design variables is presented in Figure 3.3. The core advan-
tage of using this technique is that even with low number of sampling points the input
space is well characterized, increasing the number of following sampling points leads to
higher quality of input space characterization. This effect is especially desirable if one
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is to characterize a high dimensional input space using a relatively low number of DoE
sampling points [76, 98]. Using this approach, unique DoE points were created, each
corresponding to a different unit cell design.
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Figure 3.3: Illustration of the Sobol sequence sampling scheme used in the Design of
Experiments.

3.3. FINITE ELEMENT ANALYSIS

In this work a similar approach to Bessa et al. [94] has been adopted for the computa-
tional analyses. Each metamaterial design (each design of experiments point) needs to
be simulated with the finite element method to predict the quantities of interest (buck-
ling load and energy absorption). In order to predict buckling and postbuckling of these
structures, the finite element analyses need to be conducted in two steps:

1. Linear buckling analysis of a given design in the undeformed state: providing an
estimate of the buckling loads and modes – eigenvalues and eigenmodes, respec-
tively. If the behavior prior to buckling is nonlinear, then the predicted buckling
load is just an approximation.

2. Implicit static simulation using the arc-length method: from the results of the lin-
ear buckling simulations, one or more buckling modes can be used to create geo-
metric imperfections in order to resolve the bifurcation of the response according
to the arc length method (RIKS analysis) [99].

As previously mentioned, the deformation process of the proposed metamaterial is un-
stable (buckling), implying that the response is imperfection sensitive. Geometric im-
perfections depend on the manufacturing process and are laborious to characterize.
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Figure 3.4: A schematic of RIKS analysis iterations, where a is the normalized displace-
ment and λ is the load increment. The increment is defined by the radius of the circle
∆l , and the next point is the point of intersection between the path and the circle [100].

Here, we followed the well-established procedure [94, 99, 101] of creating geometric im-
perfections based on the first buckling mode, so that the RIKS analysis can then be con-
ducted to obtain the complete mechanical response of the metamaterial.

3.3.1. GEOMETRIC IMPERFECTIONS FOR RIKS ANALYSIS

Figure 3.5: Top view of the de-
sign with schematic illustration of
mode 1 buckling imperfection as
angle θ.

Buckling and post-buckling of a structure depend
on the presence of geometric imperfections [94,
99, 101]. These imperfections are often stochastic
(material defects, geometric defects, variations in
boundary conditions, etc.) and their impact on the
structure response is unknown a priori. Therefore,
quantifying the uncertainty caused by the imper-
fections on the quantities of interest is critically im-
portant for the analysis and design of the metama-
terial.

In addition, each design has different imperfec-
tion sensitivity. Hence, uncertainty quantification
is required for the whole design space [94]. As
mentioned, geometric imperfections can be mod-
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eled by using the first buckling mode multiplied by
a chosen amplitude to perturb the initial (unde-
formed) geometry of the design prototypes. Pre-
liminary experimental work conducted by Houlder
and Bessa (MS thesis, to appear 2019), identified
that the most significant geometric imperfection coincided with the first buckling mode.
This is explained by the hole-pin tolerance of the longeron hinges connecting them to
the bottom and top bases, leading to a clear deviation of the undeformed geometry from
perfectly vertical longerons – see Figure 3.5. Therefore, only the first buckling mode was
selected for seeding these imperfections.
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Figure 3.6: Undeformed metamaterial and first three buckling modes.

Unsurprisingly, different physical realizations of the same idealized design will deviate
differently from this idealization due to the stochastic nature of the manufacturing pro-
cess and the environmental conditions. Therefore, the amplitude of the first buckling
mode is not deterministic; it follows a statistical distribution. Accurate determination
of this distribution involves a large number of experiments for each design, which is not
practical to do. Instead, Houlder and Bessa selected a nearly optimal design for a pro-
totype with circular cross-section longerons and inspected the amplitude of these de-
viations – see Table 3.3 and Figure 3.7 that specify that design. Figure 3.7 explains this
elementary design where the parameters A, Ix , Iy , and Jτ, can be replaced by a single
parameter – the longeron’s diameter d .

Table 3.3: Dimensions of the metamaterial unit cell used to characterize the imperfec-
tion amplitude.

Height P Bottom
Diameter D1

Top Diame-
ter D2

Number of
Longerons

Diameter
Ratio DR

Longeron
Diameter d

66.0 mm 100.0 mm 80.0 mm 10 0.2 1.68 mm

As seen in Figure 3.5, the amplitudes of the first buckling mode were measured by deter-
mining the rotation angle around the Z axis when the structure is at rest, as compared
to when the bases are perfectly aligned (idealized geometry). Fourteen prototypes were
measured in total, and the results were used to determine the statistical distribution of
imperfections. Details about the experimental work fall outside the scope of this thesis
(see Houlder, MS thesis, to appear in 2019). The arithmetic mean of the measured ro-
tation angle was 2.0◦ with the standard deviation of 1.2◦. However, we determined that
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(a) Metamaterial with circular longerons.
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Figure 3.7: Metamaterial design used for characterizing imperfection sensitivity. Table
3.3 shows the geometric parameters of this design.

a conservative approach of doubling the mean value of the distribution, i.e. an average
rotation angle of 4.0◦, would improve correlation with experimental results. Effectively,
we determined the equivalent amplitude for the first buckling mode that simulates the
influence of all other imperfections observed experimentally.

The number of experimental measurements conducted by Houlder and Bessa is not
enough to determine accurately the statistical distribution of the imperfection ampli-
tude (angle of rotation). Therefore, a reasonable assumption is needed. The distribution
was assumed to be Lognormal, since it is expected that the real distribution is skewed, i.e.
the angles measured should be closer to 0◦ (ideal geometry) than to large values (> 10◦)
which creates a long tail to the right of the distribution. The assumed distribution type
and respective statistical moments1 were used to generate samples for each design via
UQLab™ [102], as this module was integrated in the data-driven framework. Latin Hy-
percube Sampling method [103, 104] was applied to generate near-random sample from
the imperfection amplitude distribution.

In addition, note that each design was assumed to have the same distribution for the
imperfection amplitude. Despite the imperfection amplitude being sampled from the
same distribution, the actual imperfect geometries are not necessarily the same because
the first buckling mode is not the same for every design. In summary, lognormally dis-

1In this context statistical moments refer to the mean and the standard deviation of the statistical distribution.
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(a) Assumed lognormal distribution of imperfections for
each design. Mean amplitude is 4.0◦ (0.07 rad).

(b) Example with 4.0◦ imperfection
amplitude.

Figure 3.8: Imperfect geometry of the metamaterial is obtained from (a) Lognormal
distribution for the amplitude of the 1st buckling mode; and (b) an example for an
amplitude of 4.0◦

tributed mode-1 imperfections with mean of 4.0◦ and standard deviation of 1.2◦, Figure
3.8, were assumed for every DoE point of the seven-dimensional space.

IMPERFECTION SENSITIVITY OF A SINGLE DESIGN

Looking at Figure 3.9, as expected all the force-displacement curves resemble the same
behavior. The fitted probability density functions are presented in Figure 3.10. The dif-
ference between the maximal and the minimal QoI of a single design is on the order of
25%. Under closer inspection, while the probability density function for buckling val-
ues may be described as uniform, the probability density function for energy is non-
uniform, with a pronounced lack of values for the bin representing values between 31.6-
31.8. Anomalous behavior is also visible for values 32.4-32.8. The second kink seems to
be a result of how boundaries between the bins are established. The first kink is con-
firmed by generating and analyzing force strain curves for a design with different geom-
etry and material constants. It is also visible at half the sampling points and twice the
number of sampling points. This may indicate that there exists a dual distribution for
the energy.

Table 3.4: Chi-squared and KS test results for the fitted distributions.

Critical buckling load Energy Absorbed
Distribution χ2 K S χ2 K S
JohnsonSu 1.85480 0.99976 41.2826 0.03165
Loggamma 2.67262 0.99841 41.2241 0.02523
Gumbel L 31.3269 0.52345 38.3714 0.06026

Normal 119.000 0.00895 272.863 0.00002

The χ2 and K S test metrics are summarized in Table 3.4. The presumption of dual distri-



3

50 3. DATA-DRIVEN FRAMEWORK

Figure 3.9: Every imperfect force-displacement response for the design in Table 3.3 con-
sidering 1024 realizations with different imperfections.

bution is reflected in the low K S test values for Eabsor bed . Only the Gumbel distribution
passes the statistical significance threshold of 0.05. This may confirm the energy val-
ues are non-uniformly distributed, but the χ2 values indicate that one may approximate
energy values with a single distribution. The values of K S for critical buckling are sig-
nificantly higher than the 0.05 threshold, except for the normal distribution. The K S
values for JohnsonSu and Loggamma distributions are close to unity, which means that
the shape of true probability distribution function (PDF) is well captured by these distri-
butions. The Gumbel distribution has a 15-fold higher χ2 value, with K S being approxi-
mately 50% lower. The normal distribution has a significantly higher chi-squared result,
with the K S metric being below the statistical significance threshold. This is confirmed
by examining Figure 3.10, where the bell-shape of normal distribution is a worse fit than
the remaining three distributions.

The final values for the mean and standard deviation of Eabsor bed were similar for each of
the considered distributions with the value of approximately 32.27±0.8 [Nmm]. Further
information and plots are available in Appendix A.

The loggamma distribution seems to be a reasonable choice for both QoIs as indicated
by the histograms and the metrics. However, as the standard deviation is relatively low
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Figure 3.10: Histograms with overlaid fitted probability density functions for both
quantities of interest. Bell curve presented for comparison.

in comparison to the mean value, it is not unreasonable to assume the Gaussian distri-
bution for imperfections. Moreover, Bayesian Machine Learning assuming a Gaussian
Distribution involves a significantly less computational resources when assuming a nor-
mal distribution because any other distribution would require the use of Monte Carlo
sampling (dramatically decreasing computational efficiency).

3.3.2. POST-BUCKLING ANALYSIS WITH ARC-LENGTH METHOD

The arc-length method is used to track structural responses with negative stiffness, i.e.
capturing snap-back and snap-through instabilities [100]. This method surpasses the
convergence issues observed when using the Newton’s method to solve the finite ele-
ment equations. As described above, the first buckling mode is augmented by an ampli-
tude obtained from sampling the chosen imperfection distribution. Then, the idealized
geometry of the metamaterial is perturbed according to this mode in order to start the
post-buckling analysis with an undeformed configuration that will not diverge at the bi-
furcation point due to the presence of the geometric imperfection. This allows to char-
acterization the complete response of the metamaterial design.

A schematic representation of the arc-length method (commonly referred as RIKS anal-
ysis) is presented in 3.4. The original Riks paper [99] and a review by Nikolaos [100].
provide an excellent source of further information on the method. Our finite element
analysis has, however, a few important simplifications to keep in mind:

• The friction for the barrel hinges that connect longerons with support rings is ne-
glected by the simulations. This effect can be minimized by reducing roughness
between the barrel and the pin. In real life experiments it was observed that this
friction may cause jamming of the pins, particularly at fast applied loads, that lead
to sudden peak force and higher critical buckling load;
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• Defining a generalized section in terms of A, Ix , Iy , and J , implied performing the
cross-section integration before the analysis rather than during. Therefore, the
force-displacement vectors that allowed to calculate the global strain were read-
ily available, however the local strains and stresses across the cross-section of the
longerons (along the length of P) were unavailable.

• Since machine learning requires large datasets to create accurate models and the
number of Abaqus licenses available was limited, self-contact between the longerons
was not modeled due to the significant computational time that would be added
per simulation (each data point would require too much time to generate a large
enough database, as discussed next in the machine learning section). It is intuitive
that increasing the number of longerons in the design leads to higher buckling
loads, however this comes at a cost of decreasing the total compressive displace-
ment allowed by the design, as the longerons may overlap. This is important for
energy absorption considerations as most probably designs with highest buckling
loads will not coincide with the designs with highest energy absorption due to a
shorter coiling path.

Self-contact is an important influencing factor in finding the best design when the num-
ber of longerons is sufficiently high. However, the impact of this effect was mitigated by
fixing the number of longerons and the value of D1. Priority has been given to the appli-
cability of the database to any cross section as long as it is closed and the shear center lies
on the axis of symmetry for a given cross section [105, 106]. The results of simulations
are stored in a database that is later used to extract QoIs.

The procedure for calculating Eabsor bed as the area under the stress stress-strain curve
of the metamaterial is as follows:

(a) For each considered output point append the vectors of forces and displacements
from RIKS analysis;

(b) Convert force and displacement vectors to effective stress-strain vectors consider-
ing the pitch of the design and D1;

(c) Reject the stress-strain curves that fail to reach 80% strain, as they represent sim-
ulations with incomplete deformation of the metamaterial;

(d) Using a Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) [107] inter-
polator, interpolate the output vectors of stress and strain to obtain a continuous
response of the metamaterial;

(e) Generate a new vector of 10000 evenly spaced strain values between 0.0 and 1.0;

(f) Use the interpolator object on the newly generated vector from point (c) to obtain
a vector of stress values of same length;

(g) Apply Simpsons rule [108] to calculate the area under the newly generated stress-
strain curve;

(h) Append Eabsor bed and Pcr i t i cal for every design to a single list for all designs.
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Note that the height reduction of the structure due to the introduced geometric imper-
fection is considered negligible.

3.4. BAYESIAN MACHINE LEARNING

The design of an unstable metamaterial with a large number of parameters poses sig-
nificant challenges to the machine learning process because it requires large databases
and uncertainty quantification. Currently, as revised in Chapter 2, few methods satisfy
these requirements. Therefore, a detailed comparative study of recently proposed sparse
Gaussian Processes is reported in Appendix B. This comparison was conducted for both
regression and classification, including well-established machine learning algorithms to
provide a benchmark – artificial neural networks and support vector machines, respec-
tively.

The comparative study revealed that the SGPR algorithm led to more accurate results for
regression, whereas the SVGP algorithm was a better classifier even when compared to
conventional GPs or SVC for same dataset size, see Figure 3.12. This was explained by dif-
fering approximations of the non-gaussian posterior in the presented algorithms.

As expected the quality of the machine learning models increased with the amount of
available data. It was clear that the neural network algorithm achieved lower mean
square error as compared to GP algorithms, see Figure 3.11. This may be related to the
selection of the M ater n52 kernel for the gaussian processes. Moreover, note that stan-
dard neural networks do not provide the confidence intervals for the mean function and
the difference between sparse GP and neural networks indicated over-fitting issue for
the latter.

In summary, the metamaterial analysis through machine learning is provided by the
SGPR method for regression and SVGP for classification of design space. A detailed com-
parison of these and other machine learning models is included in Appendix B.
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Figure 3.11: Mean squared error of regression as function of dataset size. The dashed
yellow line indicates the average MSE with 95% confidence intervals for all runs, the grey
line for the logarithmic trendline, numbers above labels indicate the time to train the
model in minutes.
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Figure 3.12: Classification Test accuracy as function of dataset size, yellow line represents
the average accuracy with 95% confidence intervals for all runs, grey line for logarithmic
trendline.





4
METAMATERIAL ANALYSIS WITH

DATA-DRIVEN FRAMEWORK

C HAPTER 3 carefully justifies the choices for the design of experiments, finite element
simulations, and Bayesian machine learning methods suggested for analyzing the

metamaterial concept with the data-driven framework. The current chapter focuses on
the analysis using this framework, enabled by machine learning and sensitivity analy-
sis. Section 4.1 introduces the best designs as determined from the DoE sequence. The
influence of design parameters was mapped using the machine learning model in sec-
tion 4.2. Results of global sensitivity analysis based on the machine learning model are
presented in section 4.3. Verification of the trends and insights derived in this chapter is
provided in 4.4.

First, a database spanning the design space was used to classify metamaterials into two
classes: coilable and non-coilable. Then, the machine learning regression process is
performed only on coilable designs, since the remaining ones are of no interest to this
work. The same sub-set of points is used to perform regression for both the critical buck-
ling load and energy absorbed. In this case, results of the RIKS analysis are necessary
to obtain stress-strain curves that are used to calculate the energy absorbed. Once the
machine learning regression model is obtained, a sensitivity analysis is conducted to
gain insight on the influence of the design parameters on the quantities of interest. Each
metamaterial design was perturbed according to the first buckling mode to create an im-
perfect geometry simulating manufacturing imperfections, as previously discussed. The
imperfection amplitude is extracted from Lognormal distribution with mean of 4o and
standard deviation of 1.2o using a pseudo-random number generator. The first 40 000
points in the sequence were simulated only using the linear buckling analysis to speed
up computations. The response database was used to train a SVGP classifier with 800 in-
ducing points and accuracy of 0.98, that was used to exclude non-coilable designs from
the entire DoE sequence. The author acknowledges that by doing this we no longer have
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a complete Sobol sequence, i.e. the classified sequence no longer corresponds to the
space-filling order of the initial DoE sequence. This has implications when conducting
the sensitivity analysis, as it was required to sample points from the model rather than
directly from the simulation results. However, due to the need of using computational
resources efficiently, it would be wasteful to conduct simulations for points that will not
lead to coilable designs.

Following this procedure, the first 115 000 points from the classified DoE were simulated
using both linear buckling analysis and the RIKS analysis. Subsequently, the process
outlined in Section XX was implemented to obtain the values for Pcr i t i cal and Eabsor bed .
After applying the procedure for calculating area under stress strain curves, 59991 points
were available to train the models.

Two separate machine learning models were created, one for the Pcr i t i cal and one for
the Eabsor bed . In each case the input points for the model were scaled using the same
standard scaler, and subsequently split into train and test set, 80% of the points were
used for training and 20% for testing. Subsequently, the models were trained using the
SGPR algorithm with Matern 5-2 kernel and ARD, 1200 inducing points were enough to
achieve high quality predictors.

The regression models of critical buckling load Pcr i t i cal and energy absorption Eabsor bed

were then used along with the classification model to create projections of design space,
contour maps, that allowed to visualize the influence of design parameters on the quan-
tities of interest.

4.1. BEST DESIGNS FROM THE DESIGN OF EXPERIMENTS

As nearly 60000 points were simulated from the DoE sequence, it was possible determine
designs close to optima directly from the response database. The stress-strain curves of
designs with maximum Pcr i t i cal and Eabsor bed , obtained directly from the simulations
are presented in Figure 4.1. The top stress-strain curve for Pcr i t i cal had, as reported by
static buckling analysis, critical buckling load of 88 kPa and energy absorption value of
14 kJ/m3. The energy absorption has been calculated in this case assuming the tensile
stresses to be zero. One can also observe a discrepancy between Pcr i t i cal value and the
peak of the stress-strain curve generated by RIKS analysis. This difference is relatively
substantial yet consistent for designs that had high reported Pcr i t i cal value (> 80 kPa).
Throughout this work, the values as reported by static buckling analysis are assumed.
The design for Eabsor bed achieved critical buckling load of 33 kPa and energy absorption
of 54 kJ/m3. The corresponding design parameters for stress-strain curves depicted in
Figure 4.1 are presented in Table 4.1.

Analyzing the design parameters in Table 4.1, the values G/E are comparable which im-
plies a low Poisson ratio for both designs. The difference in area and height is noticeable
but not drastic, shorter designs tend to buckle in a more stable way, as the longeron
becomes longer the first two eigenvalues become closer and bending may be triggered.
The values of Ix and Iy are at the top range values for respectively Pcr i t i cal and Eabsor bed ,
which suggests that these parameters are crucial in achieving optimal values of quanti-



4.1. BEST DESIGNS FROM THE DESIGN OF EXPERIMENTS

4

59

Figure 4.1: Comparison of the stress-strain curves for highest energy absorbed and criti-
cal buckling load obtained from the simulations.

Table 4.1: Corresponding design parameters for the curves presented in Figure 4.1.

Dataset A
[mm2]

G/E Ix

[mm4]
Iy

[mm4]
Jτ
[mm4]

P
[mm]

DR

max(Pcr i t i cal ) 26.0 0.439 137.1 91.0 647.7 47 0.14
max(Eabsor bed ) 38.0 0.430 119.1 139.3 58.2 70 0.78

ties of interest. Significant differences exist for values of Jτ and DR . This result indicates
that to obtain optimal buckling loads high torsion constant and low DR is necessary.
Conversely, to attain top energy absorption capabilities, relatively low torsion constant
as well as a significantly smaller value of D2 relative to D1 is required.

The onset of tensile stresses visible for the best Pcr i t i cal design in Figure 4.1 is presented
in Figure 4.2. This may suggest the discussed bi-stable behavior, with certain amount of
force required for snap-through. For similar designs where the value of Iy and Ix were
within the same order of magnitude the region with low tensile stresses disappeared.
This region may be a numerical artifact and experimental validation is required. Note
that these tensile stresses are negligibly small and that they are observed for a few de-
signs with extreme input parameters.

As a sliding contact and self-contact between the longerons and the base was not im-
plemented due to computational expense and convergence issues, some simulations
show kinks in the stress-strain curves which correspond to a second contact event of
the longerons with the base. These events have been marked by arrows in Figure 4.3,
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Figure 4.2: The best design for critical buckling Pcr i t i cal of all DoE points analyzed.

and they were also observed experimentally, as seen in Houlder’s dissertation (to appear,
2019).

Note that by declaring a generalized cross-section for the longerons it was not possible
to predict the local strains across the cross-section of the longerons (only the average
strains are available). In addition, using a general cross-section enforces performing the
section integration before the computational analysis rather than during. Having access
to the local strains and stresses in the longerons would allow to determine whether the
structure undergoes plasticity or even fracture, i.e. if the local deformation exceeds the
elastic regime. This would be crucial for the final optimization of the design, since it
limits the possible designs significantly due to failure by exceeding yield strength of the
substrate material. Yet, this was a sensible compromise made to gain insight into other
parameters of the structure. Thus, the manufacturability of the presented designs shall
depend on the choice of substrate material.

The results of simulations show that it is possible to significantly modify the mechanical
response of the design by tuning certain parameters. However, we want to know how this
response changes and which parameters are most critical for the unit cell design. This
warrants further analysis and creation of machine learning models to gain more insight
from the available data.

4.2. DESIGN CHARTS AS CONTOUR PLOTS

After creating the machine learning model, projecting the design space becomes possi-
ble and we can create contour maps that help when visualizing high-dimensional spaces.
In this work we simplified this visualization by simple 2D projections onto two varying
features while keeping the remaining constant. It was generally found that the machine
learning models achieved higher performance by training on coilable designs alone.
As an example, a SGPR model for Pcr i t i cal with ratio of inducing to training points of
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Figure 4.3: The best design for energy absorbed Eabsor bed of all DoE points analyzed.

0.025 trained on a 60000 point dataset achieved a R2 = 0.999 when trained only on
coilable designs, whereas for all the designs and same model parameters the R2 was
0.992. This showed that exclusion of non-coilable designs resulted in a more consistent
dataset.

A good performance of the classifier on the seven-dimensional space was confirmed, as
out of 103001 points generated via simulations, 1269 points were misclassified. This cor-
responds to the accuracy close to that reported by the classifier of 0.987 and ultimately
validates the performance of the classification model.

Together with the criterion of only considering metamaterial designs for which the sim-
ulations achieved above 80% global deformation, which excluded incomplete simula-
tions, the final R2 values for regression of Pcr i t i cal and Eabsor bed were respectively 1.00
and 0.992. The length scales of SGPR models, as determined by kernel ARD, for every de-
sign parameter are presented in Table 4.2. The standard deviation of the mean was het-
eroscedastic in nature, i.e. it varied in space, and it did not exceed 2 kPa for the stresses
and 3 kJ/m3 for the energy.

Table 4.2: ARD regression model length scale for each of the design parameters.

QoI A/D1 G/E Ix /D1 Iy /D1 Jτ/D1 P/D1 DR

Pcr i t i cal 37.0 34.0 2.4 127 2.7 4.2 3.6
Eabsor bed 27.0 15.0 2.8 7.4 2.5 3.8 6.6

For both quantities of interest the ARD regression model indicates that the parameters
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A/D1 and G/E are less important than others, as seen by a large value for the length
scale – see Table 4.2. This result suggests that the correlation of these two features and
the quantities of interest is limited in comparison to other design parameters. This was
confirmed by comparing projections of the design space with low and high values of
these two features, the magnitude and distribution of the quantities of interest changed
insignificantly. Moreover, the length scale of 127 obtained for the case of the critical
buckling load, Pcr i t i cal , suggests that it is invariant to Iy /D1. The remaining design pa-
rameters had relatively similar length scales for both quantities of interest, Pcr i t i cal and
Eabsor bed , suggesting that they are significantly important to the behavior of the meta-
material. This is confirmed by observing Figures 4.4, 4.5 and 4.6.
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Figure 4.4: Mean quantities of interest as function of Iy , DR and P . The normalized
parameters A=0.001, G/E=0.36, Ix = 7.5×10−7, and Jτ = 2.5×10−6 remain constant.

Looking at Figure 4.4, one may observe a strong correlation of both Pcr i t i cal and Eabsor bed

with increasing Iy and DR . Whereas Pcr i t i cal seems to be largely invariant to Iy ,as one
does not witness a significant change in values along the horizontal axis, Eabsor bed val-
ues grow at approximately 45o angle, to reach top values in the upper right corner. This
shows strong correlation to both Iy and DR . Comparing the four subplots, the highest
values for both quantities of interest are achieved for subplot with P/D1 value of 0.66.
Additionally, as height of the structure grows, less area of the plot is classified as coilable.
This is intuitive to understand, as the metamaterial height increases the bending stiff-
ness decreases which starts favoring a bending deformation mode instead of a coilable
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one. This is translated by an approximation of the first and second buckling eigenvalues
as the height increases (first eigenmode is the coilable one and second is in bending, un-
til this is reversed and the first becomes in bending, hence classifying these designs as
non-coilable).
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Figure 4.5: Mean quantities of interest as function of Ix , Iy , and DR . The A=0.001,
G/E=0.36, Jτ = 2.5×10−6 and P=0.66 remain constant.

The influence of second moments of area is presented in Figure 4.5. The primary remark
is that the contour lines of Pcr i t i cal and Eabsor bed are virtually perpendicular to one an-
other. The values of Eabsor bed are largely independent of Ix above 2.5× 10−7 . For the
subplot wit DR =0.0 one can see a sharp increase in critical load values at Ix = 2×10−7

followed by a large plateau. This pronounced change becomes more gradual as the DR

value is increased, and the plateau area becomes smaller and both quantities of interest
become larger. This shows that it is possible to tune the mechanical response to achieve
relatively low Pcr i t i cal and high Eabsor bed , or vice versa, solely by manipulating the val-
ues of second moments of area. However, for high DR values, the second moments of
area need to be similar to make the structure coilable.

The last Figure 4.6 presents the dependence of Pcr i t i cal and Eabsor bed on the torsion con-
stant. The critical buckling values were largely invariant to changes in Iy , however they
were strongly tied with the values of Jτ. On the contrary, Eabsor bed were firmly correlated
with Iy and only minorly varied with the change of torsion constant. Highest values of
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Figure 4.6: Mean quantities of interest as function of Iy , Jτ and DR . The A=0.001,
G/E=0.36, Ix = 7.5×10−7, and P=0.66 remain constant.

both quantities of interest are achieved for large DR values, yet again these designs are
predominantly classified as non-coilable.

4.3. SENSITIVITY ANALYSIS

Sensitivity analysis is the study of how the outputs of a model vary according to vari-
ations of the model inputs [109, 110]. Assuming that the input features or factors are
independent of each other, the input/output scatter plots are a simple way of visualizing
sensitivity, as they can provide a depiction of the relative importance of the factors. The
influence of factors is then crudely measured by performing simple linear regression for
the points in each of the scatter plots, a horizontal line is a symptom of a non influen-
tial factor, whereas higher slope values are associated with more influential factors [110].
Scatter plots for both Pcr i t i cal and Eabsor bed are presented respectively in Figure 4.7 and
Figure 4.8.

The sensitivity analysis performed herein serves dual purpose. The Factor Prioritization
is used to identify a factor which, when fixed to its true value, leads to the greatest re-
duction in the variance of the output [110]. Therefore, it allows to detect and rank those
factors which need to be better measured in order to reduce the output variance and
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Figure 4.7: Scatterplots of critical buckling load as function of design parameters.

which factor is most deserving of further analysis [110]. Factor prioritization is indicated
by the by the so-called first order sensitivity index S1 , and is a measure of the main ef-
fect.

Figure 4.8: Scatterplots of energy absorbed as function of design parameters.

The second purpose is Factor Fixing. It is used to identify factors which, left free to vary
over their range of uncertainty, make no significant contribution to the variance of the
output [110]. The identified factors can then be set to any given value within their range
of variation without influencing the output variance. Factor prioritization is indicated by
the by the so-called total order sensitivity index ST. A value of zero implies that a given
input is noninfluential and can be fixed anywhere in its distribution without affecting
the variance of the output. For further information on calculation of sensitivity indices
the reader is referred to Saltelli et al. [110].

In this work we performed variance-based Sobol global sensitivity analysis [109, 110] us-
ing the SAlib library in Python [111]. The author is aware that it shall be best practice to
use the Sobol sequence of DoE and the output values generated directly from the simu-
lations, however due to criteria for coilability and 80% strain, the DoE sequence becomes
discontinuous. Thus, it was necessary to perform new quasi-random sample from the
bounds of the DoE of 32000 points and subsequently utilize the machine learning mod-
els to generate new output values that determine the sensitivity indices. Consequently,
the sensitivity analysis contains input points without the criteria, yet the model used to
evaluate those inputs does consider strain and coilability criteria. This might be a source
of discrepancy for the determined sensitivity indexes, but the analysis is consistent with
the observations of various projections of the space, as discussed next. Therefore, the
sensitivity analysis provides valuable insights. The bar plot in Figure 4.9 presents the
first and total sensitivity indices of every factor for both quantities of interest.

The results of sensitivity analysis largely confirm the observations made for the contour
plots in the preceding section. The torsion constant Jτ and Ix are the most influential
factors for the value of the critical buckling load, whereas Iy and DR are the most impor-
tant for energy absorption. As the longerons become thicker in the radial direction the Ix

grows cubically, significantly increasing the resistance to bending along the circumfer-
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Figure 4.9: Global sensitivity indices for Pcr i t i cal and Eabsor bed .

ence of the base of the design. The torsion constant has similar effect as it increases the
resistance to twisting around the center of mass of a given longeron cross section.

The total order sensitivity indices for these design parameters show that higher order
sensitivity is also present. This means that higher order correlations between the input
parameters influence the outputs, in some cases. For example, the first order sensitivity
for DR is relatively small, however the total index is larger which implies coupled interac-
tions between Jτ – DR or Ix – DR . The height of the design P has similar sensitivity as DR ,
yet the proportion is inverted with first order sensitivity higher than the total sensitivity,
which shows that this parameter has a more direct effect on values of Pcr i t i cal . This is
confirmed by the scatter plot, as the slope of P/D1 is greater than in the case of DR . We
also note that the critical buckling load manifests inverse proportionality to P/D1, i.e. as
the longerons become longer the force required for buckling is smaller. The influence
of the G/E parameter is small for Pcr i t i cal and negligible for Eabsor bed . Similarly to Jτ
the shear modulus affects torsion, however the torsion constant may vary across greater
range in comparison to G , which is limited by the Poisson ratio, thus the effect of torsion
constant is more pronounced. The impact of cross-sectional area of the longeron A is
negligible for both quantities of interest. This is explained by the fact that the second
moments of area fully define the bending and torsional behavior, not the cross-sectional
area.

Consistently with the contour plots, the sensitivity analysis showed that Iy has the largest
influence on the amount of energy absorbed, and that Ix is irrelevant to this quantity of
interest. The DR gives second highest sensitivity for Eabsor bed , which is a result consis-
tent with conventional energy absorbing materials, where frusta shaped structures have
higher energy absorbtion as compared to cylindrical shape. Low sensitivity to Jτ and
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G/E showed that the resistance to torque applied to the longerons has little effect on the
Eabsor bed .

4.4. METAMATERIAL TUNABILITY

(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Tunability of stress strain response of the best energy absorption design by
changing different design parameters.

The information obtained from the contour plots and the results of sensitivity analysis
provide significant insight into the mechanics of the proposed metamaterial. The con-
tour plots can be used as design charts to study the influence of the input parameters,
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while the sensitivity analysis helps in reducing the design space to the most important
parameters. Therefore, the data-driven framework enables the tunability of the meta-
material for different applications.

Focusing again on the optimal designs among all the DoE points sampled, we can now
vary the input parameters around this region of the design space and reveal their impact
on the quantities of interest. Thus, the base for this analysis are the stress strain curves
presented in Figure 4.1 with the design parameters from Table 4.1. The effect of design
parameters for the design that reached maximum energy absorbed for the dataset is pre-
sented in Figure 4.10.

Figure 4.11: Contour plot of Iy as a func-
tion of Ix for the design with best energy
absorbed.

The figure confirms that the influences of
imperfection amplitude, longeron’s cross
sectional area and ratio of moduli are neg-
ligible. Confronting previous results with
the stress-strain curves presented in Figure
4.10, some local deviations should be re-
ported when comparing the global sensitiv-
ity of the metamaterial to the local sensitiv-
ity around this design (optimal DoE point).
For this design, relatively low values of Jτ
are necessary for the structure to be coil-
able, as only two simulations finished suc-
cessfully (Figure 4.10 d), which is further
demonstrated by the contour plot in Figure
4.11. As the height of the unit cell decreases,
the Eabsor bed increases until saturation at
P/D1 of approximately 0.5, which confirms
the trend for this parameter depicted in the scatter plot of the preceding section. As con-
cluded from the previously presented contour plots, the value of DR has a significant
influence on the area under the stress-strain curve, with the possibility that the bounds
of the DoE are a limiting factor.

The only visible discrepancy between the plots presented in Figure 4.10 and the previ-
ous analysis is the influence of the second moments of area. It was expected based on
the global sensitivity analysis that Ix would have a small influence on the energy ab-
sorbed; however, for this particular design there is local sensitivity to this parameter,
as one can see that the impact of both moments of inertia is comparable. Despite the
drawbacks previously mentioned of the sensitivity analysis conducted herein, note that
the reported sensitivity of Ix was comparable to that of P/D1. Globally both parameters
are relevant, although Iy was reported as more important for the energy absorbed – see
Figure 4.9. Nevertheless, in the region close to the design analyzed herein, i.e. the op-
timal DoE point, the value of Eabsor bed is influenced similarly by both second moment
of inertias, Figure 4.11. Comparing this plot with Figure 4.5, the local trend has clearly
changed to more pronounced impact of Ix . Moreover, despite locally increased sensi-
tivity to Ix for the Eabsor bed , the critical buckling values remain invariant to Iy values,
just as presented in the global sensitivity analysis. These results show that the developed
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classification and regression models show good agreement with the simulations and in-
sofar the energy absorption is concerned, the tunability of mechanical response is then
confirmed.

(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Tunability of stress strain response of the design with best critical buckling
load.

Identical procedure has been applied to the design with best critical buckling load. An-
alyzing Figure 4.12 one can conclude that the value of torsion constant has locally the
highest influence for this design. This is confirmed by Figure 4.13 where the highest val-
ues of Pcr i t i cal are condensed to a narrow range of torsion constant values, whereas to
reach the same result Ix = 5×10−7 suffices. The model also correctly predicts low values



4

70 4. METAMATERIAL ANALYSIS WITH DATA-DRIVEN FRAMEWORK

of energy absorption for the whole range of Jτ and Ix as well as low gradient for changes
in Eabsor bed . This may be explained by area compensation in Figure 4.12. As the value
of Jτ is reduced, the area under the curve below 35% strain becomes smaller, yet simul-
taneously the area above that strain level becomes larger, thus the change in Eabsor bed is
not drastic.

Figure 4.13: Contour plot of Jτ as a func-
tion of Ix for the design with best critical
buckling load.

The remaining design parameters have sim-
ilar influence on the mechanical response
of the structure. Both moments of area af-
fect Pcr i t i cal for this design. We also note a
rather narrow range of P/D1 and DR values
where the structure is coilable. This may be
explained by increased probability of mixed
buckling modes at higher P/D1, and the
possibility of coupled effects between large
DR and extreme torsion constant values. We
also observe that a small tensile region is
persistently visible in the simulations, with
Jτ and Iy having the largest influence on this
region. It is suspected that this may be a nu-
merical artifact due to high values of torsion
constant. Lastly, the influence of G/E ratio
is comparable to that of Ix , this is consistent
with the sensitivity analysis since the sensi-
tivity index for Pcr i t i cal was nonzero. This deviation is captured by the model as pre-
sented in Figure 4.14. We see a slight difference for the extreme values of the ratio and
consistently higher critical buckling values predicted by the model than depicted by the
stress strain curve. This follows directly from the fact that the RIKS simulations were ob-
tained for imperfect geometries, but the critical buckling load is obtained for idealized
geometries. Therefore, Eabsor bed is obtained from the results of RIKS analysis, while the
Pcr i t i cal is obtained by linear buckling analysis.

(a) (b)

Figure 4.14: Influence of the ratio of shear and elastic moduli on best designs.
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Overall, the study of the presented stress-strain curves has proved the insights gained
from the machine learning model and sensitivity analysis. Moreover it has justified the
need to generate global models for the entire design space as local sensitivities were
shown to deviate from the global trends.





5
DISCUSSION

In this thesis a novel concept of an energy absorbing metamaterial has been proposed.
A universal Data-driven framework was utilized to gain better understanding of the me-
chanical response of the proposed concept. Within this framework, a multitude of pos-
sible designs was generated to understand the mechanical response of the concept de-
sign, based on critical buckling load and energy absorption as metrics. The framework
has allowed to seed realistic design imperfections and to analyze their influence on the
design. A machine learning model was developed to map the impact of design param-
eters on the buckling and post-buckling response. To the best of authors knowledge at
the time of writing, it is the first time sparse gaussian processes had been selected for
this task. Based on the findings of this work, an improved design of the metamaterial
design with a realistic cross section has been recommended.

5.1. DATA-DRIVEN FRAMEWORK

The considered data-driven framework is applicable to a host of materials engineering
issues. At the heart of the framework are the finite element simulations, as they define
the problem to be solved and generate the quantities of interest. For the purposes of this
work, quantity of simulations was crucial, therefore possible improvements to the finite
element model were sacrificed at the benefit of computational time. As discussed, self-
contact between longerons and slippage had not been considered. Similarly, the lack
of friction in longeron hinges is not realistic. By assuming a generalized cross section,
it was not possible to determine the local strains in the longerons, therefore it was not
possible to determine if the structure remained in the elastic regime or if permanent
deformation did occur. However, the simplified simulations were sufficient to gain deep
insight on the mechanical response of the structure and added complexity of the finite
element model would unnecessarily increase the computational time.

Despite the simplistic simulations, realistic imperfections based on experimental find-
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ings were included. As the seeded imperfections corresponded to the first eigenmode of
buckling of design. The introduction of imperfections lowered the critical buckling load
and yet the energy absorption showed low sensitivity to seeded imperfections. It was
determined that to dutifully characterize the uncertainty due to imperfections, many
simulations per DoE point would need to be generated, this was deemed computation-
ally prohibitive in the considered high dimensional space. Thus, each simulation was
corrupted by a single imperfection. However, as it proved difficult to determine criti-
cal buckling load form stress strain curves that increased in stress in the post-buckling
regime. That is why idealized values of critical buckling load determined from linear
bifurcation analysis were used to train machine learning models.

Although formal optimization routine was not conducted in this work, the extensive
amount of generated simulations has allowed to find designs with quantities of interest
close to optimum within the bounds of the DoE. These designs showed significant dif-
ferences in design parameters. The best design for critical buckling indicated significant
tensile stresses beyond 0.5 strain. Same design simulated using significantly finer mesh
size retained the tensile region. Experimental work is required to confirm this behavior
as it may indicate energy trapping via snap-through instability for some combinations
of design parameters.

Machine learning models for the quantities of interest were generated via sparse gaus-
sian processes. The considered neural networks model showed lower mean squared er-
ror on the dataset and considerably lower time to train, however due to generality of the
framework, uncertainty quantification and the possibility of performing optimization
routine that would require second order derivatives, the sparse gaussian process was se-
lected. The model allowed to investigate the sensitivity of quantities of interest to design
parameters.

Creating visualizations of high dimensional spaces is not a trivial issue and numerous
projections were necessary to gain understanding of the impact of design parameters. To
complement the design chart, sensitivity analysis and additional simulations were con-
ducted. This allowed to draw conclusions on the influence of design parameters.

5.2. THE INFLUENCE OF DESIGN PARAMETERS

It was determined that the design parameters that had largest influence on E absorbed
were the second moment of area around the Y-axis of the longeron I y and the ratio of
ring diameters D R. Critical buckling load of the unit cell was shown to vary the most for
second moment of area around the X-axis of the longeron I x and the values of torsion
constant Jτ.

5.2.1. AREA OF THE LONGERON CROSS SECTION

The analysis carried out has shown that the cross-sectional area of the longeron does not
effect the quantities of interest, rather it were the second moments of area largely deter-
mine the mechanical response of the unit cell. This may be explained by the assumed
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Creating visualizations of high dimensional spaces is not a trivial issue and numerous 

projections were necessary to gain understanding of the impact of design parameters. To 

complement the design chart, sensitivity analysis and additional simulations were conducted. 
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5.2 The influence of design parameters 
It was determined that the 
design parameters that had 
largest influence on Eabsorbed 

were the second moment of 
area around the Y-axis of the 
longeron Iy and the ratio of 
ring diameters DR. Critical 
buckling load of the unit cell 
was shown to vary the most for 

second moment of area around 
the X-axis of the longeron Ix 

and the values of torsion 
constant Jτ.  

5.2.1 Area of the longeron 
Cross Section 

The analysis carried out has 

shown that the cross-sectional 

area of the longeron does not 

effect the quantities of interest, 

rather it were the second moments of area largely determine the mechanical response of the 

unit cell. This may be explained by the assumed independence of unit cell parameters and the Figure 5.1: Schematic of longeron with general cross-section (top view)

independence of unit cell parameters and the fact that it is possible to obtain the same
set of second moments of area for different area values depending on the shape of the
cross section.

5.2.2. RATIO OF SHEAR AND ELASTIC MODULI

The ratio of G/E was shown to have no influence on the energy absorption and globally
speaking marginal influence on the critical buckling values, with increased sensitivity
for the best design. This is explained by the concepts of torsional rigidity G J and bend-
ing stiffness E I . In the model we have assumed the E = const and the shear modulus
to vary within the physical bounds defined by the Poisson Ratio. Thus, the parameter
varied within relatively tight bounds. This meant that shear modulus had a low contri-
bution to torsional rigidity of the longeron compared to the torsion constant Jτ, which
varied within a large span of values. Despite that high values of G were favored for best
designs, with the differences more pronounced for the design with best critical buckling
load. The elastic modulus contributes to the bending stiffness and amplifies the effect
of second moments of area. Therefore we may conclude that G and E are scaling factors
for respectively torsional and bending stiffness and amplify the effect of Jτ and I .

5.2.3. SECOND MOMENT OF AREA AROUND X-AXIS

Generally, as the dimension of the beam cross section perpendicular to the X -axis grows,
the second moment of area around that axis increases cubically. This significantly raises
the bending stiffness of the longeron around that axis. Thus, the resistance to the applied
bending moment Mx increases , as shown in Figure 5.1, and larger force is required for
buckling. As all the considered designs buckle according to first eigenmode ie .global
rotation of the design, the resistance to bending in direction tangent to the ring becomes
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critical and the bending resistance in the radial direction plays no significant role for
critical buckling. In terms of energy absorption, for the same longeron deflection as
resistance to the bending moment increases, the elastics strain energy will increase as
well. However, as the ends of the longeron are hinged this effect is globally smaller than
for Iy .

5.2.4. SECOND MOMENT OF AREA AROUND Y-AXIS

For reasons postulated above and in chapter 4, Iy has only marginal global impact on
critical buckling values. However as discussed in chapter 2.2 and 2.3 the energy absorp-
tion is largely governed by the thickness of the beam, or more precisely the slenderness
ratio. In the case of the proposed design it is largely true and as the thickness of the
longeron increases in the X-direction, the resistance to bending moment My increases
and consequently the energy absorption. Second order effects of Iy with other parame-
ters are significant, most notably with the ratio of ring diameters DR .

5.2.5. TORSION CONSTANT

The longerons twist along their length during retraction of the unit cell. The torsional
stiffness of the longeron has a significant impact on the critical buckling load. The higher
the resistance to applied torque Tc in figure, the higher critical buckling load. As dis-
cussed, torsional rigidity is largely determined by Jτ rather than shear modulus as the
latter is limited by the Poisson ratio. It was observed that globally the impact of this pa-
rameter was low for the values of energy absorption, yet direct simulations have shown
that the shape of stress-strain curves varies significantly with this parameter. It is possi-
ble that the lack of area under the curve at low values may be compensated by increased
area far into post-buckling regime. Thus, the total area under the curve remained largely
unchanged. It was also observed that the best design for energy absorption was simu-
lated only within a narrow range of Jτ values. This suggests that pronounced warpage of
the cross section is necessary to obtain high energy absorption in combination with high
Iy and DR . Likewise, for a constant torque the work done to twist the longeron increases
together with the rotational displacement.

5.2.6. HEIGHT OF THE UNIT CELL

The height of the unit cell coupled with the ratio of ring diameters determines the length
of the longeron. In many previous studies the slenderness of a beam-like element de-
termined the mechanical response. The critical buckling is inversely quadratically pro-
portional to the length of the longeron whereas the energy absorption is directly pro-
portional. This would suggest that we could easly tune the design by varying the pitch.
However, it was observed that P/D was the only parameter that showed clear peak value.
It was determined from the contour maps that for null DR the quantities of interest were
a weak function of unit cell height, yet as DR increased to the opposite boundary of
the DoE, the range of optimal height values became narrower and peaked at approx.
P/D = 0.5 It was also observed in chapter 4.4 that as P/D is increased, the stiffening in
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post-buckling regime is surpressed leading to lower energy absorption.

5.2.7. RATIO OF RING DIAMETERS

It was shown by the analysis that both quantities of interest increase with DR , yet the
effect was more pronounced for energy absorption than for critical buckling load. This
can be explained by the increased length of the longeron in the case of critical buck-
ling loads. For energy absorption the impact was significant and is possibly explained
by amplification of the My bending component. However the effect of this parameter
is unsurprising given the discussed frusta structures have increased energy absorption
at higher semi-apical angles and many metamaterials in literature showed pronounced
sensitivity to the beam tilt angle.

5.2.8. REALISTIC CROSS-SECTION

We have insofar concluded that the cross-sectional shape of the longeron has crucial im-
pact on the mechanical response of the structure. To achieve highest values of Pcr i t i cal ,
Ix and Jτ must be maximized. In this case we propose closed rectangular or ellipsoid
section to satisfy both conditions.

Figure 5.2: Comparison of stress strain curves for I-beams of differing flange and web
thicknesses.

For energy absorption design, high bending and low torsion resistance are required. For
this reason, open cross sections are suitable. Thus, we propose an I-beam cross section
with differing thicknesses for the flanges and web, but equal flange widths. An equivalent
I-beam cross-section has been simulated for the best design for energy absorbed. The
reported energy absorption was 49 kJ/m3. The shape of the stress-strain curve was iden-
tical with that presented previously in this work. The local elastic strains in the longerons
reached 16%. We acknowledge that this is a high value in the elastic regime, however
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some materials exist that that do exhibit such high strains without yielding. By exchang-
ing the values of thickness for the flange and web of the I-beam, the local strain was
reduced to 10%, while Iy increased significantly and therefore the energy absorption in-
creased as well, see Figure 5.2. The parameters of the new design are presented in Table
5.1.

Table 5.1: Design parameters of new design

A [mm2] G/E Ix
[mm4]

Iy

[mm4]

Jτ
[mm4]

P [mm] DR

I-beam 38.6 0.430 148.1 271.0 47.3 70 0.78

However, we have found that the values of E modulus and the longeron number are scal-
ing factors for the design. If this is true, then it is possible to achieve significantly higher
buckling loads and energy absorption by increasing the number of longerons and the
elastic modulus. Carbon nanotubes reported in [112] have been selected as the sub-
strate material, due to their ability to reach 12% linear elastic strain. The elastic modulus
of the carbon nanotubes was E = 944.2 GPa, with Poisson ratio of 0.3.

Figure 5.3: Comparison of new design with modified differing values of longerons and
elastic modulus E.

The results are presented in Figure 5.3,the shape of the curve for the design depicted
in Figure 5.2 changed due to logarithmic scale for vertical axis. The curve was shifted
upward as expected, the shear modulus did not influence the post-buckling response as
predicted by the analysis. The proposed design achieved energy absorption of 114497,8 kJ/m3.
Moreover, the maximum local strained remained at 10%, yet the data is insufficient to
conclude that globally the local strains are independent the substrate material proper-
ties. The renders of the new design are shown in Figure 5.4.



5.2. THE INFLUENCE OF DESIGN PARAMETERS

5

79

U, Magnitude

+0.000e+00
+8.353e-02
+1.671e-01
+2.506e-01
+3.341e-01
+4.177e-01
+5.012e-01
+5.847e-01
+6.683e-01
+7.518e-01
+8.353e-01
+9.189e-01
+1.002e+00

Step: Step-1
Mode 2: EigenValue = 1.76354E+06
Primary Var: U, Magnitude
Deformed Var: U Deformation Scale Factor: +1.799e+01

ODB: DoE1_linear_buckle.odb Abaqus/Standard 3DEXPERIENCE R2018x Tue Mar 05 15:13:07 CET 2019

X

Y

Z

(a)

(Avg: 75%)
Lower Flange, Left End
S, Mises

+3.675e+02
+1.011e+04
+1.985e+04
+2.960e+04
+3.934e+04
+4.908e+04
+5.883e+04
+6.857e+04
+7.831e+04
+8.806e+04
+9.780e+04
+1.075e+05
+1.173e+05

Step: Step-RIKS
Increment 128: Arc Length = 0.7714
Primary Var: S, Mises
Deformed Var: U Deformation Scale Factor: +1.000e+00

ODB: DoE1_riks.odb Abaqus/Standard 3DEXPERIENCE R2018x Tue Mar 05 15:13:21 CET 2019

X

Y

Z

(b)

Figure 5.4: Renders of the new design with I-beam cross section and ten longerons.





6
CONCLUSION AND

RECOMMENDATIONS

This thesis has contributed to the design of a novel energy absorbing metamaterial by
mapping the influence of design parameters on the mechanical response of the unit cell.
The insights gained allowed to propose a new improved design for the metamaterial unit
cell.

6.1. CONCLUSIONS

• It was confirmed that by tuning the design parameters, significantly different buck-
ling and post-buckling behavior is possible.

• The sparse gaussian process machine learning model showed good predictability
with the ability to map the influence of design parameters.

• We have demonstrated that the elastic modulus and longeron number are scaling
factors for the quantities of interest.

• For a given E, the second moment of area around the longeron cross-section axis
parallel to the radial direction of the unit cell axis of rotation and the torsion con-
stant of the cross section have highest impact on critical buckling loads of the unit
cell.

• For a given E, the magnitude of energy absorption was found to be most sensitive
to moment of area around the longeron cross-section axis perpendicular to the
radial direction of the unit cell axis of rotation and the ratio of ring diameters.

• The increased buckling load and energy absorption has been attributed to the re-
sistance to bending components of the longerons.
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• The introduction of first buckling eigenmode imperfections lead to lowered criti-
cal buckling load, however their impact was only marginal for the energy absorb-
tion capability.

• The interaction between the design parameters was non-trivial with significant
deviations between the local and global sensitivities.

6.2. RECOMMENDATIONS

Despite the simplicity of the computational simulations, it was possible to develop deep
understanding of how design parameters modify the mechanical response of the struc-
ture. The logical next step, as indicated by the framework, would be to perform opti-
mization for energy absorption. Thus, the recommendations are:

1. Generate a new DoE for a selected longeron cross-sectional shape, we propose the
I-beam shape, to obtain local strains in the structure.

2. Refine the simulation procedure by additional linear buckling simulation that would
consider the imperfections seeded.

3. Consider and model other imperfection sources such as friction of the hinges and
self-contact between the longerons at the expense of computation time.

4. Create new machine learning model with local strains as the third quantity of in-
terest.

5. Perform multi objective optimization with the targets of maximizing the energy
absorbed and minimizing the local strains in the unit cell.

The next or alternative step would be to validate the findings experimentally. Confirma-
tion of behavior of the unit cell at nanoscale could be an interesting topic. Lastly the
interaction of the unit cells arranged in a 3D matrix is to be conducted.
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A
ESTIMATION OF UNCERTAINTY FOR

THE QUANTITIES OF INTEREST

The generation of designs accounting for geometric imperfections allows to study the
influence of these imperfections on the quantities of interest. The quantities of interest
in this work are the critical buckling load Pcr i t i cal and the energy absorption Eabsor bed

of the metamaterial. To perform this analysis 1024 simulations of a single design i.e.
single DoE point, were conducted, each having a different amplitude value for the first
buckling mode used to create the geometric imperfection of that design.

The procedure used to calculate Eabsor bed was simplified for the force-displacement
curves:

(a) Generate a vector of 10000 evenly spaced values between 0.0 and the maximum
design height;

(b) Generate an interpolator object based on the output vectors of force and displace-
ment for a given curve from the response database;

(c) Use the interpolator object on the newly generated vector from point a) to obtain
a vector of force values of same length;

(d) Apply Simpsons rule to calculate the area under the newly generated force curve;

(e) Append area for every design to a single list for all designs.

The distributions of quantities of interest were firstly visualized in the form of histogram
for comparison between both Pcr i t i cal and Eabsor bed distributions. After obtaining both
QoIs, a subsequent distribution fitting procedure was performed. An automated pro-
cedure fits every of the available distributions to the data and the goodness of fit is
measured via two metrics, namely chi 2-test and the K S-test [113]. Before any distri-
bution was fitted, the data was standardized, that is the mean of QoI population is sub-
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tracted from data points and the result is divided by the standard deviation of the popu-
lation.

For the chi 2-test the standardized data is firstly binned into 50 bins (approximately 20
samples per bin). The observed amount of values in every bin is compared to the theo-
retical value for every checked distribution. The chi 2 metric may be expressed as relative
square error per bin:

χ2 =∑ (observed− theretical)2

theoretical
(A.1)

where lower values obtained from the test represent a better fit.

The K S-test quantifies the distance between the observed cumulative distribution func-
tion and the theoretical distribution function to be fitted. As a result of the test a p-value
is generated. A 0.05 significance level has been adopted, that is for p-values greater than
0.05 we assume that the theoretical fitted distribution function is not significantly dif-
ferent from the observed distribution function, i.e. the fitted distribution characterizes
the observed data well enough. The top three distributions and the normal distribution
were reported.

Table A.1: Mode-1 imperfections experimentally measured on prototypes.

Imperfection
1.47◦
1.79◦
1.47◦
0.75◦
3.25◦
3.56◦
2.21◦
1.24◦
1.97◦
0.92◦
3.67◦
2.16◦
2.43◦
0.65◦

Mean 1.97◦
Median 1.88◦

The measurements of mode-1 imperfections of manufactured prototypes are presented
in Table A.1. These values were used to assume a statistical distribution for the manufac-
turing imperfections. As the median value of the population is smaller than the mean,
the assumed distribution shall be negatively skewed. Thus, the lognormal distribution
was selected to seed the imperfections for RIKS analysis. As discussed 1024 imperfec-
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tions from the lognormal distribution were seeded for a single design to estimate the
uncertainty.

Figure A.1 represents the true probability density functions for the obtained values of
critical buckling load and energy absorbed. Contrary to the seeded imperfections, the
statistical distributions of the quantities of interest had a positive skew. The distribution
of energy absorbed had regions of lowered probability, however the range of likelihood
for these regions was narrow, therefore it was possible to assume that both quantities
of interest have the same distribution. The loggamma distribution was determined by
chi-squared and KS-tests as the best fit to the true probability density functions of the
quantities of interest.

(a) Pcr i t i cal (b) Eabsor bed

Figure A.1: True probability density functions for the qunatities of interest

Estimation of uncertainty for the quantities of interest may be achieved by predicting
the response of a unit cell design for the various sampled imperfections. The number of
sampling points required to estimate the uncertainty for each design was determined by
variation of the mean and standard deviation of quantities of interest of the initial design
of the unit cell. The mean and standard deviation computed in Figure A.2 were obtained
for an increasing number of sampling points. Either metric converges to a constant value
for enough sampling points. Observing Table A.2 and Figure A.2 estimating standard
deviation requires more sampling points than estimating the mean of the distribution.
To reach estimation error for standard deviation below 5%, 200 sampling points per DoE
would be required Yet in the Gaussian Process framework the presence of other design
points around each point locally improves the predictions of uncertainty at every point
of the design space. Therefore 60 imperfections per design would provide a reasonable
estimation of uncertainty. However, it was observed that the standard deviation was low
relative to the mean.

With a tight distribution for the quantities of interest, it is probable that the modelling er-
ror for machine learning regression will be higher then the uncertainty for both Pcr i t i cal

and Eabsor bed . As the mean estimation error for 5 imperfections was low, it was decided
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(a) Pcr i t i cal (b) Eabsor bed

Figure A.2: Convergence of mean and standard deviation of the qunatities interest for
loggamma distribution

to seed one imperfection per DoE point to obtain representative results.

Quantile-quantile (qq) and percentile-percentile (pp) plots for the Loggamma and Gaus-
sian distributions were generated. Both plots are extensively used in statistical analysis
with the difference being the percentile-percentile plots have higher resolution in the
center of the distribution, closer to the median whereas the quantile-quantile plot are
more accurate for the tails of a distribution. In both cases perfectly fitted data lies on the
diagonal of the plot (red dashed line) in Figure A.3 and Figure A.4.

(a) Pcr i t i cal (b) Eabsor bed

Figure A.3: Loggamma distribution qq and pp plots for critical buckling and energy
absorption.

The loggamma distribution captures the center shape of the distributions well as indi-
cated by the pp plots. The gaussian distribution is not an unreasonable fit, however it is
evident from the pp-plot that the mean and median of the distribution do not coincide.
Focusing on the qq-plots, greater deviations at the tails of the distributions are evident.
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Table A.2: Relative error of the estimation of mean and standard deviation for the
loggamma distribution.

Sampling
Points

Mean Criti-
cal Buckling
change

STDV Criti-
cal Buckling
change

Mean Energy
change

STDV Energy
change

1024 0.00% 0.00% 0.00% 0.00%
500 0.01% 4.32% 0.01% 3.61%
200 0.12% 4.32% 0.11% 3.64%
100 0.00% 10.27% 0.01% 7.66%
80 0.14% 11.35% 0.15% 9.62%
60 0.28% 12.43% 0.29% 10.69%
40 0.32% 18.38% 0.35% 17.13%
20 1.06% 10.27% 1.06% 13.03%
15 0.76% 14.59% 0.77% 10.34%
10 1.37% 27.57% 1.38% 33.07%
5 1.61% 39.46% 1.58% 44.02%

While gaussian distribution can capture the mean of the distribution relatively well, the
qq plot clearly indicates that the true distribution has a negative skew.The loggamma dis-
tribution models the right tail of the distribution well, but for maximum buckling values
it assigns lighter left tail than the empirical distribution. On the contrary for the energy
values, the loggamma distribution assigns heavier left tail than the empirical distribu-
tion. This contrast may be result of the discussed dip in the probability density function
of the energy absorbed values shown in Figure A.1. As the normal distribution can cap-
ture the mean of the distributions of quantities of interest, it had been assumed for the
machine learning models in this work.

(a) Pcr i t i cal (b) Eabsor bed

Figure A.4: Normal distribution qq and pp plots for critical buckling and energy
absorption.





B
COMPARATIVE INVESTIGATION OF

SPARSE GAUSSIAN PROCESSES

Bayesian machine learning is currently a very active research field because it allows
learning a process and explaining the confidence of the prediction. In Chapter 2 we
discussed the importance of Sparse Gaussian Processes in this field. Here, we assess
the performance of different Sparse Gaussian Process methods within the context of our
metamaterial analysis problem. Therefore, a dataset is created from static buckling anal-
yses of the first 100,000 DoE points of the Sobol sequence and multiple state-of-the-art
machine learning algorithms are used to classify and regress this dataset.

B.1. REGRESSION

The purpose of this dataset was to characterize the performance of Sparse GP approx-
imations in comparison to conventional Gaussian Processes and a Neural Network re-
gressor. Characterization has been performed for the critical buckling load Pcr i t i cal .

As discussed in Section 2.4.1, an important issue when using Gaussian Processes is the
computational expense incurred for large datasets. The number of training points that
can be used herein already falls outside of the applicability of a full Gaussian Process. A
careful investigation of the performance of different Gaussian Process formulations with
emphasis on the Variational Free Energy approximation [88] is presented next. For all
the Machine Learning activities in-house scripts were created that utilized different GP
algorithms sourced from suitable Python Libraries. The libraries utilized throughout this
study are the Scikit-learn [114], a general purpose machine learning toolbox, and GPflow
[115], a recent project implementing novel Gaussian Process algorithms in the context
of Google’s Tensorflow environment for GPU computing and easy CPU parallelization.
Additionally, Neural Networks models are created using the Keras library [116], similar
to the model used previously in [76]. The models selected for regression are:
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1. Conventional GP using Scikit-Learn implementation – Scikit;

2. Conventional GP using GPflow implementation – GPf Full;

3. Sparse FITC approximation using GPflow implementation – FITC;

4. Sparse VFE approximation using GPflow implementation – SGPR;

5. Modified VFE by Hensman et al. [115] using GPflow – SVGP;

6. Neural network using Keras – NN.

All GP models used a Matern 5-2 kernel as the covariance function to avoid excessive
smoothening of the approximated function. The Matern class can be viewed as a gen-
eralization of the squared exponential kernel1 parametrized by an extra parameter ν.
A special case within the Matern class of kernels occurs when ν → inf, since it leads
to the mentioned squared exponential kernel with an infinitely differentiable approxi-
mated function [80]. Smaller ν implies less smooth approximation functions, as seen in
Figure B.1. For ν = 2.5, i.e. the Matern 5-2 kernel, the function becomes twice differen-
tiable. This is relevant for optimization algorithms utilizing the Hessian.

Matern 5-2 kernel =σ2
f

(
1+

p
5
∣∣x −x ′∣∣

l
+ 5

∣∣x −x ′∣∣
3l 2

)
+exp

(p
5
∣∣x −x ′∣∣

l

)
(B.1)

To facilitate the learning process the considered Matern52 kernel included the Auto-
matic Relevance Determination (ARD) [63, 80], so that each input had a separate length
scale parameter l . ARD also provides a simplified analysis of the sensitivity of the quan-
tities of interest, i.e. it estimates which inputs are critical for the learning process.

Figure B.1: Example prior functions for different smoothness of the Matern kernel.

The considered neural networks model consisted of 10 sequential layers of neurons, with
400 per layer. Relu activation function was used for each of the layers. Adam optimizer
with step of 0.0001 was utilized for 1000 epochs.

The supervised-learning process starts by splitting the data into training and test sets
that are subsequently standardized. The parameters supporting the model comparison
are:

1Also called radial basis function (RBF) kernel.
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• Set size – due to memory restrictions of the computer only subsets of the simulated
sequence were checked (especially for full GPs);

• Training set size;

• Ratio of test set size to the full set size;

• Time – as the model becomes more complex, the time for training the model in-
creases;

• Ratio of inducing points to training points – only relevant for sparse approxima-
tions.

The predictor’s quality for different model parameters is determined by the mean squared
error MSE and the R2. Both metrics are strongly correlated. R2 is the ratio of total vari-
ance explained by the model to the total variance [113]. For R2 = 1.0 the inputs and
outputs are perfectly correlated.

R2 = 1−
∑k

i=1(Yi −Y p
i )2∑k

i=1(Yi −Y m
i )2

where Y m
i = E [Yi ] (B.2)

The inducing points needed in the sparse approximations are selected as a subset of the
first m points of the DoE.

Remark 2 We noticed a significant improvement of accuracy of the sparse methods when
initializing the location of the inducing points to coincide with the Sobol sequence used for
the DoE. We suspect that the internal space-filling structure defined by the Sobol sequence
is advantageous to the optimization process of finding the best location of the inducing
points.

The optimal hyperparameters of the model li and σ2
f are found by minimizing the neg-

ative log likelihood function. Throughout this work the optimization of hyperparame-
ters is done using the Limited Broyden-Fletcher-Goldfarb-Shanno algorithm for Bound
constraints (L-BFGS-B) [117] that was allowed to run for 1000 iterations or until conver-
gence.

Figure B.2 summarizes all the regression models used in this comparative study. Note
the scale of the vertical axis. Each marker represents a different machine learning model
used with the number next to the marker representing the time required to train the
model. The color of the marker illustrates the ratio of inducing points to the number
of training points used in a sparse approximation, i.e. markers tending to the red color
indicate that more inducing points were used when comparing to the total number of
available training points while markers tending to the blue color mean fewer inducing
points (less computational time required to train). Note that non-sparse models (GPf
Full, NN, Scikit) do not use inducing points, so we represent them with open (unfilled)
markers to distinguish them from the sparse methods. The marker’s size represents the
proportion of dataset points assigned as test points. The dashed line illustrates the aver-
age R2 value for all the executed training runs. A logarithmic trend line is seen in gray,
for the quality of the fit expressed by R-squared of 0.6:
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R2 = 0.007343∗ ln(Full Dataset Size)+0.911 (B.3)

Figure B.2: R2 as a function of dataset size. The dashed yellow line represents the av-
erage R2 with 95% confidence intervals for all runs, the gray line for the logarithmic
trendline, and the labels indicate the time (min) to train the model.

The general observation is that the performance of the regressor logarithmically increases
as the dataset size increases. Thus, an increase in dataset size increases the performance
of a given regressor until saturation is reached, at the expense of time required to train
the model. For a given dataset size the R2 becomes higher as one increases the propor-
tion of training points. This behavior is intuitive: as more data is available for training,
thus improving the quality of the fit, there is lower probability of encountering a point in
the test set that will not be described by the prediction rule.

The smallest dataset size seen in the figure has 20000 points. For this dataset the per-
formance of conventional (full) GPs can be compared with SGPR. One may observe that
the GPflow implementation of a full GP led to more accurate predictions than the ones
obtained by the Scikit implementation regardless of the test set ratio. This can be ex-
plained by the fact that GPflow implementation used herein included the ARD method
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to assign a separate length scale hyperparameter for each input dimension, which fa-
cilitates learning. It is also worth noting, that for the same dataset size and kernel, the
sparse algorithms can only match but not exceed the performance of conventional GP
with full covariance inversion.

Considering the dataset of 30000 points, the influence of the number of inducing points
can be analyzed. A model with 200 inducing points performs better than any of the mod-
els with 20000 training points, at a fraction of the time. As the ratio of inducing/training
points increases, the performance of the regressor improves. The Neural Network al-
gorithm achieved higher R2 than any GP implementation. A possible explation is the
choice of kernel. The Matern 5-2 kernel generates relatively smooth functions whereas
the Neural Network is characterized by an inherently noisy approximation provided by
all the combinations of signals processed by the neurons. That is also why neural net-
work models can lead to overfitting and tend to be fine interpolators yet are often poor in
data extrapolation. Another drawback to using standard neural networks is that contrary
to GPs they do not have an in-built uncertainty estimation mechanism.

Differing sparse algorithms are again compared for the subset of 60000 points. The SVGP
approximation has inferior performance when compared to SGPR for the same parame-
ters, due to the difference in the Evidence Lower Bound (ELBO) estimation. As discussed
in Section 2.4.1, in Variational Free Energy approximation the inducing points in q(fm |y)
are treated as variational parameters. To obtain tight variational lower bound, the de-
pendency of variational free energy on q(fm |y) must be removed. As this term is factor-
ized out more efficiently in the SGPR model, the ELBO is narrower than in the case of the
more general SVGP model, resulting in higher R2 for this dataset.

The FITC approximation is a better predictor than SVGP, though not as accurate as the
SGPR model. Whereas the SGPR approximation overestimates the noise variance, the
FITC model severely underestimates the noise variance, sacrificing the accuracy of the
predicted mean.

The worst model in the plot has R2 = 0.98 whereas the best sparse GP approximation
overall has an R2 = 0.993. Converting the fraction of variance explained to percent of
standard deviation explained, the values were respectively 86% and 92%. This means
that for the best GP model considered the standard deviation of errors is 92% less than
the standard deviation of a dependent variable, whereas for the worst model it is 86%
less. In other words, the standard deviation of the best model errors is about 1/12 the size
of the standard deviation of the errors that you would get with a constant-only model.
Intuitively, this is a good result. Comparing this result with the worst model obtained
accounts to 75% relative difference between the models. In other words, the confidence
intervals generated from the best model are approximately 75% narrower than the con-
fidence intervals produced by the worst model. To the best of the author’s judgment this
performance gain is substantial and worth the additional model complexity.
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B.2. CLASSIFICATION

The performance of Gaussian Process Classifiers with different likelihood approxima-
tions is compared to determine the classification algorithm for the final model. Classi-
fication is important to determine the regions of the design space where the structure is
coilable. The result of this binary classification may be used to visualize regions of the
design space where the metamaterial coils and to conduct the nonlinear post buckling
simulations only for DoE points that coil. This avoids wasting computational resources.
The criterion for coilability of a given design is based on two conditions:

• The rotational displacement around the Z axis of the design is greater than 1.0E-4

• The displacement in the XY plane is not greater than 1.0E-4

The amplitude of the first buckling mode directly corresponds to the rotational displace-
ment around the Z -axis of the design. The second criterion is required to eliminate de-
signs that coil and bend at the same time i.e. where higher buckling eigenmodes are trig-
gered along with the first bifurcation point. As in the case of the regression study, the data
was split between training and test sets and subsequently standardized. The focal issue
in Gaussian Process Classification is the need to approximate the posterior over func-
tion values p(f,y). This need arises as the likelihood function in the case of classification
is non-Gaussian, thus the exact posterior is a non-Gaussian distribution as well. For
conventional GPs the two most prominent approximations are the Laplace approxima-
tion and the Expectation Propagation (EP) approximation. The Laplace approximation
is used despite its inferior accuracy as it is generally faster. For this approximation the
mean of the true and approximate posterior coincides. The EP approximation tends to
perform better as it assigns probability density to areas where this exists, at the expense
of areas where there is none. However, there is a third approximation based on the dis-
cussed KL-divergence that avoids assigning density to areas where there is none, at the
expense of areas where there is some. This is convenient as the KL-approximation lends
itself to sparse Gaussian processes. For a detailed discussion of the different GP posterior
approximations for GP classification the reader is referred to [80, 118, 119].

The goal of this investigation is to compare conventional GP classifiers that use either
the Laplace or the EP approximation with a Sparse GP classifier that utilizes the KL-
divergence. As a benchmark, the Support Vector Machine Classifier (SVC) [63] is in-
cluded as well. The GP approximations were implemented with the Matern 5-2 ker-
nel of the GPflow [115] library, whereas the SVC classifier was implemented using the
Scikit-learn [114] library with squared exponential kernel and a default penalty value of
1.0.

Similarly to the regression study, all GP models utilized the Matern52 kernel with ARD.
The parameters of the classification model under investigation are:

• Set size – due to memory restrictions of the computer, only subsets of the simu-
lated sequence are investigated;

• Training set size;
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• Ratio of test set size to the full set size;

• Time – as the model becomes more complex, the time for training the model in-
creases;

• Ratio of inducing points to training points – only relevant for sparse approxima-
tions.

Each sparse GP classifier used the Bernoulli likelihood function to perform inference.
The same hyperparameter optimization method was used as in the regression investiga-
tion: L-BFGS-B [117].

The quality of each classifier is judged based on the accuracy, precision and recall for
the test set. All these metrics are derived from the so-called confusion matrix [69]. A
schematic confusion matrix is presented in Table B.1.

Table B.1: Schematic representation of the confusion matrix for binary classification.

Predicted Class
Non-Coilable Coilable

Actual
Class

Non-Coilable True Negative False Positive
Coilable False Negative True Positive

The accuracy of the classifier is defined as the ratio of truly predicted points to all the
predicted points, i.e. it tells how often the model is correct. Precision is the ratio of
True Positives to all Positives, i.e. it is especially helpful if Type I error (False Positive) is
highly penalized. Conversely, Recall is the ratio of True Positives to all the points that are
coilable and penalizes the Type 2 error. As in the case of coilability classification both
errors are equally penalized therefore a fourth metric, the F1-score has been calculated,
with F1 defined as:

F 1 = 2× precision× recall

precision+ recall
(B.4)

Performance of different classifiers was compared and summarized in Figure B.3. The
meaning of the legend is consistent with the regression plot. Again, the reader is advised
to be mindful of the scale of the vertical axis.

The average F1 score for all runs was 0.977. A high value of F1 score implies that re-
call and precision metrics are also relatively high, therefore type I and type II errors are
balanced in the dataset. In terms of predictor performance, the lowest F1 score is ap-
proximately 0.935, this means that the classifier will correctly predict the class in over
9 out of 10 points. For comparison, if 60% of the designs are coilable in the dataset,
then by randomly picking points from the design space one will achieve about 60% ac-
curacy. The machine learning models perform significantly better than random point
sampling. Comparing the best SVGP model from a subset of 20000 points with the over-
all best, respectively 1.5% and 1% of points are misclassified. For classification of a set of
a million DoE points the difference is 5000 misclassified points. In this case the penalty
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Figure B.3: F1 score as function of dataset size. The yellow line represents the average
F1 score with 95% confidence intervals for all runs, and the gray line for the logarithmic
trendline.

for misclassification is relatively low compared to the additional computational time re-
quired to generate additional simulations. A dataset of 20000 points provides a balance
between performance and the computational expenditure to generate a classifier with
suitable performance.

Several models were trained for a dataset size of 20000 points. The first observation is
that the GP models achieved higher quality prediction rules than the benchmark SVC
classifier. The EP approximation to the posterior results in lower accuracy than the
Laplace approximation for the same model parameters. This result was not expected
and indicates that the mean is a strong statistic for this dataset as in the Laplace ap-
proximation the mean of the true posterior and approximate posterior coincide. For
the same dataset size, the Laplace approximation performed on the same level as the
sparse approximation – SVGP. Interestingly, increasing the number of inducing points
has a minor effect on the quality of the classification, and in some cases leads to lower
performance.

Overall, the findings of this study are consistent with the regression study, sparse GP
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approximations enable to use more points of the dataset to perform inference, leading
to a better prediction rule, as compared to conventional GPs with full covariance matrix
inversion.
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Figure C.2: Standard deviation of the quantities of interest as function of Iy , Jτ, and DR .
The normalized parameters A=0.001, G/E=0.36, Ix = 7.5×10−7, and P=0.66 remain
constant.
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Figure C.3: Standard deviation of the quantities of interest as function of Ix , Iy and DR .
The normalized parameters A=0.001, G/E=0.36,Jτ = 2.5×10−6 and P=0.66 remain
constant.
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Figure C.4: Mean quantities of interest as function of Iy , P and DR . The normalized
parameters A=0.001, G/E=0.36, Ix = 7.5×10−7 and Jτ = 2.5×10−6 remain constant.
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Figure C.5: Mean quantities of interest as function of Ix , DR and P . The normalized
parameters A=0.001, G/E=0.36, Iy = 7.5×10−7, and Jτ = 2.5×10−6 remain constant.
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Figure C.6: Mean quantities of interest as function of Ix , Jτ and DR .The normalized
parameters A=0.001, G/E=0.36, Iy = 7.5×10−7, and P=0.66 remain constant.
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