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The possibility of creating a hybrid lidar and radar based
positioning system was vital in creating a robust positioning
system. And in this pursuit, it seemed logical to think about
how to make the two data sets more relatable to each other, to
make them seem, for lack of a better word, more ”alike”. This
spawned the idea of making the created radar map 3D, as the
lidar data is also 3 dimensional. Various techniques have been
employed to achieve SLAM using radar sensors, either these
techniques create a two dimensional (2D) mapping using a one
dimensional (1D) radar sensor or for three dimensional (3D)
mapping, they need a 2D sensor array (for scanning abilities
in both azimuth and elevation). The traditional automotive
radar being employed today however has a 1D array, that only
exploits angular information along the azimuthal angle, and the
radar maps are therefore 2D (namely, range and azimuth).

To improve situational awareness and localization accuracy,
height information about the scatterers (targets) has to be
obtained, such that the 2D radar map can be made to be 3
dimensional, look more like the lidar data, and hopefully be
easier to relate to the lidar data.

Two main approaches exist in literature for estimating the
height of the objects by using 1D radar sensors. The first
method uses a multi-path approach to exploit the height
information by finding the difference in time delay between the
line-of-sight (LoS) component of the signal, and the non-line-
of-sight NLoS component [10]. The second method makes use
of the Doppler signature of targets and is known as Doppler
beam sharpening (DBS) [11], [12]. If the radar platform is
moving, and the movement of the platform is known with
a high enough precision, then the Doppler information for a
target, combined with the azimuthal angular information, can
be used to deduce the targets height from the ground.

In this paper, we address firstly the issue of vehicle local-
ization using a 1D linear radar array in conjuncture with pre-
existing lidar maps. We demonstrate the possibility to generate
a 3D radar map of the environment using a 1D linear array
by including the height information acquired with DBS-based
processing. Furthermore, some techniques in literature have
been tailored or new approaches are proposed specifically for
3D mapping purposes -such as a method for the creation of
compatible lidar maps, and a method for estimating the vehicle
ego motion- which will be discussed in further sections.

Abstract—This paper establishes novel methods for vehicle 
localization and mapping using a 1D linear automotive radar 
array in conjuncture with pre-existing lidar maps, and tests if the 
generated radar map can be made to be 3 dimensional. The basic 
design of this study was to implement a SLAM (Simultaneous 
Localization And Mapping) system that co-registers radar data 
to radar data, and/or register radar data to lidar data. After the 
execution of experiments, it was established that it is possible 
to localize the car by relating observed radar data to pre-
made lidar maps, and to continually add to a cumulative map 
made with the radar data that can further aid the localization 
process. Furthermore, the radar map created using the 1D linear 
automotive array can be extended to 3D with proposed processing 
chain, though more experiments to establish the full potential of 
this capability are recommended.

I. INTRODUCTION

For successful operation of self-driving cars and other 
autonomous vehicles (like drones), it is crucial to alleviate 
some of the weaknesses of existing localization techniques. 
Such as the global positioning system (GPS) which has an 
inability to localize inside tunnels and other large structures. 
Similarly, lidar-based positioning systems struggle with low 
quality of service in certain weather conditions. To overcome 
these issues, radar sensors have been started to be used for 
localization purposes due to its robustness of all-weather day 
and night conditions.

Simultaneous localization and mapping (SLAM) [1] [2] is 
the process of both localizing the sensor system itself on a 
map, and creating the map, at the same time. There are various 
ways to create such a system, that uses its current observations 
of its environment and relates them to what has been observed 
before, to gain cognisance of both its environment and its 
position in it. There are different approaches in literature to 
achieve SLAM. Some of them are based on (extended) Kalman 
filters ( EKF) [ 4] [ 5], p article fi lters [6 ] or  ge netic algorithms 
[7], and various variations on these. Genetic algorithm based 
SLAM [7] [8] [9] approaches are versatile, and they require 
very little prior information of the system, making them an 
acceptable choice for the system to be developed, thus in 
this paper genetic algorithm based SLAM is selected for 
localization and mapping.
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II. PROPOSED METHODS FOR LOCALIZATION

In this research three different localization methods were
proposed and tested. The first method is a form of true SLAM,
and only makes use of the automotive radar, without any
lidar data. The second makes use of a lidar map, that has
been created beforehand, as will be discussed, and attempts
to construct a radar map of the environment as well, to aid in
the localization process. The third method is the most remote
from ’true’ SLAM, in that no mapping takes place at all. This
method seeks to merely localize a vehicle equipped with radar
on a map, that was created beforehand, with a lidar (or a radar)
system. What sets these methods apart will be discussed in
further detail next.

A. Method-1: Radar Only Localization

The first method devised uses only an automotive radar, and
makes no use of lidar data gathered beforehand. As such it is
a true implementation of SLAM, in that it requires no a priori
information of the environment. This method, however, does
require multiple passes of an environment for the generated
map to converge to the correct shape, though even a single
pass can create a map and trajectory with promising accuracy.

B. Method-2: Radar and Lidar with Memory

The second method created makes use of a priori data, in
the form of lidar data, taken at a different moment in time,
and collected using different vehicle(s). This lidar data first
has to be manipulated in order to use it in the localization
algorithm. The lidar data is 3D, and though 3D data could
be used in localization, until a cumulative 3D radar map can
be created with a comparable precision to compare it to, this
functionality wouldn’t add much. Therefore, the lidar point
cloud was reduced to 2D. Furthermore, the road was removed
(as the road is seldom ”seen” by the radar), moving targets
were removed and the amount of points was reduced. This to
both make the two data sets look more alike, given simple
facts, and to make the lidar data more compact to reduce
computational complexity in future steps.

Reduction of Lidar Data: As stated in the previous section,
the amount of lidar points in the a priori lidar map needs to be
significantly reduced, to make the algorithm computationally
efficient. The method that was devised for this effectively
makes use of a histogram function, to find the point density in
the point cloud. A grid is drawn over the flattened lidar map,
and the amount of points in every cell of the grid is counted. If
the amount of points in a cell supersedes a certain level, then
the center of that cell is taken as a single point in the reduced
map. Both the grid cell size and the point threshold can be
tuned to achieve the desired results for different systems. The
cell size changes the resolution of the reduced map, and was
taken to be about a square foot, as the radar data available
had a range resolution of about 15 cm, and so the radar and
the lidar map would have comparable resolutions. The point
threshold can be tuned, such that objects that are useful for
localization, such as lantern posts, tree-trunks, and walls, will
show up in the reduced map. This method also inadvertently

ends up removing moving targets, as moving targets get spread
out in the full accumulated lidar map. The points belonging to
moving targets do not add up in the same place consistently,
but rather are spread across multiple cells in the grid, and
therefore don’t add up to enough in the same place to reach
the point threshold. As such, a reduced 2D lidar map can
be created, in which moving targets have been removed, but
things that the radar can also be assumed to see that are useful
for self localization, such as lantern posts, fences, tree trunks,
etc, remain. Such a reduced a priori lidar map of an example
scene is illustrated in Figure 5a.

C. Method-3: Radar and Lidar without Memory

The reduced a priori lidar map was used to create one more
localization algorithm. One that doesn’t save any of the radar
data, and doesn’t create a cumulative and continually updated
radar map. In this implementation the currently observed radar
data is related to the premade lidar map, to establish the
vehicle’s position and nothing more. As such, this system
would, for one, not require any data being uploaded to the
cloud, or even retained on a memory system. This simplified
version of method 2 also shows promising results, and is able
to localize the vehicle.

Figure 1 shows the inner core of the three algorithms,
summarized1 in a single flowchart. It is assumed in this
flowchart that the system has already initialized, which means
that the first set of measured radar targets have already been
placed in the cumulative 2D radar map. Every iteration of each
method starts with a radar measurement, from which detected
targets are extracted. These targets are then related to the
cumulative radar map and/or a priori lidar map with a genetic
algorithm, which produces the estimated current location of
the vehicle on the map. This can be used to add the currently
observed radar targets to the cumulative radar map, to gather
the vehicle trajectory, and, in conjunction with the estimated
vehicle ego motion, to create a 3D radar map using DBS.

1Note that each method has more complicated processing chains including
initialization and pre-processing steps. The simplified flowchart is used to
illustrate the differences of each proposed approach.
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Fig. 1: Simplified flowchart of the three different algorithms.
The black arrows and boxes are part of every algorithm, the
green parts belong to Method-1 and Method-2, and the orange
parts belong to both Method-2 and Method-3.



D. Genetic Algorithm

In all three implementations a genetic algorithm is used to
relate the currently perceived data to previously perceived data
to estimate the location over time. Previously perceived data
can be from the a priori lidar map, the cumulative radar map,
or both, depending on the method. In case both the lidar and
the radar map are used for localization, as in method 2, a
weighting factor can be applied to penalize which of the two
the algorithm should rely on most. The final product should
rely heavily on the a priori lidar map at first, as the lidar map
has a higher fidelity than the radar map, given that the lidar
itself had a higher precision, and a cutting edge GPS system
was used to determine its trajectory during data acquisition.
But, as the system adds more radar detection to the cumulative
map, the system should start to rely more and more on the
radar data which represents the current state of the scene, given
that this map will better represent what a radar would perceive.

This is accomplished by running the fitness function, used
in the genetic algorithm, twice. Once comparing the currently
perceived radar targets to the a priori lidar map, generating
the fitness value FR2L, and once more comparing the currently
perceived radar targets to the cumulative radar map, generating
the fitness value FR2R, and then combining the two values,
with weights, into a new fitness value Fnew, as shown below,

Fnew = Q ∗ FR2L + (1−Q) ∗ FR2R. (1)

As the amount of points in the cumulative map grows, so
will the average value of FR2R, and therefore, as time goes
on, the value of Fnew will become more dependent on FR2R

over FR2L. The currently chosen value for regularization
parameter Q is 0.75, though this can be tuned further based
on the different systems in which this can be used. Detailed
discussion on genetic algorithm and its optimization can be
found at [13].

III. 3D RADAR MAP USING 1D RADAR SENSORS

A. Ego Motion Velocity Estimate

Using Doppler beam sharpening the height of a target above
the ground can be deduced. There are several difficulties that
must be overcome in order to accomplish this. The most
important of these is that velocity of the radar platform (in
our case velocity of the vehicle) must be established with a
high precision/accuracy. The ego motion of the car relative to
the environment must be known well, as the velocity of every
measured radar target must be compared to it.

To accomplish this, a method was devised to estimate
the ego motion with a high enough precision to show that
the system works. This method makes use of the measured
Doppler velocities and azimuthal angles of every target to
create a list of current vehicle velocity estimates. If there
are N measured targets in a radar frame (coherent processing
interval), this yields N velocity estimates to be used.

Given an initial assumption that every target exists within
a flat, horizontal, plane that intersects the radar, the set of
velocity estimates becomes

Ωi =
vi

cos θi
, i = 1, 2, ..., N (2)

where Ω is the set of every velocity estimate gained from
every perceived target in a single radar frame. The set Ω has
a certain distribution, firstly because the measured targets are
not actually situated in a flat horizontal plane that intersects
the radar: most targets will have some distance from this
plane, and therefore produce a velocity estimate that is slightly
lower than the actual velocity of the vehicle. Furthermore,
some of the measurements can be completely wrong due to
the detection of moving targets, or because of the Doppler
wrap around (Doppler ambiguity). To come to an estimate
of the actual vehicle velocity, a histogram distribution of the
estimates is created, as shown in Figure 2. This histogram
distribution can then be used in various ways to find what
is deemed the ”most reasonable” estimate, for example by
taking the peak of this distribution, which represents a velocity
that the largest group of estimates are closest to. This ignores
outliers in the set of velocity estimates, and provides an
accurate enough estimation of vehicle velocity to accomplish
Doppler beam sharpening, after a form of filtering has been
applied, to further reduce the noisy nature of these estimates.
This can be accomplished by applying a fit to the chosen
estimates over time. The cubic spline fit is used on the given
set of velocity points. A set of velocity estimates per frame
together with a smoothed estimate fit are shown in Figure 3
as an example.
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Fig. 2: Histogram distribution of velocity estimates for a frame.

0 100 200 300 400 500 600

Frame Number

3.5

4

4.5

5

V
e

lo
c
it
y
 [

m
/s

]

Velocity Estimates

Example Fit

Fig. 3: Velocity estimates per frame. Each velocity estimate is
the result of the histogram based velocity estimation method.

B. Proposed solution to DBS ambiguity in 3D mapping

One of the problems in DBS is that there is an ambiguity in
the height estimation results. That is to say: given a measured



target velocity to the radar, a given azimuthal angle and an
estimated vehicle velocity, the target can be estimated to have
a certain elevation angle. The problem is that it is not readily
known whether this elevation angle is positive or negative.
This is illustrated in Figure 4. For instance, a target at 0.5
meter below the horizontal radar plane (such as target T2’ in
Figure 4) will have the same Doppler signature as the one that
is at 0.5 meter above (like target T2) said the horizontal plane.
For some targets (such as target T1), this ambiguity is easily
resolved, as one of the two possible positions of the target
would theoretically be underground (like target T1’), which is
assumed to be impossible and can be eliminated as an option.

Fig. 4: Figure depicting the problem with ambiguous target
heights, the red lines indicate the beamwidth in elevation, h
is the height of the radar from the road, and T1/T2 are the
detected targets.

A problem arises however if the target is estimated to be
between the ground (i.e an obstacle in the road), and twice
the height of the radar from the ground. In that case, both
of the height estimates are possible. The proposed solution
to this problem is based upon certain assumptions that can
be made about the environment. Most targets in this region
(like target T2’) are either on the ground, such as manhole
covers, speed bumps and curbs, or are elongated targets, such
as trees, lantern poles, walls and to some extent other cars.
The proposed solution is to always choose the lower of the
two possible height estimates in this case. This way, no curbs
will ever show up as objects floating in the air above the
road, if everything is perfectly estimated. This method does
however results in a hole in the map (see in Figure 8a), there
will be no detection between the height of the radar from the
ground, and twice this height. However, this does not affect the
performance of localization since the gap region is negligibly
small for mapping applications.

IV. EXPERIMENTAL SETUP

To prove the viability of these localization and mapping
methods, various experimental data sets were used from mul-
tiple runs with different cars and sensors. Experimental radar
data was collected along the same street in the campus of
Delft University of Technology (located around 5159’53.3”N
422’15.9”E) by a vehicle equipped with a forward-looking
76GHz 1D MIMO FMCW radar (NXP TEF810X), containing
3 transmitting and 4 receiving antennas, on April of 2019
in clear sky conditions. The Lidar data used in this paper
was collected by using a different experimental vehicle which
can accurately determine its position using differential GPS
(DGPS) and real-time-kinematic (RTK) technology.
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Fig. 5: Illustration of selected outputs from the processing
chain. a) Lidar data map after proposed data reduction method
(see section Method-2.1) including estimated trajectory using
Method-3. b) Top view of point cloud map achieved by
Method-2. c) Comparison of the localization of Method-2 and
Method-3, related to the GPS

V. RESULTS

We apply the proposed approach to an experimental data
set from a car radar to achieve the following localization and
mapping results.

A. Vehicle Localization

All aforementioned methods (Method 1, 2 and 3) are able
to estimate the car’s trajectory over the road. Method-2 and
Method-3 can most easily create a map using a single run, as it
relies to some extent on an available lidar map, and therefore
does not require multiple runs in the same environment to
make the map converge to the correct shape. As such, we will
focus on these two new methods to showcase the localization
ability of the proposed system, as seen in Figure 5. As can
be seen, both methods can stably track the movement of the
car over the road, though the GPS system used to compare to
was very simple and imprecise, and as such it is not possible
to state with absolute certainty which of the two methods
performs better.



Fig. 6: 3D illustration of a street using radar data from 1D
array sensor. Lantern posts on the roadside are clearly seen
at this viewing angle. Note that it is also possible to identify
other objects and structures by changing the viewing angle.

B. 3D Map Generation

Using the proposed approach, a 3D map is generated from
the radar data. Figure 6 shows a 3D rendering map of the street
that the car drove through where the measurements were taken.
In this image, the row of lantern-poles on the left hand side of
the street can be observed, the facades of the buildings cause
some reflections, and even the grass on the right side causes
a lot of detections to appear.

To validate that this 3D map does in fact relate to actual
reality, several sections of it are analyzed in detail to find
whether the estimated heights of scatterers in the environment
correspond to real world objects. The best examples of scat-
terers in the environment that were found were the facades
of a building along the road and the lantern posts along the
roadside.

We use the histogram approach to illustrate the distribution

Fig. 7: Normilized histogram distribution of estimated heights
for each lantern posts.

0 50 100 150 200

Distance [m]

0

2

4

6

8

H
e
ig

h
t 
[m

]

(a) (b)

Fig. 8: Illustration of lantern post and their detections. a) 2D
(range-height) cut of 3D map for 5 lanterns close to initial
location of the car. b)A photo of a lantern post.

of height estimations for each lantern post, since targets are
scattered into the 3D radar map as multiple detection points.
First, the detected targets from the area of the map where the
lantern posts are located and extracted from the 3D map, as
seen in Figure 6, and the separate lanterns are isolated. Then
histogram distributions (normalized for each lantern) of the
height values of these lantern post are generated as in Figure 7.
In this height estimation histogram set, we can notice that
the height estimation of some lanterns is close to the actual
average lantern height which is around 5.8m. The first post, the
top of the lantern was out of the radar beam during the start of
the run, and thus could not be detected. Note that number of
detections at the tip is lower compared to the middle section
since the main beam is dominant straight ahead of the car and
weak in high elevations.

Even though, the proposed methods create a 3D map from
1D automotive radar array data, it has been observed from
the experiments that some of the height estimations are not
accurate because of different error sources such as errors in
ego motion estimation and limited Doppler resolution for DBS.
Further investigation into the identification and minimization
of other error sources is necessary.

VI. CONCLUSION

We proposed novel methods for vehicle localization and
mapping by using a traditional 1D linear automotive radar
array. For each method, we discuss and identify the necessary
processing chain to achieve localization and mapping.

Experimental validations shows that it is possible to localize
the car (without using any data from other systems such as
GPS and IMU) by relating observed radar data to pre-made
(lidar) maps, and to continually add to a cumulative map made
with the radar data that can further aid the localization process.

Finally, successful generation of a 3D radar map using
a 1D linear automotive array has been demonstrated exper-
imentally. We suggest a robust radar detection based ego
motion estimation method to minimize velocity estimation
errors which results in an improvement in height estimation,
though more experiments to establish the full potential of these
3D capabilities are recommended.
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