
Cognitive Robotics

Risk-Aware Decentralized Multi-
MAV Planning in Unknown and
Dynamic Environments

Siyuan Wu

M
as

te
ro

fS
cie

nc
e

Th
es

is

Risk-Aware Decentralized Multi-MAV
Planning in Unknown and Dynamic

Environments

Master of Science Thesis

For the degree of Master of Science in Robotics at Delft University of
Technology

Siyuan Wu

August 23, 2023

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Cognitive Robotics (CoR)
All rights reserved.

Delft University of Technology
Department of

Cognitive Robotics (CoR)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Risk-Aware Decentralized Multi-MAV Planning in Unknown and

Dynamic Environments
by

Siyuan Wu
in partial fulfillment of the requirements for the degree of

Master of Science.

Dated: August 23, 2023

Supervisor:
Prof. Dr. Javier Alonso-Mora

Readers:
Dr. Clarence Chen

Dr. Chris Pek

Dr. Matin Jafarian

Abstract

Recent progress in multiple micro aerial vehicle (MAV) systems has demonstrated au-
tonomous navigation in static environments. Yet, there are limited works regarding the
autonomous navigation of multiple MAVs in dynamic and unknown environments. The
challenge arises from the complexity of the motion planning problem, which requires
the MAVs to coordinate with each other while avoiding dynamic obstacles. This thesis
presents a novel risk-aware decentralized multi-agent motion planning framework to
address this issue. For perception, we rely on a particle-based dynamic map, which
utilizes particles to represent dynamic obstacles and predict future states of dynamic
obstacles. Leveraging this map representation and the shared trajectory from other
agents, we evaluate the future collision risk with dynamic obstacles and other agents in
a coupled manner. During the planning phase, a risk-aware kino-dynamic A* algorithm
tailored to the particle-based map representation is developed, ensuring dynamically
feasible paths with risks under a given safe level. Subsequently, spatio-temporal safety
corridors with maximum volume are optimized by inflating from path segments, taking
map particles as constraints. These corridors act as constraints for the trajectory opti-
mization problem, which is simplified to a convex optimization problem by using Bézier
splines. The proposed method is thoroughly evaluated in simulation environments fea-
turing various quantities and shapes of dynamic obstacles. Comparative results with
state-of-the-art multi-agent planners that rely on precise obstacle observations, demon-
strate the efficiency and safety of the proposed method. Furthermore, the effectiveness
of the proposed method is validated in a more realistic simulation environment with
pedestrians, using depth cameras onboard for perception.

Master of Science Thesis Siyuan Wu

ii

Siyuan Wu Master of Science Thesis

Table of Contents

Abstract i

Acknowledgements ix

1 Introduction 1
1-1 Background . 1
1-2 Motivation . 1
1-3 Contribution . 4
1-4 Structure of the Report . 4

2 Related Works 5
2-1 Decentralized Multi-Robot Motion Planning 5
2-2 Autonomous Navigation in Dynamic Environments 6

3 Preliminaries 7
3-1 Particle-based Dynamic Environment Representation 7
3-2 Motion Planning for Autonomous MAVs 8

3-2-1 Path Planning . 8
3-2-2 Safety Corridors . 9
3-2-3 Trajectory Optimization . 10

4 Methods 13
4-1 Pipeline Overview . 13
4-2 Particle-based Map and Risk Evaluation 15

4-2-1 Particle-based Map . 15
4-2-2 Map Prediction . 16

Master of Science Thesis Siyuan Wu

iv Table of Contents

4-2-3 Risk Evaluation . 16
4-3 Risk-Aware Spatial-Temporal Kinodynamic A* 18

4-3-1 Primitive Expansion . 18
4-3-2 Risk Check . 19
4-3-3 Cost and Heuristic . 20

4-4 Corridor Constrained Trajectory Optimization 21
4-4-1 Optimization-Based Spatio-Temporal Corridor Generation 21
4-4-2 Minimum Jerk Trajectory Optimization 23

5 Results and Discussion 29
5-1 Evaluation without Perception Module 29

5-1-1 Simulation Environment . 29
5-1-2 Experimental Setups . 30
5-1-3 Results in Cylindrical Obstacle Environment 33
5-1-4 Results in the Complex Environment 35
5-1-5 Discussion . 35

5-2 Evaluation with the Perception Module 37
5-2-1 Experimental Setup . 38
5-2-2 Results . 38

5-3 Computational Efficiency Analysis . 39

6 Prototype Implementation 41
6-1 Hardware Platform . 41

6-1-1 Overview . 41
6-1-2 System Architecture . 43
6-1-3 Perception . 44
6-1-4 Assembly Process . 45

6-2 Software Architecture . 46
6-3 Network Communication . 48

6-3-1 Existing Solutions . 48
6-3-2 Verification . 52
6-3-3 Discussion . 53

7 Conclusion 57
7-1 Summary . 57
7-2 Future Works . 58

A Additional Results 59
A-1 Performance of Different Planners in the Cylindrical Obstacle Environment 59
A-2 Performance of Different Planners in the Complex Environment 59

Bibliography 63

Siyuan Wu Master of Science Thesis

List of Figures

1-1 Applications of multi-MAV system. 2
1-2 Autonomous navigation in a dense forest [5]. The time interval is 0.5 seconds. 3
1-3 Recent progress in aerial swarm navigation. 3

4-1 Classical pipeline of multi-robot collision avoidance in dynamic environments. 14
4-2 Proposed pipeline of multi-robot collision avoidance in dynamic environments. 15
4-3 The pipeline of the DSP map . 16
4-4 State transition and risk evaluation in the DSP map 17
4-5 Risk evaluation in the dynamic environment with other robots. 18
4-6 Our algorithm finds a collision-free path that avoids the obstacles by sam-

pling a set of primitives (represented by circles in red) and checking the
collision risk of each primitive. Obstacles are moving from the right edge
toward the center. At the current timestamp, obstacles are shown in green,
transitioning to future positions in yellow through a color gradient. Sampled
primitives are shown from red to orange through a color gradient, where red
signifies the most recent primitives and orange indicates those in the future
The black dots represent collision primitives which failed the risk check. The
blue curve represents the final collision-free trajectory. 20

4-7 Corridor generation and shrinking on the particle-based map, upcoming ob-
stacles and corridors are depicted with transparency. 22

4-8 Two 4th-order Bézier splines (blue) and their control points. Both Bézier
splines are confined within the convex hulls in red dashed lines. 24

5-1 A front view of the simulation environment, where the obstacles are repre-
sented as point clouds colored by the z-axis. Four drones are initialized at
the four edges of the map. 30

Master of Science Thesis Siyuan Wu

vi List of Figures

5-2 A visualization of two different simulation environments 31
5-3 Illustration of three different task settings (Fig. 5-3a–5-3c) 32
5-4 Comparison of planners’ performance in the bilateral swap task with varying

numbers of cylindrical obstacles. 33
5-5 Comparative analysis of various planners’ performance in the unilateral task

with varying numbers of cylindrical obstacles. 33
5-6 Comparative analysis of various planners’ performance in the cross-swap task

with varying numbers of cylindrical obstacles. 34
5-7 Comparative analysis of planners’ performance in the bilateral swap task

with varying numbers of obstacles in the complex environment. 36
5-8 Comparative analysis of various planners’ performance in the unilateral task

with varying numbers of obstacles in the complex environment. 36
5-9 Comparative analysis of various planners’ performance in a cross-swap task

with varying numbers of obstacles in the complex environment. 37
5-10 Screenshot of the simulated environment, where four drones are flying in a

dynamic environment with 6 pedestrians. 38
5-11 Visualization of the planning results of the bottom-right drone in Gazebo and

RViz when 4 drones are encountering each other in a dynamic environment
with 6 pedestrians. 39

5-12 The execution time of each step in our method. 40

6-1 3D model of the designed drone platform 42
6-2 The electrical settings of our MAV system. 44
6-3 The mounting of the drone base . 46
6-4 The mounting of the onboard computer and the depth camera 46
6-5 The software architecture of our drone platform 47
6-6 Communication network of the designed multi-robot system. 49
6-7 Communication Architecture of ROS1 XML-RPC Middleware. 50
6-8 Communication Architecture of ZeroMQ-based Custom Middleware. 50
6-9 Communication experiment setting under ZeroMQ-based network 51
6-10 Illustration of communication experiment 52
6-11 Average communication latency under ZeroMQ-based custom middleware

network . 53
6-12 Average communication latency under ROS 1 XML-RPC middleware network 54
6-13 Average communication latency under ZeroMQ-based custom middleware

network in the stress test . 55
6-14 Average communication latency under ROS 1 XML-RPC middleware network

in the stress test . 55

Siyuan Wu Master of Science Thesis

List of Tables

3-1 Comparison of different trajectory parameterization methods regarding how
to achieve continuity, how to satisfy safety constraints, dimensionality, how
to optimize the trajectory in the time domain, and whether the control points
are passed by the trajectory. 12

5-1 Average obstacle density in different environments 31
5-2 Comparison of the performance of different planners across different tasks

in the pure cylinder environment with 10 obstacles. 32
5-3 Comparison of the performance of different planners across different tasks

in the complex environment with 20 obstacles. 35
5-4 Comparison of the performance of different planners across different obstacle

levels in the complex environment. 37
5-5 Results of the proposed planner in the simulation with perception module. 39

6-1 A comparison of different MAV platforms 42
6-2 A comparison between vision-based and lidar-based approaches 45

A-1 Comparison of the performance of different planners across different tasks
in the cylindrical obstacle environment with 20 obstacles. 59

A-2 Comparison of the performance of different planners across different tasks
in the cylindrical obstacle environment with 30 obstacles. 60

A-3 Comparison of the performance of different planners across different tasks
in the cylindrical obstacle environment with 40 obstacles. 60

A-4 Comparison of the performance of different planners across different tasks
in the cylindrical obstacle environment with 50 obstacles. 60

Master of Science Thesis Siyuan Wu

viii List of Tables

A-5 Comparison of the performance of different planners across different tasks
in the complex environment with 10 obstacles. 61

A-6 Comparison of the performance of different planners across different tasks
in the complex environment with 20 obstacles. 61

A-7 Comparison of the performance of different planners across different tasks
in the complex environment with 30 obstacles. 61

A-8 Comparison of the performance of different planners across different tasks
in the complex environment with 40 obstacles. 62

A-9 Comparison of the performance of different planners across different tasks
in the complex environment with 50 obstacles. 62

Siyuan Wu Master of Science Thesis

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Javier Alonso-Mora
for his continuous support, patience and immense knowledge of my master’s study and
research. I could not have imagined having a better advisor and mentor for my master’s
study. I would like to thank my daily supervisor Dr. Gang Chen for his guidance and
support during my master’s thesis. His guidance helped me in all the time of research
and writing of this thesis. I would also like to thank my colleagues at the Autonomous
Multi-Robots Lab for the stimulating discussions, and for all the work we have done
in the last two years. Finally, I would like to thank my parents and all my friends for
their support and encouragement throughout my life.

Siyuan Wu

Delft, University of Technology,
August 23, 2023

Master of Science Thesis Siyuan Wu

x List of Tables

Siyuan Wu Master of Science Thesis

Chapter 1

Introduction

1-1 Background

In recent years, the robotics community has increasingly focused on multi-MAV sys-
tems, which are groups of micro aerial vehicles (MAV) that can perform complex tasks
in a coordinated manner. Compared to a single MAV, a multi-MAV system offers
enhanced scalability and usability while maintaining the same mobility and agility.
Consequently, the multi-MAV system opens up various challenging applications that
a single MAV would find hard to accomplish. These include tasks like conducting
search and rescue operations over expansive areas, transporting bulky or sizable loads,
capturing aerial shots from multiple viewpoints, and creating three-dimensional recon-
structions. For instance, in scenarios like search and exploration, employing multiple
MAVs permits the coverage of larger areas in comparison to a lone MAV, resulting
in a significant reduction in search time. Additionally, individual MAVs face restric-
tions in payload capacity, hindering their effectiveness in transportation roles. Yet, by
distributing the load across multiple MAVs, the overall transportation payload can be
substantially augmented. The above applications are illustrated in Figure 1-1.
To realize these applications in real-world scenarios, a longstanding challenge has been
ensuring the safe navigation of multi-MAV systems safely in unknown environments.
These environments usually encompass static obstacles, such as trees and buildings, and
also dynamic obstacles, such as pedestrians, other robots or moving objects. No prior
information regarding the obstacles is available, including factors such as the quantity,
shape, location, and velocity of these obstacles.

1-2 Motivation

Autonomous navigation has drawn significant attention for decades. Robots utilize
onboard sensors autonomously to perceive the environment in real time, and plan tra-

Master of Science Thesis Siyuan Wu

2 Introduction

(a) Search and exploration [1] (b) Transportation [2]

(c) Aerial cinematography [3] (d) 3D reconstruction [4]

Figure 1-1: Applications of multi-MAV system.

jectories to reach thier goals while avoiding collisions with obstacles and other robots.
Recently, with progress in perception and planning technologies, substantial strides
have been made concerning autonomous navigation in static environments. For exam-
ple, a study by [6] demonstrated the capability of small autonomous aerial swarms to
operate agilely within a dense forest cluttered with bamboo and branches, as illustrated
in Figure 1-3a. Additionally, in another study by [7], a swarm of drones successfully
explored a static environment, cooperatively building a 3D map of the unknown ter-
rain, as shown in Figure 1-3b. In these studies, robots coordinate in a distributed and
asynchronous manner by sharing their trajectories. Safe trajectories are initially gen-
erated on local maps, which are then refined by incorporating the trajectories received
from other robots. Although these approaches are demonstrated to be effective in static
environments, they are not sufficient in unknown and dynamic environments.

In unknown and dynamic environments, there are dynamic obstacles with unpredictable
quantities, shapes and motions, which challenges the robustness and efficiency of the
planning algorithms. The planning algorithm should guarantee the safety of the robots
in the presence of unknown and dynamic obstacles. Since the robot does not have prior
knowledge of the environment, the future motions of the obstacles should be predicted
and potential collisions should be handled. However, predicting the motions of dynamic
obstacles requires solving a data association problem, which matches the raw sensor

Siyuan Wu Master of Science Thesis

1-2 Motivation 3

Figure 1-2: Autonomous navigation in a dense forest [5]. The time interval is 0.5 seconds.

(a) Multiple MAVs navigating in a dense forest. (b) Multiple MAVs exploring a room.

Figure 1-3: Recent progress in aerial swarm navigation.

measurements with previous observations to update the predicted future trajectories.
Due to inevitable noise in unknown environments, the predicted future trajectories are
often inaccurate. This issue introduces uncertainties in the perception process, which
challenges the safety of the planning algorithm.
Existing planning frameworks in dynamic environments fail to address the uncertain-
ties, primarily due to their map representation. Most of them [6, 8, 9] are designed on
top of a static occupancy map which cannot model the dynamic obstacles and their
future motions. Particle-based dynamic map representation in [10] is a promising per-
ception approach to address this issue. It represents obstacles as a set of particles
distributed in the workspace. Each particle carries a weight indicating the probabil-
ity of the existence of an obstacle at the corresponding location. The distribution of
particles is updated by observations from the onboard sensors. By applying a mo-
tion model to the particles, using observed position and velocity, the future states of
dynamic obstacles can be predicted. This map representation has many advantages:
First, it can model arbitrary shapes of static and dynamic obstacles without making
any assumptions a priori. Second, the future collision risk in the environment can be
predicted directly. Furthermore, observation and localization noises can be handled
naturally in this representation. Based on these properties, the particle-based dynamic
map representation addresses the aforementioned challenges in multi-robot planning

Master of Science Thesis Siyuan Wu

4 Introduction

for unknown and dynamic environments. This research gap motivates us to develop a
motion planner based on the particle-based dynamic map representation, specifically
for multi-MAV systems.

1-3 Contribution

Based on the motivation above, this thesis aims to develop a risk-aware decentralized
multi-MAV system that can safely navigate in unknown dynamic environments using
only onboard sensors and wireless communications.
To achieve this goal, the particle-based dynamic map representation is leveraged to
model the environment. By utilizing this map representation, multi-MAV planning can
be simplified into a unified framework. Collision avoidance among collaborative robots
can be achieved by mapping robots to the particle-based dynamic map with trajectory
sharing. Then, a risk-aware kino-dynamic path planning algorithm is designed to search
for safe initial trajectories for each robot. The resulting path contains time allocation,
which can be used to generate safety corridors in the particle-based dynamic map. The
generation of safety corridors is formulated as an optimization problem to maximize
the free space where the robot can safely navigate. These safety corridors can be used
as constraints to ensure the safety of refined trajectories. Finally, the flight trajectory is
optimized by refining the initial trajectories, which is composed of Bézier splines. The
deconfliction between robots can be achieved by checking the linear separability of the
Bézier control points. Our approach can accommodate multiple robots and dynamic
obstacles in the environment and is robust against perception uncertainties.
The contribution of this thesis can be summarized as follows:

• A novel risk-aware decentralized motion planning framework in uncertain and
dynamic environments, which leverages a particle-based map to model the envi-
ronment.

• A risk-aware kinodynamic path search method designed for the particle-base map
that enables safe planning in dynamic environments.

• An efficient corridor-constrained trajectory optimization algorithm that can effi-
ciently generate safe trajectories for multiple robots.

1-4 Structure of the Report

The report will be organized as follows: Chapter 2 will review the related works in
decentralized motion planning and planning in dynamic environments. Chapter 3 will
introduce the preliminaries that are necessary to understand the proposed method.
Chapter 4 will present the proposed method in detail. Chapter 5 will present the
experimental results of the proposed method in simulation. Finally, Chapter 7 will
conclude the thesis and discuss future work.

Siyuan Wu Master of Science Thesis

Chapter 2

Related Works

2-1 Decentralized Multi-Robot Motion Planning

Decentralized multi-robot motion planning has been an active research topic for years.
Major challenges, as outlined in [10], include: 1) the difficulty of searching for opti-
mal or suboptimal paths in a high-dimensional space, and 2) the need for multi-robot
planning to take other robots into account, necessitating the inclusion of nonconvex
constraints. Current multi-robot motion planning algorithms can be classified into two
main categories: centralized and decentralized methods. Centralized methods, such as
coupled methods [11, 12], prioritized planning [13, 14, 15], plan trajectories for all MAVs
on a centralized server. In contrast, for decentralized methods, robots compute their
ego trajectories locally and communicate with other robots. Generally, decentralized
methods are more scalable and robust than centralized methods.

Decentralized methods can be divided into two categories[16, 6]: reactive approaches
and optimization-based approaches. Reactive approaches reflect the reactive autonomy
of drones, whereas optimization-based approaches reflect the cognitive autonomy of au-
tonomous drones. Reactive approaches utilize the instantaneous state of the system,
specifically the positions and velocities of the agents, to generate safe control inputs.
These approaches plan at a high frequency, typically between 50-100 Hz. Typical reac-
tive approaches include Artificial Potential Field [17], Flocking Method [18], Velocity
Obstacles [19, 20, 21, 22], Control Barrier Functions [23], and Buffered Voronoi Cells
[24, 25]. Optimization-based approaches [26, 27, 28, 29] utilize the future trajecto-
ries of agents to plan safely. They plan at a lower frequency, usually between 1-20
Hz. These approaches can apply more complex constraints and objective functions, as
well as deal with delays and asynchronous communication. However, both approaches
failed to tackle the problem of dynamic obstacles, neglecting the noise in perception and
localization modules. Therefore, novel methods are required to address these problems.

Master of Science Thesis Siyuan Wu

6 Related Works

2-2 Autonomous Navigation in Dynamic Environments

In the context of navigation in complex environments, there exist unknown dynamic
obstacles. Safe navigation in such environments requires predictions of the environment
states in the future. The predictions tell the future states of the dynamic obstacles,
which are essential for the robot to avoid collisions.
In the past decades, there have been a variety of methods proposed for prediction
problems in such environments, which can be categorized into two groups. One category
distinguishes dynamic obstacles from the static background and predicts the future
states of these detections There are several methods for detecting moving obstacles
from depth images. [30] detects obstacles from U-depth maps, which are computed
with the column depth value histograms of the original depth image. The detections are
then represented by three-dimensional boxes with estimated dimensions. The positions
of the detections are predicted by a Kalman filter. [31] clusters the point clouds by
DBSCAN and then proposes an occlusion-aware Kalman filter to track the detections.
[9] proposes a vision-aided 3D mapping method in dynamic environments. It improves
[30] by applying a continuity filter to remove objects that exhibit jerky motions, using
the history of object velocities. [32] and [33] adopt the YOLO detector to detect
dynamic obstacles. [34] combines the U-depth detector and the DBSCAN detector
to obtain more accurate results with high efficiency. The primary drawback of these
methods is their applicability to well-defined obstacles of simple shapes. It may lead
to potential failure when faced with unknown obstacles with complex shapes.
Numerous studies have investigated motion planning in dynamic environments. These
methods can be divided into two categories, depending on whether they consider static
and dynamic obstacles separately or uniformly. The first category detects dynamic
obstacles from static environments and then plans a collision-free trajectory that takes
into account both static and dynamic obstacles. Recent work [6, 35, 8, 9, 36] employs
a static occupancy map [37] to model static obstacles, taking advantage of its ability
to represent arbitrary 3D shapes [38]. However, dynamic obstacles are represented
separately in a fixed shape [9]; each obstacle is approximated by a single ellipsoid [30,
39, 8], sphere [28], or bounding box [40]. To estimate the trajectory of moving obstacles,
polynomial fitting methods [41, 42] or the constant velocity model [43] are commonly
used. Since dynamic obstacles are represented separately with fixed shapes, these
methods narrow the free space and require two collision avoidance pipelines, making
the planner conservative and complex. Furthermore, data association and tracking
noise [10, 44] in this representation will lead to unsafe trajectories.
The other category considers the dynamic obstacles and possible static obstacles uni-
formly, and predicts the future states of all the obstacles. For example, [45] clusters the
point clouds and then estimates the velocities of dynamic obstacles. Then a dynamic
Hilbert map is created using nonstationary kernels in the Hilbert space based on these
estimations. [10] proposes a particle-based method to represent the environments. Re-
cently, learning-based methods such as spatio-temporal network [46] and generative
models [47] are proposed to forecast the position of dynamic obstacles. The perception
parts of our work will be based on the method in [10].

Siyuan Wu Master of Science Thesis

Chapter 3

Preliminaries

This chapter provides the essential theoretical background required to understand the
proposed motion planning algorithm. First, I will introduce the map representation
upon which our planner is built. Next, I will provide an overview of the existing motion
planning pipeline for autonomous navigation in cluttered environments in Section 3-2.

3-1 Particle-based Dynamic Environment Representation

Our system is built upon a particle-based map that provides a risk-aware dynamic en-
vironment representation. The particle-based map utilizes particles to represent states
of the dynamic obstacles. Future maps are predicted by applying the constant veloc-
ity model to the particles, and the collision risk can be estimated by calculating the
expectation of the particles within the robot’s safety distance. The dual-structured
particle-based (DSP) map [10] is an example of such a representation. It is built upon
the random finite set (RFS) theory, which can be used to represent a random number
of elements whose states are random variables. Obstacles are represented by a RFS of
point objects, which are finite but randomly distributed in the environment. The DSP
map estimates the probability hypothesis density (PHD) of the RFS from the point
cloud input, rather than individually estimating the state of each point object. The
estimation is performed by a sequential Monte Carlo PHD (SMC-PHD) filter, which
iteratively predicts and updates a multitude of particles. Then, a risk map in dynamic
environments can be accurately constructed by querying the number of point objects in
each voxel, even when there exist non-negligible noises in both sensing and localization
modules of the robot [48]. The velocities of these particles are modeled by a constant
velocity model. The future risk map of the dynamic environments is predicted by prop-
agating the particles with the constant velocity model. We use this property in our
system to predict the future risk value of the environment when checking collisions, and
design a corresponding risk-aware planning algorithm to avoid collisions with dynamic
obstacles. We will discuss the details later in Chapter 4-2-2.

Master of Science Thesis Siyuan Wu

8 Preliminaries

3-2 Motion Planning for Autonomous MAVs

To find a safe trajectory in cluttered environments, a coarse-to-fine pipeline is commonly
used [49, 50, 51]. The pipeline consists of global path planning and local trajectory
optimization. The global path plans a spatial discrete path from the start to the
goal, which provides a rough initial guess of the trajectory optimization problem. The
trajectory then optimizes the path by incorporating the robot dynamics while satisfying
the environmental constraints. The path searching is necessary because the trajectory
optimization can be trapped in local minima easily therefore the robot will never reach
the goal. Trajectory optimization aims to refine the path to make it dynamically feasible
and energy efficient. However, a global path is hard to obtain in our scenarios because
the robot faces an unknown dynamic environment, where only a local region is observed
and long-term changes are not predictable. This problem can be solved by applying
local replanning [50].

3-2-1 Path Planning

Sampling-based Methods Sampling-based methods are widely used in MAV motion
planning. These methods are based on rapidly exploring random tree (RRT) [38] and
RRT* [52] considering the dynamic constraints of the MAVs. A common approach has
two steps, first generating a low-dimensional path in position space and then optimizing
the trajectory to generate a smooth and dynamically feasible trajectory. [53] demon-
strated that this approach is more efficient than kinodynamic RRT* [54] which applies
a polynomial steering function to the quadrotor system to address linear differential
constraints. However, recent research [55] improved the efficiency of kinodynamic RRT
* by applying topological guided search to speed up the sampling. [56] further improved
the efficiency by applying a bidirectional search strategy to reduce the complexity and
reduced the search time to 16ms.

Search-based Methods Search-based methods are based on the A * algorithm, which
is a heuristic search algorithm to find the shortest path between two nodes in a graph.
Nodes are the voxels and edges are connections between the voxels in the occupancy
map, therefore, paths generated by A* are discrete and not smooth. To make the
searched path smooth, a state lattice with motion primitives can be applied to form
the edges in the graph [57, 58], and A* can be applied to search the path in the
state lattice [50]. [59] discussed state-based primitives and control-based primitives
to demonstrate the advantages of state-based primitives since FOV constraints can be
simply applied. Kinodynamic A* [51] further improved this method by deriving the
heuristic cost function based on Pontryagins minimum principle that can be used to
find the trajectory with minimum time duration.

Gradient-based Methods Gradient-based methods utilize obstacle information to gen-
erate a gradient that guides trajectory optimization to avoid obstacles. CHOMP [60]

Siyuan Wu Master of Science Thesis

3-2 Motion Planning for Autonomous MAVs 9

is a discrete gradient-based method that applies both smoothness and collision cost
which performs gradient descent with positions of discrete waypoints as parameters.
Traditionally, gradient-based methods rely on a pre-build Euclidean signed distance
field (ESDF)[61] to evaluate the direction and magnitude of the gradient [62, 63, 64].
However, computing the ESDF is time-consuming and requires a lot of memory. EGO-
Planner [5] presented an ESDF-free local planning framework that projects forces onto
the colliding trajectory and generates an estimated gradient to wrap the trajectory free
from obstacles. It successfully reduces computation time by over an order of magnitude
and achieves state-of-the-art performance in terms of computation time and robustness.

3-2-2 Safety Corridors

A safety corridor is defined as an obstacle-free region in the workspace. In the literature,
safety corridors are usually formed as ellipsoids [65, 66] or polyhedra [67, 68, 49, 69,
70], since these shapes are convex and easy to confine in most optimization problems.
Safety corridors provide geometric constraints for the trajectory optimization problem
to ensure the safety of the robot. Since the structured information of the environments
is not available in most planning tasks, generating safety corridors directly from the
point cloud is widely applied in many literature. However, this is a time-consuming
task due to the large number of points in the point cloud. There exist two types of
methods, geometric methods and inflation methods.

Inflation Methods Inflation methods normally start with a small safety region around
the robot and iteratively expand the safety region until it reaches obstacles. A common
approach is IRIS [67], which represents the safety region as a polyhedron and iteratively
expands the polyhedron and its inscribed ellipsoid. However, this method is computa-
tionally expensive because it requires solving a quadratic programming (QP) problem
to find the polyhedron that is closest to the inscribed ellipsoid, as well as solve a semidef-
inite programming (SDP) problem to find the inscribed ellipsoid of the polyhedron. In
[49], the authors simplified the problem by shirking and dilating the initial ellipsoid to
find a feasible ellipsoid. Then the polyhedron is generated by finding the intersection
of the ellipsoid and the hyperplanes that exclude the obstacles. It avoids solving an
expensive SDP problem but loses the optimality of the ellipsoid. FIRI [71] improves
the efficiency by providing a second-order conic programming (SOCP) formulation of
the problem, which can be solved by an L-BFGS solver efficiently. Experimental results
show that this approach reduces the computation time to 0.1ms, which is two orders
of magnitude faster than IRIS.

Geometric Methods Geometric methods generate safety corridors by excavating the
geometric properties of the environments. Geometric methods are usually faster than
inflation methods, taking the consequence of losing the optimality of the safety corridor.
For example, Galaxy [72] generates a safety corridor utilizing the sphere flipping method
to compute an obstacle-free star convex polytope inside the point cloud. Since the star
convex polytope is not convex, it needs to be modified to a convex polytope by shrinking

Master of Science Thesis Siyuan Wu

10 Preliminaries

the concave edges of the convex hull of the star convex polytope. Due to the property
of star convex, each extreme edge can form a simplex with the vertex of the star convex
polytope. Therefore, by pushing the extreme edges inward, the concave edges of the
convex hull can be shrunk.

3-2-3 Trajectory Optimization

Given the safety corridors P of the environment, we can formulate the trajectory opti-
mization problem as a constrained optimization problem as follows:

min
c

T∑
j=1

∫ tj

tj−1

∥∥∥∥∥d3pj(t)
dt4

∥∥∥∥∥
2

dt (3-1a)

s.t. p(t0) = p0, p(tT) = pT (3-1b)

pj(t) ∈ Pj, ∀t ∈ [t0, tT] (3-1c)

pj(tj) = pj+1(tj) (3-1d)

p
(1)
j (t) ≤ p(1)

max, p
(2)
j (t) ≤ p(2)

max, ∀t ∈ [t0, tT], (3-1e)

The cost function (Eq. 3-1a) is the integral of the third derivative of the trajectory,
which minimizes the jerk of the trajectory [73]. where c is the parameter of trajectory
p(t), equation (3-1b) provides the initial value, (3-1d) is continuity constraints of two
adjoint pieces of trajectory, (3-1e) limits the maximum derivatives of the trajectory. The
corridor constraints (Eq. 3-1c) bounds the trajectory for all valid time t continuously.
Eq. 3-1d provides the continuity constraints of two pieces of trajectory. Eq. 3-1e
bounds the maximum velocity and acceleration of the trajectory.
Since corridor constraints (Eq. 3-1c) enforce the entire trajectory of all time steps to be
inside the safety corridor, this optimization problem cannot be converted to a standard
QP form which can be accepted by most solvers. Therefore, various methods are pro-
posed to simplify the problem. The idea is to find a proper trajectory representation
that can reformulate the corridor constraints to a standard affine form. Different poly-
nomial curves have different properties and can be used to simplify the optimization
problem. As for trajectory parameterization, most literature uses polynomial splines,
Bézier splines, and B-splines [51, 74, 75]. MINVO [40, 76, 77] and MINCO [71, 6,
78] are two novel methods, one provides minimum guarantees on the volume of the
convex hull of the trajectory, and the other minimizes the control efforts of the tra-
jectory. In the following section, typical trajectory representations are introduced and
their properties are discussed.

Polynomial Trajectory

A polynomial trajectory is the most common trajectory representation in the literature:

p(t) = pi(t− ti−1) = c⊺
i β(t− ti−1), , t ∈ [ti−1, ti) (3-2)

Siyuan Wu Master of Science Thesis

3-2 Motion Planning for Autonomous MAVs 11

in which pi(t) is an N degree polynomial trajectory with coefficient ci ∈ R(N+1)×n and
natural basis β(t) = [1, t, · · · , tN]⊺. The parameter needed in this polynomial curve is
a coefficient matrix c ∈ R(N+1)M×nof the whole trajectory is defined by

c = [c⊺
1, c⊺

2, · · · , c⊺
M]⊺ (3-3)

and a time allocation represented by time vector T ∈ RM
≥0 = [T1, T2, · · · , TM]. Given

the time allocation T and boundary states of all the trajectory pieces, the coefficient
matrix c can be uniquely determined. Enforcing the corridor constraints (Eq. 3-1c)
explicitly is difficult, but there are various techniques to address them. [73] samples
N time steps and confine positions at this sampled timestamp in the corridor. [68]
proposed an iterative approach that first solves a QP problem without constraints and
then adds time stamps not satisfying constraints to solve the optimization. [79] splits
the safety corridor into two intersecting polyhedra if the constraints are violated on the
given piece.

Bézier Trajectory

A trajectory can be formulated as a piece-wise Bézier spline which is a linear combina-
tion of Bernstein basis. A N -degree Bernstein basis polynomial is defined as:

Bk
N(t) =

(
N
k

)
tk(1− t)N−k, t ∈ [0, 1], k = 0, 1, · · · , N (3-4)

where
(

N
k

)
is the binomial coefficient. The i-th piece of trajectory pi(t) can be

represented as

pi(t) =
N∑

k=0
ci,kBk

N(τi) t ∈ [ti−1, ti) (3-5)

where τi = t−ti−1
ti−ti−1

∈ [0, 1] is the normalized time and ci,k is the k-th control point of
the i-th piece trajectory. The Bézier spline has several properties [62]:

1. Convex hull property: The Bézier spline is entirely confined within the convex
hull defined by control points.

2. Fixed interval property: The parameter t of Bézier spline is defined with
t ∈ [0, 1].

3. Hodograph property: The hodograph of the Bézier spline, which is its deriva-
tive spline, is still a Bézier spline.

4. Start and end point property: The Bézier spline starts from the first control
point ci,1 and ends at the final control point ci,N .

These properties are significantly helpful for trajectory optimization. Due to the convex
hull property, the safety constraints can be simplified by confining the control points
in the corridors. Recent methods [62, 80] are developed based on this property.

Master of Science Thesis Siyuan Wu

12 Preliminaries

Discussion

Bézier splines, B-splines, and MINVO trajectories are fully equivalent and linearly
convertible [81]. The difference lies in their parameterization form and functions. Here,
we summarize these trajectory parameterization methods in Table 3-1. As indicated in
the table, polynomial splines do not have control points, MINCO trajectory is based
on control points on the trajectory. Bézier spline passes through the initial and final
control point, B-spline can guarantee this by setting the first three control points as the
same, however, MINVO cannot guarantee this property. For the volume of the convex
hull, MINVO can achieve the smallest simplex convex hull enclosing the trajectory,
where the control points are close to the trajectory. These properties are vital in
trajectory optimization because we can only check the control points to ensure the
safety of the planned trajectory. Therefore, the trajectory optimization problem can
be simplified to a control point optimization problem, which can be formulated as
quadratic programming (QP) problem and solved efficiently.

Method/Feature Continuity Safety Constraints Dim. Temporal Opt. Ctrl. Points Passed
Polynomial Splines Equality Constraints Sample High Coupled None
Bézier Splines Equality Constraints Convex Hull High Coupled Start & End
B-Splines Satisfied by default Convex Hull Low Highly Coupled Start & End
MINVO Not Satisfied Convex Hull Low Highly Coupled No
MINCO Satisfied by default Sample Low Decoupled All

Table 3-1: Comparison of different trajectory parameterization methods regarding how to achieve
continuity, how to satisfy safety constraints, dimensionality, how to optimize the trajectory in the
time domain, and whether the control points are passed by the trajectory.

Siyuan Wu Master of Science Thesis

Chapter 4

Methods

In this chapter, the proposed method for risk-aware multi-agent planning in dynamic
environments is presented. This method is built on top of the particle-based map [10]
which is a novel map representation that can efficiently take into account the sensing and
localization uncertainties in the dynamic environment. Thanks to the particle-based
map representation, the proposed method can tackle planning problems in unknown
dynamic environments with arbitrary-shaped obstacles. In this map representation,
the collision risk can be quantified by the number of particles in the region, and the
future state can be predicted by applying the motion model to the particles. Addition-
ally, this map representation is also able to incorporate the risk information of other
agents by modeling them as particles in the map. Prediction of other agents’ particles
can be achieved by using shared trajectories. Thus, both obstacles and other agents
are represented in a unified manner, enhancing the method’s capability to address
the multi-robot planning problem. The proposed method can be divided into three
stages: particle-based trajectory mapping, risk-aware kinodynamic path planning, and
corridor-constrained trajectory optimization.
In this chapter, first, the general pipeline of the proposed framework is introduced.
Then, the particle-based map is presented and the collision risk definition is discussed.
Finally, the details of the three stages of the proposed method are presented.

4-1 Pipeline Overview

As indicated in Figure 4-1, the classical pipeline of multi-robot collision avoidance in
dynamic environments consists of building a map of the static environment, tracking
and predicting dynamic obstacles, and coordinating multiple robots to avoid collisions
with each other and with dynamic obstacles [40, 82, 30, 83]. Path planning, usually
performed on a static map, plans a global path from the start point to the goal point
while avoiding static obstacles. Collision avoidance and trajectory coordination are

Master of Science Thesis Siyuan Wu

14 Methods

Figure 4-1: Classical pipeline of multi-robot collision avoidance in dynamic environments.

achieved locally at the trajectory optimization stage, which is performed in a receding
horizon manner, optimizing the trajectory over a short time horizon. However, this
pipeline has several drawbacks:

1. Due to the uncertainty in tracking and predicting dynamic obstacles, the static
map may be disrupted by these obstacles, limiting the planner’s feasibility.

2. The uncertainty arising from dynamic obstacle detection and trajectory predic-
tion compromises the system’s robustness, and incorporating this noise into the
pipeline is challenging.

3. Given the non-convexity from the mutual collision avoidance constraints, the tra-
jectory optimization problem turns out to be a non-convex optimization problem.
It is not only computationally expensive, but also depends sensitively on the initial
guess of the trajectory.

To address the above issues in the classical pipeline, the particle-based map representa-
tion can be utilized to unify the static map, dynamic obstacles, and cooperative agents
into a single map. The proposed pipeline with the particle-based map representation
is shown in Figure 4-2. To represent static and dynamic obstacles, we use the map
representation introduced in Section 4-2. It models obstacles as particles with velocity
and risk information. Since cooperative robots communicate their future trajectories,
they can be mapped as particles with known future trajectories on the map. Finally,
after representing all the obstacles and cooperative agents on a single map, motion
planning and collision avoidance can be performed directly. Since the trajectory of
other agents is considered in the map, it’s not necessary to consider the trajectory in
the optimization stage. In this manner, the path planner first plans a kinodynamic
path in the particle map. The kinodynamic path embeds the kinematic limits of the
robot as well as the time allocation of the trajectory, which can be regarded as a sparse
initial guess for trajectory optimization. Then spatial-temporal safety corridors are ex-
panded around the path to ensure the safety of the trajectory during the optimization.

Siyuan Wu Master of Science Thesis

4-2 Particle-based Map and Risk Evaluation 15

Finally, trajectory optimization is performed in the particle map to generate a smooth
trajectory that satisfies the kinodynamic constraints.

Figure 4-2: Proposed pipeline of multi-robot collision avoidance in dynamic environments.

The proposed pipeline offers several advantages: 1) Thanks to continuous risk-aware
map representation, the measurement uncertainty and the localization uncertainty by
the sensors are naturally incorporated into the map. 2) The kinodynamic path searching
provides a sparse initial guess for the trajectory optimization, which overcomes the non-
convexity of the trajectory optimization problem. 3) The expansion and shrinking of
the spatial-temporal corridor ensure the safety of the trajectory without imposing more
conservative constraints. 4) The trajectory optimization is formulated as a quadratic
programming problem, which is computationally efficient even on a low-cost embedded
system with limited computational resources.

4-2 Particle-based Map and Risk Evaluation

In this section, we will demonstrate how to evaluate the risk within dynamic environ-
ments. To do so, we will introduce the DSP map, which is a particle-map representation
upon which our planner is built.

4-2-1 Particle-based Map

The DSP map [10] is an egocentric local map that uses particles to represent the
obstacles in the environment. In this map, the obstacles are first modeled by many
independent point objects, as shown by green dots in Figure 4-3. The state of any
point object k at time t can be represented by

xk(t) = [pk(t), vk(t)]⊤ , pk(t) ∈ R3, vk(t) ∈ R3, (4-1)

by doing this, the map is able to represent arbitrary-shaped obstacles and the future
environment is predictable by applying the motion model to the particles. The point
objects in the map space at time t can be formulated as a random finite set (RFS) as
X(t) = {x1(t), x2(t), x3(t), · · · , xK(t)}. K denotes the number of point objects in the
set X(t). Since estimating the states of all point objects is computationally expensive,
the DSP map only computes the probability hypothesis density (PHD) DX(t) of the

Master of Science Thesis Siyuan Wu

16 Methods

Figure 4-3: The pipeline of the DSP map

random finite set X(t). The PHD DX(t) is widely used in multi-object tracking, which
is estimated by a sequential Monte Carlo (SMC-PHD) filter. In our case, the SMC-
PHD filter requires the input of the point cloud measurement and 6DoF odometry, and
outputs n(t) particles at time t, where n(t) is a large number normally greater than
106. Each particle contains a scalar weight wi(t) state x̃i(t) = [p̃i(t), ṽi(t)]. We can
derive the estimation of the PHD DX(t) according to [10] using Dirac delta function
δ(·) to represent the particles,

DX(t) =
n(t)∑
i=1

wi(t)δ(x̃i(t)− x(t)). (4-2)

4-2-2 Map Prediction

Thanks to the particle representation, the future environment is predictable. For sim-
plicity, we assume particles are following a constant velocity model (CVM) with Gaus-
sian noise. The state of particle i at time t can be predicted by

x̃i(t) =
[
I3×3 (t− t0)I3×3
03×3 I3×3

]
x̃i(t0) + ηi(t), (4-3)

where ηi(t) ∼ N (0, Σ) is the Gaussian noise with covariance matrix Σ. We assume the
robot only suffers from the localization error from noisy odometry, therefore we have

Σ =
[

Σp 03×3
03×3 03×3

]
, (4-4)

where Σp denotes the covariance matrix of the odometry. Since the number of particles
is large, we can neglect the velocity noise of each single particle and focus on the
behavior of numerous particles.

4-2-3 Risk Evaluation

Next, we will discuss the risk definition in this particle-based environmental representa-
tion. Risk is defined as the probability of collision between the robot and the obstacles.

Siyuan Wu Master of Science Thesis

4-2 Particle-based Map and Risk Evaluation 17

Point object Particle

(b) Risk calculation(a) State transition

Map
coordinate Map

coordinate

Figure 4-4: State transition and risk evaluation in the DSP map

Since we model the obstacles as point objects, the collision probability depends on the
number of point objects near the robot. In the DSP map, the number of point objects
within a given region Ej can be calculated by the expectation of the cardinality of the
random finite set X(t), which is

E
[
|XEj

t |
]

=
∫

D
X

Ej
t (t)

(xt)dxt =
n
Ej
t∑

i=1
w

(i)
t . (4-5)

where w
(i)
t is the weight of the particle xi at time t and n

Ej

t is the number of particles
within the region Ej at time t. Therefore, the continuous collision risk of the region Ej

from t0 to tf can be represented as

Risk(Ej, t0, tf) =
∫ tf

t0
E
[
|XEj

t |
]

dt. (4-6)

In practice, a discrete version of the collision risk is used for computation efficiency,
which is

Risk(Ej, t0, tf) =
∫ tf

t0
E
[
|XEj

t |
]

dt ≈
∑

t={t0,t0+δt,...,tf}

n
Ej
t∑

i=1
w

(i)
t δt. (4-7)

Hence, the collision risk of a region Ej is calculated by the summation of the weights
of particles within the region.
To achieve multi-robot collision avoidance in this particle-based map, shared trajecto-
ries of other robots are considered during the risk evaluation. These trajectories are
parameterized by their start time and Bezier control points and shared via a broad-
cast network. Robots are represented as particles with predetermined risk levels. These
risks are communicated to other robots through wireless transmission. Using the shared
trajectories denoted as p⋆(t), future positions and velocities of these particles at time
tf are inferred, projecting the particles to the position p⋆(tf) and adopting the velocity
ṗ⋆(tf). Then the risk of collision with all other robots in the environment from t0 to
tf can be calculated by equation 4-7 similar to that for obstacles. Figure 4-5 shows
the risk evaluation in the dynamic environment with other robots. The trajectories

Master of Science Thesis Siyuan Wu

18 Methods

Figure 4-5: Risk evaluation in the dynamic environment with other robots.

shared by these robots are depicted in blue. The figure uses a color gradient to indicate
collision risks at various future time steps: orange for imminent risks and yellow for
those further in the future.

4-3 Risk-Aware Spatial-Temporal Kinodynamic A*

In order to search for a kinodynamically-feasible path in the particle-based map, we
develop a risk-aware spatial-temporal kinodynamic A* algorithm based on the kino-
dynamic A* algorithm in [51]. This process offers a rough estimate of the trajectory
prior to optimization, reducing its complexity. It not only searches for a safe and kino-
dynamic feasible path but also finds a time allocation for the trajectory. To provide a
clear understanding of the algorithm, Algorithm 1 [48] is summarized with an overview
visualized in Figure 4-6.

4-3-1 Primitive Expansion

Due to the differential flatness property of the robot, the robot can be described by a
double integrator model in 3D space with constant yaw, we can then generate a set of
primitives by discretizing the control inputs of the robot [51, 48]. We use p(t), ṗ(t), and
p̈(t) to denote the position, velocity, and acceleration of the robot at time t, respectively.
The robot state at time t is indicated by x(t) = [px(t), py(t), pz(t), ṗx(t), ṗy(t), ṗz(t)]⊤,
and the control input is indicated by u = [p̈x, p̈y, p̈z]⊤. The robot dynamics is given
by the following linear time-invariant system

ẋ(t) = Ax(t) + Bu, (4-8)

where A =
[
03×3 I3×3
03×3 03×3

]
and B =

[
03×3
I3×3

]
. Given the initial state x(0), input u(τ) and

time duration τ , the robot state at time τ is expressed as

x(τ) = eAτ x(0) +
∫ τ

0
eA(τ−t)Budt. (4-9)

=
[
I3×3 τI3×3
03×3 I3×3

]
x(0) +

[
τ2

2 I3×3
τI3×3

]
u. (4-10)

Siyuan Wu Master of Science Thesis

4-3 Risk-Aware Spatial-Temporal Kinodynamic A* 19

Algorithm 1: Risk-Aware Spatial-Temporal Kinodynamic A* Algorithm
Data: pstart, vstart, τ , T , pgoal
Result: A path from pstart to pgoal or an indication of failure

1 openList← initialize with (pstart, vstart, tstart);
2 closedList← empty;
3 while openList ̸= empty do
4 current← node in openList with lowest f ;
5 if pcurrent is close enough to pgoal then
6 return reconstructed path; // Reach the goal

7 if tcurrent > T and pcurrent is out of the map then
8 return reconstructed path; // Reach the boundary of the map

9 openList← openList \ current;
10 closedList← closedList ∪ current;
11 primitiveList← Expansion(current, τ);
12 foreach successor ∈ primitiveList do
13 if RiskCheck(successor) ∧ successor /∈ closedList then
14 succesor.g ← current.g + Cost(successor);
15 succesor.h← Heuristic(successor, pgoal);
16 succesor.f ← successor.g + successor.h;
17 add successor to openList;

18 return failure (no path);

By selecting a set of control inputs u given a fixed time duration τ , we can generate a
set of primitives P = {x(u, τ)|u ∈ U}, where U is the set of control inputs discretized
uniformly from [umin, umax] in each dimension.

4-3-2 Risk Check

In order to check the feasibility of the sampled primitive, we need to check whether
primitives collide with the obstacle. Taking into account the shape of the robot and
the uncertainty of the obstacle, primitives are inflated with the shape of the robot and
checked if the collision risk of the inflated subspace from t0 to t0 +τ is below a threshold
ϵ, given by

Risk(Ej, t0, tf) =
∑

t={t0,t0+δt,...,tf}

n
Ej
t∑

i=1
w

(i)
t δt. ≤ ϵ (4-11)

t0 is the starting time of the primitive and τ is the duration of the primitive. The
collision risk of the subspace is defined in Section 4-2-3. If the collision risk is below
the threshold, the primitive is considered feasible. Nonfeasible primitives are discarded
and rejected to be added to the open list.

Master of Science Thesis Siyuan Wu

20 Methods

Figure 4-6: Our algorithm finds a collision-free path that avoids the obstacles by sampling a
set of primitives (represented by circles in red) and checking the collision risk of each primitive.
Obstacles are moving from the right edge toward the center. At the current timestamp, obstacles
are shown in green, transitioning to future positions in yellow through a color gradient. Sampled
primitives are shown from red to orange through a color gradient, where red signifies the most
recent primitives and orange indicates those in the future The black dots represent collision
primitives which failed the risk check. The blue curve represents the final collision-free trajectory.

4-3-3 Cost and Heuristic

To provide a smooth path and a reasonable speed profile, we penalize the total acceler-
ation of the trajectory. The cost function is defined as the cumulative square of control
inputs over the entire trajectory as

PathCost =
∫ T

0
u(t)⊤u(t)dt. (4-12)

Correspondingly, the cost of a primitive can be defined as

PrimitiveCost = ∥u∥2τ. (4-13)

The heuristic function is computed by applying Pontryagins minimum principle [84]
which yields the optimal control input to reach the goal state xgoal. The optimal

trajectory from the current state xc =
[
pc

vc

]
to the goal state xgoal =

[
pgoal
vgoal

]
is given by

p∗(t) = pc + vct + 1
2

βt2 + 1
6

αt3, (4-14)

where α and β is given by boundary values

α = 12
T 3 (pc − pgoal) + 6

T 2 (vgoal + vc) , (4-15)

β = 6
T 2 (pgoal − pc)−

2
T

(vgoal + 2vc) . (4-16)

Siyuan Wu Master of Science Thesis

4-4 Corridor Constrained Trajectory Optimization 21

By taking α and β into the cost function, we can get the minimum cost to reach the
goal state given the current state and time duration T as

J∗(xc, xg, T) = 1
3

α⊤αT 3 + α⊤βT 2 + β⊤βT. (4-17)

The heuristic function is defined as the minimum cost to reach the goal state given the
current state. We can derive the heuristic cost by finding the minimum cost over all
possible time duration T as

Heuristic = min
T

J∗(xc, xg, T). (4-18)

Since this function is the minimum cost to reach the goal state, it is admissible and
consistent. Note this is a nonlinear optimization problem thus the optimal time dura-
tion T is computed numerically. Therefore, the A* algorithm is guaranteed to find the
optimal path.

4-4 Corridor Constrained Trajectory Optimization

To generate collision-free trajectories, a trajectory optimization method is developed
on kinodynamic paths. Initially, spatio-temporal corridors are generated which enclose
the obstacle-free region along the path. Subsequently, the trajectory generation prob-
lem is formulated as a quadratic programming (QP) problem with linear constraints
by applying the convex hull property of Bézier spline trajectory parameterization to
simplify the problem.

4-4-1 Optimization-Based Spatio-Temporal Corridor Generation

Since we have found a dynamically-feasible and collision-free path in the particle-based
map, we would like to get the obstacle-free region along the path before trajectory
generation. Due to the dynamic obstacles in the environment, the safety region of
the path may change with time, so the safe flight corridor introduced in [49] is no
longer applicable. Therefore, we generate spatio-temporal corridors that enclose the
obstacle-free region along each path segment. The spatio-temporal corridor is defined
as a convex polyhedron P = {x ∈ Rn|APx ≤ bP} that encloses the safety region within
the time window [ti−1, ti]. The corridor is derived from the path segment from ti−1 to ti,
factoring in the predicted particle states for the same time interval. This is illustrated
in Figure 4-7, where blue curves are kinodynamic paths from the previous step.

To maximize the obstacle-free region and avoid conservative approximation, we form
the spatio-temporal corridor generation problem as an optimization problem that max-
imizes the volume of the corridor. The problem of finding the obstacle-free convex
polyhedron in the given time window [ti−1, ti]. can be formulated as the following

Master of Science Thesis Siyuan Wu

22 Methods

Figure 4-7: Corridor generation and shrinking on the particle-based map, upcoming obstacles
and corridors are depicted with transparency.

optimization problem:

max
AP ,bP

vol(P), (4-19)

s.t. Rk ⊂ P , (4-20)
Ok,ti−1,ti

⊂M \ P , (4-21)
Ok,ti−1,ti

= {x(t)|x(t) ∈ X(t), w
(x(t))
t > wmax, t ∈ [ti−1, ti]} (4-22)

where X(t) represents the particle sets, M is the particle-based map, w
(x(t))
t is the weight

of the particle x(t) at time t, Ok,ti−1,ti
represents particles whose weight is larger than

wmax between time ti−1 and ti, and Rk is the size of robot k.
We apply Fast Iterative Region Inflation (FIRI) algorithm [71] to efficiently solve this
optimization problem. Similar to the IRIS method [67], FIRI finds the maximum
volume polyhedron P by iteratively and monotonically increasing the volume of its
inscribed ellipsoid using low-dimensional geometry. FIRI reformulates the problem
as an equivalent second-order conic programming (SOCP) problem to decrease the
dimension of the problem and reduce the computational cost. Thanks to the efficiency
of FIRI, we can generate a feasible spatio-temporal corridor from sampled particles in
the map within a few milliseconds.
Since the corridor generated by FIRI only encloses the obstacle-free region without
considering the volume of the robot, we need to shrink the corridor to ensure that
the robot can pass through it. This can be done by pushing the edges of the corridor
inwards by the radius of the robot d. Considering the polyhedron P represented by
H-representation, the shrinking operation can be formulated as:

APx ≤ bP − da′. (4-23)

Siyuan Wu Master of Science Thesis

4-4 Corridor Constrained Trajectory Optimization 23

where each row of vector a′ satisfies a′
j =

(
AP jAP

⊤
j

)− 1
2 . Figure 4-7 demonstrates the

concept of corridor shrinking. The original corridors, optimized by FIRI, are depicted
in dark green, while the modified corridors appear in light green. Corridors for future
trajectories are depicted in a translucent manner.
To ensure that corridors are feasible after shrinking, we need to check if inequalities
APx ≤ bP−da′ are still satisfied. Specifically, we can form a linear programming (LP)
problem to efficiently check the feasibility of the resulting corridors:

min
x

0T x (4-24)

s.t. APx ≤ bP − da′. (4-25)

If the LP problem is non-feasible, which means the corridor is too narrow for the robot
to pass through, we discard it and any incoming corridors then proceed directly to the
trajectory generation step. This avoids generating narrow corridors that the robots may
not be able to pass through and helps ensure the safety and feasibility of the generated
trajectories.

4-4-2 Minimum Jerk Trajectory Optimization

The trajectory optimization problem can be formulated as a constrained optimization
problem with the cost function defined as the cumulative square of the third derivative
of the position over the time horizon. The trajectory is discretized into T segments
with the same duration τ .

min
c

T∑
j=1

∫ tj

tj−1

∥∥∥∥∥d3pj(t)
dt3

∥∥∥∥∥
2

dt (4-26a)

s.t. p(t0) = p0, p(tT) = pT (4-26b)

pj(t) ∈ Pj,∀t ∈ [tj−1, tj] (4-26c)

pj(tj) = pj+1(tj) (4-26d)

p
(1)
j (t) ≤ p(1)

max, p
(2)
j (t) ≤ p(2)

max, ∀t ∈ [t0, tT], (4-26e)

To simplify the corridor constraint (4-26c), we employ the Bézier curve to parametrize
the trajectory. Bézier curve is a n-th order piecewise polynomial defined as:

pj(t) =
n∑

i=0
Bi

n(t− tj−1

tj − tj−1
)ci

j, t ∈ [tj−1, tj), (4-27)

where ci
j denotes the i-th control point at the j-th piece of the Bézier curve. Bi

n(t) =(
n
i

)
ti(1− t)n−i is the Bernstein basis. As mentioned in Section 3-2-3, the Bézier curve

carries two important properties [62]: hodograph property and convex hull property.
The hodograph property shows that the derivative of the Bézier curve is also a Bézier

Master of Science Thesis Siyuan Wu

24 Methods

(a) (b)

Figure 4-8: Two 4th-order Bézier splines (blue) and their control points. Both Bézier splines are
confined within the convex hulls in red dashed lines.

curve, which can be used to limit velocity and acceleration. By applying this property,
the first and second derivatives of the given Bézier trajectory can be written as:

dpj

dt
= n

tj − tj−1

n−1∑
i=0
Bi

n−1

(
t− tj−1

tj − tj−1

)
(ci+1

j − ci
j), t ∈ [tj−1, tj) (4-28)

d2pj

dt2 = n(n− 1)
(tj − tj−1)2

n−2∑
i=0
Bi

n−2

(
t− tj−1

tj − tj−1

)
(ci+2

j − 2ci+1
j + ci

j), t ∈ [tj−1, tj) (4-29)

The convex hull property guarantees that the trajectory is entirely inside the convex hull
made by the control points. Therefore, we can simply confine the j-th piece of trajectory
pj(t) within the spatio-temporal corridors Pj by constraining the corresponding control
points {c0

j , c1
j , · · · , cn

j } as follows:

APj
ci

j ≤ bPj
, i ∈ {0, 1, · · · , N}, (4-30)

As shown in Figure 4-8, both quartic Bézier curve (visualized in blue) is confined within
the convex hull (depicted in red dashed lines) constructed by the control points (red
dots).
In the following section, we will show how Bézier spline can help to simplify the opti-
mization problem.

Cost function Given the quartic Bernstein basis with n = 4 as Bi
4(t) =

(
4
i

)
ti(1− t)4−i,

the trajectory pj(t) can be written in the following matrix form:

pj(t) =
[
c0

j c1
j c2

j c3
j c4

j

]

1 −4 6 −4 1
0 4 −12 12 −4
0 0 6 −12 6
0 0 0 4 −4
0 0 0 0 1

1
t
t2

t3

t4

 t ∈ [0, 1) (4-31)

where ci
j is a vector, denotes the i-th control point of the j-th piece.

Siyuan Wu Master of Science Thesis

4-4 Corridor Constrained Trajectory Optimization 25

To derive the cost function, we first derive the first, second and third-order derivative
of the trajectory pj(t) as

d1pj(t)
dt1 =

[
c0

j c1
j c2

j c3
j c4

j

]

−4 12 −12 4 0
4 −24 36 −16 0
0 12 −36 24 0
0 0 12 −16 0
0 0 0 4 0

1
t
t2

t3

t4

 (4-32)

d2pj(t)
dt2 =

[
c0

j c1
j c2

j c3
j c4

j

]

12 −24 12 0 0
−24 72 −48 0 0
12 −72 72 0 0
0 24 −48 0 0
0 0 12 0 0

1
t
t2

t3

t4

 (4-33)

d3pj(t)
dt3 =

[
c0

j c1
j c2

j c3
j c4

j

]

−24 24 0 0 0
72 −96 0 0 0
−72 144 0 0 0
24 −96 0 0 0
0 24 0 0 0

1
t
t2

t3

t4

 = CE3T (4-34)

where T =

1
t
t2

t3

t4

 is a column vector, E3 =

−24 24 0 0 0
72 −96 0 0 0
−72 144 0 0 0
24 −96 0 0 0
0 24 0 0 0

 is a 5-by-5 matrix,

and C =
[
c0

j c1
j c2

j c3
j c4

j

]
is a 5-by-3 matrix with each column being a control

point vector.

Before taking the integral, we need to do some modifications to the equation 4-34. Note
matrix C can be represented as three sub-matrics, each representing a row vector of
control points in x, y, and z axis respectively, i.e.

C =
[
Cx Cy Cz

]⊤
(4-35)

Then we can rewrite the equation 4-34 as

d3pj(t)
dt3 = CE3T =

Cx

Cy

Cz

E3T =

CxE3T
CyE3T
CzE3T

 =

T ⊤E⊤
3 C⊤

x

T ⊤E⊤
3 C⊤

y

T ⊤E⊤
3 C⊤

z

 (4-36)

Master of Science Thesis Siyuan Wu

26 Methods

Taking above equations into the cost function, we have

T∑
j=1

∫ tj

tj−1

∥∥∥∥∥d3pj(t)
dt3

∥∥∥∥∥
2

dt (4-37)

=
T∑

j=1

∫ 1

0

(
CxE3T T ⊤E⊤

3 C⊤
x + CyE3T T ⊤E⊤

3 C⊤
y + CzE3T T ⊤E⊤

3 C⊤
z

)
dt (4-38)

=
T∑

j=1
CxE3

∫ 1

0

(
T T ⊤

)
dtE⊤

3 C⊤
x + CyE3

∫ 1

0

(
T T ⊤

)
dtE⊤

3 C⊤
y + CzE3

∫ 1

0

(
T T ⊤

)
dtE⊤

3 C⊤
z

(4-39)

=
T∑

j=1

[
Cx, Cy, Cz

]
E3

∫ 1
0

(
T T ⊤

)
dtE⊤

3

E3
∫ 1

0

(
T T ⊤

)
dtE⊤

3

E3
∫ 1

0

(
T T ⊤

)
dtE⊤

3

C⊤

x

C⊤
y

C⊤
z

(4-40)

=
T∑

j=1

[
Cx, Cy, Cz

] E3ET E⊤
3

E3ET E⊤
3

E3ET E⊤
3

C⊤

x

C⊤
y

C⊤
z

 (4-41)

ET =
∫ 1

0

(
T T ⊤

)
dt =

∫ 1

0

1
t
t2

t3

t4

[
1 t t2 t3 t4

]
dt =

1 1

2
1
3

1
4

1
51

2
1
3

1
4

1
5

1
61

3
1
4

1
5

1
6

1
71

4
1
5

1
6

1
7

1
81

5
1
6

1
7

1
8

1
9

 (4-42)

Here we can get the cost matrix Q as

Q = E3ET E⊤
3 =

192 −480 288 96 −96
−480 1343 −1152 192 96
288 −1152 1728 −1152 288
96 192 −1152 1344 −480
−96 96 288 −480 192

 (4-43)

Then we can derive the cost function as follows:

T∑
j=1

∫ tj

tj−1

∥∥∥∥∥d3pj(t)
dt3

∥∥∥∥∥
2

dt =
T∑

j=1

[
Cx, Cy, Cz

] Q
Q

Q

C⊤

x

C⊤
y

C⊤
z

 (4-44)

This is a quadratic form cost taking control points Cx, Cy, Cz as decision variables.

Corridor Constraints Thanks to the convex hull property of Bézier curve, we can easily
derive the corridor constraints by constraining the control points to be inside the convex

Siyuan Wu Master of Science Thesis

4-4 Corridor Constrained Trajectory Optimization 27

hull of the corridor. As discussed in Section 4-4-1, given the spatio-temporal corridor
Pj at time interval j represented by linear inequality constraints

APj
p ≤ bj, (4-45)

where p denotes a trajectory point in the 3D space. In our case, by applying the convex
hull property of Bézier curve, we can derive the corridor constraints which guarantee
the safety of optimized trajectory by enforcing all the control points to be inside the
polyhedron Pj:

APj
ci

j ≤ bj (4-46)

Continuous Constraints As introduced in Section 3-2-3, the Bézier spline satisfies the
continuity property. The Bézier spline starts from the first control point ci,1 and ends
at the final control point ci,N . By enforcing the continuity property, we can derive
the following constraints to ensure the continuity of the optimized trajectory at the
boundary of each time interval:

cN
j = c0

j+1 ∀j ∈ {1, . . . , T − 1} (4-47)

where cN
j denotes the final control point of the j-th time interval, and c0

j+1 denotes the
initial control point of the (j + 1)-th time interval.

Boundary Constraints We also need to enforce the boundary constraints to ensure the
optimized trajectory starts from the initial position p0 with initial velocity ṗ0 and initial
acceleration p̈0, and ends at the final position pT with velocity ṗT and acceleration p̈T .
Positional boundary constraints can be easily achieved by constraining the first and
last control points to be the initial and final positions.

c1
1 = p0, cN

T = pT (4-48)

For velocity and acceleration, we can constrain the control points in the velocity and
acceleration trajectory. As shown in Section 3-2-3, the derivative of the Bézier spline
is also a Bézier spline with one degree lower. Therefore, we can derive the following
boundary constraints:

4c2
1 − 4c1

1 = ṗ0, (4-49)
4cN

T − 4cN−1
T = ṗT (4-50)

12c3
1 − 24c2

1 + 12c1
1 = p̈0, (4-51)

12cN
T − 24cN−1

T + 12cN−2
T = p̈T (4-52)

Velocity and Acceleration Constraints In order to generate a dynamically feasible tra-
jectory that can be tracked by the drone, we should also constrain the maximum velocity
and acceleration of the trajectory. To keep the linearity of the constraints, we limit
the velocity and acceleration of the control points instead of the trajectory itself. For
simplicity, an axis-wise decouple of the velocity and acceleration constraints is applied
by constraining the velocity and acceleration of each axis separately.

Master of Science Thesis Siyuan Wu

28 Methods

Numerical Solution Since the cost function is a quadratic form, and all the constraints
are linear, we can formulate the trajectory optimization problem as a quadratic pro-
gramming (QP) problem. This problem can be solved efficiently by modern QP solvers,
e.g. OSQP [85]. In our experiment, we use 4th-order Bézier Splines (N = 4) with 5
control points for each time interval (τ = 0.2). The number of time intervals T is
determined by the risk-aware kino-dynamic planning algorithm, which is normally less
than 9.

Siyuan Wu Master of Science Thesis

Chapter 5

Results and Discussion

In this chapter, I will present the results of the simulation experiments conducted
to evaluate the performance of the proposed method. First, I will compare the per-
formance of the proposed method with two state-of-the-art methods in a simulation
environment with ground truth information of obstacles. Then, I will discuss the re-
sults in a simulation where no prior knowledge of the environment is given. Robots are
equipped with onboard sensors, allowing them to perceive the environment as point
clouds.

5-1 Evaluation without Perception Module

In this section, the performance of the proposed method is evaluated in a simulation
environment where the ground truth information of obstacles is given. This evalu-
ation serves to validate the planning capability of the proposed method in dynamic
environments when the perception module is not integrated.

5-1-1 Simulation Environment

First, a 3D simulation environment is built based on a quadrotor simulator in [51]. This
simulator is designed for motion planning in a cluttered static environment, which is
implemented in C++ and ROS. The simulator is capable of simulating multiple drones
with different motion planning algorithms. In this simulator, the drone is modeled as
a point mass with 6 degrees of freedom, and the measurement noise and localization
noise are neglected. Since this thesis focuses on the motion planning part, I assume the
perception, localization, and tracking control are perfect.
The simulator is built to support the simulation of dynamic obstacles. Dynamic obsta-
cles are modeled as cylindrical and circular obstacles with random sizes, initial positions,

Master of Science Thesis Siyuan Wu

30 Results and Discussion

Figure 5-1: A front view of the simulation environment, where the obstacles are represented as
point clouds colored by the z-axis. Four drones are initialized at the four edges of the map.

and velocities. The widths of the cylinders are uniformly sampled from 0.5 to 1.0 m.
All the cylinders are initialized with a height of 4.0 m. The radius of the circles is
uniformly sampled from 0.7 to 2.5 m, with a fixed width of 0.1 m. The initial positions
of obstacles are uniformly sampled in a 16m×16m×4m 3D map space. The velocities of
the obstacles are randomly sampled from 0 to 1.0 m/s, and the directions are uniformly
sampled from 0 to 2π. Obstacles move with constant velocities and directions, and they
rebound when they reach the boundary of the map space.

In our simulation, I use point clouds to represent obstacles. This approach mirrors
the real-world perception of drones, where onboard depth cameras or LiDAR sensors
perceive the environment as point clouds. The point cloud is generated by sampling
points on the obstacle surfaces at an update rate of 10 Hz. Additionally, the distance
between any two points in the point cloud is set at 0.1 m.

The simulator is lightweight and can be run in real-time. I use this simulation environ-
ment to evaluate the performance of the selected baselines and our proposed method.
All simulation experiments were performed on a laptop equipped with a 16-core AMD
R7-5800H CPU.

5-1-2 Experimental Setups

To evaluate the performance of our proposed method in unknown and dynamic envi-
ronments, extensive simulation experiments are conducted in different scenarios. A 3D
environment is built based on the simulator mentioned in Section 5-1-1, where 4 drones
are simulated to perform collision avoidance in a dynamic environment with moving
obstacles. Drones are initialized in the hovering state at a height of 1.0 m, outside the
obstacle space. The goal positions are carefully selected to ensure that the quadrotors
will go through the obstacle space and their trajectories will intersect with each other.

The experiments are divided into two parts across environments of varying difficulty
levels. In the first part, extensive simulations are conducted in a cluttered environment
with cylindrical obstacles. (Figure 5-2a) By varying the number of obstacles from 10 to
50, the performance is evaluated to challenge the scalability of the proposed method.
The second part of the experiments is performed in a mixed environment with an equal

Siyuan Wu Master of Science Thesis

5-1 Evaluation without Perception Module 31

mix of cylindrical and circular obstacles, leading to a more challenging collision avoid-
ance problem. (Figure 5-2b) This setup aims to create a more cluttered environment
by breaking the convexity and symmetry of the obstacles. Robots can choose either
side to avoid cylindrical obstacles; however, for circular obstacles, they must plan a 3D
trajectory to avoid the edges. Note that robots are allowed to pass through circular
obstacles from center to center, but they must avoid the edges, otherwise, a collision
will occur. To quantify the difficulty, I calculate the average obstacle density, defined
as the ratio of total obstacle volume to the entire volume of the obstacle space. Table
5-1 shows the average obstacle density for each environment setting.

(a) Cylindrical obstacle environment (b) Complex environment

Figure 5-2: A visualization of two different simulation environments

Num. of Obstacles 10 20 30 40 50
Cylindrical obstacle environment (%) 1.73 3.45 5.18 7.00 8.62

Complex environment (%) 0.86 1.73 3.71 4.53 5.76

Table 5-1: Average obstacle density in different environments

Three different position swap tasks are designed in the test, as depicted in Fig. 5-3a–
5-3c. The first task is a bilateral position swap, where two drones are initialized on
one side of the obstacle space and the other two drones are initialized on the opposite
side. The goal positions of the drones are swapped, so they need to pass through
the obstacle space to reach their goals. Fig. 5-3a depicts the final state in which
drones have successfully swapped positions, with intersecting trajectories. Obstacles
are colored by the z-axis with a color map ranging from purple to orange. The second
task is a unilateral position swap, where drones are initialized on the same side of the
obstacle space and the goal positions are on the other side with different orders to ensure
trajectory intersection. To validate the capability of the proposed method to handle
collision avoidance with cooperative robots, I design the third task as a cross-quadrant
position swap, where drones are initialized at four different edges of the obstacle space

Master of Science Thesis Siyuan Wu

32 Results and Discussion

(a) Task 1: Bilateral Swap
(b) Task 2: Unilateral
Swap (c) Task 3: Cross Swap

Figure 5-3: Illustration of three different task settings (Fig. 5-3a–5-3c)

Task Planner Succ.
rate

Fail. rate Trajectory time (s) Avg. min. dist (m)

Deadlock
rate

Coll.
rate Min. Max. Avg. obs. MAV

Bilateral Swap
EGO-Swarm 0.93 0.00 0.08 7.40 15.69 11.07±1.55 0.46 0.47
MADER 0.93 0.05 0.03 9.26 14.74 10.56±1.30 0.60 0.82
Proposed 0.98 0.03 0.00 2.31 30.50 19.27±3.20 0.46 1.15

Unilateral Swap
EGO-Swarm 0.96 0.00 0.04 9.40 27.16 11.23±2.10 0.52 0.87
MADER 0.93 0.04 0.04 9.26 16.70 10.35±1.58 0.63 0.89
Proposed 0.95 0.01 0.04 3.76 24.46 18.98±2.56 0.47 1.05

Cross Swap
EGO-Swarm 0.99 0.00 0.01 8.42 24.05 11.10±2.12 0.50 0.46
MADER 0.93 0.06 0.01 9.46 17.76 11.03±1.61 0.69 0.87
Proposed 0.90 0.05 0.05 9.15 26.24 19.06±2.14 0.41 0.92

Table 5-2: Comparison of the performance of different planners across different tasks in the pure
cylinder environment with 10 obstacles.

and the goal positions are at the opposite edges. The robots are expected to encounter
each other in the center of the obstacle space. Fig. 5-3a–5-3c presents a bird’s eye view
of these settings in a mixed environment with 20 cylinders and 20 circles.

The proposed method is compared with two baselines: MADER [40] and EGO-Swarm
[6]. MADER is a hard-constrained method that uses axis-aligned bounding boxes
(AABBs) to represent obstacles, and EGO-Swarm is a soft-constrained method formu-
lating collision cost to push the trajectory away from the obstacles by minimizing the
total cost. Since [40] and [6] rely on obstacle sizes and trajectories, the ground truth
trajectories of the obstacles are used for these two baselines. To make a fair comparison,
I use the ground truth DSP map, which is a local map with the ground truth positions
and velocities of the particles. The local map covers a 4m×4m area with a resolution
of 0.1m. The update frequency of the DSP map is 10Hz. Similarly, the ground truth
trajectories of the obstacles that are used in the baselines are also updated at 10Hz.
All methods are constrained to use local obstacle information. Specifically, robots can
only perceive obstacles within a radius of 5.0 m and have a time horizon of 2.0 s. The
maximum velocity of the drones is set to 2.0 m/s, and the maximum acceleration is set
to 6.0 m/s2

Siyuan Wu Master of Science Thesis

5-1 Evaluation without Perception Module 33

5-1-3 Results in Cylindrical Obstacle Environment

(a) Failure rate (b) Trajectory time

Figure 5-4: Comparison of planners’ performance in the bilateral swap task with varying numbers
of cylindrical obstacles.

(a) Failure rate (b) Trajectory time

Figure 5-5: Comparative analysis of various planners’ performance in the unilateral task with
varying numbers of cylindrical obstacles.

The performance is evaluated based on failure rate, trajectory time, and average mini-
mum distance to obstacles. Table 5-2 shows the results of all tasks in the environment
with 10 cylindrical obstacles. More results are shown in the appendix (Table A-1 to
A-4). In general, our method closely matches the performance of the state-of-the-art
methods in terms of success rate. It significantly outperforms the baselines in the bi-
lateral swap task; however, its performance is slightly inferior to the baselines in the

Master of Science Thesis Siyuan Wu

34 Results and Discussion

(a) Failure rate (b) Trajectory time

Figure 5-6: Comparative analysis of various planners’ performance in the cross-swap task with
varying numbers of cylindrical obstacles.

cross-quadrant swap task. From the results shown in Table 5-2, we can see our planner
achieves the largest averaged minimum distance to other robots, which means our plan-
ner can guarantee a safe distance between different robots, However, the average flight
time of our method is worse than other methods, but but our method has a greater
variance in flight time compared to other methods, as depicted in Table 5-2. This is
because our method is more conservative than others, opting to wait for obstacles until
a safe path is found. This waiting time contributes to the variance in flight time.

Figure 5-4 to Figure 5-6 compare the performance of different planners in the three tasks
with different numbers of obstacles. The failure rate and trajectory time increase with
the number of obstacles in the environment. As the number of obstacles increases,
the failure rate of our method increases faster than other methods, indicating that
our method is more conservative than other methods therefore the safe trajectories are
harder to find in obstacle-dense environments. Comparing the results in Figure 5-5 and
Figure 5-6 can also tell that our method is more sensitive to the density of obstacles
than other methods.

To further understand the failure reason, we distinguish failures into two different
types: collision and deadlock. Collision only happens when the agent is following a
planned trajectory. Deadlock is defined as a situation when a dynamic obstacle hits an
agent after the agent has stopped due to the inability to generate a feasible trajectory.
In many real-world scenarios, e.g., robots are passing through crowded areas full of
pedestrians, deadlock is not a problem since the pedestrians will not directly hit the
robot. As shown in Figure 5-4 to Figure 5-6, deadlock accounts for almost all failures in
our method. In contrast, EGO-Swarm hardly encounters deadlock, but it has a higher
collision rate than other methods. Safety is assured because our method confines the
planned trajectory within the corridors.

Siyuan Wu Master of Science Thesis

5-1 Evaluation without Perception Module 35

5-1-4 Results in the Complex Environment

From the results shown in Figures 5-7 to 5-9, we can see that the proposed planner
outperforms the other baseline planners in terms of success rate. The proposed method
achieves the highest success rate in most of the tasks, and most of the failures are
caused by deadlock. Furthermore, in obstacle-dense environments, the trajectory time
of the proposed method is shorter than that of MADER but remains comparable to
EGO-Swarm across all tasks.

Similar to the results in previous environments, the failure rate, trajectory time, and
averaged minimum distance to obstacles are shown in Table A-6. Results can be found
in the appendix (Table A-5–A-9). Table A-6 indicates that our method surpasses other
baseline methods in success rate for bilateral swap and unilateral tasks. Regarding
trajectory time, our method is close to EGO-Swarm in all tasks. Results show that our
method plans trajectories that are closer to the obstacles, indicating a more efficient
utilization of space.

Furthermore, our method performs better in the complex environment than in the cylin-
drical obstacles environment. As depicted in Figure 5-4 and Figure 5-7, a significant
decrease in failure rate can be seen in obstacle-rich environments. These results reveal
that the ability of the particle-based map to represent obstacles with arbitrary shapes
allows for greater flexibility in finding feasible paths in such environments. Using the
particle-based map to represent the environment is less conservative than axis-aligned
bounding boxes in MADER and ellipsoidal costs in EGO-Swarm.

Table 5-4 compares the success rate and trajectory time across different obstacle levels
in the complex environment.

Task Planner Succ. rate Fail. rate Trajectory time (s) Avg. min. dist (m)

Deadlock rate Coll. rate Min. Max. Avg. obs. MAV

Bilateral Swap
EGO-Swarm 0.77 0.00 0.23 8.79 30.15 14.36±3.364 0.19 0.48

MADER 0.78 0.23 0.00 9.42 44.68 18.51±6.985 0.21 1.02
Proposed 0.85 0.10 0.05 13.06 21.98 16.05±1.888 0.17 0.90

Unilateral Swap
EGO-Swarm 0.78 0.02 0.19 4.32 34.99 14.7±4.889 0.17 1.13

MADER 0.75 0.20 0.05 9.44 42.54 19.06±6.929 0.18 1.53
Proposed 0.90 0.10 0.00 12.26 23.30 17.02±2.077 0.19 1.06

Cross Swap
EGO-Swarm 0.87 0.00 0.13 8.83 33.82 13.67±4.323 0.22 0.53

MADER 0.84 0.16 0.00 9.58 39.36 18.51±7.147 0.22 0.96
Proposed 0.79 0.21 0.00 13.76 23.26 16.93±2.368 0.13 1.00

Table 5-3: Comparison of the performance of different planners across different tasks in the
complex environment with 20 obstacles.

5-1-5 Discussion

In general, our method outperforms MADER with a 98.5% higher success rate and
a 21.9% reduction in flight time. When compared to EGO-Swarm, we see an 88.2%
decrease in the collision rate and a 13.6% increase in the success rate.

Master of Science Thesis Siyuan Wu

36 Results and Discussion

(a) Failure rate (b) Trajectory time

Figure 5-7: Comparative analysis of planners’ performance in the bilateral swap task with varying
numbers of obstacles in the complex environment.

(a) Failure rate (b) Trajectory time

Figure 5-8: Comparative analysis of various planners’ performance in the unilateral task with
varying numbers of obstacles in the complex environment.

Based on the results in both environments, we can draw the following conclusions. In
both environments, MADER is more prone to local deadlocks because it demands fu-
ture trajectories of obstacles at every time step. However, this is not applicable in many
real-world scenarios since robots usually have local perceptions and cannot predict the
future trajectory of unknown obstacles. EGO-Swarm adjusts its time allocation to
prevent sudden stops, which is why it rarely encounters deadlocks. This adjustment
also accounts for EGO-Swarm having the shortest trajectory time. However, being
a gradient-based method to generate trajectories by solving a soft-constrained opti-

Siyuan Wu Master of Science Thesis

5-2 Evaluation with the Perception Module 37

(a) Failure rate (b) Trajectory time

Figure 5-9: Comparative analysis of various planners’ performance in a cross-swap task with
varying numbers of obstacles in the complex environment.

Success Rate Trajectory Time (s)

Num. Obs. 10 20 30 40 50 10 20 30 40 50

Proposed 0.93 0.85 0.66 0.62 0.59 15.87 16.67 17.82 19.84 21.87
EGO-Swarm 0.94 0.81 0.70 0.51 0.39 12.68 14.24 15.25 16.22 16.42

MADER 0.96 0.79 0.52 0.29 0.13 13.05 18.69 26.62 35.75 38.09

Table 5-4: Comparison of the performance of different planners across different obstacle levels
in the complex environment.

mization problem, EGO-Swarm is at a greater risk of colliding with obstacles. The
results validate this conclusion where the collision rate is highest among the three.
Our method stands out by achieving the lowest collision rate in both environments,
although with more conservative trajectories. The failure rate of our method is in the
same range as EGO-Swarm in pure cylinder environments, but it is better in mixed en-
vironments. Despite utilizing ground truth information in experiments, collision rates
are not eliminated. This limitation arises from our constant velocity assumption for
trajectory prediction, which doesn’t accurately capture the sudden velocity changes
occurring when objects rebound at space boundaries.

5-2 Evaluation with the Perception Module

To validate the effectiveness of our planner as a complete system, we integrate our
planner with the perception module from [10] and conduct experiments in a simulated
environment with moving pedestrians.

Master of Science Thesis Siyuan Wu

38 Results and Discussion

5-2-1 Experimental Setup

Figure 5-10: Screenshot of the simulated environment, where four drones are flying in a dynamic
environment with 6 pedestrians.

The experiment is conducted in a simulated environment with moving pedestrians, as
shown in Figure 5-10. In this environment, four drones are initialized at four corners
of the space and are required to fly to the opposite corner similar to the bilateral swap
task in Section 6-3-2. The size of each drone is 0.5 m × 0.5 m × 0.3 m. Each drone
is equipped with a depth camera with an 85.2-degree horizontal field of view (FOV)
to sense the environment. The orientation of the depth camera is marked as a white
cone in Figure 5-10. We use DSP map [10] to generate the particle-based map for the
planner. In the planning stage, we modify the risk threshold to 0.20 to allow the planner
to generate more conservative trajectories with uncertain perceptions. The maximum
velocity and acceleration of the drone are limited to 1.5 m/s and 4.0 m/s2 respectively.

5-2-2 Results

In Figure 5-11, we show the planning results at a certain time step when 4 drones are
coordinating to avoid collision with each other. The figure on the left is a bird-eye view
of the environment in Gazebo, and the figure on the right is the corresponding visualiza-
tion of the bottom-right drone. Within the visualization, the discretized particle-based
map is shown, colored by the z-axis value of the particles. The particles of pedestrians
and other drones are shown on the map. The red path represents the planned path
searched by the risk-aware kino-dynamic A* algorithm. Additionally, safety corridors
generated by the searched path are depicted in transparent blue. As shown in the fig-
ure, the particles and upcoming trajectories of other drones are represented as particles
in the map, where a collision-free path is searched from. Safety corridors are generated
to avoid the people on the upper right, as well as other drones on the left. The corridor
encompasses the area currently occupied by the drone on the left because the shared

Siyuan Wu Master of Science Thesis

5-3 Computational Efficiency Analysis 39

trajectory shows that it will move downward. The searched A* path moves upward to
avoid collision with the drone on the left as shown in Figure 5-11.

Figure 5-11: Visualization of the planning results of the bottom-right drone in Gazebo and RViz
when 4 drones are encountering each other in a dynamic environment with 6 pedestrians.

Based on the data presented in Table 5-5, it’s evident that the success rate diminishes
as the number of pedestrians in the environment increases. There are two main reasons
for these collisions. First, the camera’s restricted field of view (FOV) can lead to
undetected pedestrians outside this view. As shown in Figure 5-11, there are several
pedestrians whose walking directions are perpendicular to the drone camera direction.
The drone is not able to detect these pedestrians if they are walking from the side or
rear. Second, the time delay in the perception module also contributes to the collision.
In our case, the computation time of the DSP map fluctuates between 20 ms and 100
ms, depending on the size of the point cloud input. The planned trajectories will be
affected by these perception delays, compromising the evasive maneuvers and leading
to potential collisions.

Num.
Ped.

Success
rate

Failure rate Trajectory time (s) Avg. min. dist (m)

Dead. rate Coll. rate Avg. Min. Max. Obs MAV

4 0.833 0.000 0.167 19.021 ± 1.688 16.500 23.176 0.990 1.173
6 0.611 0.037 0.352 19.016 ± 1.765 13.908 24.100 0.270 1.167
8 0.444 0.009 0.546 19.024 ± 2.053 15.460 25.160 0.170 1.153

Table 5-5: Results of the proposed planner in the simulation with perception module.

5-3 Computational Efficiency Analysis

The run time of each step is evaluated on a laptop with an AMD R7-5800H CPU.
As shown in Figure 5-12, the search step takes less than 2 ms in most cases. The
corridor generation step takes 2.34 ms on average. The trajectory optimization step
takes 6.93 ms on average, which is time-consuming due to the large number of polygon
planes as corridor constraints. In general, the execution time of our planner averages
10.04 ms, ranging from a minimum of 0.53 ms to a maximum of 114 ms. The results

Master of Science Thesis Siyuan Wu

40 Results and Discussion

demonstrate that our method can be deployed on robots with limited computational
resources. Additionally, it is significantly faster than 31.04 ms reported by MADER
[40].

Figure 5-12: The execution time of each step in our method.

Siyuan Wu Master of Science Thesis

Chapter 6

Prototype Implementation

In this chapter, the engineering implementation of the experimental multi-MAV plat-
form for future real-world experiments is presented. This platform is used to validate
the utility and feasibility of the proposed multi-robot planning algorithms. First, the
hardware design will be introduced, including the selection and discussion of sensors,
motors, and computational boards mounted. Next, we will present the software ar-
chitecture used in this thesis work. Finally, the network communication setup will be
discussed.

6-1 Hardware Platform

The method proposed in Chapter 4 requires an autonomous MAV platform that has
onboard sensing, computing, and communication capabilities to achieve real-time envi-
ronment sensing, obstacle avoidance, and safe navigation. Therefore, we need to design
a fully-equipped and versatile MAV platform to validate the proposed algorithm in real-
world experiments. To reach this goal, the designed MAV is required to carry a depth
sensor to provide environmental perception based on depth images and is equipped
with powerful computing modules. Safety is an important aspect of robotics research,
therefore, the MAV design should consider sufficient strength to withstand crushes and
the incorporation of propeller guards to prevent potential harm to humans. Further-
more, because of the scale limitations of the experimental environments, the size and
weight of the designed MAV are limited. To balance total weight and computation
powers, we will discuss the hardware selection in the following sections.

6-1-1 Overview

To meet the above requirements, there exists a variety of open-sourced research plat-
forms. A widely-used platform in many MAV works is Crazyflie 2.0 [86], which has a

Master of Science Thesis Siyuan Wu

42 Prototype Implementation

Framework Onboard
Computer

Low-Level
Controller CPU Mark GPU Mark

(TFLOPS)
Frame

Size (mm)
Total

Weight (g) Thrust/Weight

Crazyflie [86] custom N/A 92 27 ≈2.26
Parrot Bebop2 [30] custom 1343 1.33 - ≈750 ≈2

ASL-Flight [87] DJI 3383 887 3620 ≈2.32
RPG-Quad [88] Betaflight 633 - - ≈4.00
MRS UAV [89] PX4 8846 450 - ≈2.50

FAST-Drone-250 [5] PX4 9954 250 ≈1500 ≈4.00
RPG-Agilicious[90] custom 1343 1.33 264 750 ≈5.00

Ours PX4 2000 2.12 180 502 ≈3.50

Table 6-1: A comparison of different MAV platforms

92 mm wheelbase and only weighs 27g. However, it is too small to carry additional
resources for onboard perception and computation. Although commercial companies,
such as Parrot, Skydio, and DJI, have provided various drone platforms, however, due
to their limited software development kits (SDK), researchers have limited access to
their onboard sensors and computers. Thus, robotics research based on these types
of drones is inconvenient. Some researchers managed to design their platform based
on these drones, such as [91], who designed a mount for the extra sensor and the
onboard computer. Control commands are sent to onboard drivers via a ROS wrap-
per, which translates input commands into internal flight commands. However, due
to the limited functionalities of the ROS wrapper, some special requirements, such
as yaw control, high-speed flying, and agile maneuverability, may not be met. More
and more laboratories around the world have developed their own research platform,
such as ASL-Flight [87], CUVT-MRS-UAV [89], ZJU-FAST-Drone-250 [5, 6] and RPG-
Agilicious [90]. However, these platforms are designed for specific research purposes,
such as drone racing [88, 90] and outdoor exploration and inspection [87, 89]. These
platforms are compared on the basis of their onboard capability, size, weight, and agility
in Table 6-1.

Figure 6-1: 3D model of the designed drone platform

Here, we introduce our human-friendly MAV system designed for indoor autonomous

Siyuan Wu Master of Science Thesis

6-1 Hardware Platform 43

navigation. The MAV platform is designed to be versatile and can be used for various
research, such as cooperative exploration, cooperative localization and mapping, and
autonomous navigation in unknown dynamic environments, which is what we discussed
in this thesis. Our drone platform has a wheelbase size of 180 mm and a total weight
of 500g, which is small enough for indoor experiments and large enough to carry es-
sential sensors and computing modules for our tasks. It is equipped with a RealSense
D455 depth camera for onboard perception and an NVIDIA Jetson Xavier NX board
for onboard computation. We use the Holybro Kakute H7 V2 flight controller, which
integrates a 6-axis inertial measurement unit (IMU) and a barometer, to provide on-
board attitude estimation and altitude control. The drone is powered by a 4S 850mAh
LiPo battery, which only has 120g weight and can provide enough power for 5 minutes
of flight time. The system architecture is shown in Figure 6-1 as a 3D model.

6-1-2 System Architecture

An autonomous drone consists of multiple modules, including the frame, motors, pro-
pellers, flight controller, sensors, and payload. This equipment can be categorized into
three parts: propulsion system, flight control system, and computation system. Figure
6-2 provides a comprehensive overview of our MAV system.

The propulsion system includes an electronic speed controller (ESC), motors, propellers,
and batteries. It thrust the drone and provides the drone with the ability to fly in the
air. In our design, we use four BetaFPV 1508 3600KV brushless motors with 3-inch
propellers. According to the manufacturer, each motor can provide 150g of thrust at
50% throttle. The motors are driven by four Holybro Tekko32 F3 35A ESCs. These
modules are powered by a 4S 2000mAh LiPo battery, which can allow the drone to fly
aggressively for 5 minutes.

The flight control system includes the flight controller, accelerometer, gyroscope, mag-
netometer, barometer, and GPS. It provides the drone with the ability to estimate its
state and control its attitude and altitude, as well as communication with the joystick
and the ground station. Our drone uses a Holybro Kakute H7 V2 flight controller unit
which integrates IMU and gyroscope with a total weight of 8g. The Wi-Fi telemetry
modules are connected to the flight controller via a serial port, which builds a UDP
connection with the ground station. It can also communicate with onboard computers
via a TTL to USB converter, which receives upper-level control commands from the
onboard computer and sends back the state estimation of the drone.

The computation system includes an onboard computer and a depth camera. It provides
the drone with the ability to perceive the environment and plan a trajectory. The
onboard computer is an NVIDIA Jetson Xavier NX board, which has a 6-core ARM
CPU and a 384-core NVIDIA Volta GPU. The depth camera is a RealSense D455
camera, which is able to provide a depth range of 0.2 to 6 m with a resolution of
640x480 at 30Hz. The total weight of the computation system is 260g, which is more
than half of the total weight of the drone.

Master of Science Thesis Siyuan Wu

44 Prototype Implementation

GND
R6

5V

Holybro Kakute H7V2
Flight Controller Unit

GNDR4 5VT4

T1
GND

R1

GND
RX

5V

TX

WiFi Telemetry

Ground Station

ESC & Motors

Joystick

GND
SBUS

5V

RC Receiver

LiPo 4S Battery

UART Adapter

RX
GND

TX

Onboard Computer
NVIDIA Jetson Xavier NX
+ A203v2 Carrier Board

USB

RealSense Depth D450 module

USB

Propulsion System

Flight Control System

Upper-Level Computer

Figure 6-2: The electrical settings of our MAV system.

6-1-3 Perception

The perception system provides the drone with the ability to perceive the environment
and estimate its state, which can be summarized as two research tasks: localization
and mapping. The localization algorithms fuse data from different sensors to provide
the real-time state estimation of the drone. The mapping algorithms build a map of
the environment from the raw point cloud data, which is usually represented as a 3D
occupancy map in practice [37, 10].

There are various perception approaches in the community, two popular approaches
are vision-based and lidar-based approaches based on the type of sensors used. The
vision-based approach is the most common one, which employs RGB-D cameras to per-
ceive the environment. The RGB image provides the drone with the ability to detect
and track objects, while the depth image gives the distance estimation. The localiza-
tion task can be accomplished by employing various visual-inertial odometry (VIO)
algorithms that fuse IMU data with images, using monocular [92, 93] or stereo [94,
95] cameras. Intel RealSense cameras are commonly used for MAVs as they are small,
lightweight, and cost-effective. It should be noted that with RealSense depth cameras,
the protective casing can be detached, enabling us to utilize the camera modules and
vision processing units individually. This modular approach significantly minimizes the
comprehensive mass of the camera, reducing it to a mere 30g. Meanwhile, lidar-based
approaches utilize LiDARs for perception, and various corresponding localization algo-
rithms have been proposed recently [96, 97]. Since LiDARs can provide a much larger
perception range both in field-of-view and detection range. This increased perception
scope facilitates the detection of a larger number of features, enhancing the accuracy
and robustness of the odometry estimates produced by Lidar-Inertial Odometry (LIO)
systems. Consequently, these LIOs often outperform Visual-Inertial Odometry (VIO)
systems in this aspect. Traditionally, LiDARs were heavy and expensive, making them

Siyuan Wu Master of Science Thesis

6-1 Hardware Platform 45

Approach Sensor Weight Perception Range Frequency Horizontal FOV Price

Vision Intel RealSense D435i 72g 0.2-10m 60Hz 87ř 365$
Intel RealSense D455 103g 0.5-10m 60Hz 87ř 419$

LiDAR
Livox Mid-360 265g 0.1-40m 360ř 749$

Velodyne Puck LITE 590g 0.5~100m 20 Hz 360ř 7999$
Ouster OSDome 200g 0.5-20m 100Hz 360ř 16000$

Table 6-2: A comparison between vision-based and lidar-based approaches

unsuitable for miniaturized MAVs. However, recently introduced commercial LiDARs,
like LIVOX Mid-360 1, weigh less than 300g, which is comparable to most RGB-D
cameras. Hence, we compare the two types of sensors in Table 6-2.

As introduced in the previous section, we use RealSense D455 to provide onboard per-
ception for our drone. The consideration of choosing this sensor includes the following
aspects:

• Weight: Considering the flight time of our drone platform, the total weight of
the system should be as light as possible. The weight of Lidar is significantly
heavier than the depth camera, which may influence the overall performance of
the drone.

• Price: Another reason for opting against LiDAR is its prohibitive cost.

• Usability: The choice of perception module should be aligned with the require-
ments of the implemented perception algorithm. Given that our DSP-map [10]
demonstrates improved compatibility with depth cameras in dynamic environ-
ments due to its pyramid structure for particle estimation, we have chosen to use
depth cameras as our main onboard perception sensors.

• Perception Accuracy: Taking into account two different types of RealSense
cameras, the depth estimation of D455 is twice as accurate as D435i in the same
perception range, although it is slightly longer and heavier.

Based on the aforementioned considerations, the Intel RealSense D455 depth camera
is the best fit for our drone platform.

6-1-4 Assembly Process

The process of assembling the drone hardware is visually depicted in Figures 6-3 and
6-4. Firstly, the power supply is soldered to both the flight controller and the Electronic
Speed Controller (ESC) to provide the necessary power to the drone. Following this,
the motor is securely attached to the drone’s base and integrated with the ESC. The
flight controller and ESC are then mounted onto the drone base. Next, you should
connect the propellers to the motors carefully by considering the mounting direction
to ensure the propulsion system can function correctly. Subsequently, the supporting

Master of Science Thesis Siyuan Wu

46 Prototype Implementation

Figure 6-3: The mounting of the drone base

components and the battery are positioned on the drone base, ensuring that the drone’s
center of gravity aligns with the central point of the base.
To verify the correct rotational order of the propeller, a manual flight test can be
conducted. A misaligned propeller will have unbalanced torque, which will dangerously
cause the drone to spin uncontrollably. In the final step of assembly, the onboard
computer and the depth camera are installed on the drone base, as depicted in Figure
6-4.

Figure 6-4: The mounting of the onboard computer and the depth camera

6-2 Software Architecture

To address the complexity of the drone platform, it is essential to design a software
architecture that is modular and extensible, enabling the reusability of software com-

1https://www.livoxtech.com/mid-360

Siyuan Wu Master of Science Thesis

https://www.livoxtech.com/mid-360

6-2 Software Architecture 47

Figure 6-5: The software architecture of our drone platform

ponents. The architecture should support the integration of various functionalities and
promote flexibility. As depicted in Figure 6-5, the software architecture of our drone
platform comprises five primary components: perception, localization, planning, con-
trol, and communication. Each component serves a specific function and is color-coded
to distinguish its role within the system visually. These components are implemented
on the onboard computer or embedded within the flight controller. The flight controller
itself is programmed using the PX4 firmware, which is a widely used open-source au-
topilot software suite specifically designed for drones. On the onboard computer, the
remaining components are implemented using the Robot Operating System (ROS).
Sensors and actuators are depicted in white in Figure 6-5.
The localization module (marked in orange in Figure 6-5) is responsible for estimating
the pose of the drone in the global coordinate system. In our system, the localization
module utilizes a motion capture system to obtain precise global position and altitude
information for the drone. By detecting the reflective markers placed on the drone, it
is able to accurately track and capture the drone’s pose, which is then published at
a rate of 50 Hz. To further enhance the accuracy of the pose estimation and reduce
latency, the module fuses this pose information with high-frequency data from the
onboard Inertial Measurement Unit (IMU). This fusion process performed within the
flight controller results in a more refined and precise estimation of the drone’s pose.
The perception module (marked in blue) is responsible for processing the point cloud
data from the depth camera and generating the environment map. It is implemented
based on the DSP-map [10] algorithm, which is a novel probabilistic mapping algo-
rithm for dynamic environments. It is able to build a dynamic occupancy map with
predictions of the future states of the environment.
The planning module (marked in yellow) generates a collision-free trajectory based on
the DSP map and the current pose of the drone. A detailed discussion can be found in
Chapter 4.

Master of Science Thesis Siyuan Wu

48 Prototype Implementation

Then, the trajectory is sent to the control module (marked in cyan), which is responsi-
ble for controlling the drone to follow the trajectory. The optimized trajectory is first
discretized into a series of target state points, which are then sent to the tracking con-
troller. The tracking controller is a model-based cascaded PID controller implemented
in ROS that is responsible for calculating the desired state input for the drone to track
the target state points. The target state points contain the desired position, altitude,
velocity, and acceleration of the drone at each time step. These inputs are then sent
to the low-level controller implemented in the flight controller to calculate the desired
thrust of each motor. We use MAVROS to communicate with the ROS nodes running
on the onboard computer and PX4 autopilot running on the flight controller.

The trajectory is also sent to the communication module (marked in purple) to be
broadcasted to other drones in the network. The details of the communication modules
will be discussed in Section 6-3. In the past decades, there have been a variety of meth-
ods proposed for prediction problems in such environments, which can be categorized
into two groups. One category of methods considers the dynamic obstacles and possible
static obstacles uniformly and predicts the future states of all the obstacles. The other
category detects the dynamic obstacles from the static background and only predicts
the future state of the detections.

6-3 Network Communication

Multi-robot navigation requires the coordination of multiple robots, in which the robots
need to communicate to exchange information. The robustness of the communication
is significant since communication failure may lead to the collision of the robots. In
our system, robots communicate with each other through the 5GHz wireless network
with ROS. The network is able to achieve a communication bandwidth from 10MB/s to
300MB/s, which is sufficient for the exchange of trajectory information. The exchanged
information includes 10 Hz planned trajectories sent from the planning node, as well as
100 Hz pose estimation from the OptiTrack system. The architecture of the multi-MAV
communication network is illustrated in Figure 6-6.

6-3-1 Existing Solutions

There are several methods to establish a communication network for multi-robot sys-
tems via ROS, including

1. ROS 1 XML-RPC middleware 2

2. ROS 2 DDS middleware 3

3. Custom middleware
2http://wiki.ros.org/ROS/Technical%20Overview#Topic_Transports
3https://design.ros2.org/articles/ros_on_dds.html

Siyuan Wu Master of Science Thesis

6-3 Network Communication 49

Figure 6-6: Communication network of the designed multi-robot system.

The ROS 1 XML-RPC middleware is the default middleware for ROS 1. It uses a
master-slave-based architecture to establish the communication network between mul-
tiple robots. It is mandatory to have a central master machine to manage the commu-
nication between nodes. The master node is responsible for registering the topics and
the nodes within and between robots, and it also provides the service to resolve the IP
address of each robot. The major drawback is the existence of the master node, which
limits its robustness and scalability, making it challenging to deploy on multi-robot
systems when the status of the communication network is not ideal [98].

The communication configurations are complex: each robot has to set up the correct
IP address under the network, as well as the correct ROS master URI and hostname of
each robot. When launching the ROS node, it is required to find the ROS core on the
master machine first to register the node and resolve the topic subscription relationship.
In addition, since all the ROS node relies on communication with the master machine,
the failure of communication between the robot and the master machine will lead to
the failure of the whole system. The communication architecture of ROS 1 XML-RPC
middleware is illustrated in Figure 6-7. A centralized master node is responsible for
managing topic subscriptions between nodes. In this example, two drones rely on the
communication network to exchange trajectory information. Each drone consists of a
mapping node, which constructs a local map using perception data, and a planning
node, responsible for generating safe trajectories.

The ROS 2 DDS middleware is a distributed middleware that relies on the fast Data

Master of Science Thesis Siyuan Wu

50 Prototype Implementation

Figure 6-7: Communication Architecture of ROS1 XML-RPC Middleware.

Distribution Services (DDS) protocol to establish the communication network. Due
to the distributed architecture, it is not necessary to have a master machine for topic
registration and node resolution. Furthermore, users can easily configure the commu-
nication network by launching arbitrary nodes on any machine. However, the major
problem of ROS 2 DDS middleware is its reliability. 4 A primary problem is the in-
termittent disruption of the communication network. The DDS middleware in ROS
2 is typically developed for data exchange among multiple processes on a local ma-
chine, rather than for wireless communication across multiple machines. By default,
fast DDS utilizes the UDP communication protocol, which is less reliable than TCP
when it comes to wireless communication since UDP does not guarantee the delivery
of data. The unstable connection of the communication network will lead to the loss
of data, which is unacceptable for our multi-robot system which relies on trajectory
sharing to avoid mutual collision. Due to this reason, the ROS 2 DDS middleware is
not suitable for multi-robot communication in our system.

Figure 6-8: Communication Architecture of ZeroMQ-based Custom Middleware.

A more reliable and practical solution for multi-robot communication is to use a custom
4https://answers.ros.org/question/403517/ros2-network-communication-does-it-even-work-reliably/

Siyuan Wu Master of Science Thesis

6-3 Network Communication 51

socket-based middleware. Using libraries such as sys/socket.h, one can write custom
socket communication code for TCP or UDP to convert ROS messages into TCP data
streams and send them to a specific robot. As mentioned before, TCP is more reliable
than UDP because UDP is only responsible for sending and receiving data without
considering whether the recipient is online or has received the data. To avoid writing
the socket communication code from scratch, we use ZeroMQ 5 as our middleware.

ZeroMQ provides a lightweight, high-performance messaging library for TCP commu-
nication that simplifies the implementation of communication patterns between dis-
tributed components. It encapsulates all the complexities of socket communication
and provides a set of "data-oriented" API interfaces for us to utilize. The ZeroMQ-
based communication network is illustrated in Figure 6-8. Each robot can start au-
tonomously and connect in random order. The communication network is established
by the ZeroMQ-based custom middleware. Figure 6-9 shows the communication archi-
tecture of the ZeroMQ-based custom middleware in our system. Similar to the system
in Figure 6-7, two drones rely on the communication network to exchange trajectory
information. Each drone consists of a mapping node, which constructs a local map
using perception data, and a planning node, responsible for generating safe trajectories

In the following sections, we will compare the communication performance of the
ZeroMQ-based custom middleware and the ROS 1 XML-RPC middleware in a multi-
robot system with 3 drones.

Figure 6-9: Communication experiment setting under ZeroMQ-based network

5https://zeromq.org/

Master of Science Thesis Siyuan Wu

52 Prototype Implementation

6-3-2 Verification

Experimental Setup

The compare the performance of the ROS 1 XML-RPC middleware and the ZeroMQ-
based custom middleware in real-world scenarios, we conduct a simple experiment to
show the latency of both methods. We use three drones with the same hardware
configuration mentioned in Section 6-1, and build a simple communication network
under a 5GHz wireless network. The architecture of this network can be seen in Figure
6-10. Each drone is equipped with a ROS talker node and a ROS listener node. The
talker node publishes a text message with a local timestamp t0 to the listener node,
and the listener node sends back the message immediately after receiving it. Figure
6-10 illustrates the experiment setup. The message is sent at 100 Hz with a bandwidth
of 2 KB/s which is similar to the bandwidth of the trajectory message in our system.
When the talker node receives the message, it will record the timestamp it receives the
returned message as t2. The local communication latency is calculated by half of the
time difference between the received timestamps and the initial timestamp recorded by
the talker node, i.e.,

∆t = t2 − t0

2
(6-1)

The reason is due to the time synchronization problem between the two machines.
Accurate time synchronization between both machines is hard to achieve due to the
communication delay and the clock drift. Therefore, the time delay was recorded on the
talker machine but only one-way communication latency is calculated. This experiment
is performed in 30 seconds and the average, maximal, and minimal latency are recorded.

Figure 6-10: Illustration of communication experiment

Experiment Results

Figures 6-11 and 6-12 show the comparison of communication latency between ROS 1
XML-RPC middleware and the custom middleware based on ZeroMQ. The label com-
munication13 in both figures indicates the communication between drone 1 and drone
3 where drone 1 is the talker and drone 3 is the listener. The changes in communi-
cation latency over time for each connection are depicted in the figure, represented
by accompanying error bars. According to the results, the ZeroMQ-based middleware
achieves a latency of up to 200 ms. This latency is acceptable, as the trajectory plans

Siyuan Wu Master of Science Thesis

6-3 Network Communication 53

every 0.1 seconds with a planning horizon of 2 seconds. However, the vanilla ROS 1
XML-RPC communication setup produces increased latency. It starts with a latency
of 200ms but increases to 10s in the end. The reason is obvious: ROS 1 XML-RPC
middleware cannot handle such a large amount of messages in a slow network with
limited bandwidth. Messages cannot be sent and received in time, so they were queued
in a buffer. Latency increases as the buffer size increases.

Figure 6-11: Average communication latency under ZeroMQ-based custom middleware network

To further test the robustness of the ZeroMQ-based middleware, we perform a stress
test which is illustrated in Figure 6-13 and 6-14. The test aims to discover the influence
of other running ROS nodes on the communication latency and to verify the On each
drone, we started ROS nodes of mapping and planning modules, as well as the talker
and listener nodes mentioned above. The mapping and planning modules will occupy
CPU resources and onboard communication bandwidth, which may affect the multi-
MAV communication latency.
According to the results, the communication latency of the ZeroMQ-based middleware
increases but remains stable. The average communication latency between drone 1 and
drone 2 increases to 150 ms. However, the ROS 1 XML-RPC middleware failed to
handle the test. Similarly to previous results, it cannot deal with communication and
the buffer size of waiting messages increases over time.

6-3-3 Discussion

Compared to the ROS 1 XML-RPC middleware, ZeroMQ-based custom middleware
offers the following advantages:

Master of Science Thesis Siyuan Wu

54 Prototype Implementation

Figure 6-12: Average communication latency under ROS 1 XML-RPC middleware network

1. Robustness: It eliminates the need to start a master ROS node as a base station.
Each robot can start autonomously and connect in random order.

2. Flexibility: Users can send and receive specific ROS topics instead of transmit-
ting all topics to the master machine, as required in ROS 1.

3. Usability: All IP configurations and ROS topics can be specified together, which
avoids setting up the hostname and ROS master URI of each robot thus simpli-
fying the setup process.

Additionally, this custom middleware is more reliable than ROS 2 DDS communication,
since it utilizes socket communication based on the TCP protocol, which has a better
performance in wireless communication. Based on the above experimental results, our
system will use the ZeroMQ-based custom middleware for multi-robot communication.

Siyuan Wu Master of Science Thesis

6-3 Network Communication 55

Figure 6-13: Average communication latency under ZeroMQ-based custom middleware network
in the stress test

Figure 6-14: Average communication latency under ROS 1 XML-RPC middleware network in
the stress test

Master of Science Thesis Siyuan Wu

56 Prototype Implementation

Siyuan Wu Master of Science Thesis

Chapter 7

Conclusion

7-1 Summary

In this thesis, a risk-aware decentralized planning algorithm is proposed for multiple
micro-aerial vehicles in unknown and dynamic environments, based on the particle-
based map representation which predicts and evaluates future collision risks. Using
this map representation, the proposed planning method seamlessly integrates both
robot coordination and dynamic obstacle avoidance. Dynamically feasible trajectories
are planned in real-time without any prior information about the dynamic environment.

In the experiment section, we first compare the proposed method with two state-of-
the-art works. To this end, simulation environments with randomly generated dynamic
obstacles are built. Given that the methods being compared concentrate solely on plan-
ning without a perception front-end, the experiments are carried out with ground truth
local trajectories of dynamic obstacles known to every planner. The result shows that
our method achieves competing results with the baselines in dense environments with
cylindrical obstacles, and outperforms the baselines in a more complex environment
with both cylindrical and circular obstacles, in terms of the success rate and trajectory
time. Moreover, by classifying the failure cases into collision and deadlock, we find that
our method has a lower collision rate compared to the baselines, and the majority of
failures are due to deadlock cases. Our method outperforms MADER with a 98.5%
higher success rate and a 21.9% reduction in flight time in the complex environment.
Compared to EGO-Swarm, we see an 88.2% decrease in the collision rate and a 13.6%
increase in the success rate. This result indicates that the proposed method while be-
ing conservative, ensures safety against potential collisions, making it well-suited for
real-world applications with safety-critical requirements.

To understand how the proposed method performs integrating with perception modules,
simulation experiments in a more realistic environment with pedestrians are conducted
with the onboard perception. The results show that the proposed method is able

Master of Science Thesis Siyuan Wu

58 Conclusion

to handle collision avoidance with pedestrians while coordinating with other robots.
However, the performance of the proposed method is constrained by the FOV of the
onboard depth camera, which affects successful avoidance in environments with high
pedestrian density.

7-2 Future Works

The proposed method can be improved in the future in several aspects.
During the experiment, a major problem of the proposed method is the occurrence of
deadlocks. This can be attributed to the limitations of the risk-aware spatial-temporal
kinodynamic path-searching algorithm, which searches for motion primitives that can
minimize the control effort and total time. The heuristic function, based on Pon-
tryagin’s minimum principle, typically identifies the shortest path to the goal. The
algorithm has a tendency to choose primitive paths that are straight to the goal, which
is proven to be effective in static environments. However, in dynamic environments
where the obstacles are moving, the shortest path normally is not the optimal path.
This greedy strategy makes the robot prone to deadlock situations. To solve this prob-
lem, the cost and heuristic function of the path-searching algorithm can be modified
to consider the blocking risk of the primitive paths. By leveraging this information, I
believe the deadlock cases can be reduced.
The second observation from the experiments is that the planner does not effectively
utilize available temporary free spaces for faster flight. One reason for this is that the
feasible region for trajectory optimization is constrained by the corridor’s size, which
in turn is determined by the path found using kinodynamic A*. The searched path is
not time optimal, and the planner design cannot effectively optimize the trajectory in
terms of time. To solve this problem, the corridor generation process can be enhanced
by factoring in the timing of the particles on the map. However, introducing such im-
provements would necessitate the addition of spatial-temporal constraints to trajectory
optimization, which is still an open question in this area.
Another potential improvement involves accounting for communication delays and fail-
ures when mapping multi-robot trajectories. Currently, the proposed method assumes
that communication is perfect without delay or failure, which limits the application in
real-world scenarios. The quality of trajectory mapping could be enhanced by incor-
porating models of potential communication delays and necessary replanning into the
risk function. By considering this risk in the map, robots can plan safer trajectories
in advance to avoid potential collisions with other robots caused by communication
failures. Future work will emphasize improving communication robustness, paving the
way for practical demonstrations of the proposed method in real-world settings.

Siyuan Wu Master of Science Thesis

Appendix A

Additional Results

A-1 Performance of Different Planners in the Cylindrical Obstacle
Environment

Task Planner Succ.
rate

Fail. rate Trajectory time (s) Avg. min. dist (m)

Deadlock
rate

Coll.
rate Min. Max. Avg. obs. MAV

Bilateral Swap
EGO-Swarm 0.83 0.00 0.18 9.33 19.03 12.24±2.01 0.27 0.49
MADER 0.76 0.16 0.08 9.34 21.76 12.42±2.76 0.38 0.90
Proposed 0.83 0.05 0.13 16.08 26.86 20.79±2.13 0.23 1.07

Unilateral Swap
EGO-Swarm 0.89 0.00 0.11 9.76 18.50 11.99±1.66 0.28 0.96
MADER 0.74 0.19 0.08 9.30 23.72 12.33±2.89 0.39 1.10
Proposed 0.78 0.08 0.15 3.76 28.76 20.07±3.93 0.25 1.36

Cross Swap
EGO-Swarm 0.86 0.00 0.14 8.70 24.37 11.96±2.38 0.28 0.47
MADER 0.81 0.14 0.05 9.62 26.00 12.92±3.04 0.41 0.88
Proposed 0.83 0.06 0.11 5.65 30.06 19.98±3.37 0.23 1.02

Table A-1: Comparison of the performance of different planners across different tasks in the
cylindrical obstacle environment with 20 obstacles.

A-2 Performance of Different Planners in the Complex Environ-
ment

Master of Science Thesis Siyuan Wu

60 Additional Results

Task Planner Succ.
rate

Fail. rate Trajectory time (s) Avg. min. dist (m)

Deadlock
rate

Coll.
rate Min. Max. Avg. obs. MAV

Bilateral Swap
EGO-Swarm 0.79 0.00 0.21 9.19 18.00 12.43±1.96 0.24 0.48
MADER 0.60 0.35 0.05 9.36 30.20 15.04±4.61 0.29 0.93
Proposed 0.71 0.06 0.23 4.56 30.52 22.23±3.81 0.19 1.11

Unilateral Swap
EGO-Swarm 0.76 0.00 0.24 7.50 29.10 12.92±3.27 0.23 0.99
MADER 0.55 0.40 0.05 9.49 29.96 15.28±4.16 0.22 1.21
Proposed 0.71 0.10 0.19 5.85 43.42 23.19±4.95 0.19 1.37

Cross Swap
EGO-Swarm 0.81 0.00 0.19 9.07 23.46 12.50±2.23 0.23 0.53
MADER 0.66 0.31 0.03 9.50 29.06 15.22±4.35 0.27 0.94
Proposed 0.74 0.09 0.17 13.13 36.04 21.70±3.72 0.17 1.23

Table A-2: Comparison of the performance of different planners across different tasks in the
cylindrical obstacle environment with 30 obstacles.

Task Planner Succ.
rate

Fail. rate Trajectory time (s) Avg. min. dist (m)

Deadlock
rate

Coll.
rate Min. Max. Avg. obs. MAV

Bilateral Swap
EGO-Swarm 0.78 0.00 0.23 7.48 19.74 12.86±2.59 0.18 0.50
MADER 0.38 0.55 0.08 9.24 31.98 18.27±5.72 0.16 1.00
Proposed 0.45 0.24 0.31 17.74 37.58 24.89±5.05 0.10 1.16

Unilateral Swap
EGO-Swarm 0.85 0.00 0.15 8.93 30.23 13.59±2.94 0.20 1.16
MADER 0.38 0.51 0.11 10.50 40.24 19.28±6.17 0.12 1.25
Proposed 0.54 0.15 0.31 5.99 40.36 24.00±5.05 0.12 1.23

Cross Swap
EGO-Swarm 0.74 0.00 0.26 8.80 26.48 12.71±2.79 0.19 0.50
MADER 0.49 0.48 0.04 9.90 36.56 18.86±5.79 0.18 0.99
Proposed 0.48 0.24 0.29 3.46 40.18 24.09±5.37 0.10 1.18

Table A-3: Comparison of the performance of different planners across different tasks in the
cylindrical obstacle environment with 40 obstacles.

Task Planner Succ.
rate

Fail. rate Trajectory time (s) Avg. min. dist (m)

Deadlock
rate

Coll.
rate Min. Max. Avg. obs. MAV

Bilateral Swap
EGO-Swarm 0.63 0.00 0.38 9.24 22.33 13.36±2.36 0.14 0.48
MADER 0.20 0.76 0.04 11.00 47.34 26.09±8.89 0.06 0.96
Proposed 0.36 0.29 0.35 3.36 47.88 26.72±6.47 0.06 1.19

Unilateral Swap
EGO-Swarm 0.71 0.00 0.29 8.93 21.44 13.59±2.71 0.16 1.15
MADER 0.24 0.70 0.06 10.36 46.64 25.36±9.39 0.08 1.18
Proposed 0.40 0.30 0.30 4.84 48.16 27.42±7.08 0.08 1.40

Cross Swap
EGO-Swarm 0.63 0.00 0.38 8.74 19.65 12.89±2.18 0.15 0.52
MADER 0.36 0.63 0.01 11.19 47.40 24.08±8.56 0.10 1.10
Proposed 0.44 0.24 0.33 16.18 41.38 25.24±5.13 0.06 1.24

Table A-4: Comparison of the performance of different planners across different tasks in the
cylindrical obstacle environment with 50 obstacles.

Siyuan Wu Master of Science Thesis

A-2 Performance of Different Planners in the Complex Environment 61

Task Planner Succ. rate Fail. rate Trajectory time (s) Avg. min. dist (m)

Deadlock rate Coll. rate Min. Max. Avg. obs. MAV

Bilateral Swap
EGO-Swarm 0.93 0.00 0.07 8.80 25.26 12.87±2.621 0.29 0.47

MADER 0.94 0.06 0.00 4.84 26.82 13.14±4.256 0.46 0.86
Proposed 0.99 0.01 0.00 13.94 20.10 15.55±1.218 0.30 0.88

Unilateral Swap
EGO-Swarm 0.93 0.00 0.07 9.36 27.88 13.52±3.471 0.37 1.14

MADER 0.98 0.00 0.03 9.26 27.98 12.88±4.146 0.47 1.26
Proposed 0.85 0.10 0.05 13.48 25.60 16.48±2.1 0.27 0.99

Cross Swap
EGO-Swarm 0.95 0.00 0.05 8.20 23.10 11.66±2.358 0.47 0.51

MADER 0.98 0.01 0.01 9.42 27.48 13.12±4.303 0.52 0.93
Proposed 0.94 0.04 0.03 13.64 21.02 15.58±1.231 0.49 0.87

Table A-5: Comparison of the performance of different planners across different tasks in the
complex environment with 10 obstacles.

Task Planner Succ. rate Fail. rate Trajectory time (s) Avg. min. dist (m)

Deadlock rate Coll. rate Min. Max. Avg. obs. MAV

Bilateral Swap
EGO-Swarm 0.77 0.00 0.23 8.79 30.15 14.36±3.364 0.19 0.48

MADER 0.78 0.23 0.00 9.42 44.68 18.51±6.985 0.21 1.02
Proposed 0.85 0.10 0.05 13.06 21.98 16.05±1.888 0.17 0.90

Unilateral Swap
EGO-Swarm 0.78 0.02 0.19 4.32 34.99 14.7±4.889 0.17 1.13

MADER 0.75 0.20 0.05 9.44 42.54 19.06±6.929 0.18 1.53
Proposed 0.90 0.10 0.00 12.26 23.30 17.02±2.077 0.19 1.06

Cross Swap
EGO-Swarm 0.87 0.00 0.13 8.83 33.82 13.67±4.323 0.22 0.53

MADER 0.84 0.16 0.00 9.58 39.36 18.51±7.147 0.22 0.96
Proposed 0.79 0.21 0.00 13.76 23.26 16.93±2.368 0.13 1.00

Table A-6: Comparison of the performance of different planners across different tasks in the
complex environment with 20 obstacles.

Task Planner Succ. rate Fail. rate Trajectory time (s) Avg. min. dist (m)

Deadlock rate Coll. rate Min. Max. Avg. obs. MAV

Bilateral Swap
EGO-Swarm 0.69 0.00 0.31 7.56 38.11 14.84±4.42 0.12 0.51

MADER 0.51 0.49 0.00 10.90 48.46 26.32±9.571 0.11 1.14
Proposed 0.63 0.38 0.00 8.14 25.38 17.44±3.004 0.08 1.07

Unilateral Swap
EGO-Swarm 0.73 0.01 0.26 9.67 31.41 16.47±4.378 0.14 1.09

MADER 0.50 0.43 0.08 12.16 49.96 27.38±9.724 0.11 1.18
Proposed 0.65 0.35 0.00 14.40 27.10 18.75±2.604 0.11 1.27

Cross Swap
EGO-Swarm 0.69 0.00 0.31 8.69 30.18 14.45±3.739 0.14 0.55

MADER 0.55 0.39 0.06 5.66 49.18 26.15±10.086 0.10 1.15
Proposed 0.70 0.24 0.06 13.06 27.82 17.26±2.92 0.13 0.97

Table A-7: Comparison of the performance of different planners across different tasks in the
complex environment with 30 obstacles.

Master of Science Thesis Siyuan Wu

62 Additional Results

Task Planner Succ. rate Fail. rate Trajectory time (s) Avg. min. dist (m)

Deadlock rate Coll. rate Min. Max. Avg. obs. MAV

Bilateral Swap
EGO-Swarm 0.50 0.00 0.50 7.56 32.94 15.77±4.572 0.06 0.58

MADER 0.29 0.70 0.01 12.62 50.63 37.27±10.095 0.04 1.05
Proposed 0.50 0.50 0.00 13.72 40.24 20.74±5.348 0.06 1.71

Unilateral Swap
EGO-Swarm 0.59 0.00 0.41 10.79 35.23 17.51±4.619 0.09 0.86

MADER 0.28 0.68 0.04 8.66 50.20 35.01±11.873 0.03 1.03
Proposed 0.71 0.29 0.00 8.66 36.11 19.27±3.884 0.10 1.24

Cross Swap
EGO-Swarm 0.45 0.00 0.55 8.98 26.38 15.37±3.958 0.06 0.59

MADER 0.31 0.69 0.00 7.40 49.66 34.96±11.514 0.04 0.91
Proposed 0.65 0.35 0.00 13.44 29.28 19.5±4.255 0.07 1.23

Table A-8: Comparison of the performance of different planners across different tasks in the
complex environment with 40 obstacles.

Task Planner Succ. rate Fail. rate Trajectory time (s) Avg. min. dist (m)

Deadlock rate Coll. rate Min. Max. Avg. obs. MAV

Bilateral Swap
EGO-Swarm 0.38 0.00 0.63 9.51 29.94 16.81±4.662 0.04 0.55

MADER 0.17 0.82 0.01 12.86 50.90 36.7±11.52 0.02 1.12
Proposed 0.55 0.43 0.03 7.98 133.04 21.95±13.532 0.07 1.33

Unilateral Swap
EGO-Swarm 0.39 0.00 0.61 9.68 34.00 17.26±4.993 0.04 1.09

MADER 0.15 0.83 0.03 11.44 50.50 36.6±10.724 0.02 1.27
Proposed 0.59 0.40 0.01 8.33 45.98 21.99±6.312 0.07 1.54

Cross Swap
EGO-Swarm 0.41 0.00 0.59 9.40 27.28 15.19±3.753 0.05 0.53

MADER 0.08 0.93 0.00 9.62 50.94 40.96±10.345 0.01 1.29
Proposed 0.63 0.38 0.00 12.84 41.86 21.66±5.28 0.07 1.23

Table A-9: Comparison of the performance of different planners across different tasks in the
complex environment with 50 obstacles.

Siyuan Wu Master of Science Thesis

Bibliography

[1] K. N. McGuire et al. “Minimal Navigation Solution for a Swarm of Tiny Flying Robots
to Explore an Unknown Environment”. en. In: Sci. Robot. 4.35 (Oct. 30, 2019), eaaw9710.
issn: 2470-9476. doi: 10.1126/scirobotics.aaw9710. eprint: https://www.science.
org/doi/pdf/10.1126/scirobotics.aaw9710. url: https://www.science.org/
doi/abs/10.1126/scirobotics.aaw9710 (visited on 08/13/2022).

[2] Nathan Michael, Jonathan Fink, and Vijay Kumar. “Cooperative manipulation and
transportation with aerial robots”. In: Autonomous Robots 30 (2011), pp. 73–86.

[3] T. Nägeli et al. “Real-Time Motion Planning for Aerial Videography With Dynamic
Obstacle Avoidance and Viewpoint Optimization”. en. In: IEEE Robot. Autom. Lett.
2.3 (July 2017), pp. 1696–1703. issn: 2377-3766. doi: 10.1109/lra.2017.2665693.
(Visited on 05/06/2021).

[4] Feng Chen et al. “PredRecon: A Prediction-boosted Planning Framework for Fast and
High-quality Autonomous Aerial Reconstruction”. In: 2023 IEEE International Confer-
ence on Robotics and Automation (ICRA). 2023. doi: 10.48550/arXiv.2302.04488.

[5] Xin Zhou et al. “EGO-Planner: An ESDF-Free Gradient-Based Local Planner for Quadro-
tors”. In: IEEE Robot. Autom. Lett. 6.2 (Apr. 2021), pp. 478–485. issn: 2377-3766,
2377-3774. doi: 10.1109/lra.2020.3047728. url: https://doi.org/10.1109/LRA.
2020.3047728 (visited on 08/20/2022).

[6] Xin Zhou et al. “Swarm of Micro Flying Robots in the Wild”. en. In: Sci. Robot. 7.66
(May 11, 2022), eabm5954. issn: 2470-9476. doi: 10.1126/scirobotics.abm5954.
(Visited on 05/19/2022).

[7] Boyu Zhou, Hao Xu, and Shaojie Shen. RACER: Rapid Collaborative Exploration with
a Decentralized Multi-UAV System. Sept. 18, 2022. arXiv: 2209 . 08533 [cs]. url:
http://arxiv.org/abs/2209.08533 (visited on 01/11/2023). preprint.

[8] Zhefan Xu et al. “DPMPC-Planner: A Real-Time UAV Trajectory Planning Framework
for Complex Static Environments with Dynamic Obstacles”. In: 2022 Int. Conf. Robot.
Autom. ICRA. 2022 International Conference on Robotics and Automation (ICRA).
May 2022, pp. 250–256. doi: 10.1109/icra46639.2022.9811886.

Master of Science Thesis Siyuan Wu

https://doi.org/10.1126/scirobotics.aaw9710
https://www.science.org/doi/pdf/10.1126/scirobotics.aaw9710
https://www.science.org/doi/pdf/10.1126/scirobotics.aaw9710
https://www.science.org/doi/abs/10.1126/scirobotics.aaw9710
https://www.science.org/doi/abs/10.1126/scirobotics.aaw9710
https://doi.org/10.1109/lra.2017.2665693
https://doi.org/10.48550/arXiv.2302.04488
https://doi.org/10.1109/lra.2020.3047728
https://doi.org/10.1109/LRA.2020.3047728
https://doi.org/10.1109/LRA.2020.3047728
https://doi.org/10.1126/scirobotics.abm5954
https://arxiv.org/abs/2209.08533
http://arxiv.org/abs/2209.08533
https://doi.org/10.1109/icra46639.2022.9811886

64 BIBLIOGRAPHY

[9] Zhefan Xu et al. Vision-Aided UAV Navigation and Dynamic Obstacle Avoidance Using
Gradient-based B-spline Trajectory Optimization. Sept. 14, 2022. arXiv: 2209.07003
[cs]. url: http://arxiv.org/abs/2209.07003 (visited on 09/17/2022). preprint.

[10] Gang Chen et al. Continuous Occupancy Mapping in Dynamic Environments Using
Particles. Feb. 13, 2022. doi: 10.48550/arXiv.2202.06273. arXiv: 2202.06273 [cs].
(Visited on 08/17/2022). preprint.

[11] Glenn Wagner and Howie Choset. “M*: A Complete Multirobot Path Planning Algo-
rithm with Performance Bounds”. In: 2011 IEEERSJ Int. Conf. Intell. Robots Syst.
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sept.
2011, pp. 3260–3267. doi: 10.1109/iros.2011.6095022.

[12] Guni Sharon et al. “Conflict-Based Search for Optimal Multi-Agent Pathfinding”. In:
Artif. Intell. 219 (2015), pp. 40–66. issn: 0004-3702. doi: 10.1016/j.artint.2014.
11.006.

[13] Anna Mannucci, Lucia Pallottino, and Federico Pecora. “On Provably Safe and Live
Multirobot Coordination With Online Goal Posting”. In: IEEE Transactions on Robotics
37.6 (2021), pp. 1973–1991. doi: 10.1109/tro.2021.3075371.

[14] Michal áp et al. “Prioritized Planning Algorithms for Trajectory Coordination of Mul-
tiple Mobile Robots”. In: IEEE Transactions on Automation Science and Engineering
12.3 (2015), pp. 835–849. doi: 10.1109/tase.2015.2445780.

[15] Anna Mannucci, Lucia Pallottino, and Federico Pecora. “Provably Safe Multi-Robot
Coordination With Unreliable Communication”. In: IEEE Robotics and Automation
Letters 4.4 (2019), pp. 3232–3239. doi: 10.1109/lra.2019.2924849.

[16] Soon-Jo Chung et al. “A Survey on Aerial Swarm Robotics”. en. In: IEEE Trans. Robot.
34.4 (Aug. 2018), pp. 837–855. issn: 1552-3098, 1941-0468. doi: 10.1109/tro.2018.
2857475. (Visited on 06/15/2021).

[17] Herbert G Tanner and Amit Kumar. “Formation stabilization of multiple agents using
decentralized navigation functions.” In: Robotics: Science and systems. Vol. 1. Boston.
2005, pp. 49–56.

[18] Tamás Vicsek et al. “Novel type of phase transition in a system of self-driven particles”.
In: Physical review letters 75.6 (1995), p. 1226.

[19] Paolo Fiorini and Zvi Shiller. “Motion Planning in Dynamic Environments Using Veloc-
ity Obstacles”. en. In: The International Journal of Robotics Research 17.7 (July 1998),
pp. 760–772. issn: 0278-3649, 1741-3176. doi: 10.1177/027836499801700706. (Visited
on 11/21/2022).

[20] Daniel Claes et al. “Collision Avoidance under Bounded Localization Uncertainty”. In:
2012 IEEERSJ Int. Conf. Intell. Robots Syst. 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Oct. 2012, pp. 1192–1198. doi: 10.1109/iros.2012.
6386125.

[21] J. Alonso-Mora, P. Beardsley, and R. Siegwart. “Cooperative Collision Avoidance for
Nonholonomic Robots”. In: IEEE Trans. Robot. 34.2 (Apr. 2018), pp. 404–420. issn:
1941-0468. doi: 10.1109/tro.2018.2793890.

Siyuan Wu Master of Science Thesis

https://arxiv.org/abs/2209.07003
https://arxiv.org/abs/2209.07003
http://arxiv.org/abs/2209.07003
https://doi.org/10.48550/arXiv.2202.06273
https://arxiv.org/abs/2202.06273
https://doi.org/10.1109/iros.2011.6095022
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1109/tro.2021.3075371
https://doi.org/10.1109/tase.2015.2445780
https://doi.org/10.1109/lra.2019.2924849
https://doi.org/10.1109/tro.2018.2857475
https://doi.org/10.1109/tro.2018.2857475
https://doi.org/10.1177/027836499801700706
https://doi.org/10.1109/iros.2012.6386125
https://doi.org/10.1109/iros.2012.6386125
https://doi.org/10.1109/tro.2018.2793890

BIBLIOGRAPHY 65

[22] Javier Alonso-Mora et al. “Optimal Reciprocal Collision Avoidance for Multiple Non-
Holonomic Robots”. en. In: Distributed Autonomous Robotic Systems. Ed. by Alcherio
Martinoli et al. Vol. 83. Springer Tracts in Advanced Robotics. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 203–216. isbn: 978-3-642-32722-3 978-3-642-32723-
0. doi: 10.1007/978-3-642-32723-0_15. (Visited on 11/21/2022).

[23] Wenhao Luo, Wen Sun, and Ashish Kapoor. “Multi-robot collision avoidance under
uncertainty with probabilistic safety barrier certificates”. In: Advances in Neural Infor-
mation Processing Systems 33 (2020), pp. 372–383.

[24] Dingjiang Zhou et al. “Fast, On-line Collision Avoidance for Dynamic Vehicles Using
Buffered Voronoi Cells”. en. In: IEEE Robot. Autom. Lett. 2.2 (Apr. 2017), pp. 1047–
1054. issn: 2377-3766, 2377-3774. doi: 10 . 1109 / lra . 2017 . 2656241. (Visited on
04/16/2021).

[25] Hai Zhu and Javier Alonso-Mora. “B-UAVC: Buffered Uncertainty-Aware Voronoi Cells
for Probabilistic Multi-Robot Collision Avoidance”. In: 2019 Int. Symp. Multi-Robot
Multi-Agent Syst. MRS. 2019 International Symposium on Multi-Robot and Multi-
Agent Systems (MRS). Aug. 2019, pp. 162–168. doi: 10.1109/mrs.2019.8901092.

[26] Yufan Chen, Mark Cutler, and Jonathan P. How. “Decoupled Multiagent Path Planning
via Incremental Sequential Convex Programming”. In: 2015 IEEE Int. Conf. Robot. Au-
tom. ICRA. 2015 IEEE International Conference on Robotics and Automation (ICRA).
May 2015, pp. 5954–5961. doi: 10.1109/icra.2015.7140034.

[27] Daniel Morgan et al. “Swarm Assignment and Trajectory Optimization Using Variable-
Swarm, Distributed Auction Assignment and Sequential Convex Programming”. en. In:
The International Journal of Robotics Research 35.10 (Sept. 1, 2016), pp. 1261–1285.
issn: 0278-3649. doi: 10.1177/0278364916632065. (Visited on 08/20/2022).

[28] Mina Kamel et al. “Robust Collision Avoidance for Multiple Micro Aerial Vehicles Using
Nonlinear Model Predictive Control”. In: 2017 IEEERSJ Int. Conf. Intell. Robots Syst.
IROS. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Sept. 2017, pp. 236–243. doi: 10.1109/iros.2017.8202163.

[29] Carlos E. Luis, Marijan Vukosavljev, and Angela P. Schoellig. “Online Trajectory Gen-
eration With Distributed Model Predictive Control for Multi-Robot Motion Planning”.
In: IEEE Robot. Autom. Lett. 5.2 (Apr. 2020), pp. 604–611. issn: 2377-3766. doi: 10.
1109/lra.2020.2964159.

[30] Jiahao Lin, Hai Zhu, and Javier Alonso-Mora. “Robust Vision-based Obstacle Avoid-
ance for Micro Aerial Vehicles in Dynamic Environments”. In: 2020 IEEE Int. Conf.
Robot. Autom. ICRA. 2020 IEEE International Conference on Robotics and Automation
(ICRA). 2020, pp. 2682–2688. doi: 10.1109/icra40945.2020.9197481.

[31] Yingjian Wang et al. “Autonomous Flights in Dynamic Environments with Onboard
Vision”. In: 2021 IEEERSJ Int. Conf. Intell. Robots Syst. IROS. 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). Sept. 2021, pp. 1966–
1973. doi: 10.1109/iros51168.2021.9636117.

[32] Minghao Lu, Han Chen, and Peng Lu. “Perception and Avoidance of Multiple Small
Fast Moving Objects for Quadrotors With Only Low-Cost RGBD Camera”. In: IEEE
Robotics and Automation Letters 7.4 (Oct. 2022), pp. 11657–11664. issn: 2377-3766.
doi: 10.1109/lra.2022.3205114.

Master of Science Thesis Siyuan Wu

https://doi.org/10.1007/978-3-642-32723-0_15
https://doi.org/10.1109/lra.2017.2656241
https://doi.org/10.1109/mrs.2019.8901092
https://doi.org/10.1109/icra.2015.7140034
https://doi.org/10.1177/0278364916632065
https://doi.org/10.1109/iros.2017.8202163
https://doi.org/10.1109/lra.2020.2964159
https://doi.org/10.1109/lra.2020.2964159
https://doi.org/10.1109/icra40945.2020.9197481
https://doi.org/10.1109/iros51168.2021.9636117
https://doi.org/10.1109/lra.2022.3205114

66 BIBLIOGRAPHY

[33] Thomas Eppenberger et al. “Leveraging Stereo-Camera Data for Real-Time Dynamic
Obstacle Detection and Tracking”. In: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Oct. 2020, pp. 10528–10535. doi: 10.1109/
iros45743.2020.9340699.

[34] Zhefan Xu et al. Onboard Dynamic-Object Detection and Tracking for Autonomous
Robot Navigation with RGB-D Camera. en. Feb. 28, 2023. arXiv: 2303.00132 [cs].
url: http://arxiv.org/abs/2303.00132 (visited on 06/18/2023). preprint.

[35] Xin Zhou et al. “EGO-Swarm: A Fully Autonomous and Decentralized Quadrotor
Swarm System in Cluttered Environments”. In: 2021 IEEE Int. Conf. Robot. Autom.
ICRA. 2021 IEEE International Conference on Robotics and Automation (ICRA). May
2021, pp. 4101–4107. doi: 10.1109/icra48506.2021.9561902.

[36] Jialiang Hou et al. Enhanced Decentralized Autonomous Aerial Swarm with Group Plan-
ning. Mar. 2, 2022. arXiv: 2203.01069 [cs]. url: http://arxiv.org/abs/2203.01069
(visited on 06/29/2022). preprint.

[37] Armin Hornung et al. “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees”. In: Autonomous robots 34.3 (2013), pp. 189–206.

[38] Steven M. LaValle. Planning Algorithms. en. Cambridge: Cambridge University Press,
2006. isbn: 978-0-511-54687-7 978-0-521-86205-9. doi: 10.1017/cbo9780511546877.
(Visited on 07/12/2021).

[39] Hai Zhu and Javier Alonso-Mora. “Chance-Constrained Collision Avoidance for MAVs
in Dynamic Environments”. In: IEEE Robot. Autom. Lett. 4.2 (Apr. 2019), pp. 776–783.
issn: 2377-3766. doi: 10.1109/lra.2019.2893494.

[40] Jesus Tordesillas and Jonathan P. How. “MADER: Trajectory Planner in Multiagent
and Dynamic Environments”. In: Tro 38.1 (Feb. 2022), pp. 463–476. issn: 1941-0468.
doi: 10.1109/tro.2021.3080235.

[41] Fei Gao and Shaojie Shen. “Quadrotor Trajectory Generation in Dynamic Environ-
ments Using Semi-Definite Relaxation on Nonconvex QCQP”. In: 2017 IEEE Int. Conf.
Robot. Autom. ICRA. 2017 IEEE International Conference on Robotics and Automation
(ICRA). May 2017, pp. 6354–6361. doi: 10.1109/icra.2017.7989750.

[42] Botao He et al. “FAST-Dynamic-Vision: Detection and Tracking Dynamic Objects with
Event and Depth Sensing”. In: 2021 IEEERSJ Int. Conf. Intell. Robots Syst. IROS. 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Sept.
2021, pp. 3071–3078. doi: 10.1109/iros51168.2021.9636448.

[43] Han Chen and Peng Lu. “Real-Time Identification and Avoidance of Simultaneous Static
and Dynamic Obstacles on Point Cloud for UAVs Navigation”. en. In: Robotics and
Autonomous Systems 154 (Aug. 1, 2022), p. 104124. issn: 0921-8890. doi: 10.1016/j.
robot.2022.104124. (Visited on 02/23/2023).

[44] Georg Tanzmeister and Dirk Wollherr. “Evidential Grid-Based Tracking and Mapping”.
In: IEEE Transactions on Intelligent Transportation Systems 18.6 (2017), pp. 1454–
1467. doi: 10.1109/tits.2016.2608919.

Siyuan Wu Master of Science Thesis

https://doi.org/10.1109/iros45743.2020.9340699
https://doi.org/10.1109/iros45743.2020.9340699
https://arxiv.org/abs/2303.00132
http://arxiv.org/abs/2303.00132
https://doi.org/10.1109/icra48506.2021.9561902
https://arxiv.org/abs/2203.01069
http://arxiv.org/abs/2203.01069
https://doi.org/10.1017/cbo9780511546877
https://doi.org/10.1109/lra.2019.2893494
https://doi.org/10.1109/tro.2021.3080235
https://doi.org/10.1109/icra.2017.7989750
https://doi.org/10.1109/iros51168.2021.9636448
https://doi.org/10.1016/j.robot.2022.104124
https://doi.org/10.1016/j.robot.2022.104124
https://doi.org/10.1109/tits.2016.2608919

BIBLIOGRAPHY 67

[45] Vitor Guizilini, Ransalu Senanayake, and Fabio Ramos. “Dynamic Hilbert roMaps:
Real-Time Occupancy Predictions in Changing Environments”. In: 2019 International
Conference on Robotics and Automation (ICRA). 2019 International Conference on
Robotics and Automation (ICRA). May 2019, pp. 4091–4097. doi: 10.1109/icra.
2019.8793914.

[46] Khushdeep Singh Mann et al. Predicting Future Occupancy Grids in Dynamic Environ-
ment with Spatio-Temporal Learning. May 6, 2022. doi: 10.48550/arXiv.2205.03212.
arXiv: 2205.03212 [cs]. (Visited on 02/20/2023). preprint.

[47] Bernard Lange, Masha Itkina, and Mykel J. Kochenderfer. LOPR: Latent Occupancy
PRediction Using Generative Models. Oct. 3, 2022. doi: 10.48550/arXiv.2210.01249.
arXiv: 2210.01249 [cs]. (Visited on 02/20/2023). preprint.

[48] Gang Chen et al. “RAST: Risk-Aware Spatio-Temporal Safety Corridors for MAV Navi-
gation in Dynamic Uncertain Environments”. In: IEEE Robotics and Automation Letters
8.2 (2023), pp. 808–815. doi: 10.1109/LRA.2022.3231832.

[49] Sikang Liu et al. “Planning Dynamically Feasible Trajectories for Quadrotors Using Safe
Flight Corridors in 3-D Complex Environments”. In: Ral 2.3 (July 2017), pp. 1688–1695.
issn: 2377-3766. doi: 10.1109/lra.2017.2663526.

[50] Helen Oleynikova et al. “Continuous-Time Trajectory Optimization for Online UAV Re-
planning”. en. In: 2016 IEEERSJ Int. Conf. Intell. Robots Syst. IROS. 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Daejeon, South
Korea: Ieee, Oct. 2016, pp. 5332–5339. isbn: 978-1-5090-3762-9. doi: 10.1109/iros.
2016.7759784. (Visited on 11/30/2021).

[51] Boyu Zhou et al. “Robust and Efficient Quadrotor Trajectory Generation for Fast
Autonomous Flight”. In: Ral 4.4 (Oct. 2019), pp. 3529–3536. issn: 2377-3766. doi:
10.1109/lra.2019.2927938.

[52] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal motion
planning”. In: The international journal of robotics research 30.7 (2011), pp. 846–894.

[53] Charles Richter, Adam Bry, and Nicholas Roy. “Polynomial Trajectory Planning for Ag-
gressive Quadrotor Flight in Dense Indoor Environments”. en. In: Robotics Research. Ed.
by Masayuki Inaba and Peter Corke. Vol. 114. Springer Tracts in Advanced Robotics.
Cham: Springer International Publishing, 2016, pp. 649–666. isbn: 978-3-319-28870-3
978-3-319-28872-7. doi: 10.1007/978-3-319-28872-7_37. (Visited on 11/30/2021).

[54] Dustin J Webb and Jur van den Berg. “Kinodynamic RRT*: Optimal motion planning
for systems with linear differential constraints”. In: arXiv preprint arXiv:1205.5088
(2012).

[55] Hongkai Ye et al. “TGK-Planner: An Efficient Topology Guided Kinodynamic Planner
for Autonomous Quadrotors”. In: IEEE Robotics and Automation Letters 6.2 (2021),
pp. 494–501. doi: 10.1109/lra.2020.3047798.

[56] Hongkai Ye et al. “Efficient Sampling-based Multirotors Kinodynamic Planning with
Fast Regional Optimization and Post Refining”. In: 2022 IEEE RSJ Int. Conf. Intell.
Robots Syst. IROS. 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Oct. 2022, pp. 3356–3363. doi: 10.1109/iros47612.2022.9981707.

Master of Science Thesis Siyuan Wu

https://doi.org/10.1109/icra.2019.8793914
https://doi.org/10.1109/icra.2019.8793914
https://doi.org/10.48550/arXiv.2205.03212
https://arxiv.org/abs/2205.03212
https://doi.org/10.48550/arXiv.2210.01249
https://arxiv.org/abs/2210.01249
https://doi.org/10.1109/LRA.2022.3231832
https://doi.org/10.1109/lra.2017.2663526
https://doi.org/10.1109/iros.2016.7759784
https://doi.org/10.1109/iros.2016.7759784
https://doi.org/10.1109/lra.2019.2927938
https://doi.org/10.1007/978-3-319-28872-7_37
https://doi.org/10.1109/lra.2020.3047798
https://doi.org/10.1109/iros47612.2022.9981707

68 BIBLIOGRAPHY

[57] Brian MacAllister et al. “Path planning for non-circular micro aerial vehicles in con-
strained environments”. In: 2013 IEEE International Conference on Robotics and Au-
tomation. 2013, pp. 3933–3940. doi: 10.1109/icra.2013.6631131.

[58] Mihail Pivtoraiko, Daniel Mellinger, and Vijay Kumar. “Incremental micro-UAV motion
replanning for exploring unknown environments”. In: 2013 IEEE International Confer-
ence on Robotics and Automation. 2013, pp. 2452–2458. doi: 10.1109/icra.2013.
6630910.

[59] Brett T. Lopez and Jonathan P. How. “Aggressive 3-D Collision Avoidance for High-
Speed Navigation”. In: 2017 IEEE Int. Conf. Robot. Autom. ICRA. 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). Ieee. May 2017, pp. 5759–5765.
doi: 10.1109/icra.2017.7989677.

[60] Nathan Ratliff et al. “CHOMP: Gradient Optimization Techniques for Efficient Motion
Planning”. In: 2009 IEEE Int. Conf. Robot. Autom. 2009 IEEE International Conference
on Robotics and Automation. May 2009, pp. 489–494. doi: 10.1109/robot.2009.
5152817.

[61] Helen Oleynikova et al. “Signed Distance Fields: A Natural Representation for Both
Mapping and Planning”. en. In: RSS 2016 Workshop: Geometry and Beyond - Represen-
tations, Physics, and Scene Understanding for Robotics. RSS 2016 Workshop: Geometry
and Beyond - Representations, Physics, and Scene Understanding for Robotics; Confer-
ence Location: Ann Arbor, MI, USA; Conference Date: June 19, 2016. Ann Arbor, MI:
University of Michigan, 2016. doi: 10.3929/ethz-a-010820134.

[62] Fei Gao et al. “Online Safe Trajectory Generation for Quadrotors Using Fast Marching
Method and Bernstein Basis Polynomial”. In: 2018 IEEE Int. Conf. Robot. Autom.
ICRA. 2018 IEEE International Conference on Robotics and Automation (ICRA). May
2018, pp. 344–351. doi: 10.1109/icra.2018.8462878.

[63] Fei Gao, Yi Lin, and Shaojie Shen. “Gradient-based online safe trajectory generation
for quadrotor flight in complex environments”. In: 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). 2017, pp. 3681–3688. doi: 10.1109/
iros.2017.8206214.

[64] Wenchao Ding et al. “An efficient b-spline-based kinodynamic replanning framework
for quadrotors”. In: IEEE Transactions on Robotics 35.6 (2019), pp. 1287–1306.

[65] Fei Gao and Shaojie Shen. “Online Quadrotor Trajectory Generation and Autonomous
Navigation on Point Clouds”. In: 2016 IEEE Int. Symp. Saf. Secur. Rescue Robot.
SSRR. 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics
(SSRR). Oct. 2016, pp. 139–146. doi: 10.1109/ssrr.2016.7784290.

[66] Yunfan Ren et al. “Bubble Planner: Planning High-speed Smooth Quadrotor Trajecto-
ries Using Receding Corridors”. In: ArXiv220212177 Cs (Feb. 24, 2022). arXiv: 2202.
12177 [cs]. url: http://arxiv.org/abs/2202.12177 (visited on 04/11/2022).

[67] Robin Deits and Russ Tedrake. “Computing Large Convex Regions of Obstacle-Free
Space Through Semidefinite Programming”. In: Algorithmic Foundations of Robotics
XI. Ed. by H. Levent Akin et al. Vol. 107. Springer Tracts in Advanced Robotics.
Cham: Springer International Publishing, 2015, pp. 109–124. isbn: 978-3-319-16594-3
978-3-319-16595-0. doi: 10.1007/978-3-319-16595-0_7. (Visited on 11/17/2022).

Siyuan Wu Master of Science Thesis

https://doi.org/10.1109/icra.2013.6631131
https://doi.org/10.1109/icra.2013.6630910
https://doi.org/10.1109/icra.2013.6630910
https://doi.org/10.1109/icra.2017.7989677
https://doi.org/10.1109/robot.2009.5152817
https://doi.org/10.1109/robot.2009.5152817
https://doi.org/10.3929/ethz-a-010820134
https://doi.org/10.1109/icra.2018.8462878
https://doi.org/10.1109/iros.2017.8206214
https://doi.org/10.1109/iros.2017.8206214
https://doi.org/10.1109/ssrr.2016.7784290
https://arxiv.org/abs/2202.12177
https://arxiv.org/abs/2202.12177
http://arxiv.org/abs/2202.12177
https://doi.org/10.1007/978-3-319-16595-0_7

BIBLIOGRAPHY 69

[68] Jing Chen, Tianbo Liu, and Shaojie Shen. “Online Generation of Collision-Free Tra-
jectories for Quadrotor Flight in Unknown Cluttered Environments”. In: 2016 IEEE
Int. Conf. Robot. Autom. ICRA. 2016 IEEE International Conference on Robotics and
Automation (ICRA). Ieee. Ieee, May 2016, pp. 1476–1483. doi: 10.1109/icra.2016.
7487283.

[69] Javier Alonso-Mora et al. “Distributed Multi-Robot Formation Control in Dynamic
Environments”. en. In: Auton Robot 43.5 (June 1, 2019), pp. 1079–1100. issn: 1573-
7527. doi: 10.1007/s10514-018-9783-9. (Visited on 04/21/2022).

[70] Javier Alonso-Mora et al. “Collision Avoidance for Aerial Vehicles in Multi-Agent Sce-
narios”. en. In: Auton Robot 39.1 (June 2015), pp. 101–121. issn: 0929-5593, 1573-7527.
doi: 10.1007/s10514-015-9429-0. (Visited on 08/20/2022).

[71] Zhepei Wang et al. “Geometrically Constrained Trajectory Optimization for Multi-
copters”. In: IEEE Trans. Robot. (2022), pp. 1–10. issn: 1552-3098, 1941-0468. doi:
10.1109/tro.2022.3160022. (Visited on 07/07/2022).

[72] Xingguang Zhong et al. “Generating Large Convex Polytopes Directly on Point Clouds”.
In: ArXiv201008744 Cs (Nov. 16, 2020). arXiv: 2010.08744 [cs]. url: http://arxiv.
org/abs/2010.08744 (visited on 02/25/2021).

[73] Daniel Mellinger and Vijay Kumar. “Minimum Snap Trajectory Generation and Control
for Quadrotors”. In: 2011 IEEE Int. Conf. Robot. Autom. 2011 IEEE International
Conference on Robotics and Automation. Ieee, May 2011, pp. 2520–2525. doi: 10.
1109/icra.2011.5980409.

[74] Wenchao Ding et al. “An Efficient B-Spline-Based Kinodynamic Replanning Framework
for Quadrotors”. In: IEEE Trans. Robot. 35.6 (Dec. 2019), pp. 1287–1306. issn: 1941-
0468. doi: 10.1109/tro.2019.2926390.

[75] Kaihuai Qin. “General Matrix Representations for B-splines”. In: Proc. Pac. Graph. 98
Sixth Pac. Conf. Comput. Graph. Appl. Cat No98EX208. Proceedings Pacific Graphics
’98. Sixth Pacific Conference on Computer Graphics and Applications (Cat. No.98EX208).
Oct. 1998, pp. 37–43. doi: 10.1109/pccga.1998.731996.

[76] Jesus Tordesillas and Jonathan P. How. “PANTHER: Perception-Aware Trajectory
Planner in Dynamic Environments”. en. In: ArXiv210306372 Cs (Mar. 10, 2021). arXiv:
2103.06372 [cs]. url: http://arxiv.org/abs/2103.06372 (visited on 05/06/2021).

[77] Kota Kondo et al. Robust MADER: Decentralized and Asynchronous Multiagent Trajec-
tory Planner Robust to Communication Delay. Oct. 26, 2022. arXiv: 2209.13667 [cs,
eess]. url: http://arxiv.org/abs/2209.13667 (visited on 12/17/2022). preprint.

[78] “Fast-Racing: An Open-Source Strong Baseline for $\mathrm{SE}(3)$ Planning in Au-
tonomous Drone Racing”. In: ().

[79] Zhepei Wang et al. “Generating Large-Scale Trajectories Efficiently Using Double De-
scriptions of Polynomials”. In: 2021 IEEE Int. Conf. Robot. Autom. ICRA. 2021 IEEE
International Conference on Robotics and Automation (ICRA). Xi’an, China: Ieee,
May 30, 2021, pp. 7436–7442. isbn: 978-1-72819-077-8. doi: 10 . 1109 / icra48506 .
2021.9561585. (Visited on 01/27/2022).

Master of Science Thesis Siyuan Wu

https://doi.org/10.1109/icra.2016.7487283
https://doi.org/10.1109/icra.2016.7487283
https://doi.org/10.1007/s10514-018-9783-9
https://doi.org/10.1007/s10514-015-9429-0
https://doi.org/10.1109/tro.2022.3160022
https://arxiv.org/abs/2010.08744
http://arxiv.org/abs/2010.08744
http://arxiv.org/abs/2010.08744
https://doi.org/10.1109/icra.2011.5980409
https://doi.org/10.1109/icra.2011.5980409
https://doi.org/10.1109/tro.2019.2926390
https://doi.org/10.1109/pccga.1998.731996
https://arxiv.org/abs/2103.06372
http://arxiv.org/abs/2103.06372
https://arxiv.org/abs/2209.13667
https://arxiv.org/abs/2209.13667
http://arxiv.org/abs/2209.13667
https://doi.org/10.1109/icra48506.2021.9561585
https://doi.org/10.1109/icra48506.2021.9561585

70 BIBLIOGRAPHY

[80] Jungwon Park et al. “Efficient Multi-Agent Trajectory Planning with Feasibility Guar-
antee Using Relative Bernstein Polynomial”. In: 2020 IEEE Int. Conf. Robot. Autom.
ICRA. 2020 IEEE International Conference on Robotics and Automation (ICRA). May
2020, pp. 434–440. doi: 10.1109/icra40945.2020.9197162.

[81] Jesus Tordesillas and Jonathan P. How. “MINVO Basis: Finding Simplexes with Mini-
mum Volume Enclosing Polynomial Curves”. In: ArXiv201010726 Cs (Sept. 15, 2021).
arXiv: 2010 . 10726 [cs]. url: http : / / arxiv . org / abs / 2010 . 10726 (visited on
11/11/2021).

[82] Hao Xu et al. “Decentralized Visual-Inertial-UWB Fusion for Relative State Estimation
of Aerial Swarm”. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA). 2020 IEEE International Conference on Robotics and Automation (ICRA).
Paris, France: Ieee, May 2020, pp. 8776–8782. isbn: 978-1-72817-395-5. doi: 10.1109/
icra40945.2020.9196944.

[83] Vivek K. Adajania et al. “AMSwarm: An Alternating Minimization Approach for Safe
Motion Planning of Quadrotor Swarms in Cluttered Environments”. In: 2023 IEEE
International Conference on Robotics and Automation (ICRA). 2023, pp. 1421–1427.
doi: 10.1109/ICRA48891.2023.10161063.

[84] Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea. “A Computationally Efficient
Motion Primitive for Quadrocopter Trajectory Generation”. In: IEEE Transactions on
Robotics 31.6 (2015), pp. 1294–1310. doi: 10.1109/TRO.2015.2479878.

[85] Bartolomeo Stellato et al. “OSQP: An Operator Splitting Solver for Quadratic Pro-
grams”. en. In: Math. Prog. Comp. 12.4 (Dec. 2020), pp. 637–672. issn: 1867-2949,
1867-2957. doi: 10.1007/s12532-020-00179-2. (Visited on 08/21/2022).

[86] Wojciech Giernacki et al. “Crazyflie 2.0 quadrotor as a platform for research and edu-
cation in robotics and control engineering”. In: 2017 22nd International Conference on
Methods and Models in Automation and Robotics (MMAR). Ieee. 2017, pp. 37–42.

[87] Inkyu Sa et al. “Build your own visual-inertial drone: A cost-effective and open-source
autonomous drone”. In: IEEE Robotics & Automation Magazine 25.1 (2017), pp. 89–
103.

[88] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza. “Differential Flatness of
Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed Tra-
jectories”. In: IEEE Robot. Autom. Lett. 3.2 (Apr. 2018), pp. 620–626. issn: 2377-3766.
doi: 10.1109/lra.2017.2776353.

[89] Tomas Baca et al. “The MRS UAV system: Pushing the frontiers of reproducible re-
search, real-world deployment, and education with autonomous unmanned aerial vehi-
cles”. In: Journal of Intelligent & Robotic Systems 102.1 (2021), p. 26.

[90] Philipp Foehn et al. “Agilicious: Open-source and Open-Hardware Agile Quadrotor for
Vision-Based Flight”. en. In: Sci. Robot. 7.67 (June 22, 2022), eabl6259. issn: 2470-9476.
doi: 10.1126/scirobotics.abl6259. (Visited on 04/30/2023).

[91] Jiahao Lin. “Real-Time Vision-based Autonomous Navigation of MAV in Dynamic En-
vironments”. en. In: (2019). url: https://repository.tudelft.nl/islandora/obje
ct/uuid%5C%3A91f200f7-4966-4504-bc83-5a87e5550a91 (visited on 08/17/2022).

Siyuan Wu Master of Science Thesis

https://doi.org/10.1109/icra40945.2020.9197162
https://arxiv.org/abs/2010.10726
http://arxiv.org/abs/2010.10726
https://doi.org/10.1109/icra40945.2020.9196944
https://doi.org/10.1109/icra40945.2020.9196944
https://doi.org/10.1109/ICRA48891.2023.10161063
https://doi.org/10.1109/TRO.2015.2479878
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1109/lra.2017.2776353
https://doi.org/10.1126/scirobotics.abl6259
https://repository.tudelft.nl/islandora/object/uuid%5C%3A91f200f7-4966-4504-bc83-5a87e5550a91
https://repository.tudelft.nl/islandora/object/uuid%5C%3A91f200f7-4966-4504-bc83-5a87e5550a91

BIBLIOGRAPHY 71

[92] Tong Qin, Peiliang Li, and Shaojie Shen. “VINS-Mono: A Robust and Versatile Monocu-
lar Visual-Inertial State Estimator”. In: IEEE Trans. Robot. 34.4 (Aug. 2018), pp. 1004–
1020. issn: 1941-0468. doi: 10.1109/tro.2018.2853729.

[93] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. “SVO: Fast semi-direct monoc-
ular visual odometry”. In: 2014 IEEE international conference on robotics and automa-
tion (ICRA). Ieee. 2014, pp. 15–22.

[94] Tong Qin et al. A General Optimization-based Framework for Global Pose Estimation
with Multiple Sensors. 2019. eprint: arXiv:1901.03642.

[95] Carlos Campos et al. “ORB-SLAM3: An Accurate Open-Source Library for Visual, Vi-
sualInertial, and Multimap SLAM”. In: IEEE Trans. Robot. 37.6 (Dec. 2021), pp. 1874–
1890. issn: 1941-0468. doi: 10.1109/tro.2021.3075644.

[96] Ji Zhang and Sanjiv Singh. “LOAM: Lidar odometry and mapping in real-time.” In:
Robotics: Science and Systems. Vol. 2. 9. Berkeley, CA. 2014, pp. 1–9.

[97] Wei Xu et al. “Fast-lio2: Fast direct lidar-inertial odometry”. In: IEEE Transactions on
Robotics 38.4 (2022), pp. 2053–2073.

[98] Muhammad Fadhil Ginting et al. “CHORD: Distributed Data-Sharing via Hybrid ROS
1 and 2 for Multi-Robot Exploration of Large-Scale Complex Environments”. In: IEEE
Robotics and Automation Letters 6.3 (2021), pp. 5064–5071. doi: 10.1109/LRA.2021.
3061393.

Master of Science Thesis Siyuan Wu

https://doi.org/10.1109/tro.2018.2853729
arXiv:1901.03642
https://doi.org/10.1109/tro.2021.3075644
https://doi.org/10.1109/LRA.2021.3061393
https://doi.org/10.1109/LRA.2021.3061393

72 BIBLIOGRAPHY

Siyuan Wu Master of Science Thesis

Glossary

List of Acronyms

MAV micro aerial vehicles
MPC model predictive control
QP quadratic programming
LP linear programming
SDP Semidefinite programming
SOCP second-order conic programming
VO velocity obstacles
BVC buffered voronoi cell
RFS random finite set
PHD probability hypothesis density
SMC sequential Monte Carlo
DSP dual-structured particle-based
RRT rapidly exploring random tree
FOV field of view
ESDF Euclidean signed distance field
IRIS Iterative Region Inflation by Semidefinite Programming
FIRI Fast iterative region inflation
DOF degree of freedom
ROS Robot Operating System
IMU Inertial Measurement Unit

Master of Science Thesis Siyuan Wu

74 BIBLIOGRAPHY

List of Symbols

P safety corridor
M map
Bk

N(t) Bernstein basis
xk(t) point object state used in the DSP map
X(t) random finite set of point objects
DX(t) probability hypothesis density of the random finite set
w

(x(t))
t weight of the particle x(t) at time t

Σp covariance matrix of the odometry
Ej region to be evaluated for collision risk
x(t) state of the MAV when searching for a kinodynamic path
p(t) trajectory
τ time duration of the trajectory piece
ϵ threshold for risk check
d radius of the MAV when shrinking the corridor
Ok,ti−1,ti

obstacle set from time ti−1 to ti.
ci

j the i-th control point of the j-th trajectory segment

Siyuan Wu Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Background
	Motivation
	Contribution
	Structure of the Report

	Related Works
	Decentralized Multi-Robot Motion Planning
	Autonomous Navigation in Dynamic Environments

	Preliminaries
	Particle-based Dynamic Environment Representation
	Motion Planning for Autonomous MAVs
	Path Planning
	Safety Corridors
	Trajectory Optimization

	Methods
	Pipeline Overview
	Particle-based Map and Risk Evaluation
	Particle-based Map
	Map Prediction
	Risk Evaluation

	Risk-Aware Spatial-Temporal Kinodynamic A*
	Primitive Expansion
	Risk Check
	Cost and Heuristic

	Corridor Constrained Trajectory Optimization
	Optimization-Based Spatio-Temporal Corridor Generation
	Minimum Jerk Trajectory Optimization

	Results and Discussion
	Evaluation without Perception Module
	Simulation Environment
	Experimental Setups
	Results in Cylindrical Obstacle Environment
	Results in the Complex Environment
	Discussion

	Evaluation with the Perception Module
	Experimental Setup
	Results

	Computational Efficiency Analysis

	Prototype Implementation
	Hardware Platform
	Overview
	System Architecture
	Perception
	Assembly Process

	Software Architecture
	Network Communication
	Existing Solutions
	Verification
	Discussion

	Conclusion
	Summary
	Future Works

	Appendices
	Additional Results
	Performance of Different Planners in the Cylindrical Obstacle Environment
	Performance of Different Planners in the Complex Environment

	Back Matter
	Bibliography

