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Summary

The need for calibration of conceptual hydrological models on river discharge is
still large, and the scope of this research is to reduce this need based on new
parameter estimation techniques, additional information sources and hydrological
understanding.

In a first step, a regularized model and an adjusted regularized model with
sub-grid variability based on the landscape, both constrained and unconstrained,
were calibrated for seven catchments. Four catchments were also simultaneously
calibrated and their feasible parameters transferred to the remaining three receiver
catchments. Small improvements were observed by introducing sub-grid variability,
whereas the semi-quantitative constraints led to moderate improvements compared
to the unconstrained model. Especially low flow statistics improved and suitable
prior constraints can aid model transferability.

Subsequently, it was assessed how well the key parameter of root-zone storage
capacity could be estimated in three deforested catchments. A recently introduced
method based on rainfall and an estimate of transpiration was used to reproduce the
temporal evolution of root-zone storage capacities. These values were compared
to the values from four hydrological models calibrated for consecutive 2-year win-
dows. Water-balance derived root-zone storage capacities showed a similar signal
compared to the calibrated values of the models with a sharp decline in root-zone
storage capacity after deforestation, followed by a gradual recovery of 5 to 13 years.

The added value of several combinations of remotely sensed products for pa-
rameter estimation was assessed for five different hydrological models in 27 catch-
ments across Europe. A parameter selection process was applied for 1023 possible
combinations of ten different data sources, ranging from using 1 to all 10 of these
products. High probabilities of improvement, with regard to commonly applied
model performance metrics, were obtained when combinations included AMSR-E
and ASCAT soil moisture, and GRACE total water storage anomalies. The evapo-
ration products of LSA-SAF and MODIS were less effective for deriving meaningful
posterior parameter distributions.

In a last step, a large-scale hydrological model with landscape-derived sub-grid
variability was run with 50 random parameterizations for the European continent,
with and without semi-quantitative prior parameter constraints. A variable pattern
in improvements/deteriorations was observed when evaluated for 397 gauging sta-
tions, which shows that the prior parameter constraints were not sufficient to limit
the search space effectively.

Concluding, this thesis presents several ways to better optimize different hydro-
logical models without using observed river discharge for varying spatial scales and
changing circumstances. In this way, this thesis serves as a stepping stone towards
fully predicting in ungauged catchments.

ix





1
Introduction

Hydrological modelling still faces the challenge of ”getting the right answer for the
right reasons”, a quote of Kirchner (2006) which has been cited over 300 times,
reflecting the ongoing issues in the modelling community. At least, a call has been
made by Clark et al. (2016) to unify the theories of our models in a community
based effort, but the many unknowns in the system lead to a large number of pos-
sible explanations and model hypotheses. Hence, composing a hydrological model
can be considered as an art (Savenije, 2009) as the modeler needs to use imagi-
nation and creativity to formulate the hydrological theory. This is also complicated
by the ”uniqueness of place” (Beven, 2000), overparameterization of our models
(Beven, 1993; Gupta et al., 2008) and ongoing reductions in river discharge mea-
surements (Fekete and Vörösmarty, 2002; Hannah et al., 2011; Sivapalan, 2003).
These challenges cannot be fully overcome with the current state-of-the-art con-
ceptual hydrological models, and there is still a large need for improvements in the
formulation of our models and their parameterizations in order to be able to deal
with these challenges.

1.1. Modelling principles
It has been recognized that there is a strong link between climate and vegeta-
tion (e.g Donohue et al., 2007; Gentine et al., 2012; Rodríguez-Iturbe, 2000),
and also that the landscape is shaped through coevolution by climate and vegeta-
tion (e.g. Savenije, 2010; Troch et al., 2015). Especially climatological extremes,
such as droughts (e.g. Allen et al., 2010; McDowell et al., 2008; Vose et al., 2016)
and floods (e.g. Alila et al., 2009; Gaál et al., 2012) have a large influence on the
ecosystem and its equilibrium situation. Taking it one step further, Savenije and
Hrachowitz (2017) argued that these linkages lead to self-organization of catch-
ments, as meta-organisms, and patterns will emerge above and below ground,
that allow for simple physical equations on the macroscale to sufficiently model the
catchment responses. Therefore, simple conceptual hydrological models, which are

1
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parsimonious in the number of parameters to limit the effect of overparameteriza-
tion, i.e. equifinality (Beven, 1993), can often be applied successfully when the
core processes are captured (e.g. Booij, 2005; Refsgaard and Knudsen, 1996). On
the other hand, models which are too simple are not able to deal with complex
catchment behavior (e.g. Gupta et al., 2012; Hrachowitz et al., 2014; Wagener and
Gupta, 2005) and a balance between simplicity and complexity needs to be found.
The underlying reason is that hydrological systems are frequently modelled in the
realm of organized complexity (Dooge, 1986). As a consequence, they are too com-
plex and “random” to be described in purely mechanistic ways but not complex and
“random” enough to be described with purely statistical methods. Many methods
have been used to structure the complexity of a catchment, for example by land
use (e.g Kite and Kouwen, 1992; Kouwen et al., 1993; Winsemius et al., 2008), soil
properties (e.g. McGlynn and McDonnell, 2003; Schmocker-Fackel et al., 2007),
geology (Fenicia et al., 2016), the drainage network (e.g. Reggiani et al., 1998)
or a combination of several spatial datasets (Flügel, 1995). Several authors, such
as Beven and Kirkby (1979), Savenije (2010) or Winter (2001), pointed towards
the landscape as a leading concept in defining simple, parsimonious models, that
yet reflect the dominant hydrological processes. Eventually, these concepts were
translated into models by many researchers, such as Knudsen et al. (1986), Seibert
et al. (2003b) and Fenicia et al. (2016), but differences were still found in the way
these landscape classes were delineated. As a more specific example, Gharari et al.
(2011) translated these concepts into models with landscape based response units
for plateaus, hillslopes and wetlands, which were defined by the Height Above the
Nearest Drainage Rennó et al. (2008) and terrain slope. Afterwards, Gao et al.
(2014a) and Euser et al. (2015) applied similar types of models in the Upper Heihe
and the Ourthe catchment in Belgium, showing also for example that model trans-
ferability improved.

1.2. Constraining the search space
The hydrological model space, even in the case of rather parsimonious approaches,
often remains large, and applying conceptual models without calibration on dis-
charge data is still in its early development. In this respect, the hydrological decade
of prediction in ungauged basins (Hrachowitz et al., 2013), even though closed in
2013, still brings challenges forward. Regionalization techniques, as developed
by, among others, (e.g. Abdulla and Lettenmaier, 1997; Hundecha and Bárdossy,
2004; Kumar et al., 2013b; Samaniego et al., 2010b), can be used to select feasi-
ble model parameters in catchments without discharge data, by using the discharge
time series in other gauged catchments nearby. Nevertheless, applications of re-
gionalization techniques have been mostly applied to model formulations that do
not incorporate more complex model structures, as this often leads to a larger
number of required functional relations for the model parameters. Besides this,
the functional relations between model parameters and input data, such as soil
data, remain often empirical, and make use of global parameters, which have no
clearly defined physical meaning. In addition to the more mathematical regional-
ization approaches, constraining the parameter space with “soft” data (e.g. Seibert
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and McDonnell, 2002; Winsemius et al., 2009) and expert knowledge (e.g. Gharari
et al., 2014; Hrachowitz et al., 2014) can help identify suitable model parameters
or even model structures. This expert knowledge does however not strongly con-
strain the parameter space on its own and the availability of more additional data
sources, especially remotely sensed information, may provide extra boundaries on
this search space for models and their parameterizations. This has been recog-
nized by hydrological modellers and a large number of studies started to appear
that deal with this (e.g. Brocca et al., 2010; Rakovec et al., 2016; Werth et al.,
2009). However, most of these studies focused on applying a single product for
calibration or data assimilation in a model, but more rigorous tests of combinations
of products are rare. At most, two or three products are employed to improve hy-
drological models (e.g. Kunnath-Poovakka et al., 2016; Lopez Lopez et al., 2017),
but it can be argued that this is still not enough to efficiently constrain the model
search space. A complicating factor arises by the fact that, in most cases, hy-
drological models reflect a static situation, whereas the system is highly dynamic
over time. Often, it is justified to use such as static model formulation as ecosys-
tems tend to organize themselves and establish a static equilibrium situation (e.g.
Gao et al., 2014a; Kleidon, 2004), but abrupt disturbances will lead to a system in
imbalance. A new equilibrium will need to be established, often enforced by the
climatic situation (e.g. Allen et al., 2010; McDowell et al., 2008; Vose et al., 2016)
and regenerating vegetation (Li et al., 2007). It may be of considerable value if
this time-dynamic behavior of models or model parameters could be incorporated
in such a way that the model formulations remain simple and parsimonious. There-
fore, it is extremely important to better understand the time-dynamic character of
key hydrological parameters, such as the parameter of root zone storage capac-
ity (Milly and Dunne, 1994; Rodríguez-Iturbe et al., 2007), which determines the
separation between evaporative fluxes, runoff and moisture storage. An additional
challenge in the search for suitable model structures and parameters can be found
in assessing to which extent the model represents the right processes. Thorough
evaluations of models have been proposed (Andréassian et al., 2009; Clark et al.,
2008) and general agreement exists that model evaluation based on the fit of the
modelled and observed hydrographs is not sufficient. Therefore, a shift can be ob-
served to more extensive evaluations based on hydrological signatures (e.g. Euser
et al., 2013; McMillan et al., 2016; Shafii and Tolson, 2015), such as peak densi-
ties and flow duration curves, which allows for a more informative testing of model
structures to identify all dominant processes in a catchment. In this way, it was
for example shown by Hrachowitz et al. (2014) that more suitable model structures
could be selected.

1.3. Science Questions
This thesis focusses on selecting suitable model formulations and parameteriza-
tions for a variety of landscapes, climates and vegetation. Following the discussion
above, transfer function based modelling has shown a way forward in reducing
the need for calibration of models and hence, improved model parameterizations
(e.g. Hundecha and Bárdossy, 2004; Kumar et al., 2013a; Samaniego et al., 2010b).
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However, model structures remained rather simple for regularized models, whereas
previous research suggested that model formulations need to contain more com-
plexity (Hrachowitz et al., 2014; Wagener and Gupta, 2005), structured according
to, for example, hydrological response units. Thus, one could wonder whether a
combination of a more complex landscape-based model structure as sub-grid vari-
ability with a regularization technique is needed to formulate more suitable models:

What is the added value of landscape-variability in a regularized grid-based hy-
drological model?

In the past, it was shown that model transferability to ungauged sites strongly
improved by both model regularization (e.g. Kumar et al., 2013a; Rakovec et al.,
2015) and incorporating the landscape in a hydrological model (Gao et al., 2014a).
This points in both cases towards an improved hydrological representation in the
model, only for different reasons (i.e. model parametrization versus model struc-
ture). Hence, it can be expected that combining model regularization with landscape-
derived sub-variability should lead to an increased ability of the model to reproduce
hydrological responses in catchments not used for calibration (e.g. ungauged catch-
ments). In other words, the hypothesis is tested whether a more complex model
structure in a regularized model leads to a more suitable model formulation.

An important part of the model formulation areformed by the model parame-
ters, from which especially the root zone storage capacity plays a key role (Milly and
Dunne, 1994; Rodríguez-Iturbe et al., 2007). However, changing conditions may
lead to increased model uncertainties (Fenicia et al., 2009; Gharari et al., 2013;
Wagener and Gupta, 2005), especially when key parameters cannot be considered
constant in time. In this regard, it is of major importance to understand the time-
dynamic character of root zone storage capacities:

Can we identify the time-variant behavior of a key parameter of ecosystems,
the root zone storage capacity? How does it evolve over time? What is the added
value of a time-dynamic formulation of root-zone storage capacity?

By addressing this question, suitable model parameterizations should be found
for catchments under change, thus enhancing hydrological understanding about
the time-dynamic nature of vegetation dependent parameters. Moreover, a time-
dynamic representation of root zone storage capacity as part of the model formula-
tion could be considered as a first step towards more time-variability of parameters
in conceptual models, which is strongly needed (Savenije and Hrachowitz, 2017;
Wagener and Gupta, 2005). Besides this, it has been recognized that the root-zone
storage capacity is a parameter that needs a careful prior estimation in order to
arrive at a suitable model formulation (Milly and Dunne, 1994; Rodríguez-Iturbe
et al., 2007). Thus, when relatively simple techniques to estimate root-zone stor-
age capacities as formulated by Gao et al. (2014a), de Boer-Euser et al. (2016)
and Wang-Erlandsson et al. (2016), can suffice in estimating this parameter and
its time-dynamic nature, the need for model calibration on discharge data is again
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reduced as model formulations improved.
Besides simple estimation techniques and model regularization for parameter

and/or model selection, the large number of new (remotely sensed) data products
should provide opportunities for improved model formulations and parameteriza-
tions as well. So far, only a limited number of two or three products was used
for parameter estimations (e.g. Kunnath-Poovakka et al., 2016; Lopez Lopez et al.,
2017; Tian et al., 2017), whereas the combined use of multiple products may lead
to more suitable model parameterizations:

What is the added value of different combinations of additional sources of in-
formation, e.g. remotely sensed data, in parameter selection procedures?

This question will therefore lead to new insights in how model formulations can
be improved by a simultaneous use of different products, relating to different states
or fluxes in the models, instead of calibrating on solely river discharge. Besides,
assessing combinations of products, instead of assessing the products one by one,
will lead to more understanding on the combined strengths of products. Similar
as for the case of model regularization with additional sub-grid variability, more
information sources in the process of selecting feasible model parameters and/or
structures should lead to a more robust model formulation, i.e. a model formulation
which can be more easily applied without calibrating on river discharge.

However, for most remotely sensed products, a model needs to be run first to
assess its performance, e.g. to assess the correspondence between modelled evap-
oration and product evaporation, often also referred to as process constraints (e.g.
Bulygina et al., 2009; Gharari et al., 2014). These process constraints are generally
not possible for large-scale models due to computational demands. Therefore, in a
last step, it was tested whether more qualitative expert knowledge prior-parameter
constraints, in contrast with a more formal mathematical regularization, suffice al-
ready in constraining the parameter search space:

What is the added value of prior parameter constraints for constraining a large-
scale landscape-driven model?

It was shown before that the parameter space can be reduced by prior param-
eter constraints (e.g. Gharari et al., 2014; Hrachowitz et al., 2014), but this was
only tested for small scale catchments. With this last step, the power of a relatively
simple approach is more extensively explored, in addition to the more formal math-
ematical model regularization and constraining addressed in the forgoing research
questions. These prior parameter constraints are more based on qualitative hy-
drological understanding, which makes the technique less complicated and model
dependent compared to a full mathematical model regularization. For a formal
model regularization, functional empirical relations need to be defined first, and the
global parameters can only be found after calibration of the model. Besides, the risk
remains that the functional relations may not be valid, whereas the more qualita-
tive constraints can be more easily supported with hydrological theory. Therefore,
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this last research question should lead to conclusions to which extent simple prior
parameter constraints could reduce the parameter search space, whereas at the
same time the hydrological understanding is maintained.

Thus, by addressing the research questions above, this thesis explores different
parts of the spectrum to improve model formulations and parameterizations, from
the different scales of the catchment to the continent, from qualitative, informal
prior constraints to more quantitative, formal model regularization, and specific key
parameters to full model formulations. The goal of this thesis is therefore to serve as
a stepping stone towards conceptual models based on a sound hydrological theory,
build upon a rigid understanding of the added value of new data sources and their
functional relations with model formulations.



2
Topography-controlled
sub-grid heterogeneity

This chapter assesses the suitability of a more complex model formulation
based on the landscape (the topography) in a regularized model set-up. Both
methods, landscape-driven modelling and model regularization have shown
a high potential in order to apply models in catchments which are not used
for calibration. Thus, the hypothesis is tested whether the incorporation of
additional sub-grid variability on the basis of topography-derived response
units leads to more suitable model formulations.

This chapter is based on:
Nijzink, R.C., Samaniego, L., Mai, J., Kumar, R., Thober, S., Zink, M., Schäfer, D., Savenije, H. H. G.,
and Hrachowitz, M.: The importance of topography-controlled sub-grid process heterogeneity and semi-
quantitative prior constraints in distributed hydrological models, Hydrol. Earth Syst. Sci., 20, 1151-1176,
doi:10.5194/hess-20-1151-2016, 2016.

7



2

8 2. Topography-controlled sub-grid heterogeneity

2.1. Introduction
A better understanding of the link between landscape heterogeneity and its impact
on process dynamics of catchments is urgently required to develop more robust
catchment-scale rainfall–runoff models that have the skill to adequately reproduce
the observed system response dynamics, even for catchments where no calibra-
tion data are available. Besides heterogeneity in the system boundary conditions,
including amongst others topography, vegetation or geology (e.g. Knudsen et al.,
1986; Rodríguez-Iturbe et al., 2006; Tromp-van Meerveld and McDonnell, 2006),
climatic variables, i.e. the forcing of models such as precipitation and evaporation,
typically exhibit considerable spatial variability (e.g. Hrachowitz and Weiler, 2011;
Obled et al., 1994; Singh, 1997; Winsemius et al., 2008). Together, these factors
lead to the concept of the “uniqueness of place” as termed by Beven (2000). Thus,
with increasing catchment size it becomes increasingly problematic to treat catch-
ments as lumped entities in models, as these are not suitable for accommodating
spatial heterogeneity. In other words, this heterogeneity can in reality result in a va-
riety of parallel processes, characterized by considerably different timescales being
simultaneously active. Therefore, lumped representations of catchments frequently
fail to adequately represent the dominant features of the observed hydrological re-
sponse at the catchment scale (e.g. Euser et al., 2015), such as low and high flows
at the basin outlet.

Experimentally, the importance of intra-catchment process heterogeneity was
for example demonstrated by Seibert et al. (2003a). They showed that groundwa-
ter table fluctuations can exhibit considerably distinct dynamics between hillslopes
and riparian areas near the stream. Similarly, Detty and McGuire (2010) showed
that topographically different landscape elements are characterized by different
wetting mechanisms, while others, e.g. McGlynn et al. (2004), Jencso et al. (2009)
or Spence et al. (2010), systematically documented distinct response patterns in
different parts of catchments.

Lumped applications of hydrological models, such as HBV (Bergström, 1992) or
GR4J (Perrin et al., 2003), proved valuable in the past under a wide range of en-
vironmental conditions and across a range of scales as they appear to capture the
core emergent processes of many hydrological systems (e.g. Booij, 2005; Refsgaard
and Knudsen, 1996). Nevertheless, in many cases these models may remain serious
over-simplifications of the different combinations of the dominant processes under-
lying the observed response patterns as argued by, among others, Young (1992),
Reicher and Omlin (1997), Perrin et al. (2001), Wagener and Gupta (2005), Gupta
et al. (2012), Zehe et al. (2014), Hrachowitz et al. (2014) and Fovet et al. (2015).
In addition, the transferability of these simple models to other (ungauged) basins is
limited. In the past, distributed models, such as MIKE-SHE (Refsgaard and Storm,
1995) or DHSVM (Wigmosta et al., 1994), but also (semi-)distributed applications
of lumped models, were shown to alleviate the issue of over-simplification to a cer-
tain extend by accommodating spatial heterogeneity in soil moisture and/or model
parameters (e.g. Euser et al., 2015; Fenicia et al., 2008; Winsemius et al., 2008).

However, traditional, conceptual distributed model approaches suffer from sev-
eral limitations. They are defined by the grid size of the available data or the size of
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the defined subcatchments, which are of the order of several dozen square kilome-
tres in most applications (e.g. Booij, 2005; Lindström et al., 2010). Furthermore,
although different model parameters allow for some flexibility in accounting for spa-
tial differences, in a large number of cases the defined processes remain the same
among individual model units; that is, the same model architecture is used. This
denies the potential for the distinction of different dominant processes belonging
to the different parts of the study domain. Even though in some cases triggered by
different parameterizations, the importance of this distinction of processes already
became apparent in several studies, e.g. Merz and Bárdossy (1998), Zehe et al.
(2001), Seibert et al. (2003a), and Das et al. (2008).

Thus, as individual model units are often still represented in a lumped way,
sub-grid process heterogeneity in these lumped units is merely reflected by distri-
bution functions or constitutive relationships. For example, distribution functions for
maximum unsaturated storage capacities, such as defined in the Xinanjiang model
(Zhao, 1992) or the VIC model (Liang et al., 1994), are widely used as a measure
of spatial variability of storage capacities on the sub-grid scale. As a second ex-
ample, the closure problem in the Representative Elementary Watershed approach
(Reggiani et al., 1998) addresses the definition of relationships between the spa-
tial variability on the elementary watershed scale and states and fluxes to close
the mass and momentum balance equations. Several attempts have been reported
to formulate closure relations that allow the accommodation of the spatial hetero-
geneity within the elementary watershed to varying degrees (e.g. Mou et al., 2008;
Reggiani and Rientjes, 2005; Tian et al., 2006; Vannametee et al., 2012; Zhang
and Savenije, 2005; Zhang et al., 2006), but the search for generally applicable
adequate closure relations is still ongoing.

The division of the catchment into several functional units (e.g. Flügel, 1995;
Kite and Kouwen, 1992; Knudsen et al., 1986; Kouwen et al., 1993; Leavesley and
Stannard, 1990; Reggiani et al., 1998; Schmocker-Fackel et al., 2007; Seibert et al.,
2003b; Uhlenbrook et al., 2004; Winter, 2001; Zehe et al., 2014) may offer a way
to address these conceptual shortcomings. In spite of the fact that in many cases
insufficient data for a detailed delineation of response units are available, it has
been recognized by several authors (e.g. Beven and Kirkby, 1979; Knudsen et al.,
1986) that already topographic data can contain important hydrological information.
Starting from that premise, Savenije (2010) argued that through the co-evolution
of topography, vegetation and hydrology, different landscape features, such as hill-
slopes, wetlands or plateaus, do have distinct hydrological functions. This implies
that topography alone may contain sufficient information to derive dominant hy-
drological response units. Distinct response units can therefore be identified based
on, for example, the height above the nearest drainage, as a proxy for hydraulic
head, and local slope (Gharari et al., 2011; Nobre et al., 2011; Rennó et al., 2008).
The different dominant processes characterizing these response units can then be
combined into a semi-distributed model with landscape elements acting in paral-
lel. This parsimonious approach to account for process heterogeneity at catchment
scale proved highly valuable for improving the skill of otherwise lumped models in
reproducing observed system response patterns (e.g. Gao et al., 2014a; Gharari
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Table 2.1: Overview of the catchments.
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Alzette LU 1172194–545 286 0.90 01/01/1978-
31/12/1980

01/01/1983-
31/12/1987

Briance FR 604 211–719 377 0.88 01/01/1982-
01/07/1993

02/07/1993-
31/12/2004

Broye CH 396 391–1494 648 0.71 01/01/1995-
02/07/1987

03/07/1987-
31/12/2009

Kinzig DE 955 172–1084 759 0.67 01/01/1951-
31/12/1971

01/01/1971-
31/12/1990

Loisach DE 243 716–2783 960 0.50 01/01/1976-
31/12/1988

01/01/1989-
31/12/2001

Orge FR 965 38–196 130 1.34 01/01/1968-
01/07/1986

02/07/1986-
31/12/2004

Treene DE 481 −1–80 428 0.75 01/01/1974-
01/07/1989

02/07/1989-
31/12/2004

et al., 2014). They further enhance model transferability without the need for em-
pirical transfer functions in widely contrasting environments.

Traditional distributed model applications are characterized by a comparably
large parameter space. The typical lack of sufficient model constraints makes it
problematic to select meaningful feasible parameter sets. This leads to consider-
able equifinality (Beven, 1993) and associated problems (cf. Gupta et al., 2008).
The need for increased hydrological consistency in models and for more realis-
tic internal model dynamics (i.e. “getting the right answer for the right reasons”;
Kirchner, 2006) was recently emphasized as a critical point towards the develop-
ment of models with higher predictive power (Euser et al., 2013; Gupta et al., 2012;
Hrachowitz et al., 2014). This can all be placed in the sense of achieving “the least
uncertainty for forecasts” (Kumar, 2011) and needs to be done by more rigorous
model testing (e.g Andréassian et al., 2009; Coron et al., 2012) to meaningfully
constrain the feasible model/parameter space.

An efficient method to constrain the parameter space is model regularization
(e.g. Tonkin and Doherty, 2005), for example by the use of transfer functions
(e.g. Abdulla and Lettenmaier, 1997; Hundecha and Bárdossy, 2004; Pokhrel et al.,
2008). Being mathematically equivalent to the concept of regionalization, it was
also shown that this is a valuable method to improve spatial model transferabil-
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ity (e.g. Götzinger and Bárdossy, 2007; Kumar et al., 2013a; Samaniego et al.,
2010b). However, regularization frequently relies on empirical relationships be-
tween catchment characteristics, such as soils, and individual model parameters
with little explicit hydrological meaning. In a different approach, it was recently
shown that semi-quantitative information on catchment functioning based on ex-
pert knowledge, often referred to as “soft data” (Seibert and McDonnell, 2002; van
Emmerik et al., 2015), can be highly efficient in constraining models (Gao et al.,
2014a; Gharari et al., 2014; Hrachowitz et al., 2014; Hughes, 2013; Kapangaziwiri
et al., 2012; Seibert and McDonnell, 2013).

Considering the potential information embedded in landscapes, the need for
simplification and regularization in complex models, and the additional value of
expert-based semi-quantitative information, there may be an opportunity to im-
prove distributed hydrological models. To test the value of topography-induced sub-
grid process heterogeneity, the principles of landscape-driven modelling (Savenije,
2010) were introduced in the distributed, regularized mesoscale Hydrologic Model
(mHM; Kumar et al., 2013b; Samaniego et al., 2010b). It is hypothesized that
1) the incorporation of additional sub-grid variability on the basis of topography-
derived response units improves model internal dynamics and its predictive power,
2) the application of semi-quantitative, expert-knowledge-based model constraints
allows the identification of unfeasible parameter sets and thereby reduces model
uncertainty, and that 3) the combined use of response units and model constraints
improves the spatial transferability of the model.

2.2. Methodology
2.2.1. Study areas
Seven catchments were selected in order to cover a variety of climatological, ge-
ographical and geological conditions. The geographical locations as well as the
classification of topography-based hydrological response units (i.e. hillslopes, wet-
lands and plateaus) in the study catchments are shown in Fig. 2.1. The set of
study sites includes catchments with pronounced relief as well as relatively flat and
gently sloped catchments. Therefore, some catchments are almost fully dominated
by landscapes classified as hillslopes, whereas others contain higher proportions
of wetlands. In addition, the climatic variability is considerable, as indicated by
the aridity indices ranging from 0.5 to 1.34. Table 2.1 summarizes the catchment
characteristics.

The northern German Treene catchment is a tributary of the Eider River. It is a
lowland catchment characterized by sedimentary soils and peat. The land cover is
mostly grassland and low vegetation, while only a small percentage is forested or
agriculturally used.

The Loisach, Kinzig and Broye catchments are located in mountainous areas,
characterized by pronounced relief, steep slopes and the importance of snow. The
Loisach and Kinzig catchments are mostly forested, whereas the Broye catchment
has mainly open grassland. Sand overlies limestone and other sedimentary bedrock
in the Loisach catchment, while the Kinzig catchment is dominated by granite and
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Figure 2.1: The locations of the seven study catchments and their respective landscape classes according
to HAND and local slope. Catchments represented by red and green symbols in the context map indicate
donor and receiver catchments, respectively, for the transferability analysis. Displayed grids correspond
to the modelling grids used in mHM (topo).
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Table 2.2: Overview of the used data.

Data type Product Source Reference
Soil HWSD http://webarchive.

iiasa.ac.at/Research/
LUC/

FAO/IIASA/ISRIC/ISSCAS/JRC
(2012)

Topography SRTM http://hydrosheds.cr.
usgs.gov/index.php

Lehner et al. (2008)

Discharge GRDC http://www.bafg.de/
GRDC/EN/

The Global Runoff
Data Centre,
56002 Koblenz, Ger-
many

Precipitation E-OBS http://eca.knmi.nl/
download/ensembles/
ensembles.php

Haylock et al. (2008)

Land
cover

Globcover http://due.esrin.esa.
int/page_globcover.
php

Arino et al. (2010)

gneiss series.
The French catchments Orge and Briance are relatively flat with gentle slopes

and flat upland areas. Agriculture is the dominant land use, but some forests are
also present. The Orge catchment is a tributary of the Seine and contains some
of the suburbs of Paris. Thus, it has a significant proportion of urbanized areas
(10%). In the Orge, sandy loam soils have formed on limestone geology, while the
Briance is characterized by gravel on gneiss bedrock.

The Alzette catchment in Luxembourg is partly covered by forest (33% of the
catchment area). The rest of the catchment is more open, with grass and shrub-
lands. Limestone, sandstone and schist are the dominant geologic formations, with
some clay and loam soil in the upper layers.

Daily discharge time series for all study catchments were obtained from the
Global Runoff Data Centre (GRDC). The daily meteorological data are the gridded
E-OBS precipitation and temperature data from the European Climate Assessment
and Dataset (ECA&D). The daily potential evaporation was estimated with the Har-
greaves equation (Hargreaves and Samani, 1985). A summary of the data sources
is given in Table 2.2.

2.2.2. Models
mesoscale Hydrological Model (mHM)
mHM is a distributed, process-based model that uses the cell-wise model architec-
ture shown in Fig. 2.2 in each grid cell of the modelling domain (Kumar et al.,
2013b; Samaniego et al., 2010b). It contains an interception and snow routine
to determine the effective precipitation which enters the soil moisture reservoir.
For sealed areas the water is directly routed to a fast reservoir. The water infil-

http://webarchive.iiasa.ac.at/Research/LUC/
http://webarchive.iiasa.ac.at/Research/LUC/
http://webarchive.iiasa.ac.at/Research/LUC/
http://hydrosheds.cr.usgs.gov/index.php
http://hydrosheds.cr.usgs.gov/index.php
http://www.bafg.de/GRDC/EN/
http://www.bafg.de/GRDC/EN/
http://eca.knmi.nl/download/ensembles/ensembles.php
http://eca.knmi.nl/download/ensembles/ensembles.php
http://eca.knmi.nl/download/ensembles/ensembles.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
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trating into the soil is then partitioned into transpiration and percolation to a fast
runoff reservoir, i.e. shallow subsurface flow. In addition, this reservoir recharges
a lower reservoir that mimics the baseflow component of the runoff. The model
has been successfully applied across Germany, Europe and North America (Kumar
et al., 2010, 2013a,b; Livneh et al., 2015; Rakovec et al., 2015; Samaniego et al.,
2010a,b, 2013; Thober et al., 2015).

Topography-driven mHM (mHMtopo)
To test the value of topography variability-induced process heterogeneity in a dis-
tributed model, the concepts of FLEXtopo (Gharari et al., 2011; Savenije, 2010)
were applied in mHM. Based on the assumption of distinct hydrological functioning
of different landscape elements, sub-grid process heterogeneity was accounted for
by a model architecture that allowed an explicit representation of landscape classes
identified as dominant in many central European regions: plateaus, hillslopes and
wetlands (Savenije, 2010). The landscape classes were defined by the Height Above
the Nearest Drainage (Rennó et al., 2008, HAND) and local slope. Following Gharari
et al. (2011), areas with a low slope (<11%) and high HAND (>5m) were defined
as plateaus, areas with high slope (>11%) as hillslopes and areas with low slope
and low HAND (<5m) as wetlands. It is acknowledged that these thresholds re-
main merely assumptions and may need refinement in other regions. Nevertheless,
this refinement is out of the scope of this study and the used threshold values are
assumed to give a reasonable delineation of landscape units in the central European
context. The varying proportions of these individual landscape units in each cell in
the modelling domain then allow for considerable sub-grid process heterogeneity
in the distributed model, as the total outflow of a cell is then the area-weighted av-
erage of the outflows from the individual landscape units. The assumptions behind
the conceptualizations of the three landscape classes are briefly summarized in the
following. For details the reader is referred to Savenije (2010) and Gharari et al.
(2014).

The different model structures for these three classes run in parallel, connected
by a common groundwater reservoir for each modelling cell, as can be seen in Fig.
2.3. The primary hydrological functions of plateau landscapes are, in the absence
of significant topographic gradients, mainly groundwater recharge and evapora-
tion/transpiration, i.e. vertical fluxes. To account for potential agricultural drainage
systems, a fast reservoir is included in the plateau model structure. Hillslopes are
assumed to be the dominant source of storm flow and efficiently contribute to storm
runoff through storage excess shallow subsurface flow, e.g. preferential flow, here
conceptualized by a fast reservoir. The wetland landscape is assumed to interact
more strongly with the groundwater. Thus, capillary rise (Cr in Fig. 2.3) is in-
cluded to interact with the soil moisture reservoir. The wetlands are assumed to
have shallow groundwater tables and associated low storage capacities. Therefore,
saturation excess overland flow, represented by a fast responding reservoir, and
evaporative processes are assumed to be dominant in this landscape unit.

Throughout the rest of this thesis, the two models will be referred to as mHM
and mHMtopo to distinguish between the original mHM and the topography-guided
set-up, respectively.



2.2. Methodology

2

15

Figure 2.2: The original mHM model structure. The effective precipitation is determined by an intercep-
tion (I) and a snow routine (S). Afterwards, the effective precipitation enters a soil moisture reservoir
(SM) or is directly routed to a fast reservoir that accounts for sealed areas (SS). The water in the soil
moisture reservoir either transpires or percolates further down to a fast runoff reservoir (FS), i.e. shallow
subsurface flow. Eventually, the baseflow component of the runoff is obtained from a slow groundwater
reservoir (G).

Figure 2.3: The mHMtopo model structure with different configurations of states and fluxes for landscape
classes plateau, hillslope, and wetland, which are based on topography. First, a shared snow module (S)
divides the effective precipitation over the landscape classes. The three classes all have an interception
module (I), a fast reservoir accounting for sealed areas (SS), a soil moisture routine (SM) and a fast
reservoir (FS). The plateau landscapes are assumed to feed the groundwater through percolation (P)
from the soil moisture and preferential percolation (PP). The steeper hillslope areas are assumed to
merely feed the groundwater through preferential percolation (PP), whereas the wetlands receive water
through capillary rise (Cr). The baseflow is determined by a shared groundwater reservoir.
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2.2.3. Model regularization and prior constraints
Reducing the feasible model parameter space is strongly associated with a reduction
in parameter equifinality and model uncertainty, and can be achieved by imposing
constraints on the model, for example by regularization. Only parameter sets that
can satisfy these constraints will then be retained as feasible, while others will
be discarded. A method that uses empirical transfer functions relating parameter
values to physical catchment characteristics is also a powerful tool to regionalize
models.

Multiscale parameter regionalization
The multiscale parameter regionalization (MPR) is the key feature of mHM (Kumar
et al., 2013b; Samaniego et al., 2010b). The global parameters in mHM are, in
contrast to typical models, not hydrologic model parameters (e.g. soil porosity).
Instead, the global parameters define the functional relationship between the indi-
vidual hydrologic model parameters and physical catchment characteristics at the
spatial resolution of the data of the latter. A set of global parameters is obtained
by simultaneously calibrating on multiple catchments. This set of global parame-
ters can then be transferred to other catchments where the same data of physical
catchment characteristics are available without the need for further calibration.

Thus, the functional relationships are used in a first step to estimate model
parameters on the spatial resolution of the input data. As depicted in Fig. 2.4,
as an example, the leaf area index is linearly linked through global parameters
with the hydrologic model parameter of interception capacity (Imax). Assuming the
relationships are adequate, the use of additional data of preferably multiple, distinct
catchments may increase the general validity of these relationships and, thus, the
global parameters.

Figure 2.5 depicts the application of the MPR technique to gridded data. The
obtained hydrologic parameters, determined by the functional relationships, still
have a resolution equal to the input data. In most cases, this is not equal to
the modelling resolution. Therefore, a second step in the MPR is the upscaling of
hydrologic parameters to the modelling resolution (in this study, 8 km× 8 km). This
upscaling can either be achieved by using the harmonic mean, arithmetic mean
or maximum value over the cells within the modelled grid cell. The choice of the
upscaling method strongly depends on the parameter under consideration. The
reader is referred to Samaniego et al. (2010b) and Kumar et al. (2013b) for details
about the transfer functions and upscaling methods.

The MPR technique has been adjusted in two ways for use in mHMtopo. The re-
gionalization functions were used for the three individual landscape units, whereby
each landscape unit was assigned its own global parameters. In other words, the
functional relations between physical catchment characteristics (e.g. soil, slope)
and hydrologic parameters were kept the same, but the global parameters of these
relations differ between landscape units. For example, the LAI is now individually
linked with three global parameters for wetland, hillslopes and plateaus, respec-
tively, to obtain three hydrologic parameters for interception capacity (Imax,plateau,
Imax,hillslope, Imax,wetland); see Fig. 2.5.
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Figure 2.4: Function relationship between leaf area index (LAI) and the hydrologic parameter intercep-
tion capacity (ፈ0,max) defined by the global parameter ᎐, based on fictional data for illustration.

Figure 2.5: Schematic representation of the original MPR (left) and the adjusted MPR (right) for the
maximum interception capacity (ፈ1,max). On the input level 0, the leaf area index (LAI) is linked through
the global, generally valid, parameter ᎐ with ፈ0,max. In a last step, the mean is used for upscaling, yielding
ፈ1,max at the modelling resolution. For mHMtopo, the functional relations are the same, but plateau (P),
hillslope (H) and wetland (W) have their own global parameters ᎐. The upscaling is subsequently carried
out over each landscape class within each grid cell. This leads to the interception capacities of plateau,
hillslope and wetland (ፈ1,max,plateau, ፈ1,max,hillslope and ፈ1,max,wetland).
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The second change was in the upscaling. Instead of scaling up over all high-
resolution cells within a modelling unit, the upscaling was carried out for each land-
scape class within a modelling unit. The upscale operators for mHMtopo were
adopted from similar parameters in mHM. For example, the upscaling of the inter-
ception capacities was done by the arithmetic mean, similar to that of the upscaling
of interception capacities used in the original mHM (see Fig. 2.5).

Expert-knowledge-based prior constraints
In addition to MPR, we tested the value of semi-quantitative, relational prior param-
eter and process constraints (Gharari et al., 2014; Hrachowitz et al., 2014) for the
robustness of process representation and model transferability. In other words, only
global parameter sets that satisfied these parameter and process constraints dur-
ing calibration were accepted as feasible and used in validation and post-calibration
evaluation.

Specifically, constraints for the long-term mean annual runoff coefficients were
formulated to ensure plausible water partitioning between evaporation and runoff.
The limits were chosen as the maximum and minimum annual runoff coefficients
𝐶Rmax and 𝐶Rmin occurring over the calibration time period. The months May–
September were defined as a high flow period, whereas low flows were assumed to
occur over the months October–April. Only for the Loisach catchment these periods
were switched, as this catchment has high flows starting in spring due to snowmelt.
The following three constraints were used: one taking into account the whole time
series (𝐶R) as well as one for the high flow period (𝐶Rhigh), and one for the low flow
period (𝐶Rlow) to improve the seasonal variation of the model response behaviours.

𝐶Rmin < 𝐶Rmodelled < 𝐶Rmax (2.1)

𝐶Rhigh,min < 𝐶Rhigh,modelled < 𝐶Rhigh,max (2.2)

𝐶Rlow,min < 𝐶Rlow,modelled < 𝐶Rlow,max (2.3)

The topography driven model, mHMtopo, is also constrained on soil moisture stor-
age capacity (𝑆M). On hillslopes and plateaus the groundwater table can be as-
sumed to be deeper than in wetlands, and root systems generate a larger dynamic
part of the unsaturated zone (cf. Gao et al., 2014b). Therefore, they are concep-
tualized to have a higher water storage capacity than wetlands, which are typically
characterized by a very shallow groundwater table. This reasoning reflects not only
the variable contribution area theory of Dunne et al. (1975) and the concept of a
topographic wetness index (Beven and Kirkby, 1979), but also results from exper-
imental studies, e.g. Seibert et al. (2003a). Thus, two additional constraints were
used for mHMtopo:

𝑆M,plateau > 𝑆M,wetland, (2.4)

𝑆M,hillslope > 𝑆M,wetland. (2.5)
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2.2.4. Experiment set-up
Calibrated model comparison
The two models, i.e. mHM and mHMtopo, were calibrated for each catchment
with a random Monte Carlo sampling approach based on 100 000 realizations and a
multi-objective strategy using four objective functions: the Nash–Sutcliffe efficiency
of flow (𝐸NS,Q), the Nash–Sutcliffe efficiency of the logarithm of flow (𝐸NS,logQ), the
volume error of flow (𝐸V,Q) and the Nash–Sutcliffe efficiency of the logarithm of
the flow duration curve (𝐸NS,FDC). The four objective functions were chosen as
they characterize different aspects of the flow response. Therefore, these objective
functions are expected to provide hydrologically relatively consistent and robust
parameter sets.

This calibration strategy was preferred over other calibration schemes, such
as the Dynamically Dimensioned Search algorithm (Tolson and Shoemaker, 2007,
DDS) or the Shuffled Complex Evolution method (Duan et al., 1992, SCE), to obtain
a set of feasible parameter solutions instead of one optimal solution. As the math-
ematically optimal solution may not be the hydrologically most adequate solution
(cf. Andréassian et al., 2012; Beven, 2006; Kirchner, 2006), this is necessary to
make a robust assessment of the model’s abilities. Therefore, all parameter sets
that satisfy all model constraints and that are contained in the parameter space
spanned by the four-dimensional Pareto front formed by 𝐸NS,Q, 𝐸NS,logQ, 𝐸V,Q and
𝐸NS,FDC were considered to be feasible solutions and used for post-calibration eval-
uation. Considering all feasible solutions to be equally likely, the model uncertainty
intervals are represented by the envelope of all feasible solutions.

Post-calibration model evaluation
The models’ skill in reproducing a variety of observed hydrological signatures, i.e.
emergent properties of a system (Eder et al., 2003), was evaluated after calibration
to test the hydrological consistency of the models. Hydrological signatures allow
evaluation of the consistency and reliability of hydrologic simulations by taking more
features of the hydrological response into account than only the flow time series. In
a nutshell, the more signatures a model can simultaneously reproduce in addition
to the hydrograph, the more plausible it is that a model (and its parameters) will
adequately reflect the underlying dominant system processes (e.g. Euser et al.,
2013). All signatures used in this study were selected based on earlier work (e.g.
Euser et al., 2013; Sawicz et al., 2011) and are summarized in Table 2.3.

Although not fully independent of each other, the signatures, such as the peak
flow distribution, the rising limb density and the autocorrelation function of flow,
contain information on different aspects of the hydrologic response. The Nash–
Sutcliffe efficiency 𝑆NS was used as a performance metric to assess the model skill
in case of multi-value signatures such as the peak flow distribution or the auto-
correlation function. In contrast, the relative error 𝑆RE was used for single-valued
signatures, such as the mean annual runoff. The Euclidian distance 𝐷E to the “per-
fect model” was used as an overall measure of a model’s ability to reproduce all
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Table 2.3: Overview of the used signatures.

Signature Description Reference
𝑆QMA Mean annual runoff
𝑆AC One-day autocorrelation coefficient Montanari and Toth (2007)
𝑆AC,low One-day autocorrelation low flow period Euser et al. (2013)
𝑆AC,high One-day autocorrelation high flow pe-

riod
Euser et al. (2013)

𝑆RLD Rising limb density Shamir et al. (2005)
𝑆DLD Declining limb density Shamir et al. (2005)
𝑆ፐᎷ Flow exceeded in 5% of the time Jothityangkoon et al. (2001)
𝑆ፐᎷᎲ Flow exceeded in 50% of the time Jothityangkoon et al. (2001)
𝑆ፐᎻᎷ Flow exceeded in 95% of the time Jothityangkoon et al. (2001)
𝑆ፐᎷ ,low Flow exceeded in 5% of the low flow

time
Yilmaz et al. (2008)

𝑆ፐᎷᎲ ,low Flow exceeded in 50% of the low flow
time

Yilmaz et al. (2008)

𝑆ፐᎻᎷ ,low Flow exceeded in 95% of the low flow
time

Yilmaz et al. (2008)

𝑆ፐᎷ ,high Flow exceeded in 5% of the high flow
time

Yilmaz et al. (2008)

𝑆ፐᎷᎲ ,high Flow exceeded in 50% of the high flow
time

Yilmaz et al. (2008)

𝑆ፐᎻᎷ ,high Flow exceeded in 95% of the high flow
time

Yilmaz et al. (2008)

𝑆Peaks Peak distribution Euser et al. (2013)
𝑆Peaks,low Peak distribution low flow period Euser et al. (2013)
𝑆Peaks,high Peak distribution high flow period Euser et al. (2013)
𝑆ፐpeak,10 Flow exceeded in 10% of the peaks
𝑆ፐpeak,50 Flow exceeded in 50% of the peaks
𝑆ፐlow,peak,10 Flow exceeded in 10% of the low flow

peaks
𝑆ፐlow,peak,50 Flow exceeded in 10% of the low flow

peaks
𝑆ፐhigh,peak,10 Flow exceeded in 10% of the high flow

peaks
𝑆ፐhigh,peak,50 Flow exceeded in 50% of the high flow

peaks
𝑆AC,serie Autocorrelation series (200-day lag time) Montanari and Toth (2007)
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signatures under consideration (e.g. Schoups et al., 2005):

𝐷E = √(1 − 𝑆NS,1)ኼ + (1 − 𝑆NS,2)ኼ…+(1−𝑆NS,፧)ኼ+𝑆ኼRE,1+𝑆ኼRE,2…+𝑆ኼRE,፦ , (2.6)

with 𝑆NS,። the performance metric of 𝑛 multi-valued signatures, and 𝑆RE,j for the 𝑚
single-valued signatures.

From calibration, a set of feasible parameter sets was obtained for each tested
model, which inevitably resulted in varying skills to reproduce the system signatures
for the individual parameter sets. The probability that one model will outperform
another for a specific signature was computed to objectively quantify the differ-
ences between these distributions and to allow an overall assessment of which of
the tested models exhibits a higher ability to reproduce the individual signatures. As
estimates of the empirical performance distributions are available based on all pa-
rameter sets retained as feasible, the probability of improvement 𝑃I,S can be readily
obtained from:

𝑃I,S = 𝑃(𝑆ኻ > 𝑆ኼ) =
፧

∑
።዆ኻ
𝑃(𝑆ኻ > 𝑆ኼ|𝑆ኻ = 𝑟።)𝑃(𝑆ኻ = 𝑟።), (2.7)

where 𝑆1 and 𝑆2 are the signature performance metrics of the two models, 𝑟። a
realization from the 𝑆ኻ distribution and 𝑛 the total number of realizations of the 𝑆ኻ
distribution. Thus, a probability of 0.5 indicates that in 50% of the cases model
1 and in 50% of the cases model 2 performs better; that is, no preference for a
model can be identified. In contrast, for 𝑃I,S>0.5 it is more likely that model 1
outperforms model 2 with respect to the signature under consideration, and vice
versa for 𝑃I,S <0.5.

In an additional analysis, the ranked probability score 𝑆RP (Wilks, 2011) was
calculated as a measure of the magnitude of improvement. For details, please see
the description and the Supplement of Nijzink et al. (2016b).

Comparison of model transferability
The mHM hydrologic model has previously been shown to have a considerable ability
to reproduce the hydrograph when transferring global parameters from calibration
catchments to other regions without further recalibration (Kumar et al., 2013a,b;
Rakovec et al., 2015; Samaniego et al., 2010a,b). Therefore, it was tested whether
the addition of topography-driven sub-grid process heterogeneity and the use of
prior constraints in mHM have the potential to further improve this transferabil-
ity. Four catchments were used as donor catchments to obtain one set of global
parameters via simultaneous calibration. The Orge, Treene, Broye and Loisach
were chosen as donor catchments as they are geographically far from each other,
introducing a wide range in climate and catchment characteristics. The receiver
catchments are the three remaining catchments of Alzette, Briance and Kinzig.

This was carried out with the same calibration strategy as for the individual
catchment calibrations. However, the four objective functions 𝐸NS,Q, 𝐸NS,logQ, 𝐸V,Q
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Figure 2.6: Nash–Sutcliffe efficiency (ፄNS,Q), log Nash–Sutcliffe efficiency (ፄNS,logQ), volume error (ፄV,Q)
and log Nash–Sutcliffe efficiency of the flow duration curve (ፄNS,FDC) for the seven catchments in the
validation periods. The optimal value for all four criteria is 1, whereas 0 is regarded as having a low
performance. The boxplots are formed by the Pareto space spanned by the four objective functions.
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and 𝐸NS,FDC were now averaged over the catchments. This led to global param-
eters that account for the performance in all donor catchments. These averaged
values were then used to determine the Pareto space of feasible parameter sets
again. The feasible solutions were transferred and used in the three remaining
receiver catchments without any further recalibration. We fully acknowledge that
this analysis can only give a sense of what is possible and that a full bootstrap
procedure and the analysis of more catchments would have allowed a more ro-
bust interpretation of the results, but this was unfeasible given the computational
demands of the calibration procedure. The calibrations were carried out on the
EVE high-performance compute cluster of the UFZ Leipzig which has 84 compute
nodes with dual-socket Intel Xeon X5650 processors with 64GB RAM as well as
65 compute nodes with dual-socket Intel Xeon E5-2670 processors. Nevertheless,
the used calibration strategy needed run times of about 2 weeks per catchment on
multiple EVE cores, depending on catchment sizes and lengths of time series.

2.3. Results and discussion
2.3.1. Calibrated model comparison
The two different models mHM and mHMtopo, both with and without additional
prior constraints, exhibited adequate and similar calibration performances with re-
spect to all four calibration objective functions (see Fig. S2 in the Supplement of
Nijzink et al., 2016b). For the validation period it was found that performance gen-
erally improved by applying prior constraints and by allowing for topography-guided
sub-grid process heterogeneity. This can be seen from Fig. 2.6, where mHM with
constraints (dark blue) compared with mHM (light blue) generally has an increased
performance. The same is true for mHMtopo with constraints (orange) compared
with unconstrained mHMtopo (grey). At the same time, it can be noted from Fig.
2.6 that the addition of topography-guided sub-grid variability leads to a general
moderate improvement in performance. Overall, the introduction of constraints to
mHM resulted in an average improvement of 13% with regard to the Euclidian dis-
tance 𝐷E for the objective function values in validation. In addition, unconstrained
and constrained mHMtopo exhibited an average increase of 8 and 11%, respec-
tively, for the Euclidian distance 𝐷E compared to the original mHM.

Effect of sub-grid heterogeneity
The incorporation of sub-grid process heterogeneity did not show a clear pattern
of improvements or deterioration. Some catchments experienced performance in-
creases in terms of the used objective functions during validation, like the Briance
catchment. The predictive performance of others, also in terms of the used ob-
jective functions, slightly decreased, such as the Orge catchment. These findings
support the results of Orth et al. (2015), who also found that added complexity,
here in the sense of an increased number of processes and parameters, does not
necessarily lead to model improvements. However, these findings are not in line
with some other previous work (e.g. Euser et al., 2015; Gao et al., 2014a; Gharari
et al., 2014), which all concluded that parallel model structures increased model
performance. It can be argued that for mHM, whose global parameters are to a
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certain extent already functions of landscape variability, additional sub-grid process
heterogeneity is not warranted by the available data and can thus not be resolved
by the model when there are relatively few contrasts in the landscape.

The Treene catchment benefits most from the addition of topography-guided
sub-grid heterogeneity (Fig. 2.6). Here, a large area is classified as wetland, where
the soil moisture is fed by groundwater through capillary rise. This process is fully
absent in the original mHM structure, but is an important process in this relatively
flat and humid catchment, dominated by peaty soils. These findings also correspond
to conclusions by Schmalz et al. (2008) and Schmalz and Fohrer (2009), who applied
the SWAT model in the same catchment and noticed that shallow groundwater and
soil moisture parameters are very sensitive to low flows. It may also be noted
that for mHMtopo the bandwidth of the feasible solutions around the observed
hydrograph is considerably reduced as compared to mHM, in particular during low
flows. Figure 2.7 shows that in the months April–July the uncertainty range is
significantly larger for mHM than for mHMtopo. In addition, it is interesting to note
that the lower bound of flow in mHM reaches towards 0mmdዅኻ in July, whereas
mHMtopo still maintains a flow.

In contrast, it can be noticed from Fig. 2.6 that the consideration of sub-grid
process heterogeneity causes a decrease in performance compared to the original
mHM in the Orge catchment. This catchment has a relatively large urban area of
about 10%. In addition, these areas are rather densely populated and the river
contains several human-made adjustments such as weirs (Le Pape et al., 2012).
Therefore, it is more markedly influenced by anthropogenic disturbances, which
are likely not adequately reflected in either mHM or mHMtopo. This results in a
situation where the more parsimonious mHM is likely to provide a representation of
process dynamics that more closely reflects those observed. The higher number of
parameters in mHMtopo provides not only more freedom for adequate system rep-
resentations, but also for misrepresentations. Thus, after an adequate calibration
a larger part of the “feasible” mHMtopo parameter sets fails to mimic the observed
response patterns in the validation period compared to mHM. In addition, it can
also be observed from the hydrographs that the Orge is a fast responding catch-
ment with very spiky flow peaks (Fig. 2.8). The addition of more storage reservoirs
in mHMtopo delays the signal more than the simpler model structure, leading to a
reduced ability to reproduce this spiky behaviour.

Effect of constraints
The applied prior process and parameter constraints, in agreement with Gharari
et al. (2014) and Hrachowitz et al. (2014), helped to increase model performance
(Fig. 2.6) and to reduce model uncertainty (Figs. 2.7, 2.8, 2.9) by identifying and
discarding a considerable number of model solutions that did not satisfy these con-
straints. Rather, these discarded solutions violated observed partitioning patterns
between runoff and evaporative fluxes and conflicted with our understanding of how
the catchments respond. Being merely manifestations of a successful mathemat-
ical optimization process, rather than plausible representations of system-internal
response dynamics, the discarded solutions underline how deceptive adequate cal-
ibration results can be and how a successful identification can result in reduced
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Figure 2.7: Hydrographs for the Treene catchment, with, respectively, the hydrographs for mHM, mHM
with constraints, mHMtopo and mHMtopo with constraints. The red shaded areas represent the envelope
spanned by all feasible solutions, whereas the blue line corresponds to observed values.
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Figure 2.8: Hydrographs for the Orge catchment, with, respectively, the hydrographs for mHM, mHM
with constraints, mHMtopo and mHMtopo with constraints. The red shaded areas represent the envelope
spanned by all feasible solutions, whereas the blue line corresponds to observed values.
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Figure 2.9: Hydrographs for the Loisach catchment, with, respectively, the hydrographs for mHM, mHM
with constraints, mHMtopo and mHMtopo with constraints. The red shaded areas represent the envelope
spanned by all feasible solutions, whereas the blue line corresponds to observed values.
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Figure 2.10: Probabilities of improvements ፏI,S between (a)mHM and mHMtopo without constraints and
(b) with constraints, (c) mHM with and without constraints, (d) mHMtopo with and without constraints
and (e) the base case mHM with the constrained mHMtopo case. The colours are linearly related to
the probability of improvement between 0 (dark red; e.g. the probability of mHMtopo outperforming
mHM is 0), 0.5 (white; i.e. models are statistically equivalent) and 1 (dark blue; e.g. the probability of
mHMtopo outperforming mHM is 1). An empirical cumulative distribution function (ECDF) based on all
probabilities of improvement has been added to assess the distribution of these probabilities.
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predictive uncertainty. It must be noted that the effect is strong in the chosen cal-
ibration strategy, as a large set also containing less optimal solutions is maintained
as feasible, but it has already been shown that other calibration procedures may
also benefit from additional constraints (Gharari et al., 2014). This is true as con-
straints limit the parameter search space with feasible solutions that the algorithm
has to explore. In addition, while traditional calibration procedures may converge
to a mathematically optimal fit, additional constraints can test the found solutions
for hydrological consistency.

More specifically, the Loisach catchment benefits considerably from the applied
constraints. This can be explained by the fact that this is one of the few catch-
ments in this study where snowmelt plays an important role. For this catchment,
temperature is in phase with the high flows, which causes difficulties in water par-
titioning in the unconstrained models, resulting in evaporative fluxes being too high
and streamflow being too low. A similar observation for the Loisach was found
by Muerth et al. (2013). Even though forced by an ensemble of climate models,
the winter flows were too high for an ensemble of hydrological models run for this
catchment. Hence, the application of runoff constraints for high and low flow pe-
riods led to a considerable improvement in the model’s internal dynamics. This is
supported by visual inspection of the hydrographs (Fig. 2.9): both, the constraints
for mHM and mHMtopo, cause a significant reduction in the uncertainty bandwidth
of the modelled hydrograph, particularly during high flow periods. The uncon-
strained models have a relatively low lower boundary during high flows, whereas
the boundaries in the constrained cases stay much closer to the observed values.
Nevertheless, it must also be noted that both models tend to slightly underestimate
the flows in the high flow period.

Effect of constraints and sub-grid heterogeneity
Comparing the base case of the unconstrained mHM with the most complex con-
strained mHMtopo (Fig. 2.6) shows that in most cases improvements are observed.
As stated before, compared with the unconstrained mHM, the constrained mHM-
topo exhibited an average increase of 8 and 11%, respectively, for the Euclidian
distance 𝐷E. In most cases, a narrowing of the distribution of objective function
values can be observed. For example, the Alzette shows a considerable reduction
in the bandwidths of the objective function values. Several catchments also show
a substantial shift towards more optimal solutions. The Loisach catchment, as an
example, is one of the catchments where this can be observed.

The only catchment that shows neither a decrease in bandwidth nor a shift
upward for any of the four objective function value distributions is the Orge catch-
ment. Moreover, it shows a strong deterioration in terms of objective functions
when constraints and sub-grid heterogeneity are added. The processes included in
mHMtopo may not be suitable in this case, as the human influences are strong in
this catchment. Thus, as stated before, the more parsimonious mHM better reflects
the observed dynamics in this catchment in terms of the objective functions.
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2.3.2. Signature comparison
The two models mHM and mHMtopo, both unconstrained and constrained, were
compared for their ability to reproduce a wide range of hydrological signatures
(Table 2.3). This comparison is based on the probabilities of improvement 𝑃I,S (Fig.
2.10 and Eq. 2.7), but similar results were obtained with the ranked probability
score 𝑆RP. The results of 𝑆RP can be found in the supplementary material of Nijzink
et al. (2016b) in Figures S3 and S4. Overall, the introduction of constraints to
mHM led to an average improvement of 13% in terms of the Euclidian distance 𝐷E.
The introduction of topography had a similar effect, with an average improvement
of 13% for 𝐷E. The constrained mHMtopo case even experienced an average
improvement of 19%.

Effect of sub-grid heterogeneity
Similar to the model performance in the validation periods, no clear pattern emerges
for the different models’ ability to reproduce the system signatures. The Euclidean
distance metric, depicted in the last column of Fig.2.10a, illustrates that the con-
sideration of sub-grid process heterogeneity in mHMtopo leads to a slight overall
improvement compared to mHM. However, the effect on individual signatures is
diverse, with some signatures captured to a better degree, while others could be
reproduced less well.

Figure 2.10a shows that the Treene, Orge and Loisach benefit the most from
the addition of sub-grid heterogeneity. Especially the Treene has a rather large
probability of improvement for most of the signatures. This supports the previous
findings that the wetland related processes, which are added in mHMtopo, are
important to consider in this wet, peaty catchment.

It is interesting to note that the Orge and Loisach, which showed a considerable
decrease in performance in terms of the four calibration objective functions (Fig.
2.6), now exhibit relatively high probabilities of improvement with respect to the
signatures when sub-grid heterogeneity is added (Fig. 2.10a). The signatures with
the strongest improvements are related to peaks in the low flow period. Similar to
the Treene, the low flow processes are better captured with mHMtopo. The rela-
tively large urban area in the Orge may merely affect the fast, high flow processes,
which leads to low performances for 𝐸NS,Q in mHMtopo. Nevertheless, a large area
of the Orge catchment is still classified as wetland (see also Fig. 2.1), adding several
processes that only become dominant in the dry periods. Thus, the low flow peaks
may be more adequately represented in mHMtopo. Besides, the information of low
flow peaks is fully masked when looking at, for example, 𝐸NS,Q or 𝐸NS,logQ, as the
relative importance of peaks in low flows in these metrics is low. First, these met-
rics consider the whole period of interest, instead of only the low flow period, and,
second, the peaks are relatively small compared to the average high flows. Hence,
high performances in terms of 𝐸NS,Q or 𝐸NS,logQ may be misleading, which is very
relevant for automatic calibration schemes that often optimize towards these func-
tions. Improvements in, for example, low flow peaks, may remain unnoticed when
calibrating on more general objective functions, such as 𝐸NS,Q, as they mostly rely
on the absolute values of model residuals aggregated over the entire model period.
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Figure 2.11: Histograms of the performance distributions for the median of the low flows ፐ50,low for the
Treene catchment on the basis of all feasible parameter sets of mHM (blue) and mHMtopo (red). The
performance ፒRE is defined as 1 minus the relative error, leading to an optimal value of 1.

This is the result of the frequent absence of homoscedasticity in the model resid-
uals. Therefore, errors in high flows tend to have a higher weight in the objective
function than errors in low flows. For the Loisach, the findings are also in agree-
ment with findings of Velázquez et al. (2013) that in particular the performance of
low flows depends on the choice of the hydrological model. Apparently, here the
low flow processes are not easy to capture, as in most hydrological models.

Results for the comparative analysis of the individual signatures instead of catch-
ments indicated a considerable degree of improvement for mHMtopo to represent
low flows (𝑆ፐᎷᎲ ,low, 𝑆ፐᎻᎷ ,low, 𝑆ፐᎷ ,low) and peaks during low flows (𝑆ፐpeak,10 , 𝑆ፐlow,peak,50),
as can be seen in Fig. 2.10a. A probability distribution of the performance metric
of a signature, so 𝑆RE or 𝑆NS, may indicate whether the feasible space produces
many solutions close to optimal. Ideally, a high peak of the distribution function
close to 1 indicates a strong ability of the model to reproduce a certain signature,
whereas a flat and widespread distribution or even negative performance values
indicates a more reduced ability to reproduce the signature. Thus, the improved
ability of mHMtopo to reproduce low flow signatures becomes more obvious when
looking in detail at the probability distributions of, for example, 𝑆ፐᎷᎲ ,summer in the
Treene catchment (Fig. 2.11). The original model of mHM only allows downward
percolation and infiltration, which leads to a larger buffer for soil moisture in dry
periods. mHMtopo, on the other hand, sustains a shallow groundwater table in
wetlands through an upward flux, which leads to a faster response and thus to a
better representation of the peaks during dry periods.

In contrast, the 1-day autocorrelations for the total, low flow and high flow
periods are consistently better represented in the original mHM (Fig. 2.10a, b).
This indicates that the timing of the flow peaks is better represented in the original



2

32 2. Topography-controlled sub-grid heterogeneity

model. Likewise, the rising and declining limb densities (RLD and DLD, respectively)
are also better captured by the original mHM. Similar to the observation that mHM
better captures the fast spiky peaks in the Orge catchment, this suggests again
that the simpler model structure (mHM) is able to respond faster, while the more
complex model structure (mHMtopo) tends to delay the flow of water. A possible
explanation for this observation is that the more complex model has more options, in
terms of reservoirs, for storing the water. As linear reservoirs keep draining, the use
of multiple reservoirs can produce a delayed and flattened signal. In addition, as the
flood peaks now consist of contributions of the different reservoirs, more solutions
exist to reconstruct these flood peaks. These solutions could also contain flatter,
delayed peaks which affect the 1-day autocorrelation. More specifically, for fast
responding catchments like the Orge and Loisach, it means a poor representation
of the 1-day autocorrelation in mHMtopo, which offers more storage possibilities
and thus more “memory” in the system. However, a closer look at the distributions
in detail shows that these differences are small. As an example, Fig. 2.12 shows the
1-day autocorrelation distributions for the Loisach catchment. Here, it is apparent
that the distributions of mHM and mHMtopo are in accordance.

The findings presented here are in line with some other comparison studies,
such as Reed et al. (2004), Nicolle et al. (2014), Orth et al. (2015) and te Linde
et al. (2008), who all found that added complexity can but does not necessarily
lead to improvements. However, in contrast to Orth et al. (2015), we found that
low flows are better represented by the complex models, whereas they found that
low flows were best represented by a very simple model. Nevertheless, it was
stated by Staudinger et al. (2011) that processes in summer low flow periods are
more complex due to a stronger interaction between fast storages and evaporation.
Therefore, they did not find one particular model structure to represent low flows in
summer. In addition, the difficulties in representing low flows have been acknowl-
edged by several authors, such as Smakhtin (2001), Pushpalatha et al. (2011) or
van Esse et al. (2013).

Effect of constraints
Figure 2.10c shows that the addition of prior constraints to mHM strongly improves
the signature representation, in particular for, again, the Treene. Apparently, the
seasonal runoff constraints help the model to represent the low flows better, which
mHMtopo was able to do through the additional processes included. As the upward
flux from the groundwater in mHMtopo is counterbalanced in the constrained mHM
by different parameters that most likely influence the fast reservoir coefficient and
storage, it remains unclear which of the two conceptualizations, i.e. mHM or mHM-
topo, is more adequate in this case. Also, the Loisach shows a strong improvement
when prior constraints are added to mHM (Fig. 2.10c). The reasoning considering
the importance of snow still holds. The seasonal runoff constraints help to iden-
tify parameter sets that are better able to reproduce the seasonal flows, which are
strongly affected by snowmelt.

The additional constraints imposed on mHM do not significantly affect the per-
formance for the Briance and Orge catchment, as can be seen by the nearly white
rows in Fig. 2.10c. Notably, the runoff responses in these catchments are not snow
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Figure 2.12: Histograms of the performance distributions for the 1-day autocorrelation of flows for the
Loisach catchment on the basis of all feasible parameter sets of mHM (blue) and mHMtopo (red). The
performance ፄRE is defined as 1 minus the relative error, leading to an optimal value of 1.

dominated, and as evaporation and rainfall are now out of phase, the original model
was already able to capture the seasonality reasonably well.

It can be clearly observed from Fig. 2.10c, d that the applied prior constraints
yield a strong improvement, in particular in mHM, and in only about 29% (mHM)
and 38% (mHMtopo) of the cases is a mostly weak performance reduction ob-
served. This indicates that, in spite of being constrained by the transfer functions
that link parameters to catchment characteristics, additional prior constraints do still
contain significant discriminatory information to identify unfeasible model solutions,
which is in agreement with findings of Hrachowitz et al. (2014). The picture is less
clear for applying constraints to mHMtopo, but improvements are still observed for
the majority of the signatures (Fig.2.10d; see also the empirical distribution function
at the bottom of the figures).

Alzette, Loisach and Orge show some deterioration when constraints are added
(Fig. 2.10d), indicating that the topography specific constraints (Eqs. 2.4 and 2.5)
may not be fully applicable to these catchments. These catchments show a general
decrease in the ability to reproduce several signatures when comparing the un-
constrained mHMtopo with the constrained case (Fig. 2.10d). This means that the
unconstrained mHMtopo and also the constrained mHM, which does not have these
topography specific constraints, will outperform the constrained mHMtopo with re-
spect to these signatures. This is also supported by Fig. 2.10b, which illustrates
that for the Alzette, Loisach and Orge, the addition of constraints to mHMtopo leads
to a reduced ability to represent most signatures compared to the constrained mHM
case (see the red pattern in Fig.2.10b). The rejection of these constraints implies
that for these catchments, soil moisture storage capacity in wetlands may be equal
to or even larger than soil moisture storage capacity in the hillslope and plateau
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area. This may be true for the Loisach, especially as Kunstmann et al. (2006)
found that the karstic nature in these areas even leads to water flowing from the
neighbouring Ammer catchment to the Loisach. Considering these groundwater
leakages, the model may need extra storage to correct for it in the hydrograph.

In Fig. 2.10c, d it may also be noted that the constraints do not add information
to mHM and mHMtopo with respect to the autocorrelation functions (𝑆AC, 𝑆AC,low,
𝑆AC,high) and rising and declining limb densities (𝑆RLD, 𝑆DLD ). This makes sense
as the applied constraints here merely affect the seasonal patterns. Therefore,
improvements can be observed for signatures addressing low and high flow periods,
such as 𝑆ፐᎻᎷ ,low and 𝑆ፐᎻᎷ ,high.

Figure 2.10d shows that none of the signatures consistently improves or dete-
riorates. This indicates that care must be taken by including more specific expert
knowledge constraints. General constraints, like the runoff constraints, can easily be
applied to multiple catchments and lead to improvements as Fig. 2.10c shows, but
assumptions about internal model behaviour should experimentally be well founded.
Even though based on several experimental studies, the topography-based param-
eter constraints applied (Eqs. 2.4 and 2.5) were not suitable in all cases, and led to
a random pattern of individual signature improvements/deterioration. Thus, it was
expected that additional constraints should narrow down the “plausible” parameter
space and would lead to more pronounced differences in performances. Neverthe-
less, the results merely support findings of Holländer et al. (2009), where different
choices of expert modellers lead to a variety of outcomes.

Combined effect of constraints and sub-grid heterogeneity
Figure 2.10b shows the effect of additional sub-grid variability on the constrained
models. Most of the catchments show a slight overall improvement, indicated by
the relatively blue shades for Euclidian distance. In general, the patterns observed
in Fig. 2.10b are relatively similar to the patterns observed in Fig. 2.10a. It seems
that the applied constraints generally enhance the effects caused by the model
structure. This can be seen from darker colours of red and blue, but also from
the flatter distribution function (bottom of Fig. 2.10b). Thus, when the model
already has a relatively large probability of improvement for certain signatures, the
constraints help to zoom in on the good solutions. When this is not the case, the
model drifts further away.

Nevertheless, the Briance and Broye show a more different effect, indicating
a positive effect of the constraints for mHMtopo. For the Briance, a red box for
the Euclidian distance in Fig. 2.10a turned blue in Fig. 2.10b. The Broye gained
higher probabilities of improvement, represented by more darker blue colours in
Fig. 2.10b. Apparently, the solutions maintained for the unconstrained mHMtopo
case still contained a relatively large number of implausible solutions. Here, the
application of constraints helped to narrow the solution space in such a way that
mHMtopo showed improvements compared with the original mHM.

However, it must be noted that the Alzette, Loisach and Orge show a relatively
low probability of improvement again. This is due to the rejection of the constraints
given in Eqs. 2.4 and 2.5, as discussed before in comparison with Fig. 2.10d.
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Figure 2.10e shows the combined effect of constraints and sub-grid heterogene-
ity on the signature representation compared with the original, unconstrained mHM.
The Euclidian distance in the last column of Fig. 2.10e shows again that most catch-
ments profit from the addition of constraints and sub-grid heterogeneity to mHM. It
was noted before that mHMtopo has an improved ability to represent the low flow
statistics, whereas the original mHM better represented fast flows signatures like
rising limb density (𝑆RLD) or autocorrelation (𝑆AC). In Fig. 2.10e, even a further con-
trast between the fast flow and low flow domains can be observed. More particular,
the Treene shows again the most improvements. The rejection of the topography
specific constraints in the Alzette, Loisach and Orge introduce also in Fig. 2.10e a
redder pattern. Nevertheless, the overall improvements in the low flow domains
still lead to a general improvement in the Euclidian distance 𝐷E for the Alzette and
Loisach. Only for the Orge catchment, influenced largely by human disturbances,
does the Euclidian distance 𝐷E show a clear deterioration in performance.

2.3.3. Transferability comparison
In a next step, the two models mHM and mHMtopo were calibrated simultaneously
on the four catchments Orge, Treene, Broye and Loisach. The parameters were then
transferred without further calibration to the three remaining receiver catchments
Alzette, Briance and Kinzig. As shown in Fig. 2.13, both models provide a relatively
good performance in the validation period with respect to all four calibration objec-
tive functions in the receiver catchments as compared to the individual calibration
for the same catchments. Compared with the base case of mHM, the Euclidian
distances obtained from the calibration objective functions values changed by 2%
(mHM with constraints), −4% (mHMtopo) and 1% (mHMtopo with constraints).
The Euclidian distances for the signatures improved by 2% for the constrained
mHM case. However, mHMtopo had a decrease of 5% and the Euclidian distance
almost doubled for the constrained mHMtopo case.

Effect of sub-grid heterogeneity
In general, mHM and mHMtopo showed a considerable ability to reproduce similar
objective function values as in the individual calibrations (Fig. 2.13). Both models
kept a reasonable performance during validation in terms of the objective function
values and did not fail in reproducing the hydrograph with the parameters received
from the donor catchments.

For the Alzette, the results obtained with mHM (blue in Fig. 2.13) and mHMtopo
(red in Fig. 2.13) are almost identical. For the Briance and Kinzig catchments it
is noted that the introduction of sub-grid process heterogeneity, i.e. mHMtopo,
leads to a less transferable model. In particular, 𝐸NS,logQ and 𝐸NS,FDC experience
a strong decrease in performance (Fig. 2.13). The results also suggest that, in
the unconstrained case, the original mHM is better transferable than mHMtopo
with respect to catchment signatures (Fig. 2.14a). Most signatures show a low
probability of improvement; only some signatures that consider peaks during the
low flow periods have a relatively high (blue pattern in Fig. 2.14a) probability of
improvement. This indicates again that the more complex mHMtopo mostly affects
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Figure 2.13: Objective function values of the (a) Alzette, (b) Briance and (c) Kinzig catchments in the
validation period for individual calibration (light colours) and when using parameters transferred from
the remaining four donor catchments in the multibasin calibration (darker colours).
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the low flows.
It should be noted that the transfer functions used in mHMtopo were adopted

for similar parameters from the original mHM. However, it may well be that the
assumed functional relations are less valid in a more complex setting. The MPR was
developed around the simple model structure and also refined several times (Kumar
et al., 2013b; Samaniego et al., 2010b). Similar efforts are required for refining
the regionalization for a topography-driven model in order to make mHMtopo as
transferable as the original mHM. In addition, the global parameter ranges that do
not have a real physical meaning were also derived for the original mHM and may
need adjustments for mHMtopo.

Effect of constraints
Imposing prior constraints in mHMtopo leads to a strong increase in performance
again in the Kinzig catchment compared to the unconstrained case (Fig. 2.13).
This indicates that the applied constraints are very suitable for this catchment, but
less so for the Briance catchment, where only a minor improvement is observed.
The Kinzig catchment is characterized by a rather large elevation difference and
relatively high contribution of snow, similar to the Loisach catchment. Hence, the
same reasoning for this catchment holds as for the Loisach catchment that the
seasonal runoff constraints help in the seasonal flow patterns. Besides, the role of
the input data may likely influence the modelling results for this catchment, since
the Kinzig catchment has a large difference in elevation.

When comparing the signatures for the constrained mHM and mHMtopo (Fig.
2.14b), it can be observed that the Alzette and Kinzig catchments benefit from
additional process heterogeneity and constraints, while the constrained mHM is still
better at representing the signatures in the Briance catchment. In general, the
constraints do not have much influence on the Briance catchment, as indicated by
a relatively white row in Fig. 2.14c and d. The unconstrained mHM already was
better transferable for this catchment compared to mHMtopo (see Fig. 2.14a); this
remains the same in the constrained cases. The other two catchments are much
more sensitive to the constraints and now show a better transferability, in particular
with respect to the low flow signatures.

Furthermore, results shown in Fig. 2.14c and d suggest that prior constraints
can add transferability to both models in terms of signatures as highlighted by the
probability of improvements for most signatures. For the Kinzig catchment the
constrained mHMtopo model is clearly better transferable than the unconstrained
mHMtopo as well as mHM with constraints. This was already noted before, when
looking at the performances (Fig. 2.13), but it is here confirmed for the signatures.

In general, it can be stated that the addition of topography-guided sub-grid pro-
cess heterogeneity per se does not necessarily lead to a pronounced difference in
model transferability in all parts of flow regimes. Some improvements were noticed
in low flow signature measures. Significant improvements can rather be observed
when applying constraints, as illustrated in Fig. 2.14c, d. The addition of constraints
to mHMtopo shows high probabilities of improvements over the full range of sig-
natures (Fig. 2.14d), in particular for the Kinzig. Also, for mHM (Fig. 2.14c), even
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though more moderate, most of the signatures show a relatively large probability of
improvement when applying constraints. This test of model transferability under-
lines the considerable potential of prior constraints to improve the representation
of hydrological signatures.

Effect of constraints and sub-grid heterogeneity
In the transferability test, Alzette and Kinzig have an improved signature representa-
tion in terms of the Euclidian distance when constraints and sub-grid heterogeneity
both are added to mHM, as can be seen in Fig. 2.14e. For these catchments, the
biggest improvements, compared with the base case of the unconstrained mHM,
are again observed for the low flow statistics.

The Briance catchment shows a general decrease in the ability to represent
the signatures. The constraints did not help here (white rows in Fig. 2.14d) and
from Fig. 2.14a it was already observed that the unconstrained mHM was more
transferable than mHMtopo. Looking back at Fig. 2.10a, it can also be noted that in
the individual calibration mHM slightly outperformed mHMtopo for this catchment
with respect to the signatures (light-red Euclidian distance). This indicates that
the processes in mHMtopo may not adequately represent the processes in this
catchment, which is emphasized when the model receives the parameters derived
in other catchments. In addition, the derived global relations may not hold for this
catchment. Apparently, this catchment, which is gently sloped with agriculture, is
significantly different from the other catchments used in calibration. The calibration
catchments of Loisach and Broye are more mountainous catchments, whereas the
Treene is very flat and wetland dominated. In nature, the Orge catchment should
be relatively similar, but this catchment is strongly affected by urbanization.

2.3.4. General limitations and outlook
It should be noted that the input data may have a big influence on the experiment.
For example, the input resolution of the E-OBS forcing data is 24 km by 24 km,
while the catchments are relatively small. In a few cases, the catchments are just
covered by a couple of E-OBS data cells. In addition, as the E-OBS data are a
product derived from the interpolation of station data, peaks in rainfall may have
been averaged out. In such cases, the detailed process representation in mHMtopo
may thus not be warranted. Due to pronounced topography-induced precipitation
heterogeneity (e.g. Hrachowitz and Weiler, 2011) , this will be more problematic
for catchments with marked relief than for catchments that are characterized by a
more subdued topography. For example, the Treene benefits most from mHMtopo
and is very flat, whereas the steep Loisach needs additional constraints.

In addition to this, one may wonder what the effect of a different spatial model
resolution would be. In the extreme case where one modeling cell could be clas-
sified as a certain landscape as a whole, the relative importance of the different
processes in mHMtopo will increase. Thus, when the assumed processes in the cell
are adequate, the performance will increase. Nevertheless, incorrect functional re-
lations may also become more apparent on finer modelling scales, as less upscaling
is required.
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Figure 2.14: Probabilities of improvements ፏI,S between (a) mHM and mHMtopo without constraints
and (b) with constraints, (c) mHM with and without constraints, (d) mHMtopo with and without con-
straints and (e) the base case mHM with the constrained mHMtopo case, all after the transfer of global
parameters to the three catchments. The colours are linearly related to the probability of improvement
between 0 (dark red; e.g. the probability of mHMtopo outperforming mHM is 0), 0.5 (white; i.e. models
are statistically equivalent) and 1 (dark blue; e.g. the probability of mHMtopo outperforming mHM is
1). An empirical cumulative distribution function (ECDF) based on all probabilities of improvement has
been added to assess the distribution of these probabilities.
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The assumptions made in the applied functional relationships may also affect the
outcomes of this experiment. In future work, these relationship may need refine-
ment for mHMtopo. Besides this, the threshold values to delineate the landscape
units were originally derived for one specific catchment. The general validity of
these thresholds needs to be tested in future research.

2.3.5. Conclusions
In this study the value of incorporating topography-controlled sub-grid process het-
erogeneity together with semi-quantitative model constraints to increase hydrologi-
cal consistency and spatial transferability of the distributed, conceptual model mHM
was tested. Both the unconstrained and constrained applications of the original
mHM and the topography-based mHMtopo were applied to seven distinct catch-
ments across Europe.

On balance, the addition of topography-based sub-grid process heterogene-
ity moderately improved mHM. Different hydrological signatures indicated that in
particular the representation of low flows improved by allowing for increased sub-
grid process heterogeneity. This could be attributed mostly to additional processes
which were missing in the original mHM. Especially in catchments where the process
of capillary rise is likely to be more important, it became clear that low flows’ signa-
tures were better represented. Nevertheless, the timing of flow peaks was better
captured by the original mHM model. In summary, the addition of topography-
based sub-grid process heterogeneity in the model structure of a distributed model
regionalized through soil and land use was to a moderate degree able to improve
the general model performance in the study catchments while more adequately
reflecting internal processes.

The use of prior, semi-quantitative constraints proved highly effective in the
study catchments as it forces the model to reproduce plausible patterns of parti-
tioning between runoff and evaporative fluxes. Especially in cases where runoff and
evaporation are out of phase, the constraints were shown to be valuable. These
conclusions were largely drawn from the models’ varying ability to reproduce ob-
served catchment signatures.

In addition, it was shown that such an improved hydrological consistency at the
sub-grid scale, combined with the use of suitable model constraints and functional
relationships, can be beneficial for transferring models and predicting flows without
further calibration in other catchments.

In conclusion, the addition of topography-based sub-grid process heterogeneity
and the use of prior semi-quantitative constraints were shown to be promising and
lead to moderate improvements in terms of process representation and transfer-
ability.
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Evolution of root-zone storage

capacity

The previous chapter focused on a formal approach to select the full set of
model parameters, this chapter focuses on the estimation of a single key pa-
rameter, the root-zone storage capacity, in catchments under change. This is
a key parameter determining runoff and evaporation, and a correct parame-
ter estimation is therefore crucial in order to obtain a suitable model formula-
tion. Especially in catchments under change, times for recovery towards new
equilibriums need to be determined, as the models should be able to adapt
to change. Therefore, it is tested whether a simple water-balance estimation
of root-zone storage is sufficient for estimating the time-dynamic character of
this parameter, in comparison with estimates from five hydrological models.

This chapter is based on:
Nijzink, R.C., Hutton, C., Pechlivanidis, I., Capell, R., Arheimer, B., Freer, J., Han, D., Wagener, T.,
McGuire, K., Savenije, H., and Hrachowitz, M.: The evolution of root-zone moisture capacities after
deforestation: a step towards hydrological predictions under change?, Hydrol. Earth Syst. Sci., 20,
4775-4799, doi:10.5194/hess-20-4775-2016, 2016..
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3.1. Introduction
Vegetation, as a core component of the water cycle, shapes the partitioning of water
fluxes on the catchment scale into runoff components and evaporation, thereby con-
trolling fundamental processes in ecosystem functioning (Kleidon, 2004; Laio et al.,
2001; Rodríguez-Iturbe, 2000), such as flood generation (Donohue et al., 2012),
drought dynamics (Seneviratne et al., 2010; Teuling et al., 2013), groundwater
recharge (Allison et al., 1990; Jobbágy and Jackson, 2004) and land–atmosphere
feedback (Cassiani et al., 2015; Milly and Dunne, 1994; Seneviratne et al., 2013).
Besides increasing interception storage available for evaporation (Gerrits et al.,
2010), vegetation critically interacts with the hydrological system in a co-evolutionary
way by root water uptake for transpiration, towards a dynamic equilibrium with the
available soil moisture to avoid water shortage (Donohue et al., 2007; Eagleson,
1978, 1982; Gentine et al., 2012; Liancourt et al., 2012) and related adverse ef-
fects on carbon exchange and assimilation rates (Porporato et al., 2004; Senevi-
ratne et al., 2010). Roots create moisture storage volumes within their range of
influence, from which they extract water that is stored between field capacity and
wilting point. This root-zone storage capacity 𝑆R, sometimes also referred to as
plant available water holding capacity, in the unsaturated soil is therefore the key
component of many hydrological systems (Milly and Dunne, 1994; Rodríguez-Iturbe
et al., 2007).

There is increasing theoretical and experimental evidence that vegetation dy-
namically adapts its root system, and thus 𝑆R, to environmental conditions, to se-
cure, on the one hand, access to sufficient moisture to meet the canopy water de-
mand and, on the other hand, to minimize the carbon investment for sub-surface
growth and maintenance of the root system (Brunner et al., 2015; Schymanski
et al., 2008; Tron et al., 2015). In other words, the hydrologically active root-zone
is optimized to guarantee productivity and transpiration of vegetation, given the cli-
matic circumstances (Kleidon, 2004). Several studies previously showed the strong
influence of climate on this hydrologically active root-zone (e.g. Laio et al., 2001;
Reynolds et al., 2000; Schenk and Jackson, 2002). Moreover, droughts are often
identified as critical situations that can affect ecosystem functioning evolution (e.g.
Allen et al., 2010; McDowell et al., 2008; Vose et al., 2016).

In addition to their general adaption to environmental conditions, vegetation has
some potential to adapt roots to such periods of water shortage (Bréda et al., 2006;
Mencuccini, 2003; Sperry et al., 2002). In the short term, stomatal closure and
reduction of leaf area will lead to reduced transpiration. In several case studies for
specific plants, it was also shown that plants may even shrink their roots and reduce
soil–root conductivity during droughts, while recovering after re-wetting (Nobel and
Cui, 1992; North and Nobel, 1992). In the longer term, and more importantly, trees
can improve their internal hydraulic system, for example by recovering damaged
xylem or by allocating more biomass for roots (Bréda et al., 2006; Rood et al.,
2003; Sperry et al., 2002). Similarly, Tron et al. (2015) argued that roots follow
groundwater fluctuations, which may lead to increased rooting depths when water
tables drop. Such changing environmental conditions may also provide other plant
species with different water demand than the ones present under given conditions,



3.1. Introduction

3

43

with an advantage in the competition for resources, as for example shown by Li
et al. (2007).

The hydrological functioning of catchments (Black, 1997; Wagener et al., 2007)
and thus the partitioning of water into evaporative fluxes and runoff components
is not only affected by the continuous adaption of vegetation to changing climatic
conditions. Rather, it is well understood that anthropogenic changes to land cover,
such as deforestation, can considerably alter hydrological regimes. This has been
shown historically through many paired watershed studies (e.g. Alila et al., 2009;
Andréassian, 2004; Bosch and Hewlett, 1982; Brown et al., 2005). These studies
found that deforestation often leads to generally higher seasonal flows and/or an
increased frequency of high flows in streams, while decreasing evaporative fluxes.
The timescales of hydrological recovery after such land-cover disturbances were
shown to be highly sensitive to climatic conditions and the growth dynamics of the
regenerating species (e.g. Brown et al., 2005; Jones and Post, 2004).

Although land-use change effects on hydrological functioning are widely ac-
knowledged, it is less well understood which parts of the hydrological system are af-
fected in which way and over which timescales. As a consequence, most catchment-
scale models were originally not developed to deal with such changes in the system,
but rather for “stationary” conditions (Ehret et al., 2014). This is true for both top-
down hydrological models, such as HBV (Bergström, 1992) or GR4J (Perrin et al.,
2003), and bottom-up models, such as MIKE-SHE (Refsgaard and Storm, 1995) or
HydroGeoSphere (Brunner and Simmons, 2012). Several modelling studies have
in the past incorporated temporal effects of land-use change to some degree (An-
dersson and Arheimer, 2001; Bathurst et al., 2004; Brath et al., 2006), but they
mostly rely on ad hoc assumptions about how hydrological parameters are affected
(Fenicia et al., 2009; Legesse et al., 2003; Mahe et al., 2005; Onstad and Jamieson,
1970). Approaches which incorporate the change in the model formulation itself
are rare and have only recently gained momentum (e.g. Du et al., 2016; Fatichi
et al., 2016; Zhang et al., 2016). This is of critical importance as ongoing changes
in land cover and climate dictate the need for a better understanding of their effects
on hydrological functioning (Troch et al., 2015) and their explicit consideration in
hydrological models for more reliable predictions under change (Hrachowitz et al.,
2013; Montanari et al., 2013).

As a step towards such an improved understanding and the development of
time-dynamic models, we argue that the root-zone storage capacity, 𝑆R, is a core
component determining the hydrological response, and needs to be treated as a
dynamically evolving parameter in hydrological modelling as a function of climate
and vegetation. Gao et al. (2014b) recently demonstrated that catchment-scale
𝑆R can be robustly estimated exclusively based on long-term water balance con-
siderations. Wang-Erlandsson et al. (2016) derived global estimates of 𝑆R using
remote-sensing based precipitation and evaporation products, which demonstrated
considerable spatial variability of 𝑆R in response to climatic drivers. In traditional
approaches, 𝑆R is typically determined either by the calibration of a hydrological
model (e.g. Seibert and McDonnell, 2010; Seibert et al., 2010) or based on soil
characteristics and sparse, averaged estimates of root depths, often obtained from
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Table 3.1: Overview of the catchments and their sub-catchments (WS).
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literature (e.g. Breuer et al., 2003; Ivanov et al., 2008). This does neither reflect
the dynamic nature of the root system nor does it consider to a sufficient extent
the actual function of the root-zone: providing plants with continuous and efficient
access to water. This leads to the situation where soil porosity often effectively
controls the values of 𝑆R used in a model. Consider, as a thought experiment, two
plants of the same species growing on different soils. They will, with the same av-
erage root depth, then have access to different volumes of water, which will merely
reflect the differences in soil porosity. This is in strong contradiction to the expec-
tation that these plants would design root systems that provide access to similar
water volumes, given the evidence for efficient carbon investment in root growth
(Milly, 1994; Schymanski et al., 2008; Troch et al., 2009a) and posing that plants
of the same species have common limits of operation. This argument is supported
by a recent study, in which was shown that water-balance-derived estimates of 𝑆R
are at least as plausible as soil-derived estimates (de Boer-Euser et al., 2016) in
many environments and that the maximum root depth controls evaporative fluxes
and drainage (Camporese et al., 2015).

Therefore, using water-balance-based estimates of 𝑆R in several deforested sites
as well as in untreated reference sites in two experimental forests, we test the
hypotheses that 1) the root-zone storage capacity 𝑆R significantly changes after
deforestation, 2) the evolution in 𝑆R can explain post-treatment changes to the
hydrological regimes and that 3) a time-dynamic formulation of 𝑆R can improve the
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performance of a hydrological model.

3.2. Study sites
The catchments under consideration are part of the HJ Andrews Experimental For-
est and the Hubbard Brook Experimental Forest. A summary of the main catchment
characteristics can be found in Table 3.1. Daily discharge (Campbell, 2014a; John-
son and Rothacher, 2016), precipitation (Campbell, 2014b; Daly and McKee, 2016)
and temperature time series (Campbell, 2014c,d; Daly and McKee, 2016) were ob-
tained from the databases of the Hubbard Brook Experimental Forest and the HJ
Andrews Experimental Forest. Potential evaporation was estimated by the Harg-
reaves equation (Hargreaves and Samani, 1985).

3.2.1. HJ Andrews Experimental Forest
The HJ Andrews Experimental Forest is located in Oregon, USA (44.2፨ N, 122.2፨W)
and was established in 1948. The catchments at HJ Andrews are described in many
studies (e.g. Dyrness, 1969; Harr et al., 1975; Jones and Grant, 1996; Rothacher,
1965; Waichler et al., 2005).

Before vegetation removal and at lower elevations the forest generally con-
sisted of 100- to 500-year old coniferous species, such as Douglas fir (Pseudotsuga
menziesii), western hemlock (Tsuga heterophylla) and western red cedar (Thuja
plicata), whereas upper elevations were characterized by noble fir (Abies procera),
Pacific silver fir (Abies amabilis), Douglas fir, and western hemlock. Most of the
precipitation falls from November to April (about 80% of the annual precipitation),
whereas the summers are generally drier, leading to signals of precipitation and
potential evaporation that are out of phase.

Deforestation of HJ AndrewsWatershed 1 (WS1) started in August 1962 (Rothacher,
1970). Most of the timber was removed with skyline yarding. After finishing the
logging in October 1966, the remaining debris was burned and the site was left for
natural regrowth. Watershed 2 (WS2) is the reference catchment, which was not
harvested.

3.2.2. Hubbard Brook Experimental Forest
The Hubbard Brook Experimental Forest is a research site established in 1955 and
located in New Hampshire, USA (43.9፨ N, 71.8፨W). The Hubbard Brook experimen-
tal catchments are described in a many publications (e.g. Dahlgren and Driscoll,
1994; Hornbeck, 1973; Hornbeck et al., 1970, 1997; Likens, 2013).

Prior to vegetation removal, the forest was dominated by northern hardwood
forest composed of sugar maple (Acer saccharum), American beech (Fagus gran-
difolia) and yellow birch (Betula alleghaniensis) with conifer species such as red
spruce (Picea rubens) and balsam fir (Abies balsamea) occurring at higher eleva-
tions and on steeper slopes with shallow soils. The forest was selectively harvested
from 1870 to 1920, damaged by a hurricane in 1938, and is currently not accu-
mulating biomass (Campbell et al., 2013; Likens, 2013). The annual precipitation
and runoff is less than in HJ Andrews (Table 3.1). Precipitation is rather uniformly
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Table 3.2: Applied parameter ranges for root-zone storage derivation.

Catchment 𝐼max,eq 𝐼max,change 𝑇r
(mm) (mm) (days)

HJ Andrews WS1 1–5 0–5 0–3650
HJ Andrews WS2 1–5 – –
Hubbard Brook WS2 1–5 5–10 0–3650
Hubbard Brook WS3 1–5 – –
Hubbard Brook WS5 1–5 0–5 0–3650

spread throughout the year without distinct dry and wet periods, but with snowmelt-
dominated peak flows occurring around April and distinct low flows during the sum-
mer months due to increased evaporation rates (Federer et al., 1990). Vegetation
removal occurred in the catchment of Hubbard Brook Watershed 2 (WS2) between
1965 and 1968 and in Hubbard Brook Watershed 5 (WS5) between 1983 and 1984.
Hubbard Brook Watershed 3 (WS3) is the undisturbed reference catchment.

Hubbard Brook WS2 was completely deforested in November and December
1965 (Likens et al., 1970). To minimize disturbance, no roads were constructed and
all timber was left in the catchment. On 23 June 1966, herbicides were sprayed
from a helicopter to prevent regrowth. Additional herbicides were sprayed in the
summers of 1967 and 1968 from the ground.

In Hubbard Brook WS5, all trees were removed between 18 October 1983 and 21
May 1984, except for a 2 ha buffer near an adjacent reference catchment (Hornbeck
et al., 1997). WS5 was harvested as a whole-tree mechanical clearcut with removal
of 93% of the above-ground biomass (Hornbeck et al., 1997; Martin et al., 2000),
thus including smaller branches and debris. Approximately 12% of the catchment
area was developed as the skid trail network. Afterwards, no treatment was applied
and the site was left for regrowth.

3.3. Methodology
To assure reproducibility and repeatability, the executional steps in the experiment
were defined in a detailed protocol, following Ceola et al. (2015), which is pro-
vided as Supplement of Nijzink et al. (2016a) and online (http://dl-ng005.
xtr.deltares.nl/view/441/) as part of the SWITCH-ON Virtual Water Sci-
ence Laboratory.

3.3.1. Water-balance-derived root-zone moisture capacities 𝑆R
The root-zone moisture storage capacities 𝑆R and their change over time were de-
termined according to the methods suggested by Gao et al. (2014b) and subse-
quently successfully tested by de Boer-Euser et al. (2016) and Wang-Erlandsson
et al. (2016). Briefly, the long-term water balance provides information on actual
mean transpiration. In a first step, the interception capacity has to be assumed, in
order to determine the effective precipitation 𝑃e (𝐿 𝑇ዅኻ), following the water balance

http://dl-ng005.xtr.deltares.nl/view/441/
http://dl-ng005.xtr.deltares.nl/view/441/
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equation for interception storage:

d𝑆።
d𝑡 = 𝑃 − 𝐸። − 𝑃e (3.1)

with 𝑆። (𝐿) interception storage, 𝑃 the precipitation (𝐿 𝑇ዅኻ), 𝐸። the interception
evaporation (𝐿 𝑇ዅኻ). This is solved with the constitutive relations:

𝐸። = {
𝐸p if𝐸pd𝑡 < 𝑆።
ፒᑚ
d፭ if𝐸pd𝑡 ≥ 𝑆።

(3.2)

𝑃e = {
0 if 𝑆። ≤ 𝐼max
ፒᑚዅፈmax
d፭ if 𝑆። > 𝐼max

(3.3)

with, additionally, 𝐸p the potential evaporation (𝐿 𝑇ዅኻ) and 𝐼max (𝐿) the interception
capacity. As 𝐼max will also be affected by land cover change, this was addressed by
introducing the three parameters 𝐼max,eq (long-term equilibrium interception capac-
ity) (𝐿), 𝐼max,change (post-treatment interception capacity) (𝐿) and 𝑇r (recovery time)
(𝑇), leading to a time-dynamic formulation of 𝐼max:

𝐼max =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

for 𝑡 < 𝑡change , 𝑡 > 𝑡change,end + 𝑇r ∶
𝐼max,eq

for 𝑡change, start < 𝑡 < 𝑡change,end ∶
𝐼max,eq −

ፈmax,eqዅፈmax,change
፭change,endዅ፭change,start

(𝑡 − 𝑡change,start)

for 𝑡change,end < 𝑡 < 𝑡change,end + 𝑇r ∶
𝐼max,change +

ፈmax,eqዅፈmax,change
ፓr

(𝑡 − 𝑡change,end)

(3.4)

with 𝑡change,start the time that deforestation started and 𝑡start,end the time deforesta-
tion finished.

Following a Monte Carlo sampling approach, upper and lower bounds of 𝐸። were
then estimated based on 1000 random samples of these parameters, eventually
leading to upper and lower bounds for 𝑃e. The interception capacity was assumed
to increase after deforestation for Hubbard Brook WS2, as the debris was left at
the site. For Hubbard Brook WS5 and HJ Andrews WS1 the interception capacity
was assumed to decrease after deforestation, as here the debris was respectively
burned and removed. Furthermore, in the absence of more detailed information, it
was assumed that the interception capacities changed linearly during deforestation
towards 𝐼max,change and linearly recovered to 𝐼max over the period 𝑇r as well. See
Table 3.2 for the applied parameter ranges.

Hereafter, the long-termmean transpiration can be estimated with the remaining
components of the long term water balance, assuming no additional gains or losses,
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Figure 3.1: Derivation of root-zone storage capacity (ፒR) for one specific time period in Hubbard Brook
WS2 as difference between the cumulative transpiration (ፄt) and the cumulative effective precipitation
(ፏE).

storage changes and/or data errors:

𝐸t = 𝑃e − 𝑄, (3.5)

where 𝐸t (𝐿 𝑇ዅኻ) is the long-term mean actual transpiration, 𝑃e (𝐿 𝑇ዅኻ) is the long-
term mean effective precipitation and 𝑄 (𝐿 𝑇ዅኻ) is the long-term mean catchment
runoff. Taking into account seasonality, the actual mean transpiration is scaled with
the ratio of long-term mean daily potential evaporation 𝐸p over the mean annual
potential evaporation 𝐸p:

Et(𝑡) =
Ep(𝑡)
𝐸p

× 𝐸t. (3.6)

Based on this, the cumulative deficit between actual transpiration and precipitation
over time can be estimated by means of an “infinite-reservoir”. In other words,
the cumulative sum of daily water deficits, i.e. evaporation minus precipitation,
is calculated between 𝑇ኺ, which is the time the deficit equals zero, and 𝑇ኻ, which
is the time the total deficit returned to zero. The maximum deficit of this period
then represents the volume of water that needs to be stored to provide vegetation
continuous access to water throughout that time:

𝑆R =max
ፓኻ

∫
ፓኺ
(𝐸t − 𝑃e) d𝑡, (3.7)

where 𝑆R (𝐿) is the maximum root-zone storage capacity over the time period be-
tween 𝑇ኺ and 𝑇ኻ. See also Fig. 3.1 for a graphical example of the calculation for the
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Hubbard Brook catchment for one specific realization of the parameter sampling.
The 𝑆R,20yr for drought return periods of 20 years was estimated using the Gumbel
extreme value distribution (Gumbel, 1941) as previous work suggested that veg-
etation designs 𝑆R to satisfy deficits caused by dry periods with return periods of
approximately 10–20 years (de Boer-Euser et al., 2016; Gao et al., 2014b). Thus,
the maximum values of 𝑆R for each year, as obtained by Eq. 3.7, were fitted to
the extreme value distribution of Gumbel, and subsequently, the 𝑆R,20yr was deter-
mined.

For the study catchments that experienced logging and subsequent reforesta-
tion, it was assumed that the root system converges towards a dynamic equilib-
rium approximately 10 years after reforestation. Thus, the equilibrium 𝑆R,20yr was
estimated using only data over a period that started at least 10 years after the
treatment. For the growing root systems during the years after reforesting, the
storage capacity does not yet reach its dynamic equilibrium 𝑆R,20yr. Instead of de-
termining an equilibrium value, the maximum occurring deficit for each year was in
that case considered as the maximum demand and thus as the maximum required
storage 𝑆R,1yr for that year. To make these yearly estimates, the mean transpiration
was determined in a similar way as stated by Eq. 3.5. However, the assumption
of no storage change may not be valid for 1-year periods. In a trade-off to limit
the potential bias introduced by inter-annual storage changes in the catchments,
the mean transpiration was determined based on the 2-year water balance, thus
assuming negligible storage change over these years.

The deficits in the months October–April are highly affected by snowfall, as
estimates of the effective precipitation are estimated without accounting for snow,
leading to soil moisture changes that spread out over an unknown longer period
due to the melt process. Therefore, to avoid this influence of snow, only deficits as
defined by Eq. 3.7, in the period of May–September are taken into consideration,
which is also the period where deficits are significantly increasing due to relatively
low rainfall and high transpiration rates, thus causing soil moisture depletion and
drought stress for the vegetation, which in turn, shapes the root-zone.

3.3.2. Model-derived root-zone storage capacity 𝑆፮,max
The water-balance-derived equilibrium 𝑆R,20yr as well as the dynamically changing
𝑆R,1yr that reflects regrowth patterns in the years after treatment were compared
with estimates of the calibrated parameter 𝑆፮,max, which represents the mean catch-
ment root-zone storage capacity in lumped conceptual hydrological models. Due to
the lack of direct observations of the changes in the root-zone storage capacity, this
comparison was used to investigate whether the estimates of the root-zone storage
capacity 𝑆R,1yr, their sensitivity to land-cover change and their effect on hydrologi-
cal functioning, can provide plausible results. Model-based estimates of root-zone
storage capacity may be highly influenced by model formulations and parameter-
izations. Therefore, four different hydrological models were used to derive the
parameter 𝑆፮,max in order to obtain a set of different estimates of the catchment-
scale root-zone storage capacity. The major features of the model routines for
root-zone moisture tested here are briefly summarized below and detailed descrip-
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tions including the relevant equations are provided in the Supplement Sect. S2 of
Nijzink et al. (2016a).

FLEX
The FLEX-based model Fenicia et al. (2008) was applied in a lumped way to the
catchments. The model has nine parameters, eight of which are free calibration
parameters, sampled from relatively wide, uniform prior distributions. In contrast,
based on the estimation of a Master Recession Curve (e.g. Fenicia et al., 2006), an
informed prior distribution between narrow bounds could be used for determining
the slow reservoir coefficient 𝐾s.

The model consists of five storage components. First, a snow routine has to be
run, which is a simple degree-day module, similar to that used in, for example, HBV
(Bergström, 1976). After the snow routine, the precipitation enters the interception
reservoir. Here, water evaporates at potential rates or, when exceeding a threshold,
directly reaches the soil moisture reservoir. The soil moisture routine is modelled in a
similar way to the Xinanjiang model (Zhao, 1992). Briefly, it contains a distribution
function that determines the fraction of the catchment where the storage deficit
in the root-zone is satisfied and that is therefore hydrologically connected to the
stream and generating storm runoff. From the soil moisture reservoir, water can
further vertically percolate down to recharge the groundwater or leave the reservoir
through transpiration. Transpiration is a function of maximum root-zone storage
𝑆፮,max and the actual root-zone storage, similar to the functions described by Feddes
et al. (1978). Water that cannot be stored in the soil moisture storage is then split
into preferential percolation to the groundwater and runoff generating fluxes that
enter a fast reservoir, which represents fast-responding system components such
as shallow subsurface and overland flow.

HYPE
The HYPE model (Lindström et al., 2010) estimates soil moisture for hydrological
response units (HRU), which is the finest calculation unit in this catchment model.
In the current set-up, 15 parameters were left free for calibration. Each HRU con-
sists of a unique combination of soil and land-use classes with assigned soil depths.
Water input is estimated from precipitation after interception and a snow module
at the catchment scale, after which the water enters the three defined soil layers in
each HRU. Evaporation and transpiration occurs in the first two layers and fast sur-
face runoff is produced when these layers are fully saturated or when rainfall rates
exceeds the maximum infiltration capacities. Water can move between the layers
through percolation or laterally via fast flow pathways. The groundwater table is
fluctuating between the soil layers with the lowest soil layer normally reflecting the
base flow component in the hydrograph. The water balance of each HRU is calcu-
lated independently and the runoff is then aggregated in a local stream with routing
before entering the main stream.

TUW
The TUW model (Parajka et al., 2007) is a conceptual model with a structure similar
to that of HBV (Bergström, 1976) and has 15 free calibration parameters. After a
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snow module, based on a degree-day approach, water enters a soil moisture rou-
tine. From this soil moisture routine, water is partitioned into runoff-generating
fluxes and evaporation. Here, transpiration is determined as a function of maxi-
mum root-zone storage 𝑆፮,max and actual root-zone storage as well. The runoff-
generating fluxes percolate into two series of reservoirs. A fast-responding reser-
voir with overflow outlet represents shallow subsurface and overland flow, while
the slower responding reservoir represents the groundwater.

HYMOD
HYMOD (Boyle, 2001) is similar to the applied model structure for FLEX, but only
has eight parameters. Besides that, the interception module and percolation from
soil moisture to the groundwater are missing. Nevertheless, the model accounts
similarly for the partitioning of transpiration and runoff generation in a soil moisture
routine. Also for this model, transpiration is a function of maximum storage and
actual storage in the root-zone. The runoff-generating fluxes are eventually divided
over a slow reservoir, representing groundwater, and a fast reservoir, representing
the fast processes.

Model calibration
Each model was calibrated using a Monte-Carlo strategy within consecutive 2-year
windows in order to obtain a time series of root-zone moisture capacities 𝑆፮,max.
FLEX, TUW and HYMOD were all run 100 000 times, whereas HYPE was run 10 000
times and 20 000 times for HJ Andrews WS1 and the Hubbard Brook catchments
respectively, due to the required runtimes. The Kling–Gupta efficiency for flows
(Gupta et al., 2009) and the Kling–Gupta efficiency for the logarithm of the flows
were simultaneously used as objective functions in a multi-objective calibration ap-
proach to evaluate the model performance for each window. These were selected
in order to obtain rather balanced solutions that enable a sufficient representation
of peak flows, low flows and the water balance. The unweighted Euclidian distance
of the three objective functions served as an informal measure to obtain these
balanced solutions (e.g. Hrachowitz et al., 2014; Schoups et al., 2005):

𝐿 (𝜃) = 1 − √(1 − 𝐸KG,Q)
ኼ + (1 − 𝐸KG,logQ)

ኼ, (3.8)

where 𝐿(𝜃) is the conditional probability for parameter set 𝜃 [–], 𝐸KG,Q the
Kling–Gupta efficiency [–], 𝐸KG,logQ the Kling–Gupta efficiency for the log of the
flows [–].

Eventually, a weighting method based on the GLUE-approach of Freer et al.
(1996) was applied. To estimate posterior parameter distributions all solutions with
Euclidian distances smaller than 1 were maintained as feasible. The posterior dis-
tributions were then determined with the Bayes rule (cf. Freer et al., 1996):

𝐿ኼ (𝜃) = 𝐿 (𝜃)፧ × 𝐿ኺ (𝜃) /𝐶, (3.9)

where 𝐿ኺ(𝜃) is the prior parameter distribution [–], 𝐿ኼ(𝜃) is the posterior condi-
tional probability [–] , 𝑛 is a weighting factor (set to 5) [–], and 𝐶 is a normalizing
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constant [–]. 5/95th model uncertainty intervals were then constructed based on
the posterior conditional probabilities.

3.3.3. Trend analysis
To test if 𝑆R,1yr significantly changes following de- and subsequent reforestation,
which would also indicate shifts in distinct hydrological regimes, a trend analysis,
as suggested by Allen et al. (1998), was applied to the 𝑆R,1yr values obtained from
the water-balance-based method. As the sampling of interception capacities (Eq.
3.4) leads to 𝑆R,1yr values for each point in time, which are all equally likely in
absence of any further knowledge, the mean of this range was assumed as an
approximation of the time-dynamic character of 𝑆R,1yr.

Briefly, a linear regression between the full series of the cumulative sums of
𝑆R,ኻ፲፫ in the deforested catchment and the unaffected control catchment is es-
tablished and the residuals and the cumulative residuals are plotted in time. A
95%-confidence ellipse is then constructed from the residuals:

𝑋 = 𝑛
2cos(𝛼), (3.10)

𝑌 = 𝑛
√𝑛 − 1

𝑍፩ዃ኿ 𝜎rsin(𝛼), (3.11)

where 𝑋 presents the 𝑥 coordinates of the ellipse (𝑇), 𝑌 represents the 𝑦 coordi-
nates of the ellipse (𝐿), n is the length of the time series (𝑇), 𝛼 is the angle defining
the ellipse (0–2𝜋) between the diagonal of the ellipse and the 𝑥 axis (–), 𝑍፩ዃ኿ is the
value belonging to a probability of 95% of the standard student t-distribution (–)
and 𝜎r is the standard deviation of the residuals (assuming a normal distribution)
(𝐿).

When the cumulative sums of the residuals plot outside the 95%-confidence
interval defined by the ellipse, the null-hypothesis that the time series are homo-
geneous is rejected. In that case, the residuals from this linear regression where
residual values change from either solely increasing to decreasing or vice versa, can
then be used to identify different sub-periods in time.

Thus, in a second step, for each identified sub-period a new regression, with new
(cumulative) residuals, can be used to check homogeneity for these sub-periods.
In a similar way as before, when the cumulative residuals of these sub-periods now
plot within the accompanying newly created 95%-confidence ellipse, the two series
are homogeneous for these sub-periods. In other words, the two time series show
consistent behaviour over this particular period.

3.3.4. Model with time-dynamic formulation of 𝑆፮,max
In a last step, the FLEX model was reformulated to allow for a time-dynamic rep-
resentation of the parameter 𝑆፮,max, reflecting the root-zone storage capacity.

As a reference, the long-term water-balance-derived root-zone storage capacity
𝑆R,20yr was used as a static formulation of 𝑆፮,max in the model, and thus kept constant
in time. The remaining parameters were calibrated using the calibration strategy
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outlined above over a period starting with the treatment in the individual catchments
until at least 15 years after the end of the treatment. This was done to focus on
the period under change (i.e. vegetation removal and recovery), during which the
differences between static and dynamic formulations of 𝑆፮,max are assumed to be
most pronounced.

To test the effect of a dynamic formulation of 𝑆፮,max as a function of forest
regrowth, the calibration was run with a temporally evolving series of root-zone
storage capacity. The time-dynamic series of 𝑆፮,max were obtained from a relatively
simple growth function, the Weibull function (Weibull, 1951):

𝑆፮,max(𝑡) = 𝑆R,20yr (1 − 𝑒ዅፚ፭
ᑓ) , (3.12)

where 𝑆፮,max (𝑡) is the root-zone storage capacity 𝑡 time steps after reforestation
(𝐿), 𝑆R,20yr is the equilibrium value (𝐿), and 𝑎 (𝑇ዅኻ) and 𝑏 (–) are shape parameters.
In the absence of more information, this equation was selected as the first, simple
way of incorporating the time-dynamic character of the root-zone storage capacity
in a conceptual hydrological model. In this way, root growth is exclusively deter-
mined dependent on time, whereas the shape parameters 𝑎 and 𝑏 merely implicitly
reflect the influence of other factors, such as climatic forcing, in a lumped way.
These parameters were estimated based on qualitative judgement so that 𝑆፮,max(𝑡)
coincides well with the suite of 𝑆R1yr values after logging. In other words, the values
were chosen by trial and error in such a way that the time-dynamic formulation of
𝑆፮,max(𝑡) shows a visually good correspondence with the 𝑆R1yr values. This approach
was followed to filter out the short-term fluctuations in the 𝑆R1yr values, which is
not warranted by this equation. Note that this rather simple approach is merely
meant as a proof of concept for a dynamic formulation of 𝑆፮,max.

In addition, the remaining parameter directly related to vegetation, the inter-
ception capacity (𝐼max), was also assigned a time-dynamic formulation. Here, the
same growth function was applied (Eq. 3.12), but the shape of the growth function
was assumed fixed (i.e. growth parameters 𝑎 and 𝑏 were fixed to values of 0.001
(dayዅኻ) and 1 (–)) loosely based on the posterior ranges of the window calibrations,
with qualitative judgement as well. This growth function was used to ensure the
degrees of freedom for both the time-variant and the time-invariant models, leav-
ing the equilibrium value of the interception capacity as the only free calibration
parameter for this process. Note that the empirically parameterized growth func-
tions can be readily extended and/or replaced by more mechanistic, process-based
descriptions of vegetation growth if warranted by the available data, and they were
here merely used to test the effect of considering changes in vegetation on the skill
of models to reproduce hydrological response dynamics.

To assess the performance of the dynamic model compared to the time-invariant
formulation, beyond the calibration objective functions, model skill in reproducing
28 hydrological signatures was evaluated (Sivapalan et al., 2003). Even though the
signatures are not always fully independent of each other, this larger set of measures
allows a more complete evaluation of the model skill as, ideally, the model should
be able to simultaneously reproduce all signatures. An overview of the signatures
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Figure 3.2: Evolution of signatures in time of (a–c) the runoff coefficient, (d–f) the 1-day autocorrelation,
(g–i) the declining limb density, (j–l) the rising limb density with the reference watersheds in grey and
periods of deforestation in red shading. The flow duration curves for HJ Andrews WS1, Hubbard Brook
WS2 and Hubbard Brook WS5 are shown in (m)–(o), where years between the first and last year are
coloured from light gray to dark grey as they progress in time.
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Table 3.3: Overview of the hydrological signatures.

Signature Description Reference
𝑆QMA Mean annual runoff
𝑆AC One day autocorrelation coefficient Montanari and Toth (2007)
𝑆AC,summer One day autocorrelation the summer period Euser et al. (2013)
𝑆AC,winter One day autocorrelation the winter period Euser et al. (2013)
𝑆RLD Rising limb density Shamir et al. (2005)
𝑆DLD Declining limb density Shamir et al. (2005)
𝑆ፐᎷ Flow exceeded in 5% of the time Jothityangkoon et al. (2001)
𝑆ፐᎷᎲ Flow exceeded in 50% of the time Jothityangkoon et al. (2001)
𝑆ፐᎻᎷ Flow exceeded in 95% of the time Jothityangkoon et al. (2001)
𝑆ፐᎷ ,summer Flow exceeded in 5% of the summer time Yilmaz et al. (2008)
𝑆ፐᎷᎲ ,summer Flow exceeded in 50% of the summer time Yilmaz et al. (2008)
𝑆ፐᎻᎷ ,summer Flow exceeded in 95% of the summer time Yilmaz et al. (2008)
𝑆ፐᎷ ,winter Flow exceeded in 5% of the winter time Yilmaz et al. (2008)
𝑆ፐᎷᎲ ,winter Flow exceeded in 50% of the winter time Yilmaz et al. (2008)
𝑆ፐᎻᎷ ,winter Flow exceeded in 95% of the winter time Yilmaz et al. (2008)
𝑆Peaks Peak distribution Euser et al. (2013)
𝑆Peaks,summer Peak distribution summer period Euser et al. (2013)
𝑆Peaks,winter Peak distribution winter period Euser et al. (2013)
𝑆ፐpeak,10 Flow exceeded in 10% of the peaks
𝑆ፐpeak,50 Flow exceeded in 50% of the peaks
𝑆ፐsummer,peak,10Flow exceeded in 10% of the summer peaks
𝑆ፐsummer,peak,50Flow exceeded in 10% of the summer peaks
𝑆ፐwinter,peak,10 Flow exceeded in 10% of the winter peaks
𝑆ፐwinter,peak,50 Flow exceeded in 50% of the winter peaks
𝑆SFDC Slope flow duration curve Yadav et al. (2007)
𝑆LFR Low flow ratio (𝑄ዃኺ /𝑄኿ኺ)
𝑆FDC Flow duration curve Westerberg et al. (2011)
𝑆AC,serie Autocorrelation series (200 days lag time) Montanari and Toth (2007)

is given in Table 3.3. The results of the comparison were quantified on the basis of
the probability of improvement for each signature (Nijzink et al., 2016b):

𝑃ፈ,ፒ = 𝑃 (𝑆dyn > 𝑆stat)

=
፧

∑
።዆ኻ
𝑃 (𝑆dyn > 𝑆stat | 𝑆dyn = 𝑟።) 𝑃 (𝑆dyn = 𝑟።), (3.13)

where 𝑆dyn and 𝑆stat are the distributions of the signature performance metrics
of the dynamic and static model, respectively, for the set of all feasible solutions
retained from calibration, 𝑟። is a single realization from the distribution of 𝑆dyn and
𝑛 is the total number of realizations of the 𝑆dyn distribution. For 𝑃ፈ,ፒ >0.5 it is then
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more likely that the dynamic model outperforms the static model with respect to the
signature under consideration, and vice versa for 𝑃ፈ,ፒ <0.5. The signature perfor-
mance metrics that were used are the relative error (for single-valued signatures)
and the Nash–Sutcliffe efficiency (Nash and Sutcliffe, 1970), for signatures that
represent a time series.

In addition, as a more quantitative measure, the ranked probability score, giving
information on the magnitude of model improvement or deterioration, was calcu-
lated (Wilks, 2011):

𝑆RP =
1

𝑀 − 1

ፌ

∑
፦዆ኻ

[(
፦

∑
፤዆ኻ

𝑝፤) − (
፦

∑
፤዆ኻ

𝑜፤)]

ኼ

, (3.14)

where 𝑀 is the number of feasible solutions, 𝑝፤ the probability of a certain
signature performance to occur and 𝑜፤ the probability of the observation to occur
(either 1 or 0, as there is only a single observation). Briefly, the 𝑆RP represents the
area enclosed between the cumulative probability distribution obtained by model
results and the cumulative probability distribution of the observations. Thus, when
modelled and observed cumulative probabilities are identical, the enclosed area
goes to zero. Therefore, the difference between the 𝑆RP for the feasible set of
solutions for the time-variant and time-invariant model formulation was used in the
comparison, identifying which model is quantitatively closer to the observation.

3.4. Results
3.4.1. Changes in hydrological response dynamics
We found that the three deforested catchments in the two research forests show on
balance similar response dynamics after the logging of the catchments (Fig. 3.2).
This supports the findings from previous studies of these catchments (Andréassian,
2004; Bosch and Hewlett, 1982; Hornbeck et al., 1997; Rothacher et al., 1967).
More specifically, it was found that the observed annual runoff coefficients for HJ
Andrews WS1 and Hubbard Brook WS2 (Fig. 3.2a, b) change after logging of the
catchments, also in comparison with the adjacent, undisturbed reference water-
sheds. Right after deforestation, runoff coefficients increase, followed by a gradual
decrease.

The annual autocorrelation coefficients with a 1-day lag time are generally lower
after logging than in the years before the change, which can be seen in particular
from Fig. 3.2e and f as here a long pre-treatment time series record is available.
Nevertheless, the climatic influence cannot be ignored here, as the reference wa-
tershed shows a similar pattern. Only for Hubbard Brook WS5 (Fig. 3.2f) the
autocorrelation does show reduced values in the first years after logging. Thus,
the flows at any time 𝑡 + 1 are less dependent on the flows at 𝑡, which points to-
wards less memory and thus less storage in the system (i.e. reduced 𝑆R), leading
to increased peak flows, similar to the reports of, for example, Patric and Reinhart
(1971) for one of the Fernow experiments.



3.4. Results

3

57

Figure 3.3: Hydrographs for HJ Andrews WS1 in (a) 1962 (annual precipitation ፏA ዆ 2018,
ፄᑡ,A ዆ 951mmyrᎽᎳ) and (b) 1989 (ፏA ዆ 1752, ፄᑡ,A ዆ 846mmyrᎽᎳ), Hubbard Brook WS2 in (c) 1966
(ፏA ዆ 1222, ፄᑡ,A ዆ 788mmyrᎽᎳ and (d) 2004 (ፏA ዆ 1296, annual ፄᑡ,A ዆ 761mmyrᎽᎳ and Hub-
bard Brook WS5 in (e) 1984 (ፏA ዆ 1480, annual ፄᑡ,A ዆ 721mmyrᎽᎳ) and (f) 2004 (ፏA ዆ 1311,
ፄᑡ,A ዆ 731mmyrᎽᎳ).

The declining limb density for HJ Andrews WS1 (Fig. 3.2g) shows increased val-
ues right after deforestation, whereas a longer time after deforestation, the values
seem to plot closer to the values obtained from the reference watershed. This indi-
cates that for the same number of peaks, less time was needed for the recession in
the hydrograph in the early years after logging. In contrast, the rising limb density
shows increased values during and right after deforestation for Hubbard Brook WS2
and WS5 (Fig. 3.2k–l), compared to the reference watershed. Here, less time was
needed for the rising part of the hydrograph in the more early years after logging.
Thus, the recession seems to be affected in HJ Andrews WS1, whereas the Hubbard
Brook watersheds exhibit a quicker rise of the hydrograph.

Eventually, the flow duration curves, as shown in Fig. 3.2m–o, indicate a higher
variability of flows, as the years following deforestation plot with an increased steep-
ness of the flow duration curve, i.e. a higher flashiness. This increased flashiness of
the catchments after deforestation can also be noted from the hydrographs shown
in Fig. 3.3. The peaks in the hydrographs are generally higher, and the flows re-
turn faster to the baseflow values in the years right after deforestation than some
years later after some forest regrowth, all with similar values for the yearly sums
of precipitation and potential evaporation.

3.4.2. Temporal evolution of 𝑆R and 𝑆፮,max
The observed changes in the hydrological response of the study catchments (as dis-
cussed above) were also clearly reflected in the temporal evolution of the root-zone
storage capacities as described by the catchment models (Fig. 3.4). The models
all exhibited Kling–Gupta efficiencies ranging between 0.5 and 0.8 and Kling–Gupta
efficiencies of the log of the flows between 0.2 and 0.8 (see the Supplement of
Nijzink et al. (2016b), Figs. S5–S7, with all posterior parameter distributions in
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Figure 3.4: Evolution of root-zone storage capacity ፒᑉ,Ꮃᑪᑣ from water balance-based estimation (green
shaded area, a range of solutions due to the sampling of the unknown interception capacity) compared
with ፒᑦ,max,2yr estimates obtained from the calibration of four models (FLEX, HYPE, TUW, HYMOD; blue
box plots) for HJ Andrews WS1, Hubbard Brook WS2 and Hubbard Brook WS5. Red shaded areas are
periods of deforestation.
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Figure 3.5: Observed and modelled hydrograph for HJ Andrews WS1 for the years of 1978 and 1979,
with the red coloured area indicating the ኿/ዃ኿% uncertainty intervals of the modelled discharge. Blue
bars show daily precipitation.

Figs. S10–S27, and the number of feasible solutions in Tables S5–S7). Compar-
ing the water-balance- and model-derived estimates of root-zone storage capacity
𝑆R and 𝑆፮,max, respectively, then showed that they exhibit very similar patterns in
the study catchments. Especially for HJ Andrews WS1 and Hubbard Brook WS2,
root-zone storage capacities sharply decreased after deforestation and gradually re-
covered during regrowth towards a dynamic equilibrium of climate and vegetation,
whereas the undisturbed reference catchments of HJ Andrews WS2 and Hubbard
Brook WS3 showed a rather constant signal over the full period (not shown).

The HJ Andrews WS1 shows the clearest signal when looking at the water-
balance-derived 𝑆R, as can be seen by the green shaded area in Fig. 3.4a. Before
deforestation, the root-zone storage capacity 𝑆R,1yr was found to be around 400mm.
During deforestation, the 𝑆R,1yr required to provide the remaining vegetation with
sufficient and continuous access to water decreased from around 400 to 200mm.
For the first 4–6 years after deforestation the 𝑆R,1yr increased again, reflecting the
increased water demand of vegetation with the regrowth of the forest. In addition,
it was observed that in the period 1971–1978 𝑆R,1yr slowly decreased again in HJ
Andrews.

The four models show a similar pronounced decrease of the calibrated, feasible
set of 𝑆፮,max during deforestation and a subsequent gradual increase over the first
years after deforestation. The model concepts, and thus our assumptions about na-
ture, can therefore only account for the changes in hydrological response dynamics
of a catchment, when calibrated in a window calibration approach with different pa-
rameterizations for each time frame. The absolute values of 𝑆፮,max obtained from
the most parsimonious HYMOD and FLEX models (both with 8 free calibration pa-
rameters) show a somewhat higher similarity to 𝑆R,1yr and its temporal evolution
than the values from the other two models. In spite of similar general patterns in
𝑆፮,max, the higher number of parameters in TUW (i.e. 15) result, due to compensa-
tion effects between individual parameters, in wider uncertainty bounds which are
less sensitive to change. It was also observed that in particular TUW overestimates
𝑆፮,max compared to 𝑆R,1yr, which can be attributed to the absence of an interception
reservoir, leading to a root-zone that has to satisfy not only transpiration but all
evaporative fluxes.
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Hubbard Brook WS2 exhibits a similarly clear decrease in root-zone storage ca-
pacity as a response to deforestation, as shown in Fig. 3.4. The water-balance-
based 𝑆R,1yr estimates approach values of zero during and right after deforestation.
In these years the catchment was treated with herbicides, removing effectively any
vegetation, thereby minimizing transpiration. In this catchment a more gradual re-
growth pattern occurred, which continued after logging started in 1966 until around
1983. Generally, the models applied in Hubbard Brook WS2 show similar behaviour
to those in the HJ Andrews catchment. The calibrated 𝑆፮,max clearly follows the tem-
poral pattern of 𝑆R,1yr, reflecting the pronounced effects of de- and reforestation. It
can, however, also be observed that the absolute values of 𝑆፮,max exceed the 𝑆R,1yr
estimates. While FLEX on balance exhibits the closest resemblance between the two
values, the TUW model in particular exhibits wide uncertainty bounds with elevated
𝑆፮,max values. Besides the role of interception evaporation, which is only explicitly
accounted for in FLEX, the results are also linked to the fact that the humid climatic
conditions with little seasonality reduces the importance of the model parameter
𝑆፮,max, and makes it thereby more difficult to identify by calibration. The parameter
is most important for lengthy dry periods when vegetation needs enough storage to
ensure continuous access to water. The temporal variation in 𝑆R in Hubbard Brook
WS5 does not show such a distinct signal as in the other two study catchments (Fig.
3.4). Moreover, it can be noted that in the summers of 1984 and 1985 the values
of 𝑆R,1yr are relatively high. Nevertheless, the model-based values of 𝑆፮,max show
again similar dynamics to the water-balance-based 𝑆R,1yr values. TUW and HYMOD
show again higher model-based values, but FLEX is also now overestimating the
root-zone storage capacity.

3.4.3. Trend analysis and change in hydrological regimes
The trend analysis for water-balance-derived values of 𝑆R,1yr suggests that for all
three study catchments significantly different hydrological regimes in time can be
identified before and after deforestation, linked to changes in 𝑆R,1yr (Fig. 3.7). For
all three catchments, the cumulative residuals plot outside the 95%-confidence
ellipse, indicating that the time series obtained in the control catchments and the
deforested catchments are not homogeneous (Fig. 3.7g–i).

Rather obvious break points can be identified in the residual plots for the catch-
ments HJ Andrews WS1 and Hubbard Brook WS2 (Fig. 3.7d–e). Splitting up the
𝑆R,1yr time series according to these break points into the periods before deforesta-
tion, deforestation and recovery resulted in three individually homogenous time
series that are significantly different from each other, indicating switches in the hy-
drological regimes. The results shown in Fig. 3.4 indicate that these catchments
developed a rather stable root-zone storage capacity sometime after the start of de-
forestation (for HJ Andrews WS1 after 1964, for Hubbard Brook WS2 after 1967).
Hence, recovery and deforestation balanced each other, leading to a temporary
equilibrium. The recovery signal then becomes more dominant in the years after
deforestation. The third homogenous period suggests that the root-zone storage
capacity reached a dynamic equilibrium without any further systematic changes.
This can be interpreted in the way that in the HJ Andrews WS1, hydrological recov-
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Figure 3.6: Observed and modelled hydrograph for Hubbard Brook WS2 for (a) the years of 1984 and
1985 and (b) the years of 1986 and 1987, with the red coloured area indicating the ኿/ዃ኿% uncertainty
intervals of the modelled discharge. Blue bars show daily precipitation.

ery after deforestation due to the recovery of the root-zone storage capacity took
about 6–9 years (Fig. 3.7p), while Hubbard Brook WS2 required 10–13 years for
hydrological recovery (Fig. 3.7q). This strongly supports the results of Hornbeck
et al. (2014), who reported changes in water yield for WS2 for up to 12 years after
deforestation.

The identification of different periods is less obvious for Hubbard Brook WS5,
but the two time series of control catchment and treated catchment are significantly
different (see the cumulative residuals in Fig. 3.7i). Nevertheless, the most obvious
break point in residuals can be found in 1989 (Fig. 3.7f). In addition, it can be noted
that turning points also exist in 1983 and 1985. These years can be used to split
the time series into four groups (leading to the periods of 1964–1982, 1983–1985,
1986–1989 and 1990–2009 for further analysis). The cumulative residuals from the
new regressions, based on the grouping, plot within the confidence bounds again,
and show a period with deforestation (1983–1985) and recovery (1986–1989). Mou
et al. (1993) reported similar findings with the highest biomass accumulation in 1986
and 1988, and slower vegetation growth in the early years. Therefore, full recovery
took 5–6 years in Hubbard Brook WS5.

3.4.4. Time-variant model formulation
The adjusted model routine for FLEX, which uses a dynamic time series of 𝑆፮,max,
generated with the Weibull growth function (Eq. 3.12), resulted in a rather small im-
pact on the overall model performance in terms of the calibration objective function
values (Fig. 3.8b, d, f) compared to the time-invariant formulation of the model.
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Figure 3.7: Trend analysis for ፒR,1yr in HJ Andrews WS1, Hubbard Brook WS2 and WS5 based on com-
parison with the control watersheds with (a–c) cumulative root-zone storages (ፒR,1yr) with regression,
(d–f) residuals of the regression of cumulative root-zone storages, (g–i) significance test; the cumula-
tive residuals do not plot within the 95%-confidence ellipse, rejecting the null-hypothesis that the two
time series are homogeneous, (j–l) piecewise linear regression based on break points in residuals plot,
(m–o) residuals of piecewise linear regression, (p–r) significance test based on piecewise linear regres-
sion with homogeneous time series of ፒR,1yr. The different colours (green, blue, red, violet) indicate
individual homogeneous time periods.



3.4. Results

3

63

Figure 3.8: The time invariant ፒᑦ,max formulation represented by ፒR,20yr (yellow) and time dynamic ፒᑦ,max
fitted Weibull growth function (blue) with a linear reduction during deforestation (red shaded area) and
mean 20-year return period root-zone storage capacity ፒR, 20yr as equilibrium value for (a) HJ Andrews
WS1 with ፚ ዆ 0.0001 daysᎽᎳ, ፛ ዆ 1.3 and ፒR,20yr ዆ 494mm with (b) the objective function values,
(c) Hubbard Brook WS2 with ፚ ዆ 0.001 daysᎽᎳ, ፛ ዆ 0.9 and ፒR,20yr ዆ 22mm with (d) the objective
function values, and (e) Hubbard Brook WS5 with ፚ ዆ 0.001 daysᎽᎳ, ፛ ዆ 0.9 and ፒR,20yr ዆ 49mm and
with (f) the objective function values. The green shaded area represents the maximum and minimum
boundaries of ፒR,1yr from the water balance-based estimation, caused by the sampling of interception
capacities.
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The strongest improvements for calibration were observed for the dynamic formula-
tion of FLEX for HJ Andrews WS1 and Hubbard Brook WS2 (Fig. 3.8b and d), which
reflects the rather clear signal from deforestation in these catchments.

Evaluating a set of hydrological signatures suggests that the dynamic formula-
tion of 𝑆፮,max allows the model to have a higher probability of better reproducing
most of the signatures tested here (51% of all signatures in the three catchments)
as shown in Fig. 3.9a. A similar pattern is obtained for the more quantitative 𝑆RP
(Fig. 3.9b), where in 52% of the cases improvements are observed. Most signa-
tures for HJ Andrews WS1 show a high probability of improvement, with a maximum
𝑃ፈ,ፒ = 0.69 (for 𝑆ፐᎻᎷ ,፰።፧፭፞፫) and an average 𝑃ፈ,ፒ = 0.55. Considering the large differ-
ence between the deforested situation and the new equilibrium situation of about
200mm, this supports the hypothesis that here a time-variant formulation of 𝑆፮,max
does provide means for an improved process representation and, thus, hydrological
signatures. Here, improvements are observed especially in the high flows in sum-
mer (𝑆ፐᎷ ,summer, 𝑆ፐᎷᎲ ,summer) and peak flows (e.g. 𝑆Peaks, 𝑆Peaks,summer, 𝑆Peaks,winter),
which illustrates that the root-zone storage affects mostly the fast-responding com-
ponents of the system.

At Hubbard Brook WS2 a more variable pattern is shown in the ability of the
model to reproduce the hydrological signatures. It is interesting to note that the
low flows (𝑆ፐᎻᎷ , 𝑆ፐᎻᎷ ,summer, 𝑆ፐᎷᎲ ,summer) improve, opposed to the expectation raised
by the argumentation for HJ Andrews WS1 that peak flows and high flows should
improve. In this case, the peaks are too high for the time-dynamic model.

The probabilities of improvement for the signatures in Hubbard Brook WS5 show
an even less clear signal: the model cannot clearly identify a preference for either
a dynamic or static formulation of 𝑆፮,max (relatively white colours in Fig. 3.9). This
absence of a clear preference can be related to the observed patterns in water-
balance-derived 𝑆R (Fig. 3.4c), which also does not show a very clear signal after
deforestation, indicating that the root-zone storage capacity is of less importance
in this humid region characterized by limited seasonality.

3.5. Discussion
3.5.1. Changes in hydrological response dynamics
The changes found in the runoff behaviour of the deforested catchments point
towards shifts in the yearly sums of transpiration, which can, except for climatic
variation, be linked to the regrowth of vegetation that takes place at a similar pace to
the changes in hydrological dynamics. This coincidence of regrowth dynamics and
evolution of runoff coefficients was not only noticed by Hornbeck et al. (2014) for
the Hubbard Brook, but was also previously acknowledged for example by Swift and
Swank (1981) in the Coweeta experiment or Kuczera (1987) for eucalypt regrowth
after forest fires.

Therefore, the key role of vegetation in this partitioning between runoff and
transpiration (Donohue et al., 2012), or more specifically root-zones (Gentine et al.,
2012), necessarily leads to a change in runoff coefficients when vegetation is re-
moved. Similarly, Gao et al. (2014b) found a strong correlation between root-zone
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Figure 3.9: Signature comparison between a time-dynamic and time-invariant formulation of root-zone
storage capacity in the FLEX model with (a) probabilities of improvement and (b) Ranked Probabil-
ity Score for 28 hydrological signatures for HJ Andrews WS1 (HJA1), Hubbard Brook WS2 (HB2) and
Hubbard Brook WS5 (HB5). High values are shown in blue, whereas a low values are shown in red.
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storage capacities and runoff coefficients in more than 300 US catchments, which
lends further support to the hypothesis that root-zone storage capacities may have
decreased in deforested catchments right after removal of the vegetation.

3.5.2. Temporal evolution of 𝑆R and 𝑆፮,max
The differences between the Hubbard Brook catchments and HJ Andrews catch-
ments can be related to climatic conditions. In spite of the high annual precipita-
tion volumes, high 𝑆R,1yr values are plausible for HJ Andrews WS1 given the marked
seasonality of the precipitation in the Mediterranean climate (Köppen–Geiger class
Csb) and the approximately 6-month phase shift between precipitation and po-
tential evaporation peaks in the study catchment, which dictates that the storage
capacities need to be large enough to store precipitation, which falls mostly during
winter, throughout the extended dry periods with higher energy supply throughout
the rest of the year (Gao et al., 2014b). At the same time, low 𝑆R,1yr values in Hub-
bard Brook WS2 can be related to the relatively humid climate, and the absence of
pronounced rainfall seasonality strongly reduces storage requirements.

It can also be argued that there is a strong influence of the inter-annual climatic
variability on the estimated root-zone storage capacities. For example, the marked
increase in 𝑆R,1yr in Hubbard BrookWS2 in 1985 rather points towards an exceptional
year, in terms of climatological factors, than a sudden expansion of the root-zone. It
can also be observed from Fig. 3.2 that the runoff coefficient was relatively low for
1985, suggesting either increased evaporation or a storage change. A combination
of a relatively long period of low rainfall amounts and high potential evaporation,
as can be noted by the relatively high mean annual potential evaporation on top
of Fig. 3.4b, may have led to a high demand in 1985. Parts of the vegetation
may not have survived these high-demand conditions due to insufficient access to
water, explaining the dip in 𝑆R,1yr for the following year, which is also in agreement
with reduced growth rates of trees after droughts as observed by for example Bréda
et al. (2006). The hydrographs of 1984–1985 (Fig. 3.6a) and 1986–1987 (Fig. 3.6b)
also show that July–August 1985 was exceptionally dry, whereas the next year in
August 1986 the catchment seems to have increased peak flows. This either points
towards an actual low storage capacity due to contraction of the roots during the
dry summer or a low need of the system to use the existing capacity, for instance
to recover other vital aspects of the system.

Nevertheless, Hubbard Brook WS2 does not show a clear signal of reduced root-
zone storage, followed by a gradual regrowth. Here, the forest was removed in a
whole-tree harvest in winter 1983–1984, followed by natural regrowth. The sum-
mers of 1984 and 1985 were very dry summers, as also reflected by the high values
of 𝑆R,1yr. The young system had already developed enough roots before these dry
periods to have access to a sufficiently large water volume to survive this sum-
mer. This is plausible, as the period of the highest deficit occurred in mid-July and
lasted until approximately the end of September, thus long after the beginning of
the growing season, allowing enough time for an initial growth and development of
young roots from April until mid-July. In addition, the composition of the new forest
differed from the old forest, with more pin cherry (Prunus pensylvanica) and paper
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birch (Betula papyrifera). This supports the statements of a quick regeneration as
these species have a high growth rate and reach canopy closure in a few years. Fur-
thermore, the forest was not either treated with herbicides (Hubbard Brook WS2)
or burned (HJ Andrews WS1), leaving enough low shrubs and herbs to maintain
some level of transpiration (Hughes and Fahey, 1991; Martin, 1988). It can thus
be argued, similar to Li et al. (2007), that the remaining vegetation experienced
less competition and could increase root water uptake efficiency and transpiration
per unit leaf area. This is in agreement with Hughes and Fahey (1991), who also
stated that several species benefited from the removal of canopies and newly avail-
able resources in this catchment. Lastly, several other authors related the absence
of a clear change in hydrological dynamics to the severe soil disturbance in this
catchment (Hornbeck et al., 1997; Johnson et al., 1991). These disturbances lead
to extra compaction, whereas at the same time species were changing, effectively
masking any changes in runoff dynamics.

3.5.3. Trend analysis and change in hydrological regimes
The found recovery periods correspond to recovery timescales for forest systems
as reported in other studies (e.g. Brown et al., 2005; Elliott et al., 2016; Hornbeck
et al., 2014) which found that catchments reach a new equilibrium with a similar
timescale as reported here, but in this case with the direct link to the parameter
describing the catchment-scale root-zone storage capacity. The timescales are also
in agreement with regression models to predict water yield after logging of Douglass
(1983), who assumed a duration of water yield increases of 12 years for coniferous
catchments.

The timescales found here are around 10 years (5–13 years for the catchments
under consideration), but will probably depend on climatic factors and vegetation
type. HJ Andrews WS1 has a recovery (6–9 years) slightly shorter compared to
Hubbard Brook WS2 (10–13 years), which could depend on the different climato-
logical conditions of the catchments. Nevertheless, it could also be argued that the
spraying of herbicides had an especially strong impact on the recovery of vegetation
in Hubbard Brook WS2, as the Hubbard Brook WS5 does not show such a distinct
recovery signal.

3.5.4. Time-variant model formulation
It was found that a time-dynamic formulation of 𝑆፮,max merely improved the high
and peak flow signatures for HJ Andrews WS1. Other authors also suggested pre-
viously (e.g. de Boer-Euser et al., 2016; Euser et al., 2015; Oudin et al., 2004)
that the root-zone storage affects mostly the fast-responding components of the
system, by providing a buffer to storm response. Fulfilling its function as a storage
reservoir for plant-available water, modelled transpiration is significantly reduced
post-deforestation, which in turn results in increased runoff coefficients (cf. Gao
et al., 2014b), which have been frequently reported for post-deforestation periods
by earlier studies (e.g. Hornbeck et al., 2014; Rothacher, 1970; Swift and Swank,
1981).

Nevertheless, signatures considering the peak flows did not improve for the Hub-
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Figure 3.10: Hydrograph of Hubbard Brook WS2 with the observed discharge (blue) and the modelled
discharge represented by the ኿/ዃ኿% uncertainty intervals (red), obtained with (a) a constant represen-
tation of the root-zone storage capacity ፒᑦ,max and (b) a time-varying representation of the root-zone
storage capacity ፒᑦ,max. Blue bars indicate precipitation.

bard Brook catchments. Apparently, the model with a constant, and thus higher,
𝑆፮,max stored water in the root-zone, reducing recharge to the groundwater reser-
voir that maintains the lower flows and buffering more water, reducing the peaks.
This can also be clearly seen from the hydrographs (Fig. 3.10), where the later
part of the recession in the late-summer months is much better captured by the
time-dynamic model. Nevertheless, the peaks are too high for the time-dynamic
model, which here is linked to an insufficient representation of snow-related pro-
cesses, as can be seen from the hydrograph (April–May) as well, and possibly by
an inadequate interception growth function, both leading to too high amounts of
effective precipitation entering the root-zone. An adjustment of these processes
would have resulted in less infiltration and a smaller root-zone storage capacity.

It was acknowledged previously by several authors that certain model param-
eters may need time-dynamic formulations, like Waichler et al. (2005) with time-
dynamic formulations of leaf area index and overstore height for the DHSVM model.
In addition, Westra et al. (2014) captured long-term dynamics in the storage pa-
rameter of the GR4J model with a trend correction, in fact leading to a similar
model behaviour to the Weibull growth function in this study. Nevertheless, they
only hypothesized about the actual hydrological reasons for this, which aimed at
the changing number of farmer dams in the catchment. The results presented here
indicate that vegetation, and especially root-zone dynamics, has a strong impact
on the long term non-stationarity of model parameters. The simple Weibull equa-
tion can be used as an extra equation in conceptual hydrological models to more
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closely reflect the dynamics of vegetation. The additional growth parameters may
be left for calibration, but can also be estimated from simple water-balance-based
estimations of the root-zone storage. In this way, the extra parameters should not
add any uncertainty to the model outcomes.

3.6. General limitations
The results presented here depend on the quality of the data and several assump-
tions made in the calculations. A limiting factor is that the potential evaporation is
determined from temperature only, leading to values that may be relatively low and
water balances that may not close completely. Generally, this would lead to a dis-
crepancy between the modelled 𝑆፮,max, where potential evaporation is directly used,
and the water-balance estimates of 𝑆R. The models will probably generate higher
root-zone storages in order to compensate for the rather low potential evaporation.
This can also be noted when looking at Fig. 3.4 for several models.

In addition, the assumption that the water balance closes in the 2-year peri-
ods under consideration may often be violated in reality. It can be argued that
the estimated transpiration for the calculation of 𝑆R represents an upper boundary,
when storage changes are ignored. This would lead to estimates of 𝑆R that may
be lower than presented here. Nevertheless, attempts with 5-year water balances
to reduce the influence of storage changes (see Fig. S9 in the Supplement of Ni-
jzink et al. (2016b)), showed that similar patterns were obtained. Values here were
slightly lower due to more averaging in the estimation of the transpiration by the
longer time period used for the water balance. Nevertheless, a strong decrease
after deforestation and gradual recovery can still be observed.

The issues raised here can be fully avoided when, instead of a water-balance-
based estimation of the transpiration, remote sensing products are used to esti-
mate the transpiration, similar to Wang-Erlandsson et al. (2016). However, water-
balance-based estimates may provide a rather quick solution.

The transpiration estimates were also only corrected for interception evapora-
tion, thus assuming a negligible amount of soil evaporation. Making this additional
separation is typically not warranted by the available data and would result in ad-
ditional uncertainty. The transpiration estimates presented here merely represent
an upper limit of transpiration and will be lower in reality due to soil evaporation.
Thus, the values for 𝑆R,1yr may expected to be lower in reality as well.

3.7. Conclusions
In this study, three deforested catchments (HJ Andrews WS1, Hubbard Brook WS2
and WS5) were investigated to assess the dynamic character of root-zone storage
capacities using water balance, trend analysis, four different hydrological models
and one modified model version. Root-zone storage capacities were estimated
based on a simple water balance approach. Results demonstrate a good corre-
spondence between water-balance-derived root-zone storage capacities and values
obtained by a 2-year moving window calibration of four distinct hydrological models.

There are significant changes in root-zone storage capacity after deforestation,
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which were detected by both a water-balance-based method and the calibration
of hydrological models in two of the three catchments. More specifically, root-
zone storage capacities showed, for HJ Andrews WS1 and Hubbard Brook WS2, a
sharp decrease in root-zone storage capacities immediately after deforestation with
a gradual recovery towards a new equilibrium. This could to a large extent explain
post-treatment changes to the hydrological regime. These signals were however
not clearly observed for Hubbard Brook WS5, probably due to soil disturbance, a
new vegetation composition and a climatologically exceptional year. Nevertheless,
trend analysis showed significant differences for all three catchments with their
corresponding, undisturbed reference watersheds. Based on this, recovery times
were estimated to be between 5 and 13 years for the three catchments under
consideration.

These findings underline the fact that root-zone storage capacities in hydrolog-
ical models, which are more often than not treated as constant in time, may need
time-dynamic formulations with reductions after logging and gradual regrowth af-
terwards. Therefore, one of the models was subsequently formulated with a time-
dynamic description of root-zone storage capacity. Particularly under climatic con-
ditions with pronounced seasonality and phase shifts between precipitation and
evaporation, this resulted in improvements in model performance as evaluated by
28 hydrological signatures.

Even though this more complex system behaviour may lead to extra unknown
growth parameters, it has been shown here that a simple equation, reflecting the
long-term growth of the system, can already suffice for a time-dynamic estimation
of this crucial hydrological parameter. Therefore, this study clearly shows that ob-
served changes in runoff characteristics after land-cover changes can be linked to
relatively simple time-dynamic formulations of vegetation-related model parame-
ters.
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Constraining models with

multiple information sources

The increasing amount of data leads to more opportunities to identify suitable
model formulations and parameterizations, in addition to model regulariza-
tion and simple parameter estimation techniques. Especially as the number
of available products increase, it becomes highly urgent to exploit multiple
data sources simultaneously, and extract the relevant information from it.
Therefore, instead of assessing the added value of the products one by one,
the added value of the different combinations of products is assessed, rang-
ing from using one to ten products, in order to obtain an increased under-
standing how the simultaneous use of several data sources can lead to a
robust model parameterization.

This chapter is based on:
Nijzink, R.C., Almeida, S., Pechlivanidis, I., Capell, R., Gustaffsons, D., Arheimer, B., Parajka, J., Freer,
J., Han, D., Wagener, T., Savenije, H., and Hrachowitz, M.: Constraining conceptual hydrological models
with multiple information sources, Water Resources Research, submitted, 2017.
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4.1. Introduction
Computational techniques have been advancing and an abundance of new sources
of information have become available over the recent years, but selecting meaning-
ful parameters for catchment-scale hydrological models, in particular for predictions
in ungauged catchments, remains problematic (Blöschl et al., 2013; Hrachowitz
et al., 2013; Sivapalan, 2003), and is further exacerbated by the world-wide ongo-
ing reductions of stream gauging networks (Fekete and Vörösmarty, 2002; Hannah
et al., 2011; Sivapalan, 2003).

The dependency on streamflow data for model calibration can, to a certain ex-
tent, be reduced by directly estimating individual model parameters (or at least
defining non-uniform parameter prior distributions) from exploiting their links with
readily available observations of other quantities than streamflow, which are ob-
servable at the scale of the model application, such as topographic considerations
(Smith et al., 2016) or the long-term water balance (e.g. de Boer-Euser et al.,
2016; Gao et al., 2014b; Nijzink et al., 2016a). Similarly, when no streamflow
observations are available, traditional regionalization techniques use climatic and
physiographic data, to establish transfer functions that allow an indirect estima-
tion of the actual model parameters (Götzinger and Bárdossy, 2007; Hundecha and
Bárdossy, 2004; Hundecha et al., 2016; Merz and Blöschl, 2004; Samaniego et al.,
2010b; Wagener and Wheater, 2006). Alternatively, catchment signatures can be
used to condition the prior parameter space, as an alternative to streamflow cal-
ibration (Almeida et al., 2016; Bárdossy, 2007; Bulygina et al., 2009; Castiglioni
et al., 2010, 2011; Yadav et al., 2007). In addition, model constraints or limits of
acceptability (Beven, 2006), based on qualitative information without clear target
values, often referred to as “soft data” (Seibert and McDonnell, 2002; Winsemius
et al., 2009) or “expert knowledge” (Gharari et al., 2014; Kelleher et al., 2017),
meant to avoid physically implausible representations of the system, were in the
past shown to be valuable to limit the feasible model parameter space (i.e. Freer
et al., 2004; Hrachowitz et al., 2014). These constraints can be implemented either
as a priori defined inequality constraints on parameters or on processes (Ambroise
et al., 1996). The latter allows to contain the dynamics of individual model com-
ponents to some degree (cf. Gharari et al., 2014; Wagener and Montanari, 2011),
such as limiting long-term evaporation to values expected from the Budyko curve
(e.g. Gerrits et al., 2009).

The increasing availability of remotely sensed data may provide ample opportu-
nities to further constrain hydrological models and their parameters. While several
recent reviews highlight their potential for applications in hydrology (e.g. AghaK-
ouchak et al., 2015; Hrachowitz and Clark, 2017; Pechlivanidis and Arheimer, 2015;
Xu et al., 2014), it can also be argued that remotely sensed high-resolution stream-
flow data are rather far from becoming reality (Lettenmaier et al., 2015). Although
successful attempts of using remotely sensed streamflow for model calibration have
been reported (e.g. Sun et al., 2015; Tourian et al., 2017), the specific orbits of the
observation satellites lead to spatial and temporal limitations, and only larger rivers
can be monitored due to the large resolution. In contrast, products providing es-
timates of evaporation have in the past been shown to have considerable value
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for model applications, as summarized by several studies that point at the differ-
ent advantages and disadvantages of these products (e.g. Verstraeten et al., 2008;
Zhang et al., 2016). Besides evaporation products, the central importance of soil
moisture and snow storage for the Earth’s water cycle made it a focus of research
efforts in the remote sensing community, which developed several satellite mis-
sions dedicated to soil moisture and snow cover mapping, such as the Soil Moisture
and Ocean Salinity (SMOS; Kerr et al., 2012), Soil Moisture Active and Passive
(SMAP; Brown et al., 2013) or NASA’s Earth Observing System (Greenstone and
King, 1999) missions. Furthermore, the Gravity Recovery and Climate Experiment
(GRACE; Tapley et al., 2004) led to new, valuable information on total water storage
based on remotely sensed gravity anomalies. These are just a few examples, while
more remotely sensed products are currently available and new satellite missions
are planned (e.g. GRACE-FO, SWOT), which will further increase the information
available for hydrological modelling.

The challenge remains, though, how to select data that are suitable for use in
hydrological model applications and to assess how they can support the modelling
process in a meaningful and effective way. So far, information from remote sensing
has been incorporated in applications of hydrological models in several ways. For
example, data assimilation techniques are commonly used to update the states
of a model (e.g. Liu and Gupta, 2007; Liu et al., 2012; Reichle, 2008). This can
help to improve internal model dynamics and the resulting hydrological predictions
(Crow and Ryu, 2009; Tangdamrongsub et al., 2015). Yet, it can be argued that
the added value of data assimilation is actually an indicator of inadequate model
parameters and/or model formulations (Spaaks and Bouten, 2013). Alternatively
and directly addressing this issue, remotely sensed data can be directly used as
calibration variables and thus to select feasible model parameters (e.g. Immerzeel
and Droogers, 2008; Lopez Lopez et al., 2017; Pechlivanidis and Arheimer, 2015;
Sutanudjaja et al., 2014). Although the above strategies are in principle a valid
way forward, spatial and temporal mismatches between hydrological models and
remotely sensed data (Vereecken et al., 2008; Xu et al., 2014) place some limitations
on the value of these data. Similarly, hydrological variables are not directly observed
by most remote sensors, but rather inferred from models that link the observed
variable with some hydrologically relevant variable, thus introducing an additional
source of uncertainty.

A large number of studies previously assessed the added value of different re-
mote sensing products, either for data assimilation or model calibration. These
studies generally focused either on a single remote sensing product, for exam-
ple GRACE (e.g. Lo et al., 2010; Mulder et al., 2015; Rakovec et al., 2015; Werth
et al., 2009), SCAT soil moisture (e.g. Parajka et al., 2009) and ASCAT soil moisture
(Brocca et al., 2010), or on one single model state or flux with a combination of
products such as soil moisture (Wanders et al., 2014). Nevertheless, the combined
effects of several products, that deal with multiple model states and fluxes simulta-
neously, has only recently gained some attention, but this remains rather limited to
two different model states or fluxes (Kunnath-Poovakka et al., 2016; Lopez Lopez
et al., 2017; Tian et al., 2017). Full bootstrap procedures where multiple combina-
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Figure 4.1: The 27 study catchments and their location in Europe. See Table 4.1 for the catchment
characteristics

tions of remote sensing products are tested have not been reported so far.
Thus, the objective of this paper is to explore the value of combining several

types of remotely sensed data products that reflect different water balance compo-
nents, to effectively and consistently constrain the parameter space of five different
conceptual hydrological models. Specifically, we test the hypotheses that the com-
bined use of different remote sensing products can 1) produce model performances
similar to traditional calibration on streamflow and 2) improve the representation of
model internal dynamics and hydrological signatures in comparison with traditional
calibration on streamflow.

4.2. Methodology
A detailed stepwise description of this experiment, with the model codes and links
to the data, can be found in an online experiment protocol (http://dl-ng005.
xtr.deltares.nl/view/66/) as part of the SWITCH-ON Virtual Water Science
Laboratory. This protocol is developed to facilitate full experiment reproducibility
and repeatability, according to the requirements suggested by Ceola et al. (2015).

4.2.1. Study Areas
A set of 27 European catchments was selected in order to cover a variety of land-
scapes, climates and vegetation. The study sites included lowland catchments in the

http://dl-ng005.xtr.deltares.nl/view/66/
http://dl-ng005.xtr.deltares.nl/view/66/
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UK and Germany as well as more mountainous catchments in Austria and France.
The study catchments also exhibit considerable climatic differences with aridity in-
dices ranging from 0.5 – 1.1 and mean areal precipitation from 627 – 1593 mm/year.
Estimates of daily potential evaporation were derived from data (air temperature,
dewpoint temperature, wind speed, long wave radiation, short wave radiation) from
ERA-Interim (Dee et al., 2011) according to the Penman formulation as prescribed
by FAO (Allen et al., 1998), the air temperature of the ERA-Interim data was also
applied as forcing data for the snow modelling. Daily precipitation was derived from
the MSWEP dataset (Beck et al., 2017). Time series of streamflow covering recent
years and with sufficient length (approx. 10 years of data) were obtained from the
Global Runoff Data Centre (GRDC). An overview of the catchments is provided in
Table 4.1 and Figure 4.1.

4.2.2. Models
Five different rainfall-runoff models were applied to account for different model
structures, which are briefly described here. For more details about model struc-
tures, parameters and prior parameter ranges the reader is referred to the Supple-
mentary Material S1 of Nijzink et al. (2017).

FLEX
The FLEX model (Fenicia et al., 2008) is a lumped model that consists of four
storage components and a snow module. The snow module, based on a degree-day
approach, runs first and determines the effective precipitation consisting of rainfall
and snowmelt. After this, the water enters an interception reservoir, from which
intercepted water can evaporate and/or leave the reservoir after exceeding a certain
threshold. The remaining precipitation after interception is split into runoff and
infiltration in the subsequent step. The infiltrated water is stored in the soil moisture
reservoir, from which transpiration takes place. A portion of the runoff goes to a
fast reservoir, another portion to the groundwater reservoir through preferential
percolation. The model uses 8 parameters which are left free for calibration.

FLEXtopo
The FLEXtopo model (Savenije, 2010) uses hydrological response units based on
different landscape elements to capture the core processes for different parts in the
landscape. In this set-up, the landscape units were defined as plateau, hillslope and
wetland, similar to previous applications (de Boer-Euser et al., 2017; Gao et al.,
2014a; Gharari et al., 2014). For each model unit, a snow routine is followed
by an interception reservoir and unsaturated reservoir. For plateau landscapes,
recharge to the groundwater can happen through matrix percolation, as a function
of soil moisture, and preferential percolation through macropores or cracks and
fissures. In contrast, the hillslope areas are only assumed to contribute to the
groundwater through preferential percolation and the wetlands even receive water
from the groundwater reservoir through capillary rise. In the original application
(Gao et al., 2014a) FLEXtopo uses proportionalities between parameters of different
landscape classes (e.g. interception capacity of forest bigger than grass), which
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Table 4.1: Overview of the catchments.
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Gadera 394 0.52 1095 670 01/10/1999-30/09/2009
Tanaro 500 0.81 1059 625 01/10/2003-30/09/2012
Arno 751 0.81 1069 398 01/10/2003-30/09/2013
Vils 198 0.32 1593 1338 01/10/2000-30/09/2010
Grossarler 144 0.36 1508 1202 01/10/2000-30/09/2010
Grosse Muehl 253 0.55 1156 739 01/10/2000-30/09/2010
Broye 396 0.50 1219 610 01/10/1999-30/09/2009
Treene 481 0.71 917 435 01/10/1999-30/09/2004
Risle 147 1.0 751 304 01/10/2001-30/09/2011
Leyre 1587 0.98 913 283 01/10/2001-30/09/2011
Erdre 463 0.98 789 181 01/10/2001-30/09/2011
Layon 928 1.10 694 105 01/10/2006-30/09/2011
Glane 297 0.80 981 401 01/10/2001-30/09/2011
Dragne 117 0.75 996 435 01/10/2002-30/09/2011
Roubion 190 0.87 920 276 01/10/2001-30/09/2011
Azergues 333 0.84 887 317 01/10/2001-30/09/2011
Enning-Dalsaelven 634 0.57 978 646 01/10/2005-30/09/2014
Fyllean 263 0.62 937 749 01/10/2004-30/09/2014
Kinzig 955 0.49 1344 744 01/10/2002-30/09/2012
Modau 91 0.99 705 234 01/10/2002-30/09/2012
Rodach 716 0.76 830 458 01/10/2002-30/09/2012
Pfinz 232 0.74 920 248 01/10/2003-30/09/2013
Hunte 1409 0.80 806 219 01/10/2002-30/09/2012
Wuemme 934 0.77 855 342 01/10/2002-30/09/2012
Deveron 955 0.49 1030 636 01/10/2002-30/09/2012
Little Ouse 757 1.05 627 143 01/10/2004-30/09/2012
Stour 657 1.03 632 153 01/10/2002-30/09/2012
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limit the feasible parameter space. Here, in this comparative analytical framework
additional conditions were not implemented for FLEXtopo, leaving a relatively wide
parameter space. In total, 24 parameters are left free for calibration.

HYMOD
The HYMOD model (Boyle, 2001; Wagener et al., 2001) runs first a snow module
from which rainfall and snow melt continue towards the unsaturated zone. Here,
evaporation is determined as a function of soil moisture and runoff is generated,
based on a distribution function of maximum storage capacities in the catchment
(often referred to as beta-function). This runoff is divided over a series of fast
reservoirs and one slow reservoir. The contributions of the fast flows and slow
flows eventually determine the final streamflow. In total, 8 parameters are free for
calibration.

HYPE
The HYPE model (Lindström et al., 2010) runs first a snow module, after which
the model structure contains three soil layers with assigned soil depths. Water can
evaporate from the first two layers, and runoff is generated when the maximum
storage capacity of these layers is reached or when maximum infiltration capacities
are exceeded. Water can percolate downwards through matrix flow or preferentially
through fast flow paths. The lowest soil layer reflects the groundwater contribution
to the streamflow and an additional aquifer routine can be applied. Eventually, a
routing function is applied to the total outflows to obtain the final streamflow. A set
of 22 model parameters was selected for optimization in the parameter selection
procedures.

TUW
The TUW model (Parajka et al., 2007) uses a similar model structure as originally
applied in the HBV model (Bergström, 1992). First, a snow routine is run based
on a degree-day approach, after which water enters the soil moisture reservoir and
becomes available for evaporation. Here, evaporation is determined as a function of
soil moisture, and runoff is generated based on a distribution function of maximum
storage capacities as well. The runoff continues to a fast reservoir, which has an
additional overflow outlet to represent a very fast component. Percolation from the
fast reservoir towards the slow, groundwater reservoir takes place subsequently. In
a last step, the sums of slow and fast runoff components are routed through the
system with a triangular lag functions. The TUWmodel has 15 parameters free for
calibration.

4.2.3. Data sources for constraining parameters
Nine different remote sensing products and an analytical framework from four func-
tionally similar groups were tested in this study for their information content to
select meaningful model parameters and thus to constrain the feasible parameter
space. Each group provides information about a different component of the hy-
drological system: (1) soil moisture, (2) evaporation, (3) total water storage and
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Table 4.2: Details of the remote sensing products.
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AMSR-E
LPRM

V2 25km daily Owe et al.
(2008)

Soil moisture Squared
correlation
coefficient

ASCAT-SWI V3 0.1∘ daily Wagner
et al. (1999)

Soil moisture Squared
correlation
coefficient

SMOS V620 Ca.
15km

2-3
days

Kerr et al.
(2012)

Soil moisture Squared
correlation
coefficient

NDII V6 500m daily Sriwongsitanon
et al. (2016)

Soil moisture Squared
correlation
coefficient

Budyko Budyko
(1974)

Evaporation Squared
correlation
coefficient

LSA-SAF 3km daily Ghilain et al.
(2011)

Evaporation Squared
correlation
coefficient

MOD16 V5 500m 8-day Mu et al.
(2011)

Evaporation Squared
correlation
coefficient

GRACE 100km 30days Tapley et al.
(2004)

Total water
storage

Squared
correlation
coefficient

MOD10 V5 500m daily Hall et al.
(2002)

Snow Squared
correlation
coefficient

MYD10 V5 500m daily Hall et al.
(2002)

Snow Squared
correlation
coefficient
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(4) snow accumulation. A general overview of the used products and the main
specifications can be found in Table 4.2.

The first group contains soil moisture estimates from four different remote sens-
ing products. One of the soil moisture products used in this study is derived from
the Advanced SCATterometer (ASCAT) on board the Metop satellite, which uses C-
band (5.255 GHz) to estimate surface soil moisture. Scatterometer data processed
with the algorithm provided by Wagner et al. (1999) was used in this experiment,
representing the Soil Water Index (SWI) or the relative soil moisture in the root
zone. The second soil moisture product comes from the Land Parameter Retrieval
Model (LPRM; Owe et al., 2008) with data from the Advanced Microwave Scanning
Radiometer - Earth Observing System (AMSR-E, with C and X-band) as input, and
represents the top 2-3 cm of soil moisture. The last soil moisture product explored
in this study is obtained from the Soil Moisture and Ocean Salinity (SMOS; Kerr
et al., 2012) mission, also representing the soil moisture in the upper centimeters
of the soil (L-band, 1-2 GHz). In addition, the Normalized Difference Infrared Index
(NDII) was calculated based on MODIS images, as recent results suggest a link to
root zone soil moisture storage (Sriwongsitanon et al., 2016). Even though most
of the products represent only soil moisture in the top soil, the products were di-
rectly compared to the soil moisture states of the models, without adjustments or
exclusions of specific days (e.g. excluding snow days). Therefore, it was assumed
that at least a linear relationship exists between modelled soil moisture state and
the observations of the soil moisture products, even though these do not represent
exactly the same soil moisture state as the model. Thus, the squared correlation
coefficient was used as a performance metric for all soil moisture products.

The second group contains evaporation estimates from two remote sensing
products and the Budyko framework. Specifically, the daily product from the EU-
METSAT’s Land Surface Analysis – Satellite Application Facility (LSA-SAF; Ghilain
et al., 2011) was selected as well as the MOD16 product from the MODerate Res-
olution Imaging Spectroradiometer (MODIS; Mu et al., 2011). The MOD16 8-day
evaporation product is based on a Penman-Monteith approach, and the final prod-
uct consists of soil evaporation, transpiration and interception evaporation from
the canopy. The LSA-SAF evaporation product uses a similar Penman-Monteith
approach, but the products differ in, amongst other things, formulations of aerody-
namic and stomatal resistances, the (absence of) explicit accounting for intercep-
tion evaporation, the temporal resolution of the satellite as well as the differences
in other technical satellite specifications. Besides these remotely sensed daily and
8-daily products, the analytical Budyko framework (Budyko, 1974) was applied to
obtain an additional long-term estimate of evaporation as model constraint. Also
for this group of products, the squared correlation coefficient was used as a per-
formance metric, only for the Budyko framework the relative error was used as
this only comprises a single value instead of a time series. For the MOD16 8-day
evaporation product the comparison was made for the modelled 8-day evaporation
as well.

The third group provides estimates of changes in total water storage from one
remote sensing product. To do that, data on gravity anomalies from the Gravity Re-



4

80 4. Constraining models with multiple information sources

covery and Climate Experiment (GRACE; Tapley et al., 2004) were linked to water
storage fluctuations. Similar to Rakovec et al. (2016) the GRACE data from the three
processing centers of CSR (Center for Space Research, University of Texas, USA),
GFZ (Geoforschungs Zentrum Potsdam, Germany) and JPL (Jet Propulsion Labora-
tory, USA) were merged into one combined product for the analysis. The GRACE
water storage anomalies relative to the baseline of 2004-2009 were also corrected
to represent the anomalies over the time series under consideration, which differed
per study catchment. The squared correlation coefficient between modelled total
water storage anomalies and GRACE storage anomalies was used as performance
metric again.

The fourth group contains information on snow accumulation and depletion pat-
terns from two remote sensing products. The MODIS Terra Snow Cover (Hall et al.,
2002) and MODIS Aqua Snow Cover (Hall et al., 2002) products both provide frac-
tional snow cover on a daily basis and 500m resolution. This snow cover is de-
termined by the Normalized Difference Snow Index (NDSI) and relies on the fact
that while clouds have large reflectance in both visible and infrared bands, snow
has a larger reflectance only in the visible domain. The average was taken over
all non-cloud covered cells over a catchment, but this was only done when the
cloud coverage did not exceed 60% of the catchment, similar to Parajka and Blöschl
(2008), in order to determine reliable snow coverage values. These catchment aver-
aged snow coverage values were compared with modelled snow water equivalents
(FLEX, FLEXtopo, TUW), assuming a linear relation between coverage and snow
water equivalent. Only for HYPE, comparing modelled and observed snow cover-
age was directly possible due to the more extensive snow module. The squared
correlation coefficient was again computed as performance metric.

In general, all products were processed in order to be compatible with the model
scales, which was in most cases the catchment scale, as the models were applied
in a lumped manner. Thus, the average of the cells covering the catchment was
determined and used in the analysis. Only for FLEXtopo, the products were av-
eraged over a subarea of the catchment, the landscape units, whereas the other
models all used catchment averaged values. For example, the LSA-SAF evaporation
was averaged over the catchment area defined as plateau landscape, in order to
compare with the modeled evaporation from the plateau model structure.

4.2.4. Parameter selection - remote sensing data
As a first step, random parameter sets were generated for each of the five models.
This was done using Latin Hypercube sampling to achieve a somewhat homoge-
nous exploration of the respective parameter spaces. The parameters were sampled
from uniform prior distributions with parameter ranges set as wide as possible with-
out becoming unrealistic. FLEX and HYMOD were sampled 80,000 times, whereas
FLEXtopo, HYPE and TUW were sampled 100,000 times due to the larger number
of free calibration parameters. These parameter sets were then used together with
the daily input data to generate either 80,000 or 100,000 model realizations per
model for each catchment, covering a time period of approximately 10-years (see
Table 4.1).
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Table 4.3: Model parameters and the data sources that are related to it for determining posterior pa-
rameter bounds.

Source FLEX FLEXtopo HYPE HYMOD TUW
Soil mois-
ture

AMSR-E 𝑀𝑚𝑒𝑙𝑡
𝑇𝑡ℎ𝑟𝑒𝑠ℎ
𝐼𝑚𝑎𝑥
𝑆𝑢𝑚𝑎𝑥
𝐵𝑒𝑡𝑎
𝐾𝑓
𝐾𝑠
D

𝑀𝑚𝑒𝑙𝑡
𝑇𝑡ℎ𝑟𝑒𝑠ℎ
𝐼𝑚𝑎𝑥፩
𝐼𝑚𝑎𝑥፡
𝑆𝑢𝑚𝑎𝑥፩
𝑆𝑢𝑚𝑎𝑥፡
𝑆𝑢𝑚𝑎𝑥፰

𝑤𝑐𝑓𝑐
𝑙𝑝
𝑚𝑎𝑐𝑡𝑟𝑖𝑛𝑓
𝑇𝑡𝑝𝑑
𝑇𝑡𝑝𝑖
𝑇𝑡𝑚𝑝
𝐶𝑚𝑙𝑡
𝑅𝑟𝑠𝑐2
𝑚𝑎𝑐𝑟𝑎𝑡𝑒

𝑇𝑠
𝐶𝑓𝑚𝑎𝑥
𝐶𝑅𝐹
𝐶𝑊𝐻
𝑆𝑚
𝐵𝑒𝑡𝑎
𝐴𝑙𝑓𝑎
𝑅𝑠
𝑅𝑓

𝐶𝑠𝑓
𝐷𝑑𝑓
𝑇𝑟
𝑇𝑠
𝑀𝑒𝑙𝑡𝑡
𝐹𝐶
𝐵𝑒𝑡𝑎
𝑙𝑝𝑟𝑎𝑡
𝐾2
𝑐𝑝𝑒𝑟𝑐

ASCAT 𝑀𝑚𝑒𝑙𝑡
𝑇𝑡ℎ𝑟𝑒𝑠ℎ
𝐼𝑚𝑎𝑥
𝑆𝑢𝑚𝑎𝑥
𝐵𝑒𝑡𝑎
𝐾𝑓
𝐾𝑠
D

𝑀𝑚𝑒𝑙𝑡
𝑇𝑡ℎ𝑟𝑒𝑠ℎ
𝐼𝑚𝑎𝑥፩
𝐼𝑚𝑎𝑥፡
𝑆𝑢𝑚𝑎𝑥፩
𝑆𝑢𝑚𝑎𝑥፡
𝑆𝑢𝑚𝑎𝑥፰

𝑤𝑐𝑓𝑐
𝑙𝑝
𝑚𝑎𝑐𝑡𝑟𝑖𝑛𝑓
𝑇𝑡𝑝𝑑
𝑇𝑡𝑝𝑖
𝑇𝑡𝑚𝑝
𝐶𝑚𝑙𝑡
𝑅𝑟𝑠𝑐2
𝑚𝑎𝑐𝑟𝑎𝑡𝑒

𝑇𝑠
𝐶𝑓𝑚𝑎𝑥
𝐶𝑅𝐹
𝐶𝑊𝐻
𝑆𝑚
𝐵𝑒𝑡𝑎
𝐴𝑙𝑓𝑎
𝑅𝑠
𝑅𝑓

𝐶𝑠𝑓
𝐷𝑑𝑓
𝑇𝑟
𝑇𝑠
𝑀𝑒𝑙𝑡𝑡
𝐹𝐶
𝐵𝑒𝑡𝑎
𝑙𝑝𝑟𝑎𝑡
𝐾2
𝑐𝑝𝑒𝑟𝑐

NDII 𝑀𝑚𝑒𝑙𝑡
𝑇𝑡ℎ𝑟𝑒𝑠ℎ
𝐼𝑚𝑎𝑥
𝑆𝑢𝑚𝑎𝑥
𝐵𝑒𝑡𝑎
𝐾𝑓
𝐾𝑠
D

𝑀𝑚𝑒𝑙𝑡
𝑇𝑡ℎ𝑟𝑒𝑠ℎ
𝐼𝑚𝑎𝑥፩
𝐼𝑚𝑎𝑥፡
𝑆𝑢𝑚𝑎𝑥፩
𝑆𝑢𝑚𝑎𝑥፡
𝑆𝑢𝑚𝑎𝑥፰

𝑤𝑐𝑓𝑐
𝑙𝑝
𝑚𝑎𝑐𝑡𝑟𝑖𝑛𝑓
𝑇𝑡𝑝𝑑
𝑇𝑡𝑝𝑖
𝑇𝑡𝑚𝑝
𝐶𝑚𝑙𝑡
𝑅𝑟𝑠𝑐2
𝑚𝑎𝑐𝑟𝑎𝑡𝑒

𝑇𝑠
𝐶𝑓𝑚𝑎𝑥
𝐶𝑅𝐹
𝐶𝑊𝐻
𝑆𝑚
𝐵𝑒𝑡𝑎
𝐴𝑙𝑓𝑎
𝑅𝑠
𝑅𝑓

𝐶𝑠𝑓
𝐷𝑑𝑓
𝑇𝑟
𝑇𝑠
𝑀𝑒𝑙𝑡𝑡
𝐹𝐶
𝐵𝑒𝑡𝑎
𝑙𝑝𝑟𝑎𝑡
𝐾2
𝑐𝑝𝑒𝑟𝑐

SMOS 𝑀𝑚𝑒𝑙𝑡
𝑇𝑡ℎ𝑟𝑒𝑠ℎ
𝐼𝑚𝑎𝑥
𝑆𝑢𝑚𝑎𝑥
𝐵𝑒𝑡𝑎
𝐾𝑓
𝐾𝑠
D

𝑀𝑚𝑒𝑙𝑡
𝑇𝑡ℎ𝑟𝑒𝑠ℎ
𝐼𝑚𝑎𝑥፩
𝐼𝑚𝑎𝑥፡
𝑆𝑢𝑚𝑎𝑥፩
𝑆𝑢𝑚𝑎𝑥፡
𝑆𝑢𝑚𝑎𝑥፰

𝑤𝑐𝑓𝑐
𝑙𝑝
𝑚𝑎𝑐𝑡𝑟𝑖𝑛𝑓
𝑇𝑡𝑝𝑑
𝑇𝑡𝑝𝑖
𝑇𝑡𝑚𝑝
𝐶𝑚𝑙𝑡
𝑅𝑟𝑠𝑐2
𝑚𝑎𝑐𝑟𝑎𝑡𝑒

𝑇𝑠
𝐶𝑓𝑚𝑎𝑥
𝐶𝑅𝐹
𝐶𝑊𝐻
𝑆𝑚
𝐵𝑒𝑡𝑎
𝐴𝑙𝑓𝑎
𝑅𝑠
𝑅𝑓

𝐶𝑠𝑓
𝐷𝑑𝑓
𝑇𝑟
𝑇𝑠
𝑀𝑒𝑙𝑡𝑡
𝐹𝐶
𝐵𝑒𝑡𝑎
𝑙𝑝𝑟𝑎𝑡
𝐾2
𝑐𝑝𝑒𝑟𝑐
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Table 4.3: Model parameters and the data sources that are related to it for determining posterior pa-
rameter bounds (continued).

Source FLEX FLEXtopo HYPE HYMOD TUW
Evaporation Budyko 𝐼𝑚𝑎𝑥

𝑆𝑢𝑚𝑎𝑥
𝐵𝑒𝑡𝑎

𝐼𝑚𝑎𝑥፩
𝐼𝑚𝑎𝑥፡
𝐼𝑚𝑎𝑥፰
𝑆𝑢𝑚𝑎𝑥፩
𝑆𝑢𝑚𝑎𝑥፡
𝑆𝑢𝑚𝑎𝑥፰

𝑤𝑐𝑓𝑐
𝑙𝑝
𝑚𝑎𝑐𝑡𝑟𝑖𝑛𝑓

𝑆𝑚
𝐵𝑒𝑡𝑎

𝐹𝐶
𝐵𝐸𝑇𝐴
𝐿𝑝𝑟𝑎𝑡

LSA-SAF 𝐼𝑚𝑎𝑥
𝑆𝑢𝑚𝑎𝑥
𝐵𝑒𝑡𝑎

𝐼𝑚𝑎𝑥፩
𝐼𝑚𝑎𝑥፡
𝐼𝑚𝑎𝑥፰
𝑆𝑢𝑚𝑎𝑥፩
𝑆𝑢𝑚𝑎𝑥፡
𝑆𝑢𝑚𝑎𝑥፰

𝑤𝑐𝑓𝑐
𝑙𝑝
𝑚𝑎𝑐𝑡𝑟𝑖𝑛𝑓

𝑆𝑚 𝐹𝐶
𝐵𝐸𝑇𝐴
𝐿𝑝𝑟𝑎𝑡

MOD16 𝐼𝑚𝑎𝑥
𝑆𝑢𝑚𝑎𝑥
𝐵𝑒𝑡𝑎

𝐼𝑚𝑎𝑥፩
𝐼𝑚𝑎𝑥፡
𝐼𝑚𝑎𝑥፰
𝑆𝑢𝑚𝑎𝑥፩
𝑆𝑢𝑚𝑎𝑥፡
𝑆𝑢𝑚𝑎𝑥፰

𝑤𝑐𝑓𝑐
𝑙𝑝
𝑚𝑎𝑐𝑡𝑟𝑖𝑛𝑓

𝑆𝑚 𝐹𝐶
𝐵𝐸𝑇𝐴
𝐿𝑝𝑟𝑎𝑡

Snow MOD10 𝑀𝑚𝑒𝑙𝑡
𝑇𝑡ℎ𝑟𝑒𝑠ℎ

𝑀𝑚𝑒𝑙𝑡
𝑇𝑡ℎ𝑟𝑒𝑠ℎ

𝑇𝑡𝑝𝑑
𝑇𝑡𝑝𝑖
𝑇𝑡𝑚𝑝
𝐶𝑚𝑙𝑡

𝑇𝑠
𝐶𝑓𝑚𝑎𝑥
𝐶𝐹𝑅
𝐶𝑊𝐻

𝐶𝑠𝑓
𝐷𝑑𝑓
𝑇𝑟
𝑇𝑠
𝑀𝑒𝑙𝑡𝑡

MYD10 𝑀𝑚𝑒𝑙𝑡
𝑇𝑡ℎ𝑟𝑒𝑠ℎ

𝑀𝑚𝑒𝑙𝑡
𝑇𝑡ℎ𝑟𝑒𝑠ℎ

𝑇𝑡𝑝𝑑
𝑇𝑡𝑝𝑖
𝑇𝑡𝑚𝑝
𝐶𝑚𝑙𝑡

𝑇𝑠
𝐶𝑓𝑚𝑎𝑥
𝐶𝐹𝑅
𝐶𝑊𝐻

𝐶𝑠𝑓
𝐷𝑑𝑓
𝑇𝑟
𝑇𝑠
𝑀𝑒𝑙𝑡𝑡
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Subsequently, it was evaluated how well the modelled state and/or flux variables
of each model realization were able to reproduce the different data from the group
of remote sensing products that corresponds to that specific model state or flux.
For example, modelled evaporation for each of the 80,000(100,000) model realiza-
tions for each catchment was evaluated against the different evaporation estimates
provided by the data from group two (see section 4.2.3). The squared correlation
coefficient was used as a performance metric for model evaluation against each
remote sensing product, emphasizing the models’ ability to reproduce the temporal
dynamics of a given variable, but ignoring the magnitude of the variable itself and
its fluctuations over time. For evaluation against long-term evaporation from the
Budyko curve the relative error was used. See also Table 4.2 for which performance
metric was used per product.

In a next step, posterior parameter distributions were determined based on a
weighting procedure (e.g. Freer et al., 1996). Initially, this was carried out with a
single performance metric related to a specific product for all model parameters,
to assess the sensitivity of the parameters for a given product. The vertical dis-
tance between the cumulative distribution of the posterior parameter distribution
and the prior, uniform parameter distribution (i.e. the Kolmogorov-Smirnoff dis-
tance), both averaged for all the catchments, served as an informal indication of
sensitivity. This sensitivity was combined with simple reasoning (e.g. snow perfor-
mance metrics should relate to snow parameters) to relate parameters to relevant
performance metrics. Thus, the final weighting was carried out on the basis of
one or a combination of m selected performance metrics to model states/fluxes,
assumed to be relevant for the parameter under consideration. Table 4.3 gives
an overview of the parameters and the remotely sensed data sources that these
parameters were eventually linked to. For example, the posterior parameter distri-
butions linked to snow processes were calculated using weights derived from the
model’s ability to reproduce the satellite snow cover data (the snow products, see
section 4.2.3). In the case that multiple products were used for the evaluation of
a model component and the construction of the posterior distributions of the asso-
ciated parameters, a combined performance metric was formulated, based on the
Euclidean distance of the model performances with respect to the individual prod-
ucts (Eq. 4.1), thus treating the performance metrics equally important. Hereafter,
rescaling was applied (Eq. 4.2) to maintain values between 0 and 1.

𝐸፨፛፣,፜፨፦፛።፧፞፝ = 1 − √(1 − 𝐸obj,1)
ኼ + ... + (1 − 𝐸obj,n)

ኼ, (4.1)

𝐿 (𝜃) = 𝐸፨፛፣,፜፨፦፛።፧፞፝,፬፜ፚ፥፞፝ =
𝐸obj,combined −𝑚𝑖𝑛 (𝐸obj,combined)

𝑚𝑎𝑥 (𝐸obj,combined) − 𝑚𝑖𝑛 (𝐸obj,combined)
(4.2)

Where 𝐸obj, combined is the combined objective function (or performance metric)
using m remote sensing products for evaluation, 𝐸obj,m is the objective for product
m, 𝐸፨፛፣,፜፨፦፛።፧፞፝,፬፜ፚ፥፞፝ is the scaled objective and 𝐿(𝜃) is an informal likelihood
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weight for parameter set 𝜃. The posterior distributions were then determined as
(Freer et al., 1996):

𝐿ኼ (𝜃) = 𝐿 (𝜃)፧ × 𝐿ኺ (𝜃) /𝐶, (4.3)

where 𝐿ኺ(𝜃) is the prior parameter distribution [-], 𝐿ኼ(𝜃) is the posterior prob-
ability distribution [-] , n is a weighting factor (set to 10) [-], and 𝐶 is a normalizing
constant [-], the parameter set 𝜃 consists of the relevant parameters of interest
for the informal weights, and the other parameters not sensitive for obtaining the
formal weights.

This procedure was repeated for all possible combinations of remote sensing
products from the four groups (Table 4.3), starting with a single product and end-
ing with the combined use of all 10 products simultaneously. This resulted in a total
of 1023 different possible combinations of remote sensing products for the evalu-
ation of the associated model components. After weighting, the 25፭፡ and 75፭፡
quartiles of the posterior parameter distributions were retained as feasible parame-
ter bounds. This remains a mere subjective choice, but in this way the higher values
of the posterior likelihood are always retained and the new parameter ranges are
always determined on a sufficient number of samples. The alternative of cutting off
the distributions at a certain performance level, as for example done in the GLUE
methodology (Beven and Freer, 2001), is equally subjective, with the additional risk
of not having any feasible solutions to determine posteriors. It is fully acknowledged
that in absence of a clear posterior distribution the new bounds may incorrectly con-
sider some solutions unfeasible (i.e. false negatives), but therefore, the weighting
factor 𝑛 was set relatively high (𝑛 = 10). In this way, and in combination with the
use of the 25፭፡ and 75፭፡ quartiles as bounds, considerable discriminative power
can be obtained, zooming in on the solutions which are considered correct.

4.2.5. Parameter selection – streamflow observations
All five models for all 27 study catchments were calibrated in a traditional way on
observed streamflow data to provide a reference benchmark. Thus, all model re-
alizations were evaluated against streamflow with a multi-objective strategy based
on the Nash-Sutcliffe efficiency (𝐸NS,Q) of flow and the Nash-Sutcliffe efficiency of
the logarithm of the flow (𝐸NS,logQ). Also here, the two objective functions were
combined based on the Euclidean distance of these two objective functions:

𝐸፨፛፣,፜፨፦፛።፧፞፝ = 1 − √(1 − 𝐸NS,Q)
ኼ + (1 − 𝐸NS,logQ)

ኼ, (4.4)

Where 𝐸obj, combined the combined objective. Model runs were retained as fea-
sible when both 𝐸NS,Q and 𝐸NS,logQ were higher than 0. For clarity, hereafter the
term calibration refers to the traditional parameter selection procedure based on
streamflow as outlined here, whereas constraining refers to the parameter selec-
tion procedure based on the remote sensing data sources as outlined in section
4.2.4.
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4.2.6. Added value for streamflow
The added value of the individual remote sensing products was assessed by com-
puting the probability that improvement occurred when including a specific data
source (see section 4.2.2) to constrain the feasible parameter space of a given
model, compared to not including this specific data source. Improvement was con-
sidered here in terms of the Euclidian distance between Nash-Sutcliffe efficiency of
the flows and logarithm of the flows. To do so, all 1023 possible combinations of
the one to ten potential data sources from the four groups specified in section 4.2.2
were separated in combinations with and without a specific product, leading to 512
combinations with, and 511 combinations without this product. Each combination
has its own set of feasible solutions (as defined by the posterior parameter distri-
butions) with the associated performance measures (such as 𝐸NS,Q and 𝐸NS,logQ).
The overall probability of improvement of including one product is then estimated
by merging the distribution of performance measures for each combination with a
specific product with the distributions of performance measures of all other combi-
nations with this product into the marginal probability of improvement when using
this product (Figure 4.2). For example, if combinations A, B and C each included the
remote sensing product GRACE, with 100, 200, 250 feasible solutions, respectively,
the final distribution contained 550 feasible solutions (100+ 200+ 250). Following
the same approach for all combinations 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 this product, a second marginal
distribution of performances is established. Comparing the overall distribution with
this product to the one without this product, the probability of improvement (𝑃ፈ,ፒ)
can then be calculated according to Nijzink et al. (2016b):

𝑃I,S = 𝑃(𝑆፰።፭፡ > 𝑆፰።፭፡፨፮፭) =
፧

∑
።዆ኻ
𝑃(𝑆፰።፭፡ > 𝑆፰።፭፡፨፮፭|𝑆፰።፭፡ = 𝑟።)𝑃(𝑆፰።፭፡ = 𝑟።), (4.5)

where 𝑆፰።፭፡ and 𝑆፰።፭፡፨፮፭ are the distributions of the performance metrics with
and without a certain product, respectively, 𝑟። is a single realization from the distri-
bution of 𝑆፰።፭፡ and 𝑛 is the total number of realizations of the 𝑆፰።፭፡ distribution. For
𝑃ፈ,ፒ > 0.5 it is then more likely that including a product leads to improved objective
function values, and vice versa for 𝑃ፈ,ፒ < 0.5.

4.2.7. Added value for hydrological signatures
To assess the potential of using different remote sensing products to improve the
representation of hydrological signatures compared to those obtained in an uncon-
strained situation, the feasible solutions of the parameter selection procedure as
described in section 4.2.4 were evaluated for a set of 27 hydrological signatures
(Table 4.4), as previously defined by, among others, Shamir et al. (2005), Yilmaz
et al. (2008), Euser et al. (2013), Pechlivanidis and Arheimer (2015) and Kuentz
et al. (2017). The probability of improvement in the representation of hydrolog-
ical signatures when including a specific remote sensing product was determined
in comparison with a reference situation, which in this case corresponds to the
distribution of signatures obtained from the unconstrained models (Figure 4.2b).
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Corresponding to Eq. 4.6, the probability of improvement (𝑃ፈ,ፒ) can be calculated
for each signature and each catchment (Nijzink et al., 2016b) as:

𝑃I,S = 𝑃(𝑆፜ > 𝑆፮) =
፧

∑
።዆ኻ
𝑃(𝑆፜ > 𝑆፮|𝑆ፂ = 𝑟።)𝑃(𝑆ፂ = 𝑟።), (4.6)

where 𝑆ፂ and 𝑆፮ are the distributions of the signature performance metrics
(e.g. squared correlation coefficient) of the constrained model and reference un-
constrained model, respectively, for the set of all feasible solutions retained from
constraining or calibration, 𝑟𝑖 is a single realization from the distribution of 𝑆 and 𝑛
is the total number of realizations of the 𝑆 distribution.For 𝑃ፈ,ፒ < 0.5 it is then more
likely that the model outperforms the reference model with respect to the signature
under consideration, and vice versa for 𝑃ፈ,ፒ < 0.5.Even though not all signatures are
fully uncorrelated, high probabilities of improvement for all catchments and all sig-
natures simultaneously points towards more consistent model behavior (cf. Euser
et al., 2013).

The probabilities of improvement are calculated for all 279 cases (27 catchments
with 27 signatures each) for each combination of data sources (i.e. a certain set of
constraints), with the improvement relative to the unconstrained reference model.
The relative occurrences of certain probabilities of improvement can be inspected
by means of cumulative density plots. See also Figure 4.2b for a stepwise clarifica-
tion of this approach. As the different combinations of products lead to a varying
degree of signature reproduction, different cumulative density curves will emerge.
Therefore, improvements can be identified by shifts in the cumulative density plots
towards higher probabilities of improvement.

4.3. Results and Discussion
4.3.1. Linking parameters and data sources
In a first step, all parameters had to be related to relevant data sources. This was
done based on the sensitivity for each parameter to a certain product (Figure 4.3),
in terms of the average vertical distance between the empirical prior distribution
and the posterior distribution (Kolmogorov-Smirnoff distance; i.e. the higher the
distance, the more sensitive a parameter is to the information provided by a given
product). For FLEX (Figure 4.3a), it can be noted that the two snow parameters
(Mmelt and Tthresh) react to the two snow products, as expected. More interest-
ingly, also the soil moisture products and GRACE influence the snow parameters,
which can be explained by the role of snowmelt entering the unsaturated storage.
A similar argumentation holds for the parameter of maximum interception capacity
Imax, which is, in addition to solely the evaporation products, also affected by the
soil moisture products. The soil moisture parameters Sumax and Beta exhibit a
high sensitivity to the group of soil moisture products, but also to the evaporation
products and GRACE. The parameters Kf, Ks and D are to some extent linked to
GRACE, but also to the soil moisture products. Thus, each parameter of FLEX can
be related to certain products, and can hence be constrained.
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Table 4.4: Overview of the hydrological signatures.

Signature Description Reference
𝑆QMA Mean annual runoff
𝑆AC One day autocorrelation coefficient Montanari and Toth (2007)
𝑆AC,summer One day autocorrelation the summer period Euser et al. (2013)
𝑆AC,winter One day autocorrelation the winter period Euser et al. (2013)
𝑆RLD Rising limb density Shamir et al. (2005)
𝑆DLD Declining limb density Shamir et al. (2005)
𝑆ፐᎷ Flow exceeded in 5% of the time Jothityangkoon et al.

(2001)
𝑆ፐᎷᎲ Flow exceeded in 50% of the time Jothityangkoon et al.

(2001)
𝑆ፐᎻᎷ Flow exceeded in 95% of the time Jothityangkoon et al.

(2001)
𝑆ፐᎷ ,summer Flow exceeded in 5% of the summer time Yilmaz et al. (2008)
𝑆ፐᎷᎲ ,summer Flow exceeded in 50% of the summer time Yilmaz et al. (2008)
𝑆ፐᎻᎷ ,summer Flow exceeded in 95% of the summer time Yilmaz et al. (2008)
𝑆ፐᎷ ,winter Flow exceeded in 5% of the winter time Yilmaz et al. (2008)
𝑆ፐᎷᎲ ,winter Flow exceeded in 50% of the winter time Yilmaz et al. (2008)
𝑆ፐᎻᎷ ,winter Flow exceeded in 95% of the winter time Yilmaz et al. (2008)
𝑆Peaks Peak distribution Euser et al. (2013)
𝑆Peaks,summer Peak distribution summer period Euser et al. (2013)
𝑆Peaks,winter Peak distribution winter period Euser et al. (2013)
𝑆ፐpeak,10 Flow exceeded in 10% of the peaks
𝑆ፐpeak,50 Flow exceeded in 50% of the peaks
𝑆ፐsummer,peak,10Flow exceeded in 10% of the summer peaks
𝑆ፐsummer,peak,50Flow exceeded in 10% of the summer peaks
𝑆ፐwinter,peak,10 Flow exceeded in 10% of the winter peaks
𝑆ፐwinter,peak,50 Flow exceeded in 50% of the winter peaks
𝑆SFDC Slope flow duration curve Yadav et al. (2007)
𝑆LFR Low flow ratio (𝑄ዃኺ /𝑄኿ኺ)
𝑆FDC Flow duration curve Westerberg et al. (2011)
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Figure 4.2: Schematized representation of (a) the procedure to calculate the probabilities of improve-
ment for each product by adding up all distributions in Step 1 with a certain product, as shown for
examples A (100 feasible solutions), B(200), C(250), which leads to a marginal distribution in Step 2 of
550 solutions (100+200+250) and without a certain product, as shown for distributions D, E, F (120+
150+200=470 solutions), which can be compared in Step 3 to calculate the probability of improvement.
In (b) the signature analysis is displayed, with in step 1 the density distributions for the performance
metrics for a specific signature in the constrained case (red) and unconstrained case (blue), step 2 the
probability of improvement derived from these distributions for each signature and each catchment and
step 3 the resulting cumulative occurrences for the probabilities of improvement.
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Figure 4.3: Sensitivity in average vertical distance between the empirical distribution curves of posterior
and prior (uniform) parameter distributions for (a) FLEX, (b) FLEXtopo, (c) HYMOD, (d) HYPE,
(e) TUW. Different colors indicate different products, with for FLEXtopo a distinction per landscape class
with plateau, wetland (dashed) and hillslope (dotted ).
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The sensitivity plot for FLEXtopo (Figure 4.3b) shows similar behavior, as similar
model parameters are used as in FLEX, but now only applied in different landscape
classes. Even though no complete overlap could be found, corresponding parame-
ters in FLEXtopo were constrained with the same products as for FLEX to maintain
consistency. However, as the number of parameters is higher, while the number of
sampled random parameter sets is just slightly higher, the analysis of this model is
based on a lower sampling density. Thus, to avoid the situation that no solutions
remain due to too many parameter constraints, parameters that did not show a con-
sistent sensitivity for a specific group of products were mainly left unconstrained,
such as Pmax, Cmax, Kf, Beta and D for the three landscape classes (Figure 4.3b).

The relations between products and parameters for HYMOD (Figure 4.3c) show
a rather consistent pattern compared to FLEX and FLEXtopo. Also in this case, the
snow parameters (Ts, CFMAX, CFR, CWH) are not just sensitive to the snow prod-
ucts, but also the soil moisture products. For Ts and CFMAX also GRACE has an
influence, which happened as well for the snow parameters of FLEX. CFR and CWH
do not show this, indicating that this refreezing factor (CFR) and water holding ca-
pacity of snow (CWH) have, apparently, a minor influence in the storage anomalies.
The maximum soil moisture Sm can be constrained with the soil moisture products,
GRACE and the evaporation products. For the second soil moisture parameter beta,
the soil moisture products matter, but especially a high sensitivity to the Budyko
framework can be observed. The last parameters of Rs, Rf and alfa (relating to
the reservoir coefficients and runoff generation) can be linked to the soil moisture
products as well as GRACE.

It can be noted for HYPE (Figure 4.3d) that the general sensitivity is lower
compared to the other models. Nevertheless, the snow parameters (ttpd, ttpi, ttmp,
cmlt) can be constrained in a similar fashion as for FLEX and HYMOD, thus with the
snow products, soil moisture products and GRACE. In addition, rrcs2 and macrate,
both related to groundwater dynamics, show considerable sensitivity to GRACE and
the soil moisture products. The parameters controlling soil moisture and, thus
transpiration lp, wcfc and mactrinf, relate to GRACE, the soil moisture products
and the evaporation products. The other parameters are left unconstrained as the
sensitivities here are generally low or do not show a clear sensitivity to one of the
groups of products.

The snow parameters csf, ddf, tr, ts and meltt of the TUW model (Figure 4.3e)
can also be constrained with the snow products, GRACE and the soil moisture prod-
ucts. The soil moisture parameters of lprat, FC and BETA show a high sensitivity
to the soil moisture products, but also again GRACE and the evaporation products.
The groundwater parameters k2 and cperc relate to GRACE and the soil moisture
products, the remainder of the parameters is left unconstrained as no clear prefer-
ence for certain groups of products can be identified.

4.3.2. Streamflow calibration performances versus constrained
performances

In a next step, the performances of the five models when constrained with all
different combinations of data sources (section 4.2.4) are compared with the per-
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Figure 4.4: Comparison of Nash-Sutcliffe performances for the calibrated models (ኼ኿ᑥᑙ and ዁኿ᑥᑙ quar-
tile correspond to the blue band, dashed lines represent the 5th and 95th quartiles) and the constrained
model applications (red line for each combination of constraints, representing the ኼ኿ᑥᑙ and ዁኿ᑥᑙ quar-
tiles) for (a) FLEX and the Broye catchment, (b) TUW and the Wuemme catchment The unconstrained
model performances (corresponding to the origin of the plot, i.e. combinations of products equal to 0)
are displayed in grey.
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Figure 4.5: Distance between the calibrated and constrained distribution of the Euclidian distance be-
tween Nash-Sutcliff of the flows and log of the flows (i.e. Kolmogorov-Smirnoff distance), for each
possible combination from n=1 to n=9 included products, for the FLEX model. Blue values indicate a
constrained distribution with higher performances than calibrated, red indicates a calibrated distributions
with higher performances.
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formances obtained by calibration to streamflow (section 4.2.5). When the models
are calibrated on streamflow data, they all provide similar model performances,
but different patterns emerge for the different catchments and models when con-
strained with the different data sources as shown in for selected catchments and
models in Figure 4.4. See the Supplement Section S2 of (Nijzink et al., 2017) for all
model performances in the constrained and calibrated situations. In general, the
model performances increase with an increasing number of data sources used for
constraining, as expected, but in some occasions no feasible solutions remain.

Some of applications of the FLEX model constrained exclusively by remote sens-
ing data exhibit a similar range of model performances as when calibrated on
streamflow. In several cases an equivalent level of model performance was achieved
after adding four data sources in the parameter selection procedure, as can be ob-
served from Figure 4.5, where the maximum distance between empirical cumula-
tive distribution curves of the calibration and constrained models (the Kolmogorov-
Smirnoff distance) is displayed for all combinations of products and catchments.
Furthermore, in Figure 4.4, zigzag patterns of improvements and deteriorations can
be noticed after constraining with a larger set of products for some catchments. This
is an indication that families of combinations that either include or exclude certain
(combinations of) products, can lead to major improvements or strong decreases in
performances. It can be clearly observed that the distances vary and are grouped
(Figure 4.5), pointing at specific combinations of products that constrain in such a
way that the new performance distribution comes close to the calibration distribu-
tion, or even improves. For FLEX, only in 4 of the 27 catchments (catchments 1, 11,
12, 18) the constraints lead to performance distributions that are substantially lower
than the calibrated results, whilst the other catchments always approach the cali-
bration results more closely, or even show higher performances (catchments 5, 13,
14, 24). Inspection of the combinations reveals that GRACE data are an important
contributor to model improvements particularly for a large number of catchments,
except for the Gadera (catchment 1), but especially for catchments 7, 14, 17, 19
and 27. Similarly, for the Treene, Modau and Wuemme (catchments 8, 20 and 24)
the AMSR-E product is the common factor in the more successful combinations.
The Treene catchment, and to a lesser extent also the Wuemme, are peaty lowland
catchments, with very moist soils and shallow groundwater tables, which matches
well with the information derived from AMSR-E. This seems, however, in contrast
to statements from the AMSR-E developers that pixels with a large proportion of
open water introduce errors (Owe et al., 2008) or other researchers that suggest
that peatland creates errors in soil moisture products (Bartalis et al., 2007). On
the other hand, Owe et al. (2008) mention steep mountainous areas as source for
error, which these catchments are certainly not. The snow products are included in
the more successful combinations for Vils, Grossarler and Grosse Mühl (catchments
4, 5 and 6), which are also the more snow dominated catchments. The evapora-
tion products of MOD16 and LSA-SAF do not show a clear pattern when included or
excluded in the parameter selection procedure, pointing at a relatively minor role
in determining the performances with regard to streamflow, reflecting results of
Oudin et al. (2004). In addition, the number of parameters concerning evaporation
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is generally lower, also reducing the importance of these products for constraining.
The results of the FLEXtopo model (Supplement of Nijzink et al. (2017) Figures

S10-S13) show in general similar patterns as for FLEX. However, it can be noted
that more combinations of constraints also lead to no remaining feasible solutions
at all. The problem here is mostly linked to the larger number of free calibration
parameters (24) and the resulting under-sampled parameter space. In addition, a
similar reasoning can be made for HYMOD (Supplement of Nijzink et al. (2017) Fig-
ures S14-S17), but here this is merely caused by the relatively wide prior parameter
ranges used for HYMOD, leading to only a relatively small number of solutions with
high performances which the constraints cannot easily filter out. These ranges were
initially set wide on purpose to assess the power of the constraints, but it largely
remains a challenge to obtain similar performances as for the model calibrated on
streamflow, when set too wide. Thus, similar performances as in traditional calibra-
tion are eventually only achieved for the Tanaro, Fyllean and Deveron (catchments
2, 18 and 25). The variability between the different combinations of constraints is
also large in the case of HYMOD, pointing to an extremely high added value of a
certain (family of) constraints, which are combinations with the Budyko framework.

Similarly, HYPE (Supplement of Nijzink et al. (2017) Figures S18-S21) has some
more difficulties in order to obtain similar performances as when calibrated on
streamflow. Even though the performances in calibration are reasonable, the abso-
lute number of feasible solutions is relatively low. Therefore, the constraints from
the products need considerably more restrictive power to filter all solutions and to
converge to the same performance level as the streamflow calibration. This also re-
lates to the relatively large number of free calibration parameters and thus a larger
a priori search space. In other words, too many poor solutions are maintained when
the model is constrained on the remote sensing data sources.

The TUW model (Supplement of Nijzink et al. (2017) Figures S22-S25) shows
also a clear pattern of strong and weak combinations of remote sensing products,
but the variability between the (families of) combinations is generally not very high.
The relative importance of each parameter, and thereby each data source con-
nected to it, is lower as TUW has a relatively elevated number of parameters (i.e.
15). Thus, leaving a single parameter of all the TUW parameters unconstrained
has less consequences compared to constraining a single parameter from the 8
parameters of FLEX. Nevertheless, the same products (GRACE, AMSR-E, ASCAT)
strongly improve the parameterizations of TUW, similar to FLEX, also for the same
catchments (such as catchments 8, 20 and 24).

4.3.3. Added value of remote sensing data to reproduce stream-
flow

Figure 4.6 compares the overall added value of each individual remote sensing
product to generate meaningful posterior distributions and thus to provide efficient
and effective parameter constraints. This was done as described in section 4.6
by assessing the probability of improving the representation of streamflow when
including a specific remote sensing data source for constraining a model than when
not including it.
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Figure 4.6: Probabilities of improvement for including a specific product in the set of products used for
constraining compared to not including this product, with regard to the Euclidian distance between Nash-
Sutcliffe of flows and logarithm of the flows, shown for (a) FLEX, (b) FLEXtopo, (c) HYMOD, (d) HYPE,
(e) TUW. High probabilities of improvement plot in increasingly dark shades of blue, while shades of red
indicate increasing probabilities of deterioration. The ECDF curves represent the cumulative distribution
curves of all the probabilities of improvement for all catchments.
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Figure 4.7: Feasible flow ranges for FLEX for a selected time period of catchment 13 obtained with
combinations of remote sensing products (a) with GRACE and (b) without GRACE (c) calibration on
streamflow. Colored envelopes in a) and b)represent the number of products (n=1 to n=10) used in
deriving the posterior parameter distributions and flow ranges, observed discharge is shown in blue and,
in (c) , calibrated discharge on streamflow in red.
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Figure 4.8: Feasible flow ranges for a selected time period of the Vils catchment (catchment 4) obtained
with combinations of remote sensing products of a) with MOD10 and FLEX, b) with MOD10 and HYMOD,
c) without MOD10 and FLEX and d) without MOD10 and HYMOD, and e) FLEX calibrated on streamflow,
f) HYMOD calibrated on streamflow. Observed discharge is shown in blue and the colored envelopes in
a), b), c) and d) represent the feasible ranges with 9 products used in deriving the posterior parameter
distributions, and, in e) and f), calibrated discharge on streamflow.
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For example, in Figure 4.6a it can be noted that high probabilities of improve-
ment are obtained for most data sources for FLEX. Only a few cases exist where
one of the data sources provides a low probability of improvement (<0.5), which
suggests that constraining on any single remote sensing data source has already
considerable constraining power in a wide range of cases. This is for example true
for GRACE, in particular when applied with FLEX, where high probabilities of im-
provement can be observed (see also section 4.3.2). This is similarly illustrated
for the hydrograph of the Glane (catchment 13) in Figure 4.7, where especially in
combinations with nine products GRACE has the potential to move the lower bound
of the uncertainty interval of the modelled hydrograph towards the observations, in
particular for the low flows. Further, it can be noted that during the summer pe-
riod the final set of constraints provides a much narrower uncertainty bound than
the calibrated results (Figure 4.7c). Several previous studies similarly suggested
that GRACE has a high potential to improve hydrological simulations (Mulder et al.,
2015; Rakovec et al., 2016), but this was thought to be true mostly for larger catch-
ments than those under consideration here. In particular the Broye and Dalsaelve
(catchments 7, 17) show a high probability of improvement when constraining FLEX
with GRACE. For the Broye this is likely to be linked to the adjacent Lake Geneva,
which may influence the groundwater tables in the surrounding catchments, leading
to similar water storage anomalies of all catchments within the GRACE cells. The
larger catchments, such as the Leyre (10; 1587𝑘𝑚ኼ) or Hunte (23; 1409𝑘𝑚ኼ) still
show high probabilities of improvement, which is related to a signal of water storage
anomalies much closer to the GRACE signal. Yet, the probabilities of improvement
are high for most other catchments as well, which also includes catchments with
areas of less than 100𝑘𝑚ኼ (e.g. catchment 20). In addition to GRACE, the soil
moisture products of AMSR-E and ASCAT show the highest probabilities of improve-
ment, whereas SMOS has a slightly lower added value. This is in agreement with
findings of Wanders et al. (2014), who also applied AMSR-E, ASCAT and SMOS in a
hydrological model and found that soil moisture improved the strongest for AMSR-E
and ASCAT. Nevertheless, they also found that AMSR-E and ASCAT work best in
areas with a pronounced relief, whereas the highest probabilities of improvement
are, in our study, obtained for both catchments with low and high elevation differ-
ences. The relatively white colors for Budyko, MOD16 and LSA-SAF in Figure 4.6,
corresponding to probabilities of around 0.5, indicate that these data sources do
not add a lot of constraining power, but also do not have adverse effects when
included. These data sources are, apparently, not very important with respect to
the streamflow objectives considered here. However, in warmer and more arid cli-
mates outside Europe, these products may have significantly more value. The snow
products show, as expected, high probabilities of improvement for Vils, Grossarler
and Grosse Muehl (catchments 4-6), which are more snow-dominated catchments.

FLEXtopo (Figure 4.6b) shows a similar pattern as for FLEX, but it can also be
observed that LSA-SAF evaporation has in several cases a negative influence on the
results. This is in line with Figure S6 in the Supplement of Nijzink et al. (2017),
where it can be noted that FLEXtopo has difficulties to achieve high correlations
between the LSA-SAF evaporation and modeled evaporation, therefore also leading
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to rather poor posterior parameter ranges. The low correlations are mainly caused
in the landscape class of plateau, as used by the model. Especially this landscape
class is often employed for agriculturally used land, which is also the case for the
Little Ouse and Stour (catchments 26 and 27, with respectively 64.4% and 86.6%
agriculture of the plateau areas), which show very low probabilities of improvement
for LSA-SAF evaporation. Either the model or the product has difficulties with re-
producing the transpiration signal from the crops, which can even be altered by
management decisions to irrigate and/or harvest. Besides this, it was concluded by
Hu et al. (2015) that LSA-SAF evaporation has difficulties in arid regions, and the
catchments of Little Ouse and Stour have an aridity of 1.05 and 1.03 respectively,
which are also the highest aridity values in this analysis (even though located in the
UK).

Unlike the results for FLEX and FLEXtopo, the Budyko framework has a big influ-
ence on the results for HYMOD (Figure 4.6c). Here, high probabilities of improve-
ment show the importance of the Budyko framework for HYMOD, whereas FLEX
and FLEXtopo (and also HYPE and TUW) show an almost white column for Budyko.
This indicates that the model has difficulties in reproducing the long-term flux parti-
tioning into streamflow and evaporative fluxes, which can also be seen from Figure
S6 in the Supplement of Nijzink et al. (2017). Nevertheless, the Budyko frame-
work was only connected to two parameters (Sm, Beta) of HYMOD, and therefore,
leaving these parameters unconstrained leads to many poor solutions. Based on
these results, it can be argued that these parameters must be constrained in all
cases. However, the Budyko framework helped here, similar as in the studies of
Li et al. (2014) and Gentine et al. (2012), to identify feasible sets of parameters.
Another clear distinction with the other models can be found in the probabilities of
improvement for the two snow products (MOD10 and MYD10). For all other mod-
els at least moderate probabilities are observed, in particular for catchments 4-7,
but for HYMOD the probabilities of improvement remain very low. This can also
be noted from the hydrographs in Figure 4.8, where for FLEX some snow-peaks
are improved when constraining the snow parameters, for HYMOD the small snow
peaks in January and February disappear and the large snow peak starting in March
remains too high.

Similar to FLEX and FLEXtopo, HYPE (Figure 4.6d) benefits from including AS-
CAT or AMSR-E, even though the absolute level of improvements remain quite low.
NDII shows even lower probabilities for all catchments. It is also interesting to
note that the snow products have a similar low probability of improvement for the
Vils and Grossarler catchment (catchments 4 and 5) as for HYMOD, whereas FLEX,
FLEXtopo and TUW have high probabilities of improvement for applying the snow
products in these catchments. These two catchments have the highest number
of possible snow days (29.8% and 28.7%), and one would expect high proba-
bilities of improvement for the snow products here for all models, also based on
previous work (Parajka and Blöschl, 2008). Figure S6 in the Supplement of Nijzink
et al. (2017) also shows that there are no distinct differences between the modeled
and observed snow signals between the models and, thus, the low probabilities
of improvement, with regard to streamflow, very likely point towards other model
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structural deficiencies in HYMOD and HYPE. In other words, the snowmelt may still
be better represented when the snow parameters are constrained with the snow
products, but how snowmelt water is then routed through the rest of the system
may not be adequately represented.

For TUW, the observed patterns in Figure 4.6e are again similar to the patterns
for FLEX and FLEXtopo, but with less distinct differences between the different data
sources. ASCAT also shows high probabilities of improvement for most catchments,
and AMSR-E to a lesser degree. The evaporation products of LSA-SAF and MOD16
have, more than for FLEX or FLEXtopo, rather low probabilities of improvement for
the full range of catchments. At the same time, Budyko helps a lot, pointing also
here at difficulties of the model to reproduce long-term behavior.

4.3.4. Added value of remote sensing data for hydrological sig-
natures

Figure 4.9 summarizes all empirical cumulative probability distribution curves ob-
tained from the combined probabilities of improvement of all tested hydrological
signatures for all combinations of products, relative to the unconstrained models.
It can be observed that all models experience, on average, a shift towards higher
probabilities of improvement (i.e. to the right – a higher proportion of cases with a
probability of improvement > 0.5) when more products are included, also pointing
towards improved model internal dynamics.

For FLEX and FLEXtopo (Figures 4.9a and 4.9b) the results suggest that a strong
improvement can, on average, be achieved by including more remote sensing prod-
ucts. This can be seen by the large shifts of improvement between the envelopes
of one product (gray) and more products (dark red colors). The final set of con-
straints, with all products included (red in Figure 4.9), is for FLEX close to containing
the highest probabilities of improvement (i.e. the curve closest to a probability of
improvement of 1 on the x-axis). FLEXtopo also has high probabilities of improve-
ment for the final set of constraints, but this curve (red line) is, also here, not the
curve with the highest values. This indicates that at least one of the products is
not adding more value, and actually reduces the models ability to reproduce the
set of hydrological signatures. Inspection of the individual curves shows that the
curve, for nine products included, with the highest probabilities of improvement is
the curve without NDII. In Figure 4.6, this can also be observed in some cases, but
the negative influence becomes much more apparent when evaluating a set of sig-
natures. The curve with the lowest probabilities of improvement for nine products
is however the curve without GRACE, pointing also at the importance of GRACE
for reproducing the signatures. The additional gains by including GRACE are also
in agreement with findings of Rakovec et al. (2016), who found that evaporation
estimates largely improved.

For HYMOD (Figure 4.9c), the solutions obtained from the highest number of
remote sensing products used to constrain (𝑛 = 9) are not the curves with the
highest probabilities of improvement. Moreover, the gray envelopes for a low num-
ber of products are wide and contain the curves with the highest probabilities of
improvement (closest to 1) and lowest (close to 0). The curve most towards high
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Figure 4.9: Envelopes of all empirical cumulative probability distribution curves for all probabilities of
improvement in the representation of catchment signatures (each catchment, each signature) for the
different combinations of constraints (i.e. remote sensing products) compared to the unconstrained
model: (a) FLEX, (b) FLEXtopo, (c) HYMOD, (d) HYPE, and (e) TUW. The different colors represent
the different number of remote sensing products used to constraining the models.
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probabilities when one data source is included (gray) is in this case Budyko, also
in agreement with the previous findings for the objective function values. Most of
the other curves for the individual products plot around a probability of 0.5, indi-
cating that it does not significantly influence the model results if this data source
is included or not. After including Budyko in the combinations, these curves start
to shift to the right, eventually leading to curves that end up in the middle of the
extremes when combined together in a set of new posterior bounds.

The curves for HYPE (Figure 4.9d) look rather similar to the curves of FLEX and
FLEXtopo, but the envelopes of the curves resulting from the use of nine products
are much narrower. Thus, the same number of products are much more restrictive
for HYPE, leading to reduced uncertainty intervals. Even though the final set of
constraints is not the curve with the highest probabilities of improvement, the curves
are rather close. Thus, excluding a certain product for the set used for constraining
does not make a big difference, pointing at the combined strength of the other
remaining nine products.

The very wide envelopes for TUW for the lower probabilities (Figure 4.9e) points
at too restrictive constraints from a certain product, which leads to no feasible
solutions that remain (around 60% has a probability of 0). When combinations are
made, these constraints are relaxed and corrected by including other data sources,
leading to a lower start of the curves, thus pointing at more feasible solutions. In the
end, the envelopes of the higher number of products are most to the right and quite
narrow, indicating that still all data sources helped to improve the representation
of catchment signatures. This points at the combined strength of the products,
correcting too restrictive constraints and improving the signature representation
together.

4.4. Conclusions
27 catchments across Europe were constrained with combinations of nine remotely
sensed products and an analytical framework (Budyko). New posterior parameter
distributions for five different conceptual hydrological models were derived based on
a likelihood weighting procedure, which was specific for each parameter depending
on the relevant data sources for that parameter. In this way, all 1023 possible
combinations of these 10 data sources could be used to derive new parameter
ranges.

It was found that high probabilities of improvement were obtained when com-
binations included in particular AMSR-E and ASCAT soil moisture data. Surprisingly,
considering the relatively small size of the study catchments, also GRACE added
considerable value to meaningfully constrain the tested models. In addition, in
snow dominated catchments the MODIS snow products were shown to be help-
ful for some of these models. The evaporation products of LSA-SAF and MOD16
were to a lesser extent important for deriving adequate and meaningful posterior
parameter distributions.

A set of 27 hydrological signatures was evaluated for each study catchment
and the probability of improvement for reproducing these signatures using only
remote sensing data for constraining a model compared to unconstrained models
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was analyzed. This showed that all models benefitted from using a combination of
remote sensing data for reproducing catchment signatures.

This study illustrates that using combinations of multiple data sources is in most
cases valuable to derive reasonably narrow and meaningful posterior parameter dis-
tributions. It was shown that the highest gains are, on average, obtained when the
soil moisture products AMSR-E and ASCAT as well as the total water storage anomaly
of GRACE are included. Using multiple products simultaneously also corrects errors
of a single product and including four to five different products is often sufficient to
obtain similar performances as in traditional calibration on streamflow. In addition,
hydrological signatures were better represented when multiple data sources were
used, indicating improved model internal dynamics. In conclusion, adding multiple
data sources in parameter selection procedures in an indirect, parameter specific
way is a promising way forward in predicting ungauged catchments.





5
Constraining a large-scale

landscape-based model

The model search space can substantially be reduced by prior parameter
constraints, being also rather similar to model regularization as described
before. Nevertheless, qualitative expert-based parameter constraints have
the advantage of their easiness to use for different model applications, main-
taining also a strong basis in hydrological theory, in contrast for more formal
mathematical, and often empirical, model regularization. As especially large-
scale models are in need of relatively simple methods to constrain the search
space, it is tested whether prior parameter constraints can suffice to obtain
improved model formulations.
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5.1. Introduction
A vast family of large-scale hydrological models exist as global climate issues are
highly prioritized and computational resources increase. Even though Beven (2000)
introduced the “uniqueness of place”-concept in hydrology and site-specific and
flexible approaches (e.g. de Boer-Euser et al., 2017; Fenicia et al., 2011; Gao
et al., 2014a; Uhlenbrook et al., 2004) started to gain attention, many of these
models still use a rather simple, single model structure. A large part of the hy-
drological community still embraces this and supports the idea that the diversity
of processes and catchments not means that a single model cannot be applied
in all cases (Linsley, 1982). It can also be argued that a strong need for large-
scale models with a single model structure will always exist, especially as coupling
with climate-models is difficult, but also as time and data are scarce and a generic
model structure creates the opportunity to learn from the model and its deficiencies
(Le Moine et al., 2007).

Often, these models are developed in order to couple with climate models and
model especially the feedback between atmosphere and the land surface, also with
regard to the carbon cycle, so-called land surface models (LSM’s) such as Tes-
sel (van den Hurk et al., 2000), Orchidee (Krinner et al., 2005), STEAM (Wang-
Erlandsson et al., 2014) or LPJ (Sitch et al., 2003). Other large-scale models such
as E-HYPE (Lindström et al., 2010), PCRGlob (Sutanudjaja et al., 2014) and mHM
(Samaniego et al., 2010b) are more specifically aiming at river discharge, and dif-
fer often conceptually from the aforementioned land surface models. Most of these
large-scale hydrological models use simple, bucket-like conceptualizations of the
land-surface, often similar to the well-known model structure of HBV (Bergström,
1992). In general, these models contain more detailed hydrological processes com-
pared to most LSM’s, which mainly model the upper layer of the surface, but these
hydrological models can often be considered as (too) simple as well. This has also
been recognized by many researchers, as frameworks to evaluate model structures
have been proposed (Euser et al., 2013; Gupta et al., 2012; Wagener and Gupta,
2005) and the search for a more unified theory (e.g. Sivapalan, 2006; Troch et al.,
2009a) on the catchment scale still continues.

Besides the simplicity, most of the large-scale hydrological models suffer from
a lack of calibration due to the long runtimes and the large datasets required. For
example, Lopez Lopez et al. (2017) could only calibrate PCRGlob with just 81 mod-
els runs, whereas, in comparison, Seibert (1997) calibrated a small scale applica-
tion of HBV with more than 500000 model runs. Several authors (e.g Gupta and
Sorooshian, 1983; Koren et al., 2003; Kuzmin et al., 2008; Renard et al., 2010)
argued that better a priori estimates of parameters are needed to avoid these com-
putational issues and have a more aimed optimization approach. In line with this,
regionalization techniques were developed that link data to model parameters (e.g.
Götzinger and Bárdossy, 2007; Kumar et al., 2013b; Samaniego et al., 2010b).
These techniques reduce the need for calibration and limit issues with overparam-
eterization (i.e. equifinality; Beven, 1993), but remain often rather complex, with
global parameters that are hard to interpret. Instead, other studies focused more
on improved parameter priors by additional data (e.g. Koren et al., 2008; Parajka
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and Blöschl, 2008; Winsemius et al., 2008), or by simple prior parameter constraints
and process constraints derived from expert-knowledge (Gao et al., 2014a; Gharari
et al., 2014; Hrachowitz et al., 2014). Especially by using prior parameter con-
straints, regionalization remains simple, and the modelers still maintain an under-
standing of the system. This was only tested for small-scale catchments in Europe,
whereas the added value of these approaches mainly concerns cases where cali-
bration options are limited, thus applications in data-scarce regions or large-scale
modeling applications.

Large-scale models are not parsimonious in the number of parameters, and
yet don’t reflect most dominant hydrological processes with high calibration efforts.
Therefore, this study focusses on applying a large-scale model with a complex model
structure based on the landscape and test whether prior parameter constraints 1)
reduce the need for calibration over the full spatial domain and 2) improve process
representation.

5.2. Methodology
5.2.1. Model set-up
The large-scale model was based on the principles of FLEXtopo (Savenije, 2010), as
also previously applied by (Gao et al., 2014a) and de Boer-Euser et al. (2017). In
the original definition of FLEXtopo (Savenije, 2010) three main landscape classes of
hillslope, plateau and wetland were defined, which was extended here with classes
for urban areas, glaciers and bare rock. Therefore, a global landscape classifi-
cation was made based on values of the global Height Above Nearest Drainage
(HAND; Donchyts et al., 2016) and slopes derived from the SRTM mission (Lehner
et al., 2008), but also landuse data from GLOBcover (Arino et al., 2010). The land-
scape was divided in classes for plateaus (HAND>10m), wetlands (HAND<10m),
and north- and south-facing hillslopes (slope>11%) and additionally split in classes
with grass, and classes with forest. Three classes were also added for urban areas,
glaciers and bare rock, based on the land cover, leading to a total of 11 landscape
classes. See also Figure 5.1 for the global landscape classification.

Each landscape class was given a different model formulation, based on a differ-
ent model structure or model parameterization, following the principles of FLEXtopo
(Gao et al., 2014a; Savenije, 2010), see also Figure 5.2. Briefly, each landscape
class uses a snow routine, followed by an interception storage. From here, wa-
ter either evaporates, or, when the interception capacity is exceeded, continues to
the soil moisture reservoir. Nevertheless, this only happens if no infiltration excess
overland flow occurs, triggered by a rainfall intensity higher than a certain thresh-
old, reflecting the maximum infiltration capacity of the system. After this step, the
different landscape classes start to differ more. In the plateau landscapes, infil-
tration is assumed to be mainly preferential, whereas the fast reservoir generally
represents drainage from agricultural land. In the hillslope areas, the infiltration is
assumed to be preferential as well, but here a fast reservoir is included that ac-
counts for fast subsurface flow. In addition, a dead storage is added to the fast
reservoir, as in karstic areas fissures need to fill first before fast runoff is gener-
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ated. In the wetlands, the main difference is introduced by capillary rise, which
will occur due to the shallow groundwater tables. In addition to these three main
landscape classes, the division in grass and forest was made, as these landcovers
introduce strong differences in interception capacity and root-zone storage capac-
ity. The hillslopes were additionally split in south-facing and north-facing hillslopes,
due to the different amount of evaporative energy that both categories receive.
The snow module of the glacier class differed from the other snow modules as here
the snow storage is assumed to be infinite. However, the glacier and bare rock
classes used a similar model structure, accounting for mainly fast processes. Here,
the unsaturated storage is conceptualized as a threshold process, as in these areas
cracks and fissures fill up first, before runoff is generated. See also Figure 5.2 for
a schematization of the model structure.

Here, a gridded version of model the model was used, and the landscape classes
introduced sub-grid variability for the modelling cells. The model was applied on
the European continent from 11፨ W until 20.5፨ E, and from 35.5፨ N until 60፨

N, in resolution of 0.25፨ following the resolution of the input precipitation data
of MSWEP (Beck et al., 2017). Daily potential evaporation was determined using
ERA-Interim data (Dee et al., 2011) with the Penman formulation as prescribed
by FAO (Allen et al., 1998). The air temperature of the ERA-Interim data was
also used for the snow modelling, as well as SRTM elevation data (Lehner et al.,
2008), which was used to derive elevation zones of 100m difference with corrected
temperature values. The model was run from 1-1-1999 until 31-12-2003, where
the first year served as warm-up year and the remaining three years were used for
model evaluation.

5.2.2. Model parameter constraints
The model was run with 50 randomly generated parameter sets that fulfilled several
semi-quantitative prior parameter constraints, similar to Gharari et al. (2014) and
Hrachowitz et al. (2014). These conditions were based on assumed catchment
behavior between the different landscape classes, i.e. expert knowledge (Gharari
et al., 2014), or remote sensing products such as GRACE (Tapley et al., 2004). The
same model was also run 50 times with randomly generated parameters from a
uniform prior distribution, which served as a benchmark for assessing the added
value of the constraints.

Slow reservoir coefficient
The GRACE satellites provide data about total water storage anomalies, which
strongly relate to groundwater. Therefore, it can be argued that this signal can
be used in a modified recession analysis. When the signal of GRACE is considered
as a proxy for the current total storage in the basin S, the rate of change over
time can easily be determined. Only decreasing changes over time were selected,
pointing at a period of recession, for the full time series of GRACE. A formal reces-
sion analysis uses generally only dry periods, but due to the temporal resolution of
GRACE, it was assumed here that precipitation and evaporation are relatively equal
over this timestep. Thus, the recessions were only selected based on the require-
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Figure 5.1: Landscape classification of Europe for the different classes of wetland and plateau for grass
and forest, hillslope for grass and forest, north- and south-facing, and urban areas.
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Figure 5.2: Landscape classification of Europe for the different classes of wetland and plateau for grass
and forest, hillslope for grass and forest, north- and south-facing, and urban areas.
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ment that these had to be decreasing in time, ignoring precipitation and evaporation
effects, which led to around 50 – 100 datapoints as input for the recession analysis
per GRACE cell. The modified recession analysis can now be carried out as a simple
linear regression between the proxy for storage and change in storage (i.e. a linear
reservoir):

𝑑𝑆
𝑑𝑡 = −𝐾፬ ∗ 𝑆, (5.1)

with 𝑆 the storage, 𝑡 the time, 𝐾፬ the reservoir coefficient. In this way, the linear
regression between the storage and storage change over time, gives an estimate
of 𝐾፬. Maximum and minimum values for the prior range were determined based
on the standard error from the linear regression. See Figure 5.3 for an example of
the procedure and the obtained maximum and minimum values for this parameter.

Root-zone storage capacity
The prior parameter ranges for root-zone storage capacity, 𝑆፮,፦ፚ፱, were determined
based on the dataset of Wang-Erlandsson et al. (2016). The root-zone storage
capacities in this dataset were determined with a similar method as described by
Gao et al. (2014a), de Boer-Euser et al. (2016) and Nijzink et al. (2016a), but in
a global setting. Briefly, the precipitation data from CRU and CHIRPS were used
with the evaporation estimates from SSEBop and MOD16 to determine the deficits
between evaporation and precipitation. These deficits, or demands, need to be
overcome by the vegetation and vegetation designs it root system following certain
return periods of these deficits. Following this, the authors concluded that grassland
generally needed root-zone storage capacities with relatively short return periods,
whereas forested areas needed longer return periods and thus larger storages.
Therefore, the root-zone storage capacity will be conditioned accordingly:

𝑆ፑ,ኼ፲፫ < 𝑆፮,፦ፚ፱,፠፫ፚ፬፬ < 𝑆ፑ,኿፲፫ , (5.2)

𝑆ፑ,ኻኺ፲፫ < 𝑆፮,፦ፚ፱,፟፨፫፞፬፭ < 𝑆ፑ,ዀኺ፲፫ , (5.3)

With 𝑆፮,፦ፚ፱,፠፫ፚ፬፬ and 𝑆፮,፦ፚ፱,፟፨፫፞፬፭ the model parameters of maximum root-zone
storage capacities for the grassland and forested versions of each landscape class,
𝑆ፑ,ኼ፲፫, 𝑆ፑ,኿፲፫, 𝑆ፑ,ኻኺ፲፫, 𝑆ፑ,ዀኺ፲፫ the root-zone storage capacities with a 2, 5, 10 and
60 year return period respectively. See Figure 5.4 for the maximum and minimum
values for grassland and forested areas for this parameter.

Maximum interception capacity
The interception capacity of trees can generally be considered higher than the in-
terception capacity of grassland, due to the increased leaf area. Thus, the following
constraint was imposed on the parameter 𝐼፦ፚ፱:

𝐼፦ፚ፱,፠፫ፚ፬፬ < 𝐼፦ፚ፱,፟፨፫፞፬፭ , (5.4)

With 𝐼፮,፦ፚ፱,፠፫ፚ፬፬ and 𝐼፮,፦ፚ፱,፟፨፫፞፬፭ the model parameters of maximum intercep-
tion capacities for the grassland and forested version of each landscape class.
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Figure 5.3: Estimates of the slow reservoir coefficient with a) example of regression between GRACE total
water storage anomalies and the differences of time of GRACE water storage anomalies, b) maximum
values of the slow reservoir coefficient, c) minimum values of the slow reservoir coefficient.
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Figure 5.4: Estimation of the root zone storage capacity parameter of ፒᑦ,ᑞᑒᑩ with a) maximum values
for grassland, b) minimum values for grassland c) maximum values for forest and d) minimum values
for forest.
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Hortonian overland flow parameters
Overland flow on a grass area will experience less resistance compared to a forested
area. Therefore, the reservoir coefficient for the very fast Hortonian reservoir should
follow these concepts as well:

𝐾ፇ,፠፫ፚ፬፬ < 𝐾ፇ,፟፨፫፞፬፭ , (5.5)

With 𝐾ፇ,፠፫ፚ፬፬ and 𝐾ፇ,፟፨፫፞፬፭ the reservoir coefficients for the Hortonian reservoir
for the grassland and forested version of each landscape class. Similarly, it can also
be argued that the threshold intensity before overland flow starts to occur differs
for the different land cover types. As trees generate more preferential infiltration,
mainly due to their root systems, it can be assumed that the threshold intensity is
higher for forested areas:

𝐼𝑛𝑓፦ፚ፱,፠፫ፚ፬፬ < 𝐼𝑛𝑓፦ፚ፱,፟፨፫፞፬፭ , (5.6)

With 𝐼𝑛𝑓፦ፚ፱,፠፫ፚ፬፬ and 𝐼𝑛𝑓፦ፚ፱,፟፨፫፞፬፭ the rainfall intensity thresholds determining
when Hortonian overland starts to occur, for the grassland and forested version of
each landscape class.

Lag functions
The model uses several lag functions before the water enters the fast reservoir that
represents fast subsurface flow (Figure 5.2). The subsurface flow for forested areas
will be relatively fast, where preferential flow paths may exist due to roots of trees.
In contrast, the soil layer below grassland may consist of a more homogeneous
layer, which introduces more matrix flow with lower velocities. Thus:

𝑛፥ፚ፠,፠፫ፚ፬፬ < 𝑛፥ፚ፠,፟፨፫፞፬፭ , (5.7)

5.2.3. Model evaluation
A selection 397 gauging stations from the Global Runoff Data Centre (GRDC) was
used for evaluation of the model. This was done in a more traditional way in terms
of Nash-Sutcliffe efficiency of the flows and the log of the flows, but also for a larger
set of hydrological signatures. As the constrained and unconstrained model both
were run 50 times, distributions of model performances exist for both cases. Thus,
the probability of improvement can be calculated with respect to the unconstrained
model (Nijzink et al., 2016b):

𝑃ፈ,ፒ = 𝑃 (𝑆C > 𝑆U)

=
፧

∑
።዆ኻ
𝑃 (𝑆C > 𝑆U | 𝑆C = 𝑟።) 𝑃 (𝑆C = 𝑟።), (5.8)

where 𝑆ፂ and 𝑆ፔ are the distributions of the signature performance metrics of
the constrained model and reference unconstrained model, respectively, for the
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set of all 50 solutions, 𝑟። is a single realization from the distribution of 𝑆 and 𝑛
is the total number of realizations of the 𝑆 distribution. For 𝑃ፈ,ፒ >0.5 it is then
more likely that the model outperforms the reference model with respect to the
signature under consideration, and vice versa for 𝑃ፈ,ፒ <0.5. A similar approach
can be applied for a set of 27 hydrological signatures, see Table 5.1. Also here
the probability of improvement can be calculated between the distributions of the
constrained and unconstrained models, but then for the objective function values
for the hydrological signature under consideration.

5.3. Results and Discussion
5.3.1. Model objective function values
In Figure 5.5, the objective function values are displayed in the constrained and
unconstrained situation. Generally, the patterns are in both cases rather variable,
with catchments with high performances and low performances. The improvements
obtained by constraining are hard to observe, or even absent, and the general pat-
tern for the different catchments remains similar, which is in contrast with several
other studies (e.g. Gao et al., 2014a; Gharari et al., 2014; Hrachowitz et al.,
2014) that found strong improvements when constraining a model in a similar way.
However, deteriorations in performance metrics considering streamflow does not
necessarily mean that model internal dynamics are less well represented as well
(Pokhrel et al., 2008). Moreover, as the applied parameter constraints force the
model towards a more hydrologically consistent behavior, internal model dynam-
ics, or other outgoing fluxes, may still be improved. Following the latter, it can
even be argued that the similar model performances in the unconstrained and con-
strained situation (Figure 5.5) only reflect that values of performance metrics can
be deceptive (e.g. de Boer-Euser et al., 2017), as the parameterizations do not
necessarily lead to hydrologically consistent model behaviour but a mathematical
fit of the data (Kirchner, 2006). In order to obtain a more general conclusion, in
Figure 5.6 the model performances for all 397 catchments are merged together for
the different objective functions for the constrained and unconstrained situation.
Also here, it becomes apparent that there are no major differences between the
two approaches. Thus, a more step-wise approach might be needed to achieve a
more robust model calibration (Fenicia et al., 2008; Winsemius et al., 2009), which
has been carried out for large-scale models as well (e.g. Lopez Lopez et al., 2017;
Pechlivanidis and Arheimer, 2015). This can be done in a following more formal
calibration step (e.g. Gao et al., 2014a; Kuzmin et al., 2008), but an additional set
of constraints which evaluates the model outcomes, i.e. process constraints, may
also be considered. Concerning the latter approach, it was shown by Hrachowitz
et al. (2014) that process constraints add more information than prior parameter
constraints.

In Figure 5.7, the probability of improvement across Europe is shown for the
Euclidian distance (Figure 5.7a) between Nash-Sutcliffe of flows (Figure 5.7b) and
log of the flows (Figure 5.7c). For all three figures, it can be seen that especially the
more urbanized areas have low probabilities of improvement, for example around
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Table 5.1: Overview of the hydrological signatures.

Signature Description Reference
𝑆QMA Mean annual runoff
𝑆AC One day autocorrelation coefficient Montanari and Toth (2007)
𝑆AC,summer One day autocorrelation the summer pe-

riod
Euser et al. (2013)

𝑆AC,winter One day autocorrelation the winter pe-
riod

Euser et al. (2013)

𝑆RLD Rising limb density Shamir et al. (2005)
𝑆DLD Declining limb density Shamir et al. (2005)
𝑆ፐᎷ Flow exceeded in 5% of the time Jothityangkoon et al.

(2001)
𝑆ፐᎷᎲ Flow exceeded in 50% of the time Jothityangkoon et al.

(2001)
𝑆ፐᎻᎷ Flow exceeded in 95% of the time Jothityangkoon et al.

(2001)
𝑆ፐᎷ ,summer Flow exceeded in 5% of the summer

time
Yilmaz et al. (2008)

𝑆ፐᎷᎲ ,summer Flow exceeded in 50% of the summer
time

Yilmaz et al. (2008)

𝑆ፐᎻᎷ ,summer Flow exceeded in 95% of the summer
time

Yilmaz et al. (2008)

𝑆ፐᎷ ,winter Flow exceeded in 5% of the winter time Yilmaz et al. (2008)
𝑆ፐᎷᎲ ,winter Flow exceeded in 50% of the winter time Yilmaz et al. (2008)
𝑆ፐᎻᎷ ,winter Flow exceeded in 95% of the winter time Yilmaz et al. (2008)
𝑆Peaks Peak distribution Euser et al. (2013)
𝑆Peaks,summerPeak distribution summer period Euser et al. (2013)
𝑆Peaks,winter Peak distribution winter period Euser et al. (2013)
𝑆ፐpeak,10 Flow exceeded in 10% of the peaks
𝑆ፐpeak,50 Flow exceeded in 50% of the peaks
𝑆ፐsummer,peak,10Flow exceeded in 10% of the summer

peaks
𝑆ፐsummer,peak,50Flow exceeded in 10% of the summer

peaks
𝑆ፐwinter,peak,10 Flow exceeded in 10% of the winter

peaks
𝑆ፐwinter,peak,50 Flow exceeded in 50% of the winter

peaks
𝑆SFDC Slope flow duration curve Yadav et al. (2007)
𝑆LFR Low flow ratio (𝑄ዃኺ /𝑄኿ኺ)
𝑆FDC Flow duration curve Westerberg et al. (2011)
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Paris, London and the Ruhr-area. In the center of Europe, around the Alps, several
stations with high probabilities of improvement can be observed. In this area the
groundwater parameter Ks was constrained relatively strong, based on GRACE (Fig-
ure 5.3), and these improvements can probably be contributed to this. The highest
probabilities of improvement can however be found in northern Europe, where rel-
atively large parts of the wetland landscape classes are found. Nevertheless, the
patterns of high and low probabilities remain rather random, indicating that the
applied semi-quantitative prior constraints are not powerful enough in combination
with the number of samples (50).

5.3.2. Signature analysis
The probabilities of improvement for a set of 27 hydrological signatures (Table 5.1)
show a rather random pattern of improvements and deteriorations as well (Figure
5.8 and 5.7). It can be argued that this points again at an insufficient number of
model runs, or constraints which do not contain enough discriminative power. The
risk that the parameter search space is not efficiently sampled is also rather big
considering the number of parameters (Beven, 2006; Spear et al., 1994), especially
as this number is increased due to the additional landscape-classes as sub-grid
variability. However, when the catchments are ordered according to size in Figure
5.8, from small catchments on top to large catchments at the bottom, a pattern can
be observed. Colors become more distinct blue or red towards larger catchments,
which shows that the rather course resolution of 0.25∘ matters. Thus, for the smaller
catchments the signatures are represented more equally good or bad, leading to
probabilities of around 0.5 (white colors in Figure 5.8), whereas the differences
become bigger (i.e. deep blue or deep red) towards larger catchments. Logically,
the chosen model resolution seems more applicable for the larger catchments.

In addition to the resolution, in Figure 5.9 the latitude is used to order the
catchments. Around higher values of latitudes the most blue areas can be ob-
served, representing high probabilities of improvement. In these areas with a more
moderate climate the applied constraints apparently help to improve the signa-
ture representation. Similarly, looking more at the individual signatures, it can be
noted that especially the winter flows improve (𝑆ፐ኿,፰።፧፭፞፫, 𝑆ፐ኿ኺ,፰።፧፭፞፫, 𝑆ፐዃ኿,፰።፧፭፞፫
and 𝑆ፐ,፰።፧፭፞፫,፩፞ፚ፤,ኻኺ, 𝑆ፐ,፰።፧፭፞፫,፩፞ፚ፤,኿ኺ ). In other words, the model shows improve-
ments in a rather wet situation, which is also supported by the observed improve-
ments around latitudes with a more moderate climate. This seems to confirm the
findings of (de Boer-Euser et al., 2016), who applied root-zone storage capacities
derived in a similar way as the values used here as constraints. Also in this study,
relatively wet systems improved by using root-zone storage capacities derived by cli-
mate as initially done by (Gao et al., 2014b). Nevertheless, most of the constraints
should effect merely fast flows and evaporation (e.g. constraints for 𝑆፮,፦ፚ፱, 𝐼፦ፚ፱)
and GRACE may still have an influence on these findings as well. Besides the influ-
ence of the constraints, the information content of hydrological signatures is often
used to assess the suitability of the model structure (Euser et al., 2013; Hrachowitz
et al., 2014). Thus, even though the model structure is complex and covers a large
range of processes, it may still be insufficient in a number of cases, and flexible
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Figure 5.5: Objective function values in terms of Euclidian distance between Nash-Sutcliffe of flows
and log of the flows for the a) unconstrained and b) constrained model, Nash-Sutcliffe of flows for
the c) unconstrained and d) constrained model, and Nash-Sutcliffe of the log of the flows for the e)
unconstrained and f) constrained model.
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Figure 5.6: Objective function values in terms of the Nash-Sutcliffe of flows and log of the flows and
Euclidian distance between both objective function values for the unconstrained (blue) and constrained
model (red), for all model realizations.

modelling approaches may be needed (Fenicia et al., 2011). Especially across the
European continent, regions may behave hydrologically different, depending also
on various explanatory factors (Kuentz et al., 2017). Thus, a South-European wet-
land versus a wetland in northern Europe may act differently. At the same time,
the landscape units applied here were defined with fixed threshold values, whereas
these thresholds may differ spatially and temporally, as for example follows from
the variable contribution area theory (Dunne et al., 1975).

5.4. Conclusions
A large-scale hydrological model with landscape-derived sub-grid variability was ap-
plied for the European continent, where the landscape-based units allowed for semi-
quantitative prior parameter constraints for model calibration. The model was run
with 50 random parameter sets with and without the prior parameter constraints,
which led to a variable pattern in model performances for both approaches. Even
though model performances were variable, in terms of Nash-Sutcliffe efficiency
of flows and the log of the flows as well as the Euclidian distance between the
two metrics, the patterns of high and low performances were consistent over the
catchments between the two approaches. Thus, similar performances are obtained
without prior parameter constraints, which points at constraints which are too weak.
Nevertheless, the ability of hydrologically inconsistent models, i.e. unconstrained
models, to obtain similar results, points also at the importance of the constraints
to filter out these assumedly incorrect models. In an additional evaluation of 27
hydrological signatures, high probabilities of improvement were found for rather
wet, moderate catchments, but also here a rather variable pattern was observed.
These findings, with rather random patterns of improvements and deteriorations,
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Figure 5.7: Objective function values in terms of the Nash-Sutcliffe of flows and log of the flows and
Euclidian distance between both objective function values for the unconstrained (blue) and constrained
model (red), for all model realizations.
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Figure 5.8: Probabilities of improvement for 27 signatures and 397 catchments, ordered from small (top)
to large catchments (bottom).
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Figure 5.9: Probabilities of improvement for 27 signatures and 397 catchments, ordered from lower
latitudes (top) to higher latitudes (bottom).
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indicates that the parameter search space was not sampled effectively in combina-
tion with the relatively low number of 50 samples, but it also shows that the applied
semi-quantitative parameter constraints were not sufficient enough in reducing the
size of this search space. Nevertheless, even though no strong improvements were
observed, the findings presented here still show that performance measures can
be deceptive, as these can also be achieved without conditioning a model with
hydrological expert knowledge.





6
Conclusions, implications

and outlook

This thesis focused on reducing the need for calibration of different conceptual
hydrological models. Model regularization was adjusted for landscape-based mod-
elling, time-dynamic key parameters were formulated and additional data sources
were explored, all in order to obtain more robust model conceptualizations and
parameterizations.

6.1. Conclusions
In a first step, a regularized hydrological model, mHM, was adjusted in order to
account for landscapes as sub-grid variability. The addition of this sub-grid hetero-
geneity in the existing model was complemented with semi-quantitative constraints,
i.e. constraints on (seasonal) runoff coefficients. Seven distinct catchments across
Europe were selected as test cases, from which four were employed as ’donor’
catchments and the remaining three as ’receiver’ catchments. Here, it was shown
that adding landscape features as sub-grid heterogeneity moderately improved the
existing model mHM. Evaluating a set of hydrological signatures showed that mainly
low flow dynamics improved for mHMtopo, caused by the additional interactions
between groundwater and soil moisture. The semi-quantitative constraints were
more effective and led to a better partitioning between evaporation and runoff, es-
pecially in catchments where these are out of phase. The landscape-based sub-grid
heterogeneity and semi-quantitative constraints were also shown to be helpful in
transferring the models to catchments without any further calibration.

On the more detailed scale of a single parameter, three deforested, experimental
catchments (HJ Andrews WS1, Hubbard Brook WS2 and WS5) were used to assess
the dynamic character of root-zone storage capacities. Time series of root-zone
storage capacities were estimated based on a simple water balance approach and
the calibration of four distinct conceptual models for subsequent 2-year windows
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after deforestation. The two approaches both showed a strong time-dynamic be-
havior of root-zone storage capacity after deforestation. At first, a strong decrease
was observed, after which a period of gradual recovery started. This recovery took
5-13 years for the catchments under consideration, as found by a trend analysis on
the root-zone storage data. Thus, the root-zone parameter of one of the models
was adjusted with a time-dynamic formulation. Moderate improvements were ob-
tained in terms of objective function values, but the time-dynamic model showed
more improvements in a signature analysis.

In addition to the direct estimation of a single key parameter and the indirect
estimation of the full set of parameters by model regularization, 10 different ad-
ditional information sources were employed to derive model parameter posteriors.
The added value of different combinations of products and analytical frameworks
was explored for five different conceptual hydrological models for 27 catchments
across Europe. The combinations were assessed with regard to objective function
values, but also hydrological signatures. In general, most models profited from in-
cluding more data sources to derive new posterior parameter ranges, but a certain
degree of information saturation was obtained after 5-4 additional data sources.
The results suggest that including GRACE in the combination of data sources has
a strong impact, as high probabilities of improvement were found. The soil mois-
ture products AMSR-E and ASCAT also showed a high added value in the parameter
selection procedure. In this way, it was shown that using a combination of data
sources simultaneously in an indirect way has a high added value.

In a last step, a large-scale application of a landscape driven model was applied
over the European continent. Here, landscape classes on the sub-grid scale allowed
for relational conditions between different parameters, i.e. semi-quantitative prior
parameter constraints. The model was run with 50 random parameterizations with
and without the parameter constraints. A rather variable pattern was observed in
performances over a selection of 397 catchments, for both the constrained and
unconstrained case. Similarly, a variable pattern in probabilities of improvement
was observed for a set of 27 hydrological signatures. The constraining power of
the applied constraints in combination with the relatively low number of 50 sam-
ples can therefore be considered as not sufficient to reduce the parameter search
space. However, the results between the constrained and unconstrained model
were similar, pointing also at the deceptive nature of performance metrics, as the
unconstrained model still uses hydrologically inconsistent parameter sets.

6.2. Implications and Outlook
Based on the application of a regularized model with additional sub-grid variability,
it can be argued that the choice of the model structure remains important. Even
though the more mathematical approach of model regularization is extremely pow-
erful in order to apply models in ungauged areas, still the final model performance
depends on the included processes for the catchments under consideration. This
important role of model structure has been recognized before (e.g. Clark et al.,
2016; Euser et al., 2013; Fenicia et al., 2008), but still the use of a single model
structure reduces efforts and helps to learn from the known model deficiencies



6.2. Implications and Outlook

6

127

(Le Moine et al., 2007; Linsley, 1982). The use of regionalization techniques is gen-
erally complicated in case of fully flexible model structures, as model structures and
parameters may differ per location, but here it is shown that model hypothesis test-
ing with regularized hydrological models is at least very well possible. Still, the value
of these regionalization approaches for practical and operational uses is eminent,
but more specific catchment understanding can probably only be obtained with
more detailed site-specific modeling (i.e. the uniqueness of place; Beven, 2000).
On the other hand, links between data, such as land use, soil and vegetation, and
model parameters can also be considered as part of the theoretical underpinning of
our hydrological models (Clark et al., 2016), and, define the dominant processes,
which are now often explicitly included or excluded in site specific modelling. Thus,
when all possible combinations of hydrological processes are included in a model,
and the right data is used to identify which processes are triggered and which pa-
rameterizations are needed for the model, any catchment could be modelled. In
other words, a unified catchment theory is found (e.g. Sivapalan, 2006; Troch
et al., 2009b), which is currently still rather far away. The results presented here
thus reflected one of the many steps towards bridging the gap between site-specific
flexible modelling on a small scale and large-scale modeling with a general model
structure.

The general applicability of a model structure also strongly depends on the time-
dynamic nature of the catchments under consideration. The behavior of model
parameters, especially in times of change, is often reflected in the uncertainty of
parameter priors (Wagener et al., 2007). Therefore, constraining a key parameter,
such as the root-zone storage capacity, effectively and a priori, is highly needed
to reduce model uncertainty. The simple water-balance method presented in this
thesis and previous studies (de Boer-Euser et al., 2016; Gao et al., 2014b; Wang-
Erlandsson et al., 2016) can be extremely valuable for hydrological model applica-
tions, as it was shown that effective and even time-dynamic estimates for different
models can be achieved in this way. The importance of understanding parameters
that may change over time (e.g. Coron et al., 2012; Gharari et al., 2013) may
be apparent, especially as an improved understanding of these dynamics may help
model formulations. Eventually, instead of just changing the value of a parameter
for periods with different circumstances, these systematic changes should directly
“emerge” from a suitable parameterization (e.g. Arora, 2002; Westra et al., 2014).
The simple formulation of growth in this thesis could be seen as an additional con-
ceptual equation, taking care of (a part of) the vegetation dynamics, but a better
understanding of these dynamics are still needed. Several hydrological models ex-
ist that incorporate vegetation dynamics, such as TOPOG (Vertessy et al., 1996) or
DHSVM (Wigmosta et al., 1994), but these models face the risk of overparameter-
ization (Schulz et al., 2001; Tang and Zhuang, 2008). Simple model formulations
that yet reflect the time dynamic character of ecosystems still need to be formulated
carefully, and this thesis presents a first simple proof-of-concept of this.

A better understanding of catchment processes can also be achieved by the
large number of new datasets, especially from remote sensing, that provide the
hydrological sciences with new information sources. Here, the challenge exists to
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assess the added value of the new products, and combinations thereof. Single
products had been used for hydrological modeling purposes quite extensively (e.g.
Brocca et al., 2010; Werth et al., 2009), nowadays the focus starts to shift towards
the use of multiple products (e.g. Lopez Lopez et al., 2017; Tian et al., 2017), and in
this thesis, nine products and an analytical framework were assessed. New products
are however planned and computational resources still increase, hence it can be
expected that more approaches will start to appear with even a larger number
of products. Following also the reasoning from before, additional data sources in
hydrological modelling may help for the underpinning and hydrological theory of
the models (Clark et al., 2016; Sivapalan, 2006), but the formulation of functional
relations and data may be problematic (Merz and Blöschl, 2004). New innovative
approaches are thus needed to efficiently use all the information available, and,
at the same time, filter out erroneous information, which in this thesis, as a first
suggestion, was both done by the definition of combined objective functions and
a likelihood weighting approach. At least, this thesis clearly shows that the use of
an ensemble of remote sensing products and/or analytical frameworks provides a
way forward for especially predictions in ungauged basins, but also the equifinality
issue.

The equifinality issue was also addressed in this thesis with the applied semi-
quantitative prior parameter constraints for a large-scale landscape-driven model.
However, the prior parameter constraints did not proof effective in combination
with a sample size of 50 random parameterizations. It comprised a first attempt in
order to apply more complex model structures on a larger scale, that need a strong
reduction in the parameter search space. A step-wise calibration might be more
effective here (Fenicia et al., 2008; Lopez Lopez et al., 2017) as well as additional
process based constraints (Gharari et al., 2014; Hrachowitz et al., 2014) that can
be evaluated afterwards. However, the findings here still address the need for
hydrological consistency in more complex model settings (e.g. Euser et al., 2013)
as similar performances in constrained and unconstrained situations are found.

This thesis showed several options in the process of obtaining more robust
model parameterizations, for different conceptual models, spatial scales and chang-
ing circumstances, and provides, hopefully, enough new starting points to bridge
the gap between site-specific understanding and large-scale modelling. In other
words, we learned how to better optimize model formulations without using ob-
served river discharge. Especially in locations with insufficient data (i.e. ungauged
catchments), this thesis provides several handles to start from, either with data
from other catchments (i.e. model regionalization/regularization), simple (time-
dynamic) estimates of parameters, remotely sensed data and hydrological under-
standing. Even though fully applying models without calibration on river discharge
data has not been achieved to a satisfying degree in all cases, this thesis provides
new incremental steps to achieve this in the future. Especially as computational
resources increase and new remote sensing products become available, the tech-
niques presented in this thesis could be employed on a much larger scale, and,
hence, be improved. Especially changes in catchments, either caused by humans
or nature, deserve attention, whereas this thesis just provides a first glance of
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the time-dynamic character of a specific vegetation parameter. Overall, this the-
sis shows that model formulations and parameterizations can very well be selected
without observed river discharge, and holds a promise for a future with predicting
in ungauged catchments.
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