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On the Stability of Consensus Control Under
Rotational Ambiguities

Zhonggang Li , Graduate Student Member, IEEE, Changheng Li ,
and Raj Thilak Rajan , Senior Member, IEEE

Abstract—Consensus control of multiagent systems
arises in various applications such as rendezvous and
formation control. The input to these algorithms, e.g.,
the (relative) positions of neighboring agents need to
be measured using various sensors. Recent works aim
to reconstruct these positions, i.e., achieve localization
using Euclidean distance measurements instead of dis-
placements, for cost efficiency and scalability. However,
this approach inherently introduces ambiguities, such as
a rotation or a reflection, which can cause stability issues
in practice without corrections by some anchors. In this
letter, we conduct a thorough analysis of the stability of
consensus control in the presence of localization-induced
rotational ambiguities, in several scenarios including, e.g.,
proper and improper rotation, and the homogeneity of rota-
tions. We give stability criteria and stability margin on the
rotations, which are numerically verified with two traditional
examples of consensus control.

Index Terms—Cooperative control, distributed control,
networked control systems.

I. INTRODUCTION

CONSENSUS algorithms are essential in modern
distributed systems across various fields [1], [2], [3],

including the distributed control of mobile multiagent systems
in swarm robotic applications, e.g., flocking [2], rendezvous
control of dispersed robots [3], or formation control for a
desired geometrical pattern [4], [5]. A large class of consensus
control frameworks typically involve interagent interactions
that usually require relative kinematics, e.g., relative positions,
velocities, etc. The most common practice is to either measure
the absolute kinematics and share the information through a
communication network [6], or locally measure the relative
kinematics [7]. This implies the need for global navigation
satellite systems (GNSS) that are impaired in, e.g., indoor
applications [8], or expensive sensing solutions that are typi-
cally not scalable with the size of the swarm.
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To improve the scalability, there has been some attention
on consensus control by reconstructing global positions using
a set of pairwise distance measurements [9], [10], which is
sometimes referred to as relative localization. The benefits
include that distance measurements can be acquired fairly
easily with low-cost sensors and the solution is distributable
across the agents [11]. However, the disadvantage is that
global reference information is lost in scalar-valued distance
encodings, and hence ambiguities emerge in reconstruction
algorithms, e.g., multidimensional scaling (MDS) [12], [13].
These ambiguities are typically congruent transformations
such as translations, rotations, etc, as the distances are invariant
to congruent geometry [13]. An industry-standard procedure
is to deploy anchors with global information to correct these
ambiguities [13], which is assumed by default in applica-
tion [9]. However, in anchorless networks, ambiguities must
be addressed, but they are rarely studied in the literature on
consensus control. General concerns about the ambiguities of
consensus control include stability or convergence, invariance
of the equilibrium, and convergence speed.

In this letter, we study the stability of consensus control in
the presence of localization-induced ambiguities. We acknowl-
edge that the equilibrium of such a system is invariant to
these ambiguities, and we establish a stability criterion on
the ambiguity modeled by rotation matrices. Note that recent
works on rotational invariance or orientation alignment of
distributed networked systems, e.g., [14], [15], [16], have dealt
with local implementations of consensus algorithms in rotated
body frames. However, we particularly focus on localization-
induced ambiguities that lead to a fundamentally different
formulation and analysis, which is novel to our knowledge.

The organization of this letter is as follows. In Section II,
preliminaries of consensus control and a general modeling of
the ambiguous system are given. In Section III, conditions of
stability are proposed and proved for the general ambiguous
model, and several specific scenarios. Our proposed analysis
is then verified through two applications, namely classic
rendezvous control and more recent affine formation control in
Section IV. Finally, we summarize our conclusions and present
insights for future research in Section V.

Notations. Vectors and matrices are represented by lower-
case and uppercase boldface letters respectively such as a and
A. Sets and graphs are represented using calligraphic letters,
e.g., A. Vectors of length N of all ones and zeros are denoted
by 1N and 0N respectively. An identity matrix of size N is
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denoted by IN . The Kronecker product is denoted by ⊗. A
set of D-dimensional real-valued vectors and D × D real-
valued matrices are denoted by R

D and R
D×D, respectively.

The diag(·) operator creates a diagonal matrix from a vector
and bdiag(A1, . . . ,AN ) creates a block diagonal matrix from
matrices Ai for i = 1, . . . , N . We define the operator γ(A) =
1
2 (A+AT ) for a square matrix A. All eigenvalues of A have
strictly negative real parts if γ(A) is negative-definite, i.e.,
γ(A) ≺ 0 [17].

II. FUNDAMENTALS AND PROBLEM FORMULATION

We consider a multiagent system where N agents are
interconnected through an undirected connected graph G =
(V, E) where the set of vertices is V = 1, 2, . . . , N and the
set of edges is E = V × V . The set of neighbors of agent i is
denoted as Ni = j ∈ V : (i, j) ∈ E . A generalized Laplacian
matrix L ∈ R

N×N of a graph is defined as

[L]ij =

⎧
⎪⎨

⎪⎩

∑
j∈Ni

lij if i = j

−lij if i �= j and j ∈ Ni

0 otherwise
, (1)

where lij ∈ R, ∀(i, j) ∈ E are the weights associated with the
edges. Note that in the special case of lij = 1, L reduces to
a standard Laplacian, which is the most common form seen
in the literature. Note that the rank of a standard Laplacian
for a connected graph is N − 1 while a generalized Laplacian
can have a rank P < N . An example is a stress matrix [18],
which is used in some formation control problems [5]. The
eigenvalue decomposition of L is

L =
[
U1 U2

]
[
Λ

0

][
UT

1

UT
2

]

, (2)

where Λ = diag([λ1, . . . , λP ]) is positive-definite, and U1 ∈
R

N×P and U2 ∈ R
N×(N−P ) span the range and the nullspace

of L, respectively.

A. Consensus Systems

A typical consensus system is a dynamical system, i.e.,

ż = −(L⊗ ID)z = −L̃z, (3)

where z = [zT
1 , . . . ,z

T
N ]T ∈ R

ND is the global state, in which
∀i ∈ V , zi ∈ R

D is the state of ith agent in D-dimensional
Euclidean space and ż is the first order derivative of z. We
consider D = 2, 3 for practical applications. Note that an
equilibrium point of (3) resides in the nullspace of L̃ which,
following (2), admits a decomposition

L̃ = (L⊗ ID) =
[

Ũ1 Ũ2

]
[

Λ̃
0

]⎡

⎣Ũ
T

1

Ũ
T

2

⎤

⎦, (4)

where Λ̃ = Λ⊗ ID are the eigenvalues and Ũ1 = U1 ⊗ ID

are valid eigenvectors. (See Lemma 2 Appendix).

B. Problem Formulation

We now motivate the consensus model under rotational
ambiguities, which is illustrated using a simple example in
Fig. 1. As shown, for a given configuration of 3 nodes, the

Fig. 1. (a) An illustration of the rotational ambiguity induced by relative
localization. (b) A block diagram to illustrate two types of localization,
i.e., distance-based (in orange) and displacement-based or absolute
localization (in black), as part of the closed-loop system.

TABLE I
ROTATIONAL AMBIGUITIES Hi

pairwise distances d12, d23, d13 are measured instead of the
positions zi

3
i=1 in a common reference frame. As distances are

invariant to congruent geometries, e.g., triangles in different
line marks in Fig. 1(a), the reconstruction of the positions can
be ambiguous, i.e., z′

i
3
i=1 or z′′

i
3
i=1, etc. Based on whether

the reconstruction is done locally or at a central node, the
ambiguities can be homogeneous or heterogeneous across
agents. In this letter, we consider the common localization-
induced rotational ambiguities denoted by Hi = R(θi)T i ∈
R

D×D for i ∈ V where R(θi) gives a rotation matrix using an
angle θi ∈ (−π, π] and T i is a diagonal matrix of ±1s. Hi

is a proper rotation if T i = ID and otherwise an improper
rotation. An example of proper and improper rotations for
D = 2 and D = 3 are shown in Table I, where without the
loss of generality we assume the rotation angle θi for D = 3
is around the “z-axis” [19].

If the agents directly implement the ambiguous positions as
shown in Fig. 1(b), then the consensus model (3) becomes

ż = −H̃(L⊗ ID)z = −H̃L̃z, (5)

where H̃ = bdiag(H1, . . . ,HN ) ∈ R
ND×ND is the global

ambiguity matrix. Observe that equilibrium points of (3)
and (5) are the same, i.e., the kernel of L̃ is preserved
in terms of the zero eigenvalues, since H̃ contains full-
rank rotation matrices and subsequently is full-rank. Thus
the steady-state solutions are unchanged. We now aim to
investigate the stability of the ambiguous system (5) and give
conditions on H̃ to yield a stable system in various practical
scenarios.

III. STABILITY UNDER AMBIGUITIES

We now give general conditions for the ambiguous
system (5) to be stable, followed by an investigation on stabil-
ity under specific types of ambiguities in different scenarios
based on these general conditions. We introduce the following

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2025 at 07:29:48 UTC from IEEE Xplore.  Restrictions apply. 
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lemma, which is later used in the proof of general stability
criterion.

Lemma 1 (Eigenvalue Distributions of a Product of
Matrices): Given a product of two square matrices A = GQ
with Q being symmetric positive-definite, γ(A) ≺ 0 if and
only if γ(G) ≺ 0.

Proof: Since Q is symmetric positive-definite, A = GQ
and G = AQ−1 both satisfy the defined decomposition. Then
γ(A) ≺ 0 and γ(G) ≺ 0 are equivalent using the direct
conclusion from [20, Th. 3.1].

A. General Conditions for Stability

We first acknowledge that the unambiguous system (3) is
globally and exponentially stable, which is an extension of the
conclusion in [21]. Observe that the PD nonzero eigenvalues
of −L̃ are strictly negative, which means that given any
arbitrary initialization z(t) at t = 0, z(t) will exponentially
converge to an equilibrium point in the nullspace of L̃, i.e.,
limt→∞

∥
∥z(t)− ze

∥
∥ = 0 where ze lives in the nullspace of L̃.

Therefore, to ensure the stability of the ambiguous system (5),
the nonzero eigenvalues of the product −H̃L̃ should have
strictly negative real parts, which is described in the next
theorem.

Theorem 1 (General Stability Criteria for Systems With
Rotational Ambiguity): Let Ũ1 span the range of L̃, then the
ambiguous system (5) is globally and exponentially stable if
and only if γ(Ũ

T

1 H̃Ũ1) � 0.
Proof: If we use the operator σ(·) to denote the set of

eigenvalues, then using properties of eigenvalues of products
of matrices and decomposition (4) it holds that

σ
(
−H̃L̃

)
= σ

⎛

⎜
⎝−H̃

[

Ũ1 Ũ2

]
[

Λ̃
0

]⎡

⎣Ũ
T

1

Ũ
T

2

⎤

⎦

⎞

⎟
⎠

= σ

⎛

⎜
⎝−

⎡

⎣Ũ
T

1

Ũ
T

2

⎤

⎦H̃
[

Ũ1 Ũ2

]
[

Λ̃
0

]
⎞

⎟
⎠. (6)

Observe that −Ũ
T

1 H̃Ũ1Λ̃ corresponds to the nonzero eigen-
values. As such, given Λ̃ is positive definite, the system
is stable if and only if γ(Ũ

T

1 H̃Ũ1) � 0, according to
Lemma 1. Moreover, note that Ũ1 might be up to an orthog-
onal transformation P̃ than assumed for (4), which yields
γ(P̃

T
Ũ

T

1 H̃Ũ1P̃ ) � 0, which is the same as γ(Ũ
T

1 H̃Ũ1) �
0 due to congruence.

Corollary 1 (Sufficient Condition for Stability): The
ambiguous system (5) is globally and exponentially stable if
γ(H̃) � 0.

Proof: It can be verified that Ũ
T

1 γ(H̃)Ũ1 = γ(Ũ
T

1 H̃Ũ1).

As such, it holds that γ(Ũ
T

1 H̃Ũ1) � 0 given that γ(H̃) �
0 and a full-rank Ũ1 [19], which leads to a stable system
according to Theorem 1.

Corollary 1 further narrows down the conditions for stability
directly regarding the ambiguity matrix H̃ . Note that this
condition is sufficient but not necessary as Ũ1 is a tall matrix.

B. Stability Under Homogeneous Ambiguities

In some scenarios, all agents can share homogeneous local
ambiguities, i.e., Hi = H, ∀i ∈ V , and subsequently (5) is

ż = −(IN ⊗H)(L⊗ ID)z = −H̃L̃z. (7)

We discuss the stability conditions for both proper and
improper rotations H , in Theorems 2 and 3, respectively.
Alternative proofs are presented in the Appendix.

Theorem 2 (Stability Under Homogeneous and Proper
Rotations): The ambiguous system (7) is globally and expo-
nentially stable if and only if the rotation angle θ of a proper
rotation H = R(θ) lies within the range θ ∈ (−π

2 ,
π
2 ).

Proof: Recollect from Theorem 1 that γ(Ũ
T

1 H̃Ũ1) � 0 is
required for stability. In case of D = 2, using the rotation
matrix from Table I, we can verify that

γ

(

Ũ
T

1 H̃Ũ1

)

= Ũ
T

1 cos θINDŨ1 = cos θIPD, (8)

and for D = 3, substituting for Ũ1 and H̃ , we have

γ

(

Ũ
T

1 H̃Ũ1

)

= γ(IP ⊗H) = IP ⊗ diag

([
cos θ cos θ 1

])

.(9)

Both (8) and (9) are block diagonal matrices, which are
positive-definite if and only if θ ∈ (−π

2 ,
π
2 ).

A numerical example is shown in Fig. 2, where we present
the eigenvalue distribution using the graph in Fig. 5 (a) and
its standard Laplacian as defined in (1). Fig. 2 (a) shows the
rotations of eigenvalues from lemma 3, where the eigenvalues
of −L originally lie on the real axis but then are rotated
by H . Then θ ∈ (−π

2 ,
π
2 ) ensures that they stay on the

left complex plane. Fig. 2 (b) shows all the eigenvalues of
γ(Ũ

T

1 H̃Ũ1) across a spectrum of θ. The region θ ∈ (−π
2 ,

π
2 )

(shaded in purple) guarantees positive eigenvalues meaning
γ(Ũ

T

1 H̃Ũ1) � 0, which verifies Theorem 2.
Theorem 3 (Stability Under Homogeneous and Improper

Rotations): The ambiguous system (7) is unstable under
improper rotations H .

Proof: We show that γ(Ũ
T

1 H̃Ũ1) � 0 is impossible. Recall

from (9) that Ũ
T

1 H̃Ũ1 can be simplified to IP ⊗ H . Due
to the negative determinant of an improper rotation, γ(H) is
never positive-definite. As such, γ(IP ⊗ H) is not positive-
definite either and hence the system is unstable under improper
rotations independent of dimension D.

Fig. 3 shows the same example as Fig. 2 but with improper
rotations, where there are always positive eigenvalues present
in (a) and there is no region in (b) where γ(Ũ

T

1 H̃Ũ1) � 0.
Hence, system (7) is not stable under improper rotations.

C. Stability Under Heterogeneous Ambiguities

In some distributed cases, heterogeneous ambiguities occur
across the agents, which specify the general ambiguous
system (5) to

ż = −bdiag(H1, . . . ,HN )(L⊗ ID)z = −H̃L̃z. (10)

There are three potential cases under this model: (a) all proper
rotations, (b) all improper rotations, or (c) a mixture of proper
and improper rotations across the agents.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2025 at 07:29:48 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. A numerical example of the eigenvalues under homogeneous
and proper rotations.

We show that, unlike the homogeneous scenario, in the case
of heterogeneous proper rotations, θi ∈ (−π

2 ,
π
2 ) ∀i ∈ V is

a sufficient but not necessary condition for a stable system
under proper rotations Hi ∀i ∈ V .

Theorem 4 (Stability Under Heterogeneous and Proper
Rotations): The ambiguous system (10) is globally and expo-
nentially stable if the corresponding rotation angles θi of a
local proper rotation Hi = R(θi) lie within range θi ∈
(−π

2 ,
π
2 ) ∀i ∈ V .

Proof: Recollect from Lemma 1 that the sufficient condition
for a stable system is to have a generalized positive-definite
H̃ . For D = 2 and D = 3, we observe

γ
(
H̃
)
= bdiag(cos θ1I2, . . . , cos θNI2), (D = 2) (11)

γ
(
H̃
)
= bdiag

(
γ(R(θ1)), . . . , γ(R(θN ))

)
, (D = 3)(12)

which are both diagonal matrices, with the property γ(H̃) � 0
if θi ∈ (−π

2 ,
π
2 ) ∀i ∈ V , for a stable system (10).

We use the same settings as in Fig. 2 but with heterogeneous
rotations to show another numerical example in Fig. 4 (a)
where the smallest eigenvalue is shown in a heatmap across a
spectrum of θ3 and θ4. Observe that the white bounding box,
inside of which are eigenvalues greater than zero, is bigger
than the area boxed by (−π

2 ,
π
2 ) in yellow. This shows that

there exists θi /∈ (−π
2 ,

π
2 ) that still entails γ(Ũ

T

1 H̃Ũ1) � 0,
i.e., a stable system, which verifies the sufficiency but not
necessity of Theorem 4.

We now discuss the cases where one or more improper
rotations appear among all agents. We make a proposition

Fig. 3. A numerical example of the eigenvalues under homogeneous
and improper rotations.

and give intuitive reasoning, which is verified with numerical
examples and simulations in later sections.

Proposition 1 (Instability Under Mixture of Rotations): The
ambiguous system (10) is unstable if there exists i such that
Hi is an improper rotation.

A special case of this scenario is that Hi ∀i ∈ V
are homogeneous improper rotations, which is proven to be
unstable in Theorem 3. The more general case from (5) is

H̃(L⊗ ID)

=

⎡

⎢
⎢
⎣

R(θ1)
. . .

R(θN )

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

T 1

. . .
TN

⎤

⎥
⎥
⎦(L⊗ ID), (13)

where T i = I if Hi for any i ∈ V is a proper rotation. We can
consider bdiag(T 1, . . . ,TN )(L⊗ID) a new Laplacian matrix
where some rows are negated if certain Hi is not proper. This
new Laplacian matrix is no longer symmetric positive semi-
definite in general and yields an unstable system regardless
of what the proper rotation part is. The example in Fig. 4 (b)
shows that as long as one Hi for any i ∈ V is improper,
γ(Ũ

T

1 H̃Ũ1) is not positive-definite even if all the other agents
are unambiguous.

IV. EXAMPLES AND SIMULATIONS

In this section, we verify our theorems and proposition
with two algorithms under consensus frameworks, namely, the

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2025 at 07:29:48 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4. A numerical example of the eigenvalues under heterogeneous
rotations.

Fig. 5. Graphs for (a) rendezvous control and (b) distributed formation
control, where the orange nodes are leaders.

rendezvous control [22] and distributed formation control [5].
The code is available in this repository1. The graphs used
for each case are shown in Fig. 5, where there are 4 and 7
nodes, respectively. Agents in these algorithms are assumed
to adopt single-integrator dynamics żi = ui ∀i ∈ V . In both
scenarios, the global dynamical model (3) translates to local
control input ui = −∑j∈Ni

lij(zi − zj), where lij are the
Laplacian weights in (1).

For a consensus system (3), the equilibrium points are not
unique and depend on the initialization. To better present the
numerical results given a random initialization, we introduce
leaders shown in Fig. 5, a small subset of nodes fixed in
some positions that define a unique equilibrium. Note that
the leaders do not affect the analysis and the conclusion in
the theoretical part, however the discussion on the leaders’
ambiguity should be excluded since they are fixed in given
positions on purpose.

A. Case 1: Rendezvous Control

The rendezvous control algorithm [22], which originates
from the classic average consensus algorithm [23], ensures all
agents converge to a common location. It involves a standard

1https://github.com/asil-lab/zli-rot-ambiguity

Fig. 6. The convergence in error δ(t) across time t for the rendezvous
control (top) and the affine formation control algorithm (bottom) under
homogeneous ambiguities (left) and heterogeneous (right).

graph Laplacian L that has rank N − 1. For graph Fig. 5 (a),
there are P = 3 non-zero eigenvalues for the Laplacian. We
set node 1 to be the leader with a constant value z1 = [0, 0]T .
Then the equilibrium is zero, i.e., ze = [0, 0]T . We define the
error as δ(t) =

∥
∥z(t)− ze

∥
∥ =

∥
∥z(t)

∥
∥.

B. Case 2: Distributed Formation Control

Affine formation control [5], [24] is a type of distributed
formation control method that can also fit under the con-
sensus framework. A generalized Laplacian, called a stress
matrix [18] with P = N − D − 1 non-zero eigenvalues, is
then used instead of a standard Laplacian. Here, the desired
formation is considered the equilibrium point of the system.
We consider Fig. 5 (b) in R

2 with a equilibrium ze =
[2, 0, 1, 1, 1,−1, 0, 1, 0,−1 − 1, 1,−1,−1]T . If we define the
first three agents as leaders that remain at their respective
target positions [zT

1 , z
T
2 , z

T
3 ] = [2, 0, 1, 1, 1,−1]T , then the

agents will converge to the defined equilibrium z → ze as
time t → ∞ given any random initialization of the follower’
positions. As such, we define the error δ(t) =

∥
∥z(t)− ze

∥
∥.

C. Discussion

The numerical results for both rendezvous control and
affine formation control are shown in Fig. 6, where the
cases discussed in Section III are simulated as compared to
unambiguous cases. As can be seen, the errors present an expo-
nential decay (straight lines under log scale) if converging. In
the homogeneous case, errors are converging for θ ∈ (−π

2 ,
π
2 )

cases and diverging for θ = π
2 and improper rotations, which

Authorized licensed use limited to: TU Delft Library. Downloaded on January 23,2025 at 07:29:48 UTC from IEEE Xplore.  Restrictions apply. 
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agree to Theorem 2 and 3. In the heterogeneous case, errors
are converging in cases where θi ∈ (−π

2 ,
π
2 ) for all followers

and where one exceeds this range, which proves the sufficient
but not necessary condition in Theorem 4. We observe that
the error diverges with one follower under improper rotations
even if the other agents are unambiguous, which supports
Proposition 1.

V. CONCLUSION

In this letter, we conducted a theoretical analysis of the
stability of consensus control where the localizations of
multiagent systems are subject to rotational ambiguities. We
show that the system is robust to proper rotations in both
homogeneous and heterogeneous cases within certain margins,
but the stability is compromised in the presence of improper
rotations. This provides insightful guidance for the design
of anchorless relative localization and the implementation
of consensus control in various applications, which should
further reduce the cost of sensing capabilities in large-scale
networks. In our future work, we aim to generalize our
solution to directed graphs which could benefit a broader set
of applications. In addition, we aim for a rigorous proof of
Proposition 1 involving a mixture of rotations.

APPENDIX

ALTERNATIVE PROOF FOR STABILITY UNDER

HOMOGENEOUS ROTATIONS

Lemma 2 (Eigenvalues and Eigenvectors of Kronecker
Products of Matrices [25]): Suppose A and B are square
matrices of size N and M respectively and they admit Avn =
λnvn for n = 1, . . . , N and Bwm = μmwm for m =
1, . . . ,M , then vn ⊗wm is an eigenvector of A ⊗B corre-
sponding to the eigenvalue λnμm. Additionally, the set of all
eigenvalues of A⊗B is λnμm : n = 1, . . . , N,m = 1, . . . ,M .

Lemma 3 (Rotation of Eigenvalues of Proper Rotations):
The eigenvalues of the rotated system (7) are the ones of the
negative Laplacian −L rotated in the complex plane by θ,−θ
if D = 2 and 0, θ,−θ if D = 3, given H = R(θ).

Proof: Observe −(IN ⊗ H)(L ⊗ ID) = −(L ⊗ H).
Let λn for n = 1, . . . , N denote the eigenvalues of −L
and μd for d = 1, . . . , D denote those of H . Based on
Lemma 2, the eigenvalues of −(L ⊗ H) are μdλn for d =
1, . . . , D, n = 1, . . . , N . Since σ(H) = {eiθ, e−iθ} and
σ(H) = {1, eiθ, e−iθ} for D = 2 and 3, respectively, the
resulting eigenvalues are eiθλn, e

−iθλn and λn, e
iθλn, e

−iθλn

for n = 1, . . . , N , for respective dimensions D. Thus, the
eigenvalues are rotated in the complex plane by θ, −θ for
D = 2 and θ, −θ and 0 for D = 3.

Lemma 4 (Rotation and Mirroring of Eigenvalues of
Improper Rotations): Let H be an improper rotation matrix,
and L be a Laplacian (2), then there always exists positive
eigenvalues for −(IN ⊗H)(L⊗ ID).

Proof: We simplify the again −(IN ⊗ H)(L ⊗ ID) =
−(L⊗H), whose eigenvalues are μdλn for d = 1, . . . , D, n =
1, . . . , N . It is known that σ(H) = {−1, 1} for D = 2 and
σ(H) = −1, eiθ, e−iθ for D = 3 for an improper H . Hence,
there exists a set of eigenvalues of −L mirrored from the

negative part to the positive part of the real axis by the −1
eigenvalue of H .
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