
De
lft

Un
iv

er
si

ty
of

Te
ch

no
lo

gy

Computing the
Scanwidth of
Directed Acyclic Graphs
Niels Holtgrefe

Computing
the

Scanwidth
of

Directed Acyclic Graphs
by

Niels Holtgrefe
to obtain the degree of Master of Science in Applied Mathematics

at the Delft University of Technology,
to be defended publicly on Wednesday, 12 July 2023 at 10:15.

Student number: 4954181
Project duration: 1 December 2022 – 12 July 2023
Thesis committee: Dr. ir. L. J. J. van Iersel, TU Delft, supervisor

Dr. M. E. L. Jones, TU Delft, supervisor
Dr. M. T. J. Spaan, TU Delft

A digital version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Phylogenetic networks are a specific type of directed acyclic graph (DAG), used to depict
evolutionary relationships among, for example, species or other groups of organisms. To
solve computationally hard problems, treewidth has been used to parametrize algorithms in
phylogenetics. In the hope of simplifying the algorithmic design process, Berry, Scornavacca
and Weller [BSW20] recently proposed a new measure of tree-likeness that takes into account
the directions of the arcs: scanwidth. They showed that the corresponding decision problem
of this parameter - which can be seen as a variant of directed cutwidth, using a tree instead
of a linear ordering - is NP-complete. This thesis aims to widen the structural knowledge of
scanwidth and to find efficient ways of computing it on general DAGs, both by exact and
heuristic algorithms.

With the help of reduction rules, we construct an explicit dynamic programming algorithm
that computes scanwidth exactly, along with its corresponding tree extension, in O(k · nk · m)
time for rooted DAGs of scanwidth k. This slicewise polynomial algorithm proves that com-
puting the scanwidth is in the complexity class XP. The algorithm also functions as an FPT
algorithm for networks of level-ℓ, with the complexity bounded by O(24ℓ−1 · ℓ · n + n2). It
performs well in practice, being able to compute the scanwidth of networks up to 30 reticula-
tions and 100 leaves within 500 seconds.

On the heuristic side, an algorithm that repeatedly splits at a specific type of smallest
cut is proposed. Enhanced with simulated annealing, this heuristic shows promising results,
obtaining an average approximation ratio of 1.5 for large synthetic networks of 30 reticula-
tions and 100 leaves. Applied to a real-world dataset of networks, the heuristic performs
near-optimal. Although we prove that the scanwidth is always greater than or equal to the
treewidth, experiments show that they are close to each other in practice. This further motiv-
ates the use of scanwidth over treewidth as a parameter in algorithms.

ii

Preface

Since 2018, I have been studying the wonders of mathematics at TU Delft. First as part of my
bachelor’s degree, and currently to obtain my master’s degree in applied mathematics. This
thesis project, which I started in December 2022, marks the end of my period as a graduate
student. I thoroughly enjoyed doing research and writing this report.

I owe lots of gratitude to my two supervisors Leo van Iersel and Mark Jones. Our weekly
meetings were extremely fruitful and also very fun. I appreciate the time and effort they put
in to help me during this project. I thank them for allowing me to focus on the topics I found
interesting and for supporting me throughout the project.

I would also like to thank Matthijs Spaan for completing my thesis committee, attending
my thesis defence, and assessing this report.

Furthermore, I would like to thank Matthias Weller from Université Gustave Eiffel in
Champs-sur-Marne, France. We had two very interesting online meetings on the topic of
this thesis, which contributed to the algorithm in Section 5.2.

Lastly, I want to thank my family and friends for supporting me during this project. Spe-
cial thanks go towards my younger brother Tim for proofreading parts of the thesis and re-
viewing the many adjustments I made to the figures.

Niels Holtgrefe,
June 2023

iii

Contents

Abstract ii

Preface iii

1 Introduction 1
1.1 Phylogenetics . 1
1.2 Scanning a network . 1
1.3 Main contributions and thesis outline . 3

2 Preliminaries 5
2.1 Complexity theory . 5
2.2 Graph theory . 6

2.2.1 Standard graph terminology . 6
2.2.2 Phylogenetic networks . 8
2.2.3 Graph layouts . 9
2.2.4 Cutwidth . 10
2.2.5 Scanwidth . 11

3 Structural results 13
3.1 On the equivalent definitions of scanwidth . 13

3.1.1 Canonical tree extensions . 13
3.1.2 From canonical tree extension to extension 15
3.1.3 From extension to canonical tree extension 16

3.2 Bounds and relations to other parameters . 19
3.2.1 Width parameters . 19
3.2.2 Reticulation number and level of a network 22
3.2.3 Weak-scanwidth: a lower bound . 25

3.3 Reduction rules . 27
3.3.1 (S-)blocks of a graph . 27
3.3.2 Arc contractions. 30
3.3.3 Complete decomposition scheme . 31

3.4 Scanwidth-1 and scanwidth-2 characterizations 34

4 Exact algorithms 35
4.1 Brute force solution . 35
4.2 Recursive algorithm . 36
4.3 Dynamic programming . 40

4.3.1 Basic algorithm . 40
4.3.2 Algorithm with component splitting . 43
4.3.3 Algorithm for fixed scanwidth . 46

5 Heuristics 52
5.1 Greedy heuristic . 52
5.2 Cut-splitting heuristic . 54

5.2.1 DAG-cuts . 54
5.2.2 Repeated DAG-cut-splitting heuristic . 57

iv

Contents v

5.3 Simulated annealing . 59
5.3.1 Neighbourhood of (tree) extensions. 59
5.3.2 Description of algorithm. 62
5.3.3 Asymptotic convergence and cooling schedule 63

6 Experimental results 66
6.1 Network generation . 66
6.2 Reductions . 67
6.3 Exact algorithms . 68
6.4 Heuristics . 69

7 Conclusion and outlook 71
7.1 Conclusion . 71
7.2 Further research . 72

References 74

A Integer linear program 78

B Appendix to the experimental study 80
B.1 Parameter tuning for simulated annealing . 80
B.2 Table with results for the real networks . 81

C Omitted proofs 83

Chapter1
Introduction

1.1. Phylogenetics
In the early 1800s, biologists began contemplating the idea of evolution and its depiction by
means of a tree (see [Arc14] for an overview). However, it was not until 1859 that Charles
Darwin popularized the concept of evolution among the scientific community with his fabled
work ‘On the Origin of Species’. A famous quote in this manuscript perfectly captures the
idea of such a ‘tree of life’:

“The affinities of all the beings of the same class have sometimes been represen-
ted by a great tree. I believe this simile largely speaks the truth. The green and
budding twigs may represent existing species; and those produced during each
former year may represent the long succession of extinct species.” [Dar59, p. 129]

It speaks to the imagination that the only illustration in Darwin’s 502 pages long book, was
that of such an evolutionary tree. Although not the first, this diagram can be considered a
very early example of a phylogenetic tree.

Phylogenetic trees are important structures in phylogenetics, the study of evolutionary
relationships among different genes, species, or populations. These trees capture the idea of
a common ancestor that diverges into different species, as time progresses. To depict more
complex evolutionary scenarios, one needs phylogenetic networks. Such networks are not
completely bifurcating but also contain reticulate events: scenarios where two lineages con-
verge again and combine genetic material to create a new (variant of a) species. Biologically
speaking, this models concepts such as hybridization, introgression, horizontal gene transfer,
and recombination. An example of a phylogenetic network for some species of cattle is shown
in Figure 1.1.

From a mathematical point of view, phylogenetic networks can be represented by directed
acyclic graphs with a single root. The leaves of such a graph represent the studied set of
species (sometimes referred to as taxa), whereas the root is their most recent common ancestor.
The arcs and their directions depict how species evolve over time, while the internal vertices
are either reticulate events (where multiple species converge), or speciation events (where a
species diverges into multiple species).

1.2. Scanning a network
Phylogenetics is a research area with many computationally hard problems. Current research
includes but is not limited to NETWORK INFERENCE [Rab+21], TREE CONTAINMENT [IJW23],

1

1.2. Scanning a network 2

Buffalo

Gaur

Gaya

Banteng

Zebu

Bison

Wisent

Yak

Taurine

Figure 1.1: Phylogenetic network for nine species of the Bos genus, which contains wild and domesticated cattle.
The dashed blue arcs depict the transfer of genetic material from one species to another, making this a phylogen-
etic network and not a phylogenetic tree. This network is a result of a study by Wu et al. [Wu+18].

SMALL PARSIMONY [SW22] and HYBRIDIZATION NUMBER [Ber+23]. A common way to cre-
ate algorithms to solve these problems is by exploiting the observation that reticulate events
are fairly rare for most practical phylogenetic networks (when compared to the overall size
of the network). In some sense, these networks are thus still somewhat ‘tree-like’. The most
well-known way to measure this tree-likeness is through the treewidth. The treewidth comes
with a corresponding tree decomposition, which represents the graph in a tree-like way (see
e.g. [Die17]). This decomposition can be used to guide an algorithm through the graph in
an efficient way, while simultaneously bounding its running time. Treewidth has already
successfully been used in phylogenetics [IJW23; SW22]. One major caveat of this approach,
however, is that treewidth does not consider the directions of the arcs. To this end, Berry,
Scornavacca and Weller [BSW20] recently developed an alternative measure for tree-likeness:
scanwidth.

Contrary to treewidth, scanwidth is not agnostic to the directions of the arcs. Thus, it al-
lows for a more intuitive algorithmic design in phylogenetics. Promising results regarding
the use of scanwidth in algorithms have already appeared [Rab+21]. Berry, Scornavacca and
Weller named scanwidth after the informal concept of ‘scanning’ a network. Imagine a ‘scan-
ner line’ for each leaf of a network. These scanner lines then scan the arcs as they move up
through the network. A scanner line merges with another scanner line when they meet at a
vertex. The order in which the arcs and vertices are scanned is determined by a tree extension:
a tree on the same vertex set as the original network, with the constraint that it maintains the
natural ordering of the network. Therefore, this tree extension functions as a route for the
scanner lines. The goal is now to find a tree extension that minimizes the maximum num-
ber of arcs that are cut by a line during the scanning. This number is then referred to as the
scanwidth of the network. Figure 1.2 provides an illustration of the concept of scanning a
network.

Apart from an NP-completeness proof for the decision problem and some preliminary
results in [BSW20], scanwidth has only very briefly been mentioned in [Rab+21] and [SW22].
Magne et al. [Mag+21] independently introduced the closely related edge-treewidth, which can
be considered the undirected analogue of scanwidth. Similar to scanwidth, edge-treewidth
has not seen other research efforts yet. A second closely related parameter is the extensively
researched directed cutwidth. It is more restrictive than scanwidth since it only allows linear
orderings instead of tree extensions. Consequently, most results for directed cutwidth are not

1.3. Main contributions and thesis outline 3

b c

a x y

u v

q

w

ρ

d

(a) Phylogenetic network

b

ca
x

yu

v

q
w

ρ

d

(b) Scanning of the network

Figure 1.2: A phylogenetic network (a), and a tree extension of the network (b), functioning as a route for the
scanner lines. The tree extension is indicated by the grey edges, while the network arcs are drawn back in, follow-
ing the edges of the tree extension. The scanner lines start at the leaves and move up through the tree extension,
at each step becoming brighter red. The tree extension is optimal, thus the scanwidth of this network is 3: the
maximum number of network arcs that are cut by one of the scanner lines.

immediately transferable to scanwidth.

1.3. Main contributions and thesis outline
This thesis aims to widen the knowledge of the parameter scanwidth, with a focus on both
theoretical results as well as exact and heuristic algorithms to compute it. The tree extensions
returned by these algorithms can then be used by future algorithms relying on scanwidth as
a parameter.

Chapter 2 covers some preliminary graph theory and complexity theory, as well as the
formal introduction to scanwidth. In Chapter 3 we focus on structural results regarding scan-
width. We prove that the scanwidth is bounded from below by the treewidth and from above
by the directed cutwidth. Although these two bounds were already mentioned in [BSW20],
they had not yet been formally proved. Additionally, we give an example showing that in
general, the scanwidth is incomparable to the pathwidth. We also generalize the result from
[Rab+21] that the scanwidth of a binary level-k network is at most k + 1 to non-binary net-
works, where the level is a well-known measure of tree-likeness for phylogenetic networks.
Furthermore, we provide characterizations of the graphs with scanwidth 1 and 2 that have
a unique root. Lastly, the chapter discusses some reduction rules to decrease the size of in-
stances.

Chapter 4 is solely focused on exact algorithms that compute the scanwidth. A naive
approach to find the scanwidth would run in O(n! · n ·m). We are able to improve upon this by
providing different exact algorithms, culminating in an algorithm with a slicewise polynomial
running time of O(k ·m · nk) for rooted DAGs, with k the scanwidth. This proves that the fixed
parameter version of the scanwidth problem for rooted DAGs falls within the complexity
class XP, containing problems solvable in n f (k) time for some computable function f . Using
reduction rules, this same algorithm can also be parametrized by the level ℓ of a network,
running in O(24ℓ−1 · ℓ · n + n2) time. Therefore, with the level as parameter, the scanwidth
problem is in the class of fixed-parameter tractable (FPT) problems, which contains problems
solvable in f (ℓ) · nc time for some computable function f and constant c.

Chapter 5 contains different heuristics that are explored, with a cut-splitting heuristic
showing quite good results. This heuristic is enhanced by simulated annealing on a suit-
ably defined neighbourhood, allowing for very fast computation. Although the heuristic is

1.3. Main contributions and thesis outline 4

proved to be non-optimal in general, computational experiments in Chapter 6 are promising,
showing an average practical approximation ratio of 1.5 for networks of 30 reticulations and
100 leaves. For a dataset of real-world networks, the heuristic even performs optimally in
all but one instance. The XP algorithm is shown to be the fastest exact computation method
in practice, being able to compute the scanwidth of networks up to 30 reticulations and 100
leaves within 500 seconds. Moreover, 88.9% of those networks are solvable within 60 seconds.

The thesis is concluded in Chapter 7, which also contains an outlook on further research.

Chapter2
Preliminaries

This chapter covers some necessary theory and notational conventions for this thesis. In Sec-
tion 2.1 we briefly touch upon the topic of (parametrized) complexity theory. If the reader is
familiar with this topic, this section may be skipped. Section 2.2 contains graph theoretical
preliminaries, including the definition of scanwidth.

2.1. Complexity theory
Complexity theory is the study of the computational complexity of algorithms and optimiz-
ation problems. We provide a short overview of the concepts that are relevant to this thesis.
Rather than overwhelming the reader with formal definitions, we aim to present the main
ideas in an intuitive manner. For a more detailed and mathematically rigorous description of
these topics, see for example [Sip13] for standard complexity theory, and [DF13] for paramet-
rized complexity.

The most common way to formally describe how long an algorithm runs is by means of the
big-Oh notation. This notation is used to express the asymptotic behaviour of an algorithm’s
running time as the instance size grows. For two (possibly multivariate) functions f (x) and
g(x) one writes f (x) = O(g(x)), if there exist values x0 and c > 0 such that f (x) ≤ c · g(x)
for all x ≥ x0. Essentially, this means that in the limit the function f grows no faster than the
function g, up to a constant factor c.

Commonly, the size of a problem instance is denoted by n. The above notation then gives
rise to linear time algorithms that run in O(n) time, quadratic time algorithms that run in O(n2)
time, or exponential time algorithms running in, for example, O(2n · n3) time. This is referred
to as the time complexity of an algorithm. Although other variations exist, we exclusively con-
sider the so-called worst-case time complexity, which considers the worst possible time com-
plexity an algorithm can have. Sometimes, we write Õ to suppress the polynomial and logar-
ithmic factors in the time complexity, resulting in, for example, O(2n · n3 · log n) = Õ(2n).

When considering the complexity of a computational problem, it is common to consider
the decision version of the problem. Then, instead of aiming to minimize or maximize a quant-
ity, we are just interested in whether the optimum is below or above a certain value. The com-
putational complexity of decision problems is typically described by their complexity class. We
will informally describe some of the most important while avoiding the technicalities of the
definitions.

The class P contains all problems that can be solved in polynomial time, while the ‘harder’
class NP contains problems that are only verifiable (i.e. a given solution can be verified) in
polynomial time. It is widely believed that these two classes do not coincide, meaning that

5

2.2. Graph theory 6

there exist problems in NP that are not efficiently solvable. A problem is NP-hard if any NP
problem can be reduced to it in polynomial time. Thus, this class captures problems that are
at least as hard as all other NP problems. If an NP-hard problem is still within the class NP, it
is called NP-complete. Therefore, this class contains the ‘hardest’ problems that are in NP.

For parametrized complexity, we do not only consider the size of the instance but also take
into account some other parameter of the problem that can influence its complexity. This
research area also contains a fair amount of complexity classes. We will describe two common
ones that appear in this thesis.

The class XP contains problems that can be solved by a slicewise polynomial algorithm.
Such XP algorithms take polynomial time when we fix the parameter of interest k. In other
words, these algorithms run in n f (k) time for some computable function f . Hence, the term
‘slicewise’ is used: the running time is polynomial for each ‘slice’ of k, although the degree
may depend on the value that k takes. This is not allowed for the class of fixed parameter
tractable (FPT) problems. For a problem to be in FPT, it should be solvable by an algorithm
that takes polynomial time for fixed k, but the degree of the polynomial must be the same
for each k. Thus, such algorithms run in nc · f (k) time for some computable function f and a
constant c. Clearly, any problem that is in FPT, is also in XP.

Additionally, when analyzing algorithms, it is important to consider the space complexity
of an algorithm. Then, instead of focusing on running times, one examines the amount of
(computer) memory required to execute an algorithm.

Lastly, it is worth noting that when solving problems concerning graphs, we normally
measure the size of an instance by the number of vertices n and the number of edges or
arcs m.

2.2. Graph theory
In Subsection 2.2.1 we cover some standard graph theoretical concepts and notation, most
of which the reader may already know. Subsection 2.2.2 formally introduces phylogenetic
networks, and Subsection 2.2.3 handles the notion of graph layouts. We are then ready to
define the well-known cutwidth in Subsection 2.2.4, while Subsection 2.2.5 is reserved for the
formal introduction of scanwidth.

2.2.1. Standard graph terminology
In this thesis, we mostly follow the standard graph theoretical notation as presented in [Die17].
Below we give an overview of all the relevant terminology.

Undirected graphs
An (undirected) graph is a pair G = (V, E), where V is the set of vertices (or nodes) and E ⊆
V ×V the set of edges. In general, we refer to the vertices (resp. edges) of a graph H as V(H)
(resp. E(H)). Unless explicitly stated otherwise, we will consider our graphs to have no self-
loops (i.e. edges from u to u) and not to be multigraphs (i.e. graphs with multiple edges that
have the same endpoints). A graph is weighted if each edge e has an assigned value w(e), and
we then write G = (V, E, w).

An edge e ∈ E between two vertices u, v ∈ V is denoted by {u, v} or simply uv. In this
case, u and v are adjacent, and both serve as endpoints of e. The degree of a vertex v, denoted as
δ(v), refers to the number of edges in E that have v as one of their endpoints. Similarly, for a
set W ⊆ V, we write δ(W) for the degree of W, which counts the number of edges with one
endpoint in W and one endpoint in V \W.

A graph H = (V ′, E′) is a subgraph of G (or equivalently, G contains H) if V ′ ⊆ V and
E′ ⊆ E. If E′ contains all edges uv ∈ E with u, v ∈ V ′, we say that H is an induced subgraph

2.2. Graph theory 7

of G and write H = G[V ′]. The notation G − F, for some set F ⊆ E, represents the graph
(V, E \ F). Similarly, we sometimes write G−W to indicate the graph G[V \W], for a vertex
set W ⊆ V .

A path in a graph is a sequence of distinct vertices such that consecutive vertices in the
sequence are adjacent in the graph. Two vertices u and v of a graph are connected, if there
exists a path between them. For a graph G, we then write u G

↭ v. A graph is considered to
be connected if there exists a path between any two vertices.

If the first and last vertex in a path coincide and the path has a length of at least 4 (i.e. it
contains at least 3 distinct vertices), we have a cycle. A graph that contains no cycles is called
a forest, and if it is also connected a tree. A connected graph in which each edge is part of at
most one cycle is known as a cactus (graph). A (connected) component of a graph is a maximal
connected induced subgraph. A cut vertex is a vertex whose removal increases the number of
connected components. A block (or ‘biconnected component’) is a maximal connected induced
subgraph without any cut vertices.

Directed graphs
If we assign the edges in a graph G = (V, E) directions, we speak of a directed graph. In this
case, each edge (u, v) ∈ E is directed from its tail u to its head v, and we use the term arc to
describe such edges. The underlying undirected graph of G is the undirected graph G̃ = (V, E),
where we disregard the directions.

The indegree (resp. outdegree) of a vertex v is the number of arcs with v as its head (resp.
tail), and we denote it by δin(v) (resp. δout(v)). Likewise, for each set W ⊆ V, the number
of arcs with its head (resp. tail) in W and its tail (resp. head) in V \W is called the indegree
(resp. outdegree) of W, and this number is denoted by δin(W) (resp. δout(W)).

We define a directed path (resp. directed cycle) as a path (resp. cycle) where all the arcs are
directed in the direction of the path (resp. cycle). A directed graph G is said to be strongly con-
nected if there exists a directed path in both directions between any two distinct vertices. This
is in contrast with a weakly connected directed graph: a graph whose underlying undirected
graph is connected. (As an example, consider the graph G in Figure 2.1a which is weakly con-
nected but not strongly connected.) Analogously, two vertices u and v are weakly connected
in G (denoted by u G

↭ v), if they are connected in the underlying undirected graph. A (weakly
connected) component of G is a maximal weakly connected induced subgraph of G. A vertex
in a directed graph is a cut vertex, if its deletion increases the number of weakly connected
components. A block of a directed graph is a maximal weakly connected induced subgraph
without any cut vertices.

The transitive reduction of G is another graph H on the same vertex set and with as few
arcs as possible, such that for all pairs of vertices u, v, there exists a directed path from u to v
in G, if and only if there exists a directed path from u to v in H. It is a well-known fact that the
transitive reduction of a directed acyclic graph (which will be introduced shortly) is unique
and can be obtained by exhaustively deleting arcs uv for which there is a directed path from
u to v containing at least one other vertex. For an example of cut vertices, blocks, and the
transitive reduction of a graph, we refer to Figure 2.1.

Directed acyclic graphs
If a directed graph G contains no directed cycles, we call it a directed acyclic graph (DAG).
In a DAG, a vertex with indegree 0 is called a root (often labelled as ρ), and a vertex with
outdegree 0 is referred to as a leaf. If G has exactly one root, we call G rooted. Otherwise, if
G has multiple roots, it is multi-rooted. The tails of arcs that enter a vertex v are the parents of
v. Similarly, the heads of arcs coming out of v are children of v. We call W ⊆ V a sinkset, if
δout(W) = 0, and we then write W ⊑ V. Sometimes, we extend this notation to W ⊑ U for

2.2. Graph theory 8

(a) Weakly connected DAG G (b) Transitive reduction H of G (c) Blocks Bi of H

Figure 2.1: A multi-rooted, weakly connected, directed acyclic graph G (a), the transitive reduction H of G with
its cut vertices coloured in grey (b), and the blocks Bi of the graph H (c). H is also a multi-rooted directed cactus.

some U ⊆ V. This means that both W ⊆ U and W is a sinkset. If the underlying undirected
graph of a DAG G is a tree, we call G a directed tree. Similarly, G is a directed cactus (graph)
if its underlying undirected graph is a cactus. The DAG H in Figure 2.1b is an example of a
multi-rooted directed cactus.

Since a DAG contains no directed cycles, it naturally exhibits a top-to-bottom structure.
More formally, it defines a partial order1 on its vertices: we write v <G u if there exists a
directed path from u to v.

Unless otherwise specified, this thesis will consider each graph G to be a weakly connec-
ted, directed acyclic graph. If it is clear from the context, we sometimes drop the adjective
‘directed’ from the notions defined above.

2.2.2. Phylogenetic networks
A rooted, weakly connected DAG G = (V, E) is a (rooted) network, if each vertex v ∈ V is
of one of the following types: (i) (unique) root with δin(v) = 0; (ii) leaf with δin(v) = 1 and
δout(v) = 0; (iii) tree-vertex with δin(v) = 1 and δout(v) ≥ 2; (iv) reticulation (vertex) with
δin(v) ≥ 2 and δout(v) = 1. Furthermore, if the root has degree 2, the leaves degree 1, and all
other vertices degree 3, G is a binary network.

The reticulation number r(G) of a network G = (V, E) is the sum of indegrees of all reticu-
lation vertices, minus the number of reticulation vertices. That is,

r(G) = ∑
v∈V:δin(v)≥2

(δin(v)− 1).

It follows that for a binary network, the reticulation number equals the number of reticula-
tions. A network has level k (or is level-k) if each block of the network has reticulation number
at most k. The reticulation number and level of a network are often only defined for binary
networks but were generalized to non-binary networks in [Ier+10].

N is a phylogenetic network on a set of labels X, if N is a network and its leaves are bijectively
labelled by the elements of X. As an example, consider the phylogenetic network on a set
of nine species of cattle from Figure 1.1. Similarly, the graph from Figure 1.2a serves as a
phylogenetic network on the set of labels {a, b, c, d}.
1A partial order on a set defines for pairs of elements whether one precedes the other. In contrast with a total
order, elements are allowed to be incomparable.

2.2. Graph theory 9

2.2.3. Graph layouts
A (linear) layout σ (also known as a ‘linear ordering’, ‘linear arrangement’, ‘numbering’ or
‘labelling’) of a graph G is a total ordering of its vertex set. This ordering can be represented
by a directed path on V(G). A tree layout Γ (also known as an ‘agreeing tree’) of a graph G
is a partial ordering of its vertex set with a unique largest element, and the constraint that
for all uv ∈ E(G), the vertices u and v must be comparable in Γ (i.e. u <Γ v or v <Γ u). It
is represented by a rooted directed tree on V(G), where the root corresponds to this largest
element. Due to the constraint, edges of the graph are not allowed to ‘cross’ different branches
of the tree layout.

A linear layout σ (resp. tree layout Γ) of a DAG G is G-respecting, if u <G v implies u <σ v
(resp. u <Γ v) for all u, v ∈ V(G). A G-respecting linear layout (resp. tree layout) of G is
called an extension (resp. tree extension) of G. Consequently, all arcs of a DAG point in the
same direction when drawn in a (tree) extension. For an extension, the arcs point backwards
(i.e. towards the first element of the ordering), while in a tree layout, the arcs point away from
the root.

Figure 2.2 serves as a visualization of the above concepts. In Figure 2.2b an extension
is drawn, while Figure 2.2c depicts a tree extension. As a convention, we will always draw
(tree) extensions as presented in this figure. To avoid confusion, Figure 2.2d shows a graph
H that may mistakenly be interpreted as a tree extension. Although all arcs seem to point
downwards, the red arc ‘crosses’ two branches of the tree H. This violates the constraint that
the tree H must be G-respecting. When disregarding the directions of the arcs, the same figure
also serves as an illustration of (tree) layouts.

Note that extensions of a DAG G also function as tree extensions. This is true, because
an extension σ of G is by definition G-respecting, and its total order has a unique largest
element which corresponds to the last vertex in the sequence. Furthermore, any u, v ∈ V(G)
are comparable in σ (i.e. u <σ v or u >σ v).

ρ

a
b

c

y z

x

(a) DAG G

ρa b cy z x

(b) Extension σ

ρ

a
b

c

y z

x

(c) Tree extension Γ

ρ

a

b
cy

z

x

(d) Tree H on V(G)

Figure 2.2: (a): Weakly connected DAG G. (b): An extension σ of G with the arcs of G also drawn. (c): A tree
extension Γ of G indicated by the grey arcs, whose direction is downwards. The arcs of G are also drawn in Γ
and are made to follow the grey arcs. (d): A tree H on V(G) that is not a tree extension, because z and c are not
comparable in H, while they are adjacent in G. Visually this means that the corresponding red arc zc of G ‘crosses’
two branches of the tree.

We will now cover some notation, partially adopted from [BSW20], on the above notions.
Throughout this thesis, we will exclusively reserve the Greek letters σ and π for extensions,
and the Greek capital letters Γ and Ω for tree extensions. For a weakly connected DAG G and
U ⊆ V(G), we use Π[U] to denote the set of extensions of G[U]. Thus, Π[V(G)] is the set of
all extensions of G. Similarly, we use T [U] to denote the set of tree extensions of G[U]. If G is
undirected, we instead mean the sets of linear layouts (resp. tree layouts).

The vertex at position i of a layout σ is denoted by σ(i). The suborder of σ starting at
position i till position j is written as σ[i . . . j], while the order starting at i till the last vertex is
σ[i . . .]. The restriction of an ordering to a subset U ⊆ V(G) is written as σ[U]. If A and B are

2.2. Graph theory 10

two disjoint subsets of V(G), and σ (resp. π) is a layout of G[A] (resp. G[B]), we write σ ◦π for
the concatenation of σ and π (that is, σ followed by π). Note that the positions and vertices of
a linear layout are in bijection. Therefore, we sometimes use vertices to represent a position.
For example, σ[v . . .] denotes the suborder of σ starting at the vertex v, where we should have
written σ[σ−1(v) . . .]. For a vertex set V, we sometimes use the notation [V] = {1, . . . , |V|}
to denote the set of possible positions a vertex can have in a layout. Finally, we mention that
subgraphs of the type G[σ[1 . . . i]] will appear throughout this thesis. We often denote such a
subgraph as G[1 . . . i], if the extension σ is clear from the context.

2.2.4. Cutwidth
Following [BSW20], we will first introduce what cutwidth is, hopefully giving the reader a
soft landing regarding the more involved scanwidth.

Cutwidth is a width parameter for undirected graphs that has seen a lot of attention since
the 1970s (see the survey [DPS02] and its addendum [Pet13]). Multiple variants exist, but we
focus on the specific version of the parameter for DAGs. For the sake of brevity, we will refer
to it simply as cutwidth.2

Definition 2.1 (Cutwidth). Let G = (V, E) be a weakly connected DAG. For an extension σ and a
position i of σ, we will denote CWσ

i = {uv ∈ E : u ∈ σ[i + 1 . . .], v ∈ σ[1 . . . i]}. Then the cutwidth
of G is

cw(G) = min
σ∈Π[V]

max
i∈[V]
|CWσ

i |.

Furthermore, we let cw(σ) = maxi∈[V] cwσ
i be the cutwidth of σ, where cwσ

i = |CWσ
i | is the cutwidth

of σ at position i.

Intuitively, an extension of a DAG is considered optimal in terms of cutwidth, if the max-
imum number of arcs crossing a gap between two vertices is as small as possible.3 An example
of an optimal and a non-optimal extension in terms of cutwidth is shown in Figure 2.3.

a b c

x y z

u v

q

w

ρ

(a) Weakly connected DAG G

a b cx y zu v q w ρ

(b) Optimal extension σ

a bc x yz u v q w ρ

(c) Non-optimal extension π

Figure 2.3: (a): Weakly connected DAG G. (b): An optimal extension σ of G with cutwidth 4, attained at the red
cut. (c): A non-optimal extension π of G with cutwidth 5, attained at the red cut.

One can compute the cutwidth of a DAG in Õ(2n) time [Bod+11]. This exponential time
complexity is not surprising, since the corresponding decision problem has been proved to be
NP-complete [ES75]. In the context of parametrized complexity for a fixed cutwidth of k, an
algorithm was proposed in 1984 for the undirected cutwidth, running in O(nk) time [GS84].

2There is no consensus on the naming of this DAG-variant of cutwidth. In [Bod+11] it is referred to as ‘min-
imum cutwidth for directed acyclic graphs’. Other authors call it ‘directed cutwidth’ [BFT09; BSW20]. However,
sometimes this name is reserved for a different variation on general directed graphs [GR19].

3The undirected cutwidth is commonly defined in a similar way, but it minimizes over the space of all linear
layouts, instead of extensions.

2.2. Graph theory 11

A few years later, this approach was improved to a time complexity of O(nk−1) [MS89]. The
theoretically fastest parametrized algorithm for the undirected cutwidth was introduced in
[TSB05], and it runs in linear time for fixed k. This implies that the undirected cutwidth can
be computed in FPT time. Similarly, it is also known that computing the cutwidth of a DAG
is possible in linear FPT time [BFT09].

2.2.5. Scanwidth
In Section 1.2 of the introductory chapter, we provided some intuition on the idea of ‘scan-
ning’ a phylogenetic network. This concept can be extended to all weakly connected DAGs.
Throughout this thesis we aim to provide results for this broader class of graphs.4 With
cutwidth in mind, we are ready to define scanwidth. The scanwidth of a DAG was form-
ally introduced by Berry, Scornavacca and Weller [BSW20] as follows:

Definition 2.2 (Scanwidth). Let G = (V, E) be a weakly connected DAG. For an extension σ and a
position i of σ, we will denote SWσ

i = {uv ∈ E : u ∈ σ[i + 1 . . .], v ∈ σ[1 . . . i], v G[1 . . . i]
↭ σ(i)}. Then

the scanwidth of G is
sw(G) = min

σ∈Π[V]
max
i∈[V]
|SWσ

i |.

Furthermore, we let sw(σ) = maxi∈[V] swσ
i be the scanwidth of σ, where swσ

i = |SWσ
i | is the

scanwidth of σ at position i.

This definition is closely related to the definition of cutwidth. However, instead of count-
ing all arcs in the cut-set CWσ

i , we only count those arcs that enter a vertex v that is weakly
connected to σ(i) in the graph G[σ[1 . . . i]]. Recall from Section 2.2 that we write this as
v G[1 . . . i]

↭ σ(i). Before explaining this definition with Figure 2.4, we introduce an alternative
characterization of scanwidth.

In [BSW20, Prop. 1] it is shown that the following definition equivalently defines scan-
width.5 Whereas the previous definition involves extensions, this alternative definition relies
on tree extensions, thus aligning more closely with the ‘scanning’-intuition given in the intro-
duction.

Definition 2.3 (Scanwidth). Let G = (V, E) be a weakly connected DAG. For a tree extension Γ
and a vertex v of V, we will denote GWΓ

v = {xy ∈ E : x >Γ v ≥Γ y}. Then the scanwidth of G is

sw(G) = min
Γ∈T (V)

max
v∈V
|GWΓ

v |.

Furthermore, we let sw(Γ) = maxv∈V swΓ
v be the scanwidth of Γ, where swΓ

v = |GWΓ
v | is the scan-

width of Γ at vertex v.

We now have two equivalent ways to define scanwidth at hand. Definition 2.3 more
closely resembles the intuition of ‘scanning’, allowing for more straightforward application
in a parametrized algorithm. On the other hand, Definition 2.2 will turn out the be more
convenient in proofs, as extensions are less complicated mathematical objects than tree exten-
sions. For example, induction-based proofs are often easier when iterating over the positions
of an extension.
4Most results in this thesis, if not all, generalize to disconnected graphs by considering a forest layout, which con-
tains a separate tree layout for each component of the graph. However, we will only consider weakly connected
graphs and thus leave this generalization to the reader.

5Berry, Scornavacca and Weller prove the equivalence only for networks, but the proof does not rely on labelled
leaves and a single root. We can therefore extend the equivalence to arbitrary weakly connected DAGs.

2.2. Graph theory 12

To illustrate the two definitions and their relation, we take a look at Figure 2.4. We first
explore the tree-based definition, as it is visually more intuitive. Figure 2.4a depicts the same
weakly connected DAG as in Figure 2.3, while Figure 2.4b shows a tree extension Γσ (the
fat grey arcs, whose direction is downwards) with the arcs of the original DAG drawn in it.
For each vertex in the graph, the set GW contains the arcs that enter the vertex or pass it to
reach a vertex lower in the tree extension. Visually, these sets correspond to cuts in the tree
extension. As mentioned in the introduction, scanwidth can thus be viewed as a tree analogue
of cutwidth. One can quickly check that the scanwidth of the tree extension Γσ equals 3, which
is attained at the vertex v, where we have that GWΓσ

v = {qv, qu, wz}. It turns out that this is
an optimal tree extension for the given graph. In a similar fashion, Figure 2.4c shows a tree
extension of the same graph, with a non-optimal scanwidth of 4, attained at the vertex z.

a b c

x y z

u v

q

w

ρ

(a) Weakly connected DAG G

a b

cx y
z

u
v

q w

ρ

(b) Canonical tree extension Γσ

a b

c
x y

z
u

v
q w

ρ

(c) Tree extension Γ′

a b cx y zu v q w ρ

(d) Optimal extension σ

Figure 2.4: (a): Weakly connected, rooted DAG G. (b): Optimal canonical tree extension Γσ with scanwidth 3,
attained at the vertex v. (c): Non-canonical tree extension Γ′ with scanwidth 4, attained at the vertex z. (d):
Optimal extension σ with scanwidth 4, attained at the vertex z. For each i ≤ 7, the outermost grey shaded areas
containing only vertices belonging to σ[1 . . . i] depict the weakly connected components of G[1 . . . i]. For i > 7,
G[1 . . . i] is weakly connected and therefore consists of just one component.

We have already stated that the scanwidth of the graph G in Figure 2.4a equals 3. This
must mean that there also exists an extension with a scanwidth of 3 when considering Defini-
tion 2.2. One such extension σ is shown in Figure 2.4d. Contrary to tree extensions, arcs in the
sets SW are a bit more involved to calculate. It requires knowledge of the weak connectivity
relations within subgraphs of the graph. In Figure 2.4d these relations are depicted by the
grey shaded areas. Consider for example the vertex z = σ(7). From the figure we can see that
{a, x, b, y, u} and {c, z} form the two components of G[1 . . . 7]. Therefore, SWσ

z = {vz, wz},
and the set does not contain the arcs vy and qu, as they enter the other component. Com-
pare this to the cutwidth of this extension, where these two arcs would also be counted (see
Figure 2.3b).

Chapter3
Structural results

In this chapter we present new theoretical results regarding scanwidth. In Section 3.1 we take
a more in-depth look into the two equivalent definitions of scanwidth. Section 3.2 will focus
on bounding the scanwidth of a DAG by other (width) parameters. Section 3.3 is aimed at
the creation of reduction rules for the scanwidth problem, which will prove valuable in sub-
sequent chapters. Lastly, we characterize the rooted DAGs of scanwidth 1 and 2 in Section 3.4.

3.1. On the equivalent definitions of scanwidth
This section is divided into three subsections. After exploring the relation between the two
equivalent scanwidth definitions in Subsection 3.1.1, we will discuss how to move between
the two definitions in Subsections 3.1.2 and 3.1.3.

3.1.1. Canonical tree extensions
Upon further examination of the example in Figure 2.4, an interesting observation emerges.
We notice that the sets GW associated with the tree extension Γσ and the sets SW associated
with the extension σ coincide at each vertex. This is not coincidental, since Γσ is the canonical
tree extension for σ, a crucial notion from [BSW20] used to prove the equivalence between the
two scanwidth definitions. Formally, it is defined as follows:

Definition 3.1 (Canonical tree extension). Let G = (V, E) be a weakly connected DAG and σ an
extension of G. Then, we denote the canonical tree extension for σ as Γσ, and it is defined as the
transitive reduction of the DAG

H = (V, {uv : u >σ v, u G[1 . . . u]
↭ v}).

Lemma 3.2, which is proved in [BSW20], establishes the relation between canonical tree
extensions and extensions. It states that Γσ is indeed a tree extension of G (by b) that has the
same scanwidth as σ (by a and c). Moreover, any extension of the canonical tree extension has
the same scanwidth again (by c).

Lemma 3.2 (Berry, Scornavacca and Weller [BSW20, Lem. 5]). Let G = (V, E) be a weakly
connected DAG, σ an extension of G, and Γσ the canonical tree extension for σ. Then,

(a) σ is an extension of Γσ;

(b) Γσ is a tree extension of G;

(c) for each extension π of Γσ, and for each v ∈ V, we have SWπ
v = GWΓσ

v ;

13

3.1. On the equivalent definitions of scanwidth 14

(d) for each v ∈ V, the subgraph G[V(Γσ
v)] is a weakly connected component of G−GWΓσ

v , where
Γσ

v is the subtree of Γσ rooted at v.

By the lemma, we are able to construct for each extension, a tree extension with the same
scanwidth at every vertex. For canonical tree extensions, the converse is also true. However,
this converse does not need to hold in general. As an example, the tree extension Γ′ in Fig-
ure 2.4c is not canonical (which will be proved later), and indeed no extension of Γ′ has the
property that SWσ

z = GWΓ′
z .

As a side result of the lemma, we can now easily show that there always exists a canonical
tree extension that is optimal. This implies that it is sufficient to minimize over all canonical
tree extensions when computing the scanwidth.

Corollary 3.3. Let G = (V, E) be a weakly connected DAG, then there exists a canonical tree exten-
sion Γ such that sw(G) = sw(Γ).

Proof. Let σ be an optimal extension with respect to the scanwidth. By Lemma 3.2a, σ is
an extension of the canonical tree extension Γσ. According to Lemma 3.2c, we then have
that sw(Γσ) = sw(σ). Since σ was optimal, we have that sw(G) = sw(σ) = sw(Γσ). This
proves that the canonical tree extension Γσ is optimal.

Lemma 3.2d gives a necessary condition for a tree extension to be canonical. The previ-
ous corollary raises the question whether a sufficient condition exists. As the definition of
canonical tree extensions is rather involved, an easy-to-check condition could be helpful in
algorithmic design.

It turns out that it is indeed possible to completely characterize the canonical tree exten-
sions by a quickly checkable condition. We first need the following uniqueness result which
proves that the sets GW are enough to uniquely describe a tree extension.

Lemma 3.4. Let G = (V, E) be a weakly connected DAG, and let Γ and Ω be two tree extensions of
G. Then, GWΓ

v = GWΩ
v for all v ∈ V, if and only if Γ = Ω. Therefore, a tree extension is uniquely

determined by the sets GW.

Proof. The ‘if direction’ is trivial, so it remains to prove the ‘only-if direction’.
Assume that Γ and Ω are two different tree extensions of the graph G. For any v ∈ V,

we write Γv (resp. Ωv) for the subtree of Γ (resp. Ω) rooted at v. As Γ ̸= Ω, there must
exist some u ∈ V such that V(Γu) ̸= V(Ωu). Clearly, the sets GWu contain exactly the arcs
that enter the above two vertex sets. In other words, GWΓ

u = {xy ∈ E(G) : x /∈ V(Γu), y ∈
V(Γu)} and GWΩ

u = {xy ∈ E(G) : x /∈ V(Ωu), y ∈ V(Ωu)}. But since V(Γu) ̸= V(Ωu),
we must then have GWΓ

u ̸= GWΩ
u . This proves the lemma, and consequently, the fact that

the sets GW uniquely determine a tree extension.

With this lemma at our disposal, we are now ready to characterize the canonical tree ex-
tensions in the following proposition.

Proposition 3.5. Let G = (V, E) be a weakly connected DAG, Γ a tree extension of G, and σ an
extension of Γ. For each v ∈ V, let Γv be the subtree of Γ rooted at v. Then, Γ is the canonical tree
extension for σ, if and only if G[V(Γv)] is weakly connected for all v ∈ V.

3.1. On the equivalent definitions of scanwidth 15

Proof. (⇒) Let Γ be the canonical tree extension for σ, i.e. Γ = Γσ. From Lemma 3.2d we
know that for each v ∈ V, it holds that G[V(Γv)] is a weakly connected component of
G−GWΓσ

v . Thus, G[V(Γv)] is weakly connected for all v ∈ V.
(⇐) Let Γ be a tree extension that is not canonical for σ, i.e. Γ ̸= Γσ. We now claim

that there exists a v ∈ V such that SWσ
v ⊂ GWΓ

v .

Proof of claim: Let v ∈ V and xy ∈ SWσ
v be arbitrary. By definition, x >σ v ≥σ y and

y G[1 . . . v]
↭ v. As σ is an extension of Γ, together this gives that v ≥Γ y. Using that Γ is a

tree extension and that xy is an arc of G, we also have that x >Γ y. Combining with
the fact that x >σ v, we must then have x >Γ v ≥Γ y. This means that xy ∈ GWΓ

v .
So, SWσ

v ⊆ GWΓ
v .

According to Lemma 3.4, there exists some v ∈ V such that GWΓ
v ̸= GWΓσ

v .
By Lemma 3.2c, we then get that SWσ

v = GWΓσ

v ̸= GWΓ
v . We already had that

SWσ
v ⊆ GWΓ

v , so SWσ
v ⊂ GWΓ

v . △

Let v be as in the claim. By the claim, there exists an arc xy ∈ GWΓ
v that is not in SWσ

v .
But since σ is an extension of Γ, we must have that x >σ v ≥σ y. Then, xy /∈ SWσ

v implies
that y is not weakly connected to v in G[σ[1 . . . v]]. Clearly, V(Γv) ⊆ σ[1 . . . v], as σ is an
extension of Γ. But then, y is also not weakly connected to v in G[V(Γv)]. This means that
G[V(Γv)] is not weakly connected.

As Lemma 3.2a tells us that a canonical tree extension can only be canonical for an ex-
tension of itself, the previous proposition gives us an easy-to-check characterization of the
canonical tree extensions. We only need to check whether the induced subgraphs corres-
ponding to the vertices of each subtree of the tree extension are weakly connected. Recalling
the examples from Figure 2.4, we can quickly see that Γσ in Figure 2.4b is indeed canonical
for σ, since σ is an extension of Γσ, and since the above connectivity condition holds. On the
other hand, the tree extension Γ′ from Figure 2.4c can now be shown to not be canonical for
any extension of Γ′ (and consequently it is not canonical for any extension of the graph), since
G[V(Γ′z)] is not weakly connected.

3.1.2. From canonical tree extension to extension
Depending on the application, one might be interested in an extension, while only a tree
extension is at hand. If this tree extension is canonical, we can find an extension with the
same scanwidth. Algorithm 1 accomplishes this.

Algorithm 1: Verify whether a tree extension is canonical, and if it is, create an exten-
sion with the same scanwidth.

Input: Weakly connected DAG G = (V, E), tree extension Γ of G.
Output: If Γ is canonical, an extension σ such that sw(σ) = sw(Γ). Else, None.

1 for each v ∈ V do
2 Γv ← the subtree of Γ rooted at v
3 if G[V(Γv)] is not weakly connected then
4 return None

5 σ← reverse order of a BFS traversal of Γ
6 return σ

The workings of the algorithm are fairly obvious. First, it uses Proposition 3.5 to check if
the tree extension is canonical. If it is, it applies a breadth-first search (BFS) to get an extension
of the tree extension. We summarize this, together with the algorithm’s time complexity, in
the following theorem.

3.1. On the equivalent definitions of scanwidth 16

Theorem 3.6. Let G = (V, E) be a weakly connected DAG of n vertices and m arcs, and let Γ be a
tree extension of G. Then, Algorithm 1 verifies whether Γ is canonical in O(n ·m) time. If this is the
case, the algorithm returns an extension σ such that sw(σ) = sw(Γ) in O(n) time.

Proof. Correctness: By Lemma 3.2a, a tree extension can only be canonical for an extension
σ of G if σ is also an extension of Γ. So, to determine whether Γ is canonical, it suffices to
know whether Γ is canonical for some extension of Γ. According to Proposition 3.5, this
is equivalent to the fact that for all v ∈ V, the subgraph G[V(Γv)] is weakly connected.
This proves that the algorithm returns None, if and only if Γ is not canonical.

If Γ is canonical, Lemma 3.2c tells us that each extension σ of Γ has the property that
SWσ

v = GWΓ
v . Thus, sw(σ) = sw(Γ). Clearly, a BFS traversal of Γ parses the vertices in

some topological ordering of Γ, if started at the root of Γ. But then, reversing this ordering
gives an extension of Γ, which proves correctness.

Time complexity: A BFS parses each arc and node of a graph once. Because Γ has n
nodes and n− 1 arcs, a BFS of Γ takes O(n) time. For each vertex v, we can create the set
of descendants in Γ by doing a BFS of Γ in O(n) time. Creating the subgraph G[Γv] then
takes at most O(n + m) time, while checking whether it is connected can be done by a
BFS on this subgraph in at most O(n + m) time. This process is repeated for each vertex,
resulting in a time complexity of O(n ·m) to check whether Γ is canonical.

Creating the extension by a BFS then takes O(n) time.

Note that if we already know that Γ is canonical, we can reduce the time complexity to
just O(n). Furthermore, alternative traversal algorithms such as depth-first search (DFS) can be
employed in the algorithm, as long as they guarantee a linear time complexity.

3.1.3. From extension to canonical tree extension
It is not entirely straightforward from Definition 3.1 how to create Γσ from an extension σ.
A naive approach would be to first create the graph H appearing in this definition. To this
end, we need the connectivity relations of G[1 . . . v] for all v ∈ V. It takes O(n + m) time to
create such a subgraph, and one can use a BFS in O(n + m) time to find the weakly connected
components within it. Then, checking whether two vertices are weakly connected, amounts
to checking if they are in the same component. We repeat this n times, and thus it would take
us O(n2 + nm) time to create H. Finding the transitive reduction of H can be implemented
in O(n2.37188) time1, resulting in an overall time complexity of O(n2.37188 + nm) to create the
canonical tree extension from an extension.

We opt for a structured and more intuitive approach that slowly builds up the tree exten-
sion from its leaves to the root. As a nice side effect, it runs faster than the above-described
solution would, having a time complexity of O(n2). Our algorithm relies on Proposition 3.5,
which implies that creating the canonical tree extension amounts to creating a tree extension
Γ of G, such that σ is an extension of Γ and G[Γv] is weakly connected for all v ∈ V(G). The
method is formally described in Algorithm 2.

1This follows from a result in [AGU72], which states that finding the transitive reduction is equivalent to matrix
multiplication. Currently, the best algorithm for matrix multiplication runs in O(n2.37188), although it has an
extremely large hidden constant [DWZ23].

3.1. On the equivalent definitions of scanwidth 17

Algorithm 2: Create the canonical tree extension Γσ for an extension σ.
Input: Weakly connected DAG G = (V, E), extension σ of G.
Output: Canonical tree extension Γσ corresponding to σ.

1 initialize
2 r(v)← None, ∀v ∈ V(G)
3 Γσ ← empty directed tree

4 for each i ∈ {1, . . . , |V|} do
5 v← σ(i)
6 C ← set of children of v in G
7 R← {r(c) : c ∈ C}
8 add the vertex v to Γσ

9 add an arc vw to Γσ, ∀w ∈ R
10 for each u ∈ V(Γσ) do
11 if r(u) ∈ R then
12 r(u)← v

13 r(v)← v

14 return Γσ

In the algorithm we iterate over the vertices in the extension σ. For each vertex, we keep
track of the root-vertex of its component (in the thus far constructed tree extension) by means
of the mapping r. We then add the vertices one by one, each time creating arcs to the root
vertices of the components that contain the children of the current vertex in G. Then, we
update the r-assignment of the vertices in those components. Figure 3.1 shows an example
run of an iteration of this algorithm applied to the graph from Figure 2.4.

a b c

x y z

u v

q

w

ρ

(a) Weakly connected DAG G

a b cx y zu v q w ρ

(b) Extension σ

a b

cx y
z

u
v

q w

ρ

(c) Canonical tree extension Γσ

a b

cx y
z

u
v vertices r(·)

{a, b, x, y, u} u
{c, z} z
{v} None

{q, w, ρ} None

(d) Algorithm before iteration 8

a b

cx y
z

u
v vertices r(·)

{a, b, x, y, u} v
{c, z} v
{v} v

{q, w, ρ} None

(e) Algorithm after iteration 8

Figure 3.1: Illustration of an iteration of Algorithm 2. (a): Weakly connected DAG G. (b): Extension σ of G.
(c): Canonical tree extension Γσ of G. (d): Partial tree extension that was built in the first seven iterations of
Algorithm 2 applied to the graph G and extension σ. The corresponding r-assignments are also shown. We already
drew in the vertex v = σ(8) and its corresponding outgoing (dashed) arcs of G. (e): Partial tree extension and new
r-assignments after the eighth iteration of Algorithm 2. The children of v in G are y and z, thus C = {y, z}. Since
the roots of the components that contained these vertices in subfigure (d) are in the set R = {u, z}, we attached
v to u and to z. When the algorithm terminates, it will have constructed the canonical tree extension Γσ from
subfigure (c).

To prove correctness, we first state the following technical lemma about the algorithm. As

3.1. On the equivalent definitions of scanwidth 18

the result is rather intuitive, we delay its induction-based proof to Appendix C.

Lemma 3.7. Let G = (V, E) be a weakly connected DAG, σ an extension of G, and Γ the graph
returned by Algorithm 2 applied to σ. Then,

(a) Γ is a tree extension of G;

(b) σ is an extension of Γ;

(c) G[V(Γv)] is weakly connected for each v ∈ V, where Γv is the subtree of Γ rooted at v.

We are now ready to prove the correctness of the algorithm and show that it runs in quad-
ratic time.

Theorem 3.8. Let G = (V, E) be a weakly connected DAG of n vertices and m arcs, and let σ be an
extension of G. Then, Algorithm 2 applied to σ returns the canonical tree extension Γσ in O(n2) time.

Proof. Correctness: Let Γ be the graph returned from Algorithm 2 applied to σ. The three
statements from Lemma 3.7 together are now equivalent to the fact that Γ is the canonical
tree extension for σ, according to Proposition 3.5. This proves correctness.

Time complexity: The outer for loop is executed exactly n times. Within each for loop,
we first create the set of children of v. This can be done in O(n) time (by saving the graph
as an adjacency matrix). The other parts of the loop are also dominated by O(n). The
inner for loop is executed at most n times. All in all, we thus have a time complexity of
O(n2).

For ease of later reference, we can now formulate a corollary stating the time it takes to
calculate the scanwidth of a given (tree) extension.

Corollary 3.9. Let G = (V, E) be a weakly connected DAG of n vertices and m arcs, then the
scanwidth of any extension or tree extension of G can be calculated in O(n ·m) time.

Proof. Let Γ be any tree extension of G. With a BFS one can find the partial order <Γ
of the vertices in the tree extension. As mentioned in the proof of Theorem 3.6, such a
BFS takes O(n) time. For each of the n vertices, we can then find the set GWΓ

v in O(m)
time, by iterating over all m arcs and checking the partial order condition (as defined in
Definition 2.3). Taking the maximum takes constant time, so we can calculate sw(Γ) in
O(nm) time.

Now let σ be any extension of G. According to Theorem 3.8, we can transform σ in
Γσ in O(n2) time. By the first part of the current proof, it takes O(nm) time to calculate
the scanwidth of Γσ. By Lemma 3.2c this value equals sw(σ), which shows that it takes
O(nm) time to calculate sw(σ).

3.2. Bounds and relations to other parameters 19

3.2. Bounds and relations to other parameters
In this section, we will discuss how scanwidth relates to a range of other parameters. Sub-
section 3.2.1 will focus on width parameters, while Subsection 3.2.2 concentrates on two
network-specific notions which are commonly used in the phylogenetic network literature:
reticulation number and level. We reserve Subsection 3.2.3 for a lower bound of the scan-
width in terms of a newly defined parameter.

Of course, one can also construct simple, yet useful bounds for the scanwidth. We gather
three of them in the following lemma:

Lemma 3.10. Let G = (V, E) be a weakly connected DAG, then (a) sw(G) ≥ maxv∈V δin(v); (b)
sw(G) ≤ |E|; (c) sw(G) ≥

⌊
|E|
|V|−1

⌋
.

Proof. (a): For every extension σ and v ∈ V, we have by definition that SWσ
v contains at

least all arcs coming into v. The bound then follows.
(b): For every extension σ and v ∈ V, we have by definition that SWσ

v contains at most
all arcs of the graph. The bound then follows.

(c): For every extension σ, every arc must be in atleast one set SWσ
v . The set SWσ

σ(|V|)
is always empty, since σ(|V|) is the last vertex in the extension. Thus, we have at most
|V| − 1 non-empty sets. Then, there always exists a set SWσ

v , such that |SWσ
v | ≥

⌊
|E|
|V|−1

⌋
.

This proves the bound.

3.2.1. Width parameters
In this subsection, we will turn our attention to an undirected analogue of scanwidth: edge-
treewidth. We also cover the relation of scanwidth to three of the most common width para-
meters: cutwidth, pathwidth and treewidth.

Edge-treewidth
The first width parameter we will examine is edge-treewidth, recently introduced by Magne
et al. [Mag+21]. In the introductory chapter, we already mentioned that edge-treewidth can
be viewed as the undirected analogue of scanwidth. The following definition is given in
[Mag+21], although we adapt the notation to our standard. They also provide an equivalent
tree layout definition which resembles Definition 2.3 of the scanwidth.

Definition 3.11 (Edge-treewidth). Let G = (V, E) be a connected undirected graph. For a lin-
ear layout σ and a position i of σ, we will denote ETWσ

i = {uv ∈ E : u ∈ σ[i + 1 . . .], v ∈
σ[1 . . . i], u G[1 . . . i]

↭ v}. Then the edge-treewidth of G is

etw(G) = min
σ∈Π[V]

max
i∈[V]
|ETWσ

i |.

Furthermore, we denote etw(σ) = maxi∈[V] etwσ
i , where etwσ

i = |ETWσ
i |.

Recall, that Π[V] denotes the set of all linear layouts of G, since G is an undirected graph. It
is not hard to see that for any DAG the edge-treewidth of its underlying undirected graph is at
most the scanwidth of the DAG. This follows from the fact that for the scanwidth we minimize
over all extensions, which are by definition linear layouts of the underlying undirected graph.
We thus get the following lemma:

Lemma 3.12. Let G = (V, E) be a weakly connected DAG and G̃ its underlying undirected graph,
then

etw(G̃) ≤ sw(G).

3.2. Bounds and relations to other parameters 20

Proof. Let σ be an extension of G. Clearly, σ is also a linear layout of G̃. Furthermore, by
definition, ETWσ

v = SWσ
v for all v ∈ V. But then, etw(σ) = sw(σ). As σ was an arbitrary

extension, we thus get etw(G̃) ≤ sw(G).

Although edge-treewidth is extremely similar to scanwidth, most results presented in
[Mag+21] are not of immediate use to us. Their results are of pure structural purpose and
are not directly aimed at computing the parameter. We will however use one of their results
in Section 3.4 to characterize DAGs of scanwidth 1 and 2.

Cutwidth
In Subsection 2.2.4 we covered the well-known cutwidth and already mentioned the strong
relation between cutwidth and scanwidth. In fact, if a graph has just one leaf, it has been
shown that its scanwidth and its cutwidth coincide [BSW20]. It should come as no surprise
that in general the cutwidth (as introduced in Definition 2.1) bounds the scanwidth from
above. This obvious fact was already mentioned in [BSW20], but for completeness, we will
formally prove it in the next lemma. At the heart of the proof lies the fact that the sets SW are
always subsets of the sets CW.

Lemma 3.13. Let G = (V, E) be a weakly connected DAG, then

sw(G) ≤ cw(G).

Proof. Let σ be an extension of G, and let v ∈ V be arbitrary. We have that swσ
v = |SWσ

v | ≤
|CWσ

v | = cwσ
v . This holds, since SWσ

v ⊆ CWσ
v , which follows immediately from the defin-

itions. Now it follows that sw(σ) = maxv∈V swσ
v ≤ maxv∈V cwσ

v = cw(σ). Therefore,
sw(G) = minσ∈Π[V] sw(σ) ≤ minσ∈Π[V] cw(σ) = cw(G).

Pathwidth
An often-used width parameter for undirected graphs is pathwidth. The pathwidth can be
viewed as a measure of how closely an undirected graph resembles a path. Typically, the
pathwidth is defined by means of a path-decomposition (see for example [DPS02]). We will not
do so here. In [Kin92] it is shown that the pathwidth of an undirected graph G is equal to
its ‘vertex separation number’. This provides us with the following equivalent definition of
pathwidth:

Definition 3.14 (Pathwidth). Let G = (V, E) be a connected undirected graph. For a linear layout
σ and a vertex v of V, we will denote PWσ

i = {v ∈ σ[i + 1 . . .] : ∃u ∈ σ[1 . . . i] s.t. uv ∈ E}. Then
the pathwidth of G is

pw(G) = min
σ∈Π[V]

max
i∈[V]
|PWσ

i |.

Furthermore, we denote pw(σ) = maxi∈[V] pwσ
i , where pwσ

i = |PWσ
i |.

Compared to cutwidth, pathwidth differs in two places. First of all, we minimize over all
linear layouts of the undirected graph, instead of extensions of a DAG. Secondly, we do not
consider the number of edges that cross each gap of the extension. Instead, we only care about
the endpoints of these edges that are higher up in the ordering. As an example, we revisit the
extension σ in Figure 2.3b. The red cut in this image indicates the set CWσ

z = {qy, vu, vz, wz}
for the cutwidth. On the other hand, for the pathwidth of this extension (where we consider
the underlying undirected graph of the DAG), we just have PWσ

z = {v, q, w}, since those
vertices are the endpoints to the right of the cut.

3.2. Bounds and relations to other parameters 21

Berry, Scornavacca and Weller [BSW20] do not mention the relation of scanwidth to path-
width. With two examples, we show that in general, neither of the parameters bounds the
other. To this end, consider the graph G in Figure 3.2a. As G is a tree, we can take G as a tree
extension. It is immediately clear that we then have that sw(G) = 1. However, the under-
lying undirected graph G̃ has a pathwidth of 2, which should be clear by inspection.2 As a
consequence, the pathwidth (of the underlying undirected graph) is larger than the scanwidth
of this DAG.

Now consider the graph H in Figure 3.2b. For this graph, only one extension is possible:
σ = (c, b, a, ρ). Then we can just calculate the scanwidth as sw(H) = sw(σ) = 3. This same
layout gives a pathwidth of 2 for the underlying undirected graph, and it turns out that this
is optimal. Thus, in this case, the pathwidth (of the underlying undirected graph) is smaller
than the scanwidth. In general, the scan- and pathwidth are therefore not comparable to each
other.

x

a

ρ

b

y

c

z

(a) Weakly connected DAG G

c

ρ

a

b

(b) Weakly connected DAG H

Figure 3.2: (a): Weakly connected DAG G, with sw(G) = 1 < 2 = pw(G̃). (b): Weakly connected DAG H, with
sw(H) = 3 > 2 = pw(H̃).

Pathwidth also has a directed counterpart: directed pathwidth [Bar06]. Berry, Scornavacca
and Weller [BSW20] argue that this parameter is always 0 for DAGs. They also present re-
gister width, which can be viewed as a DAG-variant of pathwidth. This parameter is also
incomparable to scanwidth by the above counterexamples.

Treewidth
In the introduction, the use of scanwidth as a parameter in algorithms in phylogenetics was
motivated by the successful applicability of another tree measure: treewidth. This parameter
has seen a vast amount of research efforts (see [Bod12] for a survey). A fabled result by
Bodlaender [Bod93] is that the treewidth can be calculated in linear FPT time. Although
normally defined by a so-called tree-decomposition (see e.g. [Die17]), we will use a different -
yet equivalent - formulation for treewidth. This allows us to relate treewidth to scanwidth in
a more straightforward manner. The formulation we use is from [SW22].

Definition 3.15 (Treewidth). Let G = (V, E) be a connected undirected graph. For a tree layout Γ
and a vertex v of V, we will denote TWΓ

v = {u ∈ V : u >Γ v, ∃w ≤Γ v s.t. uw ∈ E}. Then the
treewidth of G is

tw(G) = min
Γ∈T (V)

max
v∈V
|TWΓ

v |.

Furthermore, we denote tw(Γ) = maxv∈V twΓ
v , where twΓ

v = |TWΓ
v |.

Recall, that T (V) is the set of all tree layouts of G, since G is an undirected graph. Es-
sentially, treewidth is to pathwidth, what scanwidth is to cutwidth. Scanwidth extends the
search space of cutwidth to tree extensions, while still looking at arc-cuts. Similarly, treewidth

2This also follows more formally from [Sch90, Thm. 4]. There it is proved that a tree has pathwidth ≥ p, if and
only if it contains a vertex with three subtrees, each having pathwidth ≥ p− 1.

3.2. Bounds and relations to other parameters 22

extends the search space of pathwidth to tree layouts but still looks at endpoints of edges in
the cuts such that the endpoints are higher up in the tree.

To exemplify the relation between treewidth and scanwidth, consider the canonical tree
extension Γσ in Figure 2.4b, where GWΓσ

v = {wz, qu, qv}. For the treewidth, we can disregard
the directions, and the set TWΓσ

v now contains only the endpoints in GWΓσ

v that are higher up
in the tree than v. Therefore, TWΓσ

v = {w, q}.
In [BSW20] it is mentioned without proof that the treewidth of the underlying undirected

graph of a DAG lower bounds its scanwidth.3 This fact is far from obvious when looking
at the common definition of the treewidth and heavily relies on the uncommon alternative
definition we have given here. As this definition is not referred to in [BSW20], we feel the
need to formally prove the bound in the next lemma.

Lemma 3.16. Let G = (V, E) be a weakly connected DAG and G̃ its underlying undirected graph,
then

tw(G̃) ≤ sw(G).

Proof. Let Γ be some tree extension of G. Clearly, Γ is then also a tree layout for G̃. (Note
that the converse does not need to hold.) Let v ∈ V be arbitrary. By definition, GWΓ

v =
{xy ∈ E(G) : x >Γ v ≥Γ y}. We now define the mapping ϕ : GWΓ

v → TWΓ
v as ϕ(xy) = x.

We first show that we have specified the correct codomain. In other words, ϕ indeed
maps all elements of GWΓ

v to TWΓ
v . For any xy ∈ GWΓ

v , we surely have that x ∈ V and
that x >Γ v. If we now set y = w, we immediately find the w with w ≤Γ v, such that
xw ∈ E. Thus, x is indeed in TWΓ

v .
Secondly, we prove that ϕ is surjective. To this end, let u ∈ TWΓ

v be arbitrary. Then,
there exists at least one w such that u >Γ v ≥Γ w and uw ∈ E. But then, it holds that
uw ∈ GWΓ

v , and so ϕ(uw) = u. This shows that ϕ is surjective.
We have now shown that ϕ is a surjective mapping from GWΓ

v to TWΓ
v . It must then

hold that |GWΓ
v | ≥ |TWΓ

v |, or equivalently, twΓ
v ≤ swΓ

v . Then also, tw(Γ) = maxv twΓ
v ≤

maxv swΓ
v = sw(Γ). Finally, letting Γ be such that sw(G) = sw(Γ), proves the bound.

3.2.2. Reticulation number and level of a network
In this subsection we show that the scanwidth is at most the reticulation number of a net-
work + 1, and consequently at most the level + 1. Although we will make use of a result that
will be proved in a later section, we feel that the bound better fits within this section and thus
already present it here.

The fact that the scanwidth is at most the level + 1 for a binary network has already been
stated without proof in [BSW20] and is proved in the appendix of [Rab+21]. Although a
very interesting result, this proof heavily relies on notions that are introduced for the specific
context of vectors of population interfaces, making it less accessible without understanding the
complete context of the paper. Thus, we tackle the bound from a more graph theoretical point
of view, making the proof (hopefully) more approachable. Furthermore, we generalize the
result to non-binary networks.

As a starting point, we prove a bound concerning the indegrees of sinksets of a network.
Recall that we write W ⊑ V, to indicate that W is a sinkset of a DAG G = (V, E).

Lemma 3.17. Let G = (V, E) be a network with reticulation number k. Then, for all W ⊑ V such
that G[W] is weakly connected, we have that

δin(W) ≤ k + 1.
3It was actually stated the other way round (and also mistakenly stated that cutwidth bounds scanwidth from
below). However, one of the authors confirmed that it was intended as expressed here [Wel23].

3.2. Bounds and relations to other parameters 23

Proof. Recall from the preliminary chapter that we can formally write the reticulation
number as

k = ∑
v∈V:δin(v)≥2

(δin(v)− 1).

Now define
rW = ∑

v∈W:δin(v)≥2

(δin(v)− 1),

for all W ⊆ V. Thus, rW takes only the reticulations in the set W into account.
We will now prove the stronger statement that for all W ⊑ V with G[W] weakly

connected, δin(W) ≤ rW + 1. This will immediately imply the lemma, since rW ≤ k. For
any such set W, we will prove this by induction on rW .

Base case: (rW = 0). Let G be a network with W ⊑ V such that G[W] is weakly
connected and rW = 0. Then, W contains no reticulation vertices, else rW > 0. As W is a
weakly connected sinkset, G[W] must then either be a pendant tree of G, or G[W] = G.
In both cases, δin(W) ≤ 1 = rW + 1.

Induction step: (rW ≥ 1). Let G be a network with W ⊑ V such that G[W] is weakly
connected and rW ≥ 1. Assume that the induction hypothesis holds for rW − 1. As
rW ≥ 1, this means that W contains a reticulation vertex. We can then pick an arc uv ∈ E
such that v is a reticulation vertex in W. Let G′ = G− {uv}. It is easy to see that W is still
a sinkset of G′, and that rW(G′) = rW(G)− 1. Now consider two cases.

Case 1: If G′[W] is weakly connected, the induction hypothesis shows that δin
G′(W) ≤

rW(G′) + 1. But then, if we add uv back to G′ to obtain G again, we can only increase the
indegree of W by 1, and it follows that δin

G (W) ≤ δin
G′(W) + 1 ≤ rW(G′) + 2 = rW(G) + 1.

Case 2: If G′[W] is not weakly connected, the deletion of uv must have disconnected
G[W]. Deletion of one arc can only increase the number of weakly connected components
by 1. Therefore, G′[W] consists of two weakly connected components: G′[W1] and G′[W2],
with W1 ∪W2 = W and W1 ∩W2 = ∅. Because G′[W1] and G′[W2] are disconnected in G′,
and W was a sinkset in G′, we must have that W1 and W2 are sinksets of G′. Since W1 and
W2 partition W, we have

rW(G′) = ∑
v∈W:δin

G′ (v)≥2

(δin
G′(v)− 1)

= ∑
v∈W1 :δin

G′ (v)≥2

(δin
G′(v)− 1) + ∑

v∈W2:δin
G′ (v)≥2

(δin
G′(v)− 1) = rW1(G

′) + rW2(G
′).

For both i = 1 and i = 2, we now get that rWi(G
′) ≤ rW(G′) = rW(G)− 1. Further-

more, G′[Wi] is a weakly connected sinkset, as discussed above. Thus, we can apply the
induction hypothesis, and get δin

G′(Wi) ≤ rWi(G
′) + 1 for i = 1, 2. Using this and the fact

that no arc exists between W1 and W2 in G′, we get

δin
G′(W) = δin

G′(W1) + δin
G′(W2) ≤ (rW1(G

′) + 1) + (rW2(G
′) + 1) = rW(G′) + 2.

Since uv disconnected G[W], u and v must both be in W. Consequently, the arc uv can
not count towards the indegree of W. From this, it follows that δin

G (W) = δin
G′(W) ≤

rW(G′) + 2 = rW(G) + 1.
In both cases, we have shown that δin(W) ≤ rW + 1, which concludes the proof.

Since indegrees of sinksets correspond to cuts in a tree extension, we can now prove that
the scanwidth of a network is at most the reticulation number + 1.

3.2. Bounds and relations to other parameters 24

Lemma 3.18. Let G = (V, E) be a network with reticulation number k. Then,

sw(G) ≤ k + 1.

Proof. Let Γ be an optimal tree extension of G. By Corollary 3.3, we can choose Γ to
be canonical. Let v ∈ V be arbitrary, and consider the set GWΓ

v . We can write swΓ
v =

|GWΓ
v | = δin(V(Γv)), where Γv is the subtree of Γ rooted at v. But as Γ is canonical,

Proposition 3.5 implies that G[V(Γv)] is weakly connected. Clearly, V(Γv) is also a sinkset
(as Γ is a tree extension of G). According to Lemma 3.17, we then have that swΓ

v =
δin(V(Γv)) ≤ k + 1.

Since v was arbitrary,

sw(G) = sw(Γ) = max
v∈V

swΓ
v ≤ k + 1.

The following result leans on a result in a later section but should be quite intuitive in its
own right.

Corollary 3.19. Let G = (V, E) be a rooted level-k network, then

sw(G) ≤ k + 1.

Proof. By definition, each block of G has a reticulation number of at most k. As any
block of a network is a network in itself, we can apply Lemma 3.18 here. Therefore, each
block of G has a scanwidth of at most k + 1. In Corollary 3.26 in the next section we will
show that the scanwidth of a rooted, weakly connected DAG is equal to the maximum
scanwidth of its blocks. As a consequence, we have that the scanwidth of G is at most
k + 1.

The above bound is certainly not tight in general. Consider for example the network
in Figure 3.3, which is a variation of a network from [Rab+21]. This network always has a
scanwidth of 3 but can be extended to have an arbitrarily large level.

a1
b1

b2

a2

an−1
bn−1

bn

an

(a) Ladder graph Ln

a1 b1
b2

a2
an−1 bn−1

bn
an

(b) Optimal tree extension Γ1

a1

b1 b2

a2 an−1

bn−1 bn

an

(c) Worst-case tree extension Γ2

Figure 3.3: (a): The ladder-graph Ln (with n ≥ 3), which is a rooted binary network with level n − 1 and 2n
vertices. (b): An optimal tree extension Γ1 of Ln with scanwidth 3. (c): The worst-case tree extension Γ2 of Ln with
scanwidth n.

3.2. Bounds and relations to other parameters 25

3.2.3. Weak-scanwidth: a lower bound
In [Bez99] a lower bound of the undirected cutwidth is mentioned. This bound has its origin
in edge isoperimetric theory: the study of edge-cuts obtained by fixed-sized bipartitions of a
graph. We introduce a related bound for scanwidth: weak scanwidth.

Definition 3.20 (Weak scanwidth). Let G = (V, E) be a weakly connected DAG, and for all
W ⊑ V, denote by δin(W) the largest indegree in G of the vertex sets of any of the weakly connected
components of G[W]. The weak scanwidth of G is then

zw(G) = max
i∈[V]

min
W⊑V:|W|=i

δin(W).

Furthermore, we let zwi(G) = minW⊑V:|W|=i δin(W), for any i ∈ [V].

To illustrate this definition, consider the graph G in Figure 3.4a. G has only one sink-
set of size 2: W = {a, b}. Since G[W] is not weakly connected, δin(W) only counts the
largest indegree of any of its components. In this case, both components have an indegree
of 1, thus we have that zw2(G) = 1. On the other hand, G has two sinksets of size 8:
W1 = {a, b, w, x, y, z, q, u} and W2 = {a, b, w, x, y, z, q, v}. Both of them induce subgraphs
that are weakly connected, implying that δin equals their indegrees, which are δin(W1) = 3
and δin(W2) = 4. We then get that zw8(G) = min{δin(W1), δin(W2)} = 3. If one repeats this
for every i, it will turn out that zw(G) = 4.

w

y z q

u v

ρ

x

a b
(a) Weakly connected DAG G

w

y
z

q

u
v

ρ

x

a
b

(b) Optimal tree extension Γ

Figure 3.4: (a): Weakly connected DAG G with sw(G) = 5 and zw(G) = 4. (b): Optimal tree extension Γ of G.

The scanwidth of the graph G equals 5 (see the optimal tree extension in Figure 3.4b).
It is no coincidence that this value is larger than the weak scanwidth of the graph. As we
will prove in Lemma 3.21, the weak scanwidth is always a lower bound on the scanwidth.
Moreover, any solution to the weak scanwidth problem (i.e. any zwi) serves as a lower bound
for the scanwidth.4

Lemma 3.21. Let G = (V, E) be a weakly connected DAG, then

zw(G) ≤ sw(G).

4This is the reason for the name ‘weak’ scanwidth. It mimics the concept of ‘weak duality’: we have a maximiza-
tion problem where any solution functions as a lower bound for a related minimization problem.

3.2. Bounds and relations to other parameters 26

Proof. We claim that for any i ∈ [V], there exists an optimal extension σ such that |SWσ
i | =

δin(σ[1 . . . i]).

Proof of claim: For any extension σ, the set SWσ
i contains all arcs entering the com-

ponent G[U] of G[1 . . . i] that contains σ(i), with U ⊑ σ[1 . . . i]. Clearly, δin(U) ≤
δin(σ[1 . . . i]). We then get that SWσ

i = δin(U) ≤ δin(σ[1 . . . i]).
Now assume that an optimal σ does not have the desired property, i.e. |SWσ

i | <
δin(σ[1 . . . i]). Then this maximum indegree must be attained by some other sinkset.
Let W ⊑ σ[1 . . . i] be such that δin(W) = δin(σ[1 . . . i]). We will construct an optimal
extension π that has the desired property. Let σ(j) be the vertex in W that is the
highest in the extension (note that j < i, as if j = i, we would already have the
property). The extension where we move σ(j) upwards to above σ(i) will be our
extension π. We have that π is still an extension of the canonical tree extension Γσ,
because all vertices between positions i and j are not weakly connected to σ(j) in
σ[1 . . . i]. By Proposition 3.5, the optimal tree extension Γσ is then also canonical for
π, and so π is also optimal.

As now |SWπ
i | = δin(W) = δin(σ[1 . . . i]) = δin(π[1 . . . i]), the claim is proved. △

Let i ∈ {1, . . . , |V|} be arbitrary, and let σ be an optimal extension as in the claim. Due
to the property of the claim, we have that |SWσ

i | = δin(σ[1 . . . i]) ≥ minW⊑V:|W|=i δin(W).
Here, we used that σ[1 . . . i] ⊑ V (else, σ would not be G-respecting) and |σ[1 . . . i]| = i.
From this inequality, we obtain that

sw(G) = sw(σ) = max
j∈[V]
|SWσ

j | ≥ |SWσ
i | ≥ min

W⊑V:|W|=i
δin = zwi(G).

Since i was arbitrary, it now follows immediately that

zw(G) = max
i∈[V]

zwi(G) ≤ sw(G).

Intuitively, the above proof uses the observation that one can relate the sets W of size i, to
the first i vertices of an extension. This brings us to the reason why equality does not hold
in the above lemma: the nested solutions property [Bez99] does not always hold. Formally, this
means that there does not need to exist a nested sequence of sinksets W1 ⊏ W2 ⊏ · · · ⊏ W|V|
with |Wi| = i and δin(Wi) = zwi(G), for all i ∈ [V]. As a consequence, we are not always
able to construct an extension σ from the sequence of nested sinksets, with the property that
swσ

i = zwi(G) for each i.
For an example where this property does not hold, we revert our attention back to the

DAG G from Figure 3.4, for which we have that zw6(G) = 4. The two sinksets of size 6 for
which this value is attained, both contain the vertex q. However, the sinkset {a, b, x, y, z, u},
which uniquely determines zw7(G), does not contain q. So indeed, the nested solutions prop-
erty does not hold for this graph G.

Whenever the optimal values do coincide, a solution to the weak scanwidth problem
provides a certificate of optimality for the scanwidth problem. Consider for example Fig-
ure 3.3. Say we are given the extension of scanwidth 3 from that figure. It can then be shown
to be an optimal solution, by using that zw(G) ≥ zw3(G) = 3. Furthermore, this value is
easily found. It requires us to calculate δin only for the two sinksets of size 3: {an, bn−1, bn}
and {bn−2, bn−1, bn}.

3.3. Reduction rules 27

3.3. Reduction rules
Before discussing algorithms that compute the scanwidth and find its corresponding (tree)
extension, it is useful to create some reduction rules. In Subsection 3.3.1 we will explain that
one can split the scanwidth problem over the blocks of a network. Subsection 3.3.2 will cover
an arc-contraction rule, while Subsection 3.3.3 summarizes the complete reduction scheme
and provides a nice bound on the size of a reduced instance.

3.3.1. (S-)blocks of a graph
Magne et al. [Mag+21] mention that the edge-treewidth can be split into subproblems for each
block of a graph. It is rather intuitive that a similar result is true for the scanwidth of a rooted
DAG. One needs to be careful, however, as this is not the case for DAGs with multiple roots.
Think for example of a wide upside-down tree. That is, each leaf of the tree becomes a root,
and its only root becomes the sole leaf. Such an upside-down tree will have a scanwidth that
is larger than 1. However, each block of such a DAG will be a single arc of scanwidth 1.

To remedy this problem, we introduce a non-standard generalization of a block for DAGs
with multiple roots, which we call scanwidth-blocks or s-blocks.

Definition 3.22 (S-block). Let G = (V, E) be a weakly connected DAG and v a cut-vertex of G.
If at least one of the connected components of G − {v} does not contain any root of G, we call v a
directed cut-vertex. An s-block of G is a maximal weakly connected induced subgraph of G without
any directed cut-vertices.

Intuitively, this definition prevents us from splitting a graph at a cut-vertex such that all
resulting subgraphs will contain a root of the DAG. In such a case, we can never be sure
that one such block will be above the other. Although this intuitively makes sense, it will be
more convenient to characterize the s-blocks using the blocks of an auxiliary graph. Proposi-
tion 3.23 formally describes this idea, while Figure 3.5 illustrates this characterization and the
above definition of s-blocks.

Proposition 3.23. Let G = (V, E) be a weakly connected DAG, and let H be the underlying undir-
ected graph of G where we add edges between all roots of G. Then for all W ⊆ V, the subgraph G[W]
is an s-block of G, if and only if H[W] is a block of H.

Proof. We will prove that a vertex v ∈ V is a directed cut-vertex in G, if and only if it is a
cut-vertex in H. Since G and H have the same vertex set, this then immediately implies
that the s-blocks of G coincide with the blocks of H.

(⇒) Let v be a directed cut-vertex in G. By definition, v is a cut-vertex in G, and at
least one of the components G[U] (with |U| < |V|) of G − {v} does not contain a root
of G. Then, H[U] must also be a component of H − {v}. This is true, since the only
additional edges that H has compared to G are between roots, and those edges have no
endpoints in U. As |U| < |V|, the graph H − {v} contains multiple components. Thus, v
is a cut-vertex in H.

(⇐) Let v be a cut-vertex in H. By definition, H − {v} contains multiple components.
Now assume towards a contradiction that all components of H − {v} contain a root of
G. As H contains an edge from each root of G to any other root of G, those components
must be connected: a contradiction. Thus, there exists at least one component H[U] (with
|U| < |V|) of H − {v} that does not contain a root of G. Clearly, v is also a cut-vertex
of G, because G contains fewer arcs than the edges of H. Furthermore, G[U] must be a

3.3. Reduction rules 28

component of G− {v}. Therefore, G− {v} contains a component without a root, and so
we must have that v is a directed cut-vertex in G.

A direct consequence of this proposition is that if G is rooted, s-blocks are equivalent to
blocks. We formalize this in the following corollary.

Corollary 3.24. Let G = (V, E) be a weakly connected rooted DAG. Then, for all W ⊆ V, the
subgraph G[W] is an s-block of G, if and only if it is a block of G.

Proof. Let H be the auxiliary graph as defined in Proposition 3.23. The proposition says
that the s-blocks of G are exactly the blocks of H. But as G has just one root, H will just
be the underlying undirected graph of G. Thus, its blocks are by definition the blocks of
G. This proves the result.

(a) Weakly connected DAG G (b) Auxiliary graph H (c) S-blocks of G

Figure 3.5: (a): A multi-rooted weakly connected DAG G, with its directed cut-vertices coloured in black and one
cut-vertex that is not a directed cut-vertex coloured in grey. (b): The auxiliary undirected graph H (as defined in
Proposition 3.23) where the newly added edges are dashed. (c): The s-blocks of the DAG G.

The proof of the following theorem is rather technical, yet the idea is very intuitive: we
can split the graph into its s-blocks when computing the scanwidth. Note that the proof is
constructive and can therefore be used to reconstruct solutions of the whole problem from its
subproblems.

Theorem 3.25. Let G be a weakly connected DAG and S(G) the set of s-blocks of G. Then, we have
that

sw(G) = max
H∈S(G)

sw(H).

Proof. We will prove this by induction on the number of s-blocks k. The base case where
k = 1 follows trivially.

Let k ≥ 1, and assume that the theorem holds for any graph with k s-blocks. Let G
be a weakly connected DAG with k + 1 s-blocks. By Proposition 3.23, these s-blocks are
exactly the blocks of the auxiliary graph H defined in that proposition. But then, there
must be an s-block that contains all the roots of G (the ‘root-block’), as those roots form a
clique in the auxiliary graph H (see also Figure 3.5c). Furthermore, any other block in H

3.3. Reduction rules 29

(and thus s-block in G) can have at most one root in it, since blocks can have at most one
vertex in common with another block. Thus, all vertices in such other blocks are ‘below’
this root-block. Because we have more than one s-block, we can indeed find such an s-
block that is below the root-block. It should not be surprising that we can move down in
the graph, and even find an s-block G1 = G[V1] (with V1 ⊂ V) that is pendant. That is, G1
is attached to the rest of G by a directed cut-vertex v, all vertices of V1 are below v in G,
and no other s-blocks are ‘below’ G1.a

Now define G2 = G[V\V1 ∪ {v}] = (V2, E2). Then, G1 and G2 are subgraphs that
only have v in common. Let σ1 ∈ Π[V1] and σ2 ∈ Π[V2]. As v was above all vertices
of G1, it is the root of G1. Thus, we know that it always holds that σ1 = σ′1 ◦ (v), where
σ′1 ∈ Π[V1 \ {v}]. Because G1 is a pendant s-block of G, we can define σ = σ′1 ◦ σ2 ∈ Π[V].
Since no arcs are directed from V2 \ {v} to V1 \ {v} (because both parts are only connected
through v), we then have:

sw(σ, G) = max
w∈V

swσ
w = max

{
max

w∈V1\{v}
swσ

w, max
w∈V2

swσ
w

}
= max

{
max

w∈V1\{v}
swσ1

w , max
w∈V2

swσ2
w

}
= max

{
max
w∈V1

swσ1
w , max

w∈V2
swσ2

w

}
= max{sw(σ1, G1), sw(σ2, G2)}. (3.1)

Here, we used that swσ1
v = 0 for the graph G1, as v is the root of G1.

We will now prove that sw(G) = max{sw(G1), sw(G2)}. Since the k + 1 s-blocks of G
are exactly G1 and the k s-blocks of G2, it then follows by the induction hypothesis that

sw(G) = max{sw(G1), sw(G2)} = max{sw(G1), max
H∈S(G2)

sw(H)} = max
H∈S(G)

sw(H),

which proves the theorem.
(≤) Let σ1 = σ′1 ◦ (v) ∈ Π[V1] and σ2 ∈ Π[V2], such that sw(G1) = sw(σ1, G1) and

sw(G2) = sw(σ2, G2). Let σ = σ′1 ◦ σ2 ∈ Π[V]. Then, using equation (3.1),

sw(G) ≤ sw(σ, G) = max{sw(σ1, G1), sw(σ2, G2)} = max{sw(G1), sw(G2)}.

(≥) Let Γ be an optimal canonical tree extension of G, which exists by Corollary 3.3.
Because the vertices of V1 \ {v} are not above any of the vertices in V2, Γ must have an ex-
tension of the form σ = σ′1 ◦ σ2, with σ′1 ∈ Π[V1 \ {v}] and σ2 ∈ Π[V2]. By Proposition 3.5,
Γ is then canonical for σ, and we thus have that sw(σ, G) = sw(σ). Using equation (3.1),
we then have that

sw(G) = sw(σ, G) = max{sw(σ1, G1), sw(σ2, G2)} ≥ max{sw(G1), sw(G2)}.

aThis is the reason we introduced the s-blocks. Else, we can not ensure that there exists such a pendant
s-block. A graph could consist of two blocks, both containing a root, attached to a leaf of the graph. Then,
neither of the blocks is completely below the other. However, both blocks form one s-block (namely the
root-block), and therefore such a graph would consist of just one s-block.

An immediate corollary is now that one can split over the blocks to compute the scanwidth
if G has a single root. Note that we already used this result in Subsection 3.2.2 to show that
the scanwidth is less than k + 1 for level-k networks.

3.3. Reduction rules 30

Corollary 3.26. Let G be a weakly connected rooted DAG and B(G) the set of blocks of G. Then, we
have that

sw(G) = max
H∈B(G)

sw(H).

Proof. This follows directly from the equivalence of s-blocks and blocks in rooted DAGs,
as shown in Corollary 3.24, and from Theorem 3.25.

3.3.2. Arc contractions
We now introduce another safe reduction rule that allows us to simplify the graph by remov-
ing certain arcs and vertices. It formalizes the idea that if a vertex has only one incoming
arc and one outgoing arc, the two arcs can be replaced by a single arc and the vertex can be
deleted. In a sense, we ‘contract’ arcs of indegree-1 and outdegree-1, hence the name of this
subsection.

Lemma 3.27. Let G = (V, E) be a weakly connected DAG, and let v ∈ V be a vertex with a single
parent u and a single child w such that uw /∈ E. Let H be the same graph, where the vertex v is deleted,
the arcs uv and vw are deleted, and the arc uw is added. Then, sw(G) = sw(H).

Proof. Claim: Let σ be an extension of G, and let π = σ[V \ {v}] be an extension of H.
Then, for all a, b ∈ V \ {v}, we have that a G[σ[1 . . . b]]

↭ b, if and only if a H[π[1 . . . b]]
↭ b. Further-

more, a >G b, if and only if a >H b.

Proof of claim: First note that π indeed is an extension of H, as u >H w. The second
part of the claim is trivial and needs no proof.

(⇒) Let a, b ∈ V \ {v}, and assume that a G[σ[1 . . . b]]
↭ a. Then, there exists an un-

directed a-b path in G[σ[1 . . . b]]. If this path does not use uv and vw, the same path
connects a and b in H[π[1 . . . b]]. If it does use uv or vw, both must be used, as a nor
b can equal v (by assumption), and v has no other adjacent vertices. But then, we
can replace these two arcs with uw to get a path in H. This proves the first direction.

(⇐) Let a, b ∈ V \ {v}, and assume that a H[π[1 . . . b]]
↭ b. Then, there exists an undir-

ected a-b path in H[π[1 . . . b]]. If this path does not use uw, the same path connects
a and b in G[σ[1 . . . b]]. If it does use uw, we can replace the arc with uv and vw in
G. Consequently, there is an a-b path in G. This proves the claim. △

(sw(G) ≥ sw(H)) Let σ be an optimal extension for G, and define the extension π =
σ[V \ {v}] for H. Now let z ∈ V \ {v} be arbitrary, and let xy ∈ SWπ

z (H). If xy ̸= uw,
then xy ∈ SWσ

z (G) by both parts of the claim. If xy = uw, then clearly either uv, or vw is
in SWσ

z (G). Thus, we get that swπ
z (H) = |SWπ

z (H)| ≤ |SWσ
z (G)| = swσ

z (G). Therefore,

sw(G) = sw(σ, G) = max
z∈V

swσ
z (G) ≥ max

z∈V\{v}
swπ

z (H) = sw(π, H) ≥ sw(H).

(sw(G) ≤ sw(H)) Let π be an optimal extension for H with w = π(i). We also have
that σ = π[1 . . . i] ◦ (v) ◦π[i+ 1 . . .] is an extension of G. Note that then σ[V \ {v}] = π, as
in the claim. Now let z ∈ V \ {v} be arbitrary, and let xy ∈ SWσ

z (G). If xy ̸= uv and xy ̸=
vw, then xy ∈ SWπ

z (H) by both parts of the claim and the definition of the sets SW. In the
other case, xy is either uv or vw (note that they can not both be in the set SWσ

z (G)). But
then, uw ∈ SWπ

z (H). Overall, we get that swσ
z (G) = |SWσ

z (H)| ≤ |SWπ
z (H)| = swπ

z (H).

3.3. Reduction rules 31

By similar arguments, one finds that swσ
v(G) = swπ

w(H). Therefore,

sw(G) ≤ sw(σ, G) = max
z∈V

swσ
z (G) = max{swσ

v(G), max
z∈V\{v}

swσ
z (G)}

≤ max{swπ
w(H), max

z∈V\{v}
swπ

z (H)} = max
z∈V\{v}

swπ
z (H) = sw(π, H) = sw(H).

The reason we impose the restriction that uw /∈ E in the above lemma is that this would
create a multigraph. Of course, one can generalize scanwidth to multigraphs and remove the
restriction. Similarly, if we were to generalize scanwidth to weighted graphs, the restriction
can be removed by increasing the weight of the already existing arc.

3.3.3. Complete decomposition scheme
In combination with any exact algorithm, the reduction rules from the previous two sub-
sections can be used to compute the scanwidth. This scheme is gathered in the following
decomposition algorithm:

Algorithm 3: Decomposition algorithm
Input: Weakly connected DAG G = (V, E), an exact algorithm ExactSW that computes

the scanwidth of a weakly connected DAG.
Output: Scanwidth sw of G.

1 initialize sw← 0
2 G′ ← underlying undirected graph of G, with edges added between all roots of G
3 S ← {G[W] : W ⊆ V, G′[W] is a block of G′}; // Set of s-blocks of G
4 for each H ∈ S do
5 if H is a single arc then
6 sw← max{sw, 1}
7 else if H is a cycle with a unique root then
8 sw← max{sw, 2}
9 else

10 H′ ← H after exhaustively contracting arcs using Lemma 3.27
11 sw← max{sw, ExactSW(H′)}

12 return sw

To summarize, the algorithm first decomposes a DAG into its s-blocks, using the auxiliary
graph G′. It then checks for each s-block whether it is a single arc or a rooted cycle. If this
is the case, the scanwidth of that s-block is already known. For the remaining s-blocks, we
use the arc contraction rule to decrease their size. We then only need to exactly calculate the
scanwidth of those s-blocks with some exact algorithm. Figure 3.6 provides an illustration of
the decomposition on an example graph.

In the next lemma, we formally prove the algorithm’s correctness and its time complexity.
We note that the proofs of Theorem 3.25 and Lemma 3.27 can be used to make the algorithm
constructive, if ExactSW also returns an optimal extension.

Lemma 3.28. Let G = (V, E) be a weakly connected DAG of n vertices and m arcs, and let ExactSW be
an algorithm that finds the scanwidth of any weakly connected DAG H′ = (V ′, E′) in O(f (|V ′|, |E′|))
time for some function f . Then, Algorithm 3 returns sw(G) in O(n2 + n · f (n′, m′)) time. Here,
n′ ≤ n (resp. m′ ≤ m) is the maximum number of vertices (resp. arcs) of any of the graphs H′ that
appear in Algorithm 3.

3.3. Reduction rules 32

Figure 3.6: Illustration of the decomposition algorithm. The first graph shows the original graph. Then, the graph
is split into its s-blocks. Thereafter, the single arcs and the cycle with a unique root are ‘deleted’, since their
scanwidths are known. Note that we then also know that the scanwidth of the complete graph is at least 2. Lastly,
we exhaustively contract indegree-1 outdegree-1 arcs in the remaining s-blocks, until it will create a multigraph.

Proof. Correctness: By Proposition 3.23, S will be the set of s-blocks of G. From The-
orem 3.25 it follows that we can indeed maximize over the scanwidth of the s-blocks of
G. Since a single arc has just one extension of scanwidth 1, the first if statement is correct.
Any extension of a cycle with a unique root has a scanwidth of 2, showing correctness of
the second if statement. Correctness of the else statement now follows from Lemma 3.27,
and the assumption that ExactSW correctly returns the scanwidth of H′.

Time complexity: The time complexity of the creation of G′ is bounded by O(n2). We
can find the blocks of G′ in O(|V(G′)| + |E(G′)|) = O(n2) time [HT73]. We then loop
over at most n s-blocks. Each of those s-blocks H contains at most n vertices. Thus, it
takes O(n) time to check whether H is a single arc, or if a cycle with a unique root.a

Exhaustively contracting arcs also takes O(n) time, since we check for each vertex if it
has indegree-1 and outdegree-1, together with some other constant operations. Using the
algorithm ExactSW on H′ then takes f (n′, m′) time, where n′ and m′ are bounds on the
size of H′, as defined in the lemma.

Summarizing, the complexity is O(n2 + n · (n+ f (n′, m′))) = O(n2 + n · f (n′, m′)).
aChecking whether H is a cycle with a unique root can for example be done by checking if H has one vertex
with indegree-0 and outdegree-2, one vertex with indegree-2 and outdegree-0, and then checking whether
the remaining vertices have indegree-1 and outdegree-1.

Due to this lemma, it is valuable to search for an upper bound on the size of the graphs H′

in the algorithm. This could help to bound the running time of an exact algorithm.
It turns out that if G is a network, we can bound the size of the graphs H′ by a linear

function of its level. A crucial observation here is that the graphs H′ are very similar to the
so-called simple level-k generators. These building blocks of binary networks were introduced
in [Ier09; Ier+09]. We mention that for binary networks the only difference between these
generators and our graphs H′ is that to obtain level-k generators we always contract arcs,
even if they lead to a multigraph. We will not prove this statement, as the exact relation to
level-k generators is not of immediate interest to us. What is however useful, is a known
bound on the size of the level-k generators.

In [Ier09, Lem 4.2] it is shown that the number of nodes of a level-k generator is at most
3k− 1, while the number of arcs is at most 4k− 2. Using techniques from this proof, we extend
these bounds to non-binary networks. As we do not allow multigraphs, we do need a small
adjustment to the bounds. However, they remain linear in k, so we feel this is justified for
the sake of simplicity. We prove these bounds directly, thus eliminating the need to formally
introduce generators.

3.3. Reduction rules 33

Lemma 3.29. Let G = (V, E) be a level-k network, and let H be a block of G. Let H′ be the block
H after exhaustively applying the arc-contraction reduction rule from Lemma 3.27. Then, |V(H′)| ≤
4k− 1 and |E(H′)| ≤ 5k− 2.

Proof. We can assume that H′ is not a single arc, as then the lemma follows trivially. We
now first prove the following claim on the types of vertices that can occur in H′.

Claim: Every vertex v ∈ V(H′) is of one of the following types: (i) unique root with
δin(v) = 0 and δout(v) ≥ 2; (ii) flow vertex with δin(v) = δout(v) = 1; (iii) tree-vertex with
δin(v) = 1 and δout(v) ≥ 2; (iv) reticulation vertex with δin(v) ≥ 2 and δout(v) ≤ 1.

Proof of claim: Because G has a unique root, and H′ originated from a block H of
G, the subgraph H′ must have a unique root. The outdegree of this root must be
at least 2, else the outgoing arc would be a block on its own: a case we excluded.
Now let v ∈ V(H′) be an arbitrary vertex that is not the unique root of H′. Then,
δin(v) > 0, and we can consider two cases. (Case 1: δin(v) = 1). In this case, the
outdegree of v can not be 0, else v would be a leaf with indegree 1. This would
mean that the incoming arc is a block on its own, thus H′ must again be a single
arc: a case we already excluded. Thus, v has an outdegree of at least 1 and must
either be a flow vertex or a tree-vertex. (Case 1: δin(v) ≥ 2). Then, v can not have an
outdegree that is greater than 1 since G is a network, and it does not have vertices
with both in- and outdegree larger than 1. Furthermore, the splitting into blocks
and the contraction of indegree-1 outdegree-1 arcs will never create such vertices.
Therefore, v must be a reticulation vertex, which proves the claim. △

Now suppose that the unique root of H′ has outdegree α ≥ 2, that H′ contains f flow
vertices, t tree-vertices with average outdegree β ≥ 2, and r reticulations with average
indegree γ1 ≥ 2 and average outdegree γ2 ≤ 1. By the claim, this covers all possible
vertices in H′. Note that the degrees that are not mentioned, are fixed by the claim.

The sum of indegrees of all vertices in H′ is now f + t + γ1r, while the sum of out-
degrees is α + f + tβ + γ2r. Since these values must be equal, we get that (β − 1)t =
(γ1 − γ2)r − α, and thus t ≤ γ1r − α. Every flow vertex in H′ must enter a reticulation,
else we would be able to contract it. Furthermore, each reticulation v can have at most
δin(v)− 1 flow vertices as its parents. For if all its parents were flow vertices, we would
be able to contract at least one of them. Thus, we also have that f ≤ (γ1 − 1) · r. Using
these two inequalities, we now get for the total number of vertices:

|V(H′)| = 1 + f + t + r ≤ 1 + (γ1 − 1) · r + γ1r− α + r ≤ 4 · (γ1 − 1) · r− 1.

As the total number of arcs equals the sum of indegrees, we also have:

|E(H′)| = f + t + γ1r ≤ (γ1 − 1) · r + γ1r− α + γ1r ≤ +5 · (γ1 − 1) · r− 2.

Now note that (γ1 − 1) · r = ∑v∈V(H′):δin(v)≥2(δ
in(v) − 1). Because G is level-k, the

graph H must have a reticulation number of at most k. Contracting some indegree-1
outdegree-1 arcs in H will not increase this number. By the definition of the reticulation
number from Subsection 2.2.2, we thus get that ∑v∈V(H′):δin(v)≥2(δ

in(v) − 1) ≤ k. This
gives us (γ1 − 1) · r ≤ k. Filling this in into the two upper bounds then proves the
lemma.

3.4. Scanwidth-1 and scanwidth-2 characterizations 34

3.4. Scanwidth-1 and scanwidth-2 characterizations
Using results from the previous section and characterizations for the edge-treewidth proved
in [Mag+21], we are able to provide characterizations for rooted DAGs of scanwidth 1 and 2.

Proposition 3.30. Let G = (V, E) be a weakly connected rooted DAG. Then the following are equi-
valent:

1. sw(G) ≤ 1;

2. G is a directed tree.

Proof. (1) ⇒ (2): Denote by G̃ the underlying undirected graph of G. According to
Lemma 3.12, we then have that etw(G̃) ≤ sw(G) ≤ 1. In [Mag+21, Thm. 4] it is shown
that G̃ is a forest if its edge-treewidth is at most 1. Since G is also weakly connected, G̃
must then be a tree. By definition, this means that G is a directed tree.

(2)⇒ (1): Just taking G itself as the tree extension, automatically gives that its scan-
width is at most 1.

This result does not need to hold for multi-rooted DAGs. Take for example a DAG with two
roots, connected at a single leaf. This is still a directed tree, but it has a scanwidth of 2.

Although it is fairly obvious that rooted cycles (i.e. cycles with a single root and a single
leaf), and thus (non-trivial) directed cactuses, have a scanwidth of 2, it is not immediately
clear that these are the only rooted DAGs with this property. In the following proposition, we
prove that this is indeed the case.

Proposition 3.31. Let G = (V, E) be a weakly connected rooted DAG. Then the following are equi-
valent:

1. sw(G) ≤ 2;

2. G is a directed cactus.

Proof. (1)⇒ (2): We let G̃ be the underlying undirected graph of G. We have that etw(G̃) ≤
sw(G) ≤ 2 by Lemma 3.12. In [Mag+21, Thm 5.] it is shown that G̃ is a cactus graph if its
edge-treewidth is at most 2. By definition, G is thus a directed cactus.

(2) ⇒ (1): By definition, the underlying undirected graph G̃ is a cactus graph. As-
suming we are not in the trivial case where |V| = 1, all blocks of G̃ must then be a single
edge or a cycle. As G has a single root, each block of G must then either be a single
arc of scanwidth 1 or a rooted cycle of scanwidth 2. By Corollary 3.26, it follows that
sw(G) ≤ 2.

Similar to the first proposition, this result also does not extend to DAGs with multiple roots.
As an example, consider two rooted cycles that meet at a single leaf. Such a graph is a cactus
but has scanwidth 4 (which is the indegree of the leaf).

Note that the only rooted DAGs with scanwidth 0 are the single vertices. Then, the previ-
ous two propositions imply that the rooted DAGs with scanwidth equal to 1 are the directed
trees that have at least 2 vertices, while the rooted DAGs with scanwidth equal to 2 are the
directed cactus graphs that are not directed trees.

Chapter4
Exact algorithms

In this chapter, our focus lies on methods that exactly compute the scanwidth. Section 4.1
covers a naive brute force solution. In Section 4.2 we look at a recursive algorithm, while the
subsequent section focuses on a dynamic programming solution. From an optimization point
of view, we aim to solve the following problem:

SCANWIDTH

Instance: Weakly connected DAG G.
Objective: Find an extension σ of G, with minimum scanwidth.

Note that we could also define the problem to search for an optimal tree extension (as
discussed in Subsection 2.2.5), but in this chapter we only consider solution methods that
construct optimal extensions. With Algorithm 2 it is possible to create an optimal tree exten-
sion from an optimal extension in quadratic time.

We also mention that Appendix A contains an integer linear programming formulation as
a solution method, which we provide as a starting point for possible future research.

4.1. Brute force solution
As a benchmark, we will first shortly discuss an exhaustive search method that solves SCAN-
WIDTH. The intuitive idea behind the approach is to generate all possible permutations of the
vertices in a DAG and check each permutation to determine if it is a valid extension. If it is, we
calculate the scanwidth of the extension, and finally, we select the extension with the smallest
scanwidth as the optimal solution. It is important to note that the number of permutations
for a graph with n vertices is n!. This results in a combinatorial explosion of the search space
for a growing input size. For later reference, we summarize this approach in the following
proposition.

Proposition 4.1. Let G = (V, E) be a weakly connected DAG of n vertices and m arcs, then a brute-
force algorithm will solve SCANWIDTH in O(n! · n ·m) time.

Proof. G has at most n! extensions, and by Corollary 3.9, it takes O(n ·m) time to calculate
the scanwidth of each of those. The statement then follows.

It seems beneficial to use an algorithm that directly creates all extensions, instead of check-
ing for each permutation whether it is an extension. The standard algorithm for this problem

35

4.2. Recursive algorithm 36

was proposed by Knuth and Szwarcfiter [KS74]. Although the worst-case time complexity
of their algorithm is still O(n!), the number of extensions can be significantly smaller than
n! in practice.1 Therefore, using their algorithm will possibly lead to improved efficiency in
practice.

4.2. Recursive algorithm
In this section, we develop a recursive algorithm that solves SCANWIDTH. The main idea
is to recursively keep splitting the graph into two (almost) equal-sized parts. The method
we will develop is based on an algorithm from Bodlaender et al. [Bod+11]. They present a
solution method for a range of ordering problems on undirected graphs, using a technique
by Gurevich and Shelah [GS87] for the TRAVELLING SALESMAN PROBLEM. We extend this
approach to DAGs and specifically tailor it towards scanwidth. To adapt the approach to
DAGs, we introduce the concept of an ordered partition.

Definition 4.2 (Ordered partition). Let G = (V, E) be a weakly connected graph and (A1, . . . , Ar)
an r-partition of V, with r ≥ 2 (and some Ai possibly empty). If for all 1 ≤ i < r, no arcs in E are
directed from

⋃
j≤i Aj towards

⋃
j>i Aj, then a (A1, . . . , Ar) is an ordered r-partition of V.

Intuitively, an ordered partition preserves the natural ordering of a DAG. As a consequence,
it is possible to concatenate extensions of the induced subgraphs of the ordered partition, res-
ulting in an extension of the entire graph. See Figures 4.1a and 4.1b for an illustration of this
concept.

a b c

x y z

u v

q

w

ρ

(a) Ordered 3-partition of a DAG

a b cx y zu v q w ρ

(b) Extension σ adhering to the ordered 3-partition

a b cx y zu v q w ρ

(c) Visualization of partial scanwidth

Figure 4.1: (a): The weakly connected DAG G from Figure 2.4a, with the colors indicating an ordered 3-partition
(L, W, R) of V(G). L is in green, W in red and R in blue. (b): The extension σ of G from Figure 2.4d which is a con-
catenation of extensions of the three subgraphs induced by the partition (L, W, R). (c): The same extension σ but
with a ‘window’ drawn around the red vertices, aiding the interpretation of partial scanwidth. The arcs between
two green (resp. blue) vertices are grey and dashed because they never count towards the partial scanwidth for
this ordered 3-partition.

Our recursive approach uses a natural generalization of scanwidth: partial scanwidth. This
concept allows us to analyze the scanwidth of only a subset of the vertices of a graph. This will
be useful to break down the problem into smaller subproblems. By solving these subproblems
recursively, we can build up the scanwidth of the entire graph. Before we state the formal
definition, recall that Π[W] is the set of all extensions of G[W].

Definition 4.3 (Partial scanwidth). Let G = (V, E) be a weakly connected DAG andQ = (L, W, R)
an ordered 3-partition of V such that W ̸= ∅. For σ ∈ Π[W] and a position i of σ, we will denote

PSWσ
i (Q) = {uv ∈ E : u ∈ σ[i + 1 . . .] ∪ R, v G[σ[1 . . . i] ∪ L]

↭ σ(i)}.
1In [KS74] it is explained that their algorithm can be made iterative with a running time of O(2n · n), at the cost
of its space complexity. However, it does so by not storing all extensions. To find the extension with the smallest
scanwidth we have to iterate over all generated solutions anyway, rendering this improvement useless for our
cause.

4.2. Recursive algorithm 37

Then the partial scanwidth of G for Q is

pswG(Q) = min
σ∈Π[W]

max
i∈W
|PSWσ

i (Q)|.

Furthermore, we let psw(σ,Q) = maxi∈W pswσ
i (Q) be the partial scanwidth of σ for Q, where

pswσ
i (Q) = |PSWσ

i (Q)| is the partial scanwidth of σ at position i for Q.

Essentially, partial scanwidth only considers a ‘window’ W of the vertices of G, while
assuming the vertices in the set L to be positioned on the left of W in an extension, and those
in the set R to be right of W.

Figure 4.1c clarifies this concept. Whereas the standard scanwidth of an extension looks at
the scanwidth at each vertex, the partial scanwidth only takes into account the scanwidth of
the red vertices. Although the specific ordering of the green (resp. blue) vertices is irrelevant,
the green (resp. blue) vertices are assumed to be left (resp. right) of the red vertices. Note
that only the arcs that appear in the red ‘window’ are important. The other (grey and dashed)
arcs, which connect two green (resp. blue) vertices, are never counted towards the partial
scanwidth.

We can now proceed with the main recursive idea of the algorithm. It builds upon Lemma 4
from [Bod+11], which presents a similar concept for more general functions on undirected
graphs. The following lemma is in some sense an adapted version for DAGs, specifically
tailored to (partial) scanwidth.

Lemma 4.4. Let G = (V, E) be a weakly connected DAG and Q = (L, W, R) an ordered 3-partition
of V, with W ̸= ∅.

(a) If |W| = 1 (with W = {w}), then pswG(Q) = |{uv ∈ E : u ∈ R, v G[L ∪W]
↭ w}|.

(b) If |W| ≥ 2, then for any 1 ≤ k < |W|,

pswG(Q) = min
W ′∈Wk

max
{

pswG
(
(L, W ′, R ∪ (W\W ′))

)
, pswG

(
(L ∪W ′, W\W ′, R)

)}
,

whereWk = {W ′ ⊆W : |W ′| = k and no arc in E is directed from W ′ to W \W ′}.

Proof. (a): By Definition 4.3 and the fact that G[W] only has a single extension (w), we get

pswG(Q) = min
σ∈Π[W]

max
i∈W
|PSWσ

i (Q)| = |PSW(w)
w (Q)|

= |{uv ∈ E(G) : u ∈ ∅ ∪ R, v G[{w} ∪ L]
↭ w}|

= |{uv ∈ E(G) : u ∈ R, v G[L ∪W]
↭ w}|.

(b): Let k ∈ {1, . . . , |W| − 1} be arbitrary. Throughout the proof, we write Q1(W ′) =
(L, W ′, R ∪ (W\W ′)) and Q2(W ′) = (L ∪W ′, W\W ′, R) for any W ′ ∈ Wk. Note that both
are also ordered 3-partitions of V with the middle set non-empty. This follows from the
fact that Wk contains only sets W ′ such that no arcs go from W ′ to W\W ′ and because
k ≥ 1.

First, we prove an equality that is at the core of the result. Let W ′ ∈ Wk be arbitrary,
and let σ1 ∈ Π[W ′], σ2 ∈ Π[W \W ′] and σ1 ◦ σ2 = σ ∈ Π[W]. The ordering σ is indeed an

4.2. Recursive algorithm 38

extension of G[W] by the definition ofWk. We then have that

psw(σ,Q) = max
w∈W

pswσ
w(Q)

= max
{

max
w∈W ′

pswσ
w(Q), max

w∈W\W ′
pswσ

w(Q)
}

= max
{

max
w∈W ′

pswσ1
w (Q1(W ′)), max

w∈W\W ′
pswσ2

w (Q2(W ′))
}

= max
{

psw(σ1,Q1(W ′)), psw(σ2,Q2(W ′))
}

. (4.1)

Here, the third equality is essential. It uses the important observation that if we only
maximize over a consecutive subsequence of vertices in σ, we can just as well put the
vertices to the left of this subsequence in the set L and the ones to the right in the set R.
We are now ready to prove the lemma.

(≤) Let W ′ ∈ Wk be arbitrary. Furthermore, let σ1 ∈ Π[W ′] be such that psw(σ1,Q1) =
pswG(Q1) and σ2 ∈ Π[W \W ′] be such that psw(σ2,Q2) = pswG(Q2). Both exist by
definition of the partial scanwidth. We now define σ = σ1 ◦ σ2 ∈ Π[W]. Using equa-
tion (4.1), we then have that

pswG(Q) ≤ psw(σ,Q) = max
{

psw(σ1,Q1(W ′)), psw(σ2,Q2(W ′))
}

= max
{

pswG(Q1(W ′)), pswG(Q2(W ′))
}

.

Because W ′ ∈ Wk was arbitrary, we obtain

pswG(Q) ≤ min
W ′∈Wk

max
{

pswG
(
Q1(W ′)

)
, pswG

(
Q2(W ′)

)}
.

(≥) Let σ ∈ Π[W] be such that pswG(Q) = psw(σ,Q), which exists by Definition 4.3.
Now choose W ′′ to be the set of the first k vertices of σ (clearly W ′′ ∈ Wk). We now denote
by σ1 the ordering consisting of the first k vertices of σ (in the same order). Similarly, σ2
denotes the |W| − k other vertices (again keeping the order). Thus, σ = σ1 ◦ σ2, with
σ1 ∈ Π[W ′′] and σ2 ∈ Π[W \W ′′]. Then, again using equation (4.1),

pswG(Q) = psw(σ,Q) = max
{

psw(σ1,Q1(W ′′)), psw(σ2,Q1(W ′′))
}

≥ max
{

pswG(Q1(W ′′)), pswG(Q1(W ′′))
}

.

As W ′′ was an element ofWk, we can minimize over all W ′ ∈ Wk to obtain

pswG(Q) ≥ min
W ′∈Wk

max
{

pswG
(
Q1(W ′)

)
, pswG

(
Q2(W ′)

)}
,

which proves the lemma.

With this at first glance quite complicated recursive relation, we can formulate a relatively
concise and elegant algorithm that solves SCANWIDTH optimally. We do so by using the
recursive relation from the previous lemma, with k equal to half the size of the set W. In this
way, we will be able to bound the number of 3-partitions that are considered. Note that in a
practical implementation of the algorithm (and also in subsequent algorithms), we can replace
the value ∞ with the trivial upper bound of the scanwidth, which is |E|+ 1 (as indicated in
Lemma 3.10b).

4.2. Recursive algorithm 39

Algorithm 4: Recursive algorithm to solve SCANWIDTH.
Input: Weakly connected DAG G = (V, E).
Output: Scanwidth sw of G, optimal extension σopt.

1 sw, σopt ← PartialScanwidth(∅, V, ∅)
2 return sw, σopt

procedure PartialScanwidth(L, W, R)
1 initialize psw← ∞; σ← ()
2 if |W| = 1 with W = {w} then
3 psw← |{uv ∈ E : u ∈ R, v G[L ∪W]

↭ w}|
4 σ← (v)

5 else if |W| > 1 then
6 for each W ′ ⊆W : |W ′| =

⌊
|W|

2

⌋
and no arc in E is directed from W ′ to W \W ′ do

7 psw′1, σ′1 ← PartialScanwidth(L, W ′, R ∪ (W \W ′))
8 psw′2, σ′2 ← PartialScanwidth(L ∪W ′, W \W ′, R)
9 psw′ ← max{psw′1, psw′2}

10 if psw′ < psw then
11 psw← psw′

12 σ← σ′1 ◦ σ′2

13 return psw, σ

It turns out that Algorithm 4 runs in Õ(4n) time, which is a major improvement over the
earlier discussed brute force solution running in Õ(n!) time. In the following theorem, we
prove correctness of the algorithm and its time complexity.

Theorem 4.5. Let G = (V, E) be a weakly connected DAG of n vertices and m arcs, then Algorithm 4
solves SCANWIDTH in O(4n · log n ·m) time and polynomial space.

Proof. Correctness: The correctness of the partial scanwidth that is returned by the sub-
routine PartialScanwidth in the algorithm follows directly from Lemma 4.4. In par-
ticular, the case where W is only one vertex is covered in part (a) of the lemma, while
the other case uses part (b) with k chosen as half the size of W. The correctness of the
corresponding extension is a direct consequence of the constructive nature of the proof
of Lemma 4.4. Lastly, the definition of the partial scanwidth immediately implies that
pswG(∅, V, ∅) = sw(G), and the corresponding extension is also optimal for the scan-
width. The algorithm terminates, as each recursive call is made for a strictly smaller set
W. This establishes the correctness of the algorithm.

Time complexity: The following analysis partially builds upon the analysis of the re-
cursive algorithm in [Bod+11]. Let T(m, k) denote the time it takes to run the subroutine
PartialScanwidth for a set W with |W| = k, and with m the number of arcs of G. If k ≥ 2,
then we loop over at most all subsets of size ⌊k/2⌋ of the set W. There are (k

⌊k/2⌋) such
subsets. For each of these subsets, we have two recursive calls: one for a set of size ⌊k/2⌋
and one for a set of size k− ⌊k/2⌋ = ⌈k/2⌉. Outside of the for-loop, we do some work in
O(m) time. Furthermore, the stuff within each iteration of the for-loop can also be done
in O(m) time per recursive call.a Overall, there exists some constant c ≥ 0, such that
all these computations are bounded by c · m. Thus, we obtain the following recurrence

4.3. Dynamic programming 40

relation: 
T(m, 1) ≤ c ·m, if k = 1;

T(m, k) ≤
(

k
⌊k/2⌋

)(
T(m, ⌊k/2⌋) + T(m, ⌈k/2⌉)

)
+ c ·m, if k ≥ 2.

We now claim that T(m, k) ≤ b · 4k · m · log k, for all m ≥ 1, k ≥ 2, and for some
constant b ≥ 0. To not lengthen the analysis too much, we delay its induction-based
proof to Lemma C.1 in Appendix C. From this claim - and the fact that the algorithm runs
in T(m, n) time - it follows that the algorithm has a time complexity of O(4n · log n ·m).

Space complexity: The recursion depth of the algorithm is O(log n), due to the sets
W being split in half. Furthermore, within each recursive step, only polynomial space
is used. Therefore, the complete algorithm uses polynomial space. (See also [Bod+12],
where the same explanation is given for a specific case of the algorithm from [Bod+11],
applied to treewidth.)
aNote that checking whether no arcs go from W ′ to W \W ′, also takes O(m) time.

We can reduce this time complexity to Õ(3n) by storing and reusing intermediate results.
By doing so, we make at most one recursive call per 3-partition. However, this improvement
comes at the cost of exponential space. If we are willing to allocate such space, the algorithm
presented in the next section will outperform the current algorithm.

4.3. Dynamic programming
In this section, we follow a different approach to solve SCANWIDTH. In Subsection 4.3.1 we
introduce the basic version of this algorithm, which will employ dynamic programming: a tech-
nique where an algorithm saves the results of subproblems, such that they need not be calcu-
lated again further down the line. Subsection 4.3.2 introduces a practical improvement over
this basic algorithm, while Subsection 4.3.3 leverages this improvement to efficiently solve
SCANWIDTH in polynomial time when the value of the scanwidth is bounded by a constant.

4.3.1. Basic algorithm
The basic version of the algorithm shows some similarities with a dynamic programming al-
gorithm from [Bod+11]. The authors adapt a classical technique by Held and Karp [HK62]
for the TRAVELLING SALESMAN PROBLEM to address general ordering problems on undirec-
ted graphs. Although the exact formulation of our basic algorithm differs considerably, the
algorithms structurally have a close resemblance. Specifically, both algorithms consider each
subset (or equivalently, each 2-partition) of the vertex set of a graph at most once, and recurs-
ively decrease the size of the considered sets by one. We do feel our approach has a slightly
more intuitive interpretation, due to the directions of the arcs.

Our new algorithm neatly fits within the framework of ordered partitions and the partial
scanwidth from before. Particularly, we consider ordered 2-partitions instead of ordered 3-
partitions. This leads to a restricted case of the partial scanwidth where L (the set of vertices
to the left of the set W) is empty.

Definition 4.6 (Restricted partial scanwidth). Let G be a weakly connected DAG andQ = (W, R)
an ordered 2-partition of V such that W ̸= ∅. Then the restricted partial scanwidth of G for Q is

rpswG(Q) = pswG((∅, W, R)).

Similarly, we define rpsw(σ,Q) = psw(σ, (∅, W, R)), rpswσ
i (Q) = pswσ

i ((∅, W, R)) and
RPSWσ

i (Q) = PSWσ
i ((∅, W, R)).

4.3. Dynamic programming 41

Note that if (W, R) is an ordered 2-partition, then (∅, W, R) is indeed an ordered 3-partition
of a graph, making this is a valid definition. Furthermore, we emphasize that a partition
(W, R) being an ordered 2-partition means nothing more than that W is a sinkset of the graph.

Similar to the partial scanwidth, the restricted partial scanwidth focuses only at a ‘win-
dow’ of an extension. One only considers the vertices in a sinkset W while considering the
other vertices in the set R to be right of W, disregarding the exact position these other ver-
tices may have. A very useful by-product of this inherent relation to the partial scanwidth is
that we can formulate the main recursive idea of the dynamic programming algorithm as a
specific case of Lemma 4.4.

Lemma 4.7. Let G = (V, E) be a weakly connected DAG and Q = (W, R) an ordered 2-partition of
V with W ̸= ∅.

(a) If |W| = 1 (with W = {w}), then rpswG(Q) = δin(w).

(b) If |W| ≥ 2, then

rpswG(Q) = min
ρ∈P(G[W])

max
{

rpswG
(
(W \ {ρ}, R ∪ {ρ})

)
, |{uv ∈ E : u ∈ R, v G[W]

↭ ρ}|
}

,

where P(G[W]) contains the roots of G[W].

Remark. If G[W] is weakly connected, we have |{uv ∈ E : u ∈ R, v G[W]
↭ ρ}| = δin(W) for all

ρ ∈ P(G[W]).

Proof. (a): First note that R = V \ {w} in this case. Then from Lemma 4.4a and Defini-
tions 4.3 and 4.6 we obtain

rpswG(Q) = pswG((∅, W, V \ {w})) = |{uv ∈ E : u ∈ V \ {w}, v G[∅ ∪ {w}]
↭ w}|

= |{uv ∈ E : u ̸= w, v = w}|
= δin(w).

(b): Recall that in Lemma 4.4b, we defined the collection of sets Wk = {W ′ ⊆ W :
|W ′| = k and no arc in E is directed from W ′ to W \W ′} for ordered 3-partitions (L, W, R)
and some k ∈ {1, . . . , |W| − 1}. We now use this lemma with k = |W| − 1, to get

rpswG(Q) = pswG((∅, W, R))

= min
W ′∈W|W|−1

max
{

pswG
(
(∅, W ′, R ∪ (W \W ′))

)
, pswG

(
(∅ ∪W ′, W \W ′, R)

)}
= min

W ′=W\{ρ}:ρ∈P(G[W])
max

{
rpswG

(
(W ′, R ∪ {ρ})

)
, pswG

(
(W ′, {ρ}, R)

)}
= min

ρ∈P(G[W])
max

{
rpswG

(
(W \ {ρ}, R ∪ {ρ})

)
, pswG

(
(W \ {ρ}, {ρ}, R)

)}
.

The crucial observation in the above equality is that W|W|−1 contains precisely the sub-
sets of W obtained by removing one vertex that is a root of G[W]. It is evident that any
subset of W of size |W| − 1 can be obtained by removing one vertex from W. Having the
constraint that no arc in E points from W ′ to W \W ′ then implies that we can only remove
the roots of G[W] to create these sets W ′.

Now using Lemma 4.4a, we immediately have that

pswG
(
(W \ {ρ}, {ρ}, R)

)
= |{uv ∈ E(G) : u ∈ R, v G[W]

↭ ρ}|,

4.3. Dynamic programming 42

which proves the equality.
(Remark): For the remark, observe that if G[W] is weakly connected, the vertices v

with the property that v G[W]
↭ ρ, are exactly the vertices of W (because ρ ∈ W). As (W, R)

is a partition of V, the equality follows.

With this lemma in mind, we can set up the dynamic programming algorithm. The al-
gorithm involves the use of a ‘table’, denoted as T, to store previously calculated results. In
this way, the recursive procedure can first check if a result is already known, thereby saving
time. However, this comes at the cost of exponential space usage.

Algorithm 5: Dynamic programming algorithm to solve SCANWIDTH.
Input: Weakly connected DAG G = (V, E).
Output: Scanwidth sw of G, optimal extension σopt.

1 T ← empty table to tabulate results, indexed by all 2-partitions of V
2 sw, σopt ← R-PartialScanwidth(V, ∅)
3 return sw, σopt

procedure R-PartialScanwidth(W, R)
1 if T(W, R) exists then // Look up result in global table, if available
2 return T(W, R)

3 initialize rpsw← ∞; σ← ()
4 if |W| = 1 with W = {v} then
5 rpsw← δin(v)
6 σ← (v)

7 else if |W| > 1 then
8 for each root ρ of G[W] do
9 rpsw′1, σ′ ← R-PartialScanwidth(W \ {ρ}, R ∪ {ρ})

10 rpsw′2 ← |{uv ∈ E : u ∈ R, v G[W]
↭ ρ}|

11 rpsw′ ← max{rpsw′1, rpsw′2}
12 if rpsw′ < rpsw then
13 rpsw← rpsw′

14 σ← σ′ ◦ (ρ)

15 T(W, R)← rpsw, σ ; // Store result in global table
16 return rpsw, σ

We now prove that this algorithm indeed solves SCANWIDTH and improves the time com-
plexity of our recursive algorithm.

Theorem 4.8. Let G = (V, E) be a weakly connected DAG of n vertices and m arcs, then Algorithm 5
solves SCANWIDTH in O(2n ·m) time and exponential space.

Proof. Correctness: The correctness of the restricted partial scanwidth that is returned by
R-PartialScanwidth in the algorithm follows directly from Lemma 4.7. The correctness
of the corresponding extension is a direct consequence of the constructive nature of the
proof of Lemma 4.4, which forms the basis of Lemma 4.7. Definition 4.6 immediately
implies that rpswG(V, ∅) = pswG(∅, V, ∅) = sw(G), and the corresponding extension is
also optimal for the scanwidth. Finally, it can easily be seen that the algorithm terminates,
as each recursive call is made for a strictly smaller set W. This proves the correctness of
the algorithm.

Time complexity: One can implement the algorithm such that the work done in the

4.3. Dynamic programming 43

subroutine R-PartialScanwidth, apart from the recursive call, is bounded by O(m). If
|W| = 1, this clearly holds. Otherwise, if |W| > 1, we employ a smart trick to save
time. We first find the components of G[W] in O(m) time (e.g. by a BFS, which takes
O(m + n) = O(m) time). Subsequently, we compute the indegrees of the vertex sets
of these components, which can also be done in O(m) time. Afterwards, we loop over
O(n) = O(m) roots, which can be found in O(m) time by a BFS. For all of these roots, the
computation of rpsw′2 then becomes unnecessary, since this equals the already calculated
indegree of the component containing the current root. Hence, this trick prevents us from
doing redundant work in the for-loop. Lastly, maximization and appending a vertex to σ
are constant-time operations. Overall, we indeed spend O(m) time per recursive call.

Whenever we encounter a 2-partition that has not been calculated, we tabulate the
result in the table T. Thus, we enter the subroutine at most once for each ordered 2-
partition.a There are at most 2n different (ordered) 2-partitions (each one corresponds to
a unique subset W, of which there are at most 2n), which makes the total time complexity
O(2n ·m).

Space complexity: We save a return value and the corresponding extension for all dif-
ferent 2-partitions. Therefore, we surely need exponential space of Õ(2n) in the worst
case.
aIn this implementation we do enter the subroutine but immediately return the result when it already has
been calculated.

In the worst case, we can get close to 2n ordered 2-partitions. Consider for example the
graph with one root ρ, one leaf l, and n vertices vi in between them such that we have arcs
(ρ, vi) and (vi, l) for each i. In practical instances, however, the number of ordered parti-
tions might be significantly less than 2n. In the next subsection, we reduce the number of
considered partitions even more, although the worst-case scenario remains the same.

4.3.2. Algorithm with component splitting
In this subsection, we will improve upon the basic algorithm by incorporating the notion of
component splitting. This technique is especially useful when the DAG branches into discon-
nected parts close to the root. Intuitively, it exploits the fact that when we arrive at some set
W, and G[W] is not weakly connected, we can consider the components of G[W] separately.
This is in contrast with the basic version of the algorithm, where we unnecessarily would
consider all different ways to interleave extensions of the two parts. This idea is formalized
in the next lemma.

Lemma 4.9. Let G = (V, E) be a weakly connected DAG and Q = (W, R) an ordered 2-partition of
V with W ̸= ∅. Then

rpswG(Q) = max
Ui◁W

{
rpswG

(
(Ui, V \Ui)

)}
,

where Ui ◁ W indicates that G[Ui] is a weakly connected component of G[W].

Proof. Because W must be a sinkset, each Ui ◁ W must also be a sinkset. Therefore,
(Ui, V \Ui) is indeed an ordered 2-partition of V, for each Ui ◁ W.

First, we prove a critical equality. Let r be the number of weakly connected compon-
ents of G[W]. For each i ∈ {1, . . . , r}, let σi ∈ Π[Ui] be arbitrary, and define σ1 ◦ · · · ◦ σr =
σ ∈ Π[W]. This is indeed an extension because the different σi are weakly disconnected

4.3. Dynamic programming 44

in G[W]. Using Definitions 4.3 and 4.6, we have:

rpsw(σ,Q) = max
w∈W

rpswσ
w(Q) = max

Ui◁W

{
max
w∈Ui

pswσ
w((∅, W, R))

}
= max

Ui◁W

{
max
w∈Ui

pswσi
w

((⋃
1≤j<i

Uj, Ui, R ∪
⋃

j>i
Uj

))}
= max

Ui◁W

{
max
w∈Ui

pswσi
w

((
∅, Ui, R ∪

⋃
j ̸=i

Uj

))}
= max

Ui◁W

{
max
w∈Ui

pswσi
w ((∅, Ui, V \Ui))

}
= max

Ui◁W
{rpsw (σi, (Ui, V \Ui))} . (4.2)

The third equality is similar to the third equality of equation (4.1) that appears in the proof
of Lemma 4.4b. It uses the observation that if we only maximize over vertices that form
a consecutive subsequence of the extension σ, we can just as well put the vertices to the
left of this subsequence in the set L, and the ones to the right in the set R. For the fourth
equality we then use that in G[W], the vertices of

⋃
1≤j<i Uj are not weakly connected to

those in Ui. Thus, we can put them in the R-set, without changing the restricted partial
scanwidth. We are now ready to prove the lemma.

(≤) For all Ui ◁ W, we let σi ∈ Π[Ui] be an optimal extension. In other words,
rpswG ((Ui, V \Ui)) = rpsw (σi, (Ui, V \Ui)). Now let σ = σ1 ◦ · · · ◦ σr ∈ Π[W]. Using
equation (4.2), we get that

rpswG(Q) ≤ rpsw(σ,Q) = max
Ui◁W

{rpsw (σi, (Ui, V \Ui))} = max
Ui◁W

{
rpswG ((Ui, V \Ui))

}
.

(≥) We first present a claim. It generalizes the fact that weakly connected vertices
in an extension can be swapped without changing the scanwidth. As the claim is quite
intuitive, we delay its rather technical proof to Lemma C.2 in Appendix C.

Claim: Let σ ∈ Π[W] be such that for some k ∈ {1, . . . , |W| − 1}, σ(k) and σ(k + 1) are
not weakly connected in G[W]. Let π be obtained from σ by swapping σ(k) and σ(k + 1).
Then, π ∈ Π[W] and rpsw(σ,Q) = rpsw(π,Q).

Let σ ∈ Π[W] be such that rpswG(Q) = rpsw(σ,Q), which exists by definition. We
can also assume that σ = σ1 ◦ · · · ◦ σr, where for each i we have σi ∈ Π[Ui]. Such an exten-
sion exists since we can keep swapping consecutive vertices from different Ui until this
condition holds, if σ does not have this property. By the claim, this is also an extension,
and it will give the same restricted partial scanwidth. The inequality now quickly follows
from equation (4.2):

rpswG(Q) = rpsw(σ,Q) = max
Ui◁W

{rpsw (σi, (Ui, V \Ui))} ≥ max
Ui◁W

{
rpswG ((Ui, V \Ui))

}
.

With this lemma, we can integrate the component splitting in the algorithm. We achieve
this by first checking if the subgraph G[W] is weakly connected. If it is, we make a recursive
call for each of its components. This modification is reflected in the updated Algorithm 6.

4.3. Dynamic programming 45

Algorithm 6: Dynamic programming algorithm with component splitting to solve
SCANWIDTH.

Input: Weakly connected DAG G = (V, E).
Output: Scanwidth sw of G, optimal extension σopt.

1 T ← empty table to tabulate results, indexed by all 2-partitions of V
2 sw, σopt ← R-PartialScanwidthCS(V, ∅)
3 return sw, σopt

procedure R-PartialScanwidthCS(W, R)
1 if T(W, R) exists then // Look up result in global table, if available
2 return T(W, R)

3 initialize rpsw← ∞; σ← ()
4 if G[W] is not weakly connected then
5 for each weakly connected component G[Ui] of G[W], (i = 1, . . . , r) do
6 rpswi, σi ← R-PartialScanwidthCS(Ui, V \Ui)

7 rpsw← max{rpswi : i = 1, . . . , r}
8 σ← σ1 ◦ · · · ◦ σr

9 else if |W| = 1 with W = {v} then
10 rpsw← δin(v)
11 σ← (v)

12 else if |W| > 1 then
13 for each root ρ of G[W] do
14 rpsw′1, σ′1 ← R-PartialScanwidthCS(W \ {ρ}, R ∪ {ρ})
15 rpsw′ ← max{rpsw′1, δin(W)}
16 if rpsw′ < rpsw then
17 rpsw← rpsw′

18 σ← σ′1 ◦ (ρ)

19 T(W, R)← rpsw, σ ; // Store result in global table
20 return rpsw, σ

The worst-case time complexity of the algorithm remains O(2n ·m), as it depends on the
exact graph how often the component-splitting is used. For a graph with a single leaf, this
new algorithm is no better than before, as there are no components to split. On the other
hand, on a very tree-like graph, the component splitting makes sure that the number of sets
W to be considered is a lot less. Thus, in practice, this technique is likely to decrease the
algorithm’s running time. The following theorem formalizes the complexity and correctness
of the algorithm.

Theorem 4.10. Let G = (V, E) be a weakly connected DAG of n vertices and m arcs, then Al-
gorithm 6 solves SCANWIDTH in O(2n ·m) time and exponential space.

Proof. Correctness: The proof of correctness is analogous to the proof of Theorem 4.8, with
the addition of Lemma 4.9. The lemma ensures the correct restricted partial scanwidth
(and corresponding extension) is returned in the first if-statement. It should be noted that
the algorithm still terminates, as we only enter the first if-statement whenever G[W] is not
weakly connected. This prevents the algorithm from looping through this if-statement
indefinitely.

We only enter the second ‘else if’-statement for sets W with G[W] weakly connected.

4.3. Dynamic programming 46

The remark from Lemma 4.7 then allows us to write δin(W) on line 15 of the algorithm,
instead of the more elaborate notation used on line 10 of Algorithm 5.

Time complexity: With a BFS, we can check in O(m) time whether G[W] is weakly
connected. If it is, the work done in R-PartialScanwidthCS, apart from the recursive
calls, takes O(m) time. In this case, the subroutine is identical to the one in Algorithm 5,
which also took O(m) time (see proof of Theorem 4.8). If G[W] is not weakly connected,
we can find its components by a BFS in O(m) time. The number of components is at most
n, and the maximization and concatenation are also O(n) = O(m) time operations. Thus,
the non-recursive part of the subroutine then also takes O(m) time.

We still only enter the subroutine at most once for each ordered 2-partition, because
we tabulate the results. These partitions are still bounded by 2n, which makes the total
time complexity again O(2n ·m).

Space complexity: By the same reasoning as in Theorem 4.8 the space complexity re-
mains exponential.

Component splitting is not only of practical interest. In the next subsection, it turns out
to be essential for further bounding the time complexity when computing the scanwidth of a
DAG.

4.3.3. Algorithm for fixed scanwidth
In this subsection, we consider the fixed parameter version of SCANWIDTH. Formally, this
can be written as:

k-SCANWIDTH

Instance: Weakly connected DAG G.
Objective: Find an extension σ of G, with a scanwidth of at most k, if it exists.

Else, certify that the scanwidth of G is larger than k.

The key idea to solve this problem is that we only need to consider sets W that are weakly
connected (by the component splitting technique from the previous section) and that have an
indegree of at most k. We now show a corollary derived from Lemmas 4.7 and 4.9, which acts
as a formal foundation of this idea.

Corollary 4.11. Let G = (V, E) be a weakly connected DAG, k ≥ 1 an integer and Q = (W, R) an
ordered 2-partition of V such that W ̸= ∅ and G[W] is weakly connected. Then,

(a) rpswG(Q) > k, if and only if rpswG
(
(Ui, V \Ui)

)
> k for some component G[Ui] of G[W].

Furthermore,

(b) For |W| = 1, rpswG(Q) > k, if and only if δin(W) > k.

(c) For |W| ≥ 2, rpswG(Q) > k, if and only if δin(W) > k or rpswG
(
(W \ {ρ}, R ∪ {ρ})

)
> k

for all roots ρ of G[W].

Proof. Part (a) is an immediate consequence of Lemma 4.9, while part (b) follows from
Lemma 4.7a.

Regarding part (c), we will use Lemma 4.7b. Note that because we assume G[W] to
be weakly connected, the remark from that lemma tells us that we can use δin(W) instead
of the lengthier set notation. Furthermore, recall that P(G[W]) denotes the set of roots of

4.3. Dynamic programming 47

G[W]. We then get

rpswG(Q) = min
ρ∈P(G[W])

max
{

rpswG
(
(W \ {ρ}, R ∪ {ρ})

)
, δin(W)

}
= max

{
min

ρ∈P(G[W])
rpswG

(
(W \ {ρ}, R ∪ {ρ})

)
, δin(W)

}
.

Here, we used that δin(W) is independent of the choice of ρ. Part (c) of the lemma now
follows.

Using this corollary, we can transform Algorithm 6 into a fixed parameter version: Al-
gorithm 7. The core of the algorithm remains unchanged. We only incorporate checks whether
the conditions of Corollary 4.11 are satisfied. This ensures that we return ∞ whenever the
scanwidth is larger than k.

Algorithm 7: Dynamic programming algorithm with component splitting to solve
k-SCANWIDTH.

Input: Weakly connected DAG G = (V, E), integer k ≥ 1.
Output: If sw(G) ≤ k: scanwidth sw of G and an optimal extension σopt. If

sw(G) > k: ∞ and an incomplete extension.
1 T ← empty table to tabulate results, indexed by all 2-partitions of V
2 sw, σopt ← k-R-PartialScanwidthCS(V, ∅, k)
3 return sw, σopt

procedure k-R-PartialScanwidthCS(W, R, k)
1 if T(W, R) exists then // Look up result in global table, if available
2 return T(W, R)

3 initialize rpsw← ∞ ; σ← ()
4 if G[W] is not weakly connected then
5 for each weakly connected component G[Ui] of G[W], (i = 1, . . . , r) do
6 rpswi, σi ← k-R-PartialScanwidthCS(Ui, V \Ui)

7 rpsw← max{rpswi : i = 1, . . . , r}
8 σ← σ1 ◦ · · · ◦ σr

9 else if |W| = 1 with W = {v} and δin(W) ≤ k then
10 rpsw← δin(v)
11 σ← (v)

12 else if |W| > 1 and δin(W) ≤ k then
13 for each root ρ of G[W] do
14 rpsw′1, σ′1 ← k-R-PartialScanwidthCS(W \ {ρ}, R ∪ {ρ})
15 rpsw′ ← max{rpsw′1, δin(W)}
16 if rpsw′ < rpsw then
17 rpsw← rpsw′

18 σ← σ′1 ◦ (ρ)

19 T(W, R)← rpsw, σ ; // Store result in global table
20 return rpsw, σ

Before Theorem 4.14 formally proves correctness of the algorithm, we need two lemmas
that help to further bound the number of considered sets in the algorithm and consequently
its time complexity.

For the first lemma, we define what antichains are. An antichain is a subset of a (partially)

4.3. Dynamic programming 48

ordered set, in which each pair of elements is incomparable to each other. In our context, the
roots of a sinkset form an antichain when considering the natural order of a DAG. This is
proved in the next lemma.

Lemma 4.12. Let G = (V, E) be a weakly connected DAG. Then for all W ⊑ V, the roots of G[W]
form an antichain with respect to the partial order <G. Moreover, there is a one-to-one correspondence
between the sets W ⊑ V and the antichains of the partial order <G, defined by the roots of G[W].

Proof. We will start with the first statement. Assume towards a contradiction that the
roots of G[W] are not an antichain. If we let P(G[W]) be the set of roots of G[W], we must
then have that for some ρ1, ρ2 ∈ P(G[W]) it holds that ρ1 <G ρ2. Now let v ∈ V be such
that ρ1 <G v ≤G ρ2 and (v, ρ1) ∈ E. Such a vertex exists, as else ρ1 and ρ2 would not be
comparable. But as v ≤G ρ2 and W is a sinkset, v must be in W. Thus, ρ1 can not be a root
of G[W]: a contradiction. This proves the first statement.

Let us denote the set of all W ⊑ V by V and the set of all vertex-antichains with respect
to <G by A. We can now define a function f : V → A by f (W) = P(G[W]) for all W ∈ V .
By the first statement, f indeed maps all sets W into A.

We now prove that f is surjective. Let S be an antichain in A. Then define U as the
set of all vertices v ‘below’ S or in S (i.e. v ≤G s for some s ∈ S). We then have that U
is a sinkset of G, and the roots of G[U] are exactly the set S. Thus f (U) = S and f is
surjective.

For the injectivity, let W1, W2 ∈ V be such that f (W1) = f (W2), i.e. P(G[W1]) =
P(G[W2]) = P. Let v ∈ V be arbitrary. We will show by a case analysis that v is either in
both W1 and W2, or in neither of them. This must then mean that W1 = W2, showing that
f is injective. We now consider the four cases. (i) If v ∈ P, then by definition v is also in
W1 and W2. (ii) If v <G r (for some r ∈ P), v must be in W1 and W2, else they would not
be sinksets. (iii) If v >G r (for some r ∈ P), then v can not be in W1 and W2, because then
either they are no sinksets any more, or r is not a root any more. (iv) If v is incomparable
to all r ∈ P (and v /∈ P), then v is not in W1 and W2. Else, v would also be a root, and thus
part of P.

All in all, f is surjective and injective. This proves that f is a bijection from the sinksets
to the vertex-antichains of G, as desired.

With the characterization of the sinksets of a DAG by means of their roots, we are able to
bound the number of sinksets with a bounded indegree.

Lemma 4.13. Let G = (V, E) be a weakly connected DAG of n vertices and r roots, and let k ≥ 1 be
an integer. Then, the number of sets W ⊑ V such that δin(W) ≤ k, is bounded from above by nk+r−1.

Proof. Let k ≥ 1 be arbitrary and Vk = {W ⊑ V : δin(W) ≤ k}. We first prove a claim
relating the indegrees of the sets W to the number of roots of G[W].

Claim: For all W ∈ Vk, G[W] has at most k + r− 1 roots.

4.3. Dynamic programming 49

Proof of claim: Let W ∈ Vk be arbitrary. We now consider two cases.
Case 1: each root of G, is a root of W. As W is a sinkset, this means that W = V,

and so G[W] = G. Therefore, G[W] has exactly r roots. Because k ≥ 1, the bound
then follows.

Case 2: there exists a root of G, that is not a root of G[W]. Then, at most r − 1 of
the roots of G[W], are also a root of G. Therefore, G[W] has at most r− 1 roots with
indegree 0 in G. Furthermore, G[W] has at most k roots with an indegree of at least
1 in G (else, the indegree of W would be larger than k, and then W /∈ Vk). Together,
this gives that G[W] has at most k + r− 1 roots. △

Together with Lemma 4.12, this claim shows that for all W ∈ Vk, the roots of G[W]
form a vertex-antichain of G, with a size of at most k + r− 1. Now letAℓ denote the set of
vertex-antichains of G of size at most ℓ. Then we can define a function h : Vk → Ak+r−1 by
h(W) = P(G[W]) for all W ∈ Vk (here, P(G[W]) indicates the set of roots of G[W] again).
But then, h is actually a restriction of the function f from the proof of Lemma 4.12, to the
domain Vk (and with a smaller co-domain). Using that this function f was bijective, we
must have that h : Vk → Ak+r−1 is injective, else this will contradict the injectivity of f .a

Therefore, we naturally have that |Vk| ≤ |Ak+r−1|. So, it suffices to count the number of
vertex-antichains in G of size at most k + r− 1, to get an upper bound for our lemma. We
will now show by induction on ℓ that |Aℓ| ≤ nℓ for all integers ℓ ≥ 1, which will then
prove the lemma.

Base case: (ℓ = 1). We have that |A1| ≤ n, as each such vertex-antichain contains one
vertex.

Induction step: (ℓ ≥ 1). First, assume that the induction hypothesis holds for ℓ, so
|Aℓ| ≤ nℓ. Now note that all vertex-antichains of size exactly ℓ+ 1 can be created from
the antichains of size ℓ (of which we have at most nℓ by the induction hypothesis), by the
addition of one incomparable vertex. As there are only n− ℓ vertices left to be added for
each antichain of size ℓ, we obtain that

|Aℓ+1| ≤ nℓ + nℓ · (n− ℓ) = nℓ+1 − (ℓ− 1)nℓ ≤ nℓ+1.

aNote that h is not necessarily surjective, as graphs can have sinksets with a larger indegree than their number
of roots.

The previous lemma allows us to bound the number of sets that are considered during
the execution of the algorithm. This sets up the stage for proving the correctness and time
complexity of Algorithm 7 in the following theorem. We emphasize that the O(2n ·m) bound
on the time complexity from the previous versions of the algorithm is still applicable here.

Theorem 4.14. Let G = (V, E) a weakly connected DAG of n vertices, m arcs, r roots and maximum
outdegree ∆out, and let k ≥ 1 be an integer. Then, Algorithm 7 solves k-SCANWIDTH in O(∆out ·
(k + r− 1) · nk+r−1 ·m) time and O(∆out · (k + r− 1) · nk+r) space.

Proof. Correctness: In the algorithm, we use ∞ as a placeholder value whenever the restric-
ted partial scanwidth is larger than k, and in that case, we do not care about the corres-
ponding extension. The correctness of the subroutine k-RestrictedPartialScanwidth
now follows from the correctness of the previous Algorithm 6 (see Theorem 4.10) and the
new Corollary 4.11, which precisely defines when ∞ should be returned.

When G[W] is not weakly connected and for some component G[Ui] the restricted par-
tial scanwidth is larger than k, the maximization on line 7 will ensure we correctly return

4.3. Dynamic programming 50

∞. This is the correct behaviour due to Corollary 4.11a. Similarly, the last if-statement will
return ∞, whenever the rpsw is larger than k (i.e. equal to ∞) for all the roots appearing
in the for-loop. This correctly mimics the second condition of Corollary 4.11c. Lastly, if
δin(W) > k and G[W] is weakly connected, no if-statement is entered. We then correctly
return the initial value of ∞, in accordance with Corollary 4.11b and the first condition
of Corollary 4.11c. The correctness of the complete algorithm is now an immediate con-
sequence of the correctness of the subroutine.

Time complexity: Due to the tabulation, we still enter the subroutine at most once for
each of the at most 2n sinksets W. It can be checked that the subroutine is only called for
sinksets W of the following types:

1. Weakly connected sinksets W with δin(W) ≤ k.

2. Weakly connected sinksets W with δin(W) > k, created by deletion of one root of a
type 1 sinkset. (These sinksets are created in the last for-loop, and they do not create
new recursive calls.)

3. Weakly disconnected sinksets W, created by the deletion of one root of a type 1
sinkset. (These sinksets are created in the last for-loop.)

4. Weakly connected sinksets W with δin(W) > k, created by splitting a type 2 sinkset.
(These sinksets are created in the first if-statement, and they also do not create new
recursive calls.)

Note that we sloppily refer to the roots of a sinkset W, where we mean the roots of G[W].
According to Lemma 4.13, there are at most nk+r−1 type 1 sinksets. Type 2 sinksets

are created from type 1 sinksets by deletion of a root. As stated in the claim of the proof
of Lemma 4.13, type 1 sinksets have at most k + r − 1 roots, yielding at most (k + r −
1) · nk+r−1 type 2 sinksets. Similarly, there are at most (k + r− 1) · nk+r−1 type 3 sinksets.
Lastly, type 4 sinksets are created by splitting a type 2 sinkset into its components. Since
the maximum outdegree of G is ∆out, type 2 sinksets can exist of at most ∆out components.
This is because they are formed by deleting one root of a weakly connected sinkset, and
this root had an outdegree of at most ∆out. Consequently, there can be at most ∆out · (k +
r− 1) · nk+r−1 type 4 sinksets.

We now consider the time that is spent within each subroutine call. In Theorem 4.10
we argued that this takes O(m) time for Algorithm 6. Apart from checking the indegrees
of the sinksets, which also takes O(m) time, there have been no significant changes com-
pared to that algorithm. Since the number of sinksets that is considered is bounded by
O(∆out · (k + r− 1) · nk+r−1), the time complexity of the algorithm becomes O(∆out · (k +
r− 1) ·m · nk+r−1).

Space complexity: Regarding the space complexity, we store an extension of size O(n)
and a value rpsw, for each considered sinkset. This requires O(∆out · (k + r − 1) · nk+r)
space. The space needed for the graph, and to run the subroutine, is also surely bounded
by this function.

From this theorem, we can deduce a nice complexity result for rooted DAGs. Our al-
gorithm then functions as a slicewise polynomial algorithm when considering scanwidth as
the parameter.

Corollary 4.15. Let G = (V, E) be a weakly connected rooted DAG with n vertices, m arcs, fixed
maximum outdegree, and a scanwidth of k. Then, there exists an algorithm that solves SCANWIDTH in
O(k ·m ·nk) time and O(nk+1) space. Thus, for rooted DAGs SCANWIDTH is in XP when considering

4.3. Dynamic programming 51

the scanwidth as the parameter.

Remark. At the cost of a factor n in both the time and space complexity, the fixed maximum
outdegree constraint can be released.

Proof. By repeatedly running Algorithm 7 we can solve i-SCANWIDTH for an increasing
value of i. When we eventually reach the value k (which equals the scanwidth), we will
find an optimal extension. If we keep the intermediate results of the previous algorithm
runs in the table T, we consider the same amount of sinksets as we would have considered
by directly solving k-SCANWIDTH. Thus, the time and space complexity of Theorem 4.14
is still applicable here. Substituting r = 1, and using that the maximum outdegree is
fixed, we obtain the desired complexities from this theorem. This directly proves the XP
result stated in the corollary. The remark follows from the fact that ∆out ≤ n, and filling
this in into Theorem 4.14.

In Subsection 3.3.3 we introduced a decomposition algorithm aimed at reducing the size
of an instance. We proved that, in the case of networks, these reduced instances have their
size bounded by a linear function of the level. If we apply this to the algorithm described in
the previous corollary, we obtain an FPT algorithm when considering the level as a parameter.
This allows us to formulate another complexity result, proving that for networks SCANWIDTH

is in FPT when considering the level as a parameter.

Corollary 4.16. Let G = (V, E) be a level-k network of n vertices and m arcs. Then, there exists an
algorithm that solves SCANWIDTH in O(24k−1 · k · n + n2) time. Thus, for networks SCANWIDTH

is in FPT when considering the level as the parameter.

Proof. As mentioned earlier, the algorithm described in the previous corollary still has
its time complexity bounded by O(2n · m). This is true since it still considers at most
2n sinksets and spends O(m) time per such set. When combined with decomposition
algorithm 3, we can then solve SCANWIDTH in O(n2 + n · m′ · 2n′) time, according to
Lemma 3.28.a Here, n′ (resp. m′) is the maximum number of nodes (resp. arcs) of any
of the subproblems created by the decomposition algorithm. G is assumed to be a net-
work, and thus the graphs of the different subproblems created by the decomposition
algorithm have at most 4k− 1 vertices, and at most 5k− 2 arcs, according to Lemma 3.29.
Substituting these numbers for n′ and m′ gives the desired result.
aAlgorithms 5 and 6 can also be used for this result, as they too have their time complexity bounded by O(2n).
Because we formulated Lemma 3.28 in a very general way, even the recursive algorithm 4 can function as
an FPT algorithm (when combined with the decomposition algorithm), albeit with a worse time complexity.

Another interpretation of this corollary is that if we fix the level, SCANWIDTH can be solved
in quadratic time on networks.

In combination with the decomposition algorithm, it is even possible to create an al-
gorithm with a doubly parametrized time complexity for networks of fixed degree. As net-
works are by definition rooted, combining the proofs of the two previous corollaries would
then result in an algorithm with a time complexity of O(k · ℓ · (4ℓ − 1)k). Here, k refers to
the scanwidth, and ℓ to the level. It depends on the specific values of k and ℓ whether this is
smaller than the previously stated bounds.

Chapter5
Heuristics

Strengthened in our belief by the successful use of sub-optimal solution methods for other
width parameters [DPS02], we now divert our attention to heuristics. Contrary to the exact
methods of the previous chapter, heuristic algorithms are not guaranteed to find an optimal
(tree) extension. Instead, these algorithms are meant to have faster computation times, while
still producing reasonable solutions. In Section 5.1 we start with the simplest of heuristics: a
greedy algorithm. Section 5.2 explores a different idea: the repeated cutting of a graph. Lastly,
we attempt to enhance these heuristics with simulated annealing in Section 5.3.

5.1. Greedy heuristic
An intuitive idea to create an extension of seemingly small scanwidth is by adding vertices
one by one, each time adding the vertex that increases the scanwidth the least. This approach
of making locally optimal choices is widely known as a greedy approach.

To apply a greedy approach to our SCANWIDTH problem, it seems logical to keep track of
the vertices we can add to the extension. We can then calculate what effect each vertex has
on the scanwidth and choose the best option. We continue this process until we have a full
extension of the graph. This gives rise to the following greedy heuristic:

Algorithm 8: Greedy heuristic to find an extension.
Input: Weakly connected DAG G = (V, E).
Output: Extension σ and scanwidth sw of σ.

1 initialize
2 S← V
3 σ← (); sw← 0

4 while |S| > 0 do
5 initialize x ← None; swx ← ∞
6 for each leaf ℓ of G[S] do
7 s← |{uv ∈ E : u ∈ S \ {ℓ}, v ∈ σ ∪ {ℓ}, ℓ G[σ ∪ {ℓ}]

↭ v}|; // Scanwidth at ℓ

8 if s < swx then
9 x ← ℓ ; swx ← s

10 S← S \ {x}
11 σ← σ ◦ (x)
12 sw← max{sw, swx}
13 return σ, sw

52

5.1. Greedy heuristic 53

The algorithm maintains a set S to keep track of the vertices that still need to be added.
In each iteration, it chooses a leaf of G[S] as the next vertex in the extension. The choice of
the leaf is not arbitrary, as the algorithm calculates the scanwidth that each of those leaves
would have, and adds the best one to the extension. This procedure is repeated until the set S
is empty (or equivalently, σ contains all vertices of G). Note that we slightly abuse notation in
the algorithm by writing σ∪{ℓ}, where σ is not a set but an extension. The following theorem
shows that this greedy algorithm always returns an extension and that it runs in polynomial
time.

Theorem 5.1. Let G = (V, E) be a weakly connected DAG of n vertices and m arcs. Then, Al-
gorithm 8 returns an extension and its corresponding scanwidth in O(n2 ·m) time.

Proof. Correctness: Note that S keeps track of the vertices of which no order has been
established yet, while σ is the intermediate extension. Clearly, if we only add leaves of the
graph G[S] in each iteration, we never get arcs that point the wrong way in the extension.
Furthermore, the value of the scanwidth at each vertex is exactly as in Definition 2.2. This
proves correctness.

Time complexity: The while loop adds a vertex to σ in each iteration, and thus runs
n times. The for-loop certainly runs at most n times, while the other stuff in the while
loop takes constant time. Calculating the value of s can be implemented to run in O(m)
time. To this end, we first keep track of the weakly connected components of G[T ∪ {l}],
which can be done by a BFS in O(n + m) = O(m) time. We then check for each of the m
arcs, whether they contribute towards the value of s. All in all, the algorithm then runs
in O(n2 ·m) time.

This consecutive ‘picking’ of leaves could lead to an optimal extension if the correct leaf
would be chosen in each iteration. This is because we can create any extension by consecut-
ively picking leaves of a graph. However, the greedy rule will not necessarily pick the correct
leaf. One can construct instances where the algorithm will perform very badly. An example
is depicted in Figure 5.1. The figure shows a class of graphs that all have scanwidth 5, yet
the greedy algorithm will construct a solution of scanwidth n. Here, n is half the number of
nodes in the graph.

a1
b1

b2

a2

an−1
bn−1

bn

an

(a) Extended ladder graph L′n

a1 b1
b2

a2
an−1 bn−1

bn
an

(b) Optimal tree extension Γ1

a1

b1 b2

a2 an−1

bn−1 bn

an

(c) Heuristic tree extension Γ2

Figure 5.1: (a): The extended ladder-graph L′n (with n ≥ 3), which is a weakly connected DAG. (b): An optimal tree
extension Γ1 of L′n with scanwidth 5. (c): The worst-case tree extension Γ2 of L′n with scanwidth n. This is the
canonical tree extension of the extension returned by the greedy heuristic.

5.2. Cut-splitting heuristic 54

5.2. Cut-splitting heuristic
An important observation is that the scanwidth of an extension corresponds to the size of an
arc-cut of the graph. In this section, we leverage this observation to develop another heuristic.
Instinctively, it makes sense to search for a small arc-cut in the graph and then use that cut
to split into two subproblems. Subsection 5.2.1 takes a closer look at the type of cuts that
appear in a (tree) extension. In Subsection 5.2.2 we will use these DAG-cuts, and develop the
corresponding heuristic idea.1

5.2.1. DAG-cuts
Let us first review some standard terminology of cuts. A (directed) cut in a directed graph
G = (V, E) is a partition C = (S, T) of V (with |S|, |T| > 0). The corresponding cut-set is the
set {uv ∈ E : u ∈ S, v ∈ T}. A directed cut C is minimal, if no other cut exists that has a cut-set
that is contained in the cut-set of C. For two distinct vertices s, t ∈ V, an s-t cut is a directed
cut (S, T) such that s ∈ S and t ∈ T. The size (resp. weight) of the cut refers to the size (resp.
sum of weights) of the cut-set and we denote it by |C| (resp. w(C), where w is the weight
function of the graph).

We can now introduce a certain type of cut, which we will show shortly are the exact cuts
that appear in extensions. To illustrate the definition, see Figure 5.2a.

Definition 5.2 (DAG-cut). Let G = (V, E) be a weakly connected DAG, then we call a directed cut
C = (S, T) a DAG-cut, if C is minimal and T is a sinkset. If |S| = 1 or |T| = 1, C is a trivial
DAG-cut.

C3

C5

C1

C4

C2

(a) Weakly connected DAG G

t

sC2

(b) Weighted auxiliary graph H

Figure 5.2: (a): Weakly connected DAG G with unit weights on all arcs. C1 is a non-trivial DAG-cut of weight 5;
C2 is a smallest non-trivial DAG-cut of weight 4; C3 is a trivial DAG-cut; C4 is a directed cut that is not a DAG-cut,
because it does not cut off a sinkset; C5 is a directed cut that is not a DAG-cut, because the cut is not minimal (C3
is namely a cut with a cut-set that is contained in the one of C5). (b): The corresponding weighted auxiliary graph
H, where all dashed arcs have weight ∞, and the black arcs have unit weights. The grey nodes are in the set U
and the black nodes are in the set W. The smallest DAG-cut C2 of G corresponds to a minimum directed s-t cut in
H with the same weight, where s ∈ U and t ∈W.

It might not immediately be clear that the sets SW of an extension correspond to the cut-
sets of DAG-cuts, and vice versa. The next proposition formally proves this, thus solidifying
the idea of using DAG-cuts to split a graph.

1The algorithmic idea to solve SCANWIDTH by repeatedly cutting at DAG-cuts stems from an early thought by
Mathias Weller [Wel23], although we later independently developed the framework and whole theory around it.
Weller originally named DAG-cuts, antichain edge-cuts. We opt for a different name to not confuse them with the
vertex-antichains used in Subsection 4.3.3.

5.2. Cut-splitting heuristic 55

Proposition 5.3. Let G = (V, E) be a weakly connected DAG. Then, a set F ⊆ E is the cut-set of
some DAG-cut C, if and only if F = SWσ

i for some position i of an extension σ of G.

Proof. (⇒) Let F be the cut-set of some DAG-cut C = (S, T). By Definition 5.2, C is now
a minimal cut. This means that no other cut exists with a cut-set contained in F. This
implies that G[T] is a weakly connected graph. Else, F would contain a smaller cut-set.
T is also a sinkset, thus we can create an extension σ that first has the vertices in T, and
then those in S. Using that G[T] was weakly connected, we have that SWσ

|T| = F.
(⇐) Let σ be an extension of G and i a position of σ. Now let T be the vertex set of

the weakly connected component of G[1 . . . i] that contains σ(i). We set S = V \ T.a It
should come as no surprise that SWσ

i = {uv ∈ E : u ∈ S, v ∈ T}. In other words, SWσ
i is

the cut-set of C = (S, T). Because T is weakly connected, C must be minimal. As T was
a component of G[1 . . . i] and σ was an extension, it must also be a sinkset. Thus, C is a
DAG-cut.
aWe implicitly exclude the trivial case that G is just a single vertex.

Although trivial DAG-cuts also appear as cuts in an extension, they are less interesting.
As we will explain in more detail in the next subsection, our main interest lies in the non-
trivial DAG-cuts, specifically in the smallest such cut(s). It is far from obvious how to find the
minimum-weight non-trivial DAG-cuts, but the following lemma will enlighten us. We prove
that finding non-trivial DAG-cuts of finite weight is equivalent to finding certain s-t cuts in
an auxiliary graph H. This is helpful, as several algorithms are known that find minimum
s-t cuts. The idea to use reverse arcs of infinite weight in the auxiliary graph is inspired by
Ravi, Agrawal and Klein [RAK91], who employed this technique for the closely related DAG
edge-separators.

Lemma 5.4. Let G = (V, E, w) be a weighted, weakly connected DAG with w : E→ R>0. Let H be
the weighted directed graph obtained from G, by adding for each arc a reverse arc with infinite weight.
Denote by U (resp. W) the set of children (resp. parents) of the roots (resp. leaves) of G. Then,

(a) C = (S, T) is a non-trivial DAG-cut in G with weight k < ∞, if and only if for some s ∈ U
and t ∈W \ {s}, C is a minimal directed s-t cut in H with weight k < ∞ .

(b) No non-trivial DAG-cut in G exists, if and only if for all s ∈ U and t ∈ W \ {s}, no minimal
directed s-t cut in H with finite weight exists.

Proof. (a,⇒) By definition, C is a minimal cut in G, T is a sinkset, and |S|, |T| ≥ 2. We
must then have that S (resp. T) contains at least one root (resp. leaf) of G and a child s
(resp. parent t) of this vertex. (Note that they can not be the same.) If this were not the
case, either T would not be a sinkset, or the cut would not be minimal (e.g. if T consists
of just two leaves). We now have that s ∈ U and t ∈ W \ {s}. Thus, C is clearly an s-t cut
in H. Furthermore, it has exactly weight k, because the arcs going from S to T in H are
exactly the arcs in the original cut-set in G. We have no infinity arcs going from S to T in
H, since T was a sinkset in G. Lastly, C is also minimal in H, since it was minimal inG.

(a,⇐) First note that because C has finite weight in H, it does not have any of the
infinite weight arcs in its cut-set. This must mean that no infinite weight arc goes from S
to T in H, or equivalently no arc in G goes from T to S. Thus T must be a sinkset in G.
This also means that the parent of s in G (which by definition is a root of G) is in the set
S, else T is no sinkset in G any more. Similarly, the child of t in G (which is a leaf of G)
must be in the set T. Thus, we have that |S|, |T| ≥ 2. Again, the only arcs going from S to

5.2. Cut-splitting heuristic 56

T in H are exactly the arcs in the cut-set of C in G. So, the weights also coincide. Lastly, C
is minimal in G, because it was minimal in H.

(b) This follows directly from (a), and the fact that G has a finite weight-function,
implying that all its cuts have finite weight.

To illustrate the sets U and W in this lemma, as well as the correspondence between a
DAG and its auxiliary graph, we refer to Figure 5.2b. Note that instead of infinity, any general
upper bound on the largest DAG-cut, such as |E|+ 1, is sufficient.

Using this lemma, we are able to devise Algorithm 9 which finds a minimum-weight non-
trivial DAG-cut in polynomial time.

Algorithm 9: Minimum-weight non-trivial DAG-cut.
Input: Weighted weakly connected DAG G = (V, E, w) with finite weights.
Output: If a non-trivial DAG-cut in G exists: a minimum-weight non-trivial DAG-cut

C. Else: None.
1 initialize C ← None
2 U ← set of children of the roots of G
3 W ← set of parents of the leaves of G
4 H ← G with reverse arcs of infinite weight added, resulting in weight-function w′

5 for each s ∈ U do
6 for each t ∈W \ {s} do
7 C′ ←minimum weight directed s-t cut in H ; // Use any known algorithm.
8 if w′(C′) < w′(C) then // If C is None, we let w′(C) = ∞.
9 C ← C′

10 return C

This algorithm is a direct application of Lemma 5.4. As a side note, we mention that the
algorithm can be modified to find the smallest DAG-cut (including trivial cuts), by letting
the set U (resp. W) consist of all roots (resp. leaves) of G. The previous lemma can then be
trivially adapted. Correctness of the algorithm is now proved in the next theorem.

Theorem 5.5. Let G = (V, E, w) be a weighted, weakly connected DAG of n vertices and m arcs.
Then, Algorithm 9 can certify whether a non-trivial DAG-cut of G exists, and if it does, it finds a
minimum-weight non-trivial DAG-cut of G. The algorithm can be implemented to run in O(n3 ·m)
time.

Proof. Correctness: The correctness of the algorithm is a consequence of Lemma 5.4. The
graph H that is constructed is identical to the graph in this lemma, and the sets U and
W are also the same. The minimum-weight cuts in H that we find in the algorithm are
always minimal, otherwise, there would be a cut of smaller weight. The algorithm returns
None, if and only if no s-t cut exists with finite weight. According to part (b) of the lemma
this is the case only when no non-trivial DAG-cut exists at all. Therefore, None is returned
correctly.a

If there does exist some s-t cut with finite weight, part (a) of the lemma ensures cor-
rectness. We can then check for all combinations of s and t, what the minimum-weight s-t
cut is in H. By the lemma, a smallest s-t cut (which must have finite weight) corresponds
to a minimum-weight non-trivial DAG-cut in G. Thus, the algorithm correctly identifies
a minimum-weight non-trivial DAG-cut when it exists.

Time complexity: The famous ‘max-flow min-cut theorem’ states that finding a min-
imum weight directed s-t cut in a directed graph is equivalent to finding a maximum

5.2. Cut-splitting heuristic 57

capacity s-t flow in the same graph [FF56]. The fastest known algorithm for general dir-
ected graphs, and only parametrized by the number of vertices n and the number of arcs
m, is described by Orlin [Orl13]. He combines his own algorithm with one by King, Rao
and Tarjan [KRT94] to obtain a time complexity of O(n ·m). Therefore, finding the min-
imum weight directed s-t cut can be done in O(n ·m) time.

The double for loop could result in O(n2) combinations of s and t, thus in total this
part of the algorithm can be implemented to run in O(n3 ·m) time. The creation of the sets
U, W, and the construction of the graph H, are also dominated by this time complexity,
proving the result.
aFor readability the lemma inexplicitly assumes that we do not have U = W = {s} and thus W \ {s} = ∅,
but it is trivial to see that in that case None is also returned correctly.

It is not unthinkable that the above running time can be improved by analyzing the work-
ings of minimum s-t cut algorithms. Most of these algorithms rely on flow operations, and
since we iterate over O(n2) source-sink combinations, it could be possible that some com-
putations are done twice. Even though further optimizations may thus be possible, the cur-
rent algorithm provides a straightforward and effective approach to finding minimum-weight
non-trivial DAG-cuts.

5.2.2. Repeated DAG-cut-splitting heuristic
The idea behind our heuristic is to recursively split the graph at a smallest non-trivial DAG-
cut. Consequently, we obtain an upper and a lower subgraph. However, when considering
scanwidth we can not just ‘forget’ about the arcs in the cut, as they might also be counted at
vertices lower or higher in the graph. Thus, for both created graphs, we merge the other part
of the graph into one ‘supervertex’. This ensures the arcs in the DAG-cut are still accounted
for. It also explains why we look for non-trivial DAG-cuts: else, the merging operation will
not decrease the size of our graph. Whenever no non-trivial DAG-cut exists, the graph is very
small, and we just take any extension. This leads to the following heuristic:

Algorithm 10: Repeated DAG-cut-splitting heuristic to find an extension.
Input: Weakly connected DAG G = (V, E).
Output: Extension σG.

1 G′ ← weighted version of G with unit weights
2 σG ← MinDAGCutSplit(G′)
3 return σG

procedure MinDAGCutSplit(H) // H is a weighted graph.
1 C = (S, T)←minimum-weight non-trivial DAG-cut of H, using Algorithm 9
2 if C is None then
3 σ← any extension of H ; // Use e.g. reverse DFS or BFS traversal.

4 else
5 H1 ← H[S]; H2 ← H[T]
6 add a ‘superleaf’ x to H1 and a ‘superroot’ y to H2
7 for each uv ∈ E(H) : u ∈ S, v ∈ T do
8 add an arc ux to H1 (if it already exists increase the weight by 1)
9 add an arc yv to H2 (if it already exists increase the weight by 1)

10 σ1 ← MinDAGCutSplit(H1)
11 σ2 ← MinDAGCutSplit(H2)
12 σ← σ1[S] ◦ σ2[T]

13 return σ

5.2. Cut-splitting heuristic 58

In Figures 5.3a and 5.3b the first iteration of the algorithm is visualized. Figure 5.3c shows
the canonical tree extension corresponding to the extension resulting from the algorithm. We
indeed see the cut C reappearing. The graph from this figure also demonstrates that the
algorithm can indeed be sub-optimal. Specifically, Figure 5.3d shows the optimal tree exten-
sion, which has a smaller scanwidth than the one in Figure 5.3c. Thus, in general, it is not
necessarily true that the smallest non-trivial DAG-cut appears in an optimal extension.

b

a

c
d

ρ

e
f

g

C

(a) Weakly connected DAG G

2

b

a

c
d

ρ

x

e
f

g

y

(b) Graphs H1 and H2

b

a

c

d

ρ

e

fg
C

(c) Heuristic tree extension Γ1

b

a

c

d

ρ

e

f

g

(d) Optimal tree extension Γ2

Figure 5.3: (a): Weakly connected DAG G, with the unique minimum non-trivial DAG-cut C. (b): Weighted
graphs H1 and H2 created after one iteration of Algorithm 10. The arc ρx has a weight of 2, while the other arcs
have unit weights. The two ‘supervertices’ x and y are in black. (c): Canonical tree extension Γ1 corresponding
to the extension obtained by Algorithm 10. The cut C appears again. The tree extension is not optimal, and has a
scanwidth of 6. (d): Optimal tree extension Γ2 (of scanwidth 5) which does not contain the cut C.

Nonetheless, the algorithm could still be valuable in practice, since it can be applied ef-
ficiently to larger instances. This is formalized in the following theorem, where it is proved
that the algorithm has a polynomial running time, and thus serves as a suitable candidate for
a heuristic.

Theorem 5.6. Let G = (V, E) be a weakly connected DAG of n vertices and m arcs. Then, Al-
gorithm 10 returns an extension of G, and runs in O(n4 ·m) time.

Proof. Correctness: We will show that the subroutine MinDAGCutSplit always returns an
extension of the graph H, which will imply that the complete algorithm returns an exten-
sion of G. We will do this by strong induction on the number of vertices k of H.

Base case: Whenever k ∈ {1, 2, 3}, we can never have a non-trivial DAG-cut, because
such a cut needs at least 2 vertices on either side. Then, the procedure returns an extension
by reversing a BFS or DFS traversal. This proves the base case.

Induction step: Let k ≥ 4 be arbitrary, and assume that the statement holds for all
1 ≤ ℓ ≤ k − 1. We will show it then also holds for k. We can furthermore assume that
H has a non-trivial DAG-cut, else the procedure will automatically return an extension.
Note that we have |S|, |T| ≤ k− 2, since the DAG-cut is non-trivial and cuts off at least
2 vertices on either side. After adding the ‘supervertices’, we thus have that H1 and H2
both have at most k − 1 vertices. By the induction hypothesis, σ1 is then an extension
of H1. Because H[S] is a subgraph of H1, σ1[S] (which restricts σ1 to S) is an extension

5.3. Simulated annealing 59

of H[S]. Analogously, we can obtain that σ2[T] is an extension of H[T]. Since C was a
DAG-cut, T is a sinkset of G. This then means that σ = σ1[S] ◦ σ2[T] must be an extension
of H. This concludes the induction.

Time complexity: The algorithm terminates, since the recursive calls are made on strictly
smaller graphs (see the reasoning in the above induction proof). According to The-
orem 5.5, finding the minimum non-trivial DAG-cut can be done in O(n3 ·m) time with
Algorithm 9. As the other non-recursive parts in the procedure are also dominated by
this complexity, O(n3 ·m) time is spent per subroutine call.

It is fairly obvious to see that - as with other recursive split algorithms such as quicksort
- the worst-case time complexity is obtained when the splits are far from balanced. In the
absolute worst case, we repeatedly cut off a graph of size 2 and one of size n− 2 + 1 =
n − 1. The graph of size 2 (which has size 3 after adding the supervertex), creates no
further recursive calls. All in all, the non-recursive part is then executed O(n) times. This
results in a worst-case time complexity of O(n4 ·m).

5.3. Simulated annealing
Following other successful attempts of simulated annealing algorithms applied to width-
parameters [SC21] and phylogenetics [Esl+12], we will try to set up a simulated annealing
framework for scanwidth. In Subsection 5.3.1 we introduce what a neighbourhood is and
how one can apply this to the space of (tree) extensions. Afterwards, we are ready to state the
algorithm in Subsection 5.3.2. In the last part of this chapter, Subsection 5.3.3, we will discuss
a strategy to find values for the parameters of the heuristic, along with a convergence result.

5.3.1. Neighbourhood of (tree) extensions
Before we dive into the concept of simulated annealing, we introduce the general notion of
a neighbourhood. One can think of a neighbourhood as a mapping from one element in a
solution space to a set of other solutions, thus formalizing the idea of neighbouring solutions.
To prove a convergence result in the next subsection, we will also cover a more restricted type
of neighbourhood.

Definition 5.7 (Neighbourhood). Let Σ be a set of elements. A mapping Φ : Σ → 2Σ that maps
each element of Σ to a subset of Σ is a neighbourhood on Σ. For two elements i, j ∈ Σ such that
i ∈ Φ(j), we say that i is a neighbour of j. Furthermore, Φ is a proper neighbourhood on Σ, if:

1. for all i ∈ Σ it holds that i /∈ Φ(i);

2. for all i ̸= j ∈ Σ it holds that i ∈ Φ(j), if and only if j ∈ Φ(i);

3. for all i ̸= j ∈ Σ there exist a finite (possibly empty) sequence i1, . . . , iℓ ∈ Σ such that i ∈
Φ(i1), i1 ∈ Φ(i2), . . . , iℓ ∈ Φ(j).

The above definition (adapted from [CB00]) states that a neighbourhood is proper, if ele-
ments are not neighbours of themselves (criterion 1), if being a neighbour is a two-way rela-
tionship (criterion 2), and if it is possible to get from each element to any other element by
moving through finitely many neighbours (criterion 3). This last criterion is especially im-
portant. It tells us that we can never get stuck in a set of solutions by moving only through
neighbours. Therefore, a (proper) neighbourhood provides a structured way to explore and
navigate a solution space. Hence, the notion of a (proper) neighbourhood is widely used in
optimization algorithms.

In our context, we aim to create a proper neighbourhood in the space of extensions or
tree extensions. A good initial candidate would be to let the neighbourhood of an extension

5.3. Simulated annealing 60

consist of all extensions that can be reached by swapping two consecutive vertices in the
extension. One needs to be careful, however, since only two vertices that are not adjacent
can be swapped. Else, the ordering is not an extension any more. We now prove that this
approach indeed leads to a proper neighbourhood.

Lemma 5.8. Let G = (V, E) be a weakly connected DAG. For all extensions σ of G and all v <σ u,
denote by movev,u(σ) the ordering we obtain from σ after moving the vertex v to directly after u in σ.
Then, Φswap(σ) = {movev,u(σ) : uv /∈ E, v = σ(i) and u = σ(i + 1) for some i < |V|} defines a
proper neighbourhood on the set of extensions σ of G.

Proof. Any extension where we swap two consecutive vertices in the extension such that
there is no arc between them, is naturally an extension again. Therefore, Φswap is a neigh-
bourhood on the set of extensions.

To establish that Φswap is a proper neighbourhood, we need to verify the tree criteria
from Definition 5.7. It is obvious that the first two criteria hold. For the third criterion let
σ and π be two distinct extensions of G. We will now prove by induction on the number
of vertices n of G, that one can transform σ into π in a finite number of steps using Φswap.
We can assume that n ≥ 3, as all weakly connected DAGs with at most 2 vertices have
only one extension.

Base case: For n = 3, there are only two possible scenarios when G has at least two
unique extensions: either G consists of one root and two leaves, or it has two roots and
one leaf. In both cases, G has exactly two possible extensions, which are direct swap-
neighbours of each other. This immediately proves the base case.

Induction step: Let n ≥ 4 be arbitrary and assume that the statement holds for a graph
of n− 1 vertices. Let x = σ(1) and y = π(1). As y is the first vertex in π, it can not be
above any other vertex in G, showing that y is a leaf. But then, if y ̸= x, we can swap y
all the way down to the last position in σ to obtain an extension σ′. On the other hand, if
y = x, it means that y is already in the last position, and we simply have σ = σ′. Either
way, using a (possibly empty) sequence of swaps, we have now obtained an extension σ′

with σ′(1) = π(1) = y.
Let H = G[V \ {y}] which has n− 1 vertices. It is evident that σ′[2 . . . n] and π[2 . . . n]

are extensions of H. By the induction hypothesis, we can create π[2 . . . n] from σ′[2 . . . n]
by a sequence of swaps.a As y was a leaf, its deletion does not affect any order relations
between other vertices. Thus, these swaps are also valid in G, and turn σ′[1 . . . n] into
π[1 . . . n]. Altogether, we have turned σ into σ′, and σ′ into π, with a finite amount of
swaps. This concludes the induction proof and thus proves the lemma.
aIf H is not weakly connected any more, one can do this for each component separately. As the components
are not connected, one can then interleave the extensions of the components by only using swaps again.
Thus, this poses no difficulty.

At first sight, this seems to be a good choice of neighbourhood. Upon closer inspection,
however, the neighbourhood may result in a large number of neighbours of an extension that
have the same canonical tree extension as the original extension. This occurs, since swapping
two vertices that are not yet weakly connected in the extension, will not change the corres-
ponding canonical tree extension. As an example, imagine a DAG that is a very wide directed
tree with a single root. Here, the DAG has a plethora of extensions, while they all have the
same canonical tree extension (namely the tree itself). This redundancy in neighbours can
lead to unnecessary computations.

We circumvent this problem by opting for a neighbourhood on the space of canonical tree
extensions. This way, we ensure that neighbouring solutions are indeed structurally different.

5.3. Simulated annealing 61

We build upon the previous result to prove that this more sophisticated neighbourhood also
satisfies the properties of a proper neighbourhood.

Lemma 5.9. Let G = (V, E) be a weakly connected DAG. For all extensions σ of G and all v <σ u, let
movev,u(σ) be as in Lemma 5.8. Then, Φmove(Γ) = {canonical tree extension of movev,u(σ) : uv ∈
E(Γ), uv /∈ E(G)} with σ an extension of Γ, defines a proper neighbourhood on the set of canonical
tree extensions Γ of G.

Proof. To prove that Φmove is a neighbourhood, we will first need a claim.
Claim: Let Γ be a canonical tree extension of G, and σ an extension of Γ. If uv ∈ E(Γ)

and uv /∈ E(G), then movev,u(σ) is an extension of G.

Proof of claim: Since σ is an extension of Γ, Proposition 3.5 tells us that Γ is canonical
for σ. All vertices between v and u in σ are not above v in Γ, else such a vertex
would have to be in between u and v in the canonical tree extension Γ. As uv is not
an arc of G, we are thus able to move v up to directly after u, while still maintaining
that we have an extension. △

Intuitively, it should be clear that Φmove(Γ) does not depend on the choice of σ. This
is because Γ is canonical for any extension of itself (by Proposition 3.5), and its extensions
can thus all be seen as representations of the same tree extension. By the claim and the
definition of Φmove, we then have that Φmove defines a neighbourhood for all canonical
tree extensions of G.

To show that Φmove is a proper neighbourhood, we first note that a canonical tree ex-
tension is never a neighbour of itself, and therefore criterion 1 of Definition 5.7 is satisfied.
This is true, because for each neighbour Ω of Γ, there exists some u and v such that u >Γ v
and u ≯Ω v. Thus, the neighbour Ω can never be equal to Γ.

Criterion 2 follows from the fact that we can choose σ in such a way that u and v are
consecutive in σ. Therefore, when we move u to after v, we are essentially only swapping
the two vertices. This new extension is an extension of the new canonical tree extension.
We can then swap u and v again to move back to the original tree extension, fulfilling the
criterion.

For the third criterion, let Γ and Ω be two different canonical tree extensions, and let
σ and π be extensions of Γ and Ω, respectively. By Lemma 5.8, there exists a sequence
of swapping moves of length ℓ that transforms σ into π. We will now prove the third
criterion by induction on the length ℓ of this sequence.

Base case: If ℓ = 0, it means that π and σ are direct neighbours. Then, π can be obtained
from σ by swapping two consecutive vertices that are not adjacent in G. As the two tree
extensions are different, those two vertices must form an arc in the tree extension. As a
consequence, these two vertices can be used in our Φmove-neighbourhood, proving the
base case.

Induction step: Now assume that ℓ > 0, and that the induction hypothesis holds for
ℓ − 1. We have two cases. Either, the first swap in the sequence does not change the
canonical tree extension. Then, this swap is redundant, and we can just as well pick
the extension obtained after this swap as our σ. This σ then needs one swap less in the
sequence, and the claim follows from the induction hypothesis. In the other case, the first
swap did change the canonical tree extension. But then these two vertices must form an
arc in the canonical tree extension. Thus, swapping these two vertices is allowed in the
Φmove-neighbourhood. By the induction hypothesis, the statement then follows.

5.3. Simulated annealing 62

5.3.2. Description of algorithm
With the newly defined neighbourhood in mind, we are ready to introduce the topic of sim-
ulated annealing. Throughout the 1980s numerous authors developed similar methods (see
[LA87] for an overview) but Kirkpatrick, Gelatt and Vecchi [KGV83] are often credited as the
creators of the algorithm. They successfully applied simulated annealing to the TRAVELLING

SALESMAN PROBLEM and named the algorithm after the annealing process in metallurgy,
where a material is heated and slowly cooled to reduce its defects and reach a more optimal
state.

At its heart, the algorithm is a metaheuristic: a heuristic that efficiently guides us through
the space of possible solutions. It does so with the help of a nicely chosen neighbourhood
(see the previous subsection). The algorithm starts with some initial solution, either created
at random or utilizing another heuristic. It then randomly selects a neighbour of the solution,
accepting it as the new solution if it has a lower energy. Unsurprisingly, in our case, the
energy of a solution (that is, an extension) will correspond to its scanwidth. If the neighbour
has a larger (i.e. worse) energy, we still have a probability of accepting it. This probability
is determined by the temperature parameter. The lower the temperature, the less likely it
becomes to accept a worse solution. The algorithm starts with a high temperature and as it
progresses, it will slowly decrease the temperature according to a pre-defined cooling schedule.

As a result of the high starting temperature, the algorithm will initially perform a fairly
global and random search. Consequently, almost any solution will be accepted as the next
state. Due to the cooling, the heuristic will slowly start to only accept better solutions. Thus,
it nudges itself to a (hopefully global) minimum. The success of the method of course heavily
relies on a good choice of neighbourhood.

Throughout the literature, a wide range of different formulations exist. Although inher-
ently the same, they differ, among others, in their specified cooling schedules. We will base
our algorithm on a formulation from [CB00] (see also [Esl+12]), due to its nice convergence
proof.

Algorithm 11: Simulated annealing heuristic to improve an initial tree extension.
Input: Weakly connected DAG G = (V, E), initial canonical tree extension Γ0 of G,

stopping temperature Tend > 0, initial temperature T0 > Tend,
iteration-dependant cooling factor αk ∈ (0, 1).

Output: Canonical tree extension Γbest of G with lowest scanwidth that was found
1 initialize
2 T ← T0; Γ← Γ0; Γbest ← Γ0; k← 0

3 while T ≥ Tend do
4 repeat |V| times
5 Γ′ ← random neighbour from Φmove(Γ) ; // See Lemma 5.9
6 ∆sw← sw(Γ′)− sw(Γ)
7 if ∆sw < 0 then
8 Γ← Γ′

9 if sw(Γ) < sw(Γbest) then
10 Γbest ← Γ

11 else if rand(0, 1) < e−∆sw/T then
12 Γ← Γ′

13 k← k + 1
14 T ← αk · T
15 return Γbest

5.3. Simulated annealing 63

In this formulation, we see that the algorithm runs until the temperature drops below
some lower bound. The cooling of the temperature is done by multiplying the previous tem-
perature with αk, whose value may depend on what iteration of the while loop the algorithm
is in. Before we cool down the temperature, we repeat the ‘searching procedure’ |V| times.
This polynomial dependence on the size of the problem is a standard choice [LA87], since the
solution space also grows with the number of vertices in the graph.2

The searching procedure starts with selecting a random neighbour Γ′ of the current solu-
tion Γ, as defined in Lemma 5.9. Improved solutions are then always accepted. If they im-
prove the overall best solution Γbest, it is updated. We accept a worse solution with a prob-
ability of e−∆sw/T, the so-called Metropolis criterion [LA87]. In this case, Γbest obviously never
needs updating.

The algorithm always returns a valid canonical tree extension. This fact, together with the
time complexity per iteration, is proved in the next theorem.

Theorem 5.10. Let G = (V, E) be a weakly connected DAG of n vertices and m arcs. Then, for any
initial canonical tree extension Γ0, stopping temperature Tend > 0, initial temperature T0 > Tend, and
iteration-dependant cooling factor αk ∈ (0, 1), Algorithm 11 will return a canonical tree extension.
Furthermore, each iteration of the for-loop takes O(n2 ·m) time.

Proof. In Lemma 5.9 we proved that Φmove is a neighbourhood for the canonical tree
extensions of G. As the initial tree extension is also canonical, it follows that the algorithm
always outputs a canonical tree extension of G.

Complexity: In each iteration of the algorithm we first select a random neighbour from
Φmove(Γ). To this end, we start by creating an extension σ of Γ in O(n) time, which is
possible by Theorem 3.6. To now efficiently pick a neighbour, we only need to randomly
pick an arc uv from Γ such that uv is not an arc of G. As Γ has n− 1 arcs, this takes O(n)
time. Moving v to after u in σ is also surely bounded by this complexity while creating the
canonical tree of this new extension takes O(n2) time with Algorithm 2 (by Theorem 3.8).
Therefore, we can find a neighbour Γ′ in O(n2) time.a

We also need to calculate the scanwidth, which takes O(nm) time (see Corollary 3.9).
All remaining operations take constant time, resulting in a time complexity of O(nm)
(using that O(n2) = O(nm)). As we repeat this procedure n times per iteration, we end
up with O(n2 ·m).
aIn practice, one can speed up the process of creating a neighbour of Γ by directly altering Γ. Since most
parts of the tree extension Γ will remain unchanged, one only needs to locally modify Γ around the vertices
u and v. This is a mere practical improvement, so we will not describe this tedious procedure in detail. We
do mention that in essence, this comes down to a modification of Algorithm 2. Most of the two underlying
extensions remain the same, so we can often reuse a lot of computations each time we run this algorithm.

5.3.3. Asymptotic convergence and cooling schedule
In this subsection, we focus on the cooling schedule, which captures all choices to be made
regarding the cooling of the temperature. In our case, these are the cooling factor αk, the
initial temperature T0, and the stopping temperature Tend.

Due to the use of a proper neighbourhood, the algorithm has a nice convergence prop-
erty. Under certain theoretical conditions on the cooling schedule, it can be shown that the
algorithm converges in probability to an optimal solution. That is, the probability that the
returned solution is optimal will tend to 1 as we lower the stopping temperature to 0 (i.e.

2The linear dependence on |V| seems to be a justified choice, since the size of our neighbourhood is upper
bounded by |V|, because we have at most one neighbour per arc of the tree extension.

5.3. Simulated annealing 64

let the number of iterations grow to ∞). Instinctively, this makes sense, since criterion 3 of
Definition 5.7 says that we will never get stuck in some set of solutions when we wander only
through proper neighbours. Therefore, it seems logical that we find an optimal solution in
the limit.

Convergence proofs for simulated annealing have been widely researched (see [LA87] for
an overview). As our simulated annealing formulation fits the framework of [CB00], we will
heavily rely on the convergence proof that is discussed there. The next theorem states the
exact conditions that need to be satisfied for convergence.

Theorem 5.11. Let G = (V, E) be a weakly connected DAG, Γ0 any initial canonical tree extension,
and ∆ the difference between the largest and smallest possible scanwidth of any canonical tree extension
of G. Then, if T0 ≥ ∆, α1 ≥ 1

ln(2) , and αk ≥ ln(k)
ln(k+1) for all k ≥ 2,

lim
Tend→0

P[sw(Γbest) = sw(G)] = 1,

where Γbest is the tree extension returned by Algorithm 11.

Proof. We first note that our used neighbourhood Φmove is proper by Lemma 5.9. Clote
and Backofen [CB00] state that what we define as a proper neighbourhood (see Defini-
tion 5.7), is in essence a finite, aperiodic and irreducible Markov chain.a They also reformulate
the classic result that a stationary distribution exists for these types of Markov chains. Us-
ing a much-cited theorem from [GG84], they go on to show that - under some ‘technical
conditions’ - the current solution of the simulated annealing algorithm converges in prob-
ability to this stationary distribution. Lastly, it is proved that this stationary distribution
only has a positive probability for the optimal states. From this, we can deduce that the
best solution Γbest that was found within the algorithm, must be one of the optimal solu-
tions with probability 1 in the limit.

It remains to show that the above ‘technical conditions’ of the result in [CB00] are met.
The first condition they impose is that the initial temperature must be larger than the
difference ∆ between the maximum and minimum possible energies. As the scanwidth
represents our energy value and we search through the space of tree extensions, this is
satisfied by the assumptions of our theorem. The second necessary condition is that the
temperature Tk in the k-th iteration of the algorithm must satisfy Tk ≥ ∆

ln(k+1) . Using the
conditions we impose in this theorem, we get that

Tk = T0 · α1 · · · · · αk ≥ T0 ·
1

ln(2)
· ln(2)

ln(3)
· · · · ln(k)

ln(k + 1)
.

This is a telescoping product, so we conclude that Tk ≥ T0 · 1
ln(k+1) ≥

∆
ln(k+1) . These were

the only conditions necessary for convergence, proving the theorem.
a[CB00] additionally impose that each element has the same number of neighbours, but this is not necessary
for the convergence (see e.g. [Esl+12]).

Although this theorem seems to give us some direction towards good parameter values,
the result is of mere theoretical relevance. Several studies have shown that the convergence
obtained by this so-called logarithmic cooling is excessively slow in practice (see e.g. [GG84]
for a discussion). Hence, we explore alternative methods to determine the parameter values.

We opt for the most common cooling factor: a constant α. This leads to exponential cooling.
Often, an α in the range of [0.85, 0.95] is chosen [KGV83; KC92; CB00; Esl+12]. We use a

5.3. Simulated annealing 65

different option for more control over the running time of the algorithm. Following [SC21],
we instead choose the number of iterations we want the algorithm to run and then determine
which value of α fulfils this. As Theorem 5.11 provides us with a theoretical estimate of the
running time per iteration, this makes it possible to make a somewhat informed decision on
how long the algorithm will run. Formally, if we set the number of iterations at M > 0, we let

α = (Tend/T0)
1−M. (5.1)

It is not hard to check that this leads to exactly M iterations.
The second part of our cooling schedule concerns the range of temperatures that will be

used. Upon first look, it is far from clear what a suitable temperature range would be. Hence,
we adopt an approach described by Johnson et al. [Joh+89] (more elaborately discussed in
[LA87]), who instead choose an initial acceptance probability χ0 and then determine the start-
ing temperature accordingly. The reason for this approach is that this probability is a more
interpretable quantity than the starting temperature. Furthermore, it is less prone to changes
in the size of the graph, because probabilities are always in the interval [0, 1].

In Algorithm 11 the actual initial acceptance probability equals e−∆sw0/T0 , where ∆sw0 > 0
denotes the increase in scanwidth, resulting from the first occasion where a worse solution is
accepted. To determine T0 such that this probability equals the predefined value of χ0, we
need the value of ∆sw0.

Since ∆sw0 depends on the specific neighbours that are chosen at random, we do not know
its value in advance. Hence, Johnson et al. propose to perform a trial run of the algorithm (of
e.g. 1 iteration). This allows us to determine the average of all ∆sw > 0 encountered in the
trial run, for which the corresponding worse solution was accepted. This value then functions
as an estimate of the actual ∆sw0. As a convention, we set ∆sw

+
= 1, if no worse solution

appeared during the trial run.
To approximately obtain an initial acceptance probability of χ0, the initial temperature can

now be determined as

T0 = −∆sw
+

χ0
. (5.2)

We extend this idea to also find the stopping temperature by choosing a final acceptance prob-
ability χend. Thus,

Tend = −∆sw
+

χend
. (5.3)

To summarize, one needs to choose the number of iterations M, the initial acceptance
probability χ0, and the final acceptance probability χend, when executing the algorithm. Intu-
itively, χ0 needs to be relatively close to 1, while χend needs to be very small.

Chapter6
Experimental results

In this chapter we conduct an experimental study to evaluate the performance of our exact
algorithms, heuristics and reduction rules on networks. In Section 6.1 we will describe the
networks that are used in the experiments and compare their level, scanwidth and treewidth.
Section 6.2 focuses on the reduction scheme from Section 3.3. Moving forward, Section 6.3
covers the exact methods from Chapter 4, while Section 6.4 offers a comparative analysis of
the heuristics from Chapter 5.

All experiments in this chapter are conducted on an Intel Core i7-8750H CPU @ 2.20
GHz with 16 GB RAM. The algorithms are implemented in Python 3.11.3 using the NetworkX
graph-library. The implemented algorithms, used networks, and complete numerical results
can be found at https://github.com/nholtgrefe/scanwidth.

6.1. Network generation
Closely following the experimental study from [Ier+23], we utilize both a dataset of real-
world networks and a synthetically created dataset. The real data is made up of 27 real phylo-
genetic networks found in the literature, collected on [AGM16]. These networks, referred to
as the real networks, include the network from Figure 1.1. Among these networks, 15 are bin-
ary, while the remaining 12 are non-binary. The number of leaves ranges from 6 to 39, while
the number of reticulations ranges from 1 to 9, except for one outlier with 32 reticulations.
As these networks relate to real-world data, we have included Table B.1 in Appendix B.2,
containing the exact results of most experiments for each of these real networks.

To augment our dataset, we use the birth-hybridization network generator from [Zha+17]
to create 900 binary networks. This generator is often called the ZODS generator, named after
the authors of the original paper. The method takes two input parameters: λ, the speci-
ation rate, and ν, the hybridization rate. Just as in the computational experiments from [JL21;
Ier+23; Ber+23], we set λ = 1 and sample ν uniformly at random from the interval [0.0001, 0.4]
for each individual network. We adapt the implementation from [Ier+23] to generate 100 net-
works for each pair of (r, ℓ), where r ∈ {10, 20, 30} denotes the number of reticulations1, and
ℓ ∈ {20, 50, 100} the number of leaves. In total, this gives rise to a dataset comprising 900
networks, which we will refer to as the synthetic networks.

Scornavacca and Weller [SW22] requested a comparison of the reticulation number, level,
scanwidth and treewidth for different network classes. Figure 6.1 functions as a partial an-
swer to this call. It depicts boxplots that show the spread of the level, the treewidth and the
scanwidth within each dataset.
1Since all networks are binary, the number of reticulations equals the reticulation number.

66

https://github.com/nholtgrefe/scanwidth

6.2. Reductions 67

(10, 20) (10, 50) (10, 100)
0

10

20

30
P

ar
am

et
er

va
lu

e
Level

Scanwidth

Treewidth

(20, 20) (20, 50) (20, 100)

Synthetic networks: (nr. of reticulations r, nr. of leaves `)

(30, 20) (30, 50) (30, 100) Real
networks

Figure 6.1: Variation in level, scanwidth and treewidth within each dataset. The figure displays a boxplot for
each of the nine subsets of the synthetic data and one for the real dataset. The boxplots show the quartiles of
the data and its outliers. Different colours indicate the three different parameters. The treewidth values of the
last synthetic dataset are not presented due to computational constraints, since obtaining these values required
excessive computation times surpassing 19 hours for some networks.2

For the synthetic data, we fixed the number of reticulations, explaining why the level has
a sharp cutoff at those values in the figure. Moreover, it is evident that the ZODS generator
favours networks with levels very close to the reticulation number. Notably, we observe that
the level + 1 is greater than or equal to the scanwidth, which in turn is greater than or equal
to the treewidth. This aligns with the bounds from Lemma 3.16 and Corollary 3.19. As men-
tioned in the introductory chapter, scanwidth was proposed as an alternative for treewidth
in parametrized algorithms. Although the level and the scanwidth exhibit a considerable
difference in value, the treewidth is not a lot smaller than the scanwidth. This observation
strengthens our belief in the practical value of scanwidth as a parameter.

Regarding the real networks, we see a somewhat different trend. The values of the three
parameters are closer together in this case (see also Table B.1 for a complete overview of the
values). This is attributed to the fact that most levels of the real networks are fairly small. As
a consequence, there is limited ‘room’ for the scanwidth and the treewidth. The scanwidth,
therefore, takes on predominantly small values, which further suggests its practicality. This
is particularly promising since we have an algorithm capable of computing the scanwidth in
polynomial time for fixed scanwidth, which runs efficiently when the scanwidth is small.

6.2. Reductions
To test the effect the reduction rules from Section 3.3 have on the size of the networks, we em-
ployed the decomposition method (Algorithm 3) on each network. Figure 6.2a showcases the
percentage of the original nodes that remain after decomposition. Networks with fewer retic-
ulations demonstrate greater potential for reduction. This is to be expected, as such networks
are more tree-like, and many of their blocks thus have scanwidth 1 or 2. The decomposition
algorithm effectively ‘deletes’ these blocks, leading to a significant reduction in the overall
network size.

Regarding the number of leaves, we see a different relationship: a larger number of leaves
corresponds to a greater reduction in size. This can be attributed to the fact that our reduction
rules delete leaves of networks. Since the real networks vary in terms of reticulation numbers
and number of leaves, their reduction percentages exhibit a wider range of values. However,
in most cases the reductions are effective, and reduce the size of the networks to less than half
2The values of the scanwidth are calculated using our exact algorithms, whose performance is discussed in Sec-
tion 6.3. The values of the treewidth are calculated with one of the fastest known exact algorithms by Tamaki
[Tam22]. We used his Java implementation of this algorithm - which was published on https://github.com/
twalgor/tw - on a different CPU.

https://github.com/twalgor/tw
https://github.com/twalgor/tw

6.3. Exact algorithms 68

(10, 20) (10, 50) (10, 100)

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

of
no

de
s

af
te

r
re

du
ct

io
n

(20, 20) (20, 50) (20, 100)

Synthetic networks: (nr. of reticulations r, nr. of leaves `)

(30, 20) (30, 50) (30, 100) Real
networks

(a) Relative network size after reduction

(10, 20) (10, 50) (10, 100)

0

20

40

60

80

N
o

de
s

af
te

r
re

du
ct

io
n

(20, 20) (20, 50) (20, 100)

Synthetic networks: (nr. of reticulations r, nr. of leaves `)

(30, 20) (30, 50) (30, 100) Real
networks

(b) Absolute network size after reduction

Figure 6.2: Performance of the decomposition method (Algorithm 3). Figure (a) depicts how many nodes remain
after the decomposition, as a percentage of the number of nodes of the original network. Figure (b) shows the
absolute number of nodes after the decomposition. Both subfigures contain boxplots - showing quartiles and
outliers of the data - for each of the nine subsets of the synthetic data and one for the real dataset.

of their original size.
Figure 6.2b shows the absolute number of nodes after the decomposition of the networks.

Logically, networks with more leaves and more reticulations are larger, even after decompos-
ing them. We also see that most of the real networks are relatively small after decomposition.

The time to reduce the networks is extremely small. This outcome is not surprising given
that Lemma 3.28 proved the quadratic time complexity of the decomposition algorithm. The
largest computation time for any of the instances was 0.056 seconds, while the average com-
putation time remained below 0.005 seconds. All in all, the reduction rules prove to be bene-
ficial without imposing substantial computational overhead. Therefore, we certainly recom-
mend incorporating these reduction rules in practice.

6.3. Exact algorithms
In Chapter 4 we explored multiple exact algorithms and their respective time complexities. A
brute force solution runs in Õ(n!) time as shown in Proposition 4.1. The recursive Algorithm 4
runs in Õ(4n) time. On the other hand, dynamic programming Algorithm 5 has a time com-
plexity of Õ(2n) time. We also used a practical improvement called component splitting in
Algorithm 6, resulting in the same time complexity. The theoretically superior algorithm re-
peatedly applies the fixed-parameter Algorithm 7, as outlined in the proof of Corollary 4.15.
It runs in O(k ·m · nk) time, where k represents the scanwidth. Combining this algorithm and
the decomposition algorithm, Corollary 4.16 further establishes that SCANWIDTH is in FPT
when considering the level as parameter.

While we have proved that these algorithms yield optimal solutions, it is interesting to
assess how fast they run in practice. For each of the above-described algorithms, Figure 6.3
provides insight into the percentage of networks for which the scanwidth can be determined
within 60 seconds.

Throughout the different data (sub)sets, the order of the algorithms concerning their com-
pletion rates aligns with the theoretical time complexities of the algorithms. The brute-force
solution has the smallest completion rate, while (the repeated application of) Algorithm 7
achieves the highest. The component splitting from Algorithm 6 also provides an improve-
ment over the standard Algorithm 5.

Interestingly, for the real networks, three of the five algorithms achieve a 100% completion
rate, with the fastest of them having an average computation time of just 0.3 seconds. Thus,
on the real dataset the algorithms perform extremely well. However, the brute-force solution
also attains a significant completion rate of 85%, indicating that most of these real instances

6.4. Heuristics 69

(10, 20) (10, 50) (10, 100)
0%

20%

40%

60%

80%

100%
C

om
pl

et
io

n
ra

te
0.2 1.3 2.20.1 0.2 0.30.1 0.1 0.1

(20, 20) (20, 50) (20, 100)

Synthetic networks: (nr. of reticulations r, nr. of leaves `)

1.1 3.4 4.7

(30, 20) (30, 50) (30, 100)

8.3

Brute force

Algorithm 4

Algorithm 5

Algorithm 6

Algorithm 7*

Real
networks

0.7 0.5 0.3

Figure 6.3: Performance of the exact algorithms. For each algorithm, the completion rate, calculated as the number
of instances per data set where the algorithm successfully computed the scanwidth within 60 seconds, is shown.
If the rate is 100%, the average running time in seconds is also depicted. The figure contains results for each of
the nine subsets of the synthetic data and one for the real dataset. The different colours indicate the different
algorithms. In all cases, the decomposition algorithm was also applied. The asterisk in the legend indicates that
we repeatedly applied Algorithm 7 as outlined in the proof of Corollary 4.15, since the algorithm itself only solves
the fixed-parameter version of the problem.

are not too hard.
In general, the completion rates drop as the number of leaves and reticulations increases.

This is in line with our discussion from the previous two subsections, where it is noted that
these networks are larger and have a higher scanwidth and level.

Looking at the complete synthetic dataset, the best-performing algorithm (i.e. repeated
application of Algorithm 7) had a completion rate of 88.9% within 60 seconds. Additionally,
we allowed this algorithm to run indefinitely to get the scanwidth values for all networks.
After 300 seconds, the overall completion rate increased to 98.9%. The maximum computation
time of any of the networks using this algorithm turned out to be 453.52 seconds. Hence, for
all generated networks, with up to 30 reticulations and 100 leaves, the scanwidth could be
computed exactly within 8 minutes.

6.4. Heuristics
In the previous section, we observed that our fastest algorithm is able to find all optimal
tree extensions within 500 seconds. If less time is allowed, we need to turn our attention to
heuristics. We evaluate the performance of the greedy heuristic (Algorithm 8) and the cut-
splitting heuristic (Algorithm 10) developed in Chapter 5. Additionally, we apply simulated
annealing (Algorithm 11) to both results and compare the performances. We emphasize that
we have not proved any theoretical bounds on the approximation ratios of the heuristics. For
the greedy heuristic, we even provided an example showing that the greedy solution can be
arbitrarily bad (see Figure 5.1).

The greedy heuristic and the cut-splitting algorithm do not require any user-defined para-
meters. However, our simulated annealing algorithm does have three parameters. As pro-
posed in Subsection 5.3.3, we use a cooling schedule that needs a specified number of iter-
ations M, an initial acceptance probability χ0, and a final acceptance probability χend. For
our experiments, we set the number of iterations M = 100, as for all instances this allowed
the running time to stay below 60 seconds, the cutoff time for the exact methods. Further-
more, we set χ0 = 0.55 and χend = 0.001. These parameter settings were determined through
parameter tuning, described in Appendix B.1.

Figure 6.4 presents the results of the experiment. In Figure 6.4a the practical approxim-
ation ratios obtained by the heuristics are shown for the different datasets. First of all, we
observe that for the real networks, the practical approximation ratios are very close to 1. In

6.4. Heuristics 70

fact, the whiskers of the boxplots are not even shown, indicating that for most networks all
heuristics can find an optimal (tree) extension. Applying the cut-splitting heuristic together
with simulated annealing even solves all but one network to optimality.

(10, 20) (10, 50) (10, 100)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

P
ra

ct
ic

al
ap

pr
ox

im
at

io
n

ra
ti

o greedy

cut-splitting

greedy + SA

cut-splitting + SA

(20, 20) (20, 50) (20, 100)

Synthetic networks: (nr. of reticulations r, nr. of leaves `)

(30, 20) (30, 50) (30, 100) Real
networks

(a) Practical approximation ratios

(10, 20) (10, 50) (10, 100)

0

20

40

60

80

C
om

pu
ta

ti
on

ti
m

e
(s

ec
.)

greedy

cut-splitting

greedy + SA

cut-splitting + SA

(20, 20) (20, 50) (20, 100)

Synthetic networks: (nr. of reticulations r, nr. of leaves `)

(30, 20) (30, 50) (30, 100) Real
networks

(b) Computation times

Figure 6.4: Performance of the different heuristics. Boxplots are shown for each of the nine subsets of the syn-
thetic data and the real dataset. The boxplots show the quartiles of the data and its outliers. Figure (a) displays
the practical approximation ratios, while Figure (b) depicts the computation times. The computation times for
simulated annealing (SA) include the computation time to obtain the initial tree extension. We also applied the
decomposition algorithm in all cases.

For the synthetic data, the approximation ratios increase with the number of reticulations
and leaves. This is attributed to the fact that such networks are inherently more complex and
thus more challenging to solve. It is fairly clear that the greedy heuristic performs the worst,
although the practical approximation ratio stays below 2.5. In all cases, the cut-splitting heur-
istic consistently shows significant improvement over the greedy algorithm. Lastly, applying
simulated annealing indeed improves the solution quality even more, albeit at the cost of
more computation time.

The computation times of the heuristics are visualized in Figure 6.4b. It is apparent that
simulated annealing takes considerably more computation time compared to just applying
the heuristics on their own. Furthermore, we see that the better-performing heuristics require
more time than the less effective ones. This is also in line with their respective theoretical
time-complexities from Chapter 5. Finally, it is worth noting that the computation times also
scale with the number of leaves and reticulations of the networks.

Chapter7
Conclusion and outlook

7.1. Conclusion
In this thesis we have successfully attempted to find ways of efficiently computing the scan-
width of directed acyclic graphs. The main contributions of the thesis are three-fold: we have
created a relatively fast exact algorithm to compute the scanwidth, we have provided insight
into the parametrized complexity of the SCANWIDTH problem, and we developed a good-
performing heuristic to compute the scanwidth for instances that are too large for the exact
method.

Regarding the first topic, an exact algorithm is proposed that can compute the scanwidth
in slicewise polynomial time for fixed scanwidth. This algorithm iterates from top-to-bottom
through different subsets of the vertices of a graph, using dynamic programming to store
intermediate results. With the help of a clever trick to bound the number of sets that need
to be considered, the time complexity can be bounded by O(k ·m · nk), with k the scanwidth.
Furthermore, in combination with a decomposition algorithm, the time complexity of the
algorithm can be bounded by O(24ℓ−1 · ℓ · n + n2) for level-ℓ networks.

The worst-case time complexity of this algorithm shows that SCANWIDTH is part of the
complexity class XP with respect to the parameter scanwidth. The class XP contains the prob-
lems that can be solved in polynomial time for a fixed parameter, allowing the degree of the
polynomial to depend on this parameter. Moreover, the above time complexity for level-ℓ
networks shows that SCANWIDTH is fixed-parameter-tractable with respect to the level of a
network. Specifically, it takes quadratic time to calculate the scanwidth of a network when
the level is fixed.

We observe that the cuts in a tree extension are of a specific type: DAG-cuts. Using the
fact that one can find a smallest (non-trivial) DAG-cut in polynomial time, we are able to effi-
ciently keep splitting a graph into smaller subgraphs at these minimal (non-trivial) DAG-cuts.
Although not necessarily optimal, we showed that this heuristic performs great in practice.
When applying simulated annealing to the resulting tree extension, we are able to improve
the quality of solutions even more.

Tested on a set of 27 real-world phylogenetic networks, our best-performing exact al-
gorithm is able to compute the scanwidth within 7.86 seconds, averaging a computation time
of just 0.30 seconds. On a synthetic dataset of networks, the algorithm struggles with the
harder instances, albeit still able to compute any scanwidth within 500 seconds. On these
fairly hard instances - with 30 reticulations and 100 leaves - the earlier described heuristic
attains an average practical approximation ratio of 1.5.

These experimental results show that computing the scanwidth exactly or finding a near-
optimal solution can surely be done in a reasonable time. Additionally, we show that in prac-

71

7.2. Further research 72

tice, the treewidth - scanwidth’s main competitor when it comes to parametrized algorithms
- is not much smaller for networks. Scanwidth is also more intuitive for phylogenetic net-
works than treewidth. Together, these observations motivate the use of scanwidth (and the
corresponding tree extensions) when designing parametrized algorithms in phylogenetics.

7.2. Further research
One direction of possible further research would be the transferability of some of our results
to edge-treewidth, introduced in [Mag+21]. As this parameter is very closely related to scan-
width, it seems that translating our algorithms to edge-treewidth is not far-fetched. Perhaps,
it is also possible to adapt our algorithms to node-scanwidth, where instead of arcs we are in-
terested in the tails of the arcs (similar to Definition 3.15 of treewidth). A possibly simpler
generalization would be the translation of our results to weighted DAGs or multigraphs.

A major open question that persists on the topic of time complexity is whether comput-
ing the scanwidth is FPT when the parameter is the scanwidth. Resolving this question will
possibly also solve the same open question for edge-treewidth, posed in [Mag+21]. Fixed
parameter tractability of both treewidth [Bod93] and directed cutwidth [BFT09] would sug-
gest that the same might hold for scanwidth. However, these existing FPT algorithms are far
from easily transferable. It is of course to be seen whether such an FPT algorithm would im-
prove our XP algorithm in practice. Nonetheless, we list three strategies that in our opinion
might be valuable. Of course, a completely novel approach could prove even more successful.

• The FPT algorithm for cutwidth given in [BFT09] (also discussed in [DT11]) relies on
finite state automata: a specific type of abstract machine. As explained in [Bod12], this
theory can be extended to finite state tree automata, which allow for tree-like structures.
We hope that it is possible to consider scanwidth from a similar point of view, although
attempts have been unsuccessful thus far.

• Berthomé et al. [Ber+13] present a unified structure for partition functions. This frame-
work, which also contains cutwidth and treewidth, aims to unify different types of
width parameters. The authors also include an involved description of a general FPT
algorithm. It might be worthwhile to fit scanwidth within this framework. The main
difficulty seems to be the incorporation of directions, as the framework is formulated
for undirected graphs. It should be noted that the given algorithm is not constructive,
in the sense that it does not provide the optimal decomposition corresponding to the
width parameter.

• The FPT algorithm for undirected cutwidth by Thilikos, Serna and Bodlaender [TSB05]
makes use of the fact that the cutwidth is closed under taking immersions. In a similar
fashion, Magne et al. [Mag+21] show that the edge-treewidth is closed under taking
weak topological minors: a newly defined partial ordering relation on graphs. Due to the
edge-treewidth’s close relation to the scanwidth, this might be a valuable stepping stone
for an FPT algorithm.

A different direction of further research is in the area of approximation algorithms, which
are polynomial-time algorithms that are guaranteed to stay within a factor of the optimal
solution. Recent research into the (in)approximability of width parameters suggests that
treewidth and undirected cutwidth are inapproximable up to a constant factor within poly-
nomial time [Wu+14].1 It is not unthinkable that these inapproximability results translate

1To be exact, [Wu+14] prove that this holds under the Small Set Expansion Conjecture. This conjecture, introduced
in [RS10], is a strengthened version of the famous P ̸= NP-conjecture.

7.2. Further research 73

to scanwidth. On the positive side, there does exist a polynomial O(log n)-approximation
algorithm for cutwidth [LR99]. Furthermore, treewidth can be approximated within a ratio
only linearly dependent on the treewidth itself (see [Kor22] for the state-of-the-art and an
overview of other approximation algorithms).

We would also like to address our experimental study, as it inherently has some lim-
itations. Our synthetic networks were created with a single generating method [Zha+17].
A sensible next step is then to extend the study to other network generators (see [JL21]).
Moreover, we could look into specific types of networks, both from a computational and a
theoretical standpoint. We already considered networks with fixed reticulation numbers and
levels, but other classes also exist (see [Kon+22] for a recent survey). During our experiments,
we observed that scanwidth was a lot easier to compute than treewidth. We would thus
welcome efforts towards a thorough comparison of the practical computability of the two
parameters, both from an exact and a heuristic point of view.

A final recommendation is to apply scanwidth as a parameter in FPT algorithms for hard
problems in phylogenetics. TREE CONTAINMENT [IJW23] and SMALL PARSIMONY [SW22]
can be parametrized by treewidth. However, an algorithm based on scanwidth could pos-
sibly run faster in practice. On the other hand, no treewidth algorithm is known for HY-
BRIDIZATION NUMBER [BS07]. This makes it an excellent candidate for a scanwidth-based
approach.

References

[AGM16] T. Agarwal, P. Gambette and D. Morrison. Who is Who in Phylogenetic Networks: Articles,
Authors and Programs. 2016. URL: http://phylnet.univ-mlv.fr/. Accessed: 26-03-2023.

[AGU72] A. V. Aho, M. R. Garey and J. D. Ullman. ‘The Transitive Reduction of a Directed Graph’.
In: SIAM Journal on Computing 1.2 (1972), pp. 131–137. DOI: 10.1137/0201008.

[Arc14] J. D. Archibald. Aristotle's Ladder, Darwin's Tree: The Evolution of Visual Metaphors for Biolo-
gical Order. Columbia University Press, Jan. 2014. DOI: 10.7312/arch16412.

[Bar06] J. Barát. ‘Directed Path-width and Monotonicity in Digraph Searching’. In: Graphs and Com-
binatorics 22.2 (June 2006), pp. 161–172. DOI: 10.1007/s00373-005-0627-y.

[Ber+13] P. Berthomé, T. Bouvier, F. Mazoit, N. Nisse and R. Pardo Soares. An Unified FPT Algorithm
for Width of Partition Functions. Research Report RR-8372. INRIA, Sept. 2013.

[Ber+23] G. Bernardini, L. van Iersel, E. Julien and L. Stougie. Constructing Phylogenetic Networks via
Cherry Picking and Machine Learning. 2023. arXiv: 2304.02729.

[Bez99] S. L. Bezrukov. ‘Edge isoperimetric problems on graphs’. In: Graph theory and combinatorial
biology 7 (1999), pp. 157–197.

[BFT09] H. L. Bodlaender, M. R. Fellows and D. M. Thilikos. ‘Derivation of algorithms for cutwidth
and related graph layout parameters’. In: Journal of Computer and System Sciences 75.4
(2009), pp. 231–244. DOI: 10.1016/j.jcss.2008.10.003.

[Bod+11] H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch and D. M. Thilikos. ‘A Note
on Exact Algorithms for Vertex Ordering Problems on Graphs’. In: Theory of Computing
Systems 50.3 (Jan. 2011), pp. 420–432. DOI: 10.1007/s00224-011-9312-0.

[Bod12] H. L. Bodlaender. ‘Fixed-Parameter Tractability of Treewidth and Pathwidth’. In: The Mul-
tivariate Algorithmic Revolution and Beyond: Essays Dedicated to Michael R. Fellows on the Oc-
casion of His 60th Birthday. Ed. by H. L. Bodlaender, R. Downey, F. V. Fomin and D. Marx.
Springer Berlin Heidelberg, 2012, pp. 196–227. DOI: 10.1007/978-3-642-30891-8_12.

[Bod+12] H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch and D. M. Thilikos. ‘On
Exact Algorithms for Treewidth’. In: ACM Trans. Algorithms 9.1 (Dec. 2012). DOI: 10.1145/
2390176.2390188.

[Bod93] H. L. Bodlaender. ‘A linear time algorithm for finding tree-decompositions of small treewidth’.
In: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing. ACM Press,
1993. DOI: 10.1145/167088.167161.

[BS07] M. Bordewich and C. Semple. ‘Computing the minimum number of hybridization events
for a consistent evolutionary history’. In: Discrete Applied Mathematics 155.8 (2007), pp. 914–
928. DOI: 10.1016/j.dam.2006.08.008.

[BSW20] V. Berry, C. Scornavacca and M. Weller. ‘Scanning Phylogenetic Networks is NP-hard’.
In: SOFSEM 2020 - 46th International Conference on Current Trends in Theory and Practice of
Informatics. Springer International Publishing, 2020, pp. 519–530. DOI: 10.1007/978-3-
030-38919-2_42.

[CB00] P. Clote and R. Backofen. Computational Molecular Biology: An Introduction. Wiley, 2000.

[Dar59] C. Darwin. On the Origin of Species by Means of Natural Selection, or the Preservation of Favored
Races in the Struggle for Life. London: John Murray, 1859.

[DF13] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer Lon-
don, 2013. DOI: 10.1007/978-1-4471-5559-1.

74

http://phylnet.univ-mlv.fr/
https://doi.org/10.1137/0201008
https://doi.org/10.7312/arch16412
https://doi.org/10.1007/s00373-005-0627-y
https://arxiv.org/abs/2304.02729
https://doi.org/10.1016/j.jcss.2008.10.003
https://doi.org/10.1007/s00224-011-9312-0
https://doi.org/10.1007/978-3-642-30891-8_12
https://doi.org/10.1145/2390176.2390188
https://doi.org/10.1145/2390176.2390188
https://doi.org/10.1145/167088.167161
https://doi.org/10.1016/j.dam.2006.08.008
https://doi.org/10.1007/978-3-030-38919-2_42
https://doi.org/10.1007/978-3-030-38919-2_42
https://doi.org/10.1007/978-1-4471-5559-1

References 75

[Die17] R. Diestel. Graph Theory. Springer Berlin Heidelberg, 2017. DOI: 10.1007/978- 3- 662-
53622-3.

[DPS02] J. Díaz, J. Petit and M. Serna. ‘A Survey of Graph Layout Problems’. In: ACM Comput. Surv.
34.3 (Sept. 2002), 313–356. DOI: 10.1145/568522.568523.

[DT11] R. G. Downey and D. M. Thilikos. ‘Confronting intractability via parameters’. In: Computer
Science Review 5.4 (2011), pp. 279–317. DOI: 10.1016/j.cosrev.2011.09.002.

[DWZ23] R. Duan, H. Wu and R. Zhou. Faster Matrix Multiplication via Asymmetric Hashing. 2023.
arXiv: 2210.10173.

[ES75] S. Even and Y. Shiloach. NP-completeness of several arrangement problems. Tech. rep. TR-43.
Department of Computer Science, Technion, Haifa, 1975.

[Esl+12] C. Eslahchi, R. Hassanzadeh, E. Mottaghi, M. Habibi, H. Pezeshk and M. Sadeghi. ‘Con-
structing circular phylogenetic networks from weighted quartets using simulated anneal-
ing’. In: Mathematical Biosciences 235.2 (2012), pp. 123–127. DOI: 10.1016/j.mbs.2011.11.
003.

[FF56] L. R. Ford and D. R. Fulkerson. ‘Maximal Flow Through a Network’. In: Canadian Journal
of Mathematics 8 (1956), 399–404. DOI: 10.4153/CJM-1956-045-5.

[GG84] S. Geman and D. Geman. ‘Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-6.6 (1984), pp. 721–741. DOI: 10.1109/TPAMI.1984.4767596.

[GR19] F. Gurski and C. Rehs. ‘Comparing Linear Width Parameters for Directed Graphs’. In:
Theory of Computing Systems 63.6 (Apr. 2019), pp. 1358–1387. DOI: 10.1007/s00224-019-
09919-x.

[GS84] E. M. Gurari and I. H. Sudborough. ‘Improved dynamic programming algorithms for
bandwidth minimization and the MinCut Linear Arrangement problem’. In: Journal of Al-
gorithms 5.4 (1984), pp. 531–546. DOI: 10.1016/0196-6774(84)90006-3.

[GS87] Y. Gurevich and S. Shelah. ‘Expected Computation Time for Hamiltonian Path problem’.
In: SIAM Journal on Computing 16.3 (1987), pp. 486–502. DOI: 10.1137/0216034.

[HK62] M. Held and R. M. Karp. ‘A Dynamic Programming Approach to Sequencing Problems’.
In: Journal of the Society for Industrial and Applied Mathematics 10.1 (1962), pp. 196–210.

[HT73] J. Hopcroft and R. Tarjan. ‘Algorithm 447: Efficient Algorithms for Graph Manipulation’.
In: Commun. ACM 16.6 (June 1973), 372–378. DOI: 10.1145/362248.362272.

[Ier09] L. van Iersel. ‘Algorithms, haplotypes and phylogenetic networks’. PhD thesis. Eindhoven,
The Netherlands: Eindhoven University of Technology, 2009.

[Ier+09] L. van Iersel, J. Keijsper, S. Kelk, L. Stougie, F. Hagen and T. Boekhout. ‘Constructing
Level-2 Phylogenetic Networks from Triplets’. In: IEEE/ACM Transactions on Computational
Biology and Bioinformatics 6.4 (2009), pp. 667–681. DOI: 10.1109/TCBB.2009.22.

[Ier+10] L. van Iersel, S. Kelk, R. Rupp and D. Huson. ‘Phylogenetic networks do not need to be
complex: using fewer reticulations to represent conflicting clusters’. In: Bioinformatics 26.12
(June 2010), pp. i124–i131. DOI: 10.1093/bioinformatics/btq202.

[Ier+23] L. van Iersel, M. Jones, E. Julien and Y. Murakami. Making a Network Orchard by Adding
Leaves. 2023. arXiv: 2305.03106.

[IJW23] L. van Iersel, M. Jones and M. Weller. Embedding phylogenetic trees in networks of low treewidth.
2023. arXiv: 2207.00574.

[JL21] R. Janssen and P. Liu. ‘Comparing the topology of phylogenetic network generators’.
In: Journal of Bioinformatics and Computational Biology 19.06 (Dec. 2021). DOI: 10 . 1142 /
s0219720021400126.

[Joh+89] D. S. Johnson, C. R. Aragon, L. A. McGeoch and C. Schevon. ‘Optimization by Simu-
lated Annealing: An Experimental Evaluation; Part I, Graph Partitioning’. In: Operations
Research 37.6 (Dec. 1989), pp. 865–892. DOI: 10.1287/opre.37.6.865.

https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1145/568522.568523
https://doi.org/10.1016/j.cosrev.2011.09.002
https://arxiv.org/abs/2210.10173
https://doi.org/10.1016/j.mbs.2011.11.003
https://doi.org/10.1016/j.mbs.2011.11.003
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1007/s00224-019-09919-x
https://doi.org/10.1007/s00224-019-09919-x
https://doi.org/10.1016/0196-6774(84)90006-3
https://doi.org/10.1137/0216034
https://doi.org/10.1145/362248.362272
https://doi.org/10.1109/TCBB.2009.22
https://doi.org/10.1093/bioinformatics/btq202
https://arxiv.org/abs/2305.03106
https://arxiv.org/abs/2207.00574
https://doi.org/10.1142/s0219720021400126
https://doi.org/10.1142/s0219720021400126
https://doi.org/10.1287/opre.37.6.865

References 76

[KC92] P. Kouvelis and W.-C. Chiang. ‘A simulated annealing procedure for single row layout
problems in flexible manufacturing systems’. In: International Journal of Production Research
30.4 (Apr. 1992), pp. 717–732. DOI: 10.1080/00207543.1992.9728452.

[KGV83] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. ‘Optimization by Simulated Annealing’. In:
Science 220.4598 (1983), pp. 671–680. DOI: 10.1126/science.220.4598.671.

[Kin92] N. G. Kinnersley. ‘The vertex separation number of a graph equals its path-width’. In: In-
formation Processing Letters 42.6 (1992), pp. 345–350. DOI: 10.1016/0020-0190(92)90234-
M.

[Kon+22] S. Kong, J. C. Pons, L. Kubatko and K. Wicke. ‘Classes of explicit phylogenetic networks
and their biological and mathematical significance’. In: Journal of Mathematical Biology 84.6
(2022), p. 47. DOI: 10.1007/s00285-022-01746-y.

[Kor22] T. Korhonen. ‘A Single-Exponential Time 2-Approximation Algorithm for Treewidth’. In:
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). IEEE, Feb.
2022. DOI: 10.1109/focs52979.2021.00026.

[KRT94] V. King, S. Rao and R. Tarjan. ‘A Faster Deterministic Maximum Flow Algorithm’. In:
Journal of Algorithms 17.3 (1994), pp. 447–474. DOI: 10.1006/jagm.1994.1044.

[KS74] D. E. Knuth and J. L. Szwarcfiter. ‘A structured program to generate all topological sorting
arrangements’. In: Information Processing Letters 2.6 (Apr. 1974), pp. 153–157. DOI: 10.1016/
0020-0190(74)90001-5.

[LA87] P. J. M. van Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory and Applications.
Springer Netherlands, 1987. DOI: 10.1007/978-94-015-7744-1.

[LR99] T. Leighton and S. Rao. ‘Multicommodity Max-Flow Min-Cut Theorems and Their Use
in Designing Approximation Algorithms’. In: J. ACM 46.6 (Nov. 1999), 787–832. DOI: 10.
1145/331524.331526.

[Mag+21] L. Magne, C. Paul, A. Sharma and D. M. Thilikos. Edge-treewidth: Algorithmic and combinat-
orial properties. 2021. arXiv: 2112.07524.

[MS89] F. Makedon and I. H. Sudborough. ‘On minimizing width in linear layouts’. In: Discrete
Applied Mathematics 23.3 (1989), pp. 243–265. DOI: 10.1016/0166-218X(89)90016-4.

[Orl13] J. B. Orlin. ‘Max Flows in O(nm) Time, or Better’. In: Proceedings of the forty-fifth annual ACM
symposium on Theory of computing. Association for Computing Machinery, 2013, pp. 765–
774. DOI: 10.1145/2488608.2488705.

[Pet13] J. Petit. ‘Addenda to the survey of layout problems’. In: Bulletin of EATCS 3.105 (2013).

[Rab+21] C.-E. Rabier, V. Berry, M. Stoltz, J. D. Santos, W. Wang, J.-C. Glaszmann, F. Pardi and
C. Scornavacca. ‘On the inference of complex phylogenetic networks by Markov Chain
Monte-Carlo’. In: PLOS Computational Biology 17.9 (Sept. 2021). Ed. by S. L. K. Pond. DOI:
10.1371/journal.pcbi.1008380.

[RAK91] R. Ravi, A. Agrawal and P. Klein. ‘Ordering problems approximated: single-processor
scheduling and interval graph completion’. In: Automata, Languages and Programming. Springer
Berlin Heidelberg, 1991, pp. 751–762. DOI: 10.1007/3-540-54233-7_180.

[RS10] P. Raghavendra and D. Steurer. ‘Graph Expansion and the Unique Games Conjecture’.
In: Proceedings of the forty-second ACM symposium on Theory of computing. Association for
Computing Machinery, 2010, pp. 755–764. DOI: 10.1145/1806689.1806792.

[SC21] V. G. M. Santos and M. A. M. de Carvalho. ‘Tailored heuristics in adaptive large neigh-
borhood search applied to the cutwidth minimization problem’. In: European Journal of
Operational Research 289.3 (2021), pp. 1056–1066. DOI: 10.1016/j.ejor.2019.07.013.

[Sch90] P. Scheffler. ‘A Linear Algorithm for the Pathwidth of Trees’. In: Topics in Combinatorics and
Graph Theory. Physica Heidelberg, 1990, pp. 613–620. DOI: 10.1007/978-3-642-46908-
4_70.

[Sip13] M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 2013.

https://doi.org/10.1080/00207543.1992.9728452
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/0020-0190(92)90234-M
https://doi.org/10.1016/0020-0190(92)90234-M
https://doi.org/10.1007/s00285-022-01746-y
https://doi.org/10.1109/focs52979.2021.00026
https://doi.org/10.1006/jagm.1994.1044
https://doi.org/10.1016/0020-0190(74)90001-5
https://doi.org/10.1016/0020-0190(74)90001-5
https://doi.org/10.1007/978-94-015-7744-1
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
https://arxiv.org/abs/2112.07524
https://doi.org/10.1016/0166-218X(89)90016-4
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1371/journal.pcbi.1008380
https://doi.org/10.1007/3-540-54233-7_180
https://doi.org/10.1145/1806689.1806792
https://doi.org/10.1016/j.ejor.2019.07.013
https://doi.org/10.1007/978-3-642-46908-4_70
https://doi.org/10.1007/978-3-642-46908-4_70

References 77

[SW22] C. Scornavacca and M. Weller. ‘Treewidth-based algorithms for the small parsimony prob-
lem on networks’. In: Algorithms for Molecular Biology 17.1 (Aug. 2022). DOI: 10.1186/
s13015-022-00216-w.

[Tam22] H. Tamaki. Heuristic computation of exact treewidth. 2022. arXiv: 2202.07793.

[TSB05] D. M. Thilikos, M. Serna and H. L. Bodlaender. ‘Cutwidth I: A linear time fixed parameter
algorithm’. In: Journal of Algorithms 56.1 (2005), pp. 1–24. DOI: 10.1016/j.jalgor.2004.
12.001.

[Wel23] M. Weller. Personal communication. 2023.

[Wol20] L. A. Wolsey. Integer Programming. Wiley, Sept. 2020. DOI: 10.1002/9781119606475.

[Wu+14] Y. Wu, P. Austrin, T. Pitassi and D. Liu. ‘Inapproximability of Treewidth and Related Prob-
lems’. In: Journal of Artificial Intelligence Research 49 (Apr. 2014), pp. 569–600. DOI: 10.1613/
jair.4030.

[Wu+18] D.-D. Wu, X.-D. Ding, S. Wang, J. M. Wójcik, Y. Zhang, M. Tokarska, Y. Li, M.-S. Wang,
O. Faruque, R. Nielsen, Q. Zhang and Y.-P. Zhang. ‘Pervasive introgression facilitated do-
mestication and adaptation in the Bos species complex’. In: Nature Ecology & Evolution 2.7
(May 2018), pp. 1139–1145. DOI: 10.1038/s41559-018-0562-y.

[Zha+17] C. Zhang, H. A. Ogilvie, A. J. Drummond and T. Stadler. ‘Bayesian Inference of Species
Networks from Multilocus Sequence Data’. In: Molecular Biology and Evolution 35.2 (Dec.
2017), pp. 504–517. DOI: 10.1093/molbev/msx307.

https://doi.org/10.1186/s13015-022-00216-w
https://doi.org/10.1186/s13015-022-00216-w
https://arxiv.org/abs/2202.07793
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1002/9781119606475
https://doi.org/10.1613/jair.4030
https://doi.org/10.1613/jair.4030
https://doi.org/10.1038/s41559-018-0562-y
https://doi.org/10.1093/molbev/msx307

ChapterA
Integer linear program

In this appendix we construct an integer linear program (ILP) to solve SCANWIDTH. We will
not prove correctness, and merely provide it as a useful building block for possible further
research. The reader is assumed to be familiar with integer programming. Should this not be
the case, then [Wol20] functions as an excellent reference.

For a weakly connected DAG G = (V, E) of n vertices and m arcs, we introduce a para-
meter p that indicates the partial order >G of the graph. Formally,

puv =

{
1 if u >G v,
0 if u ≯G v,

, ∀u, v ∈ V. (A.1)

Our ILP formulation is based on the tree extension definition of scanwidth (Definition 2.3).
The ILP uses three types of binary decision variables:

xuv =

{
1 if uv ∈ E(Γ),
0 if uv /∈ E(Γ),

, ∀u, v ∈ V (A.2)

yuv =

{
1 if u >Γ v,
0 if u ≯Γ v,

, ∀u, v ∈ V (A.3)

zw
uv =

{
1 if uv ∈ GWΓ

w,
0 if uv /∈ GWΓ

w.
, ∀uv ∈ E, ∀w ∈ V (A.4)

Here, x is used to model the arcs of the tree extension and thus functions as the variable of
interest. The variables y and z are secondary variables that model the partial order of the
tree extension and the cut-sets in the tree extension, respectively. Furthermore, we have one
integer variable sw that will capture the value of the scanwidth.

78

79

We are now ready to write down the ILP:

minimize sw (A.5a)

subject to sw ≥ ∑
uv∈E

zw
uv , ∀w ∈ V, (A.5b)

∑
u∈V

∑
v∈V

xuv = |V| − 1, (A.5c)

∑
u∈S

∑
v∈S

xuv ≤ |S| − 1 , ∀S ⊆ V, (A.5d)

xuv ≤ puv , ∀u, v ∈ V, (A.5e)
xuv ≤ yuv , ∀u, v ∈ V, (A.5f)
yuv ≥ yuw + ywv − 1 , ∀u, v, w ∈ V, (A.5g)
zw

uv ≥ yuw + ywv − 1 , ∀uv ∈ E, ∀w ∈ V, (A.5h)
zv

uv ≥ yuv , ∀uv ∈ E, (A.5i)
xuv ∈ {0, 1} , ∀u, v ∈ V, (A.5j)
yuv ∈ {0, 1} , ∀u, v ∈ V, (A.5k)
zw

uv ∈ {0, 1} , ∀uv ∈ E, ∀w ∈ V, (A.5l)
sw ∈ Z≥0. (A.5m)

The objective function is trivial: we minimize the value of the scanwidth. The first con-
straint ensures that sw indeed takes on the value of the scanwidth, by using the variables z,
which determine the elements of the sets GW. Together, the second and third constraint are a
variant of the well-known subtour elimination constraints, used for example in the TRAVELLING

SALESMAN PROBLEM. In our case, they ensure that the underlying undirected graph of Γ is a
tree.

Constraint (A.5e) then makes sure that we can only have an arc uv in the tree if it respects
the graph G. In this way, Γ becomes a tree extension. It also forces xvv to be 0.

Constraints (A.5f) and (A.5g) imply that y has the correct interpretation. If we have an arc
uv ∈ E(Γ), then xuv = 1, and thus yuv is also forced to be 1. The other constraint ensures that
y gets the correct interpretation for nodes that are not directly connected in Γ: if u is above w
and w above v, then u must also be above v.

The constraints (A.5h) and (A.5i) force z to model the elements of the set GW. If u >Γ
w >Γ v and uv ∈ E(G), then the constraint (A.5h) forces zw

uv to be 1. This is desired, because
we then have that uv ∈ GWΓ

w. The constraint (A.5i) handles the case where u >Γ w = v and
uv ∈ E(G). Together we indeed get that for all uv ∈ E(G), uv ∈ GWΓ

w if u >Γ w ≥Γ v. Lastly,
we have the binarity and integrality constraints of the variables.

All in all, this formulation has a polynomial number of variables, namely |E||V|+ 2|V|2 +
1 = O(n3). The number of constraints is exponential because constraint (A.5d) appears for
each subset of V. As the other constraints are bounded by a polynomial of n and m, we have
O(2n) constraints.

ChapterB
Appendix to the experimental study

B.1. Parameter tuning for simulated annealing
In this appendix we aim to find the best parameter settings for the simulated annealing al-
gorithm. The number of iterations M of the algorithm has been set at 100, as discussed in
Section 6.4. Of course, for better results, one can increase the number of iterations.

It remains to choose the initial acceptance probability χ0 and the final acceptance probab-
ility χend, as defined in Subsection 5.3.3. Following [KC92], we will choose χ0 from the range
[0.5, 0.95]. Regarding χend, we try two different orders of magnitude, resulting in the two
values 0.01 and 0.001.

We randomly select 45 difficult samples from our synthetic dataset. Here, ‘difficult’ in-
dicates that both the greedy heuristic and the cut-splitting heuristic are not able to find the
optimum. We then run the simulated annealing algorithm using both heuristics as the initial
solution, keeping track of the current scanwidth value. This experiment is performed for each
combination of χ0 ∈ {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95} and χend ∈ {0.01, 0.001}.

Figure B.1 shows the average approximation ratios at each iteration (using the scanwidth
value of the current solution in the algorithm), with the corresponding 95% confidence inter-
vals. Although no huge differences are apparent, χend = 0.001 seems to give better results.
Thus, we choose this as our parameter value. We clearly see that the smaller values of χ0 per-
form better. To be precise, a value of 0.55 gives the best results for both the heuristics when
χend = 0.001. All in all, we opt for the choice of χ0 = 0.55 and χend = 0.001.

At first, the relatively low value χ0 might seem weird. However, this can be explained by
the fact that we apply the algorithm to initial heuristic solutions that are already somewhat
good. Thus, there is no need to first do a very broad and global search, and we can start with
an acceptance probability that is on the lower end of the interval.

80

B.2. Table with results for the real networks 81

0 20 40 60 80 100

Iterations

1.0

1.2

1.4

1.6

1.8

2.0
P

ra
ct

ic
al

ap
pr

ox
im

at
io

n
ra

ti
o

χstop = 0.01

χin

0.50

0.55

0.60

0.70

0.75

0.80

0.90

0.95

0 20 40 60 80 100

Iterations

χstop = 0.001

(a) Greedy heuristic

0 20 40 60 80 100

Iterations

1.0

1.2

1.4

1.6

1.8

2.0

P
ra

ct
ic

al
ap

pr
ox

im
at

io
n

ra
ti

o

χstop = 0.01

χin

0.50

0.55

0.60

0.70

0.75

0.80

0.90

0.95

0 20 40 60 80 100

Iterations

χstop = 0.001

(b) Cut-splitting heuristic

Figure B.1: Simulated annealing applied to 45 random samples for different values of χ0 and χend. The situation
with the greedy result as initial solution is shown in (a), while (b) shows the case with the result of the cut-splitting
heuristic as initial solution. The plots show how the average approximation ratios of the solutions develop over
the course of 100 iterations. The corresponding 95% confidence intervals are also depicted.

B.2. Table with results for the real networks
This appendix contains the large Table B.1 with information and computational results for
the dataset of the 27 real networks. The networks are found throughout the literature and
collected on [AGM16]. We use the file names provided on this website.

Apart from some structural information of the networks, we show the performance of
four heuristics: the greedy heuristic 8, cut-splitting heuristic 10, greedy heuristic enhanced by
simulated annealing (SA, Algorithm 11) and the cut-splitting heuristic enhanced by simulated
annealing. Furthermore, the table covers the following exact methods: the brute force solution
from Section 4.1, Algorithm 4, Algorithm 5, Algorithm 6, and the repeated application of
Algorithm 7 as described in the proof of Corollary 4.15.

B.2.Table
w

ith
results

forthe
realnetw

orks
82

Table B.1: Table containing information and experimental results of the 27 real networks. The ‘Network characteristics’ segment contains in order: whether the network is
binary, number of vertices |V|, number of arcs |E|, number of leaves ℓ, reticulation number r, level, scanwidth, and treewidth. The second segment shows the scanwidth
values obtained by the different heuristics, together with the computation times. The last segment shows the computation times of the different exact methods, with a
time-out of 60 seconds. The asterisk after Algorithm 7 indicates that we repeatedly applied this algorithm as outlined in the proof of Corollary 4.15, since the algorithm
itself only solves the fixed-parameter version of the problem. In all cases, we first applied the decomposition method (Algorithm 3) before running the algorithms.

Network characteristics Heuristic scanwidth (time in seconds) Exact methods, time in seconds

file binary |V| |E| ℓ r lev. sw tw greedy cut-
splitting

SA+
greedy

SA+cut-
splitting

brute
force Alg. 4 Alg. 5 Alg. 6 Alg. 7*

n01.el × 26 27 13 2 2 3 2 3 (0.001) 3 (0.007) 3 (0.561) 3 (0.549) 0.003 0.002 0.002 0.002 0.002
n02.el × 97 107 39 11 11 9 8 9 (0.005) 9 (0.178) 9 (5.049) 9 (5.194) 60+ 60+ 0.160 0.043 0.082
n03.el × 48 49 29 2 2 3 2 3 (0.002) 3 (0.006) 3 (1.529) 3 (1.495) 0.003 0.002 0.002 0.002 0.003
n04.el ✓ 53 54 25 2 2 3 2 3 (0.002) 3 (0.007) 3 (1.901) 3 (1.841) 0.003 0.003 0.003 0.002 0.003
n05.el × 26 29 9 4 4 4 3 5 (0.001) 5 (0.016) 4 (0.440) 4 (0.497) 0.026 0.007 0.004 0.004 0.005
n06.el ✓ 77 108 7 32 32 14 13 21 (0.018) 18 (2.608) 17 (3.020) 16 (2.699) 60+ 60+ 19.572 14.651 7.859
n07.el × 27 31 8 5 5 4 3 4 (0.001) 4 (0.014) 4 (0.603) 4 (0.602) 0.005 0.005 0.003 0.003 0.004
n08.el ✓ 17 19 6 3 3 3 2 3 (0.001) 3 (0.008) 3 (0.280) 3 (0.285) 0.003 0.002 0.002 0.002 0.002
n09.el × 19 23 4 5 5 5 4 5 (0.001) 5 (0.037) 5 (0.290) 5 (0.275) 1.477 0.046 0.008 0.007 0.011
n10.el ✓ 19 22 6 4 4 4 3 5 (0.001) 4 (0.016) 4 (0.255) 4 (0.248) 0.012 0.005 0.003 0.003 0.004
n11.el ✓ 53 58 21 6 5 4 3 4 (0.003) 4 (0.035) 4 (1.188) 4 (1.047) 60+ 0.351 0.024 0.011 0.013
n12.el × 16 17 6 2 2 3 2 3 (0.001) 3 (0.003) 3 (0.270) 3 (0.278) 0.002 0.001 0.002 0.002 0.002
n13.el × 35 40 13 6 4 4 3 4 (0.002) 4 (0.025) 4 (0.698) 4 (0.629) 0.019 0.007 0.004 0.004 0.005
n14.el × 21 24 7 4 4 4 3 4 (0.001) 4 (0.019) 4 (0.367) 4 (0.359) 0.017 0.006 0.003 0.003 0.004
n15.el ✓ 21 23 8 3 3 4 3 4 (0.001) 4 (0.007) 4 (0.455) 4 (0.405) 0.003 0.002 0.002 0.002 0.003
n16.el ✓ 23 25 9 3 3 3 2 3 (0.001) 3 (0.006) 3 (0.503) 3 (0.469) 0.002 0.002 0.002 0.002 0.003
n17.el ✓ 37 38 17 2 2 3 2 3 (0.001) 3 (0.006) 3 (1.107) 3 (1.019) 0.003 0.002 0.002 0.002 0.003
n18.el × 26 30 9 5 5 4 3 4 (0.002) 4 (0.023) 4 (0.609) 4 (0.511) 0.074 0.015 0.005 0.004 0.005
n19.el ✓ 66 70 28 5 5 5 4 5 (0.002) 5 (0.023) 5 (2.444) 5 (2.285) 0.007 0.010 0.004 0.003 0.005
n20.el × 14 18 5 5 2 3 2 3 (0.001) 3 (0.003) 3 (0.187) 3 (0.190) 0.002 0.002 0.002 0.002 0.002
n21.el ✓ 31 35 11 5 5 4 3 5 (0.002) 4 (0.021) 4 (0.724) 4 (0.593) 0.168 0.026 0.005 0.005 0.006
n22.el ✓ 27 27 13 1 1 2 1 2 (0.001) 2 (0.001) 2 (0.703) 2 (0.694) 0.001 0.001 0.001 0.001 0.001
n23.el × 27 32 6 6 6 5 4 7 (0.002) 5 (0.048) 5 (0.513) 5 (0.501) 33.958 0.197 0.016 0.010 0.012
n24.el ✓ 41 46 15 6 6 4 3 4 (0.002) 4 (0.023) 4 (0.974) 4 (0.991) 0.034 0.036 0.005 0.004 0.005
n25.el ✓ 39 42 16 4 4 4 3 4 (0.002) 4 (0.031) 4 (1.023) 4 (0.970) 0.336 0.023 0.006 0.004 0.005
n26.el ✓ 61 69 22 9 9 5 4 6 (0.004) 5 (0.094) 5 (2.217) 5 (1.591) 60+ 51.737 0.160 0.043 0.030
n27.el ✓ 51 52 24 2 1 2 1 2 (0.001) 2 (0.001) 2 (1.538) 2 (1.420) 0.002 0.002 0.002 0.002 0.002

ChapterC
Omitted proofs

This appendix contains less interesting or technical proofs of some results in this thesis. We
start with the technical Lemma 3.7 used in the proof of correctness of Algorithm 2.

Lemma 3.7. Let G = (V, E) be a weakly connected DAG, σ an extension of G, and Γ the graph
returned by Algorithm 2 applied to σ. Then,

(a) Γ is a tree extension of G;

(b) σ is an extension of Γ;

(c) G[V(Γv)] is weakly connected for each v ∈ V, where Γv is the subtree of Γ rooted at v.

Proof. Let Γi be the graph that is built after the i-th iteration of Algorithm 2. Similarly,
denote by ri the mapping r after iteration i. We will prove the following statements by
induction on i:

1. σ[1..i] is an extension of Γi;

2. Γi consists of a tree extension for each connected component of G[1..i];

3. For each v ∈ V(Γi), ri(v) maps to the root of the tree extension in Γi that contains v.
For each v /∈ V(Γi), ri(v) equals None;

4. For each v ∈ V(Γi), the subgraph G[Γi
v] is weakly connected, where Γi

v is the subtree
of Γi rooted at v.

Base case: (i = 1). After the first iteration of Algorithm 2, the vertex σ(1) is added.
Clearly, σ(1) must be a leaf of G, as σ is an extension of G. Therefore, C = ∅ and no
further arcs are added. Thus, Γ1 is equal to the single vertex σ(1). The base cases of the
four statements then follow.

Induction step: (1 ≤ i < |V|). Assume that the induction hypotheses (IH1-IH4) of
statements 1-4 hold for i, we will prove that they then also hold for i + 1. We denote
v = σ(i + 1), and consider two cases, depending on whether v is a leaf of G, or not.

Case 1: v is a leaf of G. In the (i + 1)th iteration of the algorithm, only v is added, and no
arcs are added, since v is a leaf of G. Thus, Γi+1 is just Γi with the single new vertex v. As
σ[1..i] was an extension of Γi (by IH1), σ[1 . . . i + 1] is then a valid extension of Γi+1, which
proves 1. As R is empty, we only change r(v). This assignment is correctly changed to v,

83

84

and statement 3 then follows. Because σ is an extension and v is a leaf, all vertices adjacent
to v in G appear after v in σ. Consequently, v is a separate component in G[1 . . . i + 1]. The
other components are the same as in G[1 . . . i]. From IH2, the second statement follows.
For all u ∈ V(Γi), we have that Γi

u = Γi+1
u . For v, we have that Γi+1

v = {v}. Together with
IH4, this proves statement 4.

Case 2: v is not a leaf of G. In this case, v has a non-empty set of children C in G. In the
i + 1th iteration of the algorithm, we then connect the added vertex v to the roots of the
components (in Γi) containing the elements of C. By IH3, ri indeed captures these roots.
Thus, v is never added below an already added vertex, and statement 1 now follows (by
IH1). Compared to G[1 . . . i], the components not containing any vertices of C remain a
component in G[1 . . . i + 1]. The components that do contain vertices from C are grouped
together as one component in G[1 . . . i + 1]. Combined with the fact that we connect v
only to roots of the tree extensions (by IH2 and IH3) and the fact that σ is already G-
respecting, 2 follows. Furthermore, r(v) is correctly changed to v, while the vertices that
had a root in R are now set to have v as their root. By IH3, the other vertices had the
correct root, proving statement 3. G[Γi+1

v] is weakly connected, since we only connect v to
components containing a child of v, and those components are weakly connected by IH4.
Finally, the other subtrees are also weakly connected by IH4. This proves statement 4.

In both cases, we have proved all 4 statements. Part (a) of the lemma now follows
from statement 2 with i = |V|. Part (b) is a consequence of statement 1 when i = |V|.
Lastly, part (c) holds, due to statement 4 with i = |V|.

The following lemma is used in the proof of Theorem 4.5 to bound the time complexity of
Algorithm 4.

Lemma C.1. Let c > 0 be a constant, and let T : N2 → R≥0 be a function for which the following
holds: 

T(1, m) ≤ c ·m, if k = 1;

T(k, m) ≤
(

k
⌊k/2⌋

)(
T(⌊k/2⌋ , m) + T(⌈k/2⌉ , m)

)
+ c ·m, if k ≥ 2.

Then, there exists a constant b > 0 such that T(k, m) ≤ b · 4k · log k ·m for all m ≥ 1 and k ≥ 2.

Proof. We will prove the stronger result that the upper bound holds if we have equality
in the recurrence relations. It then immediately follows that the upper bound also holds
if we have inequalities.

We start by proving the claim that T is non-decreasing with respect to k.

85

Proof of claim: We prove this by strong induction on k.
Base case: If k = 2, we immediately get

T(2, m) =

(
2
⌊2/2⌋

)(
T(⌊2/2⌋ , m) + T(⌈2/2⌉ , m)

)
+ c ·m

= 4 · T(1, m) + c ·m = 5 · T(1, m) > T(1, m).

Induction step: Let k ≥ 2 be arbitrary and assume that T(ℓ+ 1, m) ≥ T(ℓ, m) for
all ℓ ∈ {1, . . . , k− 1}. We now have:

T(k + 1, m) =

(
k + 1

⌊(k + 1)/2⌋

)(
T(⌊(k + 1)/2⌋ , m) + T(⌈(k + 1)/2⌉ , m)

)
+ c ·m

≥
(

k
⌊k/2⌋

)(
T(⌊(k + 1)/2⌋ , m) + T(⌈(k + 1)/2⌉ , m)

)
+ c ·m

≥
(

k
⌊k/2⌋

)(
T(⌊k/2⌋ , m) + T(⌈k/2⌉ , m)

)
+ c ·m = T(k, m).

For the first inequality, we used that (x
y) ≥ (x−1

y−1) and (x
y) ≥ (x−1

y), which follows
immediately from Pascal’s Rulea. This covers the case where k is even and the case
where it is odd. The second inequality is due to the induction hypothesis. △

aPascal’s Rule says that (x
y) = (x−1

y−1) + (x−1
y).

We now prove a second claim: T(k, m) ≤ 2c · 4k · log k · m for all m ≥ 1 and for all
k = 2ℓ with ℓ ∈N≥1. We prove this by induction on ℓ.

Proof of claim:
Base case: Here, we take ℓ = 1, i.e. k = 2. Similar to the proof of the previous

claim, we have T(2, m) = 5 · c · m < 9 · c · m < 2c · 42 · log(2) · m, since 9 < 32 ·
log(2). This proves the base case.

Induction step: Let ℓ ∈ N≥1 be arbitrary, and set k = 2ℓ. Assume that the in-
duction hypothesis holds for this value of k. We will prove that it also holds for
2k = 2ℓ+1.

T(2k, m) =

(
2k
⌊2k/2⌋

)(
T(⌊2k/2⌋ , m) + T(⌈2k/2⌉ , m)

)
+ c ·m

=

(
2k
k

)(
T(k, m) + T(k, m)

)
+ c ·m

≤ 22k−1 · 2 · T(k, m) + c ·m
≤ 22k · 2c · 4k · log k ·m + c ·m
= 2c · 42k · (log(2k)− log(2)) ·m + c ·m
= 2c · 42k · log(2k) ·m + c ·m · (1− 42k · 2 log(2))

< 2c · 42k · log(2k) ·m.

The first inequality is a consequence of the inequality (x
y) ≤ 2x−1 for x ≥ 1.a The

second inequality uses the induction hypothesis, while the last inequality holds
because 42k · 2 log(2) > 1 for all k ∈N. This proves the claim. △

aUsing Pascal’s Rule, we get for x ≥ 1 that (x
y) = (x−1

y−1) + (x−1
y) ≤ ∑x−1

i=0 (x−1
i) = 2x−1.

86

From the second claim, we know that the upper bound in the lemma is applicable if
k is a positive power of 2 (and the constant b is then 2c). The first claim says that T is
non-decreasing with respect to k. Thus, T can not be arbitrarily large if k is in between
two powers of 2. Therefore, there must exist some constant b > 0 such that T(k, m) ≤
b · 4k · log k ·m for all m ≥ 1 and k ≥ 2.

The next lemma appears as a claim in the proof of Lemma 4.9.

Lemma C.2. Let G = (V, E) be a weakly connected DAG andQ = (W, R) an ordered 2-partition of
V with W ̸= ∅. Let σ ∈ Π[W] be such that for some k ∈ {1, . . . , |W| − 1}, σ(k) and σ(k+ 1) are not
weakly connected in G[W]. Furthermore, let π be obtained from σ by swapping σ(k) and σ(k + 1).
Then, π ∈ Π[W] and rpsw(σ,Q) = rpsw(π,Q).

Proof. First note that π ∈ Π[W], since there can not be an arc between σ(k) and σ(k + 1),
because they are not weakly connected. We have that σ[1 . . . i] = π[1 . . . i], and σ[i +
1 . . .] = π[i + 1 . . .] for all i ̸= k. From this it can easily be checked that RPSWσ

i (Q) =
RPSWπ

i (Q) for all i /∈ {k, k + 1}. Therefore,

RPSWσ
k (Q) = {uv ∈ E : u ∈ σ[k + 1 . . .] ∪ R, v G[σ[1 . . . k]]

↭ σ(k)}

= {uv ∈ E : u ∈ σ[k + 1 . . .] ∪ R, v G[σ[1 . . . k + 1]]
↭ σ(k)}

= {uv ∈ E : u ∈ π[k] ∪ π[k + 2 . . .] ∪ R, v G[π[1 . . . k + 1]]
↭ π(k + 1)}

= {uv ∈ E : u ∈ π[k + 2 . . .] ∪ R, v G[π[1 . . . k + 1]]
↭ π(k + 1)}

= RPSWπ
k+1(Q).

In the second equality we use that a vertex is weakly connected to σ(k) in G[σ[1 . . . k]],
if and only if it is weakly connected to σ(k) in G[σ[1 . . . k + 1]]. This is because σ(k) and
σ(k + 1) are weakly disconnected in G[σ[1 . . . k + 1]]. In the fourth equality, we use that
there is no arc directed from π(k) towards a vertex that is weakly connected to π(k+ 1) in
G[π[1 . . . k + 1]], because π(k) and π(k + 1) are weakly disconnected in G[π[1 . . . k + 1]].

By symmetry, we also obtain that RPSWπ
k (Q) = RPSWσ

k+1(Q). All in all, when look-
ing at the vertices and not the positions, we get RPSWσ

j (Q) = RPSWπ
j (Q) for all j ∈ [W].

Thus, rpsw(σ,Q) = rpsw(π,Q).

	Abstract
	Preface
	Introduction
	Phylogenetics
	Scanning a network
	Main contributions and thesis outline

	Preliminaries
	Complexity theory
	Graph theory
	Standard graph terminology
	Phylogenetic networks
	Graph layouts
	Cutwidth
	Scanwidth

	Structural results
	On the equivalent definitions of scanwidth
	Canonical tree extensions
	From canonical tree extension to extension
	From extension to canonical tree extension

	Bounds and relations to other parameters
	Width parameters
	Reticulation number and level of a network
	Weak-scanwidth: a lower bound

	Reduction rules
	(S-)blocks of a graph
	Arc contractions
	Complete decomposition scheme

	Scanwidth-1 and scanwidth-2 characterizations

	Exact algorithms
	Brute force solution
	Recursive algorithm
	Dynamic programming
	Basic algorithm
	Algorithm with component splitting
	Algorithm for fixed scanwidth

	Heuristics
	Greedy heuristic
	Cut-splitting heuristic
	DAG-cuts
	Repeated DAG-cut-splitting heuristic

	Simulated annealing
	Neighbourhood of (tree) extensions
	Description of algorithm
	Asymptotic convergence and cooling schedule

	Experimental results
	Network generation
	Reductions
	Exact algorithms
	Heuristics

	Conclusion and outlook
	Conclusion
	Further research

	References
	Integer linear program
	Appendix to the experimental study
	Parameter tuning for simulated annealing
	Table with results for the real networks

	Omitted proofs

