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Abstract

The easily accessible experimental signatures of Majorana modes are ambiguous and
only probe topology indirectly: for example, quasi-Majorana states mimic most prop-
erties of Majoranas. Establishing a correspondence between an experiment and a the-
oretical model known to be topological resolves this ambiguity. Here we demonstrate
that already theoretically determining whether a finite system is topological is by itself
ambiguous. In particular, we show that the scattering topological invariant—a probe
of topology most closely related to transport signatures of Majoranas—has multiple bi-
ases in finite systems. For example, we identify that quasi-Majorana states also mimic
the scattering invariant of Majorana zero modes in intermediate-sized systems. We ex-
pect that the bias due to finite size effects is universal, and advocate that the analysis of
topology in finite systems should be accompanied by a comparison with the thermody-
namic limit. Our results are directly relevant to the applications of the topological gap
protocol.
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1 Introduction

The quest to create a topological phase inevitably faces an obstacle: how to determine whether
a system is in fact topological? Unlike simulations that reveal all the information about a sys-
tem, experimental probes are limited and do not directly measure the signatures of topol-
ogy [1-4]. Furthermore, even defining what topological means in a finite system, rather
than in the thermodynamic limit, is inherently ambiguous. The celebrated Pfaffian invari-
ant sign (Pf[iH(k = 0)]Pf[iH(k = m)]), for example, tells whether a sufficiently long one-
dimensional superconductor hosts Majorana zero modes at its boundaries [5]. Finite size
effects couple the Majorana zero modes and give them an energy splitting, which is exponen-
tially small in the length of the superconductor. Therefore, the question of whether a finite
sample is topological is as ambiguous as asking whether an exponentially small energy splitting
is zero.

An approach to determine the presence of Majorana zero modes in small systems is the
scattering invariant [3,6]. To compute it, we attach a metallic lead to both ends of a Majorana
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nanowire and obtain the reflection matrix r that relates the incoming and outgoing wave
functions from a lead. In the presence of Majorana zero modes, signdet r = —1, while in their
absence, signdetr = 1 [3,6,7]. Because the determinant of the reflection matrix may only
change sign upon the appearance of transmitting modes along the nanowire, phase transitions
in the scattering invariant are directly related to a closure of the transport gap. Away from
the phase transition the nontrivial scattering invariant predicts the appearance of the zero
bias local conductance peak—an experimental signature of Majorana zero modes [1]. This
approach has been used to compute the topological invariant in disordered nanowires [8, 9],
because it does not require translational invariance and it is computationally efficient.

It is well known that in a finite superconductor the scattering invariant turns trivial if
the leads are coupled weakly to the Majorana zero modes by tunnel barriers [3]. This effect
vanishes as the length of the nanowire becomes larger, with the scattering invariant converg-
ing to topological in the thermodynamic limit. This bias towards the invariant being trivial
complicates finding parameters that realize a topological phase. A reverse bias is much more
dangerous: identifying a small system as topological while a longer one would be trivial may
lead research in an incorrect direction. To mitigate this risk, we answer the following ques-
tion: what are the mechanisms that lead to a biased interpretation of the scattering invariant
in Majorana nanowire simulations? In particular, we investigate biases of the scattering invari-
ant in the presence of quasi-Majorana modes—zero energy modes that are not topologically
protected [10-12].

2 Scattering invariant in the strongly coupled limit

The first step to compute a scattering invariant is to define a quantum transport setup where
metallic leads are attached to a scattering region. The scattering matrix S relates the ampli-
tudes of the incoming and outgoing modes in the leads:

Qout = Sqin: (1)

where g;, and q,,; are vectors with the modes amplitudes. A direct way to compute the scat-
tering matrix is to use the Hamiltonian of the entire system and the semi-infinite leads and
solve the scattering equations numerically [13], for example using the Kwant package [14].
Alternatively, in the weak coupling limit, the Mahaux-Weidenmdiller formula [15] provides an
approximation of the scattering matrix:

S(E)=1—2miW (E—H +inww) " W', 2)

where H is the low-energy Hamiltonian of the scattering region, E is the energy of the incoming
modes, and W is the coupling between the lead and the low-energy states of the scattering
region. Because H and W only contain low-energy degrees of freedom, the matrices are small,
making the Mahaux-Weidenmdiller formula especially useful to compute the scattering matrix
analytically.

The single metal-superconductor interface shown in Fig. 1(a) is sufficient to define the
scattering invariant in the thermodynamic limit. As long as the superconductor is gapped,
all the sub-gap electron and hole modes that approach the superconductor reflect back into
the metallic lead, such that the scattering matrix only consists of a reflection matrix, S = r.
Because a Hermitian system conserves the total particle number, S is unitary, making r'r = 1.
In the particle-hole basis, the reflection matrix is a 2 x 2 block-matrix that relates the incoming
and outgoing electron and hole modes:

Tee Ten
r= , (3)
(The rhh)

2
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Figure 1: Quantum transport setup for computing the scattering invariant in a Ma-
jorana nanowire. (a) Normal metallic lead (white) attached to a superconducting
nanowire (gray), a one-terminal setup. The incoming electron (blue) and hole (red)
modes reflect back from the gapped superconductor. The reflection matrix r en-
codes the presence of Majorana zero modes (purple). (b) Two-terminal setup with
a metallic lead attached to each end of the nanowire. In the thermodynamic limit,
the incoming electron and hole modes from both leads reflect back from the super-
conductor. (c) Phase diagram for nanowires of different lengths, with [, = t,/a the
spin-orbit length and a the lattice constant. The lines show the parameter values
where the scattering invariant changes sign. (d) Determinant of the reflection ma-
trix as a function of the Zeeman field across the phase transition for fixed u = 0, as
shown by the red dashed line in (c). Details of the simulation are in the appendix.

where particle-hole symmetry constraints ensure that r,.(E) = r}, (—E) and r,,(E) = r.(—E).
The combination of both constraints at E = O restricts

Q =detr, (4)

to only take values Q@ = £1. To demonstrate that Q is a topological invariant, we use the
Mahaux-Weidenmiiller formula in Eq. (2) to compute the scattering matrix with a minimal
Hamiltonian in both limits. The trivial limit has no sub-gap modes, therefore S = 1 and
Q = 1. The topological limit has a single Majorana zero mode at the interface, so that
H=0and W = (t;, tf)T where we choose the coupling to the lead t; to be real. This gives
S(E =0)=—0, and Q = —1. Furthermore, the value of Q may only change if the supercon-
ducting gap closes and electrons and holes transmit into the superconductor [3, 6], a feature
directly related to the appearance of a peak in non-local conductance measurements [3, 4].
The gap closing points separate the trivial regions with @ = 1 from the topological regions
with Q = —1.

Counterintuitively, a simple argument shows that making the superconductor finite always
gives a trivial scattering invariant. Let us consider a metallic lead attached to a finite trivial
region which we gradually tune into a topological phase. For the finite region to undergo a
topological phase transition, det r must continuously change sign and thus cross zero. This is
however impossible if there is only one lead attached to the system, because for r to have a
zero eigenvalue a transmission into another lead must appear. As a consequence, the invariant
cannot change sign and remains Q = 1 for all parameter values. This apparent contradiction
appears due to the resonant coupling between the lead and the Majorana zero mode at the
terminated end of the superconductor. Therefore, to compute the scattering invariant in a
finite system, we must attach two leads, as shown in Fig. 1(b). In this case, the scattering
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matrix is a 2 x 2 block-matrix that relates the incoming and outgoing modes in the left (L) and

right (R) leads:
L tir
S= , (5)
(tRL 'r )

where the blocks r; and ry are the reflection matrices for each lead, and t;z and tg; are
the transmission matrices between the leads. Because S is unitary, r; and rg are sub-unitary
instead, and may have zero eigenvalues, which in turn correspond to the phase transition
in a finite system. In a two-terminal setup we use Q = signdetr; = signdetry. Particle
conservation and particle-hole symmetry constraints ensure that the scattering invariant is
the same in both leads in a two-terminal setup [3], a result we also confirmed numerically
throughout this work.

To compare the scattering invariant in the thermodynamic limit and finite systems, we sim-
ulate a microscopic one-dimensional nanowire [16, 17] using the Kwant package [14]. The
nanowire has a chemical potential u, hopping t, Zeeman field E,, lattice spin-orbit coupling
a, and superconducting pairing A, and the leads are modeled by setting A = 0. Details of the
simulation are in the appendix and the code for this figure and the rest of the paper are avail-
able in Ref. [18]. In the thermodynamic limit, the phase transition occurs at E; = 4/ u? + A2,
Figure 1(c) shows the phase transition of finite nanowires of different lengths, which we de-
termine by finding the parameters for which the scattering invariant changes sign. This simu-
lation demonstrates the first bias when interpreting the scattering invariant in finite systems:
if a nanowire is not sufficiently long, the transition to a topological phase may appear to be
at a smaller critical field than in the thermodynamic limit. This is a counterintuitive result,
because shorter nanowires are expected to have a larger energy splitting between the Majo-
rana zero modes, and therefore a larger critical field. We observe that changing the chemical
potential in the leads shifts the phase transition to larger Zeeman fields, indicating that the
scattering invariant is sensitive to the self-energy of the leads. We thus attribute the bias to the
self-energy of the leads: the finite Zeeman field splits the electron and hole modes in the leads,
which has a back-action in the properties of the reflection matrix close to the phase transition.
Despite the bias, Fig. 1(d) shows that for Zeeman fields lower than the true critical value the
transmission between the two leads stays sizeable. The quantity detr is also known in the
literature as the topological visibility [19-21].

3 Scattering invariant in the tunneling limit

The back-action of the lead on the scattering region becomes smaller if the lead is coupled
through a tunnel barrier. Tunnel barriers are also useful to identify individual states through
resonant tunneling and they have practical advantages for measuring non-local conductance.
Because we have identified the self-energy of the leads as a source of bias, it is natural to
consider tunnel barriers as a solution to this problem. In this section we show that tunnel
barriers introduce their own biases too.

3.1 Strong Majorana overlap

An effective description of the finite nanowire with tunnel barriers is given by the Hamiltonian:

t; O

[ 0 iEy |0
HNW_(—iEM o)’ W=1o tr |’ ©®)

0 t}

R
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where Hyyy is the Hamiltonian in the Majorana basis and W is the coupling matrix between the
Majorana zero modes and the leads. The columns of W are in the Majorana basis, while the
rows are in the electron and hole mode basis of the right and left leads, {v; o, Y1, YR ¢» Yr 1}
The coupling E,;; between the Majorana zero modes is exponentially small in the length of the
nanowire, and the tunnel barriers determine the tunneling amplitudes t; and t; between
the left and right leads and the Majorana zero modes, respectively. Here we disregard the
coupling between the Majorana zero modes and the lead at the opposite end of the nanowire
for simplicity.

To find an analytical expression for the scattering invariant, we substitute Eq. (6) into the
Mahaux-Weidenmiiller formula (2):

detr = 7)

Ey—Tik (<0, ifEy < /TiIk,
E3+T Iy |>0, ifEy> Tilk,
where I; = 27t|t;|?. This result constitutes another bias: the scattering invariant is agnostic to
the presence of Majorana zero modes if the coupling to the leads is smaller than the Majoranas’
energy splitting [3], I; < E;;. We also confirm this bias beyond the weak coupling limit by
solving the scattering equations numerically in a microscopic nanowire with two Gaussian-
shaped tunnel barriers of height V;, as shown in Fig. 2(a). Because E;; is exponentially small
in the length of the nanowire, the scattering invariant may indicate a trivial phase in a system
that is topological in the thermodynamic limit.

3.2 Quasi-Majorana strong overlap

That the scattering invariant is blind to modes that are weakly coupled to the leads is no
surprise: in the limit where a mode is not coupled at all, it cannot be detected. The mechanism,
however, raises an interesting question: are there any regimes where trivial states may be
misinterpreted as topological? Generally, two trivial bound states localized at the same end of
the nanowire couple to each other and gap out. However, the presence of a smooth position-
dependent potential may suppress the hybridization of the bound states, making them robust
to changes in the systems parameters [ 10-12]. Due to their stability and the similarity of their
signatures to Majorana zero modes [22,23], these states are known as quasi-Majorana modes.
Distinguishing them is an open challenge in the field.

(a) (b) 0

1 2
tL E]\/f tR tL E() tR
0 AN o Z X 7AF0 = i o?ﬂﬁ‘ 0
_ Evr EmR

10! 1073 1072 107!
‘/(]/A U/ls()

L/l

detry,

Figure 2: Scattering invariant of a finite nanowire with symmetric tunnel barriers.
(a) Nanowire in the Majorana regime, u® + A% > EZ2, with varying tunnel barrier
amplitude V;. (b) Nanowire in the quasi-Majorana regime (trivial) as a function of
the tunnel barrier width o. The insets illustrate the low-energy degrees of freedom
(purple circles) with their effective couplings (arrows).
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The effective Hamiltonian of a nanowire with quasi-Majorana modes is:

0 iEy, O 0 tg; 0 0 0
| —iEy, O iEq 0 | o0 o0

Hyw = 0 —iE, 0 iEyg |’ =10 0 o tr |’ ®)
0 0 —iEyg O 0 0 0 ¢

where Hyy and the columns of W are in the Majorana basis that label the four quasi-Majorana
modes, while the rows are the same as in the previous case. E,;; and E,;rz couple quasi-
Majorana modes at the same end of the nanowire, while E;, couples the quasi-Majorana modes
at opposite ends. For simplicity, we only consider nearest-neighbor couplings between the
quasi-Majorana modes and the leads, as shown in the inset of Fig. 2(b). Once again we use
the Mahaux-Weidenmdiller formula (2) to obtain an analytical expression for the scattering
invariant: 5 5 o

—EgT Ir + Ey Epr

2 2 g2
ESTi IR + Eyr Evr

detr =

, )

where T} = 27|t;|>. Remarkably, in the regime where one pair of quasi-Majorana modes is
strongly coupled to the leads while the other is not, |I}|,|Iz|, Eg > Epr,Eyg, the scattering
invariant becomes Q = —1. This is shown in Fig. 2(b) for a microscopic one-dimensional
nanowire with Gaussian-shaped tunnel barriers, where the width o of the tunnel barriers
controls E;;, Eyg, I3, and Tz. Without further analysis, one may incorrectly interpret the
trivial quasi-Majorana modes as Majorana zero modes.

3.3 Quasiparticle sinks

That the scattering invariant may be computed from the left or right leads in a two-terminal
setup is a general and robust property that holds for any 2 x 2 block-matrix scattering ma-
trix. We illustrate this using random matrices and computing the determinant of the diagonal
blocks. The results are shown in Fig. 3(a): both blocks always share the same determinant, as
expected in a two-terminal setup. This property breaks in the presence of additional quasipar-
ticle sinks or sources in the system, for example an additional lead attached to the nanowire.
Any other mechanism that loses particles into the environment, like superconducting vortices
or non-hermitian effects, has a similar consequence. We illustrate the breakdown of the equiv-
alence between the scattering invariants using random matrices with a 3 x 3 block structure
in Fig. 3(b), where the third block represents the quasiparticle sink. The impact of quasipar-
ticle sinks in the scattering invariant is relevant in interpreting the results the topological gap
protocol [8,9] because the simulation results used to calibrate it [24] show in in Fig. 3(c) a
significant deviation from the two-terminal behavior. This deviation likely occurs due to the
presence of a Dynes parameter mentioned in Ref. [8].

We consider the specific case of a superconductor where the quasiparticles have a finite life-
time and decay into the environment. This is often modeled using an imaginary diagonal term
in the superconducting Hamiltonian—the Dynes parameter—which results in a non-hermitian
self-energy [19]. We study the effect of the Dynes parameter 1 > 0 on the scattering invariant
of a nanowire with quasi-Majorana modes. We focus on the effective Hamiltonian of one end
of the nanowire:

t, 0
HNW_(—iEML —in)’ =10 ol (10)
0 o

where Hyy is the Hamiltonian in the Majorana basis and W is the coupling matrix between
two quasi-Majorana modes at one end of the nanowire and the corresponding lead, as in

6
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Figure 3: Distribution of the scattering invariant computed from the left and right
leads in correct and incorrect setups. (a) Determinant of the diagonal blocks of
2 x 2 special orthogonal matrices sampled randomly. (b) Determinant of the diagonal
blocks of 3 x 3 special orthogonal matrices sampled randomly. (c) Superimposed data
of different experiments from the benchmarks of the topological gap protocol [9,24].
The inset shows the data for the simulation with the largest variance of det rz—detr; .

Fig. 4(a). For simplicity we disregard the coupling to the other quasi-Majorana modes. Using
the Mahaux-Weidenmdiller formula we find the scattering invariant:

EZ, +n*—nly

detr = #,
EML+n +T’FL

(11)

where I, = 27|t;|?> Equation (11) shows that the scattering invariant is topologically non-
trivial in the regime I} > T],EI%/[ /m, even though the quasi-Majorana modes are trivial. We
confirm this result numerically in a microscopic one-dimensional nanowire with symmetric
tunnel barriers, as shown in Fig. 4(b). Furthermore, in Fig. 4(c) we show that the scattering
invariant computed from the left and right leads does not agree in the presence of the Dynes
parameter if the coupling to the leads is also asymmetric. This is the third bias we identify, and
it demonstrates that the level broadening introduced in Ref. [8,9] may systematically make the
scattering invariant topologically nontrivial in the quasi-Majorana regime, even while keeping
the scattering matrix approximately unitary. Even worse than the other cases, this bias persists
in the thermodynamic limit, when the two ends of the nanowire are decoupled. It therefore
invalidates the topological visibility as a reliable indicator of Majoranas in a system with a
single NS interface and dissipative broadening [19].

4 Discussion

We demonstrated multiple ways in which a scattering invariant of a finite system is biased
compared to the thermodynamic limit:

* Inthe open regime, the back-action from the leads enhances Zeeman splitting and pushes
the topological transition to smaller fields.

* Weak tunnel couplings to the leads allow Majoranas at the opposite ends of the system
to couple, so that the system appears trivial.

 Similarly, resolving the coupling between the quasi-Majorana modes at different ends of
the system makes a trivial system appear topological.
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Figure 4: Nanowire with quasi-Majorana modes and a Dynes parameter. (a) Illus-
tration of the low-energy degrees of freedom (purple circles) with their effective
couplings (arrows). (b) Scattering invariant as a function of the Dynes parameter
7 for a nanowire with two symmetric tunnel barriers. (c) Scattering invariant as a
function of the Dynes parameter 1) for a nanowire with two asymmetric tunnel bar-
riers of different heights and widths.

These biases diminish as the system size is increased, but they are likely to be relevant to the
ongoing experimental efforts. In addition to these biases, we demonstrated that quasiparticle
sinks may make quasi-Majorana states appear topological also in the thermodynamic limit.

Our analysis focused on the scattering invariant because of its relation to the transport
properties, however, the finite size effects unavoidably affect other topological invariants too.
We therefore propose to always combine the analysis of the finite system with a comparison
to the behavior in the thermodynamic limit. In disordered systems such analysis must also
include disorder averaging and confirming that the results are not influenced by insufficient
averaging.

Acknowledgments

We thank Henry Legg for drawing our attention to the determinant sign mismatch in Ref. [9].
We thank Roman Lutchyn, Chetan Nayak, Dmitry Pikulin, and Andrey Antipov for useful dis-
cussions regarding the topological gap protocol. We acknowledge fruitful discussions with
Kostas Vilkelis and Binayyak Bhusan Roy.

Data availability The code used to produce the reported results and the generated data are
available on Zenodo [18].

Author contributions A. A. and M. W. proposed the research idea. All authors defined the
project scope. I. A. D. developed the simulations with input from all authors. I. A. D. and A. M.
produced the figures with input from M. W. and A. A. Finally, I. A. D, A. M. and A. A. wrote
the manuscript with input from M. W,

Funding information This work was supported by the Netherlands Organization for
Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience program and
OCENW.GROOT.2019.004.


https://scipost.org
https://scipost.org/SciPostPhysCore.8.3.047

SC|| SciPost Phys. Core 8, 047 (2025)

A Details of the tight-binding model

Throughout this work, we perform the numerical simulations using a one-dimensional model
of a semiconducting nanowire proximitized by a superconductor [16,17]. The tight-binding
Hamiltonian is given by:

H= > WH, +UH"PY,,, +he,
n

ia (A1)
H=02t—u)7,+ AT, +E,0,, HP= (—t + an) Tys

where ¥ = (c,1,¢p, l,—ci’ i’CZ,T)T is the Nambu spinor of the annihilation operators c, , of
electrons with spin o at site n. The Pauli matrices 7; and o; act on the particle-hole and
spin degrees of freedom, respectively. The hopping amplitude between nearest neighbors is t,
which we set to 1, u is the chemical potential, a is the Rashba spin-orbit coupling strength, E,
is the Zeeman energy parallel to the wire. The superconducting pairing potential A is finite in
the nanowire, and absent in the normal leads.

Additionally, to demonstrate the biases in Fig. 2 and Fig. 4 we consider tunnel barriers at
the ends of the nanowire, which modulate the coupling to the leads. We model the tunnel
barriers as a Gaussian potential:

(3, — x0)?
Hbarrier = Z Z\I"r; {Vlexp [_TIZT;) Tz \Ijn; (A.2)
l

[=LR n

where x;_| r are the center positions of the tunnel barriers, V;_| » are their maximal heights,
and o_y g are their standard deviations.

We implement the tight-binding Hamiltonian with the Kwant package [14] and use it to
obtain the scattering matrix at zero energy. To ensure that the scattering matrix is real, we
provide the particle-hole operator P = 0,7, to Kwant, see Ref. [18] for the code. To produce
Fig. 1(c-d) in the main text, we set A = 0.01 and a = 0.1 in a nanowire with L = 600 sites.
In Fig. 2(a) we use y = 0.1, A = 0.05, a = 0.02, B = 0.2, 0; = og = 10 to ensure the
Majorana regime in a finite nanowire with L = 1000 sites. In Fig. 2(b) we use u = 0.12,
A =0.05, a =0.02, E; =0.1, and V; = V = 0.15 to ensure the quasi-Majorana regime in a
finite nanowire with I = 1000 sites. We define [, = t,/a as the spin-orbit length, where a
the lattice constant.

Finally, to demonstrate the effects of quasiparticle loss, we add a Dynes parameter 7 to the
nanowire Hamiltonian:

Higgs =—i »_ NI, . (A.3)
n

This is a minimal model for a non-hermitian self-energy term in a superconducting system. Fig-
ure 4 is computed for n € [107*2,10], u =0.12, A=0.02,a =0.2, E; = 0.1, V, =V, = 0.1,
and L = 1000 sites. In Fig. 4(a) we use o; = ox = 10, and in Fig. 4(b) we use o; = 10 and
O'R = 20.
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