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Summary 
The dynamic interaction between a structure and its surrounding medium plays a pivotal role 
in numerous engineering applications. In cases where a dynamically loaded medium exhibits 
non-smooth behaviour, such as in dynamic soil-structure or ice-structure interaction, any 
model for that medium must account for nonlinear phenomena to accurately capture the re-
sponse of the medium. To minimize calculation times, it is desirable to keep the domain of 
the model that is able to account for these nonlinearities as small as possible. This thesis 
addresses the development of a modelling framework that enables an efficient and robust 
description of the non-smooth dynamic response of a solid medium in the time domain. 

To this end, the medium is subdivided into two domains: a sophisticated near-field do-
main in the region of interaction with a dynamic load source that is able to account for non-
linear phenomena, and a surrounding far-field domain at such distance from the load that its 
response is linear. The near field is modelled using discrete lattice systems that are able to 
accommodate non-smooth dynamic phenomena by incorporating stick-slip behaviour and 
inelastic collisions. The far field is represented by a boundary integral formulation, that de-
scribes the response of the far-field domain exclusively at its interface with the near-field 
while accounting for the behaviour and properties of the far-field domain beyond this inter-
face. This approach allows for an accurate yet computationally efficient inclusion of a finite, 
an infinite or semi-infinite far-field domain, enabling accurate wave transmission and mini-
mal reflection at the interface between the near field and the far field domains. 
 
The discrete lattice modelling in the near field employs so-called Bingham-Kelvin-Voigt 
(BKV) elements, consisting of a combination of springs, dashpots and dry-friction elements. 
Due to the presence of these dry-friction elements, as well as accounting for the possible 
occurrence of inelastic collisions, the response of such lattices is characterised by transitions 
between different motion states, such as stick, slip and lock, that are governed by the dynamic 
excitation and the thresholds of these rheological elements. 

To incorporate the linear far-field response, boundary integral equations (BIEs) are de-
rived for both continuous and discrete representations of the far field. While BIEs for contin-
uous domains are well-established in literature, this thesis presents one of the first derivations 
of BIEs for a far-field domain that is described as a finite or semi-infinite system of discrete 
particles. These BIEs are generally expressed in terms of the dynamic stiffness or, inversely, 
in terms of the dynamic compliance, that describe a force-displacement relation in the La-
place domain. For one-dimensional systems, expressions for the Laplace domain relations 
can often be derived analytically, but time domain responses must generally be evaluated 
numerically, in which case the use of the dynamic compliance is preferred over the use of the 
dynamic stiffness. For two-dimensional systems, the formulation of the BIEs is based on the 
Green’s functions of the respective media and numerical boundary methods are required to 
obtain the corresponding dynamic compliance matrices. Since the Green’s functions are not 
always known and often cannot be obtained straightforwardly, determining the Green’s 



 x 

functions is a key difficulty when formulating the BIEs. 
 
Recognising the computational challenges associated with time domain simulations of non-
linear systems, a mixed time-frequency domain (MTFD) method is developed. This hybrid 
approach leverages the efficiency of frequency-domain techniques during periods of linear 
behaviour, while accounting for the changing properties of the lattice over time whenever a 
nonlinear event occurs. The presented methodology has the potential to significantly improve 
computational performance, especially in systems where nonlinear phenomena occur inter-
mittently. 
 
The results presented in this thesis demonstrate the effectiveness of discrete lattice models in 
capturing non-smooth dynamic phenomena, and highlight the critical importance of accurate 
boundary representations to ensure reliable simulations. The comparison between discrete-
continuous and fully discrete systems illustrates the impact of the far-field representation on 
the overall dynamic response. When applied to lattice models, BIEs based on discrete far-
field systems outperform continuum-based BIEs particularly in terms of compatibility and 
the undisturbed wave propagation through the interface. Future studies should explore adap-
tations of the discrete lattice models to determine their influence on the formulation of the 
BIEs, for example by changing the lattice configuration from hexagonal to square, incorpo-
rating interactions between second neighbours or introducing additional rheological elements 
to account for transverse and rotational interactions. The performance of the discrete-based 
BIEs however, is greatly influenced by the quality of the numerical implementation and fur-
ther improvements to the numerical implementation should be made to make it more robust 
and make it more widely applicable. 

In addition, while the common understanding is that any model that accounts for nonlin-
ear phenomena must be evaluated in the time domain, the non-iterative MTFD method offers 
a promising way to extend the applicability of frequency domain approaches to describe the 
non-smooth dynamic response of solid media the time domain.  
 
In conclusion, this thesis provides both the theoretical foundations and the numerical tools to 
enable efficient modelling of nonlinear wave propagation and thereby contributes to advanc-
ing the state-of-the-art in modelling the non-smooth dynamic responses of solid media in the 
time domain, with the potential of contributing to improved design and analysis in a broad 
range of civil, geotechnical, and offshore engineering applications. 
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1  
Introduction 

 
 
The dynamic interaction between structures and their surroundings is an important aspect of 
many engineering problems and a proper understanding of these interaction problems is often 
a necessity to take appropriate measures. For construction work in urban areas for example, 
a thorough understanding of the interaction between the structures involved and the underly-
ing soil is vital to prevent vibration nuisance to people living and working near the construc-
tion site. Another example is the dynamic interaction of wind turbines, both on- and offshore, 
with the soil. Due to the rotor motion and the rotor blades passing the turbine tower, waves 
are emitted that propagate along the turbine tower and into the soil. As the fatigue life is 
design driving for wind turbine foundations, it is important to understand how much vibration 
energy is lost due to the dynamic interaction of the wind turbine with the soil. For these 
examples, the soil can be assumed to behave linearly and may therefore be described as a 
linear-elastic solid medium. 

In many other situations, the interaction of a structure with another medium may not be 
described using linear models, especially when applied dynamic loads inflict damage to that 
medium. For example, high-speed trains pose serious concerns because of the high level of 
vibrations they generate and the potential occurrence of quick dynamic soil settlements under 
a railway track. This is especially an issue in soft and water-saturated soils, which are widely 
spread in northern European countries like the Netherlands; in these soils, the Rayleigh wave 
velocity is easily exceeded by modern high-speed trains, thereby causing high-amplitude vi-
brations of the soil at a wide frequency band. The use of high-speed trains in countries with 
an abundance of soft and water-saturated soils is therefore problematic; for example, high-
speed trains in the Netherlands are enforced to speed limits to prevent potential derailment 
and deterioration of the railway track, due to dynamic wheel-rail interaction as depicted in 
Figure 1.1a. Not only railway companies, but also owners and residents of buildings near 
high-speed lines, with a view to preventing damage to their belongings, benefit from a thor-
ough understanding of the dynamic interaction between the train, the railway track and the 
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underlying soil. 
Next to problems involving dynamic soil-structure interaction, dynamic interactions that 

involve nonlinear phenomena are found in cold regions engineering. While the demand for 
energy remains persistently high, the energy transition has significantly boosted the offshore 
renewable energy sector. Because easily accessible areas suitable for the development of off-
shore renewables are limited, the offshore energy industry has expanded its activities into 
more remote and difficult areas of operation such as the Arctic and other cold regions. In 
these cold regions, seas are covered by ice that may grow up to significant thicknesses and 
often include much thicker ice ridges. Offshore structures installed in these areas, have been 
designed to withstand the corresponding ice loads. Yet, the interaction between offshore 
structures and the surrounding sea ice is not at all well understood. Past measurements at 
offshore structures in cold regions have shown that the topsides of these structures may ex-
perience severe vibrations due to ice-structure interaction [Haverkamp, 2008]. These ice-
induced vibrations do not only disturb the well-being of people working on the platform, but 
may also lead to fatigue damage of the structure. Accordingly, ice-induced vibrations may 
also lead to fatigue concerns for offshore wind turbines installed in ice-infested areas, such 
as the offshore wind support structure depicted in Figure 1.1b. In these ice-structure interac-
tion problems, the interaction is highly nonlinear as the ice crushes and breaks against the 
structure, driven by wind and currents. While recent research shows an improved understand-
ing of the physical mechanism that leads to ice-induced vibrations, the state-of-the-art models 
available are phenomenological in nature rather than physics-based [Hendrikse and Nord, 
2019]. To improve the understanding of the fundamental physics underlying dynamic ice-
structure interaction, as well as to improve the models that describe this interaction, thereby 
allowing a better design of offshore structures for cold regions, insight into the nonlinear 
dynamic behaviour of the ice surrounding these structures is necessary.  

1.1 Dividing a medium into a linear and a nonlinear domain 
To determine the loads on a structure due to the dynamic interaction of that structure with a 
medium, it is vital to correctly model the response of that medium. In literature, several thor-
ough reviews of the available analytical and numerical methods for the dynamic interaction 

Figure 1.1: a) Railway track deterioration due to dynamic wheel-rail interaction on waterlogged soil [Kaewunruen and 
Remennikov, 2016]; b) An offshore wind support structure in the IJsselmeer interacting with ice. 

b)a )
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between structures and elastic media are available. For example, Clouteau et al. [2013] 
mainly consider interaction problems of structures interacting with unbounded linear-elastic 
media, where the structure is included in the models that describe the interaction. An impres-
sion of this is depicted in Figure 1.2a. 

In this thesis, we focus on the response of the medium and only include the interaction 
with the structure as a load, or as a set of loads, externally applied to the medium. Near the 
load, the behaviour of the medium may be governed by nonlinear phenomena and therefore 
any model for the medium must be able to account for these. Such nonlinear phenomena 
typically occur in the examples of soil-structure and ice-structure interaction depicted in Fig-
ure 1.1. From a numerical point of view, it is desirable to keep the domain of the medium 
that is able to account for nonlinearities as small as possible to minimize the required calcu-
lation time. This is especially important when considering two- or three-dimensional models. 
Therefore, we divide the medium into two separate domains as shown in Figure 1.2b: a so-
phisticated domain nonlin

EV  in the region of interaction with the structure that is able to account 
for nonlinearities, here referred to as the near field, and a domain lin

EV  at such distance from 
the interaction point that its response is linear, here referred to as the far field. While our main 
interest is the response of the nonlinear part of the medium in the near field, its behaviour 
depends on the response of the linear far-field domain which must therefore be correctly 
accounted for. Additionally, the behaviour of the linear domain of the medium may also be 
of interest to, for example, study vibrations at a substantial distance from the region of inter-
action with the structure. 

1.2 Discrete lattice models for non-smooth dynamic phenomena 
Nonlinear phenomena, such as dry-friction or fracture, are difficult to capture by continuum 
models. For example, in finite element analysis, nonlinearities are often incorporated em-
ploying the theory of elastoplasticity and thus by incorporating a nonlinear stress-strain rela-
tion, e.g. Pavlatos and Beskos [1994]; von Estorff and Firuziaan [2000]. As such, nonlinear 
material behaviour is introduced through transient properties that smoothly change over time. 

Figure 1.2: a) Interaction between a structure and a medium; b) Interaction between  
the linear and nonlinear domains of a solid medium due to a structure-induced load. 

lin
EV

nonlin
EV

SF

lin
EV

SV

Γ
Γ

b)a )
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In reality however, many nonlinear phenomena are not smooth at all. Another major diffi-
culty of continuum models is the lack of an internal length property causing mesh sensitivity 
in finite element analysis [Fakhimi, 2009]. Discrete models by definition incorporate an in-
ternal length through the dimension of its discrete particles, and as it is straightforward to let 
these particles behave independently from each other, these discrete approaches can conven-
iently be used to incorporate non-smooth dynamic behaviour of a medium.  

Depending on the scale of the problem under consideration, different discrete modelling 
approaches exist. In their review, Bolander et al. [2021] categorize the discrete mechanical 
models that are available; while this review specifically focuses on applications in fracture 
mechanics, the proposed classification of discrete models is generally applicable and there-
fore adopted here. The discrete modelling approaches that are identified are: I) classical or 
conventional lattice models, II) particle-based lattice or hybrid-lattice-particle models and 
III) distinct or discrete element methods (DEM). Note here that particle-based lattice models
(II) combine certain properties from the classical lattice models (I) and DEM (III) as will be
explained later in this section.

The commonality between the three modelling approaches is that they all define a mate-
rial or a medium by a collection of nodes, where each node represents a material particle or 
a small fragment of the considered medium that interacts with adjacent nodes. Here, the term 
lattice is used when the connectivity between the nodes is determined a priori and remains 
the same throughout, as opposed to DEM where the connectivity between the particles is 
allowed to change with time and depends on contact laws. As a consequence, nodal displace-
ments in lattice models are generally limited as they have a certain restriction on the freedom 
of movement due to the connectivity between adjacent particles, while particles in DEM may 
roam freely through a medium and can easily cope with large displacements [Bićanić, 2004]. 
This is consistent with the idea that particles in lattice models are generally considered at the 
meso-scale, while DEM is particularly effective to model the behaviour and interaction of 
large numbers of small particles [Cundall, 1971] and is often used to describe media on a 

Figure 1.3: a) Example of discrete element modelling: flow of granular material in a hopper (left); 
b) Example of a lattice model: a square structural element represented by a triangular or hexagonal lattice (right)

a ) b)
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micro-scale level. For example, Radjai and Dubois [2011] show that DEM is used to address 
problems in granular and discontinuous media in many different scientific fields. A typical 
application of the discrete element method is depicted in Figure 1.3a, showing the flow of a 
granular material in a hopper. Here, the granular material is represented as a collection of 
spherical particles, but DEM also allows for the use of other, usually polyhedral, shapes, e.g. 
Boon et al. [2012]. Other examples of discrete micro-scale modelling that are generally con-
sidered to be similar to DEM are found in molecular dynamics (MD), non-smooth contact 
dynamics (NSCD) and granular element method (GEM). Although the involved physics may 
be fundamentally different, these methods are similar to discrete element modelling in its 
formal analogy [Kafashan et al., 2019]. 

While these micro-scale methods mimic reality well, a large disadvantage is the amount 
of calculation time needed. With the ongoing increase of computational power, the scale at 
which DEM may be applied has increased as well. At present however, the amount of parti-
cles for which, for example, granular media problems can be properly calculated using the 
discrete element method represents only a few handfuls of sand, which is insufficient to de-
termine the large-scale dynamic behaviour involved in the interaction of a medium with a 
structure. In this thesis, we therefore choose to model the nonlinear domain as a lattice in-
stead. 

The concept of one-dimensional mass-spring systems was first introduced by Lagrange 
[1759]. Lattice modelling only took off much later when Hrennikoff [1940, 1941] proposed 
a so-called framework method to solve elasticity problems, in which he uses a plane frame-
work of bars, later commonly known as truss elements, for plane stress applications and to 
model bending of thin plates. Shortly thereafter, McHenry [1942, 1943] applied this method 
in a more general sense to two-dimensional stress problems in elastic bodies and is the first, 
to the author known, example in literature that refers to this method as a lattice. In the 1970s 
and 1980s, lattice modelling was successfully applied to simulate fracture behaviour in het-
erogeneous materials, e.g. Herrmann et al. [1989]; Ziman [1979]. Since then, many applica-
tions of lattice models are found in the fields of fracture mechanics and micromechanics, e.g. 
Bolander et al. [1996]; Kale and Ostoja-Starzewski [2022]; Ostoja-Starzewski [2002]; 
Schlangen and van Mier [1992].  

In the early lattice models, the interaction between adjacent lattice nodes is generally de-
scribed by truss elements that allow for axial translation only. One of the main limitations of 
these lattice models is that, to match the lattice parameters with the macromaterial properties 
of the medium it represents, its constant connectivity yields a fixed Poisson’s ratio. This is 
extensively discussed in literature, e.g. Maradudin et al. [1971]; Z. Pan et al. [2018]. The 
limitation of the Poisson’s ratio in lattices can be addressed by adding nodal degrees of free-
dom or by adding nodal interactions using beam or frame elements, which refer to elements 
that allow for respectively bending interaction only and for combined axial and bending in-
teraction, e.g. Roux and Guyon [1985]; Schlangen and Garboczi [1997]. This advance in 
lattice modelling is quite similar to the introduction of enhanced continuum formulations 
such as the Cosserat continuum [Cosserat and Cosserat, 1909] as a modification of the stand-
ard Boltzmann continuum by introducing rotational degrees of freedom. According to the 
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classification of discrete models adopted from Bolander et al. [2021], the lattice models 
where the interaction between nodes is either described by truss, beam or frame elements 
belong to the classical lattice models. In addition to these, modelling approaches where the 
interaction between nodes is described through springs or other reversible or irreversible el-
ements are also included in this class of lattice models [Nikolić et al., 2018]. 

Ostoja-Starzewski et al. [1996] introduced a lattice model as a so-called two-dimensional 
spring network to model the fracture of elastic composites and polycrystals. Figure 1.3b 
shows an example of a linear lattice model applied to a structural element, where the inter-
action between neighbouring particles is described by springs. Together with Sahimi and 
Goddard [1986], Herrmann and Roux [1990] and Delaplace et al. [1996], the work of Ostoja-
Starzewski et al. [1996] belongs to the first appearances of spring lattice models. Represent-
ing material behaviour using springs, or other rheological elements [Ostoja-Starzewski, 
2002] such as dashpots, instead of truss, beam or frame elements both has advantages and 
disadvantages. As a result of using such rheological elements in lattice models, the behaviour 
of the medium represented is exclusively known at the nodes, while using truss, beam or 
frame elements, the behaviour of the medium may also be (partly) known in between the 
nodes, albeit in an approximate sense. While this somewhat limits the abilities of these lattice 
models, they require less computational effort. Additionally, using rheological elements, the 
axial translation, shear translation and rotation in the interaction of adjacent nodes can be, 
but do not necessarily have to be, decoupled. The advantage of decoupling the interaction 
between adjacent nodes is for example illustrated by Suiker et al. [2001b] and Zhao and Zhao 
[2012], where the limitation of the Poisson’s ratio is partially addressed by including both 
axial and shear springs into the lattice model. Other advantages of using rheological elements 
in lattice models are that dynamic phenomena, such as wave propagation, can conveniently 
be accounted for and that, incorporating irreversible rheological elements, nonlinear or non-
smooth interactions between adjacent particles can straightforwardly be implemented. Both 
are advantages that are specifically relevant for this research making these lattice models very 
suitable for application in this thesis. 

In their analysis of one-dimensional mass-spring systems, also known as cascades, 
Bavinck et al. [1994] and Dieterman et al. [1995] show that the wave propagation in one-
dimensional spring-type lattice models is different from the wave propagation in correspond-
ing continuous models due to the differences in their dispersive properties, especially at high 
frequencies. Next to considering one-dimensional systems, Mühlhaus and Oka [1996] regard 
the differences for three-dimensions and show that using higher-order displacement gradients 
in continuum models may diminish these differences. Corresponding developments regard-
ing wave propagation in lattice models are related to the improvement of gradient elasticity 
theories, i.e. to provide extensions to the classical equations of elasticity with additional 
higher-order spatial derivatives of strains, stresses and sometimes accelerations. A thorough 
and in-depth overview on this is given by Askes and Aifantis [2011]. These gradient elasticity 
models are often derived from discrete lattice models, because the classical continuum me-
chanics theory does not necessarily suffice for an accurate and detailed description of corre-
sponding deformation phenomena, such as size effect, while discrete models are well suited 
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to describe material behaviour at small scales. For example, Metrikine and Askes [2002] and 
Askes and Metrikine [2002] discuss one-dimensional dynamically consistent gradient elas-
ticity models derived from discrete lattices, while Suiker et al. [2001a] compare the wave 
propagation characteristics of two-dimensional lattices with a corresponding Cosserat con-
tinuum. Among other aspects, Askes and Metrikine [2004] address the issue of periodicity 
and the inherent anisotropy in higher-order continua derived from discrete lattices. This ap-
proach shows that isotropy in a discrete lattice can be obtained by including both nearest, or 
first, neighbours as well as second neighbours into the particle equations of motions, and 
assuming different spring stiffnesses for the interaction with first and second neighbours. The 
idea of including second neighbours was also proposed by Ostoja-Starzewski [2002], but 
without addressing the isotropy. Shortly thereafter, Metrikine and Askes [2006] present the 
derivation of an isotropic dynamically consistent gradient elasticity model from a two-di-
mensional lattice. 

Next to the abundance of literature focused on the fundamentals of wave propagation in 
lattice and continuum models, there are also many examples of literature that explore wave 
propagation in lattices for practical applications. For example, lattice models have been used 
to analyse wave propagation in railway tracks at high-speed lines, e.g. Suiker et al. [2001b, 
2001c], to model the dynamic behaviour of ballasted railway tracks, e.g. Ricci et al. [2005], 
as well as to model settlement of ballast in railway track transition zones, e.g. de Oliveira 
Barbosa et al. [2021]; de Oliveira Barbosa et al. [2022], but have also been applied in the 
field of ice-structure interaction, e.g. Dorival et al. [2008]; van Vliet and Metrikine [2018]. 
Furthermore, Wang et al. [2009] consider wave-propagation induced fracture of solids. In-
stead of using a classical lattice model however, the latter work presents a so-called hybrid-
lattice-particle modelling approach. 

Especially within the field of fracture mechanics, limitations of classical lattice models 
have become apparent as these models have difficulty to capture the effect of random local 
material inhomogeneities and therefore do not satisfactory mimic the fracture process in 
rocky or aggregate materials such as concrete [Bažant et al., 1990]. This has led to the devel-
opment of particle-based lattice models, which can be considered a cross-over between the 
classical lattice models and DEM; as for the classical lattice models, the connectivity between 
the nodes is constant, but in accordance with DEM the nodes are represented as particles for 
which properties, such as geometry, structure and particle linkage, are accounted for. Parti-
cle-based lattice modelling is mainly applied to model fracture in concrete as it is well capa-
ble to represent the concrete mesostructure by accounting for its aggregate particles [Bažant 
et al., 1990]. This class of lattice models can be divided into two types being the rigid-body-
spring models (RBSM) also referred to as irregular lattice models, e.g. Hwang et al. [2016]; 
Kim and Lim [2011]; Y. Pan et al. [2017] and lattice discrete particle models (LDPM), e.g. 
Cusatis et al. [2011a]; Cusatis et al. [2011b]; Wang et al. [2009].  

In this thesis, the focus is placed on the overall dynamic response of solid media, and 
specifically on the interaction between near-field and far-field domains during wave propa-
gation induced by the occurrence of non-smooth phenomena in the near-field domain. As 
such, it is not our aim to realistically mimic micro-scale phenomena, such as fracture, for 
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which the particle-based lattice models (II) and DEM (III) are specifically suitable. For our 
application, it is sufficient to model our medium as a classical or conventional lattice (I) 
consisting of a collection of discrete meso-scale particles, where each particle represents a 
small portion or volume of that medium. The possibly non-smooth behaviour between adja-
cent particles in the lattice model is included by introducing sophisticated nonlinear rheolog-
ical models obtained by combining reversible and irreversible rheological elements such as 
springs, dashpots and dry-friction elements. 

1.3 Boundary integral equations to account for the far-field domain 
When modelling the nonlinear dynamic response of a medium by dividing that medium into 
a nonlinear domain in the near field and a linear domain in the far field, the response of the 
nonlinear domain does not only depend on the properties of the nonlinear model itself, but is 
also governed by its interaction with the surrounding linear domain. In general, if the sur-
rounding medium is infinite in the direction of wave propagation, or may be assumed infinite 
by approximation, the response of the linear domain must satisfy the radiation condition, such 
that correctly accounting for this domain disables any wave reflections at the boundary of the 
nonlinear domain. Figure 1.4a depicts an example of a three-dimensional soil-structure-in-
teraction problem where the half-space acts as a silent or non-reflective boundary to the non-
linear domain it surrounds. As an example of a surrounding medium with finite dimensions, 
consider the ice sheet depicted in Figure 1.4b. Here, wave reflections may occur at the outer 
edges of the ice that may ultimately propagate back into the nonlinear domain. Correctly 
accounting for the linear far-field domain in this case should allow for wave reflections at the 
outer edges of the linear domain, while there are no reflections when any propagating waves 
are transmitted between the nonlinear and linear domains.  

Now, if we are exclusively interested in the response of the near-field domain, the only 
part of the far-field response that we must necessarily account for is its response at the inter-
face with the near-field domain, but only if the response of the far-field domain at this inter-
face correctly accounts for the behaviour and properties of the far-field domain beyond this 
interface. This can be done by using a boundary integral equation (BIE) that describes the 

Figure 1.4: Interaction between the nonlinear and linear domains of: a) the soil due to interaction 
with a high-speed train; b) sea ice due to interaction with an offshore structure. 
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response of the far-field domain using an integral equation that is defined only at its boundary 
with the near-field domain, while it accounts for the behaviour and the properties of the whole 
far-field domain. If the sole purpose of a boundary formulation is to absorb the energy of 
incident waves and thereby supress wave reflections and act as a silent boundary, techniques 
other than the use of BIEs are available, such as introducing a perfectly matched layer (PML), 
e.g. Bérenger [1994]; Kausel and de Oliveira Barbosa [2012]. Although using PMLs is nu-
merically very efficient when an absorbing boundary is required, this numerical technique
may not be applied when the surrounding medium has finite dimensions and reflected waves
passing through the boundary should be accounted for.

In few particular cases and principally only for one-dimensional domains, BIEs can be 
derived directly from the balance of forces at the boundary, or from the one-dimensional 
wave equation, for example by using d’Alembert’s solution [D'Alembert, 1747]. For two- 
and three-dimensional systems however, the BIEs are generally obtained by employing the 
dynamic reciprocal work theorem, e.g. de Hoop [1966], Achenbach [2004]. Starting from the 
dynamic reciprocal work theorem, the BIEs may be described in terms of the fundamental or 
Green’s functions of that domain. Since the Green’s functions are not always known and 
cannot always be derived, determining the Green’s functions is generally the key difficulty 
in deriving BIEs. Thereby, these approaches can only be applied successfully for domains of 
which the Green’s functions are known or can be determined. 

As we intend to model the nonlinear near-field domain as a discrete lattice, it is most 
appropriate to model the linear far-field domain as a discrete system as well. Surely, to 
achieve a perfect boundary formulation such that there is no unwanted wave reflections at 
the boundary, the far-field domain should at least match the discrete nature of the near-field 
domain. While there is some literature available regarding Green’s functions for discrete lat-
tice models, e.g. Katsura et al. [1971]; Maradudin et al. [1971]; Martin [2006], to the 
knowledge of the author of this thesis, there are no publications that specifically explore the 
derivation of BIEs for discrete lattice models. Moreover, the development of hybrid schemes 
involving discrete lattices and corresponding boundary formulations are very sparse in liter-
ature. The paper by Cai et al. [2000] describes the coupling of two linear domains described 
by matching linear square lattices to resolve a problem in molecular dynamics. The approach 
described is numerically demanding and cannot be easily adapted for different geometries. 
Later contributions by Karpov et al. [2005] and Carpio and Tapiador [2010] present more 
generic approaches to determine non-reflecting boundary conditions in molecular dynamics 
by employing the concept of lattice dynamics Green’s functions [Maradudin et al., 1971]. In 
correspondence with using PMLs, the approaches in these contributions are aimed at devel-
oping non-reflective boundaries, rather than at developing a truthful representation of the far-
field domain and its properties. 

Given the limited availability of literature that treats the derivation of BIEs for discrete 
lattices, it is relevant to note that a boundary formulation does not necessarily have to be 
perfect as long as any wave reflections that do occur at the boundary are not significant and 
only marginally influence the response of the near-field domain. Based on this, it is not an 
absolute necessity to model the far-field domain as a discrete system and other options can 
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be regarded. Because of its relative and apparent straightforward way of representing reality, 
a popular alternative is the continuum, which has been abundantly used to model far-field 
domains, especially when the near-field domain is also considered as a continuum. Accord-
ingly, there have been ample studies considering the Green’s functions for continuous media 
and there are abundant derivations and applications of BIEs for continuous media available 
in literature. Therefore in this thesis, we will derive BIEs from a discrete representation of 
the far-field domain and compare their performance to those of BIEs derived from continuous 
representations. Here, do note that implementing BIEs for a continuous far field at the bound-
ary of a discrete near field poses additional challenges due to differences in their fundamental 
properties. 

1.4 The time domain versus the frequency domain 
In dynamics, a boundary integral equation that describes the dynamic response of a far-field 
domain at its boundary and thus at the interface with the near-field domain, generally follows 
from the convolution of force and displacement at this interface resulting in an integral force-
displacement relation in the time domain. In the frequency domain, the corresponding alge-
braic relation is commonly known as the dynamic stiffness. In two- and three-dimensional 
problems, the discretisation of the boundary, which is required when the far-field domain is 
modelled as a continuum, and the application of the boundary element method yields this 
force-displacement relation in the form of the so-called dynamic stiffness matrix.  

Depending on the properties of the lattice model and the boundary formulation used to 
incorporate the far-field response, the resulting time domain system of differential equations 
can sometimes be fully derived analytically. In principal, this is only the case for linear-
elastic one-dimensional models; as soon as multiple dimensions are considered, or for exam-
ple if damping is included, the system of equations of motion can no longer be directly ob-
tained analytically in the time domain. The full system of equations of motion for the near-
field lattice that includes the boundary formulation, is therefore generally derived in the fre-
quency domain as a set of algebraic equations. The inversion into the time domain almost 
always has to be done numerically as analytical solutions of the involved integrals are gen-
erally unknown. Nevertheless, the numerical inversion of the algebraically obtained fre-
quency domain response requires severely less numerical effort than solving the correspond-
ing time domain system of differential equations numerically. 

Although the advantage in numerical effort makes frequency domain approaches prefer-
able over time domain approaches, the presence of nonlinear phenomena in the near field 
implies the necessity to work in the time domain rather than in the frequency domain. This 
is because the involved nonlinearities are often steered by time domain processes and cannot 
always be captured by considering all frequencies separately, which is essentially done in 
frequency domain approaches. Consequently, the occurring nonlinear phenomena cannot be 
easily described in the frequency domain and any model that attempts to incorporate these 
nonlinear phenomena generally has to be solved in the time domain. However, the behaviour 
of a medium or a system is often not continuously nonlinear. Instead, nonlinear phenomena 
may be initiated by the surpassing of a certain threshold. Consider for example an object 
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lying on a table; this object will only start sliding over the table surface when the force exerted 
on the object surpasses the friction threshold. The overall behaviour of this object is thus 
nonlinear only because of the instantaneous transition to another mode or state of behaviour 
at a certain moment in time, while both before and after the object has started to slide the 
object behaves linearly. With the aim to minimize the required computational effort, in this 
thesis options will be explored to utilize the advantage of frequency domain approaches for 
those periods in time where a medium or system behaves linearly, even though the overall 
response of the system may be nonlinear. 

1.5 Numerical implementation and application of BIEs 
In virtually all applications of boundary integral equations (BIEs), numerical techniques are 
required to solve BIEs and describe the response of a domain at its boundary, which in turn 
requires the boundary to be discretized. The numerical implementation of techniques to solve 
BIEs is commonly referred to as the boundary element method (BEM). It is noted here that 
while the applied numerical techniques are an important aspect of solving BIEs, this thesis 
does not focus on the development or improvement of existing boundary elements methods 
and merely uses commonly known boundary methods as a means to implement BIEs. Nev-
ertheless, it is worth reviewing existing applications of BEM in dynamics to determine the 
options for numerical implementation of BIEs in this research.  

The papers of Friedman and Shaw [1962] and Banaugh and Goldsmith [1963] represent 
the first applications of BEM in dynamics in the time and frequency domain, respectively. 
The work by Rizzo [1967] on boundary value problems in elastostatics introduced the direct 
BEM leading to a wide application of the method in applied mechanics. Since then, both 
direct and indirect BEM approaches have been formulated for elastodynamic applications, as 
can be identified by the books of Banerjee and Butterfield [1981], Wolf [1985] and 
Dominguez [1993].  

The dynamic stiffness matrix that is obtained by applying the conventional direct BEM, 
through the employment of the dynamic reciprocal work theorem or the method of weighted 
residuals, is generally non-symmetric. The indirect BEM however, where the dynamic stiff-
ness matrix is obtained by assuming fictitious sources at a small distance from the considered 
boundary to avoid singularities, always yields a symmetric dynamic stiffness matrix [Wolf 
and Darbre, 1984a, 1984b]. Since the dynamic stiffness matrix is by definition a full matrix, 
it is beneficial to work with a symmetric dynamic stiffness matrix rather than a non-symmet-
ric one to improve computational effort. To limit the computational effort as much as possi-
ble, in this thesis, the indirect BEM approach by Wolf and Darbre [1984a] is adopted to 
derive a symmetric dynamic stiffness matrix for the continuous far-field domain, while for 
the discrete representation of the far-field domain the conventional method suffices. More 
recent work, for example that of Coulier [2014], shows that it is also possible to reduce the 
computational effort of BEM by rearranging the dynamic stiffness matrix, but this options 
will not be further explored in this thesis.  

Despite extensive research of improved elastodynamic formulations for BEM, many is-
sues still remain unsolved [Frangi and Novati, 1999]. For example, according to Dominguez 
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[1993] and Peirce and Siebrits [1997] BIEs are often unstable in the time domain when finite 
media are considered. For a more thorough and in-depth overview of the development of the 
Boundary Element Methods reference is made to the reviews by Beskos [1987, 1997] and 
specifically for applications in acoustics to the more recent review by Kirkup [2019]. 

1.6 Aims and novelty of the thesis 
This thesis deals with the modelling of the nonlinear response of a solid medium to loads 
induced by its dynamic interaction with a structure and the resulting wave propagation 
through that medium. Here, the structure and its response are not included and the interaction 
of the structure with the solid medium is represented by an external time-dependent force.  

To efficiently model its response, we divide the solid medium into a detailed nonlinear 
domain close to the structure, i.e. the near field, and a linear domain at an appropriate distance 
from the structure, i.e. the far-field. The near-field is modelled as a discrete lattice capable of 
describing nonlinear phenomena in the time domain, while the far-field is accounted for by 
a boundary representation to limit the dimensions of the medium to the near-field domain. 
To correctly describe the response of the near-field domain, the boundary representation must 
correctly account for the response of the far-field domain. The main objective of this thesis 
therefore is: 

To develop a methodology capable of efficiently describing  
the nonlinear time domain response of a medium in the near field, 

while properly accounting for its response in the far field. 

Properly accounting for the response of the far-field in this case emphasizes the objective of 
waves travelling through the boundary with as minimal as possible disturbance or alteration 
due to the boundary formulation. To judge the proper integration of the linear far-field do-
main at the boundary of the near-field domain, we consider both continuous and discrete 
representations of the linear far-field domain. As there are abundant derivations and applica-
tions of BIEs for continuous media available in literature, we first consider the behaviour of 
a discrete-continuous medium composed of a discrete lattice in the near field and for which 
the boundary formulation is derived from a continuous linear far-field domain. Second, cor-
responding BIEs are derived by considering the linear far-field domain as a system of parti-
cles that matches the discrete properties of the near-field domain. Subsequently, the time 
domain response of the nonlinear near-field domain is compared for both the continuous and 
discrete far-field representations. Before considering two-dimensional versions of these dis-
crete-continuous and fully discrete representations, corresponding one-dimensional models 
are considered to identify the characteristic properties and behaviour. Note here that three-
dimensional media are not considered in this study.  

This study includes one of the first attempts to derive a boundary integral formulation for 
a far-field domain described as a finite or semi-infinite system of discrete particles. Addi-
tionally, the application of such a boundary formulation to a nonlinear discrete lattice in the 
near field has not been executed before. Thus, emphasizing the novelty of this thesis. 
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Additionally, a novel mixed time-frequency domain method is introduced to simulate the 
nonlinear response of a medium in the time domain by utilising much faster frequency do-
main approaches and thereby improve its numerical performance. 

1.7 Reading guide 
As shown by the flow-chart of the thesis structure in Figure 1.5, this dissertation is divided 
into six chapters. The current chapter gives a general introduction to lattices and their bound-
ary formulations and thereby clarifies the context, as well as the practical and scientific rele-
vance of this study. Additionally, the ambitions and novelties of this study are clarified. 

Before presenting the detailed development of boundary formulations to represent the far 
field in the time domain, Chapter 2 gives a qualitative description of the one- and two-di-
mensional discrete lattice models and their capability to describe the desired nonlinear re-
sponse in the region of interaction with a structure, i.e. in the near field. First, the equations 
of motion for the considered nonlinear lattice are derived using Lagrange’s formalism, after 
which the states and state transitions that appear in the lattice elements are discussed. Chapter 
2 is concluded by considering the response of the one- and two-dimensional lattice models 
with elementary boundaries incorporated and a discussion of the linearizations that are ap-
plied for two-dimensional lattices. 

Chapters 3 and 4 treat the derivation of the boundary integral equations and the develop-
ment of the corresponding integrated models by representing the far-field domain as a semi-
infinite continuum and a system of discrete particles respectively. In both chapters, the con-
cept of the boundary integral approach is explained and the characteristic properties are iden-
tified by first considering one-dimensional models. Subsequently, the development of the 
corresponding two-dimensional models is treated, including a discussion of the relevant 
boundary formulation and the derivation of the valid Green’s functions. Finally, at the end of 
Chapter 4, an exemplary nonlinear response of a two-dimensional fully discrete medium is 
presented and discussed. 

Subsequently, Chapter 5 is devoted to improving the time domain simulation for the one- 
and two-dimensional media through a so-called mixed time-frequency domain method. The 
main purpose of this method is the optimisation of the numerical calculation time by employ-
ing frequency domain approaches, while allowing nonlinearities to occur in the time domain. 

Finally, Chapter 6 summarizes the main results and conclusions of this study and ad-
dresses the future perspectives of incorporating boundary formulations in lattice modelling. 

Figure 1.5: Structure of the thesis. 
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2
One- and two-dimensional 

lattice models 

This chapter presents the one- and two-dimensional discrete lattice models and demonstrates 
their capability to describe the nonlinear dynamic response of a medium close to a load source 
or in the region of interaction with a structure, i.e. in the near-field domain.  

The first section of this chapter presents Lagrange’s formalism as a consistent approach 
to derive the equations of motion for any particle in a one- or two-dimensional lattice by 
taking into account the interaction between that particle and its adjacent particles. Thereby, 
Lagrange’s formalism allows for the derivation of the complete system of equations of mo-
tion for any lattice model independent of its parameters and thus allowing for the variation 
of properties throughout the lattice. The different rheological elements or models, consisting 
of different combinations of springs, dashpots and dry-friction elements, that describe the 
interaction between adjacent lattice particles are discussed in Section 2.2. Then, in Sections 
2.3 and 2.4, we respectively derive the governing equations for the one- and two-dimensional 
discrete lattices accounting for the different motion states according to which the rheological 
models in these lattices may behave. In these sections, additionally, the conditions under 
which any transitions between these motion states occur are discussed. Subsequently, Section 
2.5 addresses the macromaterial properties for which the responses of the one- and two-di-
mensional lattices are presented in this thesis. Finally, in Section 2.6, we consider the re-
sponse of both a linear and a nonlinear hexagonal lattice to an externally applied dynamic 
load. The lattices considered here have so-called elementary boundaries, meaning that the 
particles at the lattice boundary are supported using rheological elements, such as springs or 
dashpots. Thereby, the particles along the boundary behave independently from each other 
and their response is not derived from the behaviour of the surrounding medium. Additionally 
in this final section, the performance and accuracy of the two-dimensional lattice modelling 
is assessed by evaluating the response of a linear-elastic two-dimensional lattice and com-
paring the results obtained using a frequency domain approach with the results obtained for 
three different time domain approaches. 
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2.1 Lagrange’s formalism for lattice models 
To derive the equations of motion for a particle in a lattice model, there are different options 
available. For simple geometries, the equations of motion can be straightforwardly obtained 
from the equilibrium of forces at the considered particle. This is known as the Newtonian 
approach. Alternatively, we can use the Lagrangian approach, where the equations of motion 
are derived from the kinetic and potential energy in the system using Lagrange’s formalism 
[Goldstein et al., 2002; Lanczos, 1966; Landau and Lifshitz, 1976]. Especially for more com-
plicated geometries, such as multi-dimensional lattices, it becomes difficult to apply the New-
tonian approach in an orderly way and therefore becomes sensitive to errors. Although the 
Lagrangian approach is rather laborious for simple problems, it is unambiguous and con-
sistent and therefore particularly suitable for more complicated geometries. 

To find the equations of motion of a particle in a linear or nonlinear lattice, and thereby 
to determine the full system of equations for the whole lattice, we here apply Lagrange’s 
formalism. Lagrange’s formalism states that the equation of motion for any degree of free-
dom in a system can be found by applying the Euler-Lagrange differential equations for that 
degree of freedom [Landau and Lifshitz, 1976]. Note that throughout this thesis, properties 
of lattice particles are denoted using boldface notation superscript to distinguish it from reg-
ular notation superscript that would imply exponentiation. Consistently, lattice particles 
themselves are also denoted in boldface. Thereby, the Euler-Lagrange differential equation 
for a particle n in a one-dimensional lattice reads: 

0L d L
dtu u
  

− = 
  

n n

n n  (2.1) 

Here, Ln is the Lagrangian of the cell of particle n. In this dissertation, dot notation, or New-
ton’s notation, is used for differentiation to time, so while un denotes the displacement of 
particle n, un  denotes the velocity of particle n.  

Now, let us assume that the interaction between any two adjacent particles is described 

Figure 2.1: a) A single or direct relation between two particles; b) A dual relation between two particles. 
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by rheological elements that either represent a single relation as depicted in Figure 2.1a, or 
by a dual relation as depicted in Figure 2.1b. Independent of the nature of the interaction 
between these particles, the equations of motion of particle n in x- and z-directions are ob-
tained from equation (2.1) by respectively inserting xun  and zun  as the degree of freedom 
instead of un. For lattices that solely incorporate rheological elements that describe a single 
or direct relation according to Figure 2.1a, the complete system of equations of motion for 
the lattice is then straightforwardly obtained by collecting the Euler-Lagrange differential 
equations for all degrees of freedom in the lattice. For lattices where the interaction between 
adjacent particles is described according to the dual relation depicted in Figure 2.1b however, 
each rheological element provides an additional degree of freedom, and thereby an additional 
equation of motion, to the lattice. These additional equations of motion are obtained by ap-
plying the Euler-Lagrange differential equation for the displacement u jn;n  of the node inter-
mediate particles n and nj, which is found in accordance with equations (2.1) as: 

0L d L
dtu u
  

− = 
  

j j

n n

n;n n;n (2.2) 

Note here that the intermediate node between the particles n and nj to which the displacement 
u jn;n  and the velocity u jn;n  refer, has no mass and therefore has no inertia. Furthermore, the 
node intermediate particles n and nj should always remain on the straight line between the 
particles n and nj. The motion of this node can therefore be described one-dimensionally 
along the straight line between the particles n and nj and by a single degree of freedom. 

The Lagrangian of the cell of particle n is defined as the difference between the kinetic 
energy kinEn  of the particle n itself and the potential energy potEn  that is contained in the 
interaction of particle n with all its adjacent particles: 

kin potL E E= −n n n (2.3) 

In this case, the potential energy potEn  follows from the elongations of all rheological ele-
ments in the cell of particle n. The way we describe these elongations follows from their 
magnitude; when the elongations and the corresponding particle displacements remain small, 
we consider these elongations and displacements relative to their initial state. For large elon-
gations however, we consider the elongations and the corresponding particle displacements 
relative to their prior state. As we consider both linear and nonlinear material behaviour in 
this thesis, both small and large elongations may occur and are accounted for. Furthermore, 
to obtain the system of equations of motion for a two-dimensional lattice as a set of linear 
ordinary differential equations, we linearize the expressions for the elongations. Appendix A 
treats the linearizations for both small and large elongations of the rheological elements in 
two-dimensional lattices. Here, note that the elongations of rheological elements in one-di-
mensional lattices do not require linearization. 
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2.2 Rheological elements for lattice models in dynamics 
The rheological element that can generally be considered as the most common is the Hooke 
element [Hooke, 1678]. The Hooke element, named after the 17th century physicist Robert 
Hooke, describes a purely elastic relation and is thus represented in Figure 2.2a by a spring. 
Another common linear element used to describe material behaviour is the well-known Kel-
vin-Voigt element [Thomson and Tait, 1867; Voigt, 1887] that is named after the British 
physicist Lord Kelvin and the German physicist Woldemar Voigt. The Kelvin-Voigt element 
describes a viscoelastic relation and consists of a spring and a dashpot, or Newton element, 
in parallel, as shown in Figure 2.2b. The Kelvin-Voigt element can alternatively be consid-
ered as a Hooke element with damping. The rheological element depicted in Figure 2.2c is 
known as the Bingham element [Bingham, 1922] and is named after Prof. Eugene Bingham, 
one of the founders of the Society of Rheology in 1929. The Bingham element describes a 
nonlinear viscoplastic relation, by a parallel combination of a dashpot and a dry-friction or 
Saint-Venant element [Coulomb, 1821]. Note here that the Hooke, Kelvin-Voigt and Bing-
ham elements are examples of the single relation previously depicted in Figure 2.1a. 

Combining the Hooke element with a dry-friction element in series, we obtain a nonlinear 
elastoplastic relation that is known as the Prandtl element [Prandtl, 1904]. This serial config-
uration of a spring and a dry-friction element is depicted in Figure 2.2d. The rheological 
element depicted in Figure 2.2e is composed of a Kelvin-Voigt and a Bingham element in 
series and is therefore referred to as the Bingham-Kelvin-Voigt element or, in short, the BKV 
element. Due to the placement of two rheological elements in series, both the Prandtl and 
BKV elements are examples of the dual relation that was previously depicted by Figure 2.1b. 

While the Hooke and Kelvin-Voigt elements are both linear elements, the Bingham, 
Prandtl and BKV elements are nonlinear, as they each incorporate a dry-friction element. 
Dry-friction elements are activated only when the force working on the dry-friction element 
is larger than a constant threshold force, which is referred to as the critical friction force. If 
the force on the dry-friction element is smaller than the threshold, the dry-friction element is 
not activated and can therefore be considered as a rigid element. For example, if the dry-
friction element is not activated, the Bingham element can be considered to be rigid and the 

Figure 2.2: Rheological elements: a) the Hooke element; b) the Kelvin-Voigt element; 
c) the Bingham element; d) the Prandtl element; e) the Bingham-Kelvin-Voigt element

a) b) c) d) e)
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Prandtl element behaves as a spring or Hooke element. The rheological elements that feature 
dry-friction elements thus behave differently depending on whether the dry-friction element 
is activated or not. The motion state of these nonlinear rheological elements where the dry-
friction element is not activated is referred to as ‘stick’, while the motion state for which the 
dry-friction element is activated is referred to as ‘slip’. Consequently, stick and slip can only 
occur in rheological elements that feature a dry friction element. 

Next to stick and slip, we also consider a motion state referred to as ‘lock’. This lock-
state considers the inelastic collision of two particles; if two particles collide their relative 
motion is impeded and the rheological element between these particles can be considered 
rigid until their relative motion is reversed. This lock-state is not represented graphically in 
Figure 2.2 as the behaviour of this motion state is independent of the configuration of the 
rheological element. Each of the three motion states that we distinguish, being stick, slip and 
lock, yields different equations of motion depending on the rheological element in which 
these motion states occurs. 

In this thesis, we primarily consider lattices featuring the BKV-element depicted in Figure 
2.2e, because it allows us to describe the viscoelastic behaviour of the near-field domain by 
means of the Kelvin-Voigt element, as well as the possibly nonlinear behaviour of the near-
field domain by means of the Bingham element. In addition, the BKV-element can be con-
sidered as a generic rheological element since all other elements depicted in Figure 2.2 can 
straightforwardly be derived from the BKV-element by tuning its parameters.  

Before addressing the two-dimensional lattice, in the following we will first evaluate the 
behaviour of the BKV element in a one-dimensional lattice to gain insight in the behaviour 
and properties of this element in the different motion states. Subsequently, the transitions that 
occur between the different motion states, and the conditions under which these transitions 
occur are discussed. 

2.3 One-dimensional lattice models 
The one-dimensional lattice is obtained by lining up a number of rheological elements in 
series, with particles between subsequent rheological elements. In this section, we will derive 
the governing equations of motion for particles inside the one-dimensional lattice, in partic-
ular for the one-dimensional lattice that consists of nonlinear BKV-elements. The equations 
of motion for respectively the linear-elastic Hooke and viscoelastic Kelvin-Voigt lattices, as 
well as for the nonlinear Prandtl lattice, may be straightforwardly derived from the equations 
of motion for the BKV lattice by smartly choosing the corresponding material and geomet-
rical properties.  

To allow for large elongations in the one-dimensional lattice, the elongation of the rheo-
logical element between particles n and n+1 is, in accordance with Appendix A.2, generally 
described as: 

e u u = − +n,n+1 n+1 n n,n+1  (2.4) 

Here, un and un+1 are the displacements of particles n and n+1 that occur during the current 
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time step dt and εn,n+1 describes the elongation of the rheological element between particles 
n and n+1 at time t-dt. Thereby, εn,n+1 is constant during the current time step. According to 
this definition of the elongation, the displacements un and un+1 are small compared to the total 
elongation of the rheological element, while global deformations in the lattice, i.e. defor-
mations that correspond to the total elongations of its rheological elements, may still be large. 

2.3.1 The one-dimensional Bingham-Kelvin-Voigt (BKV) lattice 
A fragment of the one-dimensional BKV lattice is depicted in Figure 2.3. A particle n, with 
a mass Mn, in the interior of the one-dimensional BKV lattice interacts with particles n-1 and 
n+1 through BKV elements. The BKV element between the particles n and n+1 consists of 
a Kelvin-Voigt element with a stiffness coefficient eK n,n+1  and a damping coefficient eCn,n+1

, and a Bingham element with a damping coefficient fCn,n+1  and a critical friction force crF n,n+1

, in series. The properties of the BKV element between any other two adjacent particles are 
described accordingly. 

The equations of motion for a particle n in the one-dimensional BKV lattice are obtained 
using Lagrange’s formalism. Since Lagrange’s formalism describes the motion of a particle 
through the law of conservation of energy, only conservative forces are taken into account. 
Non-conservative forces, i.e. forces that add energy to, or take energy from a particle, such 
as external loads or friction, are not part of the equations of motion obtained through the 
Lagrangian approach. Nevertheless, since any equation of motion obtained through the La-
grangian approach, is in fact an equilibrium of forces, we are allowed to introduce non-con-
servative forces to that equation of motion as long as the equilibrium is maintained [Lanczos, 
1966]. To enable the application of Lagrange’s formalism, we consider the Kelvin-Voigt and 
Bingham elements featured in the BKV element as springs for which the stiffness is described 
through the operators ˆ eK n,n+1  and ˆ

fK n,n+1  respectively. For the Kelvin-Voigt element, this
operator is defined as ˆ e e e tK K C 


= +n,n+1 n,n+1 n,n+1  and for the Bingham element this operator is 

defined as ˆ
f f tK C 


=n,n+1 n,n+1 . The force in the dry-friction element, which is non-conservative,

is added to the equations of motion at a later stage. Thus, the Lagrangian Ln for the cell of 
particle n in the interior of the one-dimensional BKV lattice reads: 

( ) ( ) ( ) ( ) ( )
2 2 2 2 21 1 1 1 1

2 2 2 2 2
ˆ ˆ ˆ ˆe eKV B KV Bf fL M u K e K e K e K e= − − − −n n n n-1,n n-1,n n-1,n n-1,n n,n+1 n,n+1 n,n+1 n,n+1  (2.5) 

Here, KVen-1,n  and Ben-1,n  are the elongations of respectively the Kelvin-Voigt and Bingham 

Figure 2.3: A fragment of the one-dimensional BKV lattice. 
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elements between particles n-1 and n. Furthermore, KVen,n+1  and Ben,n+1  are the elongations of 
respectively the Kelvin-Voigt and Bingham element between particles n and n+1. Substitut-
ing the Lagrangian Ln into the Euler-Lagrange differential equations then yields the equation 
of motion for particle n. To allow for large displacements, the elongations of respectively the 
Kelvin-Voigt and Bingham elements between particles n and n+1 are defined in accordance 
with equation (2.4) as: 

KV KVe u u = − +n,n+1 n;n+1 n n,n+1 (2.6) 

B Be u u = − +n,n+1 n+1 n;n+1 n,n+1 (2.7) 

Here, un;n+1 denotes the displacement of the massless node intermediate particles n and n+1. 
Due to the presence of the dry-friction element, every BKV element within the one-di-

mensional BKV lattice behaves according to one of three admissible motion states: stick, slip 
or lock. Consequently, the equations of motion for each particle in the lattice may differ 
depending on the motion states of the BKV elements. In the following, the governing equa-
tions for a particle n in the BKV lattice are therefore derived separately for each of the motion 
states. First, we derive the equations of motion for a particle n in the BKV lattice assuming 
that all BKV elements in its cell are in stick and subsequently we will derive the correspond-
ing equations of motion assuming that the involved BKV elements are in slip. Next, we will 
derive the equations of motion for particle n in the BKV lattice assuming that the BKV ele-
ment between particles n and n+1 is in lock-state. To conclude this section, we will discuss 
the transitions that exist between the different motion states. 

2.3.2 ‘Stick’ in the one-dimensional BKV lattice 
Stick is the motion state that occurs in a BKV element, when the forces working on the Bing-
ham element are not large enough to overcome the critical friction force of the dry-friction 
element, so that the dry-friction element ‘sticks’ and the Bingham element is not activated. 
Figure 2.4a shows the forces in a BKV element during stick. In this motion state, the elonga-
tion of the Bingham element is impeded, but as the Bingham element may have been acti-
vated prior to its current stick-state, the elongation is not necessarily equal to zero. Thus, as 
long as the BKV element is in a stick-state, the Bingham element can be considered as a rigid 
bar with a constant elongation, so that the elongation of the Bingham element Ben,n+1  is equal 
to its elongation-constant B

n,n+1 . Due to the rigidity of the Bingham element, the elongation 
rate of the BKV element is always equal to the elongation rate of the Kelvin-Voigt element, 
that is, as long as the BKV element remains in the stick-state. Thus, while the BKV element 
is in a stick-state, the elongations of the Kelvin-Voigt and Bingham elements between parti-
cles n and n+1 may be expressed as: 

KV Be e = −n,n+1 n,n+1 n,n+1 (2.8) 

B Be =n,n+1 n,n+1 (2.9) 
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Here, en,n+1 is the elongation of the BKV element between particles n and n+1 as defined by 
equation (2.4). Note here that by writing the elongation of the Kelvin-Voigt element accord-
ing to equation (2.8), the displacement of the node intermediate particles n and n+1, which 
does not act as a degree of freedom during stick, does not appear in the system of equation 
of motions. The actual displacement un;n+1 of the node intermediate particles n and n+1 dur-
ing stick-state must be equal to the displacement of particle n+1, i.e. u u=n;n+1 n+1 . 

To obtain the equation of motion for an arbitrary particle n in the one-dimensional BKV 
lattice, we substitute equations (2.8) and (2.9), respectively for the BKV element between 
particles n-1 and n, and for the BKV element between particles n and n+1, into equation 
(2.5) for the Lagrangian Ln. Then, we apply the Euler-Lagrange differential equation (2.1) 
and substitute the expressions for the operators ˆ eK n-1,n  and ˆ eK n,n+1 . This yields the equation 
of motion for a particle n in the one-dimensional BKV lattice, for the situation where all 
BKV elements in its cell are in stick, as: 

( ) ( ) 0e e e eB BM u C e K e C e K e + + − − − − =n n n-1,n n-1,n n-1,n n-1,n n-1,n n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 (2.10)

As long as the Bingham elements are not activated, and the elongation-constants B
n-1,n  and 

B
n,n+1  remain equal to zero, the one-dimensional BKV lattice behaves purely viscoelastic and 

exactly resembles the Kelvin-Voigt lattice. The equation of motion for a particle n in the one-
dimensional Kelvin-Voigt lattice is thus obtained from equation (2.10) by setting the elonga-
tion-constants B

n-1,n  and B
n,n+1  to zero. By additionally choosing the value of the damping 

coefficients equal to zero, i.e. 0e eC C= =n-1,n n,n+1 , the equation of motion for a particle n in 
the one-dimensional Hooke lattice is obtained. The equation of motion for a particle n in the 
one-dimensional Prandtl lattice with all Prandtl elements in stick, follows from substituting 

0eC =n,n+1 and B f =n,n+1 n,n+1  for all elements into equation (2.10), where f
n,n+1 denotes the

elongation of the involved dry friction element. 

2.3.3 ‘Slip’ in the one-dimensional BKV lattice 
When the forces that work on a Bingham element are large enough to overcome the critical 
friction force of its dry-friction element, i.e. the maximum friction force that the element can 
handle, the dry-friction element in the BKV element ‘slips’ [Tipler, 1998], and the Bingham 
element is activated. In this motion state, both the Kelvin-Voigt and Bingham elements are 
active and the BKV element may be described by the dual relation given in Figure 2.1b.  

For the situation where the involved BKV elements are in a slip-state, the equation of 

Figure 2.4: Forces in the BKV element during: a) stick; b) slip. 
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motion for particle n is obtained by substituting the Lagrangian Ln, given by equation (2.5), 
into the Euler-Lagrange differential equations (2.1). Next, we substitute the expressions for 
the operators ˆ eK n-1,n , ˆ

fK n-1,n , ˆ eK n,n+1  and ˆ
fK n,n+1 , and we include the critical friction force

crF n-1,n in the dry friction element, without jeopardizing the equilibrium of forces [Lanczos,
1966]. Here, we assume that when a dry friction element is in slip, the force in the dry friction
element is constant and equal to the critical friction force. Thereby, we do not account for the 
differences between static and the kinetic friction. The equation of motion for a particle n in 
the one-dimensional BKV lattice with the BKV elements in its cell in slip, then reads: 

:sgn 0cr e eB KV KVf B slipM u C e F F C e K e+ + − − =n n n-1,n n-1,n n-1,n n-1,n n,n+1 n,n+1 n,n+1 n,n+1 (2.11) 

Here, :B slipF n-1,n  denotes the force that is applied to the Bingham element to initiate the current 
instance of slip. Additionally, sgn is an abbreviation of signum, so that :sgn B slipF n-1,n  determines 
the sign of the critical friction force crF n-1,n  based on whether the current instance of slip was 
initiated in tension of in compression. Note here that the sign of the critical friction force 
must remain the same throughout each instance of slip. 

When the BKV element between particles n and n+1 is in slip, the node intermediate 
particles n and n+1 is a degree of freedom. As the node intermediate particles n and n+1, 
alternatively denoted as a slip-node, has no mass and therefore no kinetic energy, its Lagran-
gian is found as: 

( ) ( )
2 21 1

2 2
ˆ ˆe KV BfL K e K e= − −n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 (2.12) 

Substitution into the Euler-Lagrange differential equation (2.2), as well as substituting the 
expressions for the operators ˆ eK n,n+1  and ˆ

fK n,n+1 , and including the critical friction force, the
equation of motion for the slip-node intermediate particles n and n+1 becomes: 

:sgn 0e e crKV KV Bf B slipC e K e C e F F+ − − =n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 (2.13) 

As depicted in Figure 2.4b, equation of motion (2.13) describes the equilibrium of forces at 
the slip-node of a BKV element in slip and is valid for any slip-node in a BKV element in 
slip. The corresponding equation of motion for the slip-node intermediate particles n-1 and 
n is thus obtained by adapting the superscripts that refer to the involved particles.  

The system of equations of motion for the one-dimensional Prandtl lattice with its ele-
ments in slip is found by substituting 0e fC C= =n,n+1 n,n+1  and : :B slip f slipF F=n,n+1 n,n+1  into equations 
(2.11) and (2.13) for all elements in the lattice. Here, :f slipF n,n+1  denotes the force that is applied 
to the involved dry friction element to initiate the current instance of slip. As the slip-state 
does not occur in the Hooke and Kelvin-Voigt lattices, corresponding equations do not exist 
for these lattices. 



24 

2.3.4 ‘Lock’ in the one-dimensional BKV lattice 
The situation where a rheological element between two particles ‘locks’, can physically be 
considered as an inelastic collision between these particles that occurs when the distance 
between the two particles becomes smaller than a certain threshold. When this threshold is 
reached, the two particles collide and any further decrease of the distance between these par-
ticles is impeded. Consequently, lock only occurs in rheological elements that are in com-
pression. Assuming that the relative motion between the two involved particles is fully ob-
structed in lock, rheological elements that are in lock-state can be represented by a rigid bar. 

For the case that the BKV element between particles n and n+1 is in lock and is thus 
represented by a rigid bar, the equation of motion for both particles n and n+1 must depend 
on the state of the element between particles n-1 and n, and on the state of the element be-
tween particles n+1 and n+2. This dependency is illustrated in Figure 2.5. In fact, by model-
ling the BKV element in lock as a rigid bar, the motions of the particles n and n+1 become 
identical. For every adjacent BKV element that is also in lock, another particle will have the 
same equation of motion, and in that equation of motion the interaction described by the first 
successive non-locked BKV-element are to be taken into account. Additionally note that, as 
a consequence, for every element in lock the number of degrees of freedom in the system is 
reduced by one. Although it is fairly straightforward to implement the lock-state in a one-
dimensional lattice by considering locked elements as rigid bars, this is not as straightforward 
for two- or three-dimensional lattices. Not only will it be very laborious to incorporate the 
lock-state by means of rigid bars in, for example, the two-dimensional lattice for all possible 
combinations of motion states in the different elements, it is also significantly less straight-
forward as these rigid bars may still rotate, which means that the number of degrees of free-
dom does not simply reduce, but the equations of motion involved with these degrees of 
freedom change. In this thesis therefore, we will not use rigid bars to model the lock-state in 
our lattices. To illustrate the approach however, the equations of motion for an arbitrary par-
ticle n with the BKV element between particles n and n+1 in lock-state represented by a rigid 
bar, are derived in Appendix C.2, while the lock-state by means of a rigid bar is further dis-
cussed for the hexagonal BKV lattice in Appendix C.3. 

Instead of representing the interaction between two particles for the lock-state by a rigid 
bar, we introduce lock by adding a spring parallel to the BKV element with a stiffness that is 
significantly larger than the stiffness of the spring present in the BKV element. Here, note 
that as lock only occurs in compression, the spring that is introduced during lock only yields 
a stiffness increase while the involved rheological element remains in compression. Further-
more, note that while adding a spring with a large stiffness does not fully impede the move-
ment between the particles n and n+1, the relative motions will be severely reduced. Except 
that this approach is far more straightforward to implement, it is physically also more realistic 
than using a rigid bar as a collision between two objects is not usually completely inelastic 
in reality. The application of the lock-state by using a high-stiffness spring in parallel is il-
lustrated by Figure 2.5 for the BKV element between particles n and n+1. Figure 2.5a shows 
the situation where the lock-state does not occur; as the total distance between particles n and 
n+1 is larger than a certain minimum allowed distance minDn,n+1 , and a certain gap remains, i.e. 
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0D n,n+1 , the parallel spring is not activated and the motion of the BKV element is unre-
stricted. However, when the distance between particles n and n+1 reduces to the threshold 
distance and the gap closes, i.e. 0D =n,n+1 , the parallel spring with stiffness lockK n,n+1  is acti-
vated and the relative motion between the particles n and n+1 is opposed by the axial force 
in the parallel spring. The latter situation is depicted in Figure 2.5b. 

To determine the equations of motion of a particle n for the case that the element between 
particles n and n+1 is in lock-state, we must first establish what happens in the BKV element 
when the lock-state occurs. Principally, the behaviour of a BKV element during lock follows 
from its motion state before the lock-state is initiated. For the case that lock occurs while the 
BKV element is in a stick-state, it is evident that the Bingham element remains inactive dur-
ing the lock-state. As a consequence, after a stick-to-lock transition and for the duration of 
the lock-state, the displacement of the intermediate node is equal to the displacement of par-
ticle n+1 and the BKV element behaves as a Kelvin-Voigt element.  

When lock occurs while the BKV element is in slip, it follows that the Bingham element 
is active at the onset of lock. Clearly as lock sets in, the elongation rate of the BKV element 
is severely reduced, i.e. 0e n,n+1 , and the elongation of the whole element becomes constant 
by approximation. This however does not mean that the Bingham element immediately stops 
being active as confirmed by the discussion of the slip-to-stick transition in Section 2.3.5. 
Principally, the Bingham element may be expected to remain active until the velocity of the 
node intermediate particles n and n+1 changes direction. Now, as the intermediate node has 
no inertia, it is quite reasonable to assume that the Bingham element becomes inactive quite 
quickly after the initiation of lock. Therefore, independent from the motion state before lock, 
we may generally assume that, as depicted in Figure 2.5b, during the lock-state the Bingham 
element is inactive and that during lock the BKV element behaves as a Kelvin-Voigt element. 
Consequently, the equation of motion of the particle n for the case that the element between 
particles n and n+1 is in lock-state is, after all, independent from the motion state that occurs 
prior to lock. Nevertheless, the magnitude of the constant elongation B

n,n+1  of the involved 
Bingham element during and after lock does depend on the motion state prior to lock. During 
a stick-to-lock transition, the elongation B

n,n+1  remains constant and equal to its value prior 
to lock, while after a slip-to-lock transition, the elongation B

n,n+1  follows from the force-
equilibrium at the slip-node intermediate particles n and n+1 as derived in Appendix C.2. 

Noting that the BKV elements adjacent to a BKV element in lock, may either be in stick, 
slip or lock, multiple combinations of motion states may occur in the cell of a particle n. 
Here, let us consider the example that the BKV element between particles n-1 and n is in 
stick-state and the BKV element between particles n and n+1 is in lock-state. The equation 
of motion for the particle n then follows from equation (2.10) by including the axial force in 
the parallel spring as: 

( )

( ) ( )0 0

e e B

e e B lock

M u C e K e

C e K e K e D





+ + −

− − − − +  =

n n n-1,n n-1,n n-1,n n-1,n n-1,n

n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1
(2.14) 
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The axial force in the parallel spring, in Figure 2.5 denoted as lockF n,n+1 , straightforwardly fol-
lows from the elongation of the spring and its stiffness, where the elongation of the parallel 
spring in turn follows from the elongation en,n+1  of the element between particles n and n+1 
and the allowed shortening of this element 0D n,n+1  at which the lock-state occurs and the 
spring is activated. The allowed shortening of the element between particles n and n+1 is 
given by the difference between the initial distance 0Dn,n+1  between the particles, or the initial 
length of this element, and the threshold distance minDn,n+1  at which the lock-state is initiated, 
i.e. 0 0 minD D D = −n,n+1 n,n+1 n,n+1 . Here note that the stiffness of the parallel spring is chosen to 
be a factor lock  larger than the stiffness in the Kelvin-Voigt element, i.e. lock elockK K=n,n+1 n,n+1

, where for example a value of 5lock =  is more than sufficient to significantly reduce the 
relative motion between the particles. 

The equation of motion for a particle n with the BKV element between particles n and 
n+1 in lock and the BKV element between particles n-1 and n in slip, follows from equation 
(2.11) by including the contribution of the parallel spring as: 

( ) ( )
:sgn

0

crBf B slip

e e B lock

M u C e F F

C e K e K e D

+ +

− − − − +  =

n n n-1,n n-1,n n-1,n n-1,n

n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1
(2.15) 

The corresponding equations of motion for a particle n in the one-dimensional Kelvin-Voigt 
lattice follow from equation (2.14) by choosing the constants B

n-1,n  and B
n,n+1  equal to zero 

and the corresponding equations of motion for the one-dimensional Hooke lattice are then 
found by additionally choosing the damping coefficients eCn-1,n  and eCn,n+1  equal to zero. 

2.3.5 State-transitions in the one-dimensional BKV lattice 
Every rheological element in the one-dimensional BKV lattice separately behaves according 
to either one of the three admissible motion states. While all elements in a cell can be 

Figure 2.5: Segment of the one-dimensional BKV lattice with a lock-element added to the BKV element 
between particles n and n+1: a) while not in lock-state; b) during lock-state. 
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expected to be in the same state at certain time intervals, the case that adjacent elements 
behave according to different motion states at the same time should be accounted for. There-
fore, the motion states of all elements in the lattice must be actively monitored. To do this, 
we first need to understand how transitions between the motion states occur. Figure 2.6a 
shows a diagram where arrows depict the admissible transitions between the different motion 
states in a BKV element.  

In the following, we will successively discuss the stick-to-slip and slip-to-stick transi-
tions, as well as the transitions into and out of lock. These transitions are represented in Figure 
2.6a by the dark-red, light-red, dark-green and light-green arrows respectively. The absence 
of the lock-to-slip transition in Figure 2.6a is explained in the subsection that regards the 
transition out of lock.  

Stick-to-slip transition 
For the transition from stick to slip in a BKV element between two adjacent particles n and 
n+1, let us consider the forces in the Bingham element during stick that are depicted in Figure 
2.6b. During stick, the dashpot in the Bingham element is idle and the corresponding force 
equal to zero, so that the force in the dry friction element, denoted as the friction force frF n,n+1

, is equal to the total force that is applied to the Bingham element, denoted as BF n,n+1 . How-
ever, once the force applied to the Bingham element exceeds the threshold of the dry-friction 
element, previously denoted as the critical friction force crF n,n+1 , the Bingham element is ac-
tivated and the motion state in the BKV element transits from stick to slip. As the Bingham 
element may be activated in both tension and compression in the same manner, the stick-to-
slip transition in the BKV element between particles n and n+1 occurs when: 

crBF Fn,n+1 n,n+1 (2.16) 

At any given time, and thus also during stick, the force that is applied to the Bingham element, 
can straightforwardly be derived from the force equilibrium at the massless slip-node inter-
mediate particles n and n+1 as: 

( )e eB BF C e K e = + −n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 (2.17) 

Alternatively, the force BF n,n+1  may be obtained from the force equilibrium at particle n+1. 
Note here that during stick, the friction force, i.e. the force in the dry friction element, is equal 
to the force applied to the Bingham element, ergo BfrF F=n,n+1 n,n+1 . Once the Bingham element 
is activated however, the friction force is equal to the critical friction force. During slip, the 
direction of this force can be related to the elongation rate Ben,n+1 . At the moment that the 
stick-to-slip transition occurs however, this elongation rate is equal to zero and cannot be 
used to determine the direction of the friction force at that time. The direction of the force 
applied to the Bingham element however is known and can therefore be used to account for 
the direction of the motion. Consequently, at the time an instance of slip is initiated, the 
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friction force during the following time interval in which the element remains in slip can be 
determined as ;sgncrfr B slipF F F=n,n+1 n,n+1 n,n+1 , where ;B slipF n,n+1 is the force applied to the Bingham
element specifically at the time of the stick-to-slip transition. 

Slip-to-stick transition 
For rheological elements that consist of a dry friction element with no other element in par-
allel, such as the Prandtl element, the moment at which the transition from slip to stick occurs 
cannot be determined by monitoring the force working on that element. This is because, as 
long as the element remains in slip, it follows from force equilibrium that the applied force 
must be equal to the critical friction force and thus constant. 

Instead, we determine the transition from slip to stick by monitoring the relative motion 
between the two degrees of freedom for which the dry friction element describes the interac-
tion. Now, consider the case that during slip the two degrees of freedom involved move in 
opposite directions. Once the two degrees of freedom no longer move in opposing directions, 
i.e. their relative motion becomes equal to zero or changes sign, the dry friction element will
stick, because the relative motion can only exist in the opposite direction when the corre-
sponding critical friction force is overcome. Hypothetically, it is possible that, over the course
of a single time step, the force applied to the dry friction element in the opposite direction is
large enough to immediately induce slip in the opposite direction. Nevertheless, choosing the
time step small enough prevents this from happening and assures a smooth transition between
the motion states.

Thus in general, instead of depending on the applied friction force, the transition from 
slip to stick is governed by the relative velocity of the degrees of freedom involved, which in 
this case is described by the elongation rate of the dry-friction element. This is also testified 
by, for example, Popp et al. [1996], Andreaus and Casini [2001] and Cheng and Zu [2004]. 
Consequently, for the BKV element between particles n and n+1, the transition from slip to 
stick occurs when the elongation rate of the Bingham element becomes equal to zero or 
changes sign. At this moment, the sign of the elongation rate of the Bingham element, de-
noted as Ben,n+1 , no longer matches the sign of the force that was applied to the Bingham 
element to initiate the current instance of slip, i.e. :B slipF n,n+1 . As the Bingham element may be 
activated in both tension and compression, the slip-to-stick transition of the BKV element 

Figure 2.6: a) Possible transitions between motion states in a BKV element; 
b) Forces in the Bingham-Kelvin-Voigt element during stick.
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between particles n and n+1 occurs when: 

:sgn sgnB B slipe Fn,n+1 n,n+1 (2.18) 

One might now state that, even though equation (2.18) holds, the current force applied to the 
Bingham element, previously denoted as BF n,n+1 , may still be larger than the critical friction 
force, for example due to an externally applied load, and that equation (2.16) should be 
checked before stating that the slip-to-stick transition has definitively occurred. This check 
is not required however, as it can be straightforwardly shown that if equation (2.18) holds, 
the force on the Bingham element must be smaller than the critical friction force.  

To prove this, let us consider the forces inside the Bingham element during slip. The force 
equilibrium at either particle n or at the node intermediate particles n and n+1 dictates that: 

:sgncrB Bf B slipF C e F F= +n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 (2.19)

Now, let us arbitrarily assume that during this instance of slip :sgn 0B slipF n,n+1 , so that the 
critical friction force in equation (2.19) has a positive sign. As long as this instance of slip 
lasts, it must be that sgn 0Be n,n+1 , so that the force in the dashpot is positive as well, i.e. 

0BfC e n,n+1 n,n+1 . During this instance of slip it must furthermore be that crBF Fn,n+1 n,n+1 . 
However, if at a given time t equation (2.18) is satisfied, it follows that sgn 0Be n,n+1 , so that 
the force in the dashpot becomes negative, i.e. 0BfC e n,n+1 n,n+1 , while the sign of the critical 
friction force remains positive. As a consequence, the force that is applied to the Bingham 
element becomes smaller than the critical friction force, i.e. crBF Fn,n+1 n,n+1 , and thus equa-
tion (2.16) is no longer satisfied. Evidently, the same analogy holds if we consider an instance 
of slip that occurs in the opposite direction. Thus, for rheological elements that feature a dry 
friction element in parallel to another element, the transition from slip to stick can be deter-
mined by monitoring the force working on that part of the rheological element.  

Transition into lock 
Whether lock occurs in a rheological element is not related to its configuration, and as a 
consequence, the transition into lock is not related to the prior motion state of that element. 
Therefore, the stick-to-lock and slip-to-lock transitions are induced in the same manner.  

As the lock-state in a rheological element physically represents an inelastic collision be-
tween the two involved particles, lock occurs when the distance between the two particles 
becomes smaller than a certain threshold. Let us denote Dn,n+1  as the distance between par-
ticles n and n+1, and minDn,n+1  as the threshold distance, i.e. the minimum distance allowed 
between particles n and n+1. The transition of the element between particles n and n+1 into 
lock thus occurs when: 

minD Dn,n+1 n,n+1 (2.20) 
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By assuming that at least min 0D n,n+1 , we impose that each particle in a one-dimensional lat-
tice remains between its adjacent particles at all times. 

Transition out of lock 
Consider a BKV element between two adjacent particles that is in a lock-state. Since the lock-
state describes the collision of two particles, a BKV element will remain in lock as long as 
the involved particles are pushed against each other and the BKV element is in compression. 
The element between these particles can only undergo a transition out of lock when the two 
particles are pulled away from each other and thereby results from a reversal of the forces 
working on the BKV element. Due to the inertia of the two colliding particles, the critical 
friction force of the dry friction element can never be overcome instantaneously after the 
reversal of forces. Consequently, when a BKV element undergoes a transition out of lock, it 
will always undergo a transition into stick, so that the lock-to-slip transition does not occur. 
Here note that, to capture the moment in time at which the lock-to-stick transition occurs in 
a numerical simulation, the time step should be carefully chosen. 

To determine when the lock-to-stick transition occurs, let us consider a BKV element 
between two adjacent particles n and n+1 that is in lock. Due to the applied compression 
there is a force inside the BKV element that attempts to push the particles n and n+1 apart 
from each other, let us denote this as the internal force intF n,n+1 . Additionally, let us denote the 
total force applied on the BKV element between particles n and n+1 by adjacent elements as 
the external force extF n,n+1 . Principally, during lock, the relative motion between the particles 
n and n+1 is impeded, so that these particles are supposed to move in unison and the elonga-
tion of the BKV element is constant. Nevertheless, since we model the lock-state by a spring 
with a large but not infinite stiffness Klock, there will always be some relative motion between 
the particles n and n+1, even though it will be very small. Therefore, if the external force 
working on a BKV element in lock-state is larger than its internal forces, i.e. ext intF Fn,n+1 n,n+1

, the element will become slightly shorter, while if the internal forces of the locked BKV 
element overcome the external force, i.e. extintF Fn,n+1 n,n+1 , there will be a very small but pos-
itive elongation. We may then state that, as soon as the internal force overcomes the external 
force, i.e. extintF Fn,n+1 n,n+1 , and all forces working internally and externally on this BKV ele-
ment together no longer compress this element, lock-to-stick transition occurs. As we model 
the lock-state by adding a spring parallel to the original BKV element, the point at which the 
lock-to-stick transition for an element between particles n and n+1 occurs when that element 
obtains a positive elongation rate: 

0e n,n+1 (2.21) 

Alternatively, we can describe the lock-to-stick-transition through the total resulting axial 
force lockF n,n+1  that causes the BKV element to remain in lock, which is given by the difference 
between the external force extF n,n+1  and the internal force intF n,n+1 . If, instead of using a large 
stiffness spring, we would model the lock-state by using rigid bars, the only way to determine 
the occurrence of the lock-to-stick transition is by monitoring the total axial force lockF n,n+1 . 
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The case where we model the lock-state in the one-dimensional BKV lattice using a rigid bar 
is discussed in Appendix C.2. 

2.4 Two-dimensional lattices 
In the previous section, we have obtained the governing equations for the nonlinear one-
dimensional Bingham-Kelvin-Voigt (BKV) lattice and showed how the governing equations 
for the one-dimensional Kelvin-Voigt and Hooke lattices can be derived from these. In the 
following, we will discuss the corresponding two-dimensional lattices. 

Figure 2.7a depicts a medium that is composed of equal-sized, circular particles. These 
particles are set in a hexagonal configuration, so that any particle is surrounded by six adja-
cent particles and the distance between the centre of gravity of each two adjacent particles is 
exactly equal. The interaction between adjacent particles may be described by any of the 
rheological elements that were previously depicted in Figure 2.2. The hexagonal configura-
tion of particles and rheological elements is commonly known as the triangular or hexagonal 
lattice [Metrikine and Askes, 2006; Suiker et al., 2001a]. As the rheological elements featured 
in Figure 2.7b are springs, or Hooke elements, this particular lattice is denoted as the hexag-
onal Hooke lattice.  

A particle together with the rheological elements that describe the interactions with any 
adjacent particles, is denoted as a cell. As depicted in Figure 2.7, three main cell configura-
tions can be distinguished: inner cells, boundary cells and surface cells. Inner cells are cells 
situated in the interior of the lattice and always consist of a particle and six rheological ele-
ments that describe the interaction of that particle with its adjacent particles. Boundary cells 
are the cells of particles located at the boundary of the lattice, which may coincide with the 
interface between the near-field lattice and the surrounding far-field domain. Lastly, surface 
cells are all cells situated at the surface of the lattice. Depending on their location, boundary 
and surface cells may feature two, three or four rheological elements to describe the interac-
tion between the involved particles.  

In the following, we will derive the equations of motion for the hexagonal Bingham-
Kelvin-Voigt (BKV) lattice, i.e. a hexagonal lattice consisting of Bingham-Kelvin-Voigt el-
ements. Note here that the equations of motion for each particle depend on the cell configu-
ration of that particle. In accordance with the one-dimensional lattices, the governing equa-
tions for the hexagonal Hooke, Kelvin-Voigt and Prandtl lattices can be derived from the 
governing equations for the hexagonal BKV lattice and are therefore not separately dis-
cussed. 

2.4.1 The hexagonal Bingham-Kelvin-Voigt (BKV) lattice 
In principle, the chosen geometry for the domain of the hexagonal BKV lattice is arbitrary, 
as long as the hexagonal configuration of the lattice is maintained. As stated in Section 1.6 
however, our aim is to efficiently account for the nonlinear response of a medium in the near 
field, while correctly accounting for the linear far field response. To accomplish this, the 
interface between the near- and far-field domains must always be chosen in the region of the 
medium that behaves linearly throughout its response. The geometry of the hexagonal BKV 
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lattice is chosen in accordance with Figure 2.8, such that its horizontal surface coincides with 
the x-axis, while the distance between the particle at the origin, being the application point 
of the load, and the particles at the lattice boundary Γ is equal in all directions in the sense 
that the path from the origin to any particle at the boundary can always be bridged by the 
same number of BKV elements. As a consequence, the hexagonal BKV lattice, i.e. the near-
field domain, always has the shape of the lower half of a hexagon. 

As previously stated, in any hexagonal lattice, several cell configurations exist. The dif-
ferent cell configurations that appear in the hexagonal BKV lattice are depicted in Figure 2.9. 
The most common cell configuration is the inner cell, depicted in Figure 2.9a, consisting of 
a particle with discrete, or nodal, coordinates m,n and six BKV elements that describe the 
interaction of the particle m,n with its adjacent particles. Here, the nodal coordinates m and 
n are integers that respectively correspond to the x- and z-coordinate of a particle m,n as 

2x = m and 3 2z = n , where denotes the unit length of the lattice. 
To consider an inner cell as a unit cell, and thus to allow us to describe the equations of 

motion for a particle m,n in the interior of the hexagonal BKV lattice in such a manner that 
its equations of motion are generally applicable to all inner cells in the hexagonal BKV lat-
tice, the orientation of the BKV elements has been chosen as depicted in Figure 2.9a. To 
distinguish between different BKV elements appearing in the cell of a particle m,n, the nu-
merator j is used. The orientation of the BKV elements has been consistently applied to all 
cells in the hexagonal BKV lattice in accordance with the inner cell of Figure 2.9a, as can be 
seen in Figure 2.8. Note here, that for hexagonal lattices consisting of rheological elements 

Figure 2.7: a) A material divided in equal-sized particles in a hexagonal configuration;  
b) A hexagonal Hooke lattice with springs between adjacent particles.
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that describe a single relation between adjacent particles according to Figure 2.1a, the orien-
tation of all elements is the same as shown by Figure 2.7b for the hexagonal Hooke lattice. 

The configuration of all other cells in the hexagonal BKV lattice, and thus their equations 
of motion, can be derived from that of the inner cell depending on the number of particles 
adjacent to particle m,n, and thus by the number of BKV elements in the cell. Figure 2.9d, 
Figure 2.9e and Figure 2.9f show the three types of boundary cells that appear on the left side 
of the lattice boundary Γ. Note here that the corresponding boundary cells at the right side of 
the lattice boundary are not exact mirror images of the cells on the left side of the lattice due 
to the orientation of the BKV elements in the lattice. The boundary cell at the bottom of the 
hexagonal lattice depicted in Figure 2.9b however, is the exact mirror image of the surface 
cell depicted in Figure 2.9c.  

In fact, as the surface cell and the bottom boundary cells both represent half the space of 
an inner cell, and the orientation of their elements respectively coincide with the lower and 
upper halves of an inner cell, these two cells combined exactly comprise an inner cell. As a 
consequence, the properties of the surface and bottom boundary cells must be such that, at-
tached to one another, they match the properties of an inner cell. Therefore, the properties of 
the surface and the bottom boundary cells, respectively depicted in Figure 2.9b and Figure 
2.9c, can straightforwardly be derived by adding their equations of motion and comparing 
the result to the equations of motion for the inner cell depicted in Figure 2.9a. For the lattice 
to be homogeneous, we find that the particles at the surface and at the bottom boundary of 
the hexagonal lattice have the same mass and that its mass is equal to half the mass of a 
particle in the interior of the lattice. Next to the difference in mass of the particles that exist 
at respectively the boundary and the interior of the lattice, also the properties of the BKV 
elements are different depending on whether they exist at the surface, the boundary or in the 
interior of the lattice. From the equations of motion for the inner, surface and bottom bound-
ary cells, it follows that the stiffness and damping of the surface elements and the BKV ele-
ments at the bottom boundary, must respectively be equal to half the stiffness and half the 
damping of a BKV element in the interior of the lattice. 

Following the same analogy, the corner and surface boundary cells given in respectively 
Figure 2.9e and Figure 2.9f together comprise the boundary cell in Figure 2.9d. The masses 
of these and other particles along the sloped boundary of the hexagonal lattice follow from 
the space they occupy and therefore depend on the shape of the lattice boundary. As discussed 
later, for example in Section 3.5.1, the shape of this part of the lattice boundary is not neces-
sarily defined by the configuration of the near-field lattice alone and may also depend on the 
properties of the far-field medium. In relation to this, the masses of the different boundary 
particles and other interface properties are discussed in Sections 3.6.1 and 4.7.1 for far-field 
domains represented by a continuous layer and a half-plane of particles respectively. 

To find the system of equations of motion for the hexagonal BKV lattice, we here apply 
Lagrange’s formalism in accordance with the approach for the one-dimensional lattice 
[Goldstein et al., 2002; Lanczos, 1966; Landau and Lifshitz, 1976]. Before deriving the equa-
tions of motion however, we will first discuss the kinematics of the BKV elements in the 
hexagonal lattice. 
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Figure 2.9: Cell configurations in the hexagonal BKV lattice: a) Inner cell; b) Bottom boundary cell;  
c) Surface cell; d) Left boundary cell; e) Left corner boundary cell; f) Left surface boundary cell.

Figure 2.8: The hexagonal BKV lattice. 
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2.4.2 Kinematics of BKV elements in a two-dimensional lattice 
Due to the dual nature of the BKV element, the interaction between a particle m,n and an 
adjacent particle mj,nj is not only described by the motion of these particles, but also by the 
motion of the massless slip-node intermediate particles m,n and mj,nj. Here, note that the 
slip-node in a BKV element may only move along the straight line between the particles m,n 
and mj,nj. Consequently, while each particle in the lattice adds two degrees of freedom to the 
system of equations of motion, each slip-node only provides a single degree of freedom to 
the system. In Figure 2.10a, all degrees of freedom that exist in an inner cell of the hexagonal 
BKV lattice are depicted by black arrows. 

Figure 2.10b depicts the elongation and rotation of a BKV element between particles m,n 
and mj,nj, due to the displacement of particle mj,nj. Describing the elongations of the rheo-
logical elements as they move and rotate in two-dimensional space exactly would yield the 
corresponding system of equations of motion as a set of nonlinear differential equations. To 
obtain a set of linear differential equations, we linearize the expressions for the elongations 
of the rheological elements. This linearization is applied differently depending on whether 
the elongations are small or large. The difference is that the linearization for small elonga-
tions accounts for the elongations and particle displacements relative to their initial state, 
while the linearization for large elongations accounts for the elongations and particle dis-
placements relative to their position before the current time step. The expressions for the 
elongations that result from these assumptions are derived in Appendices A.1 and A.2 re-
spectively. Due to the nonlinear nature of BKV elements, elongations in these elements may 
be expected to become large. For the two-dimensional BKV lattice, we therefore apply the 
linearization for large elongations. According to Appendix A.2, the elongation of a rheolog-
ical element between particles m,n and mj,nj may thus be approximated as: 

( ) ( )cos sinx x z zj j j je u u u u  = − + − +j j j jm ,n m ,nm,n m,n m,n m,n m,n m,n (2.22) 

Here, xum,n , zum,n , xu j jm ,n  and zu j jm ,n denote the displacements of particles m,n and mj,nj in 

Figure 2.10: a) The degrees of freedom of an inner cell in the hexagonal BKV lattice; 
b) The relative displacement of particle mj,nj with respect to particle m,n. 
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respectively x- and z-direction during the current time step dt. Furthermore, j
m,n  describes 

the elongation of the considered rheological element between particles m,n and mj,nj before 
the current time step, so at time t-dt, which is thus constant during the current time step. 
Finally, jm,n  is the angle of the rheological element between particles m,n and mj,nj. The 
kinematics of this angle are discussed at the end of this section. 

The elongations of the Kelvin-Voigt and Bingham elements, that together comprise the 
BKV element, are obtained by separately applying the linearization for large elongations ac-
cording to Appendix A.2 for each of these elements. The resulting expressions for the elon-
gations of the two elements depend on the orientation of the considered BKV element. For 
the BKV elements that have their orientation such that the Kelvin-Voigt element is closest to 
the particle m,n, i.e. the elements 2,3,5j =  in Figure 2.10a, the elongations of the Kelvin-
Voigt and Bingham elements are respectively found as: 

; ;cos sinx zj jKV j KV je u u u  = − − +j jm,n;m ,nm,n m,n m,n m,n m,n m,n (2.23) 

; ;cos sinx zj jB j B je u u u  = + − +j j j j j jm ,n m ,n m,n;m ,nm,n m,n m,n m,n (2.24) 

Here, u j jm,n;m ,n  is the displacement of the slip-node intermediate particles m,n and mj,nj at 
the current time step dt in the direction of the depicted degrees of freedom in Figure 2.10a. 

For the other BKV elements, being those that have their orientation such that the Bingham 
element is closest to the particle m,n, i.e. the elements 1,4,6j =  in Figure 2.10a, the degree 
of freedom for the slip-node intermediate particles m,n and mj,nj points into the opposite 
direction. The respective elongations of the Kelvin-Voigt and Bingham elements thus be-
come: 

; ;cos sinx zj jKV j KV je u u u  = + + +j j j j j jm ,n m ,n m,n;m ,nm,n m,n m,n m,n (2.25) 

; ;cos sinx zj jB j B je u u u  = − − − +j jm,n;m ,nm,n m,n m,n m,n m,n m,n (2.26) 

In equations (2.23) to (2.26), ;KV jm,n and ;B jm,n respectively denote the elongations of the Kel-
vin-Voigt and Bingham element between particles m,n and mj,nj before the current time step, 
so at time t-dt, that are constants during the current time step. Note that by adding the elon-
gations of the Kelvin-Voigt and Bingham elements, i.e. by adding either equations (2.23) and 
(2.24) or equations (2.25) and (2.26), we always obtain the elongation of the BKV element 
given by equation (2.22). 

Kinematics of the rheological element angle 
As the lattice deforms, the coordinates of all particles in the lattice change over time and the 
angles of all rheological elements in the lattice do so as well. For small deformations, the 
influence of this so-called geometrical nonlinearity is small and may be neglected. In the 
hexagonal BKV lattice however, the displacements and elongations can become significant 
and the geometrical nonlinearities must be accounted for. To do this, we could consider the 
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element angles as degrees of freedom of the lattice. While this would not only significantly 
increase the total number of degrees of freedom in the lattice, this also causes the set of dif-
ferential equations to become nonlinear due to the involved trigonometric terms. To account 
for large deformations and to make sure that the equations of motion remain as a set of linear 
differential equations, we instead assume that the angles of all rheological elements are con-
stant during each time step. Additionally, we update the angles of the rheological elements 
after each time step based on the coordinates of the lattice particles that follow from solving 
the set of linear differential equations at the previous time step.  

Denoting jx x x = −j jm ,n m,n   and jz z z = −j jm ,n m,n  as shown in Figure 2.11a, the angle 
jm,n  of a rheological element j between particles m,n and mj,nj at any time step straightfor-

wardly follows from the geometry of the lattice as: 

( )
2 2

arccos sgnj
jj

j j

x z
x z


 
 = 
  +  

m,n (2.27) 

Here, sgn is an abbreviation of signum, so that ( )sgn jz  gives the sign of jz . According 
to equation (2.27), the angle jm,n  of an element between particles m,n and mj,nj can always 
be expressed in terms of the coordinates, and thus the displacements, of particles m,n and 
mj,nj. 

Since the displacements of particles m,n and mj,nj are degrees of freedom of the system 
of equations of motion, their positions in the lattice are correctly determined at every time 
step. The displacement of the slip-node intermediate particles m,n and mj,nj however is de-
termined based on the angle jm,n  and thereby follows from the positions of the particles m,n 
and mj,nj prior to the current time step. As a consequence, the slip-node intermediate particles 
m,n and mj,nj does not remain exactly on the straight line between particles m,n and mj,nj 
after the current time step dt. This is exaggeratedly depicted in Figure 2.11b. Here, the angle 
of the element between particles m,n and mj,nj that is assumed to be constant during the 
current time step dt and that follows from the position of particles m,n and mj,nj prior to the 
current time step is denoted as 

;j j dt
  −=m,n m,n , while the corresponding angle after the current 

time step is denoted as ;j dt
 +

m,n . 
The error in the position of the slip-nodes depends on the chosen time step dt, and thus, 

the time step dt must be chosen small enough to assure the accuracy of the model. Addition-
ally, to make sure that this error does not accumulate, we correct the coordinates for the slip-
node intermediate particles m,n and mj,nj a posteriori, i.e. after every time step, using the 
global coordinates of the particles m,n and mj,nj that result from the current time step. In 
Figure 2.11b, the erroneous lengths of the Bingham and Kelvin-Voigt elements that follow 
from solving the equations of motion with the assumed constant angle jm,n , are respectively 
denoted as λB and λKV. Furthermore, lB and lKV denote the correct lengths of respectively the 
Bingham and Kelvin-Voigt element at the end of the current time step. When the considered 
BKV-element is in stick-state and the Bingham element is not activated, the Bingham ele-
ment is rigid with a constant length. Hence, we then find the length lB of the Bingham element 
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as: 

B Bl = (2.28) 

When the BKV-element is in slip-state and the Bingham element is activated, we determine 
the length lB of the Bingham element from the ratio between the erroneous length λB of the 
Bingham element and the total erroneous length of the BKV element, i.e. the sum of λKV and 
λB, as: 

B
B j

KV B
l D

 
=

+

m,n (2.29) 

Here, jDm,n  is the distance between particles m,n and mj,nj at the end of time step dt. Using 
the previously introduced notation for the element angle after the current time step dt as 

;j dt
 +

m,n

, the x- and z-coordinates of the slip-node intermediate particles m,n and mj,nj respectively 
become: 

;
cosB j dt

x x l  += +j jm,n;m ,n m,n m,n (2.30) 

;
sinB j dt

z z l  += +j jm,n;m ,n m,n m,n (2.31) 

The BKV elements in the hexagonal BKV lattice behave in accordance with the BKV ele-
ments in the one-dimensional BKV lattice. Consequently, each BKV element in the hexago-
nal BKV lattice is always in either stick-, slip- or lock-state. The characteristics of the BKV 
element for each of these motion states were previously discussed for the one-dimensional 
BKV lattice in respectively Sections 2.3.2 to 2.3.4. In the following, we will therefore only 
discuss those properties of the motion states that are particular for BKV elements in the hex-
agonal lattice. Although the motion state of each BKV element in a cell of the hexagonal 

Figure 2.11: a) A Bingham-Kelvin-Voigt element in the two-dimensional lattice;  
b) The error and the actual position of the slip-node.
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BKV lattice may be different, we will here state the equations of motion for an inner cell with 
all BKV elements in either of the three motion states to illustrate the approach. 

2.4.3 ‘Stick’ in the hexagonal BKV lattice 
Let us consider the inner cell of the hexagonal BKV lattice depicted in Figure 2.12a. As all 
BKV elements are in stick-state, the Bingham elements are not activated and therefore de-
picted as rigid bars. Although the BKV elements in the depicted inner cell have different 
orientations, all elements behave in exactly the same way as long as all elements are in a 
stick-state. Note here that, although the elongations of the Bingham elements will not change 
during a stick-state, they are not necessarily equal to zero, for example if, preceding the cur-
rent stick-state, slip has occurred in the BKV element. Thus, when all elements are in stick-
state, the elongations of the Kelvin-Voigt and Bingham elements are for either orientation of 
the BKV elements respectively found as: 

; ;jKV j B je e = −m,n m,n m,n (2.32) 

; ;B j B je =m,n m,n (2.33) 

Applying Lagrange’s formalism by considering the Kelvin-Voigt elements as springs for 
which the stiffness is described by the operator ;

ˆ
e jK m,n , where ; ; ;

ˆ
e j e j e jK K C t= +  m,n m,n m,n , and 

respectively employing the Euler-Lagrange differential equations for the horizontal and ver-
tical displacements of particle m,n, i.e. xum,n  and zum,n , the equations of motion for a particle 
m,n in an inner cell of the hexagonal BKV lattice with all BKV elements in stick, read: 

( )
6 6

; ; ;
1 1

cos cos 0x e j j j e j j jB j
j j

M u C e K e  
= =

− − − = m,n m,n m,n m,n m,n m,n m,n m,n m,n (2.34) 

( )
6 6

; ; ;
1 1

sin sin 0z e j j j e j j jB j
j j

M u C e K e  
= =

− − − = m,n m,n m,n m,n m,n m,n m,n m,n m,n (2.35) 

Here, ;e jK m,n  and ;e jCm,n  are respectively the stiffness and damping coefficients of the Kelvin-
Voigt element between a particle m,n and an adjacent particle mj,nj. 

While the position of particle m,n in the inner cell of the hexagonal BKV lattice, with all 
BKV elements in stick, follows from the equations of motion (2.34) and (2.35), the positions 
of the slip-nodes in an inner cell are derived from the position of the particle to which they 
are rigidly connected. Thus, the coordinates of the slip-nodes in elements 1,4,6j =  are found 
using equations (2.30) and (2.31), while the coordinates of the slip-nodes in elements 

2,3,5j = follow from the equivalent equations for the respective particles mj,nj. 
The complete system of equations of motion for the hexagonal BKV lattice with all BKV 

elements in stick, follows from applying equations (2.34) and (2.35) to all particles in the 
lattice. Disregarding external forces, equations (2.34) and (2.35) can be applied to all existing 
cell geometries in the hexagonal BKV lattice, taking into account that the mass Mm,n, the 
stiffness coefficient ;e jK m,n  and the damping coefficient ;e jCm,n , as well as the domain of the 
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numerator j, may vary per cell configuration. Do note here that, as the boundary must exist 
at such a distance from the load source that its response is linear, all boundary elements must 
behave linearly at all times and thus always remain in stick. 

The systems of equations of motion for the hexagonal Kelvin-Voigt and hexagonal Hooke 
lattices may be obtained from equations (2.34) and (2.35) by substituting ; 0B j =m,n  and 

; 0e jC =m,n  for all elements appearing in the considered cell. The system of equations of motion 
for the Prandtl lattice with all Prandtl elements in stick can be obtained from equations (2.34) 
and (2.35) by substituting ; ;B j f j =m,n m,n  and ; 0e jC =m,n  for all elements. Here, ;f jm,n  denotes the 
elongation of the dry friction element in the Prandtl element that is constant during stick. 

2.4.4 ‘Slip’ in the hexagonal BKV lattice 
Figure 2.12b depicts an inner cell of the hexagonal BKV lattice with all its elements in slip-
state, i.e. with all Bingham elements activated. To obtain the corresponding equations of mo-
tion, we again apply Lagrange’s formalism by considering the adjacent Kelvin-Voigt and 
Bingham elements as equivalent springs for which the stiffness is described by the operators 

;
ˆ

e jK m,n and ;
ˆ

f jK m,n , where ; ; ;
ˆ

e j e j e j tK K C 


= +m,n m,n m,n and ; ;

ˆ
f j f j tK C 


=m,n m,n . Employing the Euler-La-

grange differential equations for the particle displacements in x- and z-direction respectively, 
the equations of motion for particle m,n in an inner cell of the hexagonal BKV lattice with 
all BKV elements in slip, are found as: 

( ) ( ); ; ;; ; ;; : ;cos sgn cos 0
KV B

x e j e j j cr j jKV j KV j B jf j B slip j
j j j j

M u C e K e C e F F 
 

− + − + = 
m,n m,n

m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n (2.36) 

( ) ( ); ; ;; ; ;; : ;sin sgn sin 0
KV B

z e j e j j cr j jKV j KV j B jf j B slip j
j j j j

M u C e K e C e F F 
 

− + − + = 
m,n m,n

m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n (2.37) 

Here, KVjm,n  denotes the set of BKV elements in the cell that have the Kelvin-Voigt element 
connected to the particle m,n, while Bjm,n  is the set of BKV elements for which the Bingham 
element is connected to the particle m,n. Furthermore, ;e jK m,n  and ;e jCm,n  are respectively the 
stiffness and damping in the Kelvin-Voigt elements, and ;f jCm,n  is the damping in the Bingham 

Figure 2.12: An inner cell of the hexagonal BKV lattice, with: 
a) all BKV elements in stick; b) all BKV elements in slip.
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elements. Furthermore, : ;sgn B slip jF m,n , being the sign of the force on the Bingham element that 
initiated the considered instance of slip, determines the direction of the corresponding critical 
friction forces.  

The equations of motion for the slip-nodes in an inner cell are found by substituting their 
respective Lagrangians into the corresponding Euler-Lagrange differential equations. For all 
BKV elements in an inner cell, i.e. for 1 6j = , the equation of motion for the slip-node 
reads: 

; ; ;; ; ;; : ;sgn 0e j e j cr jKV j KV j B jf j B slip jC e K e C e F F+ − − =m,n m,n m,n m,n m,n m,n m,n m,n (2.38) 

By adapting the numerator j to the considered cell geometry, and disregarding external forces, 
equations of motion (2.36) to (2.38) apply to all cell geometries that exist in the hexagonal 
BKV lattice. 

The system of equations of motion for the Prandtl lattice with all Prandtl elements in slip 
follows from equations (2.36) to (2.38) by substituting ; ; 0e j f jC C= =m,n m,n  and : ; : ;B slip j f slip jF F=m,n m,n

for all elements. Here, : ;f slip jF m,n  denotes the force applied to the involved dry friction element 
to initiate the current instance of slip. As the slip-state does not occur in the hexagonal Hooke 
and Kelvin-Voigt lattices, corresponding equations cannot be derived for these lattices. 

2.4.5 ‘Lock’ in the hexagonal BKV lattice 
To incorporate lock into the system of equations of motion for the hexagonal lattice, the same 
approach as for the one-dimensional lattice is used. This means that the lock-state is incor-
porated into the hexagonal lattice by adding a spring parallel to a BKV element with a spring 
stiffness that is significantly larger than the stiffness of the spring present in the BKV ele-
ment. The system of equations of motion for an inner particle m,n with a single BKV element 
in its cell in lock and its other BKV elements in stick, can be straightforwardly obtained from 
equations (2.34) and (2.35), being the equations of motion for an inner particle with all BKV 
elements in its cell in stick, by including the additional parallel spring in the corresponding 
equation of motion. Accounting for the additional parallel spring, in this case, means includ-
ing a term ( )0;; j jlock jK e D− + m,n m,n m,n , where ;lock jK m,n  is the large stiffness of the parallel spring, 

jem,n is the elongation of the element and 0; jD m,n is the allowed shortening of the element at 
which the lock-state occurs. Note here that choosing the stiffness of the parallel spring five
times larger than the stiffness in the Kelvin-Voigt element is more than sufficient for an ele-
ment to behave rigidly compared to its surrounding elements.

In accordance with the one-dimensional lattice, we assume that Bingham elements in the 
hexagonal lattice are inactive during lock, so that any BKV elements that experience lock 
behave viscoelastically. The magnitude of the constant elongation ;B jm,n  of the involved Bing-
ham element during and after lock however depends on the motion states prior to lock. After 
a stick-to-lock transition, the elongation ;B jm,n  remains constant and equal to its value prior to 
lock, while after a slip-to-lock transition, the elongation follows from the force-equilibrium 
at the slip-node in the corresponding Bingham element as derived in Appendix C.3. 

Alternatively, we can choose to model the lock-state of a BKV element in the hexagonal 
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lattice by considering that BKV element as a rigid bar. As explained in Section 2.3.4, obtain-
ing the corresponding equations of motion for the hexagonal lattice is far more laborious and 
less straightforward than for the one-dimensional BKV lattice. This is testified by Appendix 
C.3 regarding the derivation of the system of equations of motion for an inner particle m,n
where the single element in its cell that is in lock-state is represented by a rigid bar.

For reasons previously explained, the angle jm,n  of a BKV element j between particles 
m,n and mj,nj is considered as a constant during the current time step. The angle jm,n  
thereby fixes the direction of the axial forces in a locked element during a single time step. 
Especially for locked elements in a two-dimensional lattice rotations may be significant, and 
additionally these rotations may occur quickly. To make sure that the angle jm,n  may be 
considered to be constant during the current time step, and to thereby assure the accuracy of 
the corresponding system of equations of motion, the time step dt must be carefully chosen. 

Finally, note that the systems of equations of motion for the hexagonal Kelvin-Voigt, 
hexagonal Hooke and hexagonal Prandtl lattices with elements in lock can be straightfor-
wardly derived from their systems of equations of motion by making the appropriate substi-
tutions. 

2.4.6 State-transitions in the hexagonal BKV lattice 
The transitions between the three admissible motion states have previously been discussed 
for BKV elements appearing in the one-dimensional BKV lattice in Section 2.3.5. The tran-
sitions between motion states of a BKV element in the hexagonal BKV lattice principally 
occur under the same conditions as the state-transitions in the one-dimensional lattice and 
therefore the diagram given by Figure 2.6 also holds for state-transitions in the hexagonal 
BKV lattice. Although, the dimension of the lattice does not influence the nature of the state-
transitions, the expressions for the transitions do depend on the dimension and configuration 
of the considered lattice. 

Stick-to-slip transition 
The transition from stick to slip, of a BKV element between particles m,n and mj,nj, occurs 
when the total force that is applied to the Bingham element, denoted as ;B jFm,n exceeds the
threshold of the dry friction element, given by the critical friction force ;cr jF m,n . As the Bing-
ham element may be activated in both tension or compression accordingly, the stick-to-slip 
transition in the element j between particles m,n and mj,nj occurs when: 

;; cr jB jF Fm,n m,n (2.39) 

The force equilibrium at the massless slip-node intermediate particles m,n and mj,nj yields 
the force on the Bingham element ;B jFm,n  during stick as: 

( ); ;; ;e j j e j jB j B jF C e K e = + −m,n m,n m,n m,n m,n m,n (2.40) 
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Slip-to-stick transition 
The transition of a BKV element between particles m,n and mj,nj from slip to stick occurs 
when the elongation rate of the Bingham element becomes equal to zero or changes sign. 
When this occurs, the sign of the elongation rate of the Bingham element no longer matches 
the sign of the force applied to initiate the current instance of slip. Considering that the Bing-
ham element may be activated in both tension and compression, the slip-to-stick transition of 
a BKV element between particles m,n and mj,nj occurs when:  

; : ;sgn sgnB j B slip je Fm,n m,n (2.41) 

Transition into lock 
As stated before, the occurrence of lock in an element is independent of its configuration, 
independent of its prior motion state and physically represents the collision of the two in-
volved particles. Thus, in accordance with the one-dimensional case, the transition into lock 
of an element in the hexagonal BKV lattice occurs when: 

min;j jD Dm,n m,n (2.42) 

Here, jDm,n  is the distance between particles m,n and mj,nj and min; jDm,n  is the minimum or 
threshold distance between particles m,n and mj,nj. 

Transition out of lock 
As explained in Section 2.3.5, an element that undergoes a transition out of lock will after-
wards always be in stick-state and the transition from lock to slip can never occur. Independ-
ent of the configuration of a rheological element, the transition of an element from lock to 
stick occurs when all forces working together at the considered element stop compressing 
that element. Representing the lock-state by means of a rigid bar, Appendix C.3 shows that 
we can derive the exact axial force on any BKV element in lock. Then, noting that an element 
in lock is unable to transmit tensile forces, we can use this axial force to determine when the 
lock-to-stick transition occurs. As explained in Section 2.3.4 however, we apply the lock-
state in an element of the hexagonal BKV lattice by adding a spring with a significantly larger 
stiffness than the springs appearing in the BKV elements. As a result, any locked element 
will always have a certain, albeit very small, elongation. Because an element only remains in 
lock as long as the involved particles are pushed toward each other, the transition out of lock 
occurs when the involved particles move apart, i.e. when the locked element obtains a posi-
tive elongation rate. The lock-to-stick transition for a BKV element between particles m,n 
and mj,nj therefore occurs when: 

0je m,n (2.43) 
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Note that, due to modelling lock by a spring with a large stiffness, the transition out of lock 
may occur while the distance between particles m,n and mj,nj is slightly smaller than the 
threshold distance min; jDm,n . To assure that, after a transition out of lock, an element does not 
instantly undergo a transition back into lock, the threshold distance is set to be equal to the 
smallest distance observed between particles m,n and mj,nj until the actual distance becomes 
larger than the threshold. 

2.4.7 Geometrical and material randomness in the hexagonal lattice 
To capture the physics of material behaviour well, the random heterogeneity of the material 
throughout the medium must be accounted for. Absence of this randomness yields a signifi-
cant mesh dependency in the response of two- and three-dimensional lattices as any occurring 
waves will propagate along the directions privileged by the regular mesh, thereby losing the 
unstructured character of material behaviour. This is specifically relevant for models that 
allow for nonlinear phenomena and that yield large displacements. 

In this thesis, the random heterogeneity of the lattice is achieved by randomly perturbing 
the initial location of the particles in the lattice. The results from applying this geometrical 
randomness is depicted in Figure 2.13. Here, Figure 2.13a shows a hexagonal lattice with a 
regular arrangement of the particles in the lattice, while Figure 2.13b shows the same hexag-
onal lattice, but now with an irregular or randomized particle arrangement. Note here that the 
locations of the particles located at the surface and the boundary of the lattice have not been 
randomized. 

Alternatively, or additionally, the random heterogeneity of the considered material may 
also be achieved by randomly varying the lattice parameters, such as the mass of the particles 
and the stiffness of the springs, for example using a Gaussian distribution. The random vari-
ation of these parameters throughout the hexagonal lattice has not been applied in this thesis 
as a general case, but is addressed specifically when applied.  

2.5 Material properties of one- and two-dimensional media 
To show the workings of the one- and two-dimensional models in this thesis, the chosen 
values for the macromaterial properties are of no immediate relevance, although physically 
realistic values should be used. For ease of comparison of their results, all models are chosen 
to represent the same material, so that a single set of macromaterial properties is used 
throughout this thesis. The parameters of the one- and two-dimensional lattices then follow 
from the chosen macromaterial properties and their geometry. The relations between the mac-
romaterial properties and the parameters of the one-dimensional lattice are discussed in Sec-
tion 3.2.1, while the parameters of the hexagonal lattice are derived in Appendix C.1 and 
discussed in Section 3.6.1. 

The macromaterial, or continuum, properties considered in this thesis are the mass density 
ρ, the Young’s modulus E, the Poisson’s ratio ν and the damping coefficient ζe that describes 
the viscous material damping in relation to the material elasticity. As an example of how the 
damping coefficient ζe is applied, consider the dynamic modulus of elasticity Ê  as an oper-
ator that describes the viscoelastic material behaviour through the Young’s modulus and the 
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damping coefficient as ( )ˆ 1 e tE E  


= + .  

In this thesis, we generally assume a mass density 32000 kg m =  and a Young’s mod-
ulus 20 MPaE = , which are typical values for a non-cohesive soft soil [Kézdi, 1974]. Fur-
thermore, the Poisson’s ratio is chosen as 1

4 =  because, as shown in Appendix C.1, only 
for this Poisson’s ratio the parameters of the hexagonal lattice that accounts for axial inter-
actions only can be matched to the macromaterial properties. In some cases, the damping in 
this thesis is given dimensionally in terms of the damping coefficient ζe but in most cases the 
dimensionless damping ratio ζ is used that describes the material damping as a fraction of the 
critical damping. Note here that the value of the damping is not fixed and thereby varies 
throughout this thesis. 

2.6 Response of the hexagonal lattice with elementary boundaries 
Before considering the response of the hexagonal lattice that includes a boundary formulation 
to account for a far-field domain with properties that are equivalent to the near-field lattice, 
we will here first consider the response of the hexagonal lattice with several so-called ele-
mentary boundaries. The different types of elementary boundaries that are considered in this 
thesis are discussed in Section 2.6.1. Subsequently, in Section 2.6.2, we will discuss the 
methods that are available to obtain the response of a hexagonal lattice from the system of 
equations of motion. Additionally, we will here address the accuracy of the linearizations for 
small- and large elongations by comparing the response of the hexagonal lattice to a time-
dependent load for the different linearizations applied. Finally, we will consider the nonlinear 
response of a hexagonal BKV lattice with a fixed boundary to an externally applied time-
dependent load in Section 2.6.3. 

2.6.1 Elementary boundaries for two-dimensional lattices 
An elementary boundary here means that each particle at the boundary of the lattice is inde-
pendently supported by a single rheological element in respectively horizontal and vertical 
direction. Consider for example the hexagonal lattice with a linear-elastic boundary depicted 
in Figure 2.14a. Here, each particle at the lattice boundary is supported by one spring in 
horizontal direction and one spring in vertical direction, both with a spring stiffness Kb that 
has the same order of magnitude as the spring stiffness of the elements inside the hexagonal 
lattice. Additional examples of elementary boundaries are the viscous boundary, depicted in 
Figure 2.14b, consisting of horizontal and vertical dashpots with damping coefficient Cb at 

Figure 2.13: A hexagonal lattice with: a) a regular mesh; b) an irregular or randomized mesh. 

b)a )
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every boundary particle, or a viscoelastic boundary, which features a Kelvin-Voigt element 
in both horizontal and vertical directions at each of the boundary particles. Additionally, the 
free boundary, i.e. the situation where the boundary particles are not supported at all, and the 
fixed boundary, i.e. the situation where the boundary particles are fixed in-place, are also 
examples of elementary boundaries. 

Note that for the elementary boundaries that are introduced by adding horizontal and ver-
tical rheological elements we do not actually specify the location of the point at which these 
elements are supported, nor do we specify the length of the elements. Instead, we assume that 
the horizontal support elements remain horizontal at all times and accordingly that the verti-
cal support elements remain vertical at all times. Because of this, their angles are constant at 
all times and their elongations match the displacements of the boundary particles. 

To model the fixed boundary, it is most accurate to simply fix the boundary particles in-
place and thereby remove the corresponding degrees of freedom from the system of equations 
of motion. This reduces the size of the problem to be solved and thereby reduces the calcu-
lation time. For implementation convenience however, the so-called fixed boundary is here 
modelled by supporting the boundary particles with a horizontal and a vertical spring that 
both have a spring stiffness bK  , which is significantly larger than the spring stiffness of the 
elements featured in the hexagonal lattice. This means that the boundary particles are main-
tained as degrees of freedom and the total number of degrees of freedom for the lattice with 
a fixed boundary is the same as the number of degrees of freedom for a lattice with any of 
the other elementary boundaries. As such, the linear-elastic and fixed boundaries are essen-
tially the same as they only differ in magnitude of the stiffness. Here, note that the stiffness 

bK  should not be chosen abundantly large as a very stiff boundary may yield large compu-
tation times; to simulate the fixed behaviour by means of springs with a large spring stiffness,
it is more than sufficient to choose the stiffness of the boundary springs for example ten times 
larger than the stiffness of the springs in the lattice, i.e. 10b bK K = .  

2.6.2 Accuracy of linearizations applied to two-dimensional lattices 
As stated previously in Sections 2.1 and 2.4.2, the expressions for the elongations of the 
rheological elements in a two-dimensional lattice are linearized to obtain the corresponding 
system of equations of motion as a set of linear ordinary differential equations. The reason 
that this linearization is required is that in two-dimensional space the rheological elements 
do not only become longer or shorter, but they also rotate and taking this rotation into account 
in the expressions for their elongations yields the system of equations of motion as a set of 
nonlinear differential equations. In fact, for rheological elements with a constant angle, i.e. 
no rotation, it can straightforwardly be shown that the linearizations for both small- and large-
elongations, respectively discussed in Appendices A.1 and A.2, are exact and without error. 
Note that this is independent of whether linear or nonlinear rheological elements are consid-
ered. Evidently, as the angles of all rheological elements in a one-dimensional lattice are 
always constant, linearization of their elongations is not required for one-dimensional lat-
tices. 

Since the linearizations for small and large elongations are different simplifications of the 
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same analytically exact expression, the magnitude of their errors is different. For both line-
arizations, the expressions for the elongation of the rheological element between particles 
m,n and mj,nj are derived in Appendix A by applying a truncated Taylor approximation. 
Consequently, for both cases, the error partly follows from neglecting higher-order terms in 
the expression for the elongation to which the Taylor expansion is applied and partly follows 
from neglecting higher-order terms of the Taylor expansion itself. The advantage of the lin-
earization for large elongations is that its error is proportional to the size of the applied time 
step, because it accounts for the displacements of the particles over the current time step. As 
a consequence, the error of the response that follows from applying the linearization for large 
elongations reduces by decreasing the time step. This error reduction is attributed to the fact 
that the terms of the Taylor series that are being neglected are smaller at smaller time steps. 
Thus, by decreasing the time step, the response of the lattice that is obtained using the line-
arization for large elongations will improve its approximation of the exact response.  

In Appendix A.3, a higher-order approach for large elongations is presented that reduces 
the error of the linearization for large elongations by including higher-order terms in the Tay-
lor expansion. As we are already able to approximate the exact response of a hexagonal lattice 
well using the linearization for large elongations according to Appendix A.2, the higher-order 
approach presented in Appendix A.3 is not aimed at improving the accuracy of the response, 
but is considered in an attempt to increase the step size and thereby reduce the number of 
time steps, and thus reduce the calculation time, required to obtain a similarly accurate re-
sponse. 

Solving the equations of motion in the time domain or in the frequency domain 
The response of the hexagonal lattice can generally be obtained by solving the corresponding 
system of equations of motion either in the time domain or in the frequency domain. In gen-
eral, frequency domain solutions require significantly less computational effort than time 
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Figure 2.14: a) Linear-elastic boundary with horizontal and vertical springs at every boundary particle; 
b) Viscous boundary with horizontal and vertical dashpots at every boundary particle.
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domain solutions. While the system of ordinary differential equations for the time domain 
approach must be solved at every time step using iterative methods, the algebraic system of 
equations of motion for the frequency domain is evaluated for all frequencies once, after 
which the frequency domain response is transformed to the time domain by numerically eval-
uating an integral transform at every time step. As a result of this, the elongations of the 
rheological elements can only be determined with respect to their original lengths, and the 
lattice geometry cannot be updated over time. Thus, in order to use the frequency domain 
approach, we sacrifice the possibility of incorporating the linearization for large elongations 
and of updating the angle at every time step. 

Once the hexagonal lattice incorporates any rheological elements that allow for physically 
nonlinear behaviour, for example by incorporating slip or lock, the elongations of these rhe-
ological elements are large and the system of equations of motion must generally be evalu-
ated in the time domain. In the time domain approach, we therefore generally apply the line-
arization for large strains. Alternatively however, for example to compare the time domain 
response with the frequency domain response, also the linearization for small elongations 
may be applied in the time domain approach. Furthermore, as the time domain solution does 
allow the geometry of the hexagonal lattice to be updated over time, we principally account 
for the geometrical nonlinearity in the time domain approach. To this purpose, the angles of 
the rheological elements in the lattice are assumed constant only during each time step to 
solve the corresponding system of equations as a system of linear ODEs, and are updated 
after each time step based on the lattice response. 

Comparison of linearizations applied for two-dimensional lattices 
To assess the accuracy of the different approaches presented in Appendix A, we here compare 
the responses of a linear-elastic hexagonal Hooke lattice with a linear-elastic boundary to an 
externally applied time-dependent load for the following cases: 

▪ Frequency domain (FD) solution incorporating the linearization for small elongations;
▪ Time domain (TD) solution incorporating the linearization for small elongations;
▪ Time domain (TD) solution incorporating the linearization for large elongations;
▪ Time domain (TD) solution using the higher-order approach for large elongations.

For both solutions that incorporate the linearization for small elongations, the geometrical 
nonlinearity is not accounted for so that the angles of all rheological elements in the lattice 
are assumed constant and equal to their initial value for the full duration of the response. For 
the two time domain solutions that respectively incorporate the linearization for large elon-
gations and the higher-order approach for large elongations, the geometrical nonlinearity is 
accounted for and the angles of all rheological elements in the lattice are thus updated at 
every time step. As the validity of the different approaches depends on the magnitude of the 
elongations and therefore on the magnitude of the load, we here compare the above models 
for different magnitudes of the applied loading. 

The considered hexagonal Hooke lattice with a linear-elastic boundary is depicted in Fig-
ure 2.15 and consists of 25 particles with a mass M and 82 Hooke elements with a stiffness 
Ke. Note here that the geometry of the hexagonal Hooke lattice has not been randomized to 
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make sure that the responses for the four models described here are all obtained for the exact 
same geometry. In addition, Figure 2.15 shows the hexagonal area that each particle inside 
the lattice represents. To be able to match the parameters of the two-dimensional lattice with 
the macromaterial properties discussed in Section 2.5, we assume a unit third dimension dy. 
Based on the hexagonal area each particle represents and accounting for the unit third dimen-
sion, the mass of a particle in the interior of the homogeneous hexagonal lattice is found as 

23
2M dy= , where ρ is the mass density and is the distance between adjacent particles 

in the lattice. Furthermore, the relation between the stiffness of the springs in the homogene-
ous hexagonal Hooke lattice and the Young’s modulus is derived in Appendix C.1 as 

8
5 3eK Edy= .  

As stated in Section 2.5, we here assume that the hexagonal Hooke lattice represents a 
non-cohesive soft soil with a density 32000 kg m = , a Young’s modulus 20 MPaE =

and a Poisson’s ratio 1
4 = . Noting that the lattice models are intended to describe a solid 

medium at the meso-scale, the interparticle distance in the hexagonal lattice is chosen as 
0.2 m= . Based on the chosen interparticle distance and the given macromaterial proper-

ties, the mass of the inner particles is obtained as 69.28 kgM = , while the stiffness of the 
springs in the hexagonal Hooke lattice are obtained as 18.48 MN meK = . Furthermore, the 
spring stiffness of the linear-elastic boundary is chosen to be equal to the stiffness of the 
Hooke elements inside the lattice, i.e. b eK K= . 

For each of the four solutions given at the start of this section, a pulse load ( )F t  is applied 
at the surface particle 0,0 that consists of a single sinus period and may be expressed as:  

( ) ( ) ( ) ( )sin .F FF t F t H T t H t= −

Here, F  is the amplitude, TF is the period of the sinus in the pulse load and ωF is the corre-
sponding angular frequency, chosen as 80 rad sF = . 

Figure 2.15: The hexagonal Hooke lattice with a linear-elastic boundary. 
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The response of the linear-elastic Hooke lattice is presented in Figure 2.16 for all four 
solutions by means of the normalized vertical displacement of particle 0,0 as a function of 
time, where the displacements are normalized with respect to the unit particle distance . 
Here, Figure 2.16a shows the vertical displacement of particle 0,0 due to the given pulse load 
for an amplitude 0.1 MNF = , while Figure 2.16b shows the vertical displacement of the 
same particle, but now for an amplitude 1 MNF = . For the linearization that assumes small 
elongations, the vertical displacements of particle 0,0, given in Figure 2.16 by the dashed 
blue line and the continuous light blue line for the time domain and the frequency domain 
solutions respectively, are approximately the same for both magnitudes of the amplitude. 
Between the responses obtained for these two models, a very small difference, which is not 
distinguishable in Figure 2.16, remains that is due to the numerical errors embedded in the 
different solution methods applied. Although the frequency domain solution solves the sys-
tem of equations of motion algebraically, and is therefore numerically exact up to the chosen 
precision of its variables, the resulting response is obtained in the frequency domain. The 
time domain displacements are then obtained by numerically applying an inverse integral 
transform over a truncated domain of the frequency domain displacements and therefore in-
cludes a certain small numerical error. On the other hand, in the time domain solution the 
system of ordinary differential equations is solved by means of the Runge-Kutta method, 
which is an iterative method and therefore prone to certain small numerical errors as well. 

The difference between the responses to the pulse load with amplitude 0.1 MNF = , ob-
tained by respectively applying the linearizations for small and large elongations given by 
Figure 2.16a, is only visible at the extremes and may overall be considered to be negligible. 
We can therefore state that for the pulse load with amplitude 0.1 MNF = , the elongations 
of the rheological elements in the hexagonal lattice are within the range at which the lineari-
zation for small elongations is valid. Evidently, as shown by Figure 2.16b, increasing the 
amplitude of the pulse load to 1 MNF =  increases the elongations of the rheological ele-
ments, and thereby increases the error of this linearization to such an extent that assuming 
small elongations is no longer valid. By further increasing the magnitude of the loading, all 
similarity between the responses obtained using the linearization for small and large 

Figure 2.16: Normalized vertical displacement of the loaded particle at the lattice origin due to a pulse load  
for different approaches: a) with an amplitude of 0.1 MN; b) with an amplitude of 1.0 MN.
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elongations is lost. This is demonstrated by Figure 2.17a, which shows the normalized re-
sponse obtained for the pulse load with an amplitude 2 MNF = . 

The two time domain solutions that incorporate the linearization and the higher-order 
approach for large elongations, for which the responses are given in Figure 2.16 and Figure 
2.17a by the continuous yellow line and the dashed red line respectively, give the same ver-
tical displacements of particle 0,0. For the same size of the time step dt, the differences be-
tween the two responses are negligible. Figure 2.17b again shows the responses obtained 
using linearization and higher-order approach for large elongations for a pulse load with an 
amplitude 2 MNF = , but now for different sizes of the time step dt. As the responses ob-
tained for both approaches are the same for both sizes of the time step, it follows from Figure 
2.17b that using the higher-order approach for large elongations only marginally improves 
the accuracy. In fact, the influence of reducing the time step is much larger than the influence 
of using higher-order terms in the expression for the elongation. From this it can be concluded 
that the error induced by assuming that the angle is constant for the duration of each time 
step is significantly larger than the error induced by neglecting the higher order terms in the 
expression for the elongation of the rheological elements. Consequently, using the higher-
order approach for large elongations does not necessarily warrant an increase in size of the 
time step as an option to reduce calculation time. 

2.6.3 Response of the hexagonal BKV lattice with a fixed boundary 
To demonstrate the characteristic nonlinear response of the BKV lattice to an externally ap-
plied time-dependent load, we here consider the hexagonal BKV lattice with a fixed bound-
ary that is depicted in Figure 2.18. A time-dependent pulse load ( )F t  is applied at particle 
0,0 at the origin of the lattice that, as before, consists of a single sinus with an angular fre-
quency ωF, a period TF and an amplitude F . In this case, the angular frequency and ampli-
tude are respectively chosen as 200 rad sF =  and 2 MNF = . 

The size of the hexagonal lattice is described by the number of rheological elements N 
that is at least required to connect the particle 0,0 at the origin of the lattice with any particle 

Figure 2.17: Vertical displacement of the loaded particle due to a pulse load with an amplitude of 2.0 MN:  
a) approaches for small and large elongations; b) approaches for large elongations for different sizes of the time step dt.
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at the boundary. For the regular hexagonal BKV lattice depicted in Figure 2.18, the value of 
N is equal to 4, because the distance between the particle 0,0 at the origin of the lattice and, 
for example, particle N,N at the boundary of the lattice consists of four BKV elements. In 
this case however, we will present and discuss the nonlinear response obtained for the irreg-
ular hexagonal BKV lattice with a dimension N equal to 8 for which the mesh is depicted in 
Figure 2.19. The considered BKV lattice principally consists of 117 particles and 308 BKV 
elements. However, since we consider a fixed boundary, the involved boundary particles are 
fixed in place and should therefore not be considered as degrees of freedom of the system. 
Accordingly, the BKV elements along the fixed boundary are not activated. Disregarding the 
particles and the elements at the fixed boundary, there are 92 particles and 284 BKV elements 
in the lattice. 

The parameters of the hexagonal BKV lattice are chosen to match the macromaterial 
properties stated in Section 2.5, and are thus in accordance with the parameters of the hexag-
onal Hooke lattice previously considered in Section 2.6.2. The interparticle distance in the 
lattice is thus chosen as 0.2 m= , the mass of the inner particles is equal to 69.28 kgM =

and the stiffness of the springs in the BKV elements is equal to 18.48 MN meK = . Arbi-
trarily choosing a damping coefficient of 31 10 se

−=  , the damping constants of the dash-
pots in the BKV elements are obtained as 18.48 kNs me fC C= = . Additionally, the critical
friction force of the dry friction elements in the BKV elements is chosen relative to the am-
plitude of the applied pulse load as 0.4crF F= . As previously explained in Section 2.4.1, it 
follows from the geometry of respectively the boundary and the surface cells that the mass 
of the boundary and surface particles, as well as the damping and the stiffness of the BKV 
elements at the boundary and the surface of the lattice, depicted in Figure 2.19 by the blue 
line segments, are half of those of the regular particles and BKV elements.  

To induce additional occurrences of nonlinear behaviour, the considered irregular BKV 
lattice has a cluster of weak BKV elements, depicted in Figure 2.19 by the red line segments. 
The values for the parameters of these weak elements are chosen to be equal to 20% of the 

Figure 2.18: The hexagonal BKV lattice with a fixed boundary of dimension N equal to 4.
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corresponding values for the regular elements, given in Figure 2.19 by the black line seg-
ments. Thus, the springs in the weak BKV elements have a stiffness coefficient 

0.2 3.695 MN mweak
e eK K= =  and the corresponding dashpots have a damping coefficient 

0.2 3.695 kNs mweak weak
e f eC C C= = = . Additionally, the critical friction force of the weak 

BKV elements is chosen as 0.2 0.16weak
cr crF F F= = . 

Figure 2.20a and Figure 2.20b respectively depict the horizontal and vertical response of 
the loaded particle at the origin of the lattice, i.e. particle 0,0, to the single sinus pulse load 
applied at that particle, as a function of time. Here, the displacements are again normalized 
by dividing the actual displacements by the unit particle distance . In both figures, the con-
tinuous red line gives the displacement response of particle 0,0 in the irregular BKV lattice 
depicted in Figure 2.19. Additionally, the continuous blue line gives the response of a corre-
sponding Kelvin-Voigt lattice, thus with a fixed boundary, the same irregular particle ar-
rangement, the same viscoelastic properties ánd including the same cluster of weak elements. 
This corresponding Kelvin-Voigt lattice may be directly obtained from the irregular BKV 
lattice depicted in Figure 2.19 by choosing the properties of the BKV elements such that the 
slip- and lock-states do not occur. This can for example be achieved by choosing the critical 
friction force of the dry friction elements to be significantly larger than the amplitude of the 
applied loading and choosing the threshold distance at which lock occurs to be equal to zero 
for all BKV elements. 

In Figure 2.20, the time domain of the horizontal axes, has been chosen such that any 
nonlinear phenomena in the BKV lattice, being the occurrence of the slip- and/or lock-states 
in the BKV elements, occur within its domain. Here, only the initial displacement response 
of the loaded particle in respectively the BKV and Kelvin-Voigt lattices is given; beyond the 
domain of the response given in Figure 2.20, both the Kelvin-Voigt and BKV lattices behave 
exclusively viscoelastic until eventually all oscillations are damped out. The dashed red lines 
in Figure 2.20a and Figure 2.20b respectively give the final horizontal and vertical displace-
ments of the loaded particle that remain after all oscillations and reflections have dissipated 

Regular BKV elements
Boundary BKV elements
Weak BKV elements

F t( ) 16,0-16,0
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Figure 2.19: The irregular BKV lattice of dimension N equal to 8 with a cluster of weak BKV elements. 
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and the hexagonal BKV lattice has come to rest. As the Kelvin-Voigt lattice only behaves 
linearly, eventually all particles in the lattice return to their starting positions and thus the 
final horizontal and vertical displacements of the loaded particle in the Kelvin-Voigt lattice 
are equal to zero. Note here that although a nonzero final displacement of the loaded particle 
is evidence of the occurrence of nonlinear behaviour in the BKV lattice, a zero final displace-
ment does not necessarily mean that there have been no occurrences of nonlinear behaviour 
in the lattice.  

Regarding Figure 2.20a, note that the nonzero horizontal displacement of the loaded par-
ticle occurs exclusively due to the irregular particle arrangement of both the Kelvin-Voigt 
and BKV lattice; if the lattices were chosen to be regular, they would be symmetric and the 
loaded particle would at all times remain exactly at the symmetry line and not displace hori-
zontally. Despite the irregular particle arrangement of the lattices however, do note that for 
the loaded particle in both lattices, the horizontal displacements are significantly smaller than 
the vertical displacements. 

The first time one of the elements in the BKV elements transits to a slip- or lock state can 
be identified as the time moment at the which the response of the loaded particle in the BKV 
lattice starts to deviate from the response of the same particle in the Kelvin-Voigt lattice. To 
evaluate the nonlinear behaviour of the BKV lattice let us consider Figure 2.21a and Figure 
2.21b showing snapshots of the Kelvin-Voigt and BKV lattices at respectively time t1 and 
time t2. The points in the simulation at which the time moments t1 and t2 occur are given in 
Figure 2.20b. In Figure 2.21, the black line segments represent BKV elements that are in 
stick-state, which is clearly the majority of the elements in the BKV lattice. Furthermore, the 
blue line-segments represent BKV elements in slip-state, while the red line-segments repre-
sent BKV elements in lock-state. The elements of the Kelvin-Voigt lattice, which are not 
subject to the variation of motion states, are represented by the grey line segments. Here, the 
elements of the BKV lattice are shown in front of the Kelvin-Voigt lattice, so that if a Kelvin-
Voigt element is not visible, its position and angle coincides with the corresponding element 

Figure 2.20: Response of the loaded particle at the origin of an irregular hexagonal BKV lattice to  
a pulse load: a) horizontal displacement; b) vertical displacement.
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in the BKV lattice. 
In Figure 2.21a, which is the snapshot for time moment t1, the applied load and the particle 

motion is directed downwards, which coincides with the positive direction of the z-axis. Here, 
we can see that nonlinear phenomena primarily occur right underneath the applied load, as 
well as in the cluster of weak elements. In this snapshot, there are two BKV elements in slip-
mode, which are the two surface elements connected to the loaded particle. Furthermore, 
there are thirteen BKV elements in lock-state of which two are inner elements directly con-
nected to the loaded particle and nine locked elements are located in the compressed cluster 
of weak BVK elements. Note here that lock generally occurs in elements that are being com-
pressed, because the lock-state occurs when the distance between two particles becomes 
smaller than a certain threshold. Now, when slip occurs in an element under compression the 
shortening rate of that element increases significantly and therefore generally the threshold 
for lock is quickly reached thereafter. Thus, in compression, the magnitude of the slip-dis-
placements in the BKV elements is limited by the occurrence of lock, while in tension this is 
not the case. As a logical consequence, the resulting slip displacements in tension are much 
larger than those in compression, or one might say that slip occurs much more often in tension 
than in compression. This is illustrated by Figure 2.21b, which is the snapshot for time mo-
ment t2, where the applied load and the particle motion are directed upwards, coinciding with 
the negative direction of the z-axis. Here, six of the BKV elements in the weak cluster are in 
a slip-state due to the tension in these elements. Additionally, there are two surface elements 
in a lock-state due to the bending of the lattice surface. 

Because the lattice only describes the interaction between a particle and up to six particles 
that are directly adjacent in its initial configuration, we do not account for any interactions 
between any two particles that initially are not directly adjacent. From Figure 2.21a, we can 
see that this may lead to unwanted issues: at the time moment of this snapshot, the loaded 
particle does not interact with the particle directly underneath and closest by. In fact, the 
displacement of the loaded particle during this snapshot is not yet at its maximum and during 
this simulation the two involved particles will eventually overlap. If the interaction between 
the two particles would have been described by a rheological element, the occurrence of lock 
in that element would prevent the overlap from occurring. Such an issue can for example be 
resolved by considering a so-called extended hexagonal lattice [Askes and Metrikine, 2004] 
in which, next to the rheological elements that describe the interaction of an inner particle 
with its six closest neighbours, an additional six rheological elements are included for every 

b)a )

BKV: stick-state
BKV: slip-state
BKV: lock-state
Kelvin-Voigt lattice1=t t 2=t t

Figure 2.21: The motion-states in the BKV-lattice at a) time moment t=t1; b) time moment t=t2.
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inner particle to describe its interaction with the next six particles closest by. In this thesis 
however, we do not further consider the extended hexagonal lattice. 

Figure 2.22 shows the final position of all particles and elements in both the Kelvin-Voigt 
and BKV lattices. In accordance with Figure 2.19, the regular BKV elements, the boundary 
and surface elements, and the weak BKV elements are respectively given by the black, blue 
and red line segments. The elements in the Kelvin-Voigt lattice are given in grey. Whereas 
the Kelvin-Voigt lattice returns to its initial position, the BKV lattice does not. From Figure 
2.22 we can see that the largest deformations, i.e. the largest lasting elongations, have oc-
curred in the BKV elements directly connected to the loaded particle and those located in the 
cluster of weak BKV elements. Here, note that the final and permanent displacement of the 
lattice particles is upward, because the magnitude of the slip-displacements that have oc-
curred in the weak BKV elements are larger in tension than in compression. This can be 
explained by noting that the magnitude of the slip-displacements in the BKV elements is 
limited by the occurrence of lock, while in tension there is no limit to the slip-displacements. 

16,0-16,0

8,8-8,8

0,0

Regular BKV elements
Boundary BKV elements
Weak BKV elements
Kelvin-Voigt elements

Figure 2.22: Final position of all particles and elements in the Kelvin-Voigt and BKV lattices.
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3
One- and two-dimensional 

discrete-continuous systems 

As discussed in Section 1.1, it is our aim to describe the response of a medium to a dynamic 
load source by dividing that medium into a nonlinear domain in the vicinity of the load, i.e. 
the near field, and a linear domain that represents the far field of the medium. Whereas the 
preceding chapter discusses the one- and two-dimensional discrete lattice models used to 
describe the possible nonlinear response of the near-field domain, Chapters 3 and 4 specifi-
cally focus on the derivation and the performance of boundary integral equations used to 
represent the behaviour of the linear far-field domain at the interface with the near-field do-
main. In this chapter, we specifically focus on media for which the linear far-field domain is 
represented by a continuum, while Chapter 4 regards the linear far-field domain as a system 
of particles.  

The far-field domain is ideally represented if the corresponding interface conditions are 
formulated in such a way that any waves propagating through the discrete near-field lattice 
are not reflected at the interface. In the time domain, this boundary formulation consists of 
an integral force-displacement relation that represents the behaviour of the far-field domain 
at the interface with the near-field domain. In the frequency domain, or alternatively in the 
Laplace domain, this relation is commonly known as the dynamic stiffness relation, or in-
versely as the dynamic compliance relation. In Section 3.1, we further explain the concepts 
of dynamic stiffness and dynamic compliance, and discuss the corresponding force-displace-
ment relations for both one- and two-dimensional media. Subsequently, in Section 3.2, we 
consider a one-dimensional system composed of a one-dimensional BKV lattice in the near 
field and a one-dimensional continuum in the far field with the main aim to discuss the con-
cept and typical issues of accounting for the far field by a boundary formulation. In Section 
3.3, we discuss several one-dimensional discrete-continuous systems and their boundary for-
mulations. Here, additionally, the performance of the corresponding models is evaluated and 
compared qualitatively by considering the wave reflection at the discrete-continuous inter-
face. Then, in Section 3.4, we consider a discrete-continuous system for which the far-field 
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domain consists of a continuous rod of finite length and evaluate the performance of its 
boundary formulation to show that our approach is also applicable for media with finite di-
mensions.  

Section 3.5 considers the derivation of a boundary formulation for two-dimensional dis-
crete-continuous systems. Here, the integral force-displacement relations along the boundary 
of the near field domain are derived by modelling the far-field domain as a linear two-dimen-
sional continuum. Finally, in Section 3.6, the full system of equations of motion is derived 
for the two-dimensional discrete-continuous BKV system. Since we have not managed to 
successfully implement the boundary integral equations for the two-dimensional discrete-
continuous system, only the approach to derive the boundary formulation from modelling the 
far-field domain as a two-dimensional continuum is presented here, and actual results for the 
two-dimensional discrete-continuous BKV system are not included. Section 3.6 concludes 
with a discussion of the issues involved with the numerical implementation of a boundary 
formulation for a discrete near-field lattice, specifically when the far-field domain is mod-
elled as a two-dimensional continuum. 

3.1 Dynamic stiffness and dynamic compliance 
The dynamic interaction between two arbitrary media, thus independent of whether we are 
considering two lattices, two continua or a lattice and a continuum, can always be described 
using the so-called dynamic stiffness, or using its inverse known as the dynamic compliance. 

To explain the concept of dynamic stiffness, let us consider the interaction between the 
nonlinear and linear domains of an elastic medium due to a point load depicted in Figure 3.1. 
If we know the exact relation between the forces working on, and the displacements of, the 
linear-elastic medium lin

EV  at the interface Γ, we can describe the response of the linear-
elastic medium lin

EV  at the interface Γ, to loads applied at the nonlinear medium nonlin
EV , by 

this force-displacement relation. Statically, a force-displacement relation is described by the 
commonly known Hooke’s Law, where the ratio between force and displacement is given by 

Figure 3.1: a) A dynamic load applied to a medium; b) Laplace domain force-displacement relation  
at the interface between the linear and nonlinear domains of the medium.
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the stiffness. In dynamics, the relation between an applied dynamic force and the correspond-
ing displacement response is commonly described in the frequency or, as implemented in this 
thesis, in the Laplace domain by a force-displacement ratio known as the dynamic stiffness. 
For a pointwise contact between two one-dimensional media, this scalar relation reads: 

( ) ( ) ( )Int IntF s s u s= − (3.1) 

Here, the tilde over a variable denotes a variable in the Laplace domain and s is the complex-
valued Laplace parameter, so that ( )IntF s  and ( )Intu s  respectively denote the force on and 
the displacement of the interface in the Laplace domain, and ( )s  is the dynamic stiffness.  

For two-dimensional and three-dimensional media, the interface between any two sys-
tems is respectively described by a line and a plane. In the particular case where at least one 
of the two involved systems is a discrete particle system, the interface between the two sys-
tems is described by a set of points, either along a line or along a plane. The forces on, and 
the displacements of, the interface Γ due to the dynamic interaction of a linear and a nonlinear 
system are depicted in Figure 3.1b for the two-dimensional case. The Laplace domain force-
displacement relation at the interface of any two systems in either two- or three-dimensional 
space may be described by the dynamic stiffness matrix: 

( ) ( ) ( )Int IntF s s u s= − (3.2) 

Here, ( )IntF s  and ( )Intu s  are force and displacement vectors that respectively contain the 
forces applied at, and the displacements of, the set of points along the interface. 

As stated at the beginning of this section, the force-displacement relation described by 
the dynamic stiffness may alternatively be described by its inverse known as the dynamic 
compliance. The dynamic compliance generally describes the Laplace domain force-dis-
placement relation in terms of the displacement at an interface ( )Intu s  and the force at that 
interface ( )IntF s  as: 

( ) ( ) ( )Int Intu s s F s= − (3.3) 

The dynamic compliance ( )s  is either a scalar or a matrix depending on the dimensions of 
the system considered and is the inverse of the dynamic stiffness.  

For many one-dimensional systems, expressions for both the dynamic stiffness and the 
dynamic compliance can be derived analytically from classical elastodynamics. In some rare 
cases the corresponding time domain expressions can also be derived analytically, but in most 
cases these time domain relations must be evaluated numerically. In this thesis, we will derive 
analytical expressions for the dynamic stiffness and dynamic compliance for several of these 
one-dimensional systems. Additionally, we will show that for the numerical evaluation of 
these systems the use of the dynamic compliance is generally preferred over the use of the 
dynamic stiffness.  
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For two- and three-dimensional systems, there are some rare occasions where analytical 
expressions for the dynamic stiffness and dynamic compliance relations can be derived from 
known analytical expressions for the Green’s functions. Generally however, numerical 
boundary methods are required to obtain the dynamic stiffness and compliance matrices. For 
the two-dimensional continua discussed in Sections 3.5 and 3.6, we derive these dynamic 
stiffness and compliance matrices by means of the indirect Boundary Element Method start-
ing from the dynamic reciprocal work theorem [de Hoop, 1966].  

3.2 The one-dimensional discrete-continuous BKV system 
As an example of a medium that describes the behaviour near a load source by a nonlinear 
model, while at an appropriate distance the behaviour is described linearly, in this section we 
describe the near field as a one-dimensional lattice composed of nonlinear BKV elements, 
while the far field is described by a semi-infinite viscoelastic rod. The resulting one-dimen-
sional discrete-continuous system is depicted in Figure 3.2. The one-dimensional BKV lattice 
consists of N particles and N-1 BKV elements, where each particle n has a mass Mn and the 
distance between any two adjacent particles is denoted as . The semi-infinite viscoelastic 
rod has a density ρ, cross-section area A, Young’s modulus E and damping coefficient ζe. The 
one-dimensional BKV lattice and the semi-infinite viscoelastic rod are connected at the par-
ticle N, which is fixed to the viscoelastic rod at coordinate Intx x= . The semi-infinite visco-
elastic rod must be located at such a distance from the applied load ( )F t , that nonlinear 
phenomena occur only in the one-dimensional BKV lattice and do not reach the rod. There-
fore, the number of particles N is chosen large enough to assure that no sliding occurs in the 
BKV element between particles N-1 and N. In accordance with the designation of particles 
and cells in the hexagonal lattice as introduced in Section 2.4, we respectively refer to particle 
1, at the tip of the BKV system, and particle N, at the lattice-rod interface, as the surface 
particle and the boundary particle. 

The equation of motion for the semi-infinite viscoelastic rod is the commonly known one-
dimensional wave equation in which the Young’s modulus E is replaced by the so-called 
dynamic modulus of elasticity Ê , which describes the viscoelastic behaviour of the rod 
through the operator ( )ˆ 1 e tE E  


= + . The one-dimensional wave equation for the viscoe-

lastic rod may thus be written as: 

( ) ( ) ( ), , , 0eAu x t EA u x t EAu x t   − − = (3.4) 

Figure 3.2: The one-dimensional semi-infinite discrete-continuous BKV system. 
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Here, ( ),u x t  is the axial displacement in the semi-infinite rod at a coordinate x, where 
Intx x , and ζe is a coefficient that describes the viscous material damping in the rod. Fur-

thermore, Newton’s or dot notation is used for differentiation to time and Lagrange’s nota-
tion, or prime notation, is used for differentiation to space. 

The interaction between the semi-infinite viscoelastic rod and the lattice is described by 
two interface conditions respectively describing the balance of forces and the displacement 
continuity at the lattice-rod interface. Here, the force that the lattice applies upon the semi-
infinite rod follows from the equation of motion of particle N excluding the rod, while the 
force that the rod applies upon the lattice is given by the normal force at the tip of the rod. 
The two interface conditions at the lattice-continuum interface at coordinate Intx x=  thus 
read: 

( ) ( ), ,e e e Int IntM u C e K e EA u x t EAu x t  + + = +N N N-1,N N-1,N N-1,N N-1,N (3.5) 

( ),Intu u x t=N (3.6) 

Here, eN-1,N  and eN-1,N  are respectively the elongation and the elongation rate of the BKV 
element between particles N-1 and N as defined by equation (2.4). Note here that the elon-
gation constant B

N-1,N  of the Bingham element between particles N-1 and N is omitted be-
cause the involved BKV element is not allowed to behave nonlinearly and the Bingham ele-
ment may therefore not be activated. 

In the following, we will first discuss the relations between the parameters of the one-
dimensional BKV lattice and the viscoelastic rod that allow us to consider the one-dimen-
sional discrete-continuous system as a homogeneous system at low frequencies. Subse-
quently, in Section 3.2.2, we will derive the dynamic stiffness for the viscoelastic rod as well 
as a Laplace domain boundary relation that describes the reaction of the viscoelastic rod to 
the motion of the boundary particle. Then, the corresponding time domain relations are de-
rived in Section 3.2.3 and the governing system of equations of motion is presented in Section 
3.2.4. Finally, we will discuss the resulting longitudinal response of the one-dimensional dis-
crete-continuous BKV system to an arbitrary applied dynamic load in Section 3.2.5. 

3.2.1 Matching the parameters of the lattice and the continuous rod 
To correctly describe the behaviour of a homogeneous medium that is partly modelled by a 
lattice and partly by a continuum, any waves propagating through the medium should ideally 
not be aware of the interface between the lattice and the continuum. Their interaction must 
thus be such that waves do not reflect at the lattice-continuum interface, or any reflections 
that do occur should at least be minimal. Since we model the viscoelastic rod to be semi-
infinite, the ideal lattice-continuum interface is silent and the viscoelastic rod should provide 
a non-reflective boundary to the one-dimensional lattice. 

In the one-dimensional BKV lattice, previously discussed in Section 2.3, the parameters 
of the particles and rheological elements are associated with particle numbers to allow us to 
differentiate the material parameters along the lattice. Even though both lattice and 
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continuum represent the same material and must principally have the same physical proper-
ties, the one-dimensional BKV lattice allows for nonlinearities and therefore a certain varia-
bility of the parameters along the lattice is allowed for. However, to minimize any wave 
reflections, the one-dimensional discrete-continuous BKV system comprised of lattice and 
rod together must be homogeneous in the region of the lattice-continuum interface. There-
fore, close to the interface, the BKV lattice must be linear and the mass of the lattice particles, 
as well as the stiffness and the damping of the involved BKV elements, with the exception 
of any particle or element directly located at the interface, are constant and respectively de-
noted as M, Ke and Ce. The relations between these constant parameters of the one-dimen-
sional BKV lattice and the material properties of the viscoelastic rod are found noting that 
the equations of motion for the one-dimensional BKV lattice must in the long-wave limit 
reduce to the equations of motion for the viscoelastic rod [Maradudin et al., 1971; Suiker et 
al., 2001a]. Note here that for comparison with the viscoelastic rod, only the linear behaviour 
of the one-dimensional BKV lattice should be considered. The equation of motion for a par-
ticle n in the linearly behaving one-dimensional BKV lattice may therefore be obtained from 
equation (2.10) by assuming that all BKV elements always remain in stick. This means that 
the Bingham elements are not activated and their elongation-constants, denoted in equation 
(2.10) as B

n-1,n  and B
n,n+1 , are equal to zero at all times and may be omitted. By considering 

the long-wave limit, we assume small elongations and may use the expression for the elon-
gations of the BKV elements according to Appendix A.1. The equation of motion for a par-
ticle n in the linearly behaving homogeneous one-dimensional BKV lattice thus reads: 

( ) ( )2 2 0e eMu C u u u K u u u+ − − + − − =n n n-1 n+1 n n-1 n+1 (3.7) 

To obtain the behaviour in the long-wave limit, we continualize the above homogeneous 
equation of motion by replacing the particle displacement un by a displacement ( ),u x t  and 
subsequently applying a Taylor series expansion with respect to this displacement. The dis-
placements un-1 and un+1 of adjacent particles n-1 and n+1 are then replaced by second order 
Taylor polynomials of the displacement ( ),u x t , and read: 

( ) ( ) ( ) ( )
2

, , , , .
2

u u x t u x t u x t u x t =  =  +n±1

Here,  is the distance between two adjacent particles in the one-dimensional BKV lattice. 
The Taylor expansion of the homogeneous equation for particle n yields the equations of 
motion for the linearly behaving homogeneous one-dimensional BKV lattice in the long-
wave limit as: 

( ) ( ) ( )2 2, , , 0e eMu x t C u x t K u x t − − = (3.8) 

As the lattice and the rod describe the same homogeneous medium, their mass per unit length 
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must be equal. From the geometry of the discrete-continuous system depicted in Figure 3.3, 
it follows that the mass per unit length in the lattice and the rod match when M A= . Thus, 
the one-dimensional wave equation for the viscoelastic rod, given by equation (3.4), and the 
equation of motion for the homogeneous one-dimensional BKV lattice in the long-wave 
limit, given by equation (3.8), coincide when the following relations are satisfied: 

, , .e e e
EA EAM A C K = = = (3.9) 

Note here that the coefficient ζe, which was originally introduced to describe the material 
damping of the viscoelastic rod, can also be used to relate the damping and stiffness of the 
rheological elements in the one-dimensional BKV lattice. 

By choosing the tip of the rod, and thus the point of interaction between the lattice and 
the viscoelastic rod, to be located at a particle as depicted in Figure 3.3a, both the surface and 
the boundary particle N geometrically only represent half the unit length. To maintain a ho-
mogeneous distribution of the mass along the lattice, the masses M1 and MN of respectively 
the surface and the boundary particle are half the mass of a particle n in the interior of the 
one-dimensional lattice. Due to this distribution of the particles along the lattice, the proper-
ties of all rheological elements in the one-dimensional lattice are equal.  

Alternatively, as depicted in Figure 3.3b, we may also choose to distribute the lattice 
particles along the one-dimensional lattice such that the masses of all particles are equal. In 
that case, there will not be a particle at the tip of the one-dimensional system, nor at the 
lattice-rod interface. It then follows from the geometry of the lattice that the lengths of the 
rheological elements at the tip of the system and at the lattice-rod interface are equal to half 
the unit length, i.e. 1

2 . For the tip and interface elements to behave in accordance with the 
rheological elements in the interior of the one-dimensional lattice, the stiffness and damping 
of these elements must be twice the stiffness and damping of the interior elements. This can 
be straightforwardly verified by comparing the behaviour of two of these half-springs in 

Figure 3.3: Distribution of particles along the one-dimensional lattice, where:  
a) all springs have equal properties; b) all particles have equal masses.
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series, each with a length 1
2 , with the behaviour of a single spring with length . Here, note 

that due to a lack of a mass and thus a lack of inertia at the tip of the system, any force applied 
at this tip yields an equal reaction force in the corresponding rheological element, thereby 
applying the same force on the first, i.e. leftmost, particle. Applying a load at the tip of the 
system depicted in Figure 3.3b, is thus equivalent to applying that load at the first particle. 

The above is confirmed by Metrikine et al. [2014], where the wave reflection at the inter-
face between a semi-infinite one-dimensional Hooke lattice and a semi-infinite linear-elastic 
rod is considered. In this contribution, it is shown that there will be no reflection in the long-
wave limit as long as the stiffness of the spring at the interface, denoted as eK N-1,N , and the 
mass of the boundary particle MN satisfy the following relation: 

2
2
e

e
K MK

M M
=

+

N-1,N
N (3.10) 

Equation (3.10) gives the relation between the spring stiffness and the interface mass at the 
interface in its dimensional form, while in the original contribution by Metrikine et al. [2014], 
this relation is given in its dimensionless form. 

The two alternatives depicted in Figure 3.3a and in Figure 3.3b respectively assume either 
that 1

2M M=N  and e eK K=N-1,N , or that 0M =N  and 2e eK K=N-1,N . Both suggested com-
binations of mass and stiffness at the lattice-continuum interface satisfy equation (3.10), but 
it should be noted that these are only two particular cases and, depending on the properties 
of the considered one-dimensional continuum, other combinations of these parameters may 
be more appropriate. Metrikine et al. [2014] for example show that for a system consisting 
of a one-dimensional Hooke lattice and a one-dimensional undamped second-order gradient 
continuum, minimal reflection in the long-wave limit is achieved for 0.4079M M=N and 

1.1014e eK K=N-1,N . 
The reflection and transmission of waves at the discrete-continuous interface is further 

discussed in Section 3.3 for several one-dimensional discrete-continuous media. 

3.2.2 Dimensionless boundary equation in the Laplace domain 
To consider the fundamental properties of the discrete-continuous BKV system, we normal-
ize it by introducing the following dimensionless parameters as derived in Appendix B.1: 

dim dim ;dim ;dim1
dim 0 02, , , , , .

2
e e

e e e
crit

C Ku Mt t u M C K
A C EA

   


= = = = = =

n,n+1 n,n+1n n
n n n,n+1 n,n+1

Here, ω0 and Ccrit are respectively the so-called particle frequency and critical particle damp-
ing of the homogeneous one-dimensional BKV lattice in its linear regime that respectively 
describe the natural frequency and the critical damping of the lattice particles for the case 
that the motion of its adjacent particles is impeded. As derived in Appendix B.4, the particle 
frequency and critical particle damping of the homogeneous one-dimensional viscoelastic 
lattice are respectively obtained as 0 2 eK M =  and 0critC M= . Furthermore, ζ is the 
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damping ratio of the one-dimensional BKV lattice in its linear regime, so that e critC C = . 
To keep the number of variables in this thesis to a minimum, the same notations are adopted 
for both dimensional and dimensionless variables. In their direct relations however, the di-
mensional variables are given the subscript dim. 

Using the above dimensionless variables, the dimensionless wave equation for the visco-
elastic rod, valid only for Intx x , and the two dimensionless interface conditions, respec-
tively describing the force equilibrium and the displacement continuity at the lattice-contin-
uum interface, previously described by equations (3.4) to (3.6) respectively, now read: 

( ) ( ) ( )1
2, , , 0u x t u x t u x t  − − = (3.11) 

( ) ( )1
2, ,e e Int IntM u C e K e u x t u x t  + + = +N N N-1,N N-1,N N-1,N N-1,N (3.12) 

( ),Intu u x t=N (3.13) 

To determine the dynamic stiffness of the rod, we apply the Laplace integral transform with 
respect to time assuming zero initial conditions. This yields equations (3.11) to (3.13) in the 
Laplace domain as: 

( ) ( ) ( )2 1
2, 1 2 , 0s u x s s u x s − + = (3.14) 

( ) ( ) ( )2 1
2 1 2 ,e e IntM s u C s K e s u x s + + = +N N N-1,N N-1,N N-1,N (3.15) 

( ),Intu u x s=N (3.16) 

Introducing 1 2s s s = + , the general solution to equation (3.14) reads:

( ) 2 2
1 2, s x s xu x s A e A e − += + (3.17) 

Here, A1 and A2 are unknowns that follow from the rod’s boundary conditions. Since the 
complex-valued Laplace parameter s in terms of the dimensionless frequency Ω is known as 

is = +  and σ is a small positive real value, it follows that ( )Re 0s  . Then, the damping 
ratio ζ is by definition positive and real, so that ( )Re 1 2 0s+  . If we then choose the square 
root in s  such that its real part is positive, i.e. ( )Re 1 2 0s+  , it can be proven mathe-
matically that the real part of s  is also always positive, i.e. ( )Re 0s  . Thereby, the first 
term in equation (3.17) satisfies the infinity condition, i.e. the wave amplitude decays with 
increasing distance from the source, while the second term does not. Thus, by requiring that 
the displacement ( ),u x s  must be zero at a positive infinite distance from the interface, the 
general solution to equation (3.14) becomes: 

( ) 2
1, s xu x s A e −

= (3.18) 

Here, the amplitude A1 is not relevant for the dynamic stiffness of the rod, because the 
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derivative of equation (3.18) with respect to space at Intx x=  may be expressed as: 

( ) ( )2
1, 2 2 ,Ints x

Int Intu x s s A e s u x s
 

− = − = − (3.19) 

Substituting the interface displacement relation (3.16) into equation (3.19) and subsequently 
substituting the remainder into equation (3.15) allows us to express the equation of motion 
of particle N at the one-dimensional lattice-continuum interface in the Laplace domain as: 

( ) ( )2 0e eM s u C s K e s u+ + + =N N N-1,N N-1,N N-1,N N (3.20) 

Here, the dynamic stiffness ( )s  for the viscoelastic rod is found as: 

( ) ( )1 1
2 22 1 2 2 4s s s s s  = + = + (3.21) 

Equation (3.20) is the Laplace domain boundary formulation that describes the interaction 
between the one-dimensional BKV lattice and the viscoelastic rod at their interface. Herein, 
the behaviour and the properties of the viscoelastic rod are effectively represented by the 
dynamic stiffness as given by equation (3.21). This dynamic stiffness is in turn derived from 
the boundary value problem for the semi-infinite viscoelastic rod at the interface between 
lattice and rod such that the response of the rod, i.e. the linear far-field domain, does not 
separately have to be accounted for. 

3.2.3 Governing boundary integral equation in the time domain 
Applying the inverse Laplace integral transform to the force-displacement relation (3.20) 
yields the equation of motion for the boundary particle N in the time domain as: 

( ) ( )
0

0
t

e eM u C e K e t u d   + + + − =
N N N-1,N N-1,N N-1,N N-1,N N (3.22) 

In few cases, the time domain function ( )t , found as the inverse Laplace transform of the 
dynamic stiffness, can be derived analytically. For example, for the linear-elastic rod, dis-
cussed in Appendix D.1, the dynamic stiffness is found as ( ) 1

2 2s s = . In the time domain, 
the linear-elastic rod may therefore be considered as a dashpot with a dimensionless damping 
coefficient 1

2 2rodC = and the corresponding boundary formulation becomes an ordinary 
differential equation. For the viscoelastic rod however, the time domain function ( )t  can-
not be derived analytically and must be obtained numerically instead. 

Application of the inverse Laplace transform requires integration over the semi-infinite 
domain of the Laplace parameter s and thus, to obtain the inverse Laplace transform numer-
ically, we truncate its domain of integration. Truncating the domain of integration of any 
integral, is only allowed if the integrand properly converges within the truncated domain. 
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Ergo, noting the dependency of the Laplace parameter on frequency, we can only directly 
apply the inverse Laplace transform numerically if the dynamic stiffness ( )s  decreases 
sufficiently fast for increasing frequencies, and as depicted by Figure 3.4a, the dynamic stiff-
ness given by equation (3.21) grows with frequency. Here note that for some cases, the in-
verse Laplace transform may still be evaluated numerically, but only if we are able to subtract 
an expression from the dynamic stiffness for which the inverse transform may be obtained 
analytically, and the remaining integrand converges within the truncated domain. For the 
dynamic stiffness of the viscoelastic rod however, at least to the knowledge of the author of 
this thesis, such an expression is not available.  

To overcome this, we divide the equation of motion for particle N at the one-dimensional 
lattice-continuum interface in the Laplace domain, given by equation (3.20), by the dynamic 
stiffness ( )s . This yields the interface equation of motion as: 

( ) ( ) 2 0e eu s M s u C s K e+ + + =N N N N-1,N N-1,N N-1,N (3.23) 

Here, ( )s  is the dynamic compliance of the viscoelastic rod, which is the inverse of the 
dynamic stiffness ( )s  given by equation (3.21), and is found for the viscoelastic rod as: 

( )
2

2 4
s

s s



=

+
(3.24) 

The dynamic compliance of the semi-infinite viscoelastic rod, given by equation (3.24), is 
depicted in Figure 3.4b as a function of dimensionless frequency by substituting is =   for 
an arbitrary damping ratio 0.5 = . Figure 3.4 shows that while the dynamic stiffness in-
creases for increasing frequencies, the dynamic compliance decreases and tends to zero for 
increasing frequencies. 

Applying the inverse Laplace transform to equation (3.23) now yields the equation of 
motion for the particle N in the time domain, i.e. the boundary integral equation, as: 

( ) ( )
0

0
t

e eu t M u C e K e d   + − + + =
N N N N-1,N N-1,N N-1,N N-1,N (3.25) 

Although we are unable to obtain a time domain expression from the dynamic stiffness given 
by equation (3.21) analytically, we can analytically obtain a time domain expression by ap-
plying the inverse Laplace transform to the expression for the dynamic compliance ( )s  
given by equation (3.24). Within the domain of the integral in equation (3.25), this yields: 

( ) 2erf
2
tt


= (3.26) 
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Here, ( )erf  is the error function, or Gauss error function. 
To include equation (3.25) in an explicit system of ordinary differential equations that 

can be evaluated numerically, we isolate the terms that describe the acceleration of particle 
N at time t. Solving the convolution integral in equation (3.25) by for example using the 
trapezium rule, or any higher order quadrature rule, we can isolate the acceleration term uN  
at the current time t. This acceleration term is then multiplied by the time domain expression 
for the dynamic compliance ( )t −  at t = , i.e. ( )0t = . Unfortunately, the value of the 
time domain expression for the dynamic compliance of the viscoelastic rod at 0t =  follows 
from equation (3.26) as ( )0 0t = = , so that this acceleration term is removed from equation 
(3.25). Instead, we therefore differentiate equation (3.25) to time. Using Leibniz’ integral 
rule for differentiation of integrals [Abramowitz and Stegun, 1972; Woods, 1926], and taking 
into account that ( )0 0t = = , the boundary integral equation becomes: 

( ) ( )
0

0
t

e eu t M u C e K e d   + − + + =
N N N N-1,N N-1,N N-1,N N-1,N (3.27) 

Here, ( )t  is the time derivative of the time domain expression for the dynamic compliance 
as given by equation (3.26), which follows directly from the definition of the error function. 
Within the domain of the integral in equation (3.27), the expression for ( )t  is found as: 

( )
1
2 tet

t






−

= (3.28) 

Note here that the time derivative of the time domain expression for the dynamic compliance 
can be considered as a time domain expression for the (mechanical) admittance, or inversely 
for the (mechanical) impedance, in the sense that this expression may also be obtained as the 
inverse Laplace transform of a force-velocity relation in the Laplace domain. The time 

Figure 3.4: a) The dynamic stiffness of the semi-infinite viscoelastic rod;  
b) The dynamic compliance of the semi-infinite viscoelastic rod.
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dependencies of the time domain expressions given by equation (3.26) and (3.28), which we 
henceforth refer to as the time domain dynamic compliance and the time domain admittance 
respectively, are given by Figure 3.6 in Section 3.3.1, in which the time domain dynamic 
compliances and admittances for several semi-infinite rods are compared. 

It follows from equation (3.28) that the time domain admittance is singular at 0t = , but 
integrable. Thus, despite its singularity, the convolution integral in the interface equation of 
motion given by (3.27) may still be evaluated. To isolate the terms that describe the motion 
of particle N at time t, we rewrite equation (3.27) as: 

( ) ( ) ( ) ( )
0

0
t t t

t t

u t F d t F d       
−

−

+ − + − = 
N N N (3.29) 

Here, ( )F tN  denotes the force applied by the lattice onto the viscoelastic rod at the lattice-
continuum interface, which in equation (3.27) equals the term between accolades. Further-
more, evaluating the integral on the domain  0, t t = −  numerically using for example the 
trapezium rule, where Δt is the applied time interval. The integral over the domain 

 ,t t t = −  however, is solved analytically by assuming that the force ( )F N within this 
domain may be described as a linear function aτ+b. This is well within the error of applying 
the trapezium rule, for which the whole integrand is assumed to be linear between any two 
integration points.  

Substituting equation (3.28) into the rightmost term, as well as assuming the given linear 
function for the force ( )F N  yields the equation of motion of the boundary particle N as: 

( ) ( )
( )

( )
( )

1
2

0

0
tt t t

t t

eu t F d a b d
t

 

     
 

− −−

−

+ − + + =
−

 
N N (3.30) 

By assuming that the force is linear and found as ( )F t at b= +N , it must logically follow 
that at time t-Δt, the corresponding force is found as ( ) ( )F t t a t t b− = − +N . From this 
we can obtain expressions for the unknowns a and b respectively as: 

( ) ( ) ( ) ( ) ( )
, .

F t F t t tF t t t t F t
a b

t t
− − − − −

= =
 

N N N N

Substituting the above expressions for the unknowns a and b into equation (3.30) and solving 
the rightmost integral analytically yields the equation of motion of the particle N at the lattice-
continuum interface in the one-dimensional discrete-continuous Kelvin-Voigt system as: 

( ) ( ) ( ) ( )1 2

0

0
t t

e eu B M u C e K e B F t t t F d   
−

+ + + + − + − =
N N N N-1,N N-1,N N-1,N N-1,N N N (3.31) 



70 

Here, the terms B1 and B2 are respectively found as: 

2
1 2 2

22erf , erf 2 .
2 2

tt tB B B e
t t

 

  


− 

= − = −
 

Equation (3.31) can be considered as an ordinary second-order differential equation because 
the term ( )2B F t t−N , as well as the remaining integral, only consider the motion of the 
boundary particle N prior to time t and are therefore constants during the current time step. 

Since the expressions for the equation of motion for the boundary particle according to 
equations (3.25) and (3.27) are very similar, the approach that yields the final equation of 
motion (3.31) from equation (3.27) may also seem applicable to equation (3.25). This how-
ever is not the case, because the time domain expression for the dynamic compliance 
( )t −  at t =  in equation (3.25) is equal to zero, i.e. ( )0 0t = = , so that the contribu-

tion of the integral over the domain  ,t t t = −  is very small. In fact, compared to the 
contribution of the integral over the domain  0, t t = − , the contribution of the current 
time step can be considered negligible. In any system of equations of motion, even a small 
multiplicator of the acceleration at the current time step yields an ill-conditioned mass matrix, 
so that the almost negligible multiplicator of the acceleration according to equation (3.25) 
consequently leads to numerical instability. On the other hand, the contribution of the integral 
in equation (3.27) over the domain  ,t t t = −  is significant as the time domain admittance 
approaches infinity in the limit of t → 0, while the corresponding convolution integral over 
this domain is still integrable and yields a finite non-zero value. 

3.2.4 Governing equations for the 1D discrete-continuous BKV system 
The equations of motion for the one-dimensional BKV lattice were previously derived in 
Section 2.3 for each of the admissible motion states separately, i.e. with respectively all ele-
ments in either one of the admissible motion states. As each BKV element in the one-dimen-
sional BKV lattice may behave according to different motion states, we here introduce a more 
general version of the system of equations of motion allowing for the variation of motion 
states along the one-dimensional BKV lattice. Including the time-dependent force ( )F t  ap-
plied to particle 1, the dimensionless equations of motion for particles =n 1 N -1  are gen-
erally expressed as: 

( )e state e state lockM u C e K e F F t− − − =1 1 1,2 1,2 1,2 1,2 1,2 (3.32) 

0state e state e statelock lockM u F F C e K e F+ + − − − =n n n-1,n n-1,n n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 (3.33) 

These equations are normalized using the dimensionless parameters specified at the start of 
Section 3.2.2. In addition, note that the dimensionless external force is related to its dimen-
sional counterpart as ( ) ( )dim 2F t F t EA= . Depending on the motion state, stateen,n+1 gives the 
relevant elongation of the element between particles n and n+1 and stateF n-1,n  describes the force 
that is applied to particle n by the BKV element between particles n-1 and n, while lockF n-1,n
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and lockF n,n+1  give the forces in the parallel springs that are activated only when the correspond-
ing BKV elements are in lock-state. 

Expressions for Stick 
For a BKV element between particles n and n+1 that is in stick-state, we find: 

, , 0.state state e state e stateB locke e F C e K e F= − = + =n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1

Here, note that the expression for stateen,n+1  is also incorporated in the expression for stateF n,n+1 . 

Expressions for Slip 
Accordingly, for a BKV element between particles n and n+1 that is in slip-state, we find: 

:, sgn , 0.state state crKV Bf B slip locke e F C e F F F= = + =n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1

Here, the dimensionless parameters for the damping and the critical friction force in the Bing-
ham element are respectively related to their dimensional counterparts as: 

, ,
;dim ;dim, ,, .

2
f cr

crf
crit

C F
C F

C EA
= =

n n+1 n n+1
n n+1 n n+1  

For any BKV element that is in slip, the equation of motion for the corresponding slip-node 
must be added to the system of equations of motion. For the slip-node intermediate particles 
n and n+1, the dimensionless equation of motion follows from equation (2.13) as: 

:sgn 0e e crKV KV Bf B slipC e K e C e F F+ − − =n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 (3.34) 

Expressions for Lock 
Finally, for a BKV element between particles n and n+1 that is in lock-state, we find: 

( )0, , .state state e state e stateB lock locke e F C e K e F K e D= − = + = + n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1

Equations (3.32) to (3.34), together with the equation of motion for particle N given by equa-
tion (3.31), describe the full system of equations for the one-dimensional discrete-continuous 
BKV system. Note here that since the lattice must be linear in the region of the interface, the 
equation of motion for the boundary particle N is not subject to the variation of motion states. 

3.2.5 Response of the one-dimensional discrete-continuous BKV system 
Figure 3.5 shows the longitudinal response of a one-dimensional discrete-continuous BKV 
system consisting of 80 particles at ten consecutive time moments to an applied pulse load. 
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As stated in Section 2.5, the material properties of the one- and two-dimensional media con-
sidered in this thesis are chosen to represent a non-cohesive soft soil. The Young’s modulus 
of the continuum is thus equal to 20 MPaE =  and has a mass density 32000 kg m = , so 
that the longitudinal wave velocity in the rod is found as 100 m sc = . Additionally, the 
cross-sectional area of the rod follows from assuming unit second and third dimensions dy 
and dz, so that the cross-sectional are is equal to 21 mA dy dz=  = . Furthermore, we choose 
a rather high damping ratio of 0.75 =  to emphasize the influence of the damping on the 
response of the one-dimensional discrete-continuous BKV system. Choosing the interparticle 
distance in the one-dimensional BKV lattice as 0.2 m=  and additionally substituting the 
continuum material properties into equation (3.9), the mass of the particles and the stiffness 
of the springs in the one-dimensional BKV lattice are respectively obtained as 400 kgM =  
and 100 MN meK = . Consequently, the particle frequency is obtained as 0 707.1 rad s =

and the critical particle damping in the lattice is obtained as 282.8 kNs mcritC = . The given 
damping ratio thus corresponds to a damping coefficient 212.1 kNs me fC C= = in the 
dashpots of the lattice. 

At particle 1, a pulse load ( )F t  is applied that consists of a single sinus period. In its 
dimensionless form, this pulse load may be expressed as: 

( ) ( ) ( ) ( )sin .F FF t F t H T t H t=  −

Here, F  is the dimensionless force amplitude, while ΩF and TF are the dimensionless angular 
frequency and the period of the sinus in the pulse load, respectively. The dimensional force 
amplitude and the angular frequency of the pulse load are chosen as dim 1 MNF =  and 

80 rad sF =  respectively. The latter corresponds to a dimensionless frequency of the sinus 
in the applied single-sinus pulse load of 0.113F = . 

Figure 3.5: Displacement along the one-dimensional discrete-continuous BKV system  
at successive time moments due to a single sinus pulse load.
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The dashed blue lines in Figure 3.5 show the response of the discrete-continuous BKV 
system, where the critical friction force of all nonlinear Bingham elements is chosen as 

crF F . For this situation, the Bingham elements are not activated and all BKV elements 
remain in stick, so that the response is exclusively viscoelastic. It can be seen from Figure 
3.5 that the propagating wave is transmitted almost completely into the semi-infinite viscoe-
lastic rod. As verified upon closer examination, there is a small reflection at the discrete-
continuous interface. Due to the relatively large damping, this reflection quickly dissipates 
in the one-dimensional BKV system. Although the system of equations of motion for the 
considered BKV system involves the numerical evaluation of a convolution integral, the re-
flection at the discrete-continuous interface is only marginally influenced by the consequent
numerical error. Instead, the reflection is largely induced by the differences between the dis-
crete one-dimensional BKV lattice and the continuous viscoelastic rod. This can analytically
be verified for an equivalent undamped system, denoted as the one-dimensional discrete-
continuous Hooke system, where this reflection is more pronounced. The reflection coeffi-
cients for the discrete-continuous interface in respectively the one-dimensional Hooke and
BKV systems are further discussed in Section 3.3. 

The continuous red lines in Figure 3.5 show the response of the one-dimensional discrete-
continuous BKV system, where the BKV elements generally have a critical friction force 

0.8crF F= to allow for the activation of the nonlinear Bingham elements. To amplify occur-
rences of nonlinear behaviour in the one-dimensional BKV lattice a segment of weak BKV 
elements is introduced between particles 20 40=n . For these BKV elements, the critical 
friction force and the damping coefficient are respectively chosen as 0.4crF F=n,n+1  and 

169.7 kNs me fC C= =n,n+1 n,n+1 . The latter corresponds to a damping ratio of 0.6 = , which 
is 80 percent of the damping in the other BKV elements. 

Figure 3.5 shows that the wave induced by the applied pulse load is partly reflected at the 
weak segment of the one-dimensional BKV lattice, which is due to the different properties 
of the elements between particles 20 40=n . The initial wave induced by the applied pulse 
load, as well as the secondary wave after full reflection at particle 1, are fully transmitted into 
the semi-infinite viscoelastic rod. Independent of whether nonlinearities are present or not, 
Figure 3.5 thus shows that the wave reflection at the discrete-continuous interface is minimal. 
For the nonlinear response of the one-dimensional BKV system, approximately the first 30 
particles remain displaced after the pulse load has passed and is dissipated from the system. 
These irreversible displacements testify the occurrence of nonlinear events within this do-
main of the one-dimensional BKV lattice. In fact, for this particular simulation, in total 108 
nonlinear events occurred, which means that 108 times a BKV element within the one-di-
mensional BKV lattice was subject to a state-transition. 

The numerical simulation to obtain Figure 3.5 was performed using Fortran, where the 
initial-value problem of the corresponding system of ordinary differential equations was 
solved with the Runge-Kutta method by means of the Fortran-library RK-suite [Brankin and 
Gladwell, 1997].  
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3.3 An evaluation of several 1D discrete-continuous systems 
The preceding section extensively discusses the one-dimensional discrete-continuous BKV 
system, consisting of a one-dimensional BKV lattice in the near field and a semi-infinite 
viscoelastic rod in the far field, and the derivation of a boundary integral equation to replace 
the viscoelastic rod. The systems of equations of motion for equivalent one-dimensional sys-
tems that are composed of a one-dimensional Hooke or a Prandtl lattice in the near field and 
a linear-elastic rod in the far field, or of a one-dimensional Kelvin-Voigt lattice in the near 
field and a viscoelastic rod in the far field, can be straightforwardly derived from the equa-
tions for the discrete-continuous BKV system. The resulting one-dimensional semi-infinite 
discrete-continuous systems are individually discussed in Appendix D. Note here that Ap-
pendix D additionally considers several discrete-continuous dispersive systems, i.e. systems 
on an elastic foundation. 

In the following, the performance of several one-dimensional semi-infinite discrete-con-
tinuous systems is evaluated and compared. First, the dynamic compliances of the involved 
semi-infinite rods are presented in Section 3.3.1, after which the quality of the corresponding 
boundary integral equations is evaluated by considering the reflection of an incident wave at 
the discrete-continuous interface for each of these systems in Section 3.3.2. 

3.3.1 Dynamic compliances for several kinds of semi-infinite rods 
The equation of motion of the boundary particle N in any one-dimensional discrete-continu-
ous system considered in Appendix D can generally be described in both the Laplace and the 
time domains using the dynamic compliance. Therefore, we here consider the expressions 
for the dynamic compliance of the involved semi-infinite rods, i.e. the one-dimensional con-
tinua used to model the far-field domain in these systems, rather than using the dynamic 
stiffness, which in most cases is only available in the frequency or Laplace domain. 

The expressions for the dynamic compliances of the considered semi-infinite rods, as well 
as the corresponding time domain dynamic compliances and time domain admittances are 
given in Table 3.1. These expressions have all been derived separately in Appendix D that 
regards the corresponding one-dimensional discrete-continuous systems. More specifically, 

Table 3.1: Expressions for the dynamic compliances in the Laplace domain, as well as for the time domain  
dynamic compliances and the time domain admittances for several semi-infinite rods.

Linear-elastic
rod

Viscoelastic 

Linear-elastic 
dispersive rod

Viscoelastic 
dispersive rod

β s( ) β ( )t t ≥, 0 β ( )t t ≥, 0

2
s 2

)( 2

2

2 ds2 + Ω

2
rod s +2 4ζ s

2

2
2 + 4d ζ ss2 + Ω

2 0

)2 Ω( dJ0 t )− 2 Ω (ΩJd 1 d t

2 erf
2ζ
t

1
2 ζe− t

πζ t

))
1
2

0
0

t

(Ω −(td
eJ τ τd

τ ζ

πζτ

−

 ))
1 1
2 2

0

dτ τ
πζτ

−

−
t tζ τ− ζ

1d d
ee JΩ  Ω( ( −t

πζ t

ζ



75 

the linear-elastic rod is featured in the one-dimensional Hooke system discussed in Appendix 
D.1, while the viscoelastic rod is featured in the one-dimensional BKV system previously
discussed in Section 3.2. Furthermore, the so-called linear-elastic and viscoelastic dispersive
rods are featured in the elastically supported one-dimensional dispersive Hooke and Kelvin-
Voigt systems respectively discussed in Appendices D.2 and D.5. These semi-infinite con-
tinua are here referred to as dispersive rods because the incorporated elastic support causes
the wave propagation in these rods to be dispersive.

Figure 3.6a and Figure 3.6b respectively show the time domain dynamic compliances and 
the time domain admittances as functions of time t for the considered semi-infinite rods. 
Here, the yellow lines give the constant time domain dynamic compliance and time domain 
admittance for the linear-elastic rod, while the blue lines give the time domain dynamic com-
pliance and time domain admittance for the viscoelastic rod that both converge to the corre-
sponding time domain expressions for the linear-elastic rod with time. The time domain dy-
namic compliances for the linear-elastic and viscoelastic dispersive rods, given in Figure 3.6 
by respectively the green and red lines, both tend to zero for large t → ∞. Note here that the 
dynamic compliances of the viscoelastic and dispersive viscoelastic rod in Figure 3.6, both 
obtained for an arbitrary damping ratio 0,75 = , are equal to zero at 0t = , while the time 
domain admittances are infinite at 0t = . 

3.3.2 Wave propagation in 1D discrete-continuous systems 
The performance of the boundary integral equations derived for several linear far-field do-
mains can be evaluated by considering the reflection and transmission of an incident wave at 
the interface between the near-field lattice and a continuum far field. Since the lattice re-
sponse must be linear in the vicinity of the discrete-continuous interface, the performance of 
the boundary integral equations can be evaluated by considering fully linear systems, rather 
than systems that partly allow for nonlinear phenomena. In this section, we therefore consider 
the wave propagation in the one-dimensional discrete-continuous Kelvin-Voigt system. Fig-
ure 3.7 depicts the directions of propagation of the incident, reflected and transmitted waves 
in the one-dimensional Kelvin-Voigt system. 

Figure 3.6: a) Time domain dynamic compliances for several semi-infinite rods;  
b) Time domain admittances for several semi-infinite rods.
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Let us assume a harmonic incident wave in the homogeneous Kelvin-Voigt lattice that 
propagates in the direction of the lattice-continuum interface at particle N. The dimensionless 
displacement of a particle n in the interior of the near-field lattice due to this incident wave 
may then be described as ( )i tu Ae  −

=
nn . Here, A is the dimensionless amplitude of the inci-

dent wave, while Ω and κ are respectively the dimensionless angular frequency and the di-
mensionless wavenumber of the incident wave. Substituting the displacement un into the 
equation of motion for a particle in the interior of the one-dimensional Kelvin-Voigt lattice, 
previously given in its dimensional form by equation (3.7), yields the corresponding disper-
sion relation as: 

( )2 21 2i 2sin 0
2


− + +  = (3.35) 

From this dispersion relation, the following useful relations between the dimensionless fre-
quency Ω and dimensionless wavenumber κ can be derived: 

2
2cos 1 , sin 2 4i .

1 2i 1 2i
  

 

 
= − = + −

+  + 
(3.36) 

Equation (3.36) shows that, by incorporating damping, the relation between the dimension-
less wavenumber and the dimensionless frequency is complex-valued for all nonzero fre-
quencies, while for an undamped medium this relation is either real or imaginary depending 
on the frequency. The latter statement can straightforwardly be verified by substituting 0 =  
into equation (3.36). As we here consider harmonic incident waves, we assume that the an-
gular frequency of the incident wave is real and, as a consequence, the wavenumber must be 
complex-valued for nonzero damping. 

The incident wave may be partly reflected back into the one-dimensional lattice and partly 
transmitted into the linear-elastic rod. In the particular case that the linear-elastic rod is semi-
infinite, the rod should ideally behave as a perfectly non-reflective boundary so that the inci-
dent wave is fully transmitted into the linear-elastic rod and no wave reflection exists. Due 
to the inherent differences in nature of the discrete lattice and the continuous rod however, 
the corresponding boundary formulation will never be ideal and a small reflection must re-
main. To quantify the reflection and transmission of an incident wave, we use the so-called 
reflection and transmission coefficients that can be described in terms of either the amplitude 
or the energy.  

Amplitude reflection coefficient 
The amplitude reflection coefficient is here defined as the ratio between the amplitudes of 
the reflected and the incident waves. Principally, the amplitude reflection coefficient can be 
obtained at any particle in the lattice, but here we specifically consider the amplitude reflec-
tion coefficient at the discrete-continuous interface and thus at the boundary particle N of the 
one-dimensional Kelvin-Voigt lattice. 
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The amplitude reflection coefficient for the wave that reflects from the discrete-continu-
ous interface in the one-dimensional Kelvin-Voigt system may be obtained from the equation 
of motion for the boundary particle N, previously given in the time domain by equation (3.12)
. As previously explained in Section 3.2.1, the dimensionless mass of the boundary particle 
N is found as 1

2M =N  to make sure that the discrete-continuous Kelvin-Voigt system is ho-
mogeneous and thereby assure that there is no wave reflection in the long wave limit. Ac-
cordingly, the dimensionless damping and stiffness coefficients of the Kelvin-Voigt element 
between particles N-1 and N are respectively found as eC =N-1,N  and 1

2eK =N-1,N . Rearrang-
ing equation (3.12), the equation of motion for the boundary particle N in the discrete-con-
tinuous Kelvin-Voigt system thus reads: 

( ) ( ) ( )2 2 , ,Int Intu u u u u u x t u x t   + − + − = +N N N-1 N N-1 (3.37) 

The displacement of an arbitrary particle n in the one-dimensional Kelvin-Voigt lattice is due 
to both the incident and the reflected waves, while the displacement along the linear-elastic 
rod can only be due to the transmitted wave. Assuming the incident, reflected and transmitted 
waves to be harmonic, we describe the displacement of a particle n inside the lattice and the 
displacement at a coordinate x in the rod respectively as: 

( ) ( )i it t
inc refu A e A e  −  +

= +
n nn (3.38) 

( ) ( )i, rodt x
trau x t A e  −

= (3.39) 

Here, Ainc, Aref and Atra are the complex amplitudes of respectively the incident, reflected and 
transmitted waves. Furthermore, the dimensionless angular frequency Ω is real-valued, while 
the dimensionless wavenumber κ of the incident and reflected waves in the lattice, as well as 
the dimensionless wavenumber κrod of the transmitted wave in the viscoelastic rod, are gen-
erally complex-valued. The relation between the angular frequency Ω and the wavenumber 
κ of the lattice is given by the dispersion relation (3.35). As shown by Appendix E.1, substi-
tuting equation (3.39) into the equation of motion for the viscoelastic rod, previously given 
by equation (3.11), yields the dimensionless wavenumber for the viscoelastic rod as 

2 1 2irod =  +  . Note here that, to assure the proper wave decay for the incident, the 
reflected and the transmitted waves, the square roots in the expressions for the wavenumbers 
in the lattice and the rod are chosen such that their imaginary parts are negative, i.e. 

( )Im 0   and ( )Im 0rod  . 

Figure 3.7: The incident, reflected and transmitted waves in the one-dimensional Kelvin-Voigt system. 
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Substituting equation (3.39) into equation (3.37), as well as inserting the dispersion rela-
tion for the viscoelastic rod and noting that the displacements of the lattice and the rod must 
be the same at the discrete-continuous interface, allows us to express the boundary equation 
exclusively in terms of the displacement of the boundary particle N. Then, substituting equa-
tion (3.38), employing Euler’s formula and inserting the dispersion relations, as well as in-
troducing 2 4iz = +  , the ratio between the amplitudes of the reflected and the incident 
waves may be obtained as: 

i 2

i 2

ref

inc

A e z z
A e z z





+

−

− −
=

− +

N

N (3.40) 

Noting that Ainc and Aref are the complex amplitudes of respectively the incident and reflected 
wave at the surface particle, i.e. for 0=n , it follows that i

incA e − N  and i
refA e + N  are the 

complex amplitudes of respectively the incident and reflected waves at the boundary particle 
N. Consequently, the amplitude reflection coefficient at the boundary particle N of the one-
dimensional discrete-continuous Kelvin-Voigt system reads:

i 2

i 2

ref ref
A

inc inc

A A e z zR
A A e z z





+

−

− −
= = =

− +

N N
N

N N (3.41) 

The amplitude reflection coefficient ARN  is depicted in Figure 3.8a, as a function of the di-
mensionless angular frequency Ω and for several values of the damping ratio ζ. Note here 
that for the particular case that 0 = , waves do not propagate in the one-dimensional lattice 
at frequencies higher than the dimensionless cutoff frequency. Appendix E.4, regarding the 
reflection coefficients for the corresponding linear-elastic system, shows that this cutoff fre-
quency is found as 2co = . For nonzero damping ratios, Figure 3.8a shows that the 

Figure 3.8: Reflection coefficients for different values of the damping ratio: 
a) Amplitude reflection coefficient; b) Energy reflection coefficient.
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amplitude reflection coefficients increase with frequency, while the amplitude reflection co-
efficients reduce with increase of the damping ratio. Figure 3.8a furthermore shows that the 
one-dimensional viscoelastic rod only serves as a non-reflective boundary for the one-dimen-
sional Kelvin-Voigt lattice in the long-wave limit. 

Energy reflection coefficient 
For a medium without damping, the energy of an incident or a reflected wave can be deter-
mined by either considering the energy density over a domain of the medium at a certain 
moment in time, or by considering the energy flux at a certain point in the medium over a 
period of time. Due to the dissipation of energy in a medium that includes damping, the en-
ergy density along such a medium is not constant and thereby it is not straightforward to 
obtain the total energy of the considered wave in such a medium using the energy density. 
For the Kelvin-Voigt system therefore, we consider the energy flux, and define the energy 
reflection coefficient as the ratio between the energy fluxes over a single period of the re-
flected and the incident waves. Here, we specifically consider the energy reflection coeffi-
cient at the discrete-continuous interface and thus at the boundary particle N of the one-di-
mensional Kelvin-Voigt lattice. 

It is most straightforward to separately obtain the energy fluxes due to respectively an 
isolated incident wave and an isolated reflected wave, rather than to attempt to obtain the 
energy flux when the incident and reflected wave appear simultaneously and thereby inter-
fere. The energy flux that a Kelvin-Voigt element transfers to a particle n is here defined as 
the force in the corresponding spring multiplied by the velocity of particle n. Thereby note 
that in our analysis of the energy reflection, we choose to disregard the contribution of the 
force in the dashpot. Thus, by considering the energy flux of an isolated incident wave as it 
is transferred by the Kelvin-Voigt element between particles n-1 and n to the particle n, de-
noted as incS n , and the energy flux of an isolated reflected wave to be transferred to the particle 
n from the Kelvin-Voigt element between particles n and n+1, denoted as refS n , the dimen-
sionless energy fluxes of an isolated incident and an isolated reflected wave at a particle n in 
the one-dimensional Kelvin-Voigt lattice, are respectively obtained as: 

( )1
2inc inc inc incS u u u= −n n n-1 n (3.42) 

( )1
2ref ref ref refS u u u= −n n n+1 n (3.43) 

Here, incun  and refun  denote the displacement of particle n due to respectively the isolated 
incident wave and the isolated reflected wave. To make sure that the expressions for these 
displacements are real-valued, we include displacement terms related to both the complex 
wavenumber κ and to its complex conjugate. Assuming the incident and reflected waves to 
be harmonic, these displacements are respectively described as: 

( ) ( ) i i1
2

t t
inc inc incu A e A e  − −  −
= +

n nn (3.44) 
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( ) ( ) i i1
2

t t
ref ref refu A e A e  + −  +

= +
n nn  (3.45) 

Here, incA  and refA  are the complex conjugates of the amplitudes Ainc and Aref of the incident 
and reflected waves respectively and   is the complex conjugate of the dimensionless wave-
number κ. As the square roots in the expression for the wavenumber κ are chosen such that 
its imaginary part is negative, i.e. ( )Im 0  , it follows that the imaginary part of the com-
plex conjugate wavenumber   is positive, i.e. ( )Im 0  .  

Respectively substituting equations (3.44) and (3.45) into equations (3.42) and (3.43), 
including the dispersion relations for the wavenumber κ and its complex conjugate as derived 
in Appendix E.3, as well as averaging the energy fluxes over a single period of the harmonic 
incident wave yields the energy fluxes for the harmonic incident and reflected waves as:  

( ) ( )ii i1
8 iinc inc incS e e A A e    − −+ −=  −

nn (3.46) 

( ) ( )ii i1
8 iref ref refS e e A A e    + −+ −=  −

nn (3.47) 

Here, note that the particle number n present in the exponents in the equations above de-
scribes the decay of the wave amplitude at that particle relative to the wave amplitudes Ainc 
and Aref at the tip of the system, i.e. at particle 1. Thereby, i

incA e − n  and i
refA e + n  are the 

wave amplitudes of the incident and reflected waves at particle n, while i
incA e + n  and 

i
refA e − n are the complex conjugates of the corresponding wave amplitudes at a particle n. 

Obtaining the energy reflection coefficient as the ratio between the energy fluxes of the 
reflected and incident waves at the boundary particle N from equations (3.46) and (3.47), 
denoting the wave amplitudes of the incident and reflected waves at the boundary particle 
respectively as incAN  and refAN , and substituting the amplitude reflection coefficient ARN  given 
by equation (3.41), the energy reflection coefficient at the boundary particle N reads: 

2i i 2 2

i i 2 2

2 2
2 2

ref ref ref ref
E

inc inc inc inc

S A e A e A z z zR
S A e A e A z z z

 

 

+ −

− +

− − −
= = = =

− + −

N N N N
N

N N N N (3.48) 

Figure 3.8b depicts the energy reflection coefficient ERN  as a function of the dimensionless 
angular frequency Ω for several values of the damping ratio ζ. Figure 3.8b shows that the 
dependency of the energy reflection coefficient on the damping ratio is similar to the depend-
ency of the amplitude reflection coefficient depicted in Figure 3.8a, so that the energy reflec-
tion coefficients reduce with an increase of the damping ratio. Figure 3.8b furthermore shows 
that the energy flux of the waves that are reflected by the semi-infinite viscoelastic rod are 
negligible for frequencies lower than half the cutoff frequency, i.e. for 1

2 co   . 

Reflection of an incident wave due to a single-sinus pulse load 
To verify that the total energy of an isolated incident wave is constant while it fully resides 
in the Hooke lattice and that it reduces in the Kelvin-Voigt system due to the damping, Figure 
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3.9a shows the total energy in a one-dimensional Kelvin-Voigt lattice due to a single sinus 
pulse load, as a function of time for different values of the damping ratio ζ. Here, the total 
energy in the lattice is obtained by summation of the kinetic energy of all particles and the 
potential energy of all rheological elements in the lattice. The considered Kelvin-Voigt lattice 
consists of 80=N  particles and the single sinus pulse load is described as: 

( ) ( ) ( ) ( )sin .FF t F t H T t H t=  −

Here, F , Ω and TF are respectively the dimensionless amplitude, the dimensionless angular 
frequency and the dimensionless period of the sinus. The angular frequency Ω of the sinus 
pulse is here arbitrarily chosen as 0.2 = .  

The red line in Figure 3.9a shows that the total energy Etot in the particles of the one-
dimensional Hooke lattice, i.e. the one-dimensional Kelvin-Voigt lattice for the particular 
case that 0 = , due to the pulse load is constant and at its maximum as soon as the pulse 
load has stopped acting, i.e. for time Ft T , and until the time tInt at which the front of the 
incident wave reaches the discrete-continuous interface. This is exactly the time period in 
which the isolated incident wave resides fully inside the lattice so that the constant total en-
ergy during this period equals the energy of the isolated incident wave. Accordingly, the 
energy of the isolated reflected wave can be obtained as the constant total energy in the lattice 
during the time period in which only the reflected wave fully resides in the system. This 
occurs as soon as the incident wave has been fully transmitted into the linear-elastic rod, i.e. 
for time Int Ft t T + , and until the time 3tInt at which the front of the reflected wave returns 
to the discrete-continuous interface and after fully reflecting from the tip of the system. Due 
to the absence of damping in the Hooke lattice, the ratio between the constant total energy of 
the isolated reflected wave and the constant total energy of the isolated incident wave gives 
a measure of the magnitude of the reflected energy and can thereby be considered as an en-
ergy reflection coefficient. Thus, by dividing the total energy in the lattice during the period 

Figure 3.9: a) Total energy in the one-dimensional Kelvin-Voigt lattice over time; b) Amplitude and  
energy reflection coefficients of an incident wave as a function of the damping ratio.
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at which the isolated reflected wave fully resides in the lattice by the total energy in the lattice 
during the period at which the isolated incident wave resides fully in the lattice, the energy 
reflection coefficient of the one-dimensional discrete-continuous Hooke system is obtained 
as 44.0 10ER −=  . 

Next to the total energy in the one-dimensional Hooke lattice, Figure 3.9a additionally 
depicts the total energy in the one-dimensional Kelvin-Voigt lattice as a function of time for 
several nonzero values of the damping ratio ζ. As opposed to the total energy in the Hooke 
lattice, the energy dissipation due to the damping causes the total energy in the Kelvin-Voigt 
lattice to clearly decay over time during the time period F Intt T t= . And, as is to be ex-
pected, the energy dissipation during this period increases with the magnitude of the damping 
ratio. Furthermore it should be noted that, due to the damping, the waves do not have a sharp 
front. Both the energy dissipation and the absence of a sharp front make it impossible to 
determine an energy reflection coefficient for the discrete-continuous Kelvin-Voigt system 
as a ratio between the energies of the isolated incident wave and the isolated reflected wave. 

The amplitude reflection coefficient for the Kelvin-Voigt system has previously been ob-
tained as equation (3.41) by considering the energy flux at the boundary particle N for a 
harmonic incident wave. Whereas a harmonic incident wave is sinusoidal in time, an incident 
wave induced by a pulse load features a range of frequencies and this frequency spectrum 
should be accounted for. Although this frequency spectrum is not flat, as an upper limit, the 
amplitude reflection coefficient for an incident wave induced by a pulse load may be obtained 
by integrating the amplitude reflection coefficient for harmonic incident waves over the fre-
quency range at which waves propagate through the Kelvin-Voigt system. Thereby, we thus 
assume an equal contribution to the pulse load by all frequencies within the considered range. 
This yields the amplitude reflection coefficient for an incident wave induced by a pulse load 
as a function of the damping ratio ζ as: 

( )
2

;
2

0

1 co

A pulse
co

z zR d
z z




− −
= 
 − +


N (3.49) 

Figure 3.9b shows the resulting amplitude reflection coefficient for the discrete-continuous 
Kelvin-Voigt system for an incident wave due to a pulse load as a function of the damping 
ratio ζ.  

By substituting the cutoff frequency 2co =  and 0 = , i.e. 2z = , into equation (3.49)
, we obtain the amplitude reflection coefficient for zero damping as ( ); 0 0.142A pulseR  = =N . 
Due to the existing viscous damping, there is no cutoff frequency in the one-dimensional 
Kelvin-Voigt system. Nevertheless, at frequencies larger than the cutoff frequency Ωco, an 
incident wave induced by a single-sinus pulse load with a frequency 1  , i.e. a frequency 
lower than the particle frequency, may be expected to not significantly influence the motion 
of the discrete-continuous interface. Therefore, in Figure 3.9b, we have approximated the 
corresponding amplitude reflection for the one-dimensional Kelvin-Voigt system by equation 
(3.49) using the cutoff frequency 2co =  defined for the system without damping. The 
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amplitude reflection coefficients due to an arbitrary dynamic load may be obtained in a more 
exact manner by multiplying the integrand in equation (3.49) with the frequency spectrum of 
the applied load. 

Interference between the incident and the reflected waves 
The energy reflection coefficient given by equation (3.48) describes the ratio between the 
energy fluxes of an isolated reflected wave and an isolated incident wave at the boundary 
particle N in the one-dimensional discrete-continuous Kelvin-Voigt system over a single pe-
riod of an applied harmonic load. The incident and reflected waves due to a harmonic load 
applied at the tip of the Kelvin-Voigt system however, are not isolated at all, but exist simul-
taneously and, in the case of nonzero damping, principally interfere everywhere along the 
lattice. In the following, we will therefore evaluate the interference between the incident and 
the reflected waves in the lattice to determine whether it has a significant influence on the 
response of the lattice and, if so, how this interference must be accounted for in discrete-
continuous systems. 

To evaluate the interference between the incident and the reflected wave in the lattice 
near its boundary, we consider the energy exchange at the discrete-continuous interface in 
the one-dimensional Kelvin-Voigt system. By multiplying the balance between the forces of 
the lattice and the rod at their interface, i.e. the equation of motion for the boundary particle 
N given by equation (3.37), with the velocity of the interface, we obtain the following di-
mensionless energy balance that describes the energy exchange at the interface between the 
lattice and the rod:  

( ) ( ) ( ) ( ) ( ) ( )2 2 , , , ,Int Int Int Intu u u u u u u u u x t u x t u x t u x t   + − + − = +N N N N-1 N N N-1 N (3.50) 

In the energy balance given by equation (3.50), the first term on the left-hand side describes 
the change in kinetic energy of the boundary particle over time, while the third term on the 
left-hand side gives the energy flux through the lattice-rod interface due to both the incident 
and the reflected wave. Accordingly, the second term on the right-hand side describes the 
energy flux through the lattice-rod interface due to the transmitted wave. The second term on 
the left-hand side and the first term on the right-hand side describe the energy dissipation due 
to the damping in respectively the lattice and the rod over time.  

To simultaneously consider the incident, the reflected and the transmitted waves, we in-
clude components related to both the incident and the reflected waves in the expression for 
the displacement of the boundary particle N, while the displacement of the viscoelastic rod 
is described in terms of the transmitted wave. Furthermore, to make sure that the expressions 
for the displacements in the lattice and the rod are real-valued, we include displacement terms 
related to both the complex wavenumbers and to their complex conjugates. The displace-
ments of the lattice particles and the viscoelastic rod therefore read: 

( ) ( )  ( ) ( ) i i i i1 1
2 2

t t t t
inc inc ref refu A e A e A e A e    − −  −  + −  +

= + + +
n n n nn (3.51) 
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( ) ( ) ( ) i i1
2, rod rodt x t x

tra trau x t A e A e  − −  −
= + (3.52) 

Here, the amplitudes incA , refA  and traA  are the complex conjugates of the dimensionless 
amplitudes Ainc, Aref and Atra of the incident, reflected and transmitted waves respectively. 
Furthermore, the wavenumbers   and rod  are the complex conjugates of the dimensionless 
wavenumbers κ and κrod in respectively the lattice and the viscoelastic rod. 

Appendix E.5 shows that substituting equations (3.51) and (3.52) into equation (3.50), as 
well as averaging the energy balance over a single period of the harmonic incident wave, and 
introducing both 2 4iz = +   and its complex conjugate 2 4iz = −  , yields the energy 
balance at the discrete-continuous interface of the one-dimensional Kelvin-Voigt system as: 

2 22 2

2 22 2 2 2
1

Intx
ref inc ref inc ref tra

inc incinc inc

A z z A A A A z z A
A Az z z zA A

 
− − − + + − + =

 − + − − + −
 

N N N N N

N NN N
(3.53) 

Here, i
inc incA A e −=N N , i

ref refA A e +=N N and iInt rod Intx x
tra traA A e −= are respectively the amplitudes 

of the incident, reflected and transmitted wave at the lattice-rod interface. Furthermore, 
i

inc incA A e +=N N and i
ref refA A e −=N N are the complex conjugates of the incident and reflected 

wave amplitudes at the lattice-rod interface respectively. 
The first term in equation (3.53) exactly matches the energy reflection coefficient, as 

given by equation (3.48), that describes the ratio between the energy flux of the reflected 
wave and the energy flux of the incident wave, both obtained for isolated incident and re-
flected waves. As the third term in equation (3.53) in a similar manner relates the energy of 
the transmitted wave to the energy of the incident wave, it is safe to assume that this term 
describes the ratio between the energy flux of the transmitted wave and the energy flux of 
the incident wave. Therefore, we will refer to this term as the energy transmission coefficient. 
Then, as the second term in equation (3.53) includes cross terms of the amplitudes of the 
incident and the reflected waves, but is not related to the transmitted wave, this term can only 
exist when and where the incident and the reflected wave exist simultaneously, and therefore, 
this term must in some way be related to the interference between the incident and the re-
flected waves. Analysing the mathematical derivation that leads to equation (3.53), we find 
that this interference term partially originates from the energy flux at the lattice-rod interface 
due to both the incident and the reflected wave, and partially originates from the energy dis-
sipation in the lattice. Furthermore, note that this interference term only appears in the energy 
balance when damping is included; for zero damping it follows that z z= , so that the inter-
ference term in equation (3.53) is equal to zero. This is verified by considering the energy 
exchange at the lattice-rod interface for the discrete-continuous Hooke system, given in Ap-
pendix E.4, which lacks an interference term. As the interference term in equation (3.53) is 
expressed as a ratio versus the energy flux of the incident wave, we henceforth refer to this 
term as the energy interference coefficient. 

To determine the magnitude of the energy contained in the interference between the 
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incident and reflected waves and to determine where along the lattice its magnitude is signif-
icant, we express the wave amplitudes of the incident and reflected waves at a particle n in 
terms of its distance to the boundary particle N. Thereby, the wave amplitudes of the incident 
and reflected waves at a particle n in terms of the wave amplitudes at the lattice boundary 
read ( )i

inc incA A e + −
=

N nn N  and ( )i
ref refA A e − −

=
N nn N . Furthermore, noting that the amplitude cross

terms in equation (3.53) reduce to the amplitude ratios ref incA AN N and ref incA AN N , for which the 
expressions are respectively given by equation (3.40) and derived in Appendix E.5, we can 
express the energy interference coefficient at a particle n in the Kelvin-Voigt lattice as: 

( ) ( )
2 2 2 2

2i 2i

2 2 2 2
E

z z z z z zI e e
z z z z z z

 − − + −
 − − − − − − −
 = −
 − + − − + − + 

N n N nn (3.54) 

As noted before, the square root in the expression for the wavenumber κ is chosen such that 
its imaginary part is negative, i.e. ( )Im 0  , and as a consequence, the imaginary part of 
the complex conjugate wavenumber   is positive, i.e. ( )Im 0  . Thereby, it follows from 
equation (3.54) that the energy interference coefficient decays exponentially with increasing 
distance from the boundary particle N. This is confirmed by Figure 3.10a that depicts the 
energy interference coefficient as a function of N-n, i.e. the distance between particle n and 
the boundary particle N, for different damping ratios. To obtain these results, we considered 
a harmonic incident wave with a frequency equal to the particle frequency, i.e. 1 = , and 
removed the oscillatory components in the energy interference coefficient. Furthermore, Fig-
ure 3.10b depicts the corresponding energy interference coefficient at particle 2= −n N  as 
a function of the dimensionless frequency Ω. Here, note that the dashed line in Figure 3.10a 
denotes the case depicted by Figure 3.10b, and vice versa, the dashed line in Figure 3.10b 
denotes the case depicted by Figure 3.10a.  

According to Figure 3.10a the reduction of the energy interference coefficient with in-
creasing distance from the boundary appears to be proportional to the damping ratio. This 

Figure 3.10: The trend of the energy interference coefficient, i.e. without oscillatory components: a) Decay with increasing  
distance from the boundary particle N at frequency Ω=1; b) as a function of frequency at particle n=N-2.
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makes sense because the damping ratio determines the reduction of the amplitudes of, and 
thus of the energy contained in, the incident and the reflected waves during their propagation 
along the lattice. Figure 3.10a furthermore shows that the largest magnitude of the energy 
interference coefficient at the boundary particle N is found for a damping ratio 0.6 = , while 
for both larger and smaller damping ratios, the magnitude of the energy interference is less. 
Additionally, note that the magnitude of the energy interference coefficient at the boundary 
particle N is significantly reduced for small damping ratios, which coincides with our previ-
ous finding that for zero damping there is no energy contained in the interference between 
the incident and reflected waves. Figure 3.10b however shows that the magnitude of the en-
ergy interference coefficient very much depends on the frequency of the incident wave and 
that, for certain frequencies, even small damping ratios may yield significant magnitudes of 
the energy interference coefficient. Figure 3.10b furthermore shows that by reducing the 
damping, the frequency spectrum of the energy interference coefficient becomes more nar-
row and its peak value increases. In fact, for zero damping, the frequency spectrum of the 
energy interference coefficient becomes infinitely narrow and infinitely large at the cutoff 
frequency 2co = , while for all other frequencies at which waves can propagate in the 
undamped system, i.e. for co   , the energy interference coefficient is equal to zero. 

From the results presented by Figure 3.10, we may conclude that the energy interference 
is most pronounced at the boundary particle N and, due to the damping in the Kelvin-Voigt 
lattice, reduces with increasing distance from the boundary. To minimize the influence of the 
wave reflection on the nonlinear near-field response of the BKV lattice, we must account for 
the spatial domain of the lattice near the boundary particle N where the energy contained in 
the interference between the incident and reflected waves is significant. The BKV lattice 
should thus be considered to effectively consist of two domains: a near-field domain consist-
ing of a lattice with BKV elements that allows for nonlinearities, and a linear domain con-
sisting of a lattice with Kelvin-Voigt elements in the vicinity of the discrete-continuous in-
terface. As the energy contained in the interference between the incident and the reflected 
wave decays exponentially with the distance from the boundary, the required size of the linear 
domain of the lattice is, in general, limited to only a few particles. Nevertheless, even though 
the energy interference at the boundary particle is limited for small damping ratios, the decay 
of the energy interference with increasing distance from the boundary for these small damp-
ing ratios is relatively slow and may therefore require a larger linear domain in the lattice. 
Furthermore, it is important to emphasize that the energy interference only occurs when there 
is a reflected wave present, so that the magnitude of the energy interference depends on the 
level of reflection from the lattice boundary and thereby depends on the chosen model for the 
far-field domain of the considered medium. Finally, note that in two-dimensional discrete-
continuous systems, the magnitude of the energy interference may be expected to be smaller 
due to the geometrical damping that exist in these systems. 

3.4 Wave propagation in a finite discrete-continuous system in 1D 
In the preceding sections, we have exclusively considered boundary formulations for semi-
infinite far-field domains that ideally behave as a silent or non-reflective boundary to the one-
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dimensional lattice. As stated in Section 1.3, non-reflective boundaries may also be obtained 
using numerical techniques, such as using a perfectly matched layer (PML) [Bérenger, 1994; 
Kausel and de Oliveira Barbosa, 2012]. The principle of using a PML is to absorb the energy 
of any waves that propagate to the boundary of a medium and into the PML. Consequently, 
such techniques may only be applied when the wave propagation in the far-field domain is 
of no consequence to the response of the near-field domain. This is generally the case when 
the far-field domain may be considered to be infinite in the direction of wave-propagation 
and thereby satisfies the radiation condition. Nevertheless, if the far-field domain is not infi-
nite, wave reflections in the far-field domain may propagate back into the near-field domain 
and should be accounted for. The advantage of using the boundary formulation proposed in 
this thesis over for example PMLs, is its capability to account for wave reflections in the far-
field domain and thereby correctly model the dynamic response of a system with finite di-
mensions. To illustrate this, let us consider the discrete-continuous system depicted in Figure 
3.11 that is composed of a one-dimensional Hooke lattice in the near field and a linear-elastic 
finite rod with a fixed boundary in the far field. 

The dimensionless relations at the interface between the Hooke lattice and the finite lin-
ear-elastic rod are the same as the corresponding relations for the semi-infinite discrete-con-
tinuous Hooke system considered in Appendix D.1, or may alternatively be derived from the 
corresponding relations for the Kelvin-Voigt system, given by equations (3.14) to (3.16), by 
choosing the damping ratio ζ equal to zero. The difference between the finite and semi-infi-
nite systems follows from the formulation of the general solution for the rod. For semi-infi-
nite systems the proper behaviour of the far-field domain for x → ∞ is accounted for by only 
considering waves propagating away from the load, while for finite systems the propagation 
of both incident and reflected waves must be accounted for. The general solution to the di-
mensionless equation of motion for the finite linear-elastic rod therefore reads: 

( ) 2 2
1 2, s x s xu x s A e A e+ −= + (3.55) 

Noting that the finite linear-elastic rod is fixed at coordinate xB, where B Intx x , we denote 
the dimensionless boundary conditions of the finite linear-elastic rod as: 

( ) ( )2 1
2 , , ,s 0.e Int BM s u K e F u x s u x+ = − = =N N N-1,N N-1,N N

Here, the left boundary condition follows from the force equilibrium at the discrete-

Figure 3.11: The one-dimensional finite discrete-continuous Hooke system. 
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continuous interface. The expressions for the unknown wave amplitudes A1 and A2 may now 
be obtained by substituting equation (3.55) into the given boundary conditions. Noting that 
the length of the finite rod is found as rod B Intx x= − , then yields the Laplace domain dis-
placement of the finite rod as: 

( )
( ) ( )2 2

2 2

2,
B B

rod rod

s x x s x x

s s

F e eu x s
s e e

+ − − −

+ −

−
=

+

N

(3.56) 

Taking into account that, at the discrete-continuous interface, the displacements of the finite 
rod and the boundary particle N are equal, i.e. ( ),Intu x s u= N , the dynamic compliance of the 
finite linear-elastic rod at the discrete-continuous interface is obtained as:  

( ) ( )
2 tanh 2 rod

us s
sF

 = =
N

N (3.57) 

For comparison, Figure 3.12a depicts the dynamic compliance of both the finite and the semi-
infinite linear-elastic rod as a function of the dimensionless frequency Ω. The dynamic com-
pliance of the finite linear-elastic rod according to equation (3.57) is given by the continuous 
red line, while the dynamic compliance of the semi-infinite rod, derived as ( ) 1 2s s −=  in 
Appendix D.1, is given by the dashed blue line. Applying the inverse Laplace transform to 
equation (3.57), we obtain the following time domain expression for the dynamic compli-
ance, henceforth referred to as the time domain dynamic compliance, of the finite linear-
elastic rod at 0t   as: 

( )
2, if mod 2

2, if mod 2
rod rod

rod rod

t T T
t

t T T


+ 
= 

− 

(3.58) 

Here, Trod is the dimensionless time that is required for an incident wave to travel from the 
discrete-continuous interface to the point of fixation at coordinate xB and back again, which 
is found as 2 2rod rodT = . The corresponding time domain dynamic compliances of the 
semi-infinite and finite linear-elastic rods are shown in the Figure 3.12b as a function of time. 
Again, the continuous red line gives the time domain dynamic compliance for the finite lin-
ear-elastic rod, while the dashed blue line gives the time domain dynamic compliance for the 
semi-infinite linear-elastic rod. Figure 3.12b clearly shows that, at every period Trod, the time 
domain dynamic compliance of the finite rod alternately jumps from ( ) 2t = +  to 
( ) 2t = −  and vice versa. 
In correspondence with the semi-infinite discrete-continuous Hooke system, the equation 

of motion for the boundary particle in the finite discrete-continuous Hooke system reads: 

( )( )2 0eu s M s u K e+ + =N N N N-1,N N-1,N (3.59) 
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Applying the inverse Laplace integral transform to equation (3.59) and using Leibniz’ inte-
gral rule for differentiation of integrals yields the boundary integral equation for the finite 
Hooke system as:  

  ( ) ( )
0

2 0
t

e eu M u K e t M u K e d   + + + − + =
N N N N-1,N N-1,N N N N-1,N N-1,N (3.60) 

From Figure 3.12b it follows that the time domain admittance, i.e. the time derivative of the 
time domain dynamic compliance, of the finite rod is equal to zero during the time periods 
between any two jumps of the time domain dynamic compliance. The jumps in the time do-
main dynamic compliance that occur at every Trod however, are represented in the time do-
main admittance by Dirac delta functions. Within the domain of the integral in equation 
(3.60), i.e. for 0t  , and given that the time domain admittance repeats every 2Trod, the time 
domain admittance thus  reads: 

( ) ( )

( )

0, if mod 0

2 2 , if mod 2

2 2 , if mod 2 0

rod

rod rod

rod

t T

t t t T T

t t T

 



 


= − =

+ =

(3.61) 

Here, note that mod in equation (3.61) is an abbreviation of modulo. 
Figure 3.13 shows the longitudinal response of the one-dimensional finite discrete-con-

tinuous Hooke system to an applied pulse load at 30 different time moments. Note here that 
only the response of the Hooke lattice is shown. The pulse load applied at the tip of the one-
dimensional Hooke system coincides with the pulse load ( )F t  that was previously applied 
to obtain Figure 3.5, giving the response of the semi-infinite discrete-continuous BKV sys-
tem. Each frame of Figure 3.13 depicts the response to the pulse load at two successive time 

Figure 3.12: The dynamic compliance of the finite and semi-infinite linear-elastic rods:  
a) absolute value in the frequency domain; b) in the time domain.
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moments. Here, the blue arrows give the direction of wave propagation for the considered 
time frame, so that the continuous red line always corresponds to the first time moment, while 
the dashed red line corresponds to a slightly later moment in time. It can be seen from Figure 
3.13 that the propagated wave is first transmitted completely into the finite rod and only 
returns to the lattice after the wave is reflected at the fixed boundary. Subsequently, the wave 
is again reflected at the tip of the system after which it bounces hence and forth between the 
tip of the system and the fixed boundary of the rod. 

3.5 Boundary formulation for a continuous far-field domain in 2D 
After evaluating several one-dimensional discrete-continuous systems and comparing the 
performance of the involved boundary integral equations, derived for different representa-
tions of the far-field domain, this section focuses on the derivation of boundary formulations 
in application of two-dimensional discrete-continuous systems. In this section, we particu-
larly focus on deriving a boundary formulation for a far-field domain that is modelled as a 
two-dimensional continuum. 

The two-dimensional discrete-continuous BKV system consisting of a hexagonal BKV 
lattice and a two-dimensional viscoelastic continuum is depicted in Figure 3.14. The hexag-
onal BKV lattice was previously discussed in Section 2.4, where the equations of motion for 
all particles at the surface and in the interior of the hexagonal lattice were derived. Whereas 
the interaction between the one-dimensional lattice and the continuous rod is described at a 
single point of contact, the interaction between the hexagonal lattice and the two-dimensional 
continuum is described at all particles along the lattice boundary. Noting that the Green’s 
functions are commonly known for the continuous half-plane, it would be most convenient 
to model the far field as a semi-infinite medium and divide it into a near- and a far-field 
domain by sub-structuring along a horizontal interface [Kausel and Roësset, 1981]. As such, 
the linear far-field domain would conveniently remain as a half-plane or a half-space. Nev-
ertheless, the horizontal sub-structuring also yields the nonlinear near-field domain to be 
semi-infinite, which does not only impose difficulties to modelling this nonlinear near-field 
domain numerically, but also goes against the desire to keep the domain of the nonlinear part 
of the model as small as possible to minimize calculation time. 

The interaction between these boundary particles and the two-dimensional continuum is 
in the Laplace domain described by the system of force-displacement relations, previously 
given by equation (3.2). In correspondence with the boundary formulation for the one-

Figure 3.13: Longitudinal response of the finite discrete-continuous Hooke system to a sinus pulse load. 
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dimensional discrete-continuous system treated in Section 3.2.3, at least the diagonal terms 
of the dynamic stiffness matrix will increase for Ω → ∞, and we may therefore not obtain the 
corresponding interface equations in the time domain by numerically applying the inverse 
Laplace transform. To overcome this, we describe the Laplace domain relations at the lattice-
continuum interface in terms of the dynamic compliance. Pre-multiplying equation (3.2) by 
the dynamic compliance matrix ( )s , i.e. the inverse of the dynamic stiffness matrix, yields 
the displacement of the boundary particles in the Laplace domain as: 

( ) ( ) ( )IntIntu s s F s= − (3.62) 

Here, the force vector ( )IntF s  contains the forces of the discrete lattice that are applied to 
the continuum at the lattice-continuum interface and follow from the configuration of the 
respective boundary particles. Note here that both the dynamic stiffness and dynamic com-
pliance matrices are full matrices that consists of physical relations between all boundary 
particles through the two-dimensional continuum and must therefore be well-defined. 

In the following section, we will first employ the dynamic reciprocal work theorem and 
apply the indirect Boundary Element Method (iBEM) [Dominguez, 1993; Wolf, 1985] to 
obtain the dynamic stiffness and compliance relations at the lattice-continuum interface. Sub-
sequently, the resulting dynamic stiffness and dynamic compliance matrices are presented in 
Section 3.5.2. Then, in Section 3.5.3, the Green’s functions for the two-dimensional contin-
uum are derived that appear in the dynamic stiffness and compliance matrices. Finally, in 
Section 3.5.4, several different shapes of unit load distributions are discussed that are used to 
convert the point loads from the near-field lattice to tractions along the boundary of the con-
tinuous far-field domain. This is of importance because the chosen distribution for the unit 
loads influences the convergence of the Green’s functions in the wavenumber domain. 

Figure 3.14: The two-dimensional discrete-continuous BKV system 
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3.5.1 An indirect boundary formulation for a continuous far-field domain 
The basis of finding the force-displacement relation at the boundary of the discrete lattice 
originates from the theorem of reciprocal work. The dynamic reciprocal work theorem is an 
into dynamics extended version of the elastostatic reciprocal work theorem of Maxwell-Betti 
[de Hoop, 1966] and describes the relationship between the displacements of, and the trac-
tions on, a body in two different elastodynamic states. 

Consider two arbitrary but different elastodynamic states of a body V with boundary Γ 
depicted in Figure 3.15. Suppose that one elastodynamic state of the body V is described by 
internal displacements ( )vu , body forces ( )vb , surface displacements ( )u   and tractions 
( )t   as depicted in Figure 3.15a. Here, v and ξ are coordinates that describe the position 

respectively inside the body and along its boundary. Figure 3.15b depicts another state of the 
same body V, for example due to an external load P , that is described by internal displace-
ments ( )vPu  and body forces ( )vPb , as well as by surface displacements ( )Pu   and 
tractions ( )Pt  . The dynamic reciprocal work theorem now states that, in the frequency
domain, and thus in the Laplace domain, the following relation between the two elastody-
namic states must hold: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T T T Tv v v v v vP P P Pb u d t u d b u d t u d       + = +   V Γ V Γ

(3.63) 

Equation (3.63) states that the work done by the tractions ( )t   and the body forces ( )vb
through the displacements ( )vPu  and ( )Pu  is equal to the work done by the tractions

( )Pt  and the body forces ( )vPb  through the displacements ( )vu  and ( )u  . Note here 
that for clarity of the derivation presented, any reference to either the frequency or the La-
place parameter in this section are omitted. 

In this thesis, we are interested in describing the response of a medium to an externally 
applied load, due to for example its interaction with a structure. As stated before, this medium 
is composed of a lattice in the near field, i.e. near the load source, and a continuum in the far 
field. As the interaction between lattice and continuum only exists along the lattice-contin-
uum interface, body forces are absent and therefore equation (3.63) reduces to: 

( ) ( ) ( ) ( )
T T

P Pt u d t u d     = Γ Γ
(3.64) 

As we consider a two-dimensional solid medium, all displacements and tractions in the dy-
namic reciprocal work theorem are vectors with components in x- and z-directions. However 
note that equation (3.64) is an equality between scalars and not between vectors or matrices. 

To find the force-displacement relation at the lattice-continuum interface, we here apply 
the dynamic reciprocal work theorem to a two-dimensional viscoelastic continuum with a 
horizontal surface at the x-axis and a surface cavity that matches the shape of the discrete 
lattice in the near-field, denoted as the far-field body V. The so-called unknown elastody-
namic state of the far-field body V, depicted in Figure 3.16a, is described by the displace-
ments ( )u   and the tractions ( )t   along the boundary Γ. Note here that the shape of the 
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surface cavity, and thus the shape of the boundary Γ, can be freely chosen as long as all 
particles of the near-field lattice at the lattice-continuum interface are included. The most 
straightforward way to obtain the boundary Γ is thus to connect the boundary particles using 
straight lines as shown in Figure 3.14 and Figure 3.16. 

Additionally, let the elastodynamic state described by the surface displacements ( )Pu   
and tractions ( )Pt   refer to an elastodynamic state of the continuum for which we are able 
to describe the displacements and the tractions along the boundary Γ. This state of the con-
tinuum is then considered as the known elastodynamic state. Through the dynamic reciprocal 
work theorem, the displacements ( )Pu   and tractions ( )Pt   are then used to find the un-
known relation between the displacements ( )u   and the tractions ( )t  . Once the relation 
between displacements ( )u   and tractions ( )t   is known, the force-displacement relation 
at the boundary Γ, and thus the dynamic stiffness and dynamic compliance matrices can be 
derived. 

The known elastodynamic state: The viscoelastic continuum without a cavity 
Due to the cavity, there are no Green’s functions, or fundamental solutions, available for the 
displacements and tractions along the boundary Γ of the continuum due to an externally ap-
plied load. For a continuum without a surface cavity however, the Green’s function can be 
derived from the two-dimensional elastodynamic wave equation. As the dynamic reciprocal 
work theorem applies to different elastodynamic states of the same body, we divide this con-
tinuum into two separate bodies for which the interface exactly matches the boundary Γ. As 
depicted in Figure 3.16b, we then remain with a far-field body V that exactly matches the 
shape of the continuum with the surface cavity and a near-field, or cavity, body Vcav that 
exactly matches the shape of the near-field lattice.  

According to Huygens’ principle [Huygens, 1690], also known as the Huygens-Fresnel 
principle, the response of the far-field body V is indifferent to whether the cavity body Vcav 
is present or not, as long as the response of the far-field body V is the same in both situations. 
Now, consider the cavity body Vcav in Figure 3.16b to have a boundary Γcav that is offset from 
the boundary Γ with an infinitesimal distance and assume a load distribution ( )P   along 
Γcav for which we can determine the displacements ( )Pu   and tractions ( )Pt   along the 

Figure 3.15: Two arbitrary but different elastodynamic states of the same body 
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boundary Γ of the body V, i.e. the known state. Knowing the tractions ( )t   along the bound-
ary Γ of the body V in the unknown state then allows us to determine the displacements 
( )u  along the boundary Γ of the body V, through the dynamic reciprocal work theorem 

that describes the relation between the known and unknown elastodynamic states depicted in 
Figure 3.16, while we in fact compare two different bodies.  

As the distance between the boundary Γ and the cavity boundary Γcav is assumed to be 
infinitesimal, we can consider the load distribution ( )P   to describe the interaction between 
the bodies V and Vcav. The displacements ( )Pu   and the tractions ( )Pt   along the boundary 
Γ due to the load distribution ( )P   along the boundary Γ are expressed in terms of their 
respective Green’s functions, or fundamental solutions, as: 

( ) ( ) ( )uPu g P d      = −Γ
(3.65) 

( ) ( ) ( )tPt g P d      = −Γ
(3.66) 

Here, ( )ug   and ( )tg   are matrices that contain the Green’s functions for respectively the 
displacements and the tractions along the boundary Γ, which we will henceforth refer to as 
the Green’s displacements and Green’s tractions respectively. Furthermore, the load distri-
bution ( )P   contains the x- and z-components ( )xP   and ( )zP  , the displacement vector 

( )Pu  contains the horizontal and vertical displacements ( ),P xu  and ( ),P zu   along Γ, and 
accordingly the traction vector ( )Pt   contains the horizontal and vertical tractions ( ),P xt   
and ( ),P zt   along Γ.  

Equations (3.65) and (3.66) describe a continuous relation between the load distribution 
( )P  and the displacements ( )Pu  and tractions ( )Pt  along the boundary Γ. To instead 

find the relation between the lattice particles at the lattice-continuum interface and the con-
tinuum, we divide the boundary Γ into a number of subdomains, which is equal to the number
of particles at the lattice-continuum interface. It then follows that the load distribution ( )P   
along the boundary Γ is equal to the sum of the load distributions at the subdomains of the 
boundary Γ of all NInt particles. We can describe this as: 

( ) ( )P p 
=

=
IntN

i

i 1

Here, ( )p 
i  is the load distribution that belongs to the subdomain of the particle i on the 

boundary Γ and contains the horizontal and vertical load distributions ( )xp i  and ( )zp i . 
Now, if we describe each load distribution ( )p 

i  at particle i as a multiplication of an arbi-
trary unit distribution ( )p i

1  and a load magnitude vector i
P , we can describe the total load

distribution ( )P   along Γ as: 

( ) ( )P p = 1 P (3.67) 
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Here, the vector P  contains the horizontal and vertical load magnitudes x
iP  and z

iP for all 
particles and thus for all subdomains, i.e. for 1= Inti N . Consequently, ( )p 1  is a 2 2 IntN
-matrix that contains the unit distributions ( )p i

1  for all NInt subdomains. Here, a unit dis-
tribution is defined by the property that the integral of that distribution over Γ is equal to one, 
i.e. ( ) 1 p d  =

i
1

Γ
. This implies that the unit distribution ( )p i

1  may also be a point load, 
which we can describe as a distribution over Γ using the Dirac delta function, ergo 

( ) ( )p   =i
1 . 

Substituting equation (3.67) into equations (3.65) and (3.66) allows us to express the dis-
placements ( )Pu  and the tractions ( )Pt   in terms of the load magnitude vector P  as: 

( ) ( )Pu u = 1 P (3.68) 

( ) ( )Pt t = 1 P (3.69) 

Here, ( )u 1  and ( )t 1  are 2 2 IntN -matrices that, when ( )p i
1  is a unit point load, are 

equal to the Green’s function matrices ( )ug   and ( )tg  . If ( )p i
1  is given as a unit load 

distribution however, the matrices ( )u 1  and ( )t 1  are related to respectively the Green’s 
displacements ( )ug   and Green’s tractions ( )tg   as: 

( ) ( ) ( )  uu g p d      = −1 1
Γ

(3.70) 

( ) ( ) ( )tt g p d      = −1 1
Γ

(3.71) 

Henceforth, we will respectively refer to the matrices ( )u 1  and ( )t 1  as the modified 
Green’s displacement matrix and the modified Green’s traction matrix. The modified Green’s 
function matrices ( )u 1  and ( )t 1  respectively consist of the displacements and the trac-
tions along the boundary Γ due to unit load distributions ( )p 

i

1
 at all particles i along the 

boundary Γ. 

The unknown elastodynamic state: The continuum with a surface cavity 
In the dynamic reciprocal work theorem, the so-called unknown elastodynamic state is de-
scribed through the displacements ( )u   and tractions ( )t   along the boundary Γ. As 

Figure 3.16: a) The continuum with a surface cavity that matches the lattice boundary, i.e. the unknown elastodynamic state;  
b) The continuum without a cavity, composed of the continuum with the cavity and a cavity body.
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depicted in Figure 3.16a however, at the locations of the boundary particles along Γ, the 
continuum is subject to the lattice forces IntF , while the displacements of the boundary par-
ticles along Γ are collected in the displacement vector Intu . Thus, we require a relation be-
tween the particle displacement vector Intu and the displacements ( )u   along Γ, as well as
a relation between the boundary particle force vector IntF and the tractions ( )t   along Γ. 
Note here that neither the vectors Intu and ( )u   nor the vectors IntF  and ( )t   have the 
same dimensions; in fact, the displacement vector Intu and the force vector IntF  respectively 
contain the horizontal and vertical displacements of, and forces on, all boundary particles, 
while the displacement vector ( )u   and the traction vector ( )t   respectively describe the 
horizontal and vertical displacements and tractions along the whole boundary Γ. Therefore, 
we consider the boundary Γ on NInt subdomains, where NInt is equal to the number of parti-
cles at the lattice-continuum interface. Choosing a geometrically logical and even division of 
the boundary Γ yields the subdomain of Γ for a particle j as     − + j j . Here, ξj is 
the position of particle j on Γ and 2Δξ is the distance between any two particles on the bound-
ary Γ. 

To describe the relation between the displacements ( )u 
j  of the boundary Γ on the do-

main of particle j and the displacement Intu j  of that particle any shape functions can be cho-
sen. In this case, choosing the Heaviside function as a shape function, we find the following 
relation: 

( ) ( ) Intu H u   =  − −
j j

j (3.72) 

The relation between the displacements ( )u   along Γ and the interface displacements Intu
is then found as the summation of all displacements ( )u 

j along the boundary Γ, and thus:

( ) ( ) Intu H u = (3.73) 

Here, ( )H   is a 2 2 IntN -matrix composed of Heaviside functions related to the respective 
domains of each particle = Intj 1 N  on the boundary Γ. Equation (3.73) gives a rather crude 
representation of the displacement field as it implies that the displacements ( )u   are dis-
continuous along the boundary Γ. This however, is not a problem as we aim for a force-
displacement relation of the discrete set of lattice particles along the boundary Γ and not for 
a continuous force-displacement relation along this boundary. 

To find the relation between the boundary particle force vector IntF and the tractions 
( )t  along the boundary Γ, let us first consider the relation between the forces on a particle 

i and the tractions on the domain of the boundary Γ that corresponds particle i. The domain
of the boundary Γ that corresponds to a particle i is described as     − + i i , where 
ξi is the position of particle i on the boundary Γ and 2Δξ is the distance between any two
particles on the boundary Γ. The tractions on the domain of particle i may then be expressed
in terms of the tractions ( )t   using the Heaviside function ( )H    − −i as depicted in 
Figure 3.17. The resultant of the tractions on the domain of particle i, must be equal and
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opposite to the exerted forces IntF i at particle i. Assuming that the boundary Γ has a unit 
width in the third dimension, the force IntF i at particle i is found in terms of the tractions as: 

( ) ( )IntF H t d    = −  − −
i

i
Γ

(3.74) 

Here, IntF i  contains the forces ,Int xF i and ,Int zF i . Collecting the forces IntF i for all particles 
= Inti 1 N  in the force vector IntF yields the following relation between the force vector 
IntF and the tractions ( )t   along the boundary Γ: 

( ) ( )
T

IntF H t d  


= − (3.75) 

Here, ( )H   is a 2 2 IntN -matrix composed of Heaviside functions related to the respective 
domains of each particle = Inti 1 N  on the boundary Γ. 

To apply the dynamic reciprocal work theorem using the so-called known and unknown 
elastodynamic states depicted in Figure 3.16, we have assumed that the displacements and 
tractions along the boundary Γ of the far-field body V are the same in both states. Conse-
quently, the tractions ( )t   on the boundary Γ of the continuum with the cavity are equal to 
the tractions ( )Pt   on the interface Γ due to the load distribution ( )P   in the continuum 
without the cavity: 

( ) ( ) ( )Pt t t  = = 1 P (3.76) 

Substituting equation (3.76) into equation (3.75), yields the relation between the boundary 
particle force vector IntF and the load magnitude vector P as:

( ) ( )
T

IntF H t d  = − 1
Γ

P (3.77) 

3.5.2 The dynamic compliance matrix for a continuum with surface cavity 
Substituting equations (3.68) and (3.69) for the known elastodynamic state, and equations 
(3.73) and (3.76) for the unknown elastodynamic state, into equation (3.64) for the dynamic 

Figure 3.17: The traction at the boundary Γ on the domain of a particle i. 
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reciprocal work theorem, yields the following relation between the load magnitude vector P
and the boundary particle displacement vector Intu :

( ) ( ) ( ) ( )
T TT T

Intt u d t H d u     = 1 1 1
Γ Γ

P P P (3.78) 

As the above equation must hold for any load magnitude vector P , we may remove the 
vector term T

P  from equation (3.78) without violating the equality. Solving the remainder 
for P , the force-displacement relation at the boundary Γ of the continuum with a correspond-
ing cavity follows from substitution into equation (3.77) as: 

( ) ( ) ( ) ( )( ) ( ) ( )
1T T T

Int IntF H t d t u d t H d u        
−

= −  1 1 11Γ Γ Γ
(3.79) 

Here, note that equation (3.79) is derived from the dynamic reciprocity theorem that is gen-
erally valid in the Laplace domain and therefore equation (3.79) also describes a relation in 
the Laplace domain. Thus, including the reference to the Laplace parameter s that we previ-
ously omitted and comparing equation (3.79) to the dynamic stiffness relation previously 
described by equation (3.62) in the Laplace domain, we find the dynamic stiffness matrix as: 

( ) ( ) ( ) ( )
T 1s T s G s T s

−
= (3.80) 

Consequently, the corresponding dynamic compliance matrix is found as: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
1 T1 1T 1s T s G s T s T s G s T s
−

− −−
= = (3.81) 

Here, the matrices ( )T s  and ( )G s  are respectively found as: 

( ) ( ) ( )
T,T s t s H d  =  1

Γ
(3.82) 

( ) ( ) ( )
T, ,G s t s u s d  =  1 1Γ

(3.83) 

The matrix ( )T s  is sometimes referred to as the strain-displacement matrix [Wolf and 
Darbre, 1984a], but it is also known as the lumping matrix [Coda et al., 1999; Pinto and Prato, 
2006], because it follows from the so-called lumping procedure that is used to approximate 
the displacement field along Γ by the discrete interface displacement vector according to 
equation (3.73). The matrix ( )G s  is a symmetric matrix that is commonly known as the 
flexibility matrix; its symmetry follows directly from the dynamic reciprocal work theorem 
as proven in Appendix F.2. The expressions for the terms appearing in the lumping matrix 
( )T s  and the flexibility matrix ( )G s  are respectively discussed in Appendices F.1 and F.2. 

Since the flexibility matrix ( )G s  is a symmetric matrix, it follows from equations (3.80) 
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and (3.81) that the dynamic stiffness and compliance matrices are symmetric as well. This 
symmetry is induced by our choice of using the Heaviside function for both the relation be-
tween the continuous displacement field along Γ and the interface displacement vector given 
by equation (3.73), and for the relation between the tractions along Γ and the interface force 
vector given by equation (3.75). Although the Heaviside function is very straightforward, we 
may also use other shape functions to describe the relations given by equations (3.73) and 
(3.75) without breaking the symmetry of the dynamic stiffness matrix, given the condition 
that these relations are chosen accordingly.  

According to equations (3.82) and (3.83), the lumping and flexibility matrices follow 
from the so-called modified Green’s displacement and modified Green’s traction matrices, 
respectively denoted as ( ),u s1  and ( ),t s1 . Both these matrices include corresponding 
horizontal and vertical Green’s functions due to the horizontal and vertical unit load distri-
butions, denoted as ( ),xp i

1  and ( ),zp i
1 . Here, the numerator i refers to the boundary parti-

cle on Γ at which the unit load distributions are applied that generate the considered modified 
Green’s function along Γ.  

The tractions at the boundary Γ, which for the full continuum describes the interface be-
tween the bodies V and Vcav, can be expressed in terms of stresses at this interface using 
Cauchy’s stress principle. Expressing Cauchy’s stress tensor in its components in x- and z-
direction, the modified Green’s tractions due to a unit load distribution at particle i on the 
boundary Γ in respectively x- and z-direction follow from the modified Green’s stresses as: 

( ) ( ) ( ) ( ) ( ), , ,, , ,xx x xxx z zxxt s n s n s      = +i i i
1 1 1 (3.84) 

( ) ( ) ( ) ( ) ( ), , ,, , ,xz x xxz z zxzt s n s n s      = +i i i
1 1 1 (3.85) 

( ) ( ) ( ) ( ) ( ), , ,, , ,zx x zxx z zzxt s n s n s      = +i i i
1 1 1 (3.86) 

( ) ( ) ( ) ( ) ( ), , ,, , ,zz x zxz z zzzt s n s n s      = +i i i
1 1 1 (3.87) 

Here, the modified Green’s traction ( ), ,abt si
1  gives the traction along Γ in the direction of

index a due to the unit load distribution at particle i in the direction of index b. Accordingly, 
the modified Green’s stress ( ), ,abc s i

1  describes the normal or shear stress, depending on 
whether indices a and b are equal or not, in the direction of index b due to the unit load 
distribution at particle i in the direction of index c. Furthermore, ( )xn   and ( )zn   are re-
spectively the x- and z-components of the outward normal along the boundary Γ, which are 
defined by the angle ( )   between the x-axis and outward normal of Γ at coordinate ξ, so 
that ( ) ( )cosxn   =  and ( ) ( )sinzn   = . 

The modified Green’s displacements and modified Green’s stresses, resulting in the mod-
ified Green’s tractions according to equations (3.84) to (3.87), that yield the lumping and 
flexibility matrices and thus the dynamic compliance matrix are derived in the following.  

3.5.3 Green’s functions for the continuum displacements and stresses 
In the previous section, starting from the dynamic reciprocal work theorem, we have obtained 
an expression for the dynamic compliance at the boundary Γ of a continuum with a cavity 
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that matches the near-field lattice using the so-called modified Green’s displacements and 
stresses of the full continuum, thus without a cavity. In this section, we will first derive the 
modified Green’s displacements and stresses along the boundary Γ inside the full continuum 
in the Laplace-wavenumber domain. Subsequently, the expressions for these Green’s func-
tions are transformed to the Laplace domain using the residue theorem, providing us with the 
necessary expressions for the modified Green’s displacement matrix ( ),u s1  and the modi-
fied Green’s traction matrix ( ),t s1  in the Laplace domain, finally yielding the dynamic 
stiffness and compliance matrices.  

To find the modified Green’s functions at the boundary Γ, we model the continuum as a 
layer with a fixed bottom to allow for the application of dynamic loads with a nonzero mean, 
i.e. loads with a static component. Note here that a continuous half-plane is not suitable for
this, because half-planes are statically indeterminate, so that any half-plane loaded by a static
force will move wholly and undisturbed to infinity. The continuous layer with its fixed bot-
tom is depicted in Figure 3.18. Here, the horizontal surface of the continuous layer is chosen
as the x-axis and the horizontal rigid bottom is located at the z-coordinate bz z= , so that the
continuous layer has a constant thickness equal to zb. To determine the Green’s displacements
and stresses in the continuous layer, we consider its displacements and stresses due to a unit
load applied at an arbitrary point. Let us, as a general case, consider this unit load to be
applied at a particle i on the boundary Γ located inside the continuous layer as depicted in
Figure 3.18a. To obtain its governing equations, the continuous layer is divided into two
horizontal sublayers; a surface and a bottom layer. The surface layer, denoted by roman nu-
meral I, is the part of the continuous layer between the layer surface and the z-coordinate of
particle i, i.e. z z= i . The bottom layer, denoted by roman numeral II, consists of the remain-
der of the continuous layer and is located between the z-coordinate of particle i, i.e. z z= i , 
and the rigid bottom at z-coordinate bz z= . To minimize the influence of wave reflections
from the bottom of the continuous layer on the domain of the lattice, the thickness of the
bottom layer, denoted as hII, is chosen to exceed the thickness hI of the surface layer by a
significant margin, i.e. II Ih h . Important to note here is that the continuous layer is con-
sidered to be homogeneous and therefore both horizontal sublayers must represent the same
material and have the same material properties.

Figure 3.18b depicts the situation where the unit load is applied at the surface of the con-
tinuous layer. The governing equations for this case are obtained directly, i.e. without divid-
ing the continuous layer into horizontal sublayers.  

Figure 3.18: a) A unit load applied at a particle i inside the continuous layer; b) A unit load  
applied at a particle i at the surface of the continuous layer.
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Governing equations for the continuous layer in the Laplace-wavenumber domain 
Assuming plane-strain conditions, the system of equations of motion for a continuum with a 
mass density ρ, Young’s modulus E and Poisson’s ratio ν, is described by the well-known 
two-dimensional elastodynamic equation [Achenbach, 1973]: 

( ) ( ) ( )( ) ( )2
, , ,

ˆ ˆ ˆ, , , , , , 0x z x z x zu x z t u x z t u x z t   − +    −  = (3.88) 

Here, ( ), ,u x z t is a displacement vector consisting of the horizontal and vertical continuum 
displacements, respectively denoted as ( ), ,xu x z t  and ( ), ,zu x z t . As before, Newton’s no-
tation implies a time derivative and thus ( ), ,u x z t is the corresponding acceleration vector.
Furthermore, ̂  and ̂  are Lamé operators that describe the viscoelastic behaviour of the 
continuous layer through the relations ( )ˆ 1 e t   


= +  and ( )ˆ 1 e t   


= + . Here, λ and μ 

are the Lamé constants that describe the elastic properties of the material through the Young’s 
modulus E and the Poisson’s ratio ν respectively as ( ) ( )1 2 1E   = − + and 

( )2 1E = + , and ζe is a coefficient that represents the material damping in the continuous 
layer. 

Applying Helmholtz’ orthogonal decomposition by expressing the displacement vector 
u through the Lamé vector potential ( )0, = −  and the Lamé scalar potential ϕ in their 
common form, i.e. ( ), ,u x z t  =  + , the two-dimensional elastodynamic equation 
(3.88) splits into the following uncoupled equations: 

2 2
2

2 2
ˆ 0Sc

x z
 


  

− + = 
  

(3.89) 

2 2
2

2 2
ˆ 0Pc

x z
 


  

− + = 
  

(3.90) 

Here, 2ˆSc  and 2ˆPc  are respectively described as ( )2 2ˆ 1S S e tc c  


= +  and ( )2 2ˆ 1P P e tc c  


= + , 

where cS and cP are respectively the shear and compressional wave velocity, and ζe is the 
damping coefficient. The shear and compressional wave velocities are related to the Lamé 
constants as 2

Sc  =  and ( )2 2Pc   = +  respectively. The expressions for 2ˆSc  and 2ˆPc  
may be described likewise using the Lamé operators ̂  and ̂ . 

Applying the Fourier transform with respect to space and the Laplace transform with re-
spect to time yields equations (3.89) and (3.90) in the Laplace-wavenumber domain. The 
Lamé potentials that satisfy equations (3.89) and (3.90) in the Laplace -wavenumber domain 
are then found for respectively the surface and bottom layers as: 

1 2 3 4, .S S P PR z R z R z R z
I IA e A e A e A e + − + −= + = +  (3.91) 

5 6 7 8, .S S P PR z R z R z R z
II IIA e A e A e A e + − + −= + = +  (3.92) 
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Previously, a single tilde placed over a variable was used to denote a variable as its Laplace 
transform. Accordingly, the double tilde denotes a variable as its the Fourier-Laplace trans-
form, thus describing the considered variable in the Laplace-wavenumber domain. 

The expressions for RS and RP are respectively found as 2 2 2 2ˆS SR k s c= + and 
2 2 2 2ˆP PR k s c= + , where k and s are respectively the wavenumber and the complex-valued 

Laplace parameter. To fix the sign of the square roots of RS and RP, we assume 
( )Re , 0S PR R  . Here, note that in a homogeneous continuum, the expressions for RS and RP

in the surface and bottom layers are the same. 
From Helmholtz’ decomposition, we find the displacements of the continuous layer in 

terms of the Lamé potentials. The corresponding stresses are then straightforwardly derived 
from the elasticity theory. Respectively applying the Fourier and Laplace transforms with 
respect to space and time, as well as substituting the Lamé potentials according to equations 
(3.91) yields the Laplace-wavenumber domain displacements and stresses in the surface layer 
as: 

( ) ( ) ( ), 1 2 3 4, , iS S P PR z R z R z R z
x I Su k z s R A e A e k A e A e+ − + −= − + + (3.93) 

( ) ( ) ( ), 1 2 3 4, , i S S P PR z R z R z R z
z I Pu k z s k A e A e R A e A e+ − + −= − + + − (3.94) 

( ) ( ) ( ), 1 2 3 4ˆ ˆ, , 2 i S S P PR z R z R z R z
xx I S Pk z s kR A e A e A e A e  + − + −= − − + (3.95) 

( ) ( ) ( ), 1 2 3 4ˆ ˆ, , 2 iS S P PR z R z R z R z
zx I S Pk z s A e A e kR A e A e  + − + −= + + − (3.96) 

( ) ( ) ( ), 1 2 3 4ˆ ˆ, , 2 i S S P PR z R z R z R z
zz I S Sk z s kR A e A e A e A e  + − + −= − − + + (3.97) 

Accordingly, substituting the Lamé potentials given by equations (3.92) yields the Laplace-
wavenumber displacements and stresses in the bottom layer as: 

( ) ( ) ( ), 5 6 7 8, , iS S P PR z R z R z R z
x II Su k z s R A e A e k A e A e+ − + −= − + + (3.98) 

( ) ( ) ( ), 5 6 7 8, , i S S P PR z R z R z R z
z II Pu k z s k A e A e R A e A e+ − + −= − + + − (3.99) 

( ) ( ) ( ), 5 6 7 8ˆ ˆ, , 2 i S S P PR z R z R z R z
xx II S Pk z s kR A e A e A e A e  + − + −= − − + (3.100) 

( ) ( ) ( ), 5 6 7 8ˆ ˆ, , 2 iS S P PR z R z R z R z
zx II S Pk z s A e A e kR A e A e  + − + −= + + − (3.101) 

( ) ( ) ( ), 5 6 7 8ˆ ˆ, , 2 i S S P PR z R z R z R z
zz II S Sk z s kR A e A e A e A e  + − + −= − − + + (3.102) 

Here, the variables S and P are respectively found as 2 2 2ˆ2S S SR s c = − and
2 2 2ˆ2P P SR s c = − . Note here that i denotes the imaginary unit and should not be mistaken 

for the particle numerator i. The derivation of the above expressions is given in Appendix 
F.3.

Boundary conditions for the continuous layer 
The expressions for the unknowns A1 to A8 in equations (3.93) to (3.102) follow from the 
boundary conditions of the two horizontal sublayers in the Laplace-wavenumber domain. 
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The boundary conditions at the surface and at the bottom of the continuous layer respec-
tively follow from the fact that stresses at an unloaded surface do not exist and that the bottom 
is fixed. In the Laplace-wavenumber domain, the application of a load inside the continuous 
layer therefore yields the following boundary conditions at the layer surface and bottom as: 

( ) ( ), ,
0 0

, , , , 0zx I zz I
z z

k z s k z s 
= =
= = (3.103) 

( ) ( ), ,, , , , 0
b b

x II z II
z z z z

u k z s u k z s
= =

= = (3.104) 

The four remaining boundary conditions are found at the interface between the horizontal 
sublayers, whose position is defined by the location of particle i at which the considered unit 
load is applied. Clearly, the displacements of the surface and bottom layers must coincide at 
the interface between both layers and thus, the corresponding boundary conditions read: 

( ) ( ), ,, , , , 0x II x I
z z z z

u k z s u k z s
= =

− =
i i

(3.105) 

( ) ( ), ,, , , , 0z II z I
z z z z

u k z s u k z s
= =

− =
i i

(3.106) 

The two remaining boundary conditions follow from the equilibrium of stresses at the inter-
face between the horizontal sublayers at the z-coordinate zi of the load applied at a particle i 
and must therefore include the applied load.  

In Section 3.5.1, it was noted that a load along the boundary Γ must either be applied as 
a point load or as a load distribution. A well-known property of the two-dimensional contin-
uum is that the displacement under a point load is infinite. Therefore, we apply the load at 
particle i as a distributed load. Independent of its direction, a horizontally distributed unit 
load at particle i may generally be described in the space-time domain as 

( ) ( ) ( ),p x t p x x t= −i
1 1 i . Here, ( )p x x−1 i describes the shape of the distribution at a par-

ticle i along Γ that must satisfy the property ( ) 1p x x dx− = 1 i . Respectively applying the 
Fourier and Laplace transforms with respect to space and time, we obtain the Laplace-wave-
number domain unit load distribution at a particle i as ( ) ( ) ikxp k p k e−= ii

1 1 . Consequently, 
the two boundary conditions at the interface of the horizontal sublayers at the z-coordinate zi 
of the load applied at a particle i are found as: 

( ) ( ) ( ) i
, , ,, , , , kx

zx II zx I x
z z z z

k z s k z s p k e  −

= =
− = i

i i
1 (3.107) 

( ) ( ) ( ) i
, , ,, , , , kx

zz II zz I z
z z z z

k z s k z s p k e  −

= =
− = i

i i
1 (3.108) 

Here, ( ),xp k1  and ( ),zp k1  respectively denote the horizontal and vertical load distributions 
at particle i, that are described exclusively in terms of the wavenumber k, since their time 
dependence, given by the Dirac delta function ( )t , is removed by the transformation to the 
Laplace-wavenumber domain. Consequently, ( ),xp k1  and ( ),zp k1  describe the wave-
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number dependency on the chosen shape of the unit load distribution and thereby determine 
the convergence of the Green’s functions in the wavenumber domain. This is further dis-
cussed in Section 3.5.4 for several shapes of the unit distribution. 

Equations (3.103) to (3.108) give the complete set of boundary conditions for a horizon-
tally distributed load inside the continuous layer. Substituting equations (3.93) to (3.102) into 
the given set of boundary conditions yields the system of eight algebraic equations of motion 
that may be solved for the unknown wave amplitudes A1 to A8. The resulting system of bound-
ary conditions is given in terms of the wave amplitudes A1 to A8 in Appendix F.4. 

In accordance with equations (3.107) and (3.108), the boundary conditions for a load ap-
plied inside a continuous layer must always be described along the horizontal interface of its 
sublayers. Therefore, if we wish to determine the displacements and stresses in the continuum 
due to a distributed load, this load must be distributed horizontally. To satisfy the reciprocal 
work theorem, and thereby allowing the use of the dynamic stiffness and compliance matrices 
as derived in equations (3.80) and (3.81), any unit load must be applied at or along the bound-
ary Γ. Consequently, the boundary Γ must always be horizontal at the domain of particle i at 
which a distributed load is applied. As previously specified in Section 3.5.1, the shape of the 
boundary Γ may be freely chosen as long as all particles at the lattice-continuum interface 
are part of the boundary Γ. The path of the boundary Γ is therefore adapted such that it has a 
horizontal domain at all particles on the interface resulting in the boundary depicted in Figure 
3.19. Note here that the domain of particle i on the boundary Γ at which the unit load distri-
bution is applied, described as  x x x x− + i i , does not have the same size for all parti-
cles along Γ. 

Green’s functions for the lumping and flexibility matrices 
To construct the lumping and flexibility matrices, we require separate expressions for the 
displacements and stresses due to unit loads that are either applied in horizontal or vertical 
direction respectively. To this purpose, the system of boundary conditions, given by equa-
tions (3.93) to (3.102), is solved for ( ), 1xp k =1  and ( ), 0zp k =1  first and the expressions for 
the resulting wavenumbers A1 to A8 are denoted as ;1xAi  to ;8xAi . This yields the Green’s ex-
pressions for the displacements and stresses due to an exclusive horizontal load at a particle 
i. The Green’s expressions for the displacements and stresses due to an exclusive vertical
load at a particle i are found by solving the system of boundary conditions for ( ), 0xp k =1  
and ( ), 1zp k =1 , and denoting the resulting expressions for the wavenumbers A1 to A8 as ;1zAi

to ;8zAi . The so-called modified Green’s displacements and modified Green’s stresses, i.e. the 
displacements and stresses due to a unit load distribution, are now obtained by multiplying 
the Green’s displacements and Green’s stresses due to the horizontal and vertical loads by 
the expression for the unit load distribution in the Laplace-wavenumber domain, denoted as 

( )p k1 . Omitting the directional indices, the modified Green’s displacements and modified 
Green’s stresses along Γ due to a unit load distribution at a particle i may generally thus be 
described in the Laplace-wavenumber domain as: 

( ) ( ) ( ), , , ,uu k z s g k z s p k=i i
1 1 (3.109) 
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( ) ( ) ( ), , , ,k z s g k z s p k =i i
1 1 (3.110) 

Here, ( ), ,ug k z si  and ( ), ,g k z s
i  respectively refer to the Green’s displacements and 

Green’s stresses that are obtained by separately solving the system of boundary conditions 
(3.103) to (3.108) for either a horizontal or a vertical unit load at a particle i on the boundary 
Γ.  

The expressions for the Green’s displacements and Green’s stresses due to respectively 
horizontally and vertically applied unit loads at a particle i located inside the continuous 
layer, derived from the system of boundary conditions, are given in Appendix F.4. Note here 
that the exponent ikxe− i , related to the position of the particle i, is included in these expres-
sions. For the particular case that the particle i is located at the surface, the system of four 
algebraic equations of motion, as well as the resulting expressions for the Green’s displace-
ments and Green’s stresses are derived and given in Appendix F.5. 

Modified Green’s functions for the continuous layer in the Laplace domain 
Applying the inverse Fourier transform with respect to the wavenumber k to the modified 
Green’s displacements and stresses in equations (3.109) and (3.110) yields the modified 
Green’s displacements and stresses in the Laplace domain as: 

( ) ( ) ( ) i1, , , ,
2

kx
uu x z s g k z s p k e dk



+

−

= 
i i
1 1 (3.111) 

( ) ( ) ( ) i1, , , ,
2

kxx z s g k z s p k e dk


+

−

= 
i i
1 1 (3.112) 

To evaluate the inverse Fourier transforms in above equations, we apply contour integration 
by means of the residue theorem [Ahlfors, 1966], which is also referred to as Cauchy’s resi-
due theorem. Thus, we first extend the integrand to the complex plane and we subsequently 
choose a closed contour that consists of the real axis as well as a semicircle in either the upper 
or lower half of the complex plane. The integral over the closed contour is then obtained 

Figure 3.19: The path of the boundary Γ with horizontal domains at all boundary particles. 
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through its residues. 
In Appendix I.1, this approach is exemplified by applying the contour integration to eval-

uate the inverse Fourier transform of an arbitrary complex-valued function ( )f k  in the 
wavenumber domain. By means of the residue theorem, and assuming that all the poles are 
simple, it follows that the inverse Fourier transform of this function may be obtained as: 

( )
( )

( )
ii

,1 i
2 ,

j

j

j k xkx

j k k k

f k
f k e dk e

f k





+


− 

=


= 




Here, ( ),f k  and ( ),f k  respectively denote the numerator and denominator of the con-
sidered expression, while jk  denotes the poles, or singularities, of the function ( )f k  within 
a closed contour that encompasses all the poles.  

Applying the contour integration by means of the residue theorem to evaluate the inverse 
Fourier transforms in equations (3.111) and (3.112), the modified Green’s displacements and 
stresses in the Laplace domain become: 

( )
( )
( )

( ) ( )
( )

( )
ii

, ,
, , i i , ,

,
j j

j
j

u j j k xk x
j u j

j jk kk k k k

g k p k
u x z s p k e g k z s e

k p k






 

 

 
 =

=

 
=  

 
 

i
1i i

1 1

1

(3.113) 

( )
( )
( )

( ) ( )
( )

( )
ii
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j jk kk k k k

g k p k
x z s p k e g k z s e
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




 

 

 
 =

=

 
=  

 
 

i
1i i

1 1

1
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Note here that, since the Green’s displacements ( ), ,ug k z si and the Green’s stresses
( ), ,g k z s

i both originate from the system of equations of motion for the continuous layer, 
they have the same denominator, which is here denoted as ( )k . Consequently, both dis-
placements and stresses have the same poles in the complex k-plane, that are denoted as jk . 
Furthermore, ( ),p k 1  and jk , respectively denote the denominator and the poles of the 
unit load distribution ( )p k1 . 

It is important to emphasize that the numerators ( ),ug k i  and ( ),g k i , and the com-
mon denominator ( )k  must here be chosen such that either function is single-valued. The 
single-valued common denominator is obtained from the determinant of the system of equa-
tions of motion for the continuous layer as: 

( ) ( )

( )

2 2 2 2 2

4 2

4 4 sinh sinh

4 cosh cosh

P S S P S S P b S b

P S S P b S b

k k R R k R R R z R z

R R k R z R z

 



 = + +

− +
(3.115) 

The numerators ( ),ug k i  and ( ),g k i  are now straightforwardly obtained by omitting the 
denominator ( )k  from the expressions for the Green’s displacements and Green’s stresses 
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in the Laplace-wavenumber domain as given in Appendices F.4 and F.5. 
The signs in equations (3.113) and (3.114) are positive when the contour is chosen over 

the upper half of the complex k-plane, and negative when the contour is chosen over the 
lower half of the complex k-plane. Whether to choose the contour over the upper or lower 
half of the complex k-plane follows from the requirement that the contribution of the semi-
circle-segment to the contour integral must fade when the radius of the semicircle goes to 
infinity, so that only the real-axis segment of the contour integral remains. Note here that, 
due to the hyperbolic functions appearing in the expression for the common denominator 
( )k , the number of roots, or zeroes, of the denominator, i.e. the number of poles of the 

Green’s functions, is infinite within the contour in the limit that the radius of the semicircle-
segment of the contour goes to infinity. Consequently, as the contribution of the semicircle-
segment to the contour integral must fade with an increase of the semicircle radius, so must 
the contribution of a residue fade as the imaginary part of the corresponding root increases. 
In other words, if the imaginary part of a root goes to infinity, the contribution of its residue 
to the contour integral must go to zero. Consequently, the contour is chosen over the half of 
the complex k-plane for which the exponents in equations (3.113) and (3.114) go to zero. It 
follows that, for x x i , the modified Green’s displacements and stresses converge if the 
imaginary part of the roots go to positive infinity, and thus the contour is chosen over the 
upper half of the complex k-plane. Accordingly, for x x i , the imaginary part of the roots 
must go to negative infinity and the contour is therefore chosen over the lower half of the 
complex k-plane. The number of roots that are to be taken into account are then chosen such 
that the contribution of an additional root is negligible.  

For the particular case that x x= i , the exponents disappear from equations (3.113) and 
(3.114) and do not contribute to the convergence of these equations. As a consequence, 
choosing the contour over either the upper or lower half of the complex k-plane is arbitrary 
for this case. Noting that the residues in equations (3.113) and (3.114) do not necessarily 
converge for large imaginary parts of a pole jk , the convergence of these equations is exclu-
sively determined by the shape and therefore by the equation for the chosen unit load distri-
bution in the Laplace-wavenumber domain, denoted as ( )p k1 . This unit load distribution is 
generally chosen such that it has a finite amount of its own residues that are taken into account 
separately by the second term on the right-hand side of equations (3.113) and (3.114). To 
assure the convergence of the modified Green’s displacements and stresses, the poles corre-
sponding to the residues of the unit load distribution must all be located within the applied 
contour. 

Essential to applying the contour integration by means of the residue theorem, and thus 
to obtain the modified Green’s displacements and stresses in the Laplace domain through 
equations (3.113) and (3.114), is to correctly determine their poles, and thus to correctly de-
termine the roots, or zeroes, of the denominator ( )k  in the complex k-plane. To this pur-
pose, we have developed a numerical algorithm to find the roots of the common denominator 
in the complex k-plane, which is extensively discussed in Appendix I.2. In summary, the 
algorithm to find the roots of an arbitrary frequency-dependent function within a contour in 
the complex k-plane consists of the following steps. First, we determine the number of roots 
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within the domain of the considered contour for a single frequency by applying Cauchy’s 
Argument Principle [Krantz, 1999] and we order the roots using the heapsort method 
[Williams, 1964]. Next, we divide this domain into subdomains, such that each subdomain 
contains exactly one root. Then, we use a minimization algorithm, in this case the Nelder-
Mead algorithm [Nelder and Mead, 1965], to determine the exact location of the root within 
each subdomain. Once the locations of the roots for one frequency are known, the roots may 
be straightforwardly determined for other frequencies, as from one frequency to the next, the 
roots only shift slightly within the complex k-plane.  

Figure 3.20a and Figure 3.20b show the first 26 roots of the common denominator ( )k  
in the positive half of the complex k-plane for respectively a damping ratio 0.1 =  and a 
damping ratio 0.75 = . Here, the black crosses, the red plusses and the blue diamonds re-
spectively refer to the roots of the common denominator at frequencies 1.0 rad s = , 

20 rad s =  and 50 rad s = . For the frequency 1.0 rad s = , it can be seen from Figure 
3.20 that the locations of all roots in the complex k-plane are nearly the same for both damp-
ing ratio’s. In fact, as there is no influence of the damping in the static case, the position of 
the roots for both damping ratios must be exactly the same at zero frequency. The symmetry 
of the root-positions with respect to the imaginary axis at zero frequency is due to the homo-
geneity of the continuous layer. With increasing frequency, the roots first move towards the 
real axis and then move parallel to the real axis in the negative direction. For zero damping, 
these roots would be located exactly on the real axis and it is therefore logically explained 
that for a damping ratio 0.1 = , the roots along the real axis are much closer to this axis 
than the corresponding roots for a damping ratio 0.75 = . Note here that Appendix I.2 in-
cludes a figure showing the paths of the first six roots of the denominator ( )k  as a function 
of frequency in the complex k-plane for both damping ratio’s. 

With the roots of the common denominator ( )k  known, only the roots of the unit load 
distribution remain to determine the modified Green’s displacements and stresses (3.113) and 
(3.114) as a function of frequency and thus as a function of the Laplace parameter s. 

Figure 3.20: The first 26 roots of the denominator Δ(k) in the complex plane: 
a) for a damping ratio ζ = 0.1; b) for a damping ratio ζ = 0.75.
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3.5.4 Unit load distributions in the Laplace-wavenumber domain 
As previously noted, a unit load is a load for which the resultant of its distribution equals one, 
and any unit load distribution applied at a particle must always be distributed horizontally to 
comply with the boundary conditions for a horizontally distributed load applied inside the 
continuous layer, given by equations (3.103) to (3.108). The shape of the unit load distribu-
tion at a particle i may thus be denoted in space as ( )p x x−1 i . According to equations (3.107) 
and (3.108), the location of particle i is in the Laplace-wavenumber domain incorporated in 
the exponent ikxe− i . Thereby, it influences the choice over which half of the complex k-plane 
the contour is chosen, but the location of a particle i does not influence the convergence of 
the modified Green’s displacements and stresses. This is especially true for the particular 
case that x x= i  for which the exponents in equations (3.113) and (3.114) disappear. The 
convergence of these Green’s functions is however influenced by the shape of the unit load 
distribution, which is independent from the location of particle i, and is thus denoted in the 
space-time domain as ( ) ( ) ( ),p x t p x t=1 1 .  

Figure 3.21 shows the unit point load together with three possible shapes for the unit load 
distribution: the constant load distribution, an exponentially decaying load distribution and a 
bell-shaped load distribution. As noted previously, the point load causes significant issues 
when applied to a two-dimensional continuum and is therefore not further discussed here. In 
the Laplace-wavenumber domain, the piecewise constant load distribution is found as 

( ) ( )2sinp k k x k= 1  and thus provides an additional convergence of k-1. Due to the differ-
entiation of the denominator with respect to the wavenumber k in the expression for the res-
idues however, this additional convergence is insufficient to assure the convergence of equa-
tions (3.113) and (3.114) for the particular case that x x= i . The shape of the unit load distri-
bution should thus be chosen to have a higher rate of convergence in the Laplace-wave-
number domain. This can for example be achieved by introducing a unit load distribution that 
decays exponentially in space: 

( )
2

a xap x e−
=1 (3.116) 

Here, a is a positive real constant that determines the decay of the load distribution in space 
and the factor 2a  is included to make sure that equation (3.116) is, in fact, a unit distribu-
tion. Applying the Fourier and Laplace transforms with respect to respectively space and time 
over the resulting expression for ( ),p x t1  yields the exponentially decaying unit load distri-
bution in the Laplace-wavenumber domain as: 

( )
2

2 2

ap k
k a

=
+

1 (3.117) 

The exponentially decaying unit load distribution converges a factor k2 faster than the unit 
point load. For this unit load distribution, the modified Green’s functions in equations (3.113) 
and (3.114) thus converge with a rate k-1. Furthermore it follows from equation (3.117) that, 
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by applying the exponentially decaying load distribution, we introduce one additional pole 
within the applied contour over either the upper half or the lower half of the complex k-plane. 
The corresponding poles are respectively found as 1 ik a = +  or 1 ik a = − . 

To further improve the performance of the modified Green’s functions, we can principally 
choose any distribution that causes the modified Green’s functions to converge faster with 
the wavenumber k. In this case, we choose the unit distribution in the Laplace-wavenumber 
domain as: 

( )
( )( )( )

2 2 2

2 2 2 2 2 2

a b cp k
k a k b k c

=
+ + +

1 (3.118) 

The unit load distribution given by equation (3.118) causes the modified Green’s functions 
in equations (3.113) and (3.114) to converge with a rate k-5. The additional poles in either 
half of the complex k-plane that are introduced by applying the above load distribution are 
respectively found as 1 ik a =  , 2 ik b =   and 3 ik c =  .  

Applying the inverse Fourier transform with respect to the wavenumber yields a so-called 
bell-shaped unit load distribution in the space domain as: 

( )
( )( ) ( )( ) ( )( )

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 22 2 2

a x b x c xa b c e b a c e c a b ep x
b a c a a b c b a c b c

− − −

= + +
− − − − − −

1 (3.119) 

Here, a, b and c are positive real constants that determine the spatial decay of the bell-shaped 
distribution. 

Whereas the unit point load and the piecewise constant unit load distribution at a particle 
i both exactly fit the horizontal domain  x x x x− + i i  of that particle along the bound-
ary Γ, the exponentially decaying and bell-shaped load distributions are not restricted to this 
domain. We may however apply both distributions if the contribution of the load outside the 
domain of the considered particle is negligible. It thus follows that, according to respectively 

Figure 3.21: a) the unit point load; b) the constant unit load distribution; c) the exponentially  
decaying unit load distribution; d) the bell-shaped unit load distribution.
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equations (3.116) and (3.119), the value of the exponentially decaying and bell-shaped unit 
load distributions at x x=   must be significantly smaller than its value at 0x = . For ex-
ample, demanding the decay such that its value at x x=   is 1% of the peak value, i.e. 

( ) ( )210 0p x p− =1 1 , yields the constant a for the exponentially decaying function by ap-
proximation as 4.61a x=  . For this a, the resulting segment of the exponentially decaying 
unit load distribution that is included within the horizontal domain of a particle is found as: 

( ) 2
4.61 0.9900

x x
a xa

x x

a p x dx e dx
x

+ +
−

− −

= → = =
  1 (3.120) 

For the bell-shaped unit load distribution, we find many possible combinations for the con-
stants a, b and c that yield the same decay. An example of a combination of these constants 
that satisfies the given decay is found as 7.6a x=  , 8.0b x=   and 8.6c x=  . The part 
of the bell-shaped unit load distribution at a particle i that is included within the horizontal 
domain  x x x x− + i i  is in this case found as: 

( )
7.6 8.0 8.6; ; ; 0.9954

x

x

a b c p x dx
x x x

+

−

= = = → =
    1 (3.121) 

Thus, the bell-shaped unit load distribution does not only yield a better convergence for the 
modified Green’s functions than the exponentially decaying unit load distribution, but it also 
includes a larger part of the unit distribution within the horizontal domain along Γ that be-
longs to the corresponding particle. This is important because any part of the unit distribution 
that is applied outside the horizontal domain  x x x x− + i i  of particle i is, in many 
cases, not applied along the boundary Γ at all and thereby violates the reciprocal work theo-
rem. Ergo, reducing the magnitude of the unit distributions that are applied outside the hori-
zontal domain of the corresponding particles, reduces the error in the derived dynamic stiff-
ness and compliance matrices. 

Finally note that all three given poles of the bell-shaped unit load distribution are located 
further away from the origin of the complex k-plane than the single pole of the exponentially 
decaying unit load distribution. For the particular case that x x= i , this directly influences the 
required size of the contour and thus the number of roots of the common denominator ( )k  
that must be accounted for in the contour integration to accurately obtain the modified 
Green’s functions. While this also influences the size of the required contour when x x i , 
this influence is less significant due to the convergence of the modified Green’s displace-
ments and stresses as a function of the wavenumber. 

3.6 The two-dimensional discrete-continuous BKV system 
The two-dimensional discrete-continuous BKV system that is composed of a hexagonal BKV 
lattice and a two-dimensional continuous layer is depicted in Figure 3.22. Any external time-
dependent load, denoted as F(t), is applied at the particle with nodal coordinates 0,0, located 
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at the origin of the lattice. Any particle with nodal coordinates m,n has a mass Mm,n and the 
distance of the lattice is denoted by . Each BKV element between adjacent particles m,n 
and mj,nj consist of a Kelvin-Voigt element with a stiffness coefficient ;e jK m,n  and a damping 
coefficient ;e jCm,n  and a Bingham element with a damping coefficient ;f jCm,n  and a critical fric-
tion force ;cr jF m,n . The distance from the loaded particle to either particle at the lattice boundary 
is bridged by an equal number of BKV elements, and thus by an equal number of particles, 
in all directions. The size of the hexagonal lattice can therefore be described by, for example, 
the number of particle rows in the lattice. Denoting the row of particles at the horizontal 
boundary of the lattice as N, the hexagonal lattice is found to consists of ( )1

2 3 2+ +N N  parti-
cles and the number of BKV elements in the hexagonal lattice follows as ( )2 9 5+N N . At its 
boundary, the lattice is connected to a viscoelastic continuous layer with a thickness zb and a 
unit width dy, which is thus the dimension of the continuum in the y-direction. Furthermore, 
the continuous layer has a mass density ρ, a Young’s modulus E, a Poisson’s ratio ν and a 
damping coefficient ζe. The interface between the hexagonal BKV lattice and the continuous 
layer is denoted as Γ.  

In the following, we will first discuss the parameters for which the material properties of 
the hexagonal BKV lattice and the viscoelastic continuous layer match. Then, in Section 
3.6.2, we will present the governing system of equations of motion for the two-dimensional 
discrete-continuous system by first specifically deriving the equations of motion for the par-
ticles at the lattice-continuum interface both in the Laplace and in the time domain. Subse-
quently, guidance is given on how to determine the equations of motion for the particles in 
the interior of the hexagonal BKV lattice. Finally, Section 3.6.3 discusses the difficulties 
related to the numerical implementation of the two-dimensional discrete-continuous system 
and explains why deriving a boundary formulation from a continuum far-field does not serve 
well for the hexagonal BKV lattice. 

Figure 3.22: The two-dimensional discrete-continuous system consisting of a hexagonal  
BKV lattice and a viscoelastic continuous layer.
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3.6.1 Matching the parameters of the lattice and the continuum 
As previously discussed with regard to the one-dimensional discrete-continuous BKV system 
in Section 3.2.1, the behaviour of a homogeneous medium modelled by a lattice in the near 
field and a continuum in the far field can only be described correctly when the parameters of 
the lattice and the continuum represent the same material. For the two-dimensional system 
consisting of a hexagonal BKV lattice and a two-dimensional continuum, this additionally 
requires the BKV elements to behave linearly at the lattice-continuum interface. 

For both parts of the BKV system to represent the same material, first of all the mass per 
unit volume in the hexagonal BKV lattice and in the continuous layer must be equal. Figure 
3.23 shows the area that the particles in the interior of the hexagonal lattice represent as a 
hexagon. Assuming the continuous layer to have a unit width dy in the third dimension, the 
mass of a particle in the interior of the hexagonal lattice is straightforwardly obtained from 
the dimensions of the hexagon and the unit width dy as 23

2M dy= . Here, ρ is the mass 
density and  is the distance between adjacent particles in the lattice. Figure 3.23 additionally 
shows that the particles at both the surface of the hexagonal lattice and at the lattice-contin-
uum interface only represent a part of the unit hexagon area, and must therefore have smaller 
masses. The ratio of the masses of these particles at the edge of the lattice versus the mass of 
a particle in the interior of the lattice, i.e. the normalized or dimensionless mass, follows 
directly from the part of the unit hexagon that each of these particles represent. In the table 
accompanying Figure 3.23, the dimensionless mass is given for all different particles types 
existing in the hexagonal lattice. 

To obtain the relations between the parameters of the hexagonal BKV lattice and the 

Figure 3.23: The masses of the particles in the hexagonal lattice correspond to the space their cells occupy. 
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continuum properties, we may consider the hexagonal lattice to consist of viscoelastic Kel-
vin-Voigt elements rather than nonlinear BKV elements. In Appendix C.1, the parameters of 
the hexagonal Kelvin-Voigt lattice are derived from the macromaterial, or continuum, prop-
erties by noting that the homogeneous equations of motion for the hexagonal Kelvin-Voigt 
lattice must in the long-wave limit reduce to the equations of motion for the viscoelastic 
continuum [Maradudin et al., 1971; Suiker et al., 2001a]. From the comparison between the 
models, it follows that the material properties of the hexagonal lattice and the continuous 
layer can only match if the Poisson’s ratio is equal to 1

4 = . By taking the previously derived 
relation between the particle mass M and the density ρ of the continuous layer into account, 
the relation between the parameters of the hexagonal BKV lattice and the material properties 
of the continuous layer follow as: 

23 8 8
2 5 3 5 3

, ,e e eM dy C Edy K Edy = = = (3.122) 

Furthermore, note that the shear and compressional wave velocities in the hexagonal BKV 
lattice may respectively be expressed in terms of the Young’s modulus and the density of the 
continuous layer as 2 2

5Sc E =  and 2 6
5Pc E = , so that 3P Sc c= . 

3.6.2 Governing equations for the 2D discrete-continuous BKV system 
In accordance with the approach for the one-dimensional discrete-continuous system, we 
normalize the governing system of equations of motion by introducing dimensionless param-
eters for time, space and mass. For the two-dimensional discrete-continuous BKV system, 
these are: 

, ,
, ,dim dim

dim 0 23
2

, , .u Mt t u M
dy




= = =
m n m n

m n m n

Here, ω0 is the particle frequency of the homogeneous hexagonal BKV lattice, which is de-
rived in Appendix B.4 as 0 3 eK M = . Furthermore, we introduce the dimensionless 
damping in the form of the damping ratio e critC C = , where Ccrit is the critical particle 
damping, derived in Appendix B.4 as 2

03critC M= . According to Appendix B.2, this yields 
the damping ratio, the damping and the stiffness of the BKV elements in the lattice, as well 
as the dimensionless force, in terms of their dimensional counterparts as: 

, , , , ,
; ,dim ; ,dim ; ,dim, , , dim dim1

0 ; ;2 3 8 3 8 3
2 5 5

, , , .
3 3

e j e j e j
e e j e j

crit e e

C K K F FC K F
C K KEdy Edy

  = = = = = =

m n m n m n m n m n
m n m n m n  

Here, the numerator j denotes the rheological element between the particle m,n and an adja-
cent particle mj,nj. Furthermore, the expressions for M, Ce and Ke are given by equation 
(3.122). To reduce the number of variables in this thesis, the same notations are used for both 
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dimensional and dimensionless variables. In the direct relations between these variables 
given here however, the dimensional variables are given the subscript ‘dim’. 

In the two-dimensional discrete-continuous BKV system, the far-field domain is de-
scribed by a continuous layer. As an example, Figure 3.24 shows a boundary cell along the 
horizontal segment of the lattice-continuum interface. Since the location of the interface Γ is 
chosen in the region of the lattice where its response is linear, the Bingham elements in a 
boundary cell are not activated, and the corresponding BKV elements may be considered as 
Kelvin-Voigt elements. As previously explained in Section 2.4.1, any rheological elements 
at the interface have half the stiffness and half the damping of the elements in the interior of 
the lattice. Taking equation (3.122) into account, it follows that the inner elements of a bound-
ary cell have a dimensionless stiffness 1

; 3e jK =m,n  and a dimensionless damping coefficient 
2

; 3e jC =m,n , while the rheological elements along the interface Γ have a dimensionless stiff-
ness 1

; 6e jK =m,n  and a dimensionless damping coefficient 1
; 3e jC =m,n . 

Disregarding the force-displacement relation at the lattice-continuum interface, the equa-
tions of motion for any boundary particle m,n may be obtained from equations (2.34) and 
(2.35) by accounting for the correct number of rheological elements and noting that the elon-
gations of any involved Bingham elements are equal to zero. As the number of elements is 
not equal for all boundary cells, the number of rheological elements in the cell of an boundary 
particle m,n is here denoted as enm,n . Including the forces that are applied to the boundary 
particle m,n by the interaction with the continuous layer in x- and z-direction, respectively 
denoted as ( ),Int xF sm,n  and ( ),Int zF sm,n , the equations of motion for a particle at the lattice-con-
tinuum interface may be expressed in the Laplace domain as: 

( ) ( )2
; ; ,

1
cos 0

en

x e j e j j j Int x
j

M s u C s K e F s
=

− + + =
m,n

m,n m,n m,n m,n m,n m,n m,n (3.123) 

( ) ( )2
; ; ,

1
sin 0

en

z e j e j j j Int z
j

M s u C s K e F s
=

− + + =
m,n

m,n m,n m,n m,n m,n m,n m,n (3.124) 

The interaction forces ( ),Int xF sm,n  and ( ),Int zF sm,n  in equations (3.123) and (3.124) are expressed 
in terms of the displacements of all particles along the interface Γ through the dynamic 

Figure 3.24: A boundary cell at the horizontal segment of the lattice-continuum interface. 
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stiffness relation given by equation (3.2). Collecting the equations for all boundary particles 
into a single expression and including the dynamic stiffness relation, the governing system 
of interface equations reads:  

( ) ( )2 0Int IntInt IntIntM s u C s K u s u+ + + = (3.125) 

Here, IntM , IntC and IntK are respectively the mass, damping and stiffness matrices for the 
particles along the lattice boundary, i.e. along the lattice-continuum interface. Furthermore, 
the displacement vector Intu contains the horizontal and vertical displacements of the parti-
cles at the lattice-continuum interface, while the displacement vector u  contains the dis-
placements of all particles that are present in the boundary cells of the hexagonal BKV lattice. 

Because the terms in the dynamic stiffness matrix increase for Ω → ∞, we pre-multiply 
(3.125) by the dynamic compliance matrix ( )s . The system of interface equations of mo-
tion for the hexagonal BKV lattice in the Laplace domain thus reads: 

( ) ( )( )2 0Int IntInt IntIntu s M s u C s K u+ + + = (3.126) 

Here, note that the interface displacement vector Intu is a subset of the displacement vector
u , so that both equations (3.125) and (3.126) may be rearranged into the form ( ) 0A s u = . 

Applying the inverse Laplace transform to equation (3.126) then yields: 

( )( )( )
0

0
t

Int IntInt IntIntu t M u C u K u d   + − + + = (3.127) 

Here, ( )t  is the time domain dynamic compliance matrix. In correspondence with the ap-
proach used for the one-dimensional discrete-continuous system in Section 3.2.3, we differ-
entiate equation (3.127) using Leibniz’ rule for differentiation of integrals [Abramowitz and 
Stegun, 1972; Woods, 1926] with the purpose of obtaining a nonzero acceleration term at the 
current time step that allows us to numerically solve the system of ordinary differential equa-
tions for the near-field lattice in the time domain. This yields the time domain system of 
interface equations as: 

( )( ) ( ) ( )
0

0 0
t

Int Int IntInt Int Int IntInt Intu M u C u K u t M u C u K u d    + + + + − + + = (3.128) 

Here, ( )0  is the time domain dynamic compliance matrix at 0t = , while ( )t  is the time 
domain admittance matrix that equals the time derivative of the time domain dynamic com-
pliance matrix. Note here that, in correspondence with the dynamic compliances for the vis-
coelastic rod and the viscoelastic dispersive rod, the dynamic compliance matrix for the vis-
coelastic continuous layer may also very well be equal to zero. Nevertheless, as discussed in 
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the upcoming Section 3.6.3, we failed to numerically obtain the modified Green’s functions 
for the continuous layer and therefore the behaviour of the time domain dynamic compliances 
for 0t →  cannot be verified. 

To properly account for large deflections in the nonlinear BKV lattice, we here apply the 
linearization for large elongations according to Appendix A.2. In this approach, the total 
elongation of the rheological elements in the lattice at time t is described in terms of the 
particle displacements during the last time step dt prior to time t and the elongation of the 
rheological elements at time t-dt, which are constant during the current time step. In this way, 
the particle displacements can be tuned to remain small as their magnitude depends on the 
size of the time step dt, while the total elongation of the rheological elements can be large. 

In the system of interface equations described by equation (3.128), the elongations of the 
rheological elements are embedded in the stiffness term IntK u . To apply the linearization
for large elongations, we replace this stiffness term by a stiffness term that includes the par-
ticle displacements during the current time step dt and a force vector related to the elongation 
of the rheological elements at time t-dt, i.e. ,IntInt IntK u K u F → + . Accounting for the line-
arization for large elongations, the system of interface equations thus becomes: 

( )( )

( ) ( )

,

,
0

0

0

IntInt IntInt IntInt

t

IntIntInt IntInt

u M u C u K u F

t M u C u K u F d







   

+ + + +

+ − + + + =
(3.129) 

Here, the displacement vector u  now includes the particle displacements as they occur dur-
ing the current time step dt, while the force vector ,IntF   contains the stiffness contribution 
of the elongations of all BKV elements at or attached to the interface Γ, before the current 
time step, i.e. at time t-dt. Note here that during the current time step dt, any quantity de-
scribed at time t-dt is a constant so that the force vector ,IntF   is also constant during the time 
step dt. Furthermore, since the location of the lattice boundary is by definition chosen at such 
a distance from the origin, i.e. from an applied load, that any nonlinearities occurring in the 
lattice do not reach the boundary, it follows that any BKV elements at or attached to the 
interface Γ must behave viscoelastically. Therefore, the stiffness contribution of the BKV 
elements at or attached to the interface at time t-dt can be expressed in terms of the elongation 
of the whole BKV element. Denoting the elongation of the BKV element between particles 
m,n and mj,nj at time t-dt as j

m,n , the terms of the force vector ,IntF   related to the boundary 
particle m,n are respectively obtained in x- and z-direction as: 

, ;
1

cos
en

x e j j j
j

F K  
=

=
m,n

m,n m,n m,n m,n (3.130) 

,z ;
1

sin
en

e j j j
j

F K  
=

=
m,n

m,n m,n m,n m,n (3.131) 
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Equation (3.129) gives the general system of equations of motion for the boundary particles 
of the hexagonal BKV lattice. Inserting the time domain dynamic compliance matrix for the 
continuous layer obtained by applying the inverse Laplace transform to the dynamic compli-
ance matrix given by equation (3.81) completes the interface relations for the two-dimen-
sional discrete-continuous system. 

The system of equations of motion for the hexagonal lattice is completed by adding the 
equations of motion for all particles in the interior and at the surface of the hexagonal lattice. 
The equations of motion for particles in the interior of the hexagonal lattice with all BKV 
elements in either stick, slip and lock were previously derived and discussed in Sections 2.4.3, 
2.4.4 and 2.4.5 respectively. At any given moment in time however, different BKV elements 
in the lattice may simultaneously behave according to different motion states. The resulting 
system of equations of motion for the hexagonal BKV lattice must therefore be continuously 
updated to correctly incorporate the variation of motion states over time. A full description 
of the governing system of equations of motion for the hexagonal BKV lattice that accounts 
for the variation in motion states over time is given in Section 4.7.3. 

3.6.3 Discussion on the two-dimensional discrete-continuous system 
Unfortunately, the numerical implementation of the boundary formulations for the near-field 
lattice derived from a continuous layer in the far field was unsuccessful and therefore no 
results are presented here. Although much was learned from attempts made, the decision was 
taken to discontinue our efforts aimed at the successful numerical implementation of the two-
dimensional discrete continuous system. Several of the arguments that support this decision 
are here addressed briefly. 

First of all, let us conclude that due to a mismatch in their dispersive properties, the con-
tinuous layer can never yield a perfectly non-reflective boundary for the hexagonal lattice. 
For the one-dimensional discrete-continuous systems this is testified for example by Figure 
3.8, showing the corresponding nonzero amplitude and energy reflection coefficients. Deriv-
ing a boundary formulation from the far-field continuum that is applicable to the near-field 
lattice imposes additional difficulties in two dimensions. First and foremost, the forces that 
are applied by the hexagonal lattice to the continuum at the lattice-continuum interface are 
point loads and it is commonly known that the response of a two-dimensional continuum 
under a point load cannot be determined. To be able to properly describe the interaction be-
tween the lattice and the continuum, we must therefore translate the forces in the particles of 
the lattice to tractions along the continuous interface, and vice versa translate the tractions 
along the continuous interface of the continuous far-field to reaction forces that can be ap-
plied at the particles of the near-field lattice. To straightforwardly do this, we have introduced 
shape functions that allow for the integration over a certain representative domain of the 
interface, consequently describing the force-displacement relation at the discrete-continuous 
interface in an average sense. Noting that these shape functions must be distributed horizon-
tally to be able to solve the system of equations of motion for the continuous layer and thereby 
obtain the displacements and tractions along its boundary, as well as to try and obtain a con-
tinuum response that performs reasonably well for the applied point loads, we have chosen 
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these shape functions as narrow bell-shaped functions. While this makes sense when consid-
ering the balance of forces at the interface, the resulting tractions along the face of the con-
tinuous far field do not likely resemble the tractions for the case that the near field would also 
consist of a continuum. Moreover, by using narrow shape functions, the amount of poles 
required to obtain sufficient convergence of the modified Green’s displacements and modi-
fied Green’s stresses using the contour integration is still very large, thereby dramatically 
increasing computation time. Additionally, we encountered severe precision problems when 
attempting to accurately determine the poles located far from the origin of the complex k-
plane. Not only does this lead to a degradation of the dynamic compliance matrix, thereby 
reducing the non-reflectiveness and thus the quality of the boundary formulation, but it also 
induces numerical instability and further increases calculation time.  

Despite the difficulties encountered, we still believe that it is possible to obtain the mod-
ified Green’s displacements and modified Green’s stresses for the continuous layer such that 
they can be used to describe a boundary formulation in a numerically robust manner. To this 
purpose, it would be useful to further investigate the interaction along the discrete-continuous 
interface. For example, determining the actual displacements and tractions along a boundary 
inside a fully continuous system may provide insight on the shape functions that should be 
used to more realistically describe the interaction between the forces that are applied to the 
boundary of the far-field domain by the near-field lattice and the tractions along this bound-
ary. Assuming such relatively smooth traction and displacement fields along the discrete-
continuous interface surely improves the numerical performance, but at this time we can only 
guess what the quality of the corresponding boundary formulation would be. Additionally, 
such an approach would yield challenges with respect to the nonzero traction fields along the 
vertical segments of the discrete-continuous interface, which, as explained in Section 3.5.3, 
are not accounted for in the set of boundary conditions used to solve the system of equations 
of motion for the continuum and are thereby used to derive the displacements and tractions 
along the boundary. Based on this, it may be worth to investigate alternative approaches to 
obtain the Green’s displacements and Green’s tractions along the interface, or alternatively 
look at different shapes for the discrete-continuous interface. Finally, instead of using the 
indirect boundary element method, which is presented in Section 3.5 and requires several 
assumptions to derive the boundary formulation for the continuum, the direct boundary ap-
proach, which is successfully applied for the fully discrete system and presented in Section 
4.3.1, could be used. 

Rather than further investigating the available options however, we have decided that it 
is more appropriate to derive a boundary formulation for a far-field system that more closely 
matches the discrete properties of the near-field. In particular, this far-field system should be 
capable of properly handling point loads at its interface with the lattice. In the next chapter, 
we therefore describe the far field by a system of discrete particles that matches the discrete 
properties of the hexagonal lattice and is thereby expected to provide a satisfactory boundary 
formulation. 
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4
One- and two-dimensional 

fully discrete systems 

To describe the response of a medium to a dynamic load, we again divide that medium into 
a nonlinear domain in the near field and a linear domain in the far field. In accordance with 
the discrete-continuous systems discussed in Chapter 3, the near-field domain is described 
by a nonlinear discrete lattice, but in this chapter, the linear far-field domain is described by 
a system of discrete particles. Here, the configuration of the system of discrete particles is 
matched with the configuration of the lattice model, such that the nonlinear near-field domain 
and the linear far-field domain are analogous discrete lattices with a corresponding grid of 
particles. This means that when nonlinear events do not occur in the near-field domain and 
the medium is considered homogeneous, the cells in the near- and far-field lattices are iden-
tical. Matching the grid of both discrete systems eliminates the need for any artificial opera-
tions to transfer the point loads from the near-field to the far-field domain, which is one of 
the disadvantages of the discrete-continuous systems. A boundary formulation for the non-
linear discrete lattice that is derived from a matching system of discrete particles is thereby 
expected to yield a much better non-reflective behaviour at the boundary of the nonlinear 
near-field lattice compared to a boundary formulation derived from a continuous far-field 
domain. 

In accordance with the approach for the discrete-continuous system in the previous chap-
ter, the interaction between the nonlinear near-field lattice and the linear far-field system of 
particles is described by the force-displacement relation that is commonly known in the fre-
quency and Laplace domains as the dynamic stiffness relation, previously discussed in Sec-
tion 3.1, or inversely by the dynamic compliance relation. In Section 4.1, we first consider a 
one-dimensional fully discrete system composed of a one-dimensional BKV lattice and a 
matching semi-infinite particle system, which is followed by a comparison of the responses 
of the one-dimensional fully discrete systems with the corresponding one-dimensional dis-
crete-continuous systems in Section 4.2. 

In section 4.3 a direct boundary formulation is derived for the hexagonal near-field lattice 
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from a matching two-dimensional system of particles, while Section 4.4 presents the Green’s 
functions for this viscoelastic half-plane of particles. To verify that the expressions for the 
displacements and reaction forces of the half-plane of particles are obtained and implemented 
correctly, Section 4.5 considers the equivalent one-dimensional response of the half-plane of 
particles to an infinitely long uniform line load at its surface and compares it to the response 
of the corresponding one-dimensional cascade. Subsequently, Section 4.6 reviews the dy-
namic behaviour of the half-plane of particles by considering its dispersive and direction-
dependent wave propagation properties in comparison with the continuous layer. Finally, 
Section 4.7 considers the two-dimensional fully discrete BKV system, composed of a hexag-
onal BKV lattice in the near field and a viscoelastic system of particles in the far field. First, 
its governing equations are presented, after which the response of the fully discrete BKV 
system to an applied dynamic load is presented and the reflection at its boundary is evaluated 
for both a linear and a nonlinear hexagonal lattice. 

4.1 The one-dimensional fully discrete BKV system 
The fully discrete system comprised of a one-dimensional BKV lattice and a semi-infinite 
viscoelastic discrete particle system is depicted in Figure 4.1. In correspondence with the 
discrete-continuous BKV system treated in Section 3.2, the one-dimensional BKV lattice 
consists of N particles and N-1 BKV elements, where each particle n has a mass Mn and the 
distance between any two adjacent particles is denoted as . The semi-infinite discrete par-
ticle system, henceforth referred to as a semi-infinite cascade [Bavinck and Dieterman, 2000; 
Dieterman and Metrikine, 1997], is chosen to match the properties of the linearly behaving 
one-dimensional BKV lattice, such that the distance between any two adjacent particles in 
the cascade is also equal to  and the mass of all particles in the interior of the cascade is 
equal to M. Additionally, the interaction between adjacent particles in the cascade is de-
scribed by Kelvin-Voigt elements with a damping coefficient Ce and a stiffness coefficient 
Ke. 

The one-dimensional BKV lattice and the semi-infinite viscoelastic cascade are con-
nected at the particle with coordinate Intx x= . To distinguish between the particles of the 
one-dimensional BKV lattice and the semi-infinite cascade, a particle in the BKV lattice is 
referred to as a particle n, while a particle in the semi-infinite cascade is referred to as a 
particle p. Consequently, the sub-particle at the lattice-cascade interface, which belongs to 
the one-dimensional BKV lattice is referred to as particle N, while the sub-particle at the 
lattice-cascade interface that belongs to the cascade is referred to as particle P. In accordance 

Figure 4.1: The one-dimensional fully discrete BKV system. 
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with the one-dimensional discrete-continuous systems presented in Section 3.2, the location 
of the lattice-cascade interface is chosen at such a distance from the applied time-dependent 
load ( )F t , that nonlinear phenomena occur only in the one-dimensional BKV lattice and do 
not reach the lattice-cascade interface and the BKV element between particles N-1 and N 
behaves exclusively linear. 

To obtain a boundary formulation for the one-dimensional BKV lattice that accounts for 
the far-field domain by modelling it as a semi-infinite viscoelastic cascade, we consider the 
lattice-cascade interaction at coordinate Intx x=  as a boundary value problem for the semi-
infinite viscoelastic cascade. As part of this boundary value problem, let us first consider the 
behaviour of a particle p in the interior of the semi-infinite cascade. Its equation of motion is 
found as: 

( ) ( )2 2 0e eMu C u u u K u u u+ − − + − − =p p p-1 p+1 p p-1 p+1 (4.1) 

Here, up is the axial displacement of a particle p in the interior of the semi-infinite viscoelastic 
cascade, where p P . 

At the interface between the one-dimensional lattice and the viscoelastic cascade, we find 
two interface conditions that respectively describe the equilibrium of forces between the sub-
particles N and P, and the continuity of the displacements of both sub-particles at the inter-
face. The two conditions at the lattice-cascade interface thus read: 

( ) ( )e e e eM u C e K e M u C u u K u u+ + = − − − − −N N N-1,N N-1,N N-1,N N-1,N P P P P+1 P P+1 (4.2) 

u u=N P (4.3) 

Here, eN-1,N  and eN-1,N  are respectively the elongation and the elongation rate of the BKV 
element between particles N-1 and N as defined by equation (2.4). Note here that the BKV 
element between particles N-1 and N may only behave linearly and that the corresponding 
Bingham element may not be activated. 

In the following, we first discuss the parameters for which the material properties of the 
one-dimensional BKV lattice and the viscoelastic cascade match. Subsequently, in Section 
4.1.2, we derive the dynamic stiffness for the semi-infinite cascade and obtain the corre-
sponding dimensionless boundary formulation in the Laplace domain, after which we derive 
the corresponding time domain relation in Section 4.1.3. Section 4.1.4 regards the governing 
system of equation of motion for the one-dimensional fully discrete BKV system as well as 
an in-depth discussion of the numerical performance of different instances of the boundary 
formulation used. Finally, in Section 4.1.5, we present and discuss the response of the one-
dimensional fully discrete BKV system to an applied pulse load. 

4.1.1 Matching the parameters of the lattice and the cascade 
As discussed previously, any waves propagating through the interface between the near- and 
far-field domains should ideally not be reflected, or at least the reflection should be minimal. 



124 

Although the BKV lattice allows for nonlinearities and for a variation of parameters along 
the lattice, at least in the region of the lattice-cascade interface, the response of the fully 
discrete BKV system must be linear and the material properties of the lattice and the viscoe-
lastic cascade must match.  

Compared to matching the parameters in the discrete-continuous systems, the matching 
of the parameters in the lattice-cascade system is rather trivial; since the mass per unit length 
must coincide and the distance in both parts of the system is equal to , it follows that the 
particle mass in the homogeneous part of the one-dimensional BKV lattice and the semi-
infinite viscoelastic cascade must be the same and equal to M. Additionally, since the Bing-
ham elements in the vicinity of the lattice-cascade interface may not be activated, the BKV 
elements in this region of the lattice behave viscoelastically. Consequently, by choosing the 
damping and stiffness coefficients of the rheological elements in the BKV lattice near the 
lattice-cascade interface equal to the damping coefficient Ce and the stiffness coefficient Ke 
in the viscoelastic cascade, the fully discrete BKV system represents a homogeneous me-
dium. Nevertheless, as previously discussed for the discrete-continuous system in Section 
3.2.1, the exact properties of the masses and rheological elements at the lattice-cascade inter-
face, depend on the chosen location of their interface. 

By choosing the interface between the lattice and the cascade at a particle in accordance 
with Figure 4.1, we find that the sub-particle N geometrically represents half a unit length. It 
is therefore intuitive to choose the mass M N of this sub-particle as 1

2M M=N . Accordingly, 
the sub-particle P also represents half a unit length and its mass M P is accordingly chosen as 

1
2M M=P . Nevertheless, from Figure 4.2a it straightforwardly follows that, to match the 

material parameters of the lattice and the cascade at the lattice-cascade interface, the masses 
M N and M P of the sub-particles N and P may be freely chosen as long as they together satisfy 
the following constraint: 

M M M+ =N P (4.4) 

Figure 4.2: The one-dimensional fully discrete system consisting of a lattice and a cascade, where:  
a) all springs have equal properties; b) all particles have equal masses.
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Alternatively, we can choose the lattice-cascade interface in-between the particles N and P 
as depicted in Figure 4.2b, which are then conveniently chosen to be exactly one unit length 
apart and therefore both have a mass M. To find the stiffness of the interface springs for 
which the fully discrete system is homogeneous at the lattice-cascade interface, we insert the 
equation of motion for the massless interface into the equation of motion for the particle N 
and compare the resulting expression to the equation of motion for any particle in the interior 
of either the lattice or the cascade. The derivation in Appendix D.4 shows that, to match the 
material parameters of the lattice and the cascade at the lattice-cascade interface, and by as-
suming the interface springs in both lattice and cascade to have equal stiffnesses, their stiff-
ness must be chosen as 2Ke. 

4.1.2 Dimensionless boundary equation in the Laplace domain 
To regard the fundamental properties of the one-dimensional fully discrete BKV system, and 
to allow for a comparison of these properties with those of the corresponding discrete-con-
tinuous system discussed in the previous chapter, we normalize the BKV system by intro-
ducing the following dimensionless parameters for time, space, mass, damping and stiffness 
as derived in Appendix B.3: 

dim dim ,dim ;dim ;dim
dim 0 2

0
, , , , .

2
e e e

e e
crit e

C K Ku Mt t u M C K
M C KM




= = = = = =

n,n+1 n,n+1 n,n+1n n
n n n,n+1 n,n+1

Here, ω0 is the so-called particle frequency, which denotes the natural frequency of particles 
in the interior of a homogeneous lattice for the particular case that the motion of adjacent 
particles is impeded. Furthermore, Ccrit is the corresponding critical particle damping. For a 
particle in a homogeneous one-dimensional lattice, the particle frequency and the critical 
particle damping are derived in Appendix B.4 and respectively found as 0 2 eK M =  and 

0critC M= . Finally, note that we use the same notations for both dimensional and dimen-
sionless variables to minimize the number of different variables within the thesis. Neverthe-
less, in the given relations with the dimensionless variables, the dimensional variables are 
denoted using the subscript dim. 

Incorporating the above dimensionless variables into equations (4.1) to (4.3), the dimen-
sionless equation of motion for any particle p in the interior of the semi-infinite viscoelastic 
cascade and the two dimensionless interface conditions at the lattice-cascade interface, re-
spectively become: 

( ) ( )1
22 2 0u u u u u u u+ − − + − − =p p p-1 p+1 p p-1 p+1 (4.5) 

( ) ( )1
2e eM u C e K e M u u u u u+ + = − − − − −N N N-1,N N-1,N N-1,N N-1,N P P P P+1 P P+1 (4.6) 

u u=N P (4.7) 

Here, ζ is the damping ratio, i.e. e critC C = , where Ce is the damping in the homogeneous 
cascade. Furthermore, note here that the mass of the boundary particle P, denoted as MP, 
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differs from the other masses in the cascade. To determine the dynamic stiffness of the cas-
cade for trivially zero initial conditions, we apply the Laplace integral transform to equations 
(4.5) to (4.7) with respect to time. This yields: 

( )( )2 1
2 1 2 2 0s u s u u u+ + − − =p p p-1 p+1 (4.8) 

( ) ( )( )2 2 1
2 1 2e eM s u C s K e M s u s u u+ + = − − + −N N N-1,N N-1,N N-1,N P P P P+1 (4.9) 

u u=N P (4.10) 

Here, note that equation (4.8) is the dimensionless equation of motion of the semi-infinite 
cascade in the Laplace domain, while equations (4.9) and (4.10) respectively give the Laplace 
domain force and displacement relations at the lattice-cascade interface.  

Assuming the solution to the equation of motion of the cascade, given by equation (4.8), 
in the form of harmonic waves and accounting for the proper behaviour of the viscoelastic 
cascade at infinity, we describe the Laplace domain displacement of a particle p in the interior 
of the semi-infinite cascade as iu Ae −=p p . Here, κ is the dimensionless wavenumber of the 
propagating wave and A is the wave amplitude. Substituting the expression for the Laplace 
domain displacement into the displacement relation at the interface, given by equation (4.10)
, yields the wave amplitude as iA u e += N P . Consequently, the Laplace domain displacement 
of a particle p in the interior of the semi-infinite cascade may be expressed as: 

( )iu u e − −
=

p Pp N (4.11) 

Substituting the Laplace domain displacement for the particle p, given by equation (4.11), 
into the force relation at the lattice-cascade interface, given in the Laplace domain by equa-
tion (4.9), yields the equation of motion of the particle N at the lattice-cascade interface in 
the Laplace domain as: 

( ) ( )2 0e eM s u C s K e s u+ + + =N N N-1,N N-1,N N-1,N N (4.12) 

Here, ( )s  is the dynamic stiffness of the semi-infinite viscoelastic cascade that is found as: 

( ) ( )( )2 i1
2 1 2 1s M s s e   −= + + −P (4.13) 

The expression for the dynamic stiffness of the semi-infinite viscoelastic cascade given by 
equation (4.13) includes a term related to the dimensionless wavenumber κ, while for exam-
ple in the expression for the dynamic stiffness of the semi-infinite viscoelastic rod, given in 
Section 3.2.2, such a term is not present. The term related to the wavenumber can be removed 
from equation (4.13), by expressing the wavenumber κ in terms of the complex-valued La-
place parameter s using the dispersion relation for the viscoelastic cascade. This dispersion 
relation is derived in Appendix E.3 and yields the following relations between the 
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dimensionless wavenumber κ and the dimensionless Laplace parameter s: 

2
2icos 1 , sin 2 4 .

1 2 1 2
s s s s

s s
  

 

−
= + = + +

+ +
(4.14) 

Note here that, to obtain the correct sine relation from the given cosine relation, the square 
root must be chosen such that the imaginary part of the wavenumber κ is negative and thereby 
corresponds to the forward propagating wave that fades for p → ∞. 

Rearranging equation (4.13) using Euler’s formula and substituting the relations from 
equation (4.14), we find the dynamic stiffness of the semi-infinite cascade as: 

( ) ( ) 2 21 1
2 2 2 4s M s s s s = − + + +P (4.15) 

Equation (4.15) describes the dynamic stiffness of the semi-infinite cascade for the case that 
the location of the lattice-cascade interface is chosen at a particle as depicted in both Figure 
4.1 and Figure 4.2a. According to equation (4.15), the dynamic stiffness of the semi-infinite 
cascade depends on the dimensionless mass MP of the sub-particle P. The contribution by 
Dieterman and Metrikine [1997] investigates the response of a linear-elastic semi-infinite 
cascade by varying its boundary mass, which in the fully discrete system equals the mass of 
the sub-particle P. However, for a homogeneous system consisting of a one-dimensional lat-
tice and a semi-infinite cascade, the investigation of the boundary mass and its influence on 
the response of the semi-infinite cascade is irrelevant. To explain this, let us consider that, as 
an alternative, we may choose to extract the boundary mass, i.e. the mass of the sub-particle 
P, from the expression for the dynamic stiffness, given in equation (4.15), and incorporate it 
directly into equation (4.12). This yields the equation of motion for the boundary particle N 
as: 

( ) ( ) ( )2 0e e altM M s u C s K e s u+ + + + =N P N N-1,N N-1,N N-1,N N (4.16) 

The corresponding dynamic stiffness of the semi-infinite cascade then becomes: 

( ) 2 21 1
2 2 2 4alt s s s s s = − + + + (4.17) 

Taking the constraint (4.4) into account, which states that the masses of the sub-particles N 
and P together must equal the mass M, equation (4.16) shows that the response of the particle 
at the lattice-cascade interface is independent of how you divide the mass M over the sub-
particles N and P. 

To allow for a comparison between the boundary formulations that follow from modelling 
the one-dimensional far-field domain of the one-dimensional BKV system as a viscoelastic 
rod and cascade respectively, and noting that the sub-particle P does not exist in a viscoelastic 
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rod, we use the boundary formulation for the cascade according to equations (4.12) and (4.13)
. Here, we conveniently choose the dimensionless mass of the sub-particles N and P to be 
equal, so that 1

2M M= =N P . As such, the sub-particle N has the same mass in both the fully 
discrete and discrete-continuous systems and the homogeneous distribution of mass along 
the BKV system is maintained. From equation (4.15), the dynamic stiffness of the semi-infi-
nite cascade then follows as: 

( ) 21
2 2 4s s s s = + + (4.18) 

Comparing the expression for the dynamic stiffness of the semi-infinite viscoelastic cascade 
according to equation (4.18) with the dynamic stiffness of the semi-infinite viscoelastic rod, 
previously given by equation (3.21), we find that the dynamic stiffness of the semi-infinite 
viscoelastic cascade features an additional term 2s  under the square root. 

4.1.3 Governing boundary integral equation in the time domain 
The equation of motion of the particle N at the lattice-cascade interface may be obtained by 
applying the inverse Laplace transform directly to equation (4.12) that incorporates the dy-
namic stiffness. However, since we can generally not obtain the time domain expression for 
the dynamic stiffness analytically and must therefore apply the inverse Laplace transform 
numerically, it is more convenient to use the inverse force-displacement relation that gives 
the equation of motion of the particle N at the lattice-cascade interface in terms of the dy-
namic compliance. As previously explained in Section 3.2.3, this is because the dynamic 
compliance decreases sufficiently fast for large frequencies, while the dynamic stiffness does 
not decrease with frequency at all. This is also testified by Figure 4.3a and Figure 4.3b, that 
respectively show the dynamic stiffness and dynamic compliance for the semi-infinite visco-
elastic cascade and the semi-infinite viscoelastic rod as a function of dimensionless frequency 
Ω by substituting is =  . For comparison, the corresponding dynamic stiffness and dynamic 

Figure 4.3: Frequency domain force-displacement relations for the viscoelastic cascade (solid lines) 
 and the viscoelastic rod (dashed lines): a) dynamic stiffness; b) dynamic compliance.
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compliance of the semi-infinite viscoelastic rod are here given by dashed lines. Note here 
that, for small frequencies, the dynamic stiffness and dynamic compliance of the rod and the 
cascade are approximately equal, while for large frequencies the difference between the rod 
and the cascade is more significant. As a consequence, the differences between the semi-
infinite viscoelastic rod and the semi-infinite viscoelastic cascade are clearly visible for the 
dynamic stiffness that increases with frequency, while for the dynamic compliance, which 
decreases with frequency, the differences are not clearly distinguishable. Note here further-
more that the similarity between the dynamic stiffnesses and compliances of the rod and the 
cascade depend on damping; for smaller values of the damping the differences are more pro-
nounced as confirmed by the comparison of the dynamic stiffnesses and dynamic compli-
ances of the semi-infinite linear-elastic rod and cascade that is presented in Appendix D.2. 

To express the equation of motion of the particle N at the lattice-cascade interface in the 
Laplace domain in terms of the dynamic compliance, we divide equation (4.12) by the dy-
namic stiffness, or alternatively we multiply equation (4.12) by the dynamic compliance. 
This yields: 

( ) ( ) 2 0e eu s M s u C s K e+ + + =N N N N-1,N N-1,N N-1,N (4.19) 

Here, ( )s  is the dynamic compliance of the semi-infinite viscoelastic cascade that reads: 

( )
2

2
2 4

s
s s s




=
+ +

(4.20) 

The dynamic compliance of the semi-infinite viscoelastic cascade given by equation (4.20) 
is depicted in Figure 4.3b as a function of frequency by substituting is =  .  

While we are not able to obtain an analytical time domain expression for the dynamic 
stiffness by applying the inverse Laplace transform to equation (4.18), applying the inverse 
Laplace transform to equation (4.20) does yield an analytical time domain expression for the 
dynamic compliance. Within the relevant domain of the resulting boundary integral equation, 
i.e. for 0t  , the inverse Laplace transform of the dynamic compliance of the semi-infinite
cascade and its time derivative are respectively obtained as:

( ) ( ) ( ) ( )2 2 2 2
0 0

0

2 2 4 , 2 2 4 .
t

tt e J d t e J t      − −= − = − (4.21) 

Here, ( )0J  denotes the Bessel functions of the first kind of order zero. Note here that for 
a damping ratio 1

2 2  , the argument of the Bessel functions in equations (4.21) becomes 
complex-valued. Consequently, for 1

2 2  , we may alternatively express equations (4.21) 
in terms of the modified Bessel function of the first kind. Furthermore, note that the time 
derivative of the time domain expression for the dynamic compliance can be considered as a 
time domain expression for the (mechanical) admittance, or inversely for the (mechanical) 
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impedance, because it corresponds to a force-velocity relation in the Laplace domain. The 
time dependencies of the time domain expressions given by equations (4.21), that we will 
henceforth refer to as the time domain dynamic compliance and the time domain admittance, 
are given by Figure 4.5 in Section 4.2.1, in which the time domain dynamic compliances and 
time domain admittances are compared for several models of the semi-infinite far-field do-
main. 

To obtain the equation of motion for the particle N at the lattice-cascade interface in the 
time domain, we first apply the inverse Laplace transform to equation (4.19). This yields the 
boundary integral equation in the form of equation (3.25), previously obtained for the dis-
crete-continuous system in Section 3.2.3. To include this boundary integral equation in an 
explicit system of second order ordinary differential equations for the lattice that can be eval-
uated numerically, we attempt to isolate the acceleration of particle N at time t in this equa-
tion. However, because the time domain expression for the dynamic compliance of the semi-
infinite cascade, as given in equation (4.21), is equal to zero at 0t = , i.e. ( )0 0t = = , this 
acceleration term is removed from equation (3.25) causing the corresponding system of or-
dinary differential equations to become numerically unstable. To obtain a nonzero accelera-
tion term at the current time step, we instead differentiate the boundary integral equation 
(3.25) using Leibniz’ rule for differentiation of integrals [Abramowitz and Stegun, 1972; 
Woods, 1926].  

Taking into account that the time domain dynamic compliance of the semi-infinite cas-
cade is equal to zero at 0t = , this yields the equation of motion for the particle N at the 
lattice-cascade interface in the time domain as: 

( ) ( )
0

0
t

e eu t M u C e K e d   + − + + =
N N N N-1,N N-1,N N-1,N N-1,N (4.22) 

Note here that, in contrast to the semi-infinite viscoelastic rod, the time domain admittance 
of the semi-infinite cascade is not singular at any value for time t. In fact, whereas the time 
domain admittance of the semi-infinite viscoelastic rod is infinite in the limit t → 0, the cor-
responding time domain admittance of the semi-infinite viscoelastic cascade at 0t =  is found 
as ( )0 2t = = . 

To numerically evaluate the convolution integral in equation (4.22), we may, for example, 
apply the composite trapezium rule. Dividing the domain of the convolution integral in H 
equal time intervals, and denoting the time interval as Δt, as well as assuming trivially zero 
initial conditions then yields the time domain equation of motion for the boundary particle N 
as: 

  ( ) ( )
1

1
0

H

e e H h h
h

u t M u C e K e t t F t
−

−

=

+  + + +  =N N N N-1,N N-1,N N-1,N N-1,N N (4.23) 

Here, ( )hF tN is the force applied by the lattice to the viscoelastic cascade at the lattice-
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cascade interface at time th, where the time moment th is obtained as ht h t=  . Accordingly, 
the time moment tH-h is obtained as ( )H ht H h t− = −  . Here, note that equation (4.23) is an 
ordinary second-order differential equation because the summation only includes history 
terms related to the motion of the boundary particle N prior to time t and must therefore be 
constant during the current time step. 

Improved representation of the governing interface equation in the time domain 
Equation (4.23) shows that the contribution of the convolution integral that is related to the 
motion of the boundary particle at the current time step is proportional to the time step t . 
Thereby, the contribution of the particle acceleration, which we numerically solve the corre-
sponding system of differential equations for, may become very small and cause the corre-
sponding mass-matrix to be ill-conditioned. However, because the time domain admittance, 
i.e. the time derivative of the dynamic compliance, of the semi-infinite viscoelastic cascade
at time 0t =  is found to be both non-infinite and non-zero, we can obtain a nonzero acceler-
ation term at the current time step outside the convolution integral by differentiating the equa-
tion of motion for the boundary particle a second time, and thereby improve its numerical
performance significantly. Note here that for the interface equation of the discrete-continuous
system previously discussed in Section 3.2.3, the time differentiation could not straightfor-
wardly be applied a second time, because the time domain admittance of the involved semi-
infinite viscoelastic rod is singular at 0t = .

Applying the time differentiation to the equation of motion for the particle N at the lattice-
cascade interface, given by equation (4.22), using Leibniz’ rule for differentiation of inte-
grals, the equation of motion for the boundary particle becomes: 

( )( ) ( ) ( )
0

0 0
t

e eu M u C e K e t F d    + + + + − =
N N N N-1,N N-1,N N-1,N N-1,N N (4.24)

Here, the time domain admittance of the semi-infinite viscoelastic cascade at 0t =  was pre-
viously found as ( )0 2 =  and the force ( )F tN  describes the force applied by the lattice to 
the viscoelastic cascade at the lattice-cascade interface. Furthermore, ( )t  is the second time 
derivative of the time domain expression for the dynamic compliance ( )t , derived from 
equation (4.21) as: 

( ) ( ) ( )( )2 2 2 2
0 12 2 2 4 2 4 2 4tt e J t J t    −= − − + − − (4.25) 

Here, ( )0J  and ( )1J  are the Bessel functions of the first kind of respectively order zero 
and of order one. It is here important to emphasize that equation (4.25) is obtained by apply-
ing time differentiation to the time domain expression for the mechanical admittance given 
in equation (4.21) and does not correspond to the time domain expression that follows from 
the force-acceleration relation in the Laplace domain. Applying the inverse Laplace trans-
form to this force-acceleration relation, sometimes referred to as accelerance or inertance, 
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yields an additional Dirac-delta term ( )2 t  on the right-hand side of equation (4.25). As a 
result of using Leibniz’ rule for differentiation of integrals, the contribution of this term to 
the interface equation of motion is already included in equation (4.24). 

For damping ratios 1
2 2  , the argument of the Bessel functions in equations (4.25) 

are complex-valued, so that we may alternatively express equation (4.25) for these damping 
ratios as: 

( ) ( ) ( )( )2 2 2 2
0 12 2 4 2 4 2 4 2tt e I t I t    −= − − − − −

Here, ( )0I  and ( )1I  are the modified Bessel function of the first kind of respectively 
order zero and order one. 

4.1.4 Governing equations for the fully discrete BKV system 
The governing system of equations of motion for the one-dimensional fully discrete BKV 
system consists of the equations of motion for all particles inside the one-dimensional BKV 
lattice, i.e. the particles =n 1 N -1 , together with the equation of motion for the boundary 
particle N. 

The governing equations of motion for particles =n 1 N -1  that allow for the variation 
of motion states in each of the rheological elements inside the one-dimensional BKV lattice 
were previously given by equations (3.32) to (3.34) in Section 3.2.4 and are therefore not 
repeated here. The equation of motion for the boundary particle N is not subject to the vari-
ation of motion states, because nonlinear phenomena may not occur at the lattice-cascade 
interface, and may either be given by equation (4.22) or by equation (4.24). While equations 
(4.22) and (4.24) are two different, but both analytically correct, versions of the boundary 
integral equation, the numerical performance of using either of these equations as the equa-
tion of motion for the boundary particle is quite different. The two versions of the boundary 
integral equation and their numerical performance are further discussed in Section 4.2.3, in 
which the wave reflection of both these boundary formulations are assessed in comparison 
with the reflections that occur in the discrete-continuous system. 

4.1.5 Nonlinear response of the 1D fully discrete BKV system 
Figure 4.4 depicts the response of the one-dimensional fully discrete BKV system to a single-
sinus pulse load, with an amplitude 1 MNF = , at ten consecutive time moments. In corre-
spondence with the corresponding discrete-continuous system, for which the response is dis-
cussed in Section 3.2.5, we here consider the response along a one-dimensional BKV lattice 
consisting of 80 particles with mass 400 kgM =  at an interparticle distance of 0.2 m= . 
The springs in the BKV elements have a stiffness equal to 100 MN meK = , which yields 
the particle frequency and the critical particle damping in the BKV lattice to be the same as 
those found in Sections 3.2.5 and 4.1.4, so that they are respectively obtained as 

0 707.1 rad s =  and 282.8 kNs mcritC = . 
For the sake of not presenting the exact same response twice, Figure 4.4 gives the 
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response of the one-dimensional fully discrete BKV system to a pulse load with a dimension-
less load frequency 0.5F =  and a damping ratio in the BKV elements of 0.1 = . The 
given dimensionless frequency of the pulse corresponds to a frequency 353.6 rad sF = , 
while the given damping ratio corresponds to damping coefficients 28.3 kNs me fC C= = . 
Here note that the response of the corresponding discrete-continuous system that we previ-
ously presented in Figure 3.5 depicted was obtained for 0.113F =  and 0.75 = . 

The continuous red and green lines in Figure 4.4 respectively give the nonlinear and linear 
response of the one-dimensional fully discrete BKV system. To obtain the linear response, 
the critical friction force of all BKV elements is chosen as crF F , so that the nonlinear 
Bingham elements are not activated. To obtain the nonlinear response, the critical friction 
force of the BKV elements in the lattice is generally chosen as 0.8crF F= , while particularly 
for the elements between particles 20 40=n , the critical friction force is reduced to

0.4crF F=n,n+1 . Additionally, to amplify nonlinear effects, the damping ratio of the BKV el-
ements between particles 20 40=n  is reduced to 22.63 kNs me fC C= =n,n+1 n,n+1 , which 
coincides with a damping ratio of 0.08 = . The dashed blue line shows the corresponding 
nonlinear response for the one-dimensional discrete-continuous BKV system, verifying that, 
at the scale of these graphs, the differences between the response of the fully discrete and the 
discrete-continuous BKV systems cannot be distinguished. 

In correspondence with Figure 3.5, Figure 4.4 shows that for the nonlinear response, the 
incident wave, induced by the single-sinus pulse load, is partially reflected at the edges of the 
weaker segment of the one-dimensional BKV lattice and causes a secondary wave. After this 
secondary wave is reflected from the tip of the system and is transmitted into the semi-infinite 
viscoelastic cascade, the first segment of the one-dimensional BKV lattice remains displaced 
due to the occurrence of nonlinear events within this segment. As the final displacements are 
the same for a large number of particles in the middle of this segment, it must be that the 

Figure 4.4: Displacement along the one-dimensional BKV system at successive time moments due to a single-sinus pulse load. 
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nonlinearities have mainly occurred at the edges of this segment. In fact, for this particular 
simulation, all 50 nonlinear events, i.e. state-transitions, occurred in the particles =n 1 4  
and in the particles =n 20 29 .  

For both the linear and the nonlinear response of the one-dimensional fully discrete BKV 
system in Figure 4.4, all waves arriving at the lattice boundary, are (almost) fully transmitted 
into the far-field domain. This is also true for waves arriving at the discrete-continuous inter-
face of the corresponding discrete-continuous system. At the scale of Figure 4.4, any existing 
reflections due to incident waves arriving at the interface with the far-field domain are not 
visible and therefore the differences between the fully discrete and the discrete-continuous 
BKV systems cannot be identified from Figure 4.4. Nevertheless, if we verify by zooming in 
and consider the response of both the fully discrete and discrete-continuous BKV systems at 
a scale at which possible wave reflections are visible, we will see a clear difference between 
the wave reflections in the two systems. The wave reflections in respectively the one-dimen-
sional fully discrete BKV system and the corresponding discrete-continuous system are qual-
itatively compared in the following section. 

4.2 Fully discrete versus discrete-continuous systems in 1D 
After having extensively discussed the one-dimensional fully discrete BKV system in the 
preceding section, and the corresponding discrete-continuous system in Section 3.2, we do 
here evaluate and compare the boundary formulations in which we account for the far-field 
domain by respectively modelling it as a cascade and a rod. Note here that both systems are 
generic in the sense that corresponding systems with different properties can be derived from 
it. For example, by choosing the critical friction force of the Bingham elements larger than 
the load amplitude, i.e. crF F , and thereby preventing the occurrence of nonlinear events, 
any BKV system reduces to a purely viscoelastic Kelvin-Voigt system. By additionally 
choosing zero damping, i.e. 0 = , we respectively obtain the linear-elastic fully discrete 
and discrete-continuous Hooke systems. Each of these systems has been individually dis-
cussed in Appendix D. 

Because the interface between the near-field and the far-field is chosen in the domain 
where the response is linear, the occurrence of nonlinear events does not affect the perfor-
mance of the boundary formulations. In this section, we therefore exclusively consider linear-
elastic and viscoelastic systems. While the frequency dependence of the dynamic compli-
ances for the viscoelastic rod and viscoelastic cascade were already compared in Figure 4.3, 
section 4.2.1 compares the time domain dynamic compliances and time domain admittances 
for semi-infinite linear-elastic and viscoelastic rods and cascades. Subsequently, Section 
4.2.2 discusses and compares the dispersive properties of the semi-infinite rods and cascades, 
while Section 4.2.3, the performance of the boundary formulations for the fully discrete and 
discrete-continuous systems are compared in detail by evaluating the wave reflection at re-
spectively the lattice-cascade and lattice-rod interface. Finally, Section 4.2.4 analytically de-
rives the reflection coefficient for harmonic incident waves in one-dimensional fully discrete 
systems, showing that the lattice-cascade interface is perfectly non-reflective. 
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4.2.1 Dynamic compliance of semi-infinite cascades and rods 
The dynamic interaction of the one-dimensional lattice with both the semi-infinite cascade 
and the semi-infinite rod are described by the corresponding equation of motion of the bound-
ary particle N. For reasons abundantly explained in Sections 3.2 and 4.1, the equation of 
motion of the boundary particle N is described in both the Laplace and the time domain by 
means of the dynamic compliance. The expressions for the dynamic compliances of the lin-
ear-elastic and viscoelastic semi-infinite rods, as well as those for the linear-elastic and vis-
coelastic semi-infinite cascades are given in Table 4.1 in both the Laplace domain and the 
time domain. Additionally, Table 4.1 gives the time derivative of the corresponding time 
domain dynamic compliances, which are also referred to as the time domain admittances. 
Note here that the second time derivative of the dynamic compliance, or the time derivative 
of the time domain admittance, is not included in the table or the comparison, as it is exclu-
sively used for boundary formulations that involve the viscoelastic cascade. 

The given expressions for the linear-elastic rod and the linear-elastic cascade are derived 
in Appendices D.1 and D.3, which respectively regard the one-dimensional discrete-contin-
uous and fully discrete Hooke systems. Note here that Appendix D.4 also discusses the one-
dimensional fully discrete Hooke system, but for an alternative location of the lattice-cascade 
interface chosen in-between two particles rather than at a particle. Although the different 
location of the lattice-cascade interface yields a different dynamic compliance, its expression 
is not included in Table 4.1 as this table exclusively regards systems with the interface be-
tween the near-field and far-field domains located at a particle. The expressions for the vis-
coelastic rod and the viscoelastic cascade given in Table 4.1 were previously derived in Sec-
tions 3.2 and 4.1, regarding the one-dimensional discrete-continuous and fully discrete BKV 
systems respectively. Note here that for zero damping, i.e. for 0 = , the equations given in 
Table 4.1 for the viscoelastic rod and the viscoelastic cascade reduce to the equations for 
respectively the linear-elastic rod and the linear-elastic cascade. 

Figure 4.5a and Figure 4.5b respectively give the time domain dynamic compliances and 
the time domain admittances for the one-dimensional semi-infinite systems as a function of 
time. Here, the yellow and green lines respectively correspond to the linear-elastic rod and 

Table 4.1: Expressions for the dynamic compliances in the Laplace domain, the time domain dynamic compliances and the time 
domain admittances, for the one-dimensional semi-infinite linear-elastic and viscoelastic systems.
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the linear-elastic cascade, while the blue and red lines respectively correspond to the viscoe-
lastic rod and the viscoelastic cascade, where in both cases the damping ratio is arbitrarily 
chosen as 0.2 = . Here, the time domain dynamic compliances of the viscoelastic rod and 
cascade respectively converge to the time domain dynamic compliances of the linear-elastic 
rod and cascade for t → ∞. According to the final value theorem, this shows that in the long-
wave limit there is no difference between either of the rods and the cascades, which is well-
documented in literature [Maradudin et al., 1971; Suiker et al., 2001a]. Furthermore note that, 
although the time domain dynamic compliances of the linear-elastic cascade, viscoelastic 
cascade and viscoelastic rod are equal to zero for 0t = , the time domain dynamic compliance 
of the linear-elastic rod is not equal to zero for 0t = . Then, for both the linear-elastic and the 
viscoelastic rod, the time domain admittance is infinite at 0t = . For the linear-elastic rod this 
is due to the jump in the dynamic compliance at 0t = , incorporated in the time domain ad-
mittance using the Dirac delta function, while for the viscoelastic rod, this originates from a 
division by zero for 0t = . For the linear-elastic and the viscoelastic cascades the time domain 
admittance is finite at 0t =  and in both cases found as ( )0 2t = = . 

4.2.2 Wave dispersion in semi-infinite cascades and semi-infinite rods 
Because of the similar geometry and equations of motion, the dispersive properties of the 
semi-infinite cascades in the far field are identical to those of the corresponding one-dimen-
sional lattices in the near field. For the discrete-continuous systems on the other hand, the 
dispersive properties of the discrete lattices in the near field and the continuous far-field are 
quite different. Because the differences in their dispersive properties are especially relevant 
for the interaction between the near-field lattice and the far-field continuum, their dispersive 
properties have previously been discussed in 3.3.2. To provide an overview, Figure 4.6 pre-
sents the dispersion relations for all four one-dimensional far-field models considered in this 
thesis. Assuming that the frequency Ω is real-valued, Figure 4.6a and Figure 4.6b respectively 
give the real and imaginary parts of the wavenumber κ as a function of frequency. Here, note 
that the dispersion relations for the linear-elastic and the viscoelastic rod are both derived in 

Figure 4.5: a) Time domain dynamic compliances for semi-infinite rods and semi-infinite cascades;  
b) Time domain admittances for semi-infinite rods and semi-infinite cascades.
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Appendix E.1, while the dispersion relations for the linear-elastic and viscoelastic cascades 
are derived in Appendices E.2 and E.3 respectively. 

The dispersion relation for the linear-elastic rod, given by the yellow line, is real for all 
frequencies, while the dispersion relation for the linear-elastic cascade, given by the green 
line, only yields real wavenumbers for 2   and purely imaginary wavenumbers for 

2  , insinuating the existence of a stop band above 2 = . The dispersion relations 
for the viscoelastic rod, given by the blue lines, and for the viscoelastic cascade, given by the 
red lines, are complex-valued for all frequencies. Here, the dispersion relations for both vis-
coelastic rod and cascade are given for two values of the damping ratio, i.e. for 0.1 =  and 

0.2 = , to illustrate the influence of the damping. 

4.2.3 Wave reflection in one-dimensional systems 
To assess the performance of the different boundary formulations for the one-dimensional 
lattice, in which we account for the far-field domain by either modelling it as a semi-infinite 
rod or as a semi-infinite cascade, we do here compare the reflection of an incident wave at 
the lattice boundary for the corresponding one-dimensional systems. For this purpose, the 
parameters and properties are chosen to coincide with those of the BKV systems for which 
the response was depicted by Figure 4.4 and we consider the reflection of an incident wave 
due to the same single-sinus pulse load. This means that the considered viscoelastic lattice 
has an interparticle distance 0.2 m= , a particle frequency 0 707.1 rad s =  and a damping 
ratio 0.1 = . While the pulse load has an amplitude 1 MNF =  and a dimensionless angular 
frequency 0.5F = , which thus corresponds to a frequency 353.6 rad sF = . 

The reflection of the incident wave at the lattice-cascade and the lattice-rod interface of 
respectively the one-dimensional fully discrete and discrete-continuous Kelvin-Voigt sys-
tems is depicted in Figure 4.7 for four consecutive time moments. The first, or upper, graph 
in Figure 4.7 shows the longitudinal response along the lattice at the time moment at which 
the incident wave is almost completely transmitted into the far-field, while the last graph 
shows the reflected wave as it reaches the tip of the system. Here, Figure 4.7a, shows the 

Figure 4.6: Dispersion relations for the one-dimensional semi-infinite rods and semi-infinite cascades as a  
function of frequency: a) Real part of the wavenumber; b) Imaginary part of the wavenumber. 
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response of the Kelvin-Voigt systems using the time domain approach that was previously 
used to obtain Figure 3.5 and Figure 4.4 for the corresponding nonlinear BKV systems. This 
means that the reflections in Figure 4.7a are obtained by numerically evaluating the govern-
ing time domain system of ordinary differential equations using a Runge-Kutta scheme. Fig-
ure 4.7b depicts the time domain response of both the one-dimensional discrete-continuous 
and the one-dimensional fully discrete Kelvin-Voigt systems that follows from the frequency 
domain solution, that in this case consists of solving the governing systems of equations in 
the Laplace domain and using the Laplace integral transform to obtain the time domain re-
sponse at every time step. 

In Figure 4.7a, the dashed green line shows the reflected wave for the one-dimensional 
fully discrete Kelvin-Voigt system where equation (4.22) is used as the interface equation, 
while the continuous red line shows the reflected wave for the corresponding system using 
equation (4.24) as the interface equation. Both responses correspond to the linear response 
of the fully discrete BKV system given by the yellow line in Figure 4.4. Furthermore, the 
dashed blue lines in Figure 4.7 give the corresponding response for the one-dimensional dis-
crete-continuous Kelvin-Voigt system. On the scale of Figure 4.4, the differences between 
the responses for the fully discrete Kelvin-Voigt system using either equation (4.22) or equa-
tion (4.24) as the interface equation, are not visible. However, if we consider the reflected 
wave on the scale of Figure 4.7, which is 40 times smaller than the scale of the longitudinal 
response depicted in Figure 4.4, the differences between using equation (4.22) or (4.24) are 
clearly visible and are further discussed below.  

Either way, for all three depicted reflections, the convolution integral was numerically 
evaluated using the alternative extended Simpson’s rule [Press et al., 1989]. The numerical 
evaluation of the convolution integral is here applied using a Simpson’s rule instead of the 

Figure 4.7: Reflection of a longitudinal incident wave in the one-dimensional BKV system with the far field described by  
respectively a semi-infinite cascade and a semi-infinite rod: a) time domain solution; b) frequency domain solution.
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trapezium rule, which was previously used to obtain equation (4.23) from equation (4.22), 
because the response is well described by a second order polynomial. The alternative ex-
tended Simpson’s rule is used because the number of time steps involved in the convolution 
integral continuously increases; the regular composite Simpson’s rule does not suffice as it 
is only available for an odd number of datapoints, i.e. for an even number of time steps, and 
is thus not applicable for all possible numbers of time steps. 

Comparison of the reflections at the lattice-cascade and lattice-rod interface 
Let us first consider the reflections in the fully discrete and discrete-continuous Kelvin-Voigt 
systems for the time domain solution depicted in Figure 4.7a. Comparing the reflections from 
the lattice-cascade interface that employ interface equations (4.22) and (4.24), given by re-
spectively the green dashed line and the continuous red line, we find that the reflection ob-
tained for the system with interface equation (4.22) is somewhat larger than the reflection 
obtained for the system with interface equation (4.24). This is according to expectation, as in 
equation (4.24), the contribution of the acceleration of the boundary particle at the current 
time step is separated from the convolution integral, while in equation (4.22), this contribu-
tion is embedded in the convolution integral and can only be separated from the convolution 
integral by applying numerical integration.  

Next, comparing the reflections at the lattice-cascade interface with the reflections at the 
lattice-rod interface in the time domain solution, it is quite remarkable that, for both interface 
equations, the reflection at the lattice-cascade interface is larger than the reflection at the 
lattice-rod interface. After all, since the lattice and the continuous rod are fundamentally dif-
ferent media with different dispersive properties, as shown by the dispersion relations de-
picted in Figure 4.6, some reflection of an incident wave from the lattice-rod interface should 
be expected. On the other hand, the discrete nature of the lattice and the cascade are identical 
and have the same dispersive properties, so that any reflections from the lattice-cascade in-
terface would be expected to be much smaller than the reflections at the lattice-rod interface. 
The latter is verified by the frequency domain solution for the one-dimensional fully discrete 
Kelvin-Voigt system in Figure 4.7b, in which the lattice-cascade interface appears to be com-
pletely non-reflective, while for the corresponding discrete-continuous system a reflected 
wave remains. In fact, as the lattice-cascade is analytically proven to be non-reflective in 
Section 4.2.4, we can conclude that the larger reflections from the lattice-cascade interface 
in the time domain solution, depicted in Figure 4.7a, must be due to numerical errors. 

As both the time domain and frequency domain solutions include the numerical applica-
tion of the inverse Laplace transform, the reflections displayed by Figure 4.7a must either be 
due to a numerical error in the Runge-Kutta scheme used to solve the involved system of 
differential equations in the time domain, or due to the numerical evaluation of the convolu-
tion integral. The fact that for the time domain solution, the reflection of an incident wave at 
the lattice-cascade interface is larger than the reflection at the lattice-rod interface, can partly 
be explained by comparing the corresponding boundary formulations. For the fully discrete 
system the equation of motion for the boundary particle N is given by either equation (4.22) 
or (4.24), while for the discrete-continuous system the equation of motion for particle N is 
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given by equation (3.31). While the contribution of the convolution integral to the current 
time step for both boundary formulations of the fully discrete system are obtained numeri-
cally, the contribution of the convolution integral to the current time step in the boundary 
formulation for the discrete-continuous system is, in an approximate sense, obtained analyt-
ically. As a consequence, the numerical error for the discrete-continuous system is relatively 
small and the obtained time domain response is numerically quite precise. 

From the comparison of the reflections obtained by the time domain and the frequency 
domain solutions, it is legitimate to state that, even when considering one-dimensional linear-
elastic and viscoelastic systems, the governing system of equations of motion should prefer-
ably be evaluated in the frequency domain rather than in the time domain. Nevertheless, in 
the following, we will discuss the numerical performance of using either equation (4.22) or 
(4.24) in further depth. 

Numerical performance of using either equation (4.22) or equation (4.24) 
Figure 4.8 compares the displacement response of the loaded surface particle in the one-
dimensional fully discrete BKV system for the different equations of motion for the boundary 
particle N, respectively given by equations (4.22) and (4.24). Here, nonlinearities are ex-
cluded and the properties of the lattice and the cascade correspond with each other, so that 
the medium is homogeneous and viscoelastic, and correspond with the macromaterial prop-
erties used throughout this thesis. In this case, the response is given for a lattice that consists 
of 20 particles, each with a mass 400 kgM =  at an interparticle distance of 0.2 m= . Here, 
the size of the lattice is deliberately chosen smaller as before to enhance any occurring re-
flections. The springs in the lattice again have a stiffness equal to 100 MN meK = , so that 
the particle frequency and the critical damping are respectively obtained as 0 707.1 rad s =

and 282.8 kNs mcritC = . Furthermore, the damping ratio is chosen as 0.1 = , so that the 
dashpots in the lattice have a damping coefficient 28.3 kNs meC = . 

Figure 4.8a and Figure 4.8b both present the response to a single-sinus pulse load with an 
amplitude 1.0 MNF =  and a load frequency 353.6 rad sF = , which corresponds to a di-
mensionless load frequency 0.5F = . Here, the continuous blue line gives the response of 
the fully discrete system for the frequency domain solution. This means that this response is 
obtained by solving the algebraic system of equations in the Laplace domain, and by subse-
quently applying the inverse Laplace transform to the resulting Laplace domain displace-
ments at every time step. Because there are no reflections in the displacement response ob-
tained by the frequency domain solution, Figure 4.8 confirms that the semi-infinite viscoe-
lastic cascade yields a perfectly non-reflective far-field system for the BKV lattice. 

The continuous green and red lines both give displacement responses of the fully discrete 
system that follow from solving the corresponding system of ordinary differential equations 
in the time domain. Here, the continuous green line gives the response that incorporates equa-
tion (4.22) as the equation of motion for the boundary particle N, while the continuous red 
line give the corresponding response that uses equation (4.24) as the boundary integral equa-
tion. While initially, the three responses in Figure 4.8a overlap, it is clear that both equations 
yield significant wave reflection from the lattice-cascade interface. Figure 4.8b zooms in on 
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these reflections that occur in the displacement response due to numerical errors when using 
the time domain solution. 

As stated before, the system of ODEs in this thesis are generally solved using the Runge-
Kutta method by means of the Fortran-library RK-suite by Brankin and Gladwell [1997]. 
After scrutinizing the numerical implementation and its results, it was found that the applied 
numerical method yields a small numerical error in the displacement response for all particles 
in the lattice. This numerical error by itself is rather insignificant, and would not be visible 
by the naked eye at the scale of either Figure 4.8a or Figure 4.8b. The occurrence of this 
numerical error has been confirmed by considering the response of a one-dimensional Hooke 
lattice to a pulse load, which shows that despite the absence of damping, the amplitude of the 
incident wave reduces slightly and that the magnitude of this numerical error depends on the 
time interval used. Now, due to the presence of the convolution integral in the boundary 
formulation for the fully discrete system, we integrate over the full time domain history of 
the response and thereby this otherwise insignificant numerical error in the response accu-
mulates to an error in the interface equation that is significant enough to induce reflections 
from any incident waves that arrives at this interface. As a consequence, it must follow that 
the magnitude of this error also depends on the numerical integration scheme used to evaluate 
the convolution integral. 

As shown by Figure 4.8b, the magnitude and shape of the reflected waves are quite dif-
ferent depending on whether we use equation (4.22) or equation (4.24) as the interface equa-
tion. Here, the continuous green and red lines show the respective reflections for the case that 
the time step Δt of the numerical simulations is chosen as 100t T = , where T is the load 
period, and the numerical evaluation of the convolution integral has been performed using 
the composite Trapezium rule. While the response that follows from using equation (4.22) is 
sinusoidal in shape, with both a positive and a negative peak, the response that follows from 
using equation (4.24) only has a negative peak, but yields a constant offset from the particles’ 
equilibrium position after the reflected wave has passed.  

The fact that these reflections are due to numerical errors indicates that the performance 

Figure 4.8: Displacement response for the time domain solutions respectively using equations (4.22) and (4.24):  
a) Time domain versus frequency domain solution; b) Reflection from the boundary for different approaches.
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of the numerical implementation can be improved by reducing the time step and thereby 
increasing both the number of points at which the system of ODEs is solved and the number 
of points over which the convolution integral is obtained. To show this, the dashed green and 
red lines in Figure 4.8b depict the response of the loaded surface particle for the case that the 
time step Δt is chosen as 250t T = . In addition to reducing the time step, for both the 
resulting responses the convolution integral was numerically evaluated using the alternative 
extended Simpson’s rule [Press et al., 1989]. The influence of reducing the time step and 
applying an improved integration scheme for the convolution integral are clearly visible for 
the time domain solution that incorporates equation (4.24) as the interface equation. While 
reducing the time step reduces both the peak of this reflection as well as its constant offset, 
applying these numerical improvements separately has shown that the constant offset is pri-
marily due to using the composite trapezium rule and that this offset disappears when we use 
a higher-order scheme for numerical evaluation of the convolution integral. 

While the proposed numerical improvements clearly reduce the reflections from the in-
terface for the system that uses interface equation (4.24), Figure 4.8b shows that this effect 
is not present when we use equation (4.22) instead. This can be explained by first considering 
that we numerically solve the corresponding system of ODEs for the acceleration, and second 
noting that as shown by equation (4.23), the interaction force that includes the acceleration, 
is present only as a part of the convolution integral, so that its contribution to the current time 
step depends on the size of the time step Δt. Consequently, by reducing the time step, we also 
reduce the contribution of the particle acceleration to the current integration step in the Runge 
Kutta-scheme, which in turn makes it more difficult to obtain a robust numerical response 
using equation (4.22) as the interface equation. As a consequence, the reflection for the sys-
tem that includes equation (4.22) does not reduce when we reduce the time step. 

In addition to the size of the time step and the chosen integration scheme for the convo-
lution integral, the magnitude of the reflection due to this numerical error also depends on 
the chosen load frequency. This dependency is depicted by Figure 4.9, which gives the dis-
placement response of the loaded surface particle for three different load frequencies. Here, 
the fully discrete system has the same material properties as before, with the exception of the 
damping coefficient that is chosen as 0.2 = . The amplitude of the applied single-sinus 
pulse load is the same for all three responses depicted and equal to 0.1 MNF = . Unlike the 
load amplitudes, the magnitudes of the displacement response are quite different for the three 
load frequencies, which is a consequence of the duration of the pulses applied. From Figure 
4.9a, we observe that the magnitude of the displacement response is inversely proportional 
to the load frequency ΩF. Here, the responses for the three load frequencies are obtained 
numerically in the time domain for the system of ODEs that incorporates equation (4.24) for 
the boundary particle N and a time step Δt chosen as 1000t T = .  

Any reflections in the displacement response that occur due to the numerical error in the 
interface equation are hardly visible at the scale of Figure 4.9a, but are clearly visible in 
Figure 4.9b in which the occurring reflections are magnified a hundred times compared to 
Figure 4.9a. The magnitudes of these reflections are not proportional to the magnitude of the 
initial displacement response depicted in Figure 4.9a, but are found to be proportional to the 
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area under the initial displacement response. This is in line with the previous observation that 
the numerical error accumulates due to numerical evaluation of the convolution integral, be-
cause the area under the integrand of the convolution integral must reduce proportional to the 
area under the displacement response. 

The analysis of the numerical performance of the two instances of the equation of motion 
for the boundary particle N, has clarified that using equation (4.24) as the interface equation 
is preferred over using equation (4.22). In addition, this analysis has provided several tools 
to tune the numerical implementation and minimize any reflections from the boundary caused 
by numerical errors that are due to the numerical evaluation of the convolution integral in the 
interface equation. In addition, note that the identity of the inverse Laplace transform, for 
which different options are presented in Appendix J.4, used to numerically determine the 
dynamic compliance and its derivatives in the time domain should be carefully chosen de-
pending on their value at 0t = . This is discussed in further detail in Section 5.2.3, which 
addresses the application of the inverse Laplace transform for nonzero initial conditions. 

4.2.4 Reflection coefficients for one-dimensional fully discrete systems 
As shown in Figure 4.7b for the frequency domain solution, the lattice-cascade interface is 
completely non-reflective. As the one-dimensional Kelvin-Voigt lattice and the semi-infinite 
viscoelastic cascade are identical discrete models and therefore have the exact same disper-
sive properties, this notion seems to be quite evident. Nevertheless, the non-reflectiveness of 
the lattice-cascade interface can be proven analytically by deriving the reflection and trans-
mission coefficients of a harmonic incident wave arriving at the lattice-cascade interface. 

The amplitude reflection and transmission coefficients of an incident wave at the lattice-
cascade interface are analytically obtained starting from the equation of motion of the bound-
ary particle N, which for the one-dimensional fully discrete Kelvin-Voigt system is previ-
ously given by equation (4.6). Noting that the elongation of the rheological element between 
the boundary particle N and its adjacent particle N-1 may be expressed in terms of the corre-
sponding particle displacements as e u u= −N-1,N N N-1 , we find the dimensionless interface 

Figure 4.9: Displacement response for different load frequencies: a) Overall displacement response;  
b) Reflections from the lattice boundary due to numerical errors.
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equation as: 

( ) ( ) ( ) ( )1
2e eM u C u u K u u M u u u u u+ − + − = − − − − −N N N-1,N N N-1 N-1,N N N-1 P P P P+1 P P+1 (4.26) 

Whereas the displacement of a particle inside the one-dimensional Kelvin-Voigt lattice may 
be due to both the incident and possibly a reflected wave, the displacement of a particle in 
the semi-infinite viscoelastic cascade can only be due to the transmitted wave. Therefore, 
assuming that the incident, reflected and transmitted waves are all harmonic, the displace-
ments of any particles n and p in their domains are respectively described as: 

( ) ( )i it t
inc refu A e A e  −  +

= +
n nn (4.27) 

( )i t
trau A e  −

=
pp (4.28) 

Here, Ainc, Aref and Atra are the wave amplitudes of respectively the incident, the reflected and 
the transmitted waves. Furthermore, note that the wavenumber κ is the same in both domains. 

According to equation (4.28), the displacement and the velocity of the particle P+1 in the 
viscoelastic cascade may be expressed in terms of the adjacent boundary particle P as 

iu u e −=P+1 P  and iu u e −=P+1 P  respectively. Additionally, since the half-particles N and P 
together form the same boundary particle, their displacements, velocities and accelerations 
must be equal. Substituting these relations into equation (4.26) allows us to express the right-
hand side of equation (4.26), related to the motion of the particles P and P+1, fully in terms 
of the motion of the boundary particle N. The resulting equation was previously obtained in 
the Laplace domain by equation (4.12). Subsequently, substituting equation (4.27) for the 
particles N and N-1 in the remainder and rearranging yields the amplitude ratio of the re-
flected and incident waves in the Laplace domain as: 
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Since Ainc and Aref are the complex amplitudes of the incident and reflected waves at the 
surface particle, i.e. for 0=n , i

inc incA A e −=N N  and i
ref refA A e +=N N  respectively describe the 

complex amplitudes of the incident and reflected waves at the boundary particle N. Using 
Euler’s formula and the dispersion relations for the Kelvin-Voigt lattice derived in Appendix 
E.3, we thus find the amplitude reflection coefficient for the lattice-cascade interface as:
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Noting that the Kelvin-Voigt lattice and the viscoelastic cascade represent the same material, 
it straightforwardly follows from Appendix B.3 that the dimensionless damping coefficient 
and the dimensionless stiffness coefficient of the boundary element in the lattice are respec-
tively obtained as eC =N-1,N  and 1

2eK =N-1,N . For the Kelvin-Voigt system, the Laplace do-
main amplitude reflection coefficient thus reduces to: 

( )

( )

2

2 2
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1 i 2 4i
ref

inc

M MA
A M M 

+ − 
=
− + −  +  + −

N PN

N N P
(4.31) 

According to equation (4.31), we find that there will be no wave reflection, if we choose the 
collective dimensionless mass of the boundary particles N and P as 1M M+ =N P . This 
equality is exactly equal to the constraint previously given by equation (4.4) in its dimen-
sional form. Consequently, for using the boundary formulation for the one-dimensional Kel-
vin-Voigt lattice that considers the far-field domain as a semi-infinite viscoelastic cascade, 
there will be no reflections at the lattice-cascade interface.  

Ergo, consistent with the reflections at the lattice-cascade interface obtained by the fre-
quency domain solution depicted in Figure 4.7b, the amplitude reflection coefficient for the 
one-dimensional fully discrete Kelvin-Voigt system is analytically found as 0AR = . Further-
more, note that the nonzero reflection from the lattice-rod interface of the corresponding dis-
crete-continuous system, depicted for the frequency domain solution in Figure 4.7b, corre-
sponds to the analytically derived nonzero amplitude and energy reflection coefficients for 
the discrete-continuous interface that are given by respectively equations (3.41) and (3.48) in 
Section 3.3.2. 

4.3 Two-dimensional fully discrete particle systems 
Although the derivation and implementation of a boundary formulation that accounts for a 
continuous far-field domain does not yield any insuperable difficulties for one-dimensional 
systems, as explained in Section 3.6.3, we were unsuccessful in implementing a boundary 
formulation for the hexagonal lattice that models the far-field domain as a two-dimensional 
continuum. Amongst others, this was due to the difference in geometry between the lattice 
and the continuum, specifically at their interface. Replacing the two-dimensional continuum 
by a system of particles that is geometrically equivalent to the hexagonal lattice removes 
these dissimilarities. 

Figure 4.10 depicts the two-dimensional fully discrete system that consists of the hexag-
onal BKV lattice in the near field and a semi-infinite two-dimensional viscoelastic system of 
particles in the far field. The properties of the hexagonal BKV lattice and the equations of 
motion for all its non-boundary particles are discussed in Section 2.4. The interaction of the 
hexagonal lattice and the linear two-dimensional system of particles along the lattice-lattice 
interface may generally be described by the dynamic stiffness matrix that follows from the 
system of Laplace domain force-displacement relations previously given by equation (3.2) in 
Section 3.1. Due to the increase of the involved dynamic stiffnesses for Ω → ∞ and the fact 
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that the corresponding time domain relations may only be obtained numerically, the force-
displacement relations at the lattice-lattice interface are described in the Laplace domain by 
means of the dynamic compliance matrix as: 

( ) ( ) ( )IntIntu s s F s= − (4.32) 

In accordance with the approach for the two-dimensional discrete-continuous system, the 
dynamic compliance matrix that describes the interaction of the two-dimensional near-field 
and far-field lattices at their interface, is derived starting from the dynamic reciprocal work 
theorem. While the derivation of the dynamic compliance relation at the discrete-continuous 
interface requires an indirect approach that makes certain assumptions regarding the interac-
tion between the lattice and the continuum, the dynamic compliance matrix at the interface 
of the hexagonal lattice and the two-dimensional system of particles may be derived from the 
dynamic reciprocal work theorem without making any assumptions. The corresponding di-
rect boundary formulation and the resulting dynamic compliance matrix are respectively pre-
sented in Sections 4.3.1 and 4.3.2. 

4.3.1 A direct boundary formulation for discrete particle systems 
In this section, we will first rearrange the dynamic reciprocal work theorem such that it is 
applicable for systems, or bodies, that consist of multiple particles and thereby have a discrete 
nature. Henceforth, we will refer to these systems, or bodies, as discrete particle systems. 
Employing the resulting dynamic reciprocal work theorem for discrete particle systems, we 
will then derive the dynamic stiffness and dynamic compliance matrices for a discrete particle 
system with a cavity that exactly matches the shape of the hexagonal BKV-lattice, and which 

F t( )Hexagonal BKV lattice

z

x

Lattice-
Lattice       

Interface

Linear 
System of 
Particles

Figure 4.10: The two-dimensional fully discrete BKV system. 
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is derived from the known relations for a corresponding discrete particle system without a 
cavity. 

The dynamic reciprocal work theorem for discrete particle systems 
As previously discussed in Section 3.1, the dynamic reciprocal work theorem is derived from 
the elastostatic reciprocal work theorem of Maxwell-Betti [de Hoop, 1966] by extending it 
into dynamics, and describes the frequency or Laplace domain relation between the displace-
ments of, and the tractions on, a continuous body in two different elastodynamic states. Dis-
regarding internal body forces and assuming that one elastodynamic state of the body is de-
scribed in the Laplace domain by surface displacements ( ),u s  and surface tractions ( ),t s

, as well as assuming that another elastodynamic state of the same body is described by sur-
face displacements ( ),Pu s  and surface tractions ( ),Pt s  due to an externally applied ar-
bitrary load P , the dynamic reciprocal work theorem yields the following relation between 
the two elastodynamic states: 

( ) ( ) ( ) ( )
T T, , , ,P Pt s u s d t s u s d     = Γ Γ

Here, we consider a two-dimensional solid medium, and therefore all displacements and trac-
tions in the dynamic reciprocal work theorem are vectors that contain components in x- and 
z-directions.

Since the considered discrete particle system is a body made up of point masses and rhe-
ological elements, neither tractions nor stresses exist as they require a continuous surface or 
boundary. Accordingly, the continuous traction and displacement fields that appear in the 
dynamic reciprocal work theorem do not exist either. Nevertheless, as the resultant of a trac-
tion field over a certain area yield a force, we may alternatively express the dynamic recip-
rocal work theorem in terms of forces on, and displacements of, a set of discrete points along 
the boundary of a body, that is as long as the work-energy balance of the two considered 
elastodynamic states is maintained. In other words, integrating the multiplied traction and 
displacement fields over a boundary Γ is equivalent to the summation of the forces working 
on the set of particles at the boundary Γ multiplied by the displacements of those particles. 
In the Laplace domain, we can write the theorem of dynamic reciprocal work for discrete 
particle systems as: 

( ) ( ) ( ) ( )
T T

PPR s u s R s u s= 
j jj j

j j
(4.33) 

Here, the vectors ( )u sj  and ( )R s
j

 respectively contain the horizontal and vertical displace-
ments of, and the horizontal and vertical reaction forces at, a particle j along the boundary of 
a discrete particle system in an arbitrary elastodynamic state. Furthermore, the vectors ( )Pu sj  
and ( )PR s

j
 respectively describe the horizontal and vertical displacements of, and the hori-

zontal and vertical reaction forces at, particle j along the boundary of a discrete particle sys-
tem in the elastodynamic state due to an applied load P . Collecting the reaction forces for 
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all particles 1..= Intj N , where NInt denotes the number of particles at the boundary Γ, per 
elastodynamic state into the force vectors ( )R s  and ( )PR s respectively, as well as collect-
ing the corresponding displacements for all particles 1..= Intj N  into the displacement vectors 
( )u s and ( )Pu s , we can now generally express the dynamic reciprocal work theorem for 

discrete particle systems as: 

( ) ( ) ( ) ( )
T T

PPR s u s R s u s= (4.34) 

For our case, the dynamic reciprocal work theorem according to equation (4.34) applies to 
the particle system with a cavity that matches the near-field lattice and is denoted as the 
discrete particle system V. As the vectors ( )u s , ( )Pu s , ( )R s  and ( )PR s  respectively in-
clude both horizontal and vertical displacements and reaction forces, they each have a length 
2NInt. Figure 4.11a shows the discrete particle system with the cavity subject to the force 
vector ( )IntF s  and with displacements ( )Intu s , between which we aim to find the relation
described by the dynamic compliance matrix according to equation (4.32). Because of the 
cavity, we are not able to find this relation along the boundary Γ directly and therefore we 
refer to this elastodynamic state as the so-called unknown elastodynamic state.  

For a discrete particle system without a cavity, such as a half-plane or a layer of particles, 
we can find the displacements of, and reaction forces at, any particle in the system due to an 
arbitrary load applied at any particle in the system using the corresponding Green’s functions. 
In this case, we consider the system without the cavity as an assembly of a discrete particle 
system that exactly matches the shape of the far-field system V, i.e. with the surface cavity, 
and a particle system that exactly matches the shape of the cavity, denoted as the cavity sys-
tem Vcav. The full discrete particle system composed of the particle systems V and Vcav is 
depicted in Figure 4.11b. Note here that the interface between V and Vcav exactly matches 
the boundary Γ. For an arbitrary load applied inside the cavity system Vcav, we can determine 
the resulting displacements and reaction forces for all particles located at the boundary Γ 
using the corresponding Green’s functions for the complete particle system. According to 
Huygens’ principle [Huygens, 1690], the response of the far-field system V is indifferent to 
whether a load is applied inside the cavity system Vcav or at the boundary Γ, as long as the 
response of the system at the boundary Γ is the same for both situations. Consequently, know-
ing the displacements of and the reaction forces at the particles along the boundary Γ due to 
an arbitrary load applied inside the cavity system Vcav, we may remove the cavity system Vcav 
as long as the displacements and reaction forces along the boundary Γ are maintained. Doing 
so, we remain with the far-field system V in an elastodynamic state for which we know the 
displacements and reaction forces along Γ, i.e. the so-called known elastodynamic state. 

Denoting the displacements of, and the reaction forces at, the particles along the boundary 
Γ in the unknown elastodynamic state by the vectors ( )u s  and ( )R s  respectively, and de-
noting the corresponding displacements and reaction forces in the known elastodynamic state 
by the vectors ( )Pu s  and ( )PR s , we can now employ the dynamic reciprocal work theorem 
for discrete particle systems according to equation (4.34) to determine the force-displacement 
relation for the unknown elastodynamic state of the far-field system V. Before deriving this 
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force-displacement relation, commonly known as the dynamic stiffness or dynamic compli-
ance, from the dynamic reciprocal work theorem, we will first elaborate on the so-called 
known and unknown elastodynamic states of the far-field system V. 

The known elastodynamic state: A discrete particle system without a cavity 
The known elastodynamic state, depicted in Figure 4.11b, describes the state of the far-field 
system V for which the displacements of, and reaction forces at, the particles along the 
boundary Γ due to an external load, or an arbitrary set of external loads, can be obtained from 
the corresponding Green’s functions of the discrete particle system without a cavity, which 
is an assembly of the far-field system V and the cavity system Vcav. 

Now let us assume a load vector P  that describes a set of loads that are applied at all 
particles along the boundary Γ, yet assume that these loads are applied at the sub-particles 
that belong to the cavity system Vcav. Alternatively, we can thus consider that the load vector 
P is applied along the face Γcav that belongs to the cavity system Vcav and matches the shape
of the boundary Γ. Denoting the load applied at a particle i along the boundary Γcav as Pi , 
which consists of the horizontal and vertical point loads xPi and zPi , the displacements of, 
and the reaction forces at, a particle j along the boundary Γ due to the applied load are found
through the corresponding Green’s functions as: 

( ) ( ), ,
uPu s g s P=

j i ij i (4.35) 

( ) ( )
, ,

RPR s g s P=
j i ij i (4.36) 

Here, ( ),
Pu sj i  and ( )

,
PR s
j i

 are respectively the displacement and reaction force vector for a 
particle j that each contain their respective horizontal and vertical components. Thus, the 
Green’s displacement matrix ( ),

ug sj i  and the Green’s reaction force matrix ( ),
Rg sj i , are both 

22-matrices. 
The total displacements of, and total reaction forces at, particle j in respectively horizontal 

and vertical direction are obtained by superimposing the displacements of, and reaction 
forces at, particle j due to all loads along the boundary Γcav that are contained in the load 
vector P , i.e. by summarizing the contributions of the point loads on all particles i, where 

1..= Inti N , to the displacement of, and the reaction forces at, particle j. Consequently, the 

Figure 4.11: a) The discrete particle system with a cavity, i.e. the unknown elastodynamic state;  
b) The full discrete particle system composed of the particle system with the cavity and a cavity system.
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displacements of, and the reaction forces at, particle j are respectively found as: 

( ) ( ) ( )
, ,

uP Pu s u s g s P
= =

= = 
Int IntN N

j j i ij i

i 1 i 1

( ) ( ) ( )
, ,

RP PR s R s g s P
= =

= = 
Int IntN Nj j i ij i

i 1 i 1

Collecting the displacements and the reaction forces for all particles j along the boundary Γ 
into respectively the displacement vector Pu and the reaction force vector PR , ultimately 
yields: 

( ) ( )uPu s g s P= (4.37) 

( ) ( )RPR s g s P= (4.38) 

Here, ( )ug s  and ( )Rg s  are square matrices with dimension 2NInt that respectively contain 
the Green’s displacements and Green’s reaction forces for all particles along Γ due to the 
point loads at all particles along Γcav. Accordingly, the displacement vector Pu , the reaction 
force vector PR and the load vector P are vectors with length 2NInt. 

The unknown elastodynamic state: A discrete particle system with a cavity 
The unknown elastodynamic state, depicted in Figure 4.11a, refers to the elastodynamic state 
of the far-field system V for which the relation between the displacements ( )Intu s  of the 
particles along the boundary Γ and the force vector ( )IntF s  is unknown and that we wish to
solve for. In the dynamic reciprocal work theorem, the unknown elastodynamic state is de-
scribed by the displacements ( )u s  and the reaction forces ( )R s  for all particles along the 
boundary Γ. 

As the vectors ( )u s  and ( )Intu s  both describe the two-dimensional displacement field 
of all particles of the far-field system V along the boundary Γ, they are one and the same. 
Ergo: 

( ) ( )Intu s u s= (4.39) 

Accordingly, the exerted force vector ( )IntF s consists of forces applied along the boundary
Γ that are exactly equal but opposite to the reaction forces described by the vector ( )R s . 
Consequently, the relation between the force vectors ( )IntF s and ( )R s reads:

( ) ( )IntR s F s= − (4.40) 

Both equations (4.39) and (4.40) are very straightforward as long as the location of the par-
ticles along the boundary Γ match for the far-field system V and the cavity system Vcav. 
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4.3.2 The dynamic compliance matrix for a discrete particle system 
Substituting the Green’s relations (4.37) and (4.38) for the known elastodynamic state and 
the force and displacement relations for the unknown elastodynamic state given by equations 
(4.39) and (4.40) into the dynamic reciprocal work theorem, given by equation (4.34), and 
rearranging the remainder noting that the dynamic reciprocal work theorem is an equality 
between scalars, yields the following force-displacement relation: 

( ) ( ) ( ) ( )
T TT T

u RInt IntP g s F s P g s u s= (4.41) 

Since the applied load can be arbitrarily chosen such that all terms in the load vector P  are 
nonzero and noninfinite, we may replace the load vector by the unit vector, which essentially 
removes the vector term TP  from equation (4.41), without violating the equality. Solving 
the remaining equation for the force vector IntF yields the force-displacement relation along 
the boundary Γ as: 

( ) ( )( ) ( ) ( )
1T T

u RInt IntF s g s g s u s
−

= − (4.42) 

Consequently, we find the corresponding dynamic stiffness matrix as: 

( ) ( )( ) ( ) ( ) ( )( )
1 TT T 1

u R R us g s g s g s g s
−

−
= = (4.43) 

And accordingly, the dynamic compliance matrix is found as: 

( ) ( )( ) ( ) ( ) ( )( )
1 TT T 1

R u u Rs g s g s g s g s
−

−
= = (4.44) 

According to equations (4.43) and (4.44), the dynamic stiffness and compliance matrices for 
the discrete particle system with a cavity follow from the Green’s displacement matrix and 
the Green’s reaction force matrix for the system without a cavity. The corresponding Green’s 
functions for the discrete particle system without a cavity are derived in the following section. 

Note that, in the boundary formulation presented here, no assumptions are made regarding 
the displacements of, or the reaction forces at, the boundary Γ of the discrete particle system. 
Consequently, the resulting force-displacement relation given by either the dynamic stiffness 
matrix in equation (4.43), or the dynamic compliance matrix in equation (4.44), is exact, 
which is in strong contrast with the force-displacement relation obtained by applying the 
indirect boundary element method for the discrete-continuous system in Section 3.5.1. Addi-
tionally, to determine the dynamic compliance matrix for the discrete particle system, we 
require the Green’s functions exclusively at the boundary particles along the boundary Γ. 
This is again unlike the discrete-continuous system, for which the Green’s functions are 
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required along the full continuous boundary Γ. Consequently, to obtain the particle response 
at the interface of the fully discrete system, the corresponding Green’s functions do not have 
to be integrated over the boundary Γ as a function of the coordinate ξ, neither do we have to 
introduce any load distributions or Heaviside functions at the lattice-continuum interface to 
transform the forces at these particles into tractions, and vice versa. Furthermore, while the 
dynamic stiffness and compliance matrices obtained for the continuous far-field were found 
through the lumping and flexibility matrices, which each require the integration of the so-
called modified Green’s matrices over the boundary Γ, the dynamic stiffness and compliance 
matrices for the discrete particle system, given by equations (4.43) and (4.44), are expressed 
in terms of the Green’s matrices ( )ug s  and ( )Rg s  directly. The fact that the boundary for-
mulation for the discrete particle system lacks these integrals is clearly beneficial for the 
numerical implementation and will significantly improve the involved calculation times. 

Application to a two-dimensional discrete particle system 
To describe the interaction between the discrete near-field lattice and a two-dimensional dis-
crete particle system using the dynamic compliance matrix according to equation (4.44), we 
need to determine the Green’s displacements and the Green’s reaction forces at the particles 
along Γ. These Green’s functions may be obtained from the governing equations for a corre-
sponding discrete particle system without a cavity. 

The corresponding discrete far-field system is modelled as a half-plane of particles, as 
this allows us to account for the dispersive character of the medium, without introducing 
unnecessary complications associated with wave reflections from a bottom. The half-plane 
of particles is depicted in Figure 4.12. Here, the x-axis is chosen at the surface of the half-
plane of particles and the z-axis is chosen at the symmetry line of the cavity system Vcav, 
which coincides with the vertical symmetry line of the hexagonal lattice in the combined 
system. Figure 4.12a shows the displacements ( ),

Pu sj i  of a particle j, and additionally the 
reaction forces ( )

,
PR s
j i

 along the boundary Γ at another particle j, due to a load Pi  at a 
particle i located inside the half-plane of particles. These displacements and reaction forces 
are obtained by means of the corresponding Green’s functions according to respectively 
equations (4.35) and (4.36). To obtain the expressions for the Green’s displacements and the 
Green’s reaction forces for all particles along the boundary Γ, we consider the half-plane of 
particles to be composed of two subsystems, where the horizontal interface between the two 

Figure 4.12: The displacements of, and reaction forces at, a particle j for a load applied a particle i located:  
a) inside the half-plane of particles; b) at the surface of the half-plane of particles.
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subsystems is given by the z-coordinate of the loaded particle i, i.e. z z= i . Here, the layer of 
particles between the surface of the half-plane and the z-coordinate of the loaded particle is 
denoted by roman numeral I and must allow for both upward and downward propagating 
waves. The remainder of the half-plane, which itself is again a half-plane of particles, only 
needs to account for downward propagating waves and is denoted by roman numeral II. For 
the particular case that the loaded particle i is located at the surface of the half-plane of par-
ticles, as depicted in Figure 4.12b, only downward propagating waves need to be accounted 
for, so that we can consider the half-plane of particles as a single system. 

4.4 Green’s functions for the viscoelastic half-plane of particles 
In this section, we derive the Laplace domain expressions for the Green’s displacements and 
the Green’s reaction forces in the viscoelastic half-plane of particles as they appear in the 
expressions for the dynamic stiffness matrix and the dynamic compliance matrix, given by 
equations (4.43) and (4.44) respectively. In Section 4.4.1, we will first derive the governing 
Laplace domain displacements and reaction forces from the equations of motion for the par-
ticles in the viscoelastic half-plane. Subsequently, Section 4.4.2 presents the boundary con-
ditions for a load applied at either a particle at the surface, or a particle in the interior of the 
half-plane, required to obtain the wave amplitudes that appear in the expressions for the 
Green’s functions. Then, Section 4.4.3 and Section 4.4.4 respectively present the Laplace 
domain displacements and the Laplace domain reaction forces for the viscoelastic half-plane 
of particles. 

4.4.1 Displacements and reaction forces in the half-plane of particles 
In accordance with the approach used for the lattice models in Section 2.1, we derive the 
equations of motion for a particle in the half-plane of particles by applying Lagrange’s for-
malism. The involved Euler-Lagrange differential equations for the two degrees of freedom 
of that particle, for which the location is described by the discrete, or nodal, coordinates m 
and n, follow from equation (2.1) by respectively replacing the displacement variable un by 
the horizontal and vertical displacements of particle m,n, denoted as xum,n  and zum,n . The 

Figure 4.13: Cell configuration of: a) a particle m,n in the interior of the viscoelastic half-plane of particles;  
b) a particle m,0 at the surface of the viscoelastic half-plane of particles;
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Lagrangian of the cell of particle m,n appearing in the Euler-Lagrange differential equations, 
follows from the kinetic energy of particle m,n and the total potential energy enclosed in all 
rheological elements in its cell, in accordance with equation (2.3). As shown by Figure 4.13, 
the discrete particle half-plane is chosen to match the configuration of the hexagonal near-
field lattice so that the x- and z-coordinates for particle m,n are obtained as 1

2x = m  and 
1
2 3z = n . The cells of the interior and surface particles include the rheological elements 

that describe the interaction of these particles with their adjacent particles. For a proper 
boundary formulation, i.e. a formulation that allows for the undisturbed wave propagation 
through the interface of the near-field lattice with the far-field domain, the half-plane of par-
ticles must at least be homogeneous and purely viscoelastic. Therefore, all particles in the 
interior of the half-plane have the same mass M and the interaction between all adjacent 
particles is described by Kelvin-Voigt elements with the same properties.  

To satisfy the law of conservation of energy such that we are allowed to use the Euler-
Lagrange differential equations [Lanczos, 1966], we consider the Kelvin-Voigt elements as 
springs for which the equivalent stiffness is described by the operator ˆ e e e tK K C 


= + . Here,

Ke and Ce are respectively the stiffness and damping coefficients of the Kelvin-Voigt element, 
while the partial time derivative implies a differentiation of the corresponding displacement 
with respect to time. Consequently, the Lagrangian for a particle m,n inside the discrete par-
ticle half-plane becomes: 

( ) ( ) ( )
62 2 21 1 1

2 2 2
1

ˆx z e j
j

L M u M u K e
=

= + − m,n m,n m,n m,n (4.45) 

Furthermore, jem,n  is the elongation of the j-th element in the cell of particle m,n. Since we 
consider the purely viscoelastic response of the half-plane of particles, we may apply the 
linearization for small elongations and express the elongation jem,n  as given in Appendix A.1. 

Applying Lagrange’s formalism by substituting equation (4.45) into the Euler-Lagrange 
differential equations for the displacements xum,n  and zum,n  respectively, and successively ac-
counting for the evenly divided angles of the Kelvin-Voigt elements in the corresponding 
cell, yields the equations of motion for the interior particle m,n depicted in Figure 4.13a as:  

( )

( )

1
4

3
4

3
ˆ 0

x x x x x x x

x e

z z z z

u u u u u u u
Mu K

u u u u

 − − − + + +
 + =
 + − − +
 

m,n m-2,n m+2,n m-1,n+1 m+1,n+1 m-1,n-1 m+1,n-1

m,n

m-1,n+1 m+1,n+1 m-1,n-1 m+1,n-1
(4.46) 

( )

( )

3
4

3
4

3
ˆ 0

z x x x x

z e

z z z z

u u u u u
Mu K

u u u u

 + − − +
 + =
 − + + +
 

m,n m-1,n+1 m+1,n+1 m-1,n-1 m+1,n-1

m,n

m-1,n+1 m+1,n+1 m-1,n-1 m+1,n-1
(4.47) 

Together, equations (4.46) and (4.47) describe the two-dimensional behaviour of particles in 
the discrete half-plane in the time domain. These equations are the discrete equivalent of the 
two-dimensional elastodynamic equation for the continuum, previously given by equation 
(3.88). 
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Applying Lagrange’s formalism for the particle m,0 located at the surface of the viscoe-
lastic half-plane of particles, depicted in Figure 4.13b, yields its equations of motion as: 

( ) ( )( ), , , , , , , ,31 1 1
2 2 2 2

ˆ 3 0x e x x x x x z zMu K u u u u u u u+ − − − + + − =m 0 m 0 m-2 0 m+2 0 m-1 1 m+1 1 m-1 1 m+1 1 (4.48) 

( ) ( )( ), , , , , ,331 1
2 2 2 2

ˆ 3 0z e z z z x xMu K u u u u u+ − + + − =m 0 m 0 m-1 1 m+1 1 m-1 1 m+1 1 (4.49) 

Dimensionless equations of motion for a particle in the half-plane of particles 
In accordance with the approach for the one-dimensional lattices, and as opposed to the der-
ivation of the governing equations for the two-dimensional continuum in Section 3.5, we here 
derive the governing equations of motion for the half-plane of particles in their dimensionless 
form. To normalize the equations for the half-plane of particles, the following dimensionless 
parameters for respectively time and space are introduced: 

,
, dim

dim 0 , .ut t u= =
m n

m n

Here, ω0 is the particle frequency, i.e. the natural frequency of a particle in hexagonal BKV 
lattice for the particular case that the motion of any adjacent particles is impeded. As shown 
by Appendix B.4, this so-called particle frequency for a particle in a hexagonal lattice is 
found as 0 3 eK M =  and is thereby different from the particle frequency of the homoge-
neous one-dimensional cascade. 

Inserting the dimensionless parameters for space and time into equations (4.46) and (4.47)
, including the expression for the operator ˆ e e e tK K C 


= + , dividing the remainder by 2

0M

and subsequently applying the Laplace transform with respect to time, the Laplace domain 
equations of motion for a particle m,n in the viscoelastic half-plane of particles become: 

( )
( )

( )

1
42 1

3 3
4

3
1 2 0

                                 

x x x x x x x

x

z z z z

u u u u u u u
s u s

u u u u


 − − − + + +
 + + =
 + − − +
 

m,n m-2,n m+2,n m-1,n+1 m+1,n+1 m-1,n-1 m+1,n-1

m,n

m-1,n+1 m+1,n+1 m-1,n-1 m+1,n-1
 (4.50) 
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(4.51) 

Here, ζ is the damping ratio obtained as e critC C = , where Ccrit is the critical particle damp-
ing, which, as shown by Appendix B.4, is obtained for a hexagonal lattice as 2

03critC M= . 
Note here that the form of equations (4.50) and (4.51) is similar to that of the equation of 

motion of a particle in the one-dimensional cascade, previously given by equation (4.8).  

Governing Laplace domain displacements in the half-plane of particles 
To describe the wave propagation in the half-plane of particles, we here seek a solution to 
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equations (4.50) and (4.51) by describing the Laplace domain displacements of the particle 
m,n in the form of a superposition of plane harmonic waves [Suiker et al., 2001b]. Before 
doing so however, let us first consider the source of the wave propagation through the half-
plane, i.e. the applied load.  

As shown previously by Figure 4.12, we consider a load Pi  applied at a particle i along 
a boundary Γ that matches the interface between the nonlinear hexagonal lattice and the vis-
coelastic  half-plane. Application of this force to a two-dimensional continuum as a point 
load yields singular displacements in the continuum. For the half-plane of particles, the re-
sulting displacement is finite as the point force matches the discrete nature of the lattice. To 
describe the response of the half-plane of particles to a load at particle i, we must describe 
the corresponding boundary conditions along the horizontal level of particles with nodal co-
ordinate ni. The load is then incorporated in the boundary conditions using the Kronecker 
Delta  im m , which is defined to be equal to one when = im m  and equal to zero when 

 im m . The load Pi , applied at particle i along a horizontal level of particles, may thus be 
expressed in terms of the Kronecker delta as P P= i

i
m m . 

To consider plane harmonic waves in the half-plane of particles due to a load applied at 
particle i, we describe the Kronecker delta by an integral identity in terms of the dimension-
less horizontal wavenumber κx. Accounting for the horizontal spacing of the particles by de-
scribing the dimensionless x-coordinate of a particle in terms of the horizontal nodal coordi-
nate m as 1

2x = m , the Kronecker Delta may be expressed using the following integral rep-
resentation: 

( )1
2

2
i

2

1
4

x
xe d






 


+
−

−

= 
i

i

m m
m m (4.52) 

The integral identity for the Kronecker Delta is chosen as such to properly account for the 
geometry and the infinite horizontal domain of the half-plane of particles. 

To find a solution to equations (4.50) and (4.51) that satisfies the boundary conditions for 
a point load applied at a particle i, the Laplace domain displacements of any particle m,n 
inside the half-plane are described in accordance with the integral representation for the 
Kronecker Delta given by equation (4.52). The two-dimensional wave propagation is ac-
counted for by incorporating a term related to the vertical wavenumber κz, in which the di-
mensionless z-coordinate of a particle with vertical nodal coordinate n is found as 3

2z = n . 
Note here that according to the integral identity for the Kronecker Delta, the horizontal wave-
number κx must be real, while the vertical wavenumber κz can be complex-valued and is 
dependent on the horizontal wavenumber κx. The horizontal and vertical displacements of a 
particle m,n are thus assumed in the Laplace domain as: 

( )
31

2 2
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i i

2

x z
x xu s A e e d
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− +

−
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Here, Ai and Bi are unknown wave amplitudes that follow from solving the system of bound-
ary conditions for the point load Pi  applied at a particle i. Furthermore, the argument of the 
exponent related to the horizontal wavenumber κx is chosen in accordance with the expression 
for the Kronecker Delta in equation (4.52). The properties of the vertical wavenumber κz 
itself as well as the sign of the exponent argument and the corresponding direction of wave 
propagation are further discussed below.  

Equations (4.53) and (4.54) are novel expressions for the Laplace domain displacements 
of lattice particles, where the integral representation used is similar to applying the inverse 
Fourier integral transform with respect to the horizontal wavenumber used for continua. 
Thereby, the integrands in equations (4.53) and (4.54) can respectively be considered as the 
horizontal and vertical displacements in the Laplace-wavenumber domain. 

Substituting the Laplace domain displacements according to equations (4.53) and (4.54) 
into equations of motion (4.50) and (4.51) for particle m,n, as well as for all particles adjacent 
to particle m,n, yields the following system of equations for the wave amplitudes Ai and Bi: 
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i i

i i

(4.55) 

The above system of homogeneous algebraic equations has a non-trivial solution if, and only 
if, its determinant is equal to zero. Provided that the Laplace parameter s is replaced by i , 
the resulting equality gives the dispersion relation for the viscoelastic half-plane of particles 
with a hexagonal configuration and reads: 

2 2
2 23 3 33 1 2cos cos cos 1 cos cos sin sin 0

1 2 2 2 1 2 2 2 2 2
x z x z x z

x
s s

s s
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+ − − + − − =     + +   

(4.56) 

Solving equation (4.56) for the cosine-term related to the vertical wavenumber κz using the 
quadratic formula, yields:  
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(4.57) 

In contrast to the two-dimensional continuum and the discrete particle system with a square 
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configuration [Suiker et al., 2001b], it follows from equation (4.57) that, for the discrete par-
ticle system with a hexagonal configuration, the shear and compressional waves cannot be 
isolated. 

Next, note that equation (4.57) gives two expressions for ( )3
2cos z and that each of 

these expressions yields one wavenumber that belongs to the first Brillouin zone of the lattice 
[Brillouin, 1953]. We denote the wavenumbers for each of these expressions as ( )1

z  and ( )2
z

respectively. Using Euler’s formula and the Pythagorean trigonometric identity, we find the 
exponents of the forward and backward propagating waves for either wavenumber ( )h

z , with 
1..2h = , as: 

( )
( ) ( )

3
2 i 23 3cos i 1 cos

2 2
h

z
h h

z ze   
=  − (4.58) 

In equations (4.53) and (4.54), we have posed the Laplace domain displacements of a particle 
m,n in the half-plane of particles to have only one characteristic wavenumber in z-direction 
and we have only considered one direction for the wave propagation. Clearly, there are two 
characteristic wavenumbers in z-direction and, depending on the boundary conditions, waves 
propagating in both positive and negative z-direction should be considered. Therefore, the 
expressions for the Laplace domain displacements ( )xu sm,n  and ( )zu sm,n  of particle m,n must 
be adapted to incorporate both wavenumbers and, depending on the location of particle m,n 
compared to the location of the loaded particle i, waves travelling in both directions. Note 
here that the positive sign of the exponents’ argument related to the vertical wavenumber 

( )h
z in equations (4.53) and (4.54) does not correspond to wave propagation in a certain 

direction, as this direction depends on the sign of the imaginary part of the vertical wave-
number ( )h

z . Nevertheless, if the positive argument of the exponent related to the vertical
wavenumber ( )h

z corresponds to a wave travelling in positive z-direction, the same exponent 
with a negative argument must always correspond to a wave travelling in negative z-direc-
tion. 

Thus, accounting for the two characteristic wavenumbers and accounting for waves trav-
elling in both positive and negative z-direction, the horizontal and vertical displacements of 
a particle m,n due to a load at a particle i are, in a general sense, described as: 
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Henceforth, we choose the square roots in equations (4.57) and (4.58) such that the positive 
argument of the exponent related to the vertical wavenumber ( )h

z corresponds to the wave 
propagating in positive z-direction, while the negative argument of the same exponent corre-
sponds to the wave propagating in negative z-direction. Consequently, ( ),

1
hAi  and ( ),

1
hBi  are 
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respectively the horizontal and vertical wave amplitudes of the waves propagating in positive 
z-direction, while ( ),

2
hAi and ( ),

2
hBi are respectively the horizontal and vertical wave ampli-

tudes of the waves propagating in negative z-direction, both with wavenumber ( )h
z . 

Each wavenumber ( )h
z corresponds to two components of the eigenvector, respectively 

denoted as ( )
1

hD  for the wave propagating in positive z-direction and as ( )
2

hD  for the wave 
propagating in negative z-direction. The expressions for the second component of each ei-
genvector are respectively obtained as the amplitude ratios ( ) ( ), ,

1 1
h hB Ai i  and ( ) ( ), ,

2 2
h hB Ai i , and 

follow from the system of algebraic equations for the corresponding exponents of the vertical 
wavenumber ( )h

z . Here, the system of algebraic equations for waves travelling in positive z-
direction is given by equation (4.55), while the corresponding system for waves travelling in 
negative z-direction is the same but with a positive sign for the off-diagonal terms. As a 
consequence, and for each vertical wavenumber, the resulting expressions for the two eigen-
vector terms are found to be related as ( ) ( )

1 2
h hD D= − . Thus, introducing ( ) ( ) ( )

1 2
h h hD D D= = − , 

we obtain: 
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Note here that, although the wave amplitudes ( ),
1

hAi , ( ),
2

hAi , ( ),
1

hBi and ( ),
2

hBi depend on the 
location of the loaded particle i, the corresponding eigenvector components do not. Using 
equation (4.61), the vertical wave amplitudes of the waves in positive and negative z-direc-
tion may respectively be expressed in terms of the horizontal wave amplitudes as 

( ) ( ) ( ), ,
1 1

h h hB D A=
i i and ( ) ( ) ( ), ,

2 2
h h hB D A= −

i i . Here, note that while equation (4.61) follows from
the equation of motion in z-direction, i.e. the second equation in the system of algebraic equa-
tions (4.55), the expression for ( )hD  may also be derived from the equation of motion in x-
direction, being the first equation in (4.55). 

Assuming that the loaded particle i is located in the interior of the half-plane of particles, 
as previously depicted in Figure 4.12a, we must separately describe the response of the two 
subsystems the half-plane is composed of. Although both subsystems represent the same ma-
terial and thus allow for the same characteristic wavenumbers ( )h

z , they do not allow for the 
same waves. As a dynamic load at a particle i in the interior of the half-plane yields wave 
reflections at the half-plane surface, the response of a particle m,n in subsystem I, i.e. any 
particle for which  0 in n , must account for waves travelling in both positive and neg-
ative z-directions. On the other hand, to satisfy the infinity condition and thus to describe the 
proper behaviour of the half-plane at z → ∞, the response of a particle m,n in subsystem II, 
i.e. any particle for which   in n , only has to account for waves travelling in positive 
z-direction.

Incorporating the contributions due to both wavenumbers ( )h
z , with 1..2h = , as well as 

the contributions of waves travelling in both positive and negative z-directions, the horizontal 
and vertical displacements of a particle m,n in subsystem I due to a load at a particle i 
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respectively become: 
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Accordingly, incorporating the contributions due to both wavenumbers ( )h
z , with 1..2h = , 

but only accounting for waves travelling in positive z-direction, the horizontal and vertical 
displacements of a particle m,n in subsystem II due to a load at a particle i are respectively 
described as: 

( ) ( )
( )3 1

2 2

2 2
i i,

, 3
12

h
xzh

xx II
h

u s A e e d


 




+

+ −

=−

 
=  

 


n mim,n (4.64) 

( ) ( ) ( )
( )3 1

2 2

2 2
i i,

, 3
12

h
xzh h

xz II
h

u s D A e e d


 




+

+ −

=−

 
=  

 


n mim,n (4.65) 

For the particular case that the loaded particle i is located at the surface of the half-plane, 
subsystem I does not exist and the horizontal and vertical displacements of any particle m,n 
in the half-plane are described exclusively by equations (4.64) and (4.65) respectively. 

The method to obtain the governing displacements for the half-plane of particles em-
ployed here, is somewhat different from the approach for the two-dimensional continuum in 
Section 3.5.3, where we employ Helmholtz’ decomposition. Alternatively however, the gov-
erning displacements for the two-dimensional continuum may also be obtained by analogy 
of the approach for the half-plane of particles presented here. 

Governing Laplace domain reaction forces in the half-plane of particles 
Equivalent to stresses existing at the interface between two continuous bodies, reaction forces 
exist at particles located at or along the interface between two discrete particle systems. 
Thereby, the reaction forces do not only depend on the location of the considered particle, 
but also on the shape and the orientation of the interface at the involved particle. As an ex-
ample of this, consider the reaction forces along two different orientations of a straight inter-
face depicted in Figure 4.14. For both situations, the reaction forces describe the interaction 
between two half-particles, even though the shape of the interface, and thereby the shape of 
the two sub-particles, is the same for both, the different orientations of the interface yield 
different expressions for the reaction forces. Additionally, the expressions for the reaction 
forces also depend on the shape of the interface; consider for example that the expressions 
for a particle along a straight interface will be different to those obtained for a particle at the 
corner of an interface, where two straight segments of that interface meet. While we are able 
to generally determine reaction forces at any particle in the half-plane of particles by arbi-
trarily assuming an interface for each of these particles, it is useful to here specifically 
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consider the reaction forces along the interface Γ between the cavity system Vcav and the 
discrete particle system V, of which the Green’s functions are required to construct the dy-
namic stiffness and compliance matrix according to equations (4.43) and (4.44). 

As an example of how to determine the reaction forces, consider a particle m,n located 
along the horizontal path of the interface Γ, depicted by Figure 4.14a. The particle m,n at the 
interface Γ consists of two half-particles: an upper half-particle that is part of the cavity sys-
tem Vcav, and a lower half-particle that belongs to the discrete particle system V. The reaction 
forces at either half-particle are then opposite to the horizontal and vertical forces that de-
scribe the interaction of the two half-particles. The horizontal and vertical reaction forces at 
a particle m,n, respectively denoted as ( )xR sm,n  and ( )zR sm,n , then follow directly from the 
corresponding equations of motion of either half-particle. 

Here, it is important to emphasize that the dynamic reciprocal work theorem according to 
equation (4.34) considers the displacements and reaction forces along the boundary Γ of the 
discrete particle system V, and not the reaction forces along the face Γcav of the cavity system 
Vcav. Although the displacements of the two half-particles that make up particle m,n must 
always be the same, and even the reaction forces at the two half-particles are the same if the 
particle is not loaded, the reaction forces at the two half-particles are not the same when there 
is a load is applied at the particle m,n. Therefore, the reaction forces must always be deter-
mined at the boundary Γ and thus from the equations of motion of the sub-particle in the 
discrete particle system V.  

The expressions for the horizontal and vertical reaction forces at the lower half-particle 
m,n along the horizontal part of the boundary Γ, depicted in Figure 4.14a, are equal in mag-
nitude but opposite in direction to the left-hand side of the equations of motion for the surface 
particle m,0, previously given by equations (4.48) and (4.49). Introducing the common di-
mensionless parameters and applying the Laplace transform with respect to time then yields 
the corresponding Laplace domain reaction forces. Subsequently substituting the expressions 
for the corresponding Laplace domain displacements, given by equations (4.62) to (4.65), we 
can express the reaction forces in terms of the wave amplitudes ( ),

1
hAi , ( ),

2
hAi  and ( ),

3
hAi .  

Generally, the final expressions for the reaction forces at a particle m,n depend on the 
shape of the interface Γ and on the location of particle m,n compared to the loaded particle 
i. For any particle m,n that is located in the interior of subsystem I, i.e. for  in n , all particles
within its cell may be regarded as degrees of freedom of subsystem I. Therefore, exclusively
substituting equations (4.62) and (4.63) into the equations of motion of either one of the
relevant sub-particles allows us to generally express the horizontal and vertical reaction
forces for such particles as:
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Here, the expressions for ( )
;1
h

x , ( )
;2
h

x , ( )
;1
h

z  and ( )
;2
h

z , with 1..2h = , follow from the substitu-
tion of the governing displacements into the expressions for the reaction forces that follow 
from the corresponding equations of motion and thereby depend on the cell configuration of 
the sub-particle for which the reaction forces are obtained. 

Accordingly, if the particle m,n is located in the interior of subsystem II, i.e. for  in n , 
all particles within its cell may be regarded as degrees of freedom of subsystem II. Substitu-
tion of equations (4.64) and (4.65) into the equations of motion of either one of the relevant 
sub-particles then generally yields the horizontal and vertical reaction forces as: 
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Here, the expressions for ( )
;3
h

x  and ( )
;3
h

z , with 1,2h = , follow from the shape of the consid-
ered cross-section, and thus on the cell configuration of the involved sub-particle. 

For the particular case that the particle m,n is located exactly at the interface of subsys-
tems I and II, so that = in n , and the interface Γ along which the reaction forces are to be 
obtained is not horizontal and therefore does not coincide with the interface between the 
subsystems, the cells of the involved sub-particles consist of degrees of freedom that belong 
to both subsystems I and II. As an example of this, consider the particle located at the inclined 
part of the interface Γ depicted in Figure 4.14b for the case that = in n . The reaction forces 
for this particle are then obtained by substituting equations (4.62) and (4.63) into the equation 
of motion of particle m,n for the degrees of freedom that belong to subsystem I, while sub-
stituting equations (4.64) to (4.65) for the degrees of freedom that belong to subsystem II. 

Figure 4.14: Reaction forces at a particle m,n located at the interface between the cavity system Vcav and  
the discrete particle system V: a) horizontal interface b) inclined interface.
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This yields the general expressions for the corresponding horizontal and vertical reaction 
forces as: 
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( )

( ) ( )
( )3 3 1

2 2 2

2 2 2
i i i, , ,

;1 1 ;3 3 ;2 2
1 12

h h
xz zh h h h h h

xx,I II x x x
h h

R s A A e A e e d


  



   
+

+ − −



= =−

 
= + + 

 
 

n n mi i im,n  (4.70) 

( ) ( ) ( ) ( ) ( )( )
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h h
xz zh h h h h h

xz,I II z z z
h h

R s A A e A e e d


  



   
+

+ − −



= =−

 
= + + 

 
 

n n mi i im,n  (4.71) 

Here, note that for a particle m,n at the level of the loaded particle i, i.e. for = in n , which is 
thus located at the interface between subsystems I and II, and we consider the reaction forces 
along the horizontal segment of the interface Γ as depicted in Figure 4.14a, all degrees of 
freedom of the upper half-particle are part of subsystem I, while all degrees of freedom of 
the lower half-particle belong to subsystem II. Then, for a particle m,n which is not the loaded 
particle i, i.e. for  im m , the reaction forces according to equations (4.66) and (4.67), that 
are thus valid for the upper half-particle, are equal but opposite to the reaction forces accord-
ing to equations (4.68) and (4.69), which are then the valid reaction forces for the lower half-
particle. This however does not hold for the loaded particle itself, because in that case the 
applied load must also be accounted for. 

Here, note that the general expressions for the corresponding Green’s reaction forces are 
derived in Section 4.4.4, while the specific expressions for all particle configurations that 
exist along the interface Γ are derived in Appendix F. 

4.4.2 Boundary conditions for the half-plane of particles 
The expressions for the wave amplitudes ( ),

1
hAi , ( ),

2
hAi  and ( ),

3
hAi  that correspond to the wave-

numbers ( )h
z  for 1,2h = , follow from the boundary conditions for the half-plane of particles 

with a load applied at a particle i in the interior of the half-plane of particles. 
At the surface of the half-plane of particles there cannot exist any forces, unless there is 

a load applied to that surface. Thus, when we consider a single load applied at a particle 
inside the half-plane, the surface of the half-plane is free of reaction forces and the corre-
sponding boundary conditions in the Laplace domain read: 

( ) ( ) 0x,I z,IR s R s= =m,0 m,0  (4.72) 

Here, the expressions for the horizontal and vertical reaction forces are respectively found in 
accordance with equations (4.66) and (4.67), and coincide with the horizontal and vertical 
equations of motion for a surface particle.  

The four remaining boundary conditions are found at the interface between the two sub-
systems, i.e. at the horizontal level of the loaded particle i. To describe these boundary con-
ditions, we split all particles with the vertical nodal coordinate = in n  into two equal-sized 
half-particles, in accordance with Figure 4.14. Evidently, the displacements of the upper half-
particle, which is part of subsystem I, and the lower half-particle, belonging to subsystem II, 
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must be the same, thus providing us with the following boundary conditions: 

( ) ( ) 0x,II x,Iu s u s− =i im,n m,n  (4.73) 

( ) ( ), , 0z II z Iu s u s− =i im,n m,n  (4.74) 

Finally, accounting for the point load Pi  at particle i, the equilibrium of forces between the 
upper and lower half-particles with vertical nodal coordinate = in n  along the interface of 
subsystems I and II, yields the following boundary conditions: 

( ) ( ), , xx II x IR s R s P− =i i
i

m,n m,n
m m (4.75) 

( ) ( ), , zz II z IR s R s P− =i i
i

m,n m,n
m m (4.76) 

Here, Px and Pz are respectively the horizontal and vertical components of the point load 
applied at particle i, and  im m  denotes the Kronecker Delta. 

Substituting equations (4.66) to (4.69) for the reaction forces in equations (4.72), (4.75) 
and (4.76), as well as substituting equations (4.62) to (4.65) for the displacements into equa-
tions (4.73) and (4.74) yields the system of six algebraic equations that is solved to obtain 
the unknown wave amplitudes ( ),

1
hAi , ( ),

2
hAi and ( ),

3
hAi for 1..2h = . The expressions for the 

boundary conditions (4.72) to (4.76) in terms of the unknowns ( ),
1

hAi  to ( ),
3

hAi are derived in
Appendix G.1. 

For the particular case that particle i is located at the surface of the half-plane of particles, 
the half-plane exclusively consists of subsystem II, yielding a system of only two algebraic 
equations, that respectively follow from the horizontal and vertical equilibrium of forces at 
the half-plane surface particles. The corresponding boundary conditions in terms of the un-
knowns ( ),

3
hAi  for 1..2h =  are derived and given in Appendix G.2. 

4.4.3 Green’s displacements in the half-plane of particles 
The relation between the displacements of a particle j along the interface Γ due to a two-
dimensional load Pi  at particle i and the corresponding Green’s displacements, previously 
given by equation (4.35), may be expressed in full matrix notation as:  

( )

( )

( ) ( )

( ) ( )

, , ,
, ,,

, , ,
, ,,

u xx u xz xP x

u zx u zz zP z

u s g s g s P
u s g s g s P
     

=     
    

j i j i j i i

j i j i j i i
(4.77) 

Here, for example ( ),
,u xzg sj i denotes the horizontal Green’s displacement of particle j along

the interface Γ due to a vertical load applied at particle i along the interface Γ. The other 
Green’s displacements are defined accordingly. Note here that the considered particles are 
denoted as particles i and j along the interface Γ rather than as a particle m,n inside the half-
plane of particles, because the indices i and j together determine the position of the corre-
sponding Green’s displacements in the global Green’s displacement matrix ( )ug s .  



165 

Within a discrete particle system, such as the half-plane of particles, a Green’s displace-
ment can be straightforwardly defined as the displacement due to a unit point load. For ex-
ample, if we choose 1xP =i and 0zP =i  in equation (4.77), the Green’s displacements 

( ),
,u xxg sj i  and ( ),

,u zxg sj i  are equal to the displacements ( ),
,P xu sj i  and ( ),

,P zu sj i . This coincides 
with the Laplace domain displacements, previously given by equations (4.62) to (4.65), that 
are obtained by solving the corresponding system of boundary conditions for the case that 

1xP = and 0zP = . Accordingly, if we choose 0xP =i  and 1zP =i , the Green’s displacements 
( ),

,u xzg sj i and ( ),
,u zzg sj i  are equal to the displacements ( ),

,P xu sj i  and ( ),
,P zu sj i , which coincides 

with the Laplace domain displacements that are obtained by solving the corresponding sys-
tem of boundary conditions for 0xP = and 1zP = . 

Let us denote the wave amplitudes resulting from solving the system of boundary condi-
tions for a horizontally applied unit load, i.e. for 1xP =  and 0zP = , as ( ),

;1
h

xAi  to ( ),
;3

h
xAi , and 

accordingly, let us denote the wave amplitudes resulting from solving the system of boundary 
conditions for a vertical unit load, i.e. for 0xP =i  and 1zP =i , as ( ),

;1
h

zAi  to ( ),
;3

h
zAi . The Green’s 

displacements for a particle j in subsystem I, due to unit loads applied at a particle i, are then 
respectively found as: 

( ) ( )
( )

( )
( )3 3 1

2 2 2

2 2 2
i i i, ,,

;1 ;2
1 12

h h
xz zh h

xu,xx,I x x
h h

g s A e A e e d


  




+

+ − −

= =−

 
= + 

 
 

j j jn n mi ij i  (4.78) 

( ) ( ) ( )
( )

( ) ( )
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2 2 2

2 2 2
i i i, ,,

;1 ;2
1 12

h h
xz zh h h h
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h h
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  


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 
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j j jn n mi ij i (4.79) 

( ) ( )
( )

( )
( )3 3 1

2 2 2

2 2 2
i i i, ,,

;1 ;2
1 12

h h
xz zh h

xu,xz,I z z
h h

g s A e A e e d

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
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( ) ( ) ( )
( )

( ) ( )
( )3 3 1

2 2 2

2 2 2
i i i, ,,

;1 ;2
1 12

h h
xz zh h h h

xu,zz,I z z
h h

g s D A e D A e e d


  




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 
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j j jn n mi ij i (4.81) 

Here, mj and nj are respectively the horizontal and vertical nodal coordinates of particle j 
along the interface Γ. 

Furthermore, the Green’s displacements for a particle j located in subsystem II, due to 
respectively a horizontal and vertical unit load applied at a particle i, respectively become: 

( ) ( )
( )3 1

2 2

2 2
i i,,

;3
12

h
xzh

xu,xx,II x
h

g s A e e d


 




+
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=−

 
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 
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j jn mij i (4.82) 

( ) ( ) ( )
( )3 1

2 2

2 2
i i,,
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12

h
xzh h

xu,zx,II x
h

g s D A e e d


 




+
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 
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 
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j jn mij i (4.83) 

( ) ( )
( )3 1

2 2

2 2
i i,,

;3
12

h
xzh

xu,xz,II z
h

g s A e e d


 




+

+ −

=−

 
=  

 


j jn mij i (4.84) 

( ) ( ) ( )
( )3 1

2 2

2 2
i i,,

;3
12

h
xzh h

xu,zz,II z
h

g s D A e e d


 




+

+ −

=−

 
=  

 


j jn mij i (4.85) 
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For the particular case that particle i is located at the surface of the half-plane of particles, 
the Green’s displacements for a particle j are exclusively described by equations (4.82) to 
(4.85). 

4.4.4 Green’s reaction forces in the half-plane of particles 
The reaction forces at a particle j along the boundary Γ of the far-field system V due to a 
two-dimensional point load Pi  applied at a particle i were previously expressed in terms of 
the corresponding Green’s reaction forces by equation (4.36). In full matrix notation, this 
relation reads: 

( )

( )

( ) ( )

( ) ( )

, ,,
, ,,
, ,,
, ,,

xR xx R xzP x

zR zx R zzP z

g s g sR s P
g s g sR s P

     
=     

   

j i j ij i i

j i j ij i i
(4.86) 

Here, the location of the particles i and j along the boundary Γ determine the position of the 
corresponding Green’s reaction force in the global Green’s reaction force matrix ( )Rg s . 

In accordance with the Green’s displacements, and as testified by equation (4.86), the 
Green’s reaction forces can be described in the form of equations (4.66) to (4.71), and are 
due to either a horizontal or a vertical unit point load. Thus, the Green’s reaction forces 

( ),
,R xxg sj i  and ( ),

,R zxg sj i  are the Laplace domain reaction forces at particle j along the boundary 
Γ obtained by solving the corresponding system of boundary conditions for 1xP = and 

0zP = . Furthermore, the Green’s reaction forces ( ),
,R xzg sj i and ( ),

,R zzg sj i  are the Laplace do-
main reaction forces at particle j along the boundary Γ that follow from the system of bound-
ary conditions for the case that 0xP =i  and 1zP =i . 

Noting that the wave amplitudes due to respectively a horizontal and a vertical unit load 
at a particle i along the interface Γ are respectively described as ( ),

;
h

x rAi  and ( ),
;

h
z rAi  for 1..3r =

, depending on whether particle j exists in subsystem I or II, the Green’s reaction forces at a 
particle j along the interface Γ, with nodal coordinates mj,nj, may generally be expressed as: 

( ) ( ) ( )
( )

( ) ( )
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2 2 2
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j j jn n mi ij i (4.90) 

Here, the expressions for ( )
;
h

x r  and ( )
;
h

z r , with 1..3r =  and 1..2h = , depend on the shape of 
boundary Γ of the far-field system V and on the location of the particle j at which the Green’s 
reaction forces are considered compared to the location of the loaded particle i. Here, 
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furthermore note that the summation over r in equations (4.87) to (4.90) is only applied for 
1r = and 3r =  because they have the same exponents with respect to ( )h

z . 
As depicted by Figure 4.15, seven different cell configurations exist along the boundary 

Γ of the discrete particle system V. The resulting expressions for ( )
;
h

x r  and ( )
;
h

z r  are derived 
for the seven cell configurations along the interface Γ in respectively Appendices G.3 to G.9. 

4.5 An equivalent 1D-response of the half-plane of particles 
To verify that the expressions for the displacements and reaction forces of the viscoelastic 
half-plane of particles are obtained and implemented correctly, we here consider the response 
of the half-plane of particles to an infinite uniform line-load at its surface and compare it to 
the response of the semi-infinite viscoelastic cascade. This comparison is valid, because the 
application of an infinitely-long uniformly-distributed vertical load yields an exclusive ver-
tical response. Ergo, there will be no horizontal response, while the vertical response of the 
half-plane is the same at any point along the horizontal. That is, if the material properties of 
the one- and two-dimensional models are properly matched.  

In the following, we first obtain the governing equations for the half-plane of particles 
subjected to an infinitely-long uniformly-distributed load in terms of its Green’s functions in 
Section 4.5.1 and subsequently, in Section 4.5.2, we discuss the matching parameters for the 
equivalent one- and two-dimensional models. Before comparing the responses of the equiv-
alent one- and two-dimensional models in Section 4.5.5, we will shortly discuss how the 
Green’s displacements and the Green’s reaction forces in the semi-infinite viscoelastic cas-
cade follow from the dynamic stiffness relation at its surface in respectively Sections 4.5.3 
and 4.5.4. 

4.5.1 Governing equations for an infinitely-long uniform load 
A two-dimensional solid medium behaves as a one-dimensional solid medium if any occur-
ring waves exclusively propagate in either one of the principal directions and its amplitude 
is uniform. This means that in one principal direction, the wavenumber is equal to zero, while 
it is nonzero in the other principal direction. In this case, we aim to compare the response of 
the half-plane of particles to that of the one-dimensional cascade for a case where both par-
ticle systems have the same response. As the one-dimensional cascade can only transmit 

Figure 4.15: The seven different cell configurations for the sub-particles along the boundary Γ. 
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waves in the longitudinal direction, this means that for the half-plane of particles we must 
exclusively consider the propagation of compressional waves. Choosing the longitudinal di-
rection for the cascade to coincide with the z-direction in the two-dimensional model, the 
half-plane of particles will behave in accordance with the one-dimensional cascade when it 
is subjected to a distributed vertical load that is uniform along its surface. Figure 4.16a and 
Figure 4.16b respectively show an infinitely-long uniformly-distributed vertical line-load ap-
plied to a semi-infinite two-dimensional body V and the corresponding load case for the half-
plane of particles, which consists of vertical point loads applied at every single particle at the 
half-plane surface.  

For both load cases depicted in Figure 4.16, there will be no wave propagation in x-direc-
tion and the horizontal wavenumber in both systems must be equal to zero. The fact that a 
zero horizontal wavenumber coincides with the application of the same load at every single 
surface particle also follows from the integral identity for the Kronecker Delta, given by 
equation (4.52), which shows that for 0x =  the Kronecker delta will always be equal to 
one, independent of the value of the particle coordinate m. Note here that the direction of 
wave propagation is independent of the direction of the uniform load; for example applying 
a uniform dynamic horizontal load at all surface particles yields a shear wave that propagates 
in z-direction, so that even though all particles will move horizontally, there will be no wave 
propagation in x-direction. 

The one-dimensional response of the viscoelastic half-plane of particles to a uniform load 
at its surface and the similarity of its behaviour to that of the viscoelastic cascade also be-
comes evident from considering its dispersion relation. Appendix H.1 regards the dispersion 
in the half-plane of particles and shows that if we substitute 0x =  into the expression for 
the vertical wavenumber, previously given by equation (4.57), we find the following disper-
sion relations for the one-dimensional vertical response of the half-plane of particles: 

2 2
,1 ,23 3 3cos 1 , cos 1 .
2 1 2 2 1 2

z zs s
s s

 

 
= + = +

+ +
(4.91) 

Here, note that the first relation in equation (4.91) describes the dispersion in the half-plane 
of particles related to the propagation of shear waves in z-direction, while the second relation 

Figure 4.16: a) An infinitely-long uniformly-distributed vertical load on a semi-infinite two-dimensional body V;  
b) Corresponding uniform vertical load on the half-plane of particles.
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in equation (4.91) describes the dispersion in the half-plane of particles related to the propa-
gation of compressional waves in z-direction. The wave types for these dispersion relations 
can be established by considering that an infinitely-long uniformly-distributed vertical load 
at the surface of the half-plane of particles yields the propagation of a horizontally uniform 
compressional wave in z-direction, so that shear waves do not occur. Then, noting that the 
rheological elements incorporated in the viscoelastic cascade exclusively allow for the prop-
agation of compressional waves in the longitudinal direction, it follows that, when the half-
plane of particles is subjected to a uniformly-distributed vertical load at its surface, its dis-
persive properties must match those of the one-dimensional cascade. Finally, given that the 
vertical particle spacing in the half-plane is equal to 1

2 3 , while the particle spacing in the 
cascade is equal to , it follows that the dispersion relation for the compressional waves in 
the half-plane, given by the second relation in equation (4.91), matches the dispersion relation 
for the viscoelastic cascade given by equation (4.14), so that the second dispersion relation 
in equation (4.91) must be related to the propagation of compressional waves. In the follow-
ing, we will elaborate on the response of the half-plane of particles subjected to a uniform 
vertical load at its surface. 

The expression for the vertical displacement of any particle in the half-plane due to a load 
applied at its surface only has to account for waves travelling in positive z-direction. Ac-
counting for the proper behaviour of the half-plane at z → ∞, the vertical displacement of 
any particle m,n in the half-plane of particles due to a vertical load applied at a surface par-
ticle i, with nodal coordinates mi,ni, may be obtained using equation (4.65). In the half-plane 
of particles subjected to a uniform vertical load at its surface, the particle m,n will not respond 
to a load at a single particle, but to the loads applied at all surface particles. The response of 
particle m,n to the uniform vertical load at the half-plane surface may therefore be obtained 
by summation of its responses due to the vertical loads applied at all surface particles sepa-
rately. This yields the general expression for the vertical Laplace domain displacement of 
any particle m,n in the half-plane of particles due to the uniform vertical load at its surface 
as: 

( ) ( ) ( )
( )3 1

2 2

2 2
i i,

12

h
xzh h

z z x
h

u s D A e e d


 




++

+ −

=− =−

 
=  

 
 

n mim,n

i
(4.92) 

Here, ( ), h
zAi  denotes the wave amplitude due to the vertical point load applied at the surface 

particle i with nodal coordinates mi,0. 
Since the application of a uniform vertical load at the surface of the half-plane of particles 

yields a uniform response of the half-plane in horizontal direction, each horizontal level of n 
will move in unison and all particles with nodal coordinate n will have the same vertical 
response. To describe the response of the half-plane of particles to the uniform surface load, 
we therefore only need to consider the displacements at a single location of every horizontal 
level n. Therefore, let us now consider the vertical displacements of the particles in the half-
plane that exist along the z-axis, i.e. any particles with nodal coordinates 0,n. If we denote 
the Laplace domain displacement of the particles at the z-axis due to a load applied at a 
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surface particle i as  ( ), ,
zu F si0 n m 0 , we can alternatively write equation (4.92) for any parti-

cle with nodal coordinates 0,n as: 

( )  ( ), , ,
z zu s u F s

+

=−

=  i0 n 0 n m 0

i
(4.93) 

Let us consider the particle displacements and applied vertical loads at the surface of the half-
plane of particles depicted in Figure 4.17. For the case that the depicted segment of the half-
plane of particles is homogeneous, the vertical response of the particle 0,n to the vertical load 
applied at particle mi,0 must at any time be exactly equal to the vertical response of particle 
mi,n to the vertical load applied at particle 0,0. That is, if, and only if, the vertical loads 
applied at particles 0,0 and mi,0 are equal, which is the case for the uniform vertical load 
applied at the surface of the half-plane of particles. Thus, we can denote this particular rela-
tionship as: 

 ( )  ( ), , , ,
z zu F s u F s=i i0 n m 0 m n 0 0  (4.94) 

Substituting this relation into equation (4.93), then yields the expression for the total vertical 
Laplace domain displacement of the particle 0,n due to the uniform vertical load as: 

( )  ( ), , ,
z zu s u F s

+

=−

=  i0 n m n 0 0

i
 (4.95) 

Equation (4.95) shows that the vertical response of the particle 0,n to the uniform vertical 
surface load, i.e. the same vertical load applied at all surface particles, may be obtained as 
the summation of the vertical responses of all particles at the horizontal level with nodal 
coordinate n to a single vertical point load applied at particle 0,0, where the magnitude of the 
point load at particle 0,0 must coincide with the magnitude of the uniform vertical surface 
load.  

Applying the above relations to the general expression for any particle m,n in the half-
plane of particles, previously given by equation (4.92), the vertical Laplace domain displace-
ment for any particle 0,n at the z-axis and thus for any horizontal level with nodal coordinate 
n reads: 
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(4.96) 

Note here that, although there will be no propagation of waves in horizontal direction in the 
half-plane of particles subjected to a uniform horizontal load, the response of the half-plane 
of particles to a single point load applied at the surface particle located at the z-axis will 
include horizontal wave propagation and the corresponding horizontal wavenumber κx is not 
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equal to zero. In other words, the separate horizontal response of any particle that is not lo-
cated exactly at the z-axis does have a horizontal displacement. In equation (4.96), the influ-
ence of this horizontal response is cancelled out, because the horizontal response to a single 
point load at the surface particle 0,0 is exactly symmetric with respect to the z-axis. Figure 
4.18 shows this symmetry of the horizontal and the vertical displacements in the half-plane 
of particles due to the single vertical point load applied at particle 0,0. Thus, as long as the 
response of all particles at the level of the nodal coordinate n are accounted for symmetrically 
with respect to the z-axis, i.e. considering an equal number of particles left and right of the z-
axis, the resulting response of the considered level of n will be exclusively vertical. This 
holds for both even and odd levels of the nodal coordinate n. Consequently, equation (4.96) 
correctly describes the uniform vertical response of the half-plane of particles for both even 
and odd levels of the nodal coordinate n.  

For numerical applications, using equation (4.96) is much more convenient than using 
equation (4.92). Namely, to obtain the equivalent one-dimensional response of the half-plane 
according to equation (4.92), we need to first obtain the response of the half-plane of particles 
to every surface load separately and then apply the summation, while applying equation 
(4.92) only requires us to consider the response of the half-plane of particles to a single point 
load and sum the displacements of the particles per horizontal level of the coordinate n.  

Evidently, for numerical implementation, it is not possible to take the displacements of 
an infinite number of particles into account. However, the contribution of the response of any 
particle to the total result of the summation declines rapidly as the distance with the loaded 
particle increases. Therefore, the number of particles that must be included per horizontal 
level of the nodal coordinate n must be chosen such that the contribution of additional parti-
cles is negligible. Practically, this can be done by introducing a certain threshold or simply 
by trial and error. 

Due to the symmetric response of the half-plane of particles subjected to a single point 
load at the particle 0,0 with respect to the z-axis, the vertical displacements of any two parti-
cles that are at an equal distance left and right of the z-axis are exactly the same. Introducing 
the number of particles that are considered on either side of the z-axis as imax, we obtain the 
uniform vertical Laplace domain displacement respectively for even and odd levels of the 

Figure 4.17: Vertical displacements in the half-plane of particles due to the applied vertical surface loads. 
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nodal coordinate n as: 
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For the even levels, mi is found from the particle numerator i as 2=im i , while for the odd 
levels of n, mi is found from the particle numerator i as 2 1= −im i . Additionally, for the 
even levels, the total number of particles considered for that level is equal to 2 1+maxi , while 
for the odd levels, the number of particles considered is equal to 2 maxi . 

For the reaction forces in the half-plane of particles subjected to a uniform vertical load, 
a relation can be derived that is similar to equation (4.95). The reaction forces for the equiv-
alent one-dimensional response of the half-plane of particles to a uniform load at its surface 
read: 
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As previously discussed for the reaction forces along the boundary Γ of the discrete particle 
system V, the expressions for ( )h

z  with 1..2h =  appearing in equations (4.99) and (4.100) 
depend on the shape of the interface at which the reaction forces are to be determined and on 
the location of the particle n, relative to the loaded particle i. For the equivalent one-dimen-
sional response of the half-plane of particles, the expressions for ( )h

z  with 1..2h =  are de-
rived in Appendix G.10.  

Figure 4.18: Symmetry of the horizontal and the vertical displacements in the half-plane of particles  
due to the single vertical point load applied at particle 0,0.
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4.5.2 Matching the parameters of the 1D and 2D discrete particle systems 
To obtain a response of the viscoelastic half-plane of particles to an infinite uniform line-
load at its surface that is identical to the response of the viscoelastic cascade to an equivalent 
point load, the two models must be equivalent and represent the same material. To make sure 
that the hexagonal viscoelastic half-plane of particles and the viscoelastic cascade corre-
spond, we first match their parameters by comparing their dimensional systems of equations 
of motion.  

The dimensional equations of motion for respectively the horizontal and vertical motion 
of a particle m,n in the homogeneous hexagonal half-plane of particles are given by equations 
(4.46) and (4.47). As previously explained, the response of the half-plane of particles to an 
infinitely-long uniformly-distributed vertical line-load is exclusively vertical and there will 
be no horizontal response. Consequently, the horizontal displacement of particle m,n is equal 
to zero and equation (4.46) that describes the horizontal motion of the particle m,n is irrele-
vant. Additionally do note however, that also the horizontal displacement of any particles 
adjacent to the particle m,n must be equal to zero, i.e. 0xu =m,n  for all values of m and n. 
Furthermore, the vertical response to the infinitely long uniform line-load is exactly the same 
for all particles that exist at the same horizontal level of the half-plane of particles, i.e. have 
the same discrete coordinate n. Regarding the equation of motion for the vertical response of 
the particle m,n, given by equation (4.47), it follows that z zu u=m-1,n-1 m+1,n-1  and that

z zu u=m-1,n+1 m+1,n+1 . Denoting the uniform vertical displacement of the particles at the horizon-
tal level with coordinate n as *

zun , accounting for the given displacement relations and in-
cluding the expression for the operator ˆ e e e tK K C 


= + , the equation of vertical motion of 

the particle m,n due to the infinite uniform distributed line-load becomes: 

( ) ( )* * * * * * *3 3
; ;2 22 2 02D z e 2D z z z e 2D z z zM u C u u u K u u u+ − − + − − =n n n -1 n +1 n n -1 n +1 (4.101) 

Here, M2D is the mass of a particle in the interior of the homogeneous half-plane of particles, 
while Ke;2D and Ce;2D are respectively the stiffness and damping coefficients of the Kelvin-
Voigt elements in the interior of the homogeneous half-plane of particles.  

The equation of motion for a particle at the surface of the homogeneous viscoelastic half-
plane of particles as it responds to the uniform surface load accordingly follows from equa-
tion (4.49) as: 

( ) ( ) ( )* * * * *3 31
; ;2 2 22D z e 2D z z e 2D z z 2DM u C u u K u u F t+ − + − =0 0 1 0 1 (4.102) 

Here, ( )2DF t  is the time-dependent load that is separately applied on all the surface particles 
of the homogeneous viscoelastic half-plane of particles as depicted in Figure 4.19. 

The dimensional equation of motion for a particle in the interior of the semi-infinite vis-
coelastic cascade was previously given by equation (4.1). The corresponding equation of 
motion for a particle at the surface of the viscoelastic cascade can be derived straightfor-
wardly. Denoting the particles in the viscoelastic cascade using the numerator n, the 
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equations of motion for a particle at the surface of the cascade and a particle in the interior 
of the cascade respectively read: 

( ) ( ) ( )1
; ;2 1D e 1D e 1D 1DM u C u u K u u F t+ − + − =0 0 1 0 1 (4.103) 

( ) ( ); ;2 2 01D e 1D e 1DM u C u u u K u u u+ − − + − − =n n n-1 n+1 n n-1 n+1 (4.104) 

Here, M1D, Ke;1D and Ce;1D are respectively the particle mass, the stiffness coefficient of the 
Kelvin-Voigt elements and the damping coefficient of the Kelvin-Voigt elements, all in the 
interior of the homogeneous cascade. Furthermore, ( )1DF t  is the time-dependent external 
load that is applied at the surface particle of the viscoelastic cascade as depicted in Figure 
4.19. 

Comparing equations (4.103) and (4.104) to respectively equations (4.102) and (4.101), 
it follows that the parameters of the viscoelastic cascade and the viscoelastic half-plane of 
particles match when the following relations hold: 

( ) ( )3 3
; ; ; ;2 2, , ,1D 2D e 1D e 2D e 1D e 2D 1D 2DM M C C K K F t F t= = = = (4.105) 

Equation (4.105) gives a comparison between the parameters of the viscoelastic cascade and 
the half-plane of particles for the case that the latter replicates the one-dimensional behaviour. 
Note here that, by satisfying the relations in equation (4.105), the particle natural frequency 
of the cascade and the half-plane of particles are also the same. Because the relations between 
the parameters of the cascade and half-plane of particles with the macromaterial properties 
are different, we must account for these relations to make sure that both particle systems 
represent the same material and thereby yield the same response. 

To make sure that the relations given by equation (4.105) correspond to matching macro-
material properties, let us start by comparing the spring stiffnesses and the masses in the two 
equivalent one-dimensional models. The spring stiffnesses and the masses in the homogene-
ous cascade and the homogeneous hexagonal particle system were previously expressed in 
terms of the macromaterial properties by respectively equations (3.9) and (3.122). For the 
geometrical properties of both the homogeneous cascade and the homogeneous hexagonal 
half-plane of particles, consider Figure 4.19. It is reasonable to assume that the cross-sec-
tional area A of the viscoelastic cascade represents a square and is expressed by its dimen-
sions in x- and y-direction as A dx dy=  . Furthermore, we assume that the dimensions of the 
cascade and the half-plane of particles in the y-direction are the same, i.e. 1D 2Ddy dy= . Sub-
stituting equations (3.9) and (3.122) into the relations for the stiffness and the mass in equa-
tion (4.105), as well as accounting for the given assumptions, it then follows that for the 
spring stiffnesses and the masses to match in the two models, the following relations must 
hold: 

4 33
; ;2 5e 1D e 2D 1DK K dx= → = (4.106) 
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23
21D 2D 1D 2DM M dx= → = (4.107) 

Here, 1D  and 2D  are the rheological element lengths in respectively the cascade and the 
half-plane of particles. Note here that while Figure 4.19 gives the spacing between the hori-
zontal levels with coordinate n for both the half-plane of particles and the cascade in terms 
to the element lengths, this does not necessarily mean that the spacing between these hori-
zontal levels is the same for both particle systems. In fact, from combining the relations given 
in equations (4.106) and (4.107), it follows that to match the parameters of the two systems 
according to equation (4.105), the lengths of the rheological elements in the cascade and the 
half-plane of particles must be related as: 

5
81D 2D= (4.108) 

Furthermore, combining equation (4.106) and (4.108), the dimension of the viscoelastic cas-
cade in x-direction may alternatively be expressed as 6

5 2Ddx = . 
Next, note that if equations (4.106) and (4.108) are satisfied, and thereby the spring stiff-

nesses in the two equivalent one-dimensional models are matched according to equation 
(4.105), also the damping in the two systems must be matched according to equation (4.105)
. This is because in both systems the stiffness and the damping are related through the damp-
ing coefficient ζe as e e eC K=  and the damping coefficient ζe is a macromaterial property 
that must be the same for both systems. Ergo, if the stiffnesses in the cascade and the half-
plane are properly related, so is the damping. 

Thus, if the relations given by equations (4.106) and (4.108) are satisfied, all relations in 
equation (4.105) are satisfied except for the relation for the applied loading. Clearly, if we 
employ the dimensional expressions for the equations of motion of both the viscoelastic cas-
cade and the viscoelastic half-plane of particles behaving in an equivalent one-dimensional 

Figure 4.19: Geometry and parameters of the half-plane of particles and the cascade. 
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manner, while satisfying the given relations, we will obtain the exact same response for both 
systems to the same load. For the normalized systems however, this is not the case. To illus-
trate this, let us consider the relations between the dimensionless forces and their dimensional 
counterparts, here denoted by the subscript dim, in respectively the one- and two-dimensional 
models. In Appendix B, these relations are obtained as: 

dim; dim;
dl; dl;

; ;
,

2 3
1D 2D

1D 2D
e 1D 1D e 2D 2D

F FF F
K K

= = (4.109) 

Substituting the stiffness relation according to equation (4.105) as well as the relation be-
tween the length of the rheological elements in the two systems according to equation (4.108)
, it follows that if the dimensional force relation according to equation (4.105) is satisfied, 
the relation between the applied dimensionless forces on the two particle systems reads: 

5
dl; dl; dl; dl;81D 1D 2D 2D 1D 2DF F F F= → = (4.110) 

Consequently, to obtain the same response of the cascade and of the hexagonal half-plane of 
particles behaving in an equivalent one-dimensional manner by employing the dimensionless 
equations of motion, the magnitude of the dimensionless load applied to the cascade must be 

5
8  times larger than the amplitude of the load applied to the half-plane. 
Instinctively, it would perhaps seem logical to try to match the dimension of the vertical 

spacing in the one-dimensional cascade and the half-plane of particles, i.e. choose 
3

21D 2D=  as depicted in Figure 4.19. However, this will never allow one to properly match 
the macromaterial properties of the two models, as it is impossible to match their equivalent 
systems of equations of motion for this relationship. This is due to the differences in the 
geometry of the one- and two-dimensional models. For a square configuration for the half-
plane of particles for example, the vertical geometry of a single column of particles in the 
half-plane is identical to that of the cascade. Thereby, comparing the cascade with a square 
configuration for the half-plane of particles emulating the one-dimensional behaviour, we 
would find that 1D 2D dx= =  and consequently 1D 2DF F=  both for the dimensional and the 
dimensionless consideration. 

4.5.3 Green’s displacements of the semi-infinite viscoelastic cascade 
The equations of motion for the semi-infinite viscoelastic cascade, with a time-dependent 
load applied at its tip, were previously obtained as equation (4.103) and (4.104). Rewriting 
these equations in their dimensionless form using the dimensionless parameters that are in-
troduced in Appendix B.3, as well as applying the Laplace integral transform with respect to 
time, the equations of motion for the semi-infinite viscoelastic cascade are obtained in the 
Laplace domain as: 

( )( ) ( )21 1
2 2 1 2s u s u u F s+ + − =0 0 1 (4.111) 
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( )( )2 1
2 1 2 2 0s u s u u u+ + − − =n n n-1 n+1 (4.112) 

The solution to equation (4.112) for the Laplace domain displacement of particle n in the 
interior of the semi-infinite cascade may generally be described as iu Ae −=n n . Here, κ is 
the dimensionless wavenumber of the propagating wave. The corresponding dispersion rela-
tion may be derived from equation (4.112), but was already given by equation (4.14). Note 
here that, to assure the proper wave decay and account for the proper behaviour of the visco-
elastic cascade at infinity, the square root in the expression for the wavenumber is chosen 
such that its imaginary part is negative. To find the dimensionless wave amplitude A, we 
substitute the assumed expression for the displacement un  into the force-displacement rela-
tion at the surface particle, given by equation (4.111), subsequently rearrange the resulting 
expression by using Euler’s formula and incorporate the aforementioned dispersion relations. 
This yields the Laplace domain displacement of a particle n in the interior of the semi-infinite 
cascade as: 
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Here, ( )ug sn  is the Green’s displacement that describes the relation between the displace-
ment of any particle n in the semi-infinite viscoelastic cascade and the loading applied at its 
tip. For the particular case that 0=n , equation (4.113) describes the force-displacement re-
lation at the tip of the cascade that defines its dynamic compliance in accordance with for 
example equation (4.32), which describes the dynamic compliance for a two-dimensional 
system. This is confirmed by comparing equation (4.113) to the dynamic compliance of the 
semi-infinite viscoelastic rod, previously given by equation (4.20). Thus, we may describe 
the Green’s displacements for any particle n in the semi-infinite viscoelastic cascade as: 
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Note here that equation (4.114) describes the Green’s displacements in the viscoelastic cas-
cade for the particular case of a load applied at the particle at its tip. 

The Green’s displacements of any particle n along the viscoelastic cascade may similarly 
be derived for a load applied inside the cascade. In accordance with the approach for the 
viscoelastic half-plane of particles, discussed in Section 4.4.1, let us denote this loaded par-
ticle inside the cascade as particle i, with nodal coordinate = in n . Then, we consider two 
separate domains of the cascade: one domain between the particle at the tip of the cascade 
and the loaded particle, where waves propagate in two directions, and the domain beyond the 
loaded particle where waves propagate towards infinity and thus away from the load. As 
before, these two domains are respectively denoted as subsystems I and II, the corresponding 
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displacements may respectively be expressed as: 

i i i, .I I I II IIu A e B e u A e  − + −= + =n n n n n (4.115) 

The wave amplitudes AI, BI and AII are then obtained from the boundary conditions for a load 
applied at a particle i inside the viscoelastic cascade. The first of these boundary conditions 
follows from considering the force equilibrium of the unloaded particle at the tip of the cas-
cade, while the other two boundary conditions follow from respectively the force equilibrium 
and the displacement relation at the interface between the two considered domains. This 
yields the following set of Laplace domain boundary conditions for the viscoelastic cascade 
with a time-dependent load applied at an interior particle i: 

( )( )21 1
2 2 1 2 0I I Is u s u u+ + − =0 0 1 (4.116) 

( )( ) ( )( ) ( )2 21 1 1 1
2 2 2 21 2 1 2I I I II II IIs u s u u s u s u u F s + + − + + + − =i i i i i in n n -1 n n n +1 (4.117) 

I IIu u=i in n (4.118) 

Substituting the displacements given by equation (4.115) into the above set of boundary con-
ditions and solving the resulting system for the wave amplitudes AI, BI and AII then yields the 
expressions for the displacements in the two domains of the cascade. Alternatively, solving 
the system for the case that ( ) 1F s =  yields the wave amplitudes AI, BI and AII that corre-
spond to the Green’s displacements in the viscoelastic cascade. By incorporating the disper-
sion relations, previously given by equation (4.14), the Green’s displacements of the particles 
in the viscoelastic cascade with a time-dependent load applied at an interior particle i, with 
nodal coordinate = in n , are obtained as: 

( ) ( ) ( )i
, cosu Ig s s e  −= in n n (4.119) 

( ) ( ) ( ) i
, cosu IIg s s e   −=n n

in (4.120) 

Equations (4.119) and (4.120) respectively describe the Green’s displacements in the two 
domains, or subsystems, of the viscoelastic cascade for the particular case that a load is ap-
plied at a particle inside the cascade. 

4.5.4 Green’s reaction forces in the semi-infinite viscoelastic cascade 
Although the so-called reaction forces, which are equivalent to tractions in a continuous me-
dium, are not of importance to derive the dynamic stiffness or dynamic compliance in the 
viscoelastic cascade, they are required to be able to construct the dynamic compliance matrix 
along an interface in the half-plane of particles. To verify that the expressions for the reaction 
forces of the viscoelastic half-plane of particles are obtained and implemented correctly, we 
here derive the Green’s reaction forces in the semi-infinite viscoelastic cascade with the aim 
to compare them with the Green’s reaction forces obtained for the equivalent one-
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dimensional response of the half-plane of particles. 
The reaction forces in the semi-infinite viscoelastic cascade are determined at its particles, 

but the reaction forces do not only depend on the location of the particle, but also on the 
orientation of the interface at which the reaction force is to be determined. Consider for ex-
ample the interface Γ between the near-field lattice and the half-plane of particles considered 
in Section 4.4.1; the reaction force at a particle along Γ depends on the orientation of the 
interface Γ at that particle and a different orientation means a different reaction force. For the 
comparison between the equivalent one-dimensional response of the half-plane of particles 
and the response of the viscoelastic cascade, we determine the reaction forces at the particles 
of both systems along the horizontal level of each particle n as depicted in Figure 4.19. Con-
sequently, for both the half-plane of particles and the cascade, the reaction force at a particle 
may be obtained as the force that results from the equation of motion of either the upper or 
the lower half of that particle. Do note here that the reaction forces of the upper- and lower 
half-particle only coincide if the considered particle is unloaded. Here, we use the equation 
of motion of the lower half-particle to determine the reaction forces, because for a surface 
particle in either discrete particle system, only the lower half of the particles exist. 

For any particle n in the viscoelastic cascade, the Laplace domain reaction force of that 
particle at a horizontal interface can straightforwardly be obtained, for example noting that 
the configuration of the considered half-particle equals the configuration of a surface particle. 
This yields: 

( ) ( )( )21 1
2 2 1 2R s s u s u u= + + −n n n n+1 (4.121) 

Denoting that the reaction forces are related to the Green’s reaction forces in accordance 
with, for example, equation (4.36), i.e. ( ) ( ) ( )RR s g s F s=n n , and substituting the corre-
sponding equation for the Green’s displacement, given by equation (4.113), we obtain an 
expression for the Green’s reaction forces at particle n of the cascade in terms of the Green’s 
displacements as: 

( ) ( ) ( ) ( ) ( )( )21 1
2 2 1 2R u u ug s s g s s g s g s= + + −n n n n+1 (4.122) 

As the expressions for the Green’s displacements depend on the location of the applied load, 
the same logically follows for the Green’s reaction forces. Substituting the Green’s displace-
ment according to equation (4.114) into equation (4.122) above and subsequently including 
the dispersion relations for the cascade according to equation (4.14) yields the Green’s reac-
tion forces in the semi-infinite viscoelastic cascade for a load applied at the tip of the cascade 
as: 

( ) ( ) ( ) i i
Rg s s s e e   − −= =n n n (4.123) 

The expression for the Green’s reaction forces in the cascade as described by equation (4.123) 
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is physically quite trivial, if we consider that the reaction force of the surface particle must 
be equal to the applied load, i.e. ( ) ( )R s F s=0 , and that the reaction forces in the viscoelastic 
cascade in terms of the applied load must then read ( ) ( ) iR s F s e −=n n . 

The expressions for the Green’s reaction forces in the cascade for the case that a load is 
applied at an interior particle i, with nodal coordinate = in n , are separately derived from 
equation (4.122) for the domain between the tip of the cascade and the loaded particle, de-
noted as domain I, and the domain beyond the loaded particle, denoted as domain II. Thus, 
substituting the Green’s displacements according to equations (4.119) and (4.120) into equa-
tion (4.122), as well as incorporating the dispersion relations, the Green’s reaction forces in 
the two domains of the semi-infinite viscoelastic cascade may respectively be obtained as: 

( ) ( )i
, i sinR Ig s e  −= − in n n (4.124) 

( ) ( ) i
, cosR IIg s e  −=n n

in (4.125) 

Equation (4.124) correctly shows that for a load applied inside the cascade, i.e. applied at ni, 
the reaction force at the surface of the cascade, i.e. at =n 0 , is equal to zero. Additionally, 
at a loaded particle in the interior of the cascade, the reaction forces of the two half-particles 
together must be equal to the applied load and the corresponding Green’s reaction forces 
together are equal to one, i.e. ( ) ( ), , 1R II R Ig s g s− =i in n . It can be straightforwardly shown that 
equations (4.124) and (4.125) satisfy this condition. 

4.5.5 Equivalent response of the half-plane of particles and the cascade 
To show that the equivalent one-dimensional response of the half-plane of particles matches 
the response of the cascade, we here consider the response of the two discrete particle systems 
to a single-sinus pulse load with a dimensionless angular frequency 0.5 = . If we choose 
the amplitude of the pulse load for the half-plane of particles as 1.0 MN2DF = , it follows 
from the considerations in Section 4.5.2 that, to get a dimensionless response in the cascade 
that has the same magnitude as the equivalent one-dimensional response in the half-plane of 
particles, the force applied to the cascade must be chosen as 5

8 0.791 MN1D 2DF F= = . 
The macromaterial properties are chosen in accordance with the general values given in 

Section 2.5, which means that the Young’s modulus is equal to 20 MPaE =  and that the 
mass density is equal to 32000 kg m = . Additionally, the damping ratio is chosen as 

0.2 =  and the third, or y-, dimension of both systems is chosen as 1 mdy = . Again, the
spacing of the half-plane of particles is chosen as 2 0.2 mD = . It then follows that for the 
cascade to match the macromaterial properties, the length of the rheological elements in the 
cascade must be chosen as 5

8 0.158 m1D 2D= =  and the x-dimension of the cascade must 
be chosen as 6

5 0.219 m2Ddx = = . 
Figure 4.20a and Figure 4.20b respectively show the real and imaginary parts of the 

Green’s displacement for the response of the loaded surface particle in the viscoelastic half-
plane of particles for several values of imax, which is the number of particles considered on 
either side of the z-axis to obtain the equivalent one-dimensional response at the surface of 
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Figure 4.21: Green’s displacements for the equivalent one-dimensional response of the half-plane of particles (continuous lines) 
 and for the viscoelastic cascade (dashed lines) for ni=0: a) loaded surface particle, n=0; b) interior particle, n=5.

Figure 4.22: Laplace domain displacements in the half-plane of particles (continuous lines) and in the cascade (dashed lines):  
a) for a loaded particle at the surface, ni=n=0; b) For a loaded particle in the interior, ni=n=4.

Figure 4.20: Green’s displacements for the equivalent one-dimensional response of the loaded surface particle  
in the viscoelastic half-plane of particles and in the viscoelastic cascade: a) real part; b) imaginary part.
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the half-plane of particles according to equation (4.97). The continuous blue line gives the 
Green’s displacement for the half-planes’ surface particle for 2=maxi  and the continuous 
green line gives the Green’s displacement for 5=maxi . As the dashed red line gives the re-
sponse of the loaded surface particle in the viscoelastic cascade, Figure 4.20 shows that both 
chosen values for imax are insufficient to properly construct the equivalent one-dimensional 
behaviour of the half-plane of particles. For increasing values of imax, both the real and im-
aginary parts of the Green’s displacement of the half-planes’ surface particle do converge to 
the Green’s displacement of the particle at the tip of the one-dimensional viscoelastic cas-
cade. At a value of imax equal to 20 or higher, for which the corresponding response of the 
half-plane surface particle in Figure 4.20 is given by the continuous yellow line, the equiva-
lent one-dimensional response of the half-plane of particles matches the behaviour of the 
viscoelastic cascade in the Laplace domain well. 
Figure 4.21 shows a comparison of the real part, the imaginary part and the absolute value of 
the Green’s displacements for two particles in the viscoelastic half-plane, behaving in an 
equivalent one-dimensional manner, and the viscoelastic cascade, as a function of frequency 
by substituting is =  . Here, the Green’s displacements of the particles in the half-plane are 
given by continuous lines, while the corresponding Green’s displacements of the viscoelastic 
cascade are given by dashed lines. Figure 4.21a gives the Green’s displacement of the surface 
particle in both systems, which is also the particle at which the load is applied. In accordance 
with equation (4.114), the Green’s displacement of the surface particle, i.e. the particle for 
which 0=n , matches the dynamic compliance of the viscoelastic cascade, previously de-
picted in Figure 4.3b. From comparing Figure 4.21a with Figure 4.3b, it is evident that the 
Green’s displacements of the surface particle in both systems indeed match the dynamic com-
pliance. Whereas Figure 4.21a shows the Green’s displacements for a surface particle and 
thus for an even level of the nodal coordinate n, Figure 4.21b shows the corresponding 
Green’s displacements for an interior particle, at an odd level of the nodal coordinate n, in 
this case 5=n , which for the half-plane of particles follows from equation (4.98).  
When the Green’s displacements of the two systems match and we apply the same load in 
both systems, evidently the Laplace domain displacements of both systems must also coin-
cide. This is confirmed by Figure 4.22a that shows the Laplace domain displacements of the 
loaded surface particle for both the viscoelastic half-plane of particles, given by the continu-
ous lines, and the viscoelastic cascade, given by the dashed lines. Additionally, Figure 4.22b 
shows the Laplace domain displacements of the loaded particle for the case that the loaded 
particle is located in the interior of respectively the half-plane of particles and the viscoelastic 
cascade, in this case 4=in .  

Then, applying the inverse Laplace transform to the obtained Laplace domain displace-
ments may be expected to yield corresponding time domain displacements for both the half-
plane of particles and the viscoelastic cascade. Figure 4.23a shows the time domain response 
of the two equivalent one- and two-dimensional models for a load applied at the surface of 
the half-plane, i.e. the tip of the cascade. Here, the continuous yellow and light blue lines 
give the time domain displacement in the half-plane of respectively the loaded surface parti-
cle, i.e. at 0= =in n , and of the interior particle at 5=n , both for 20=maxi . Furthermore, 
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the dashed yellow and light blue lines give the corresponding time domain displacements for 
10=maxi , while the dashed red and blue lines respectively give the corresponding displace-

ments for the viscoelastic cascade. Additionally, Figure 4.23b again shows the time domain 
response of the two equivalent one- and two-dimensional models, but now for a load applied 
at the horizontal level 4=in . Here, the continuous yellow and dashed red lines again give 
the time domain responses of the loaded particle in the half-plane and the cascade respec-
tively, while the continuous light blue line and dashed blue line now give the time domain 
responses of the particle located at the surface of the half-plane and at the tip of the cascade 
respectively. 

Although we previously found that in the Laplace domain, the equivalent one-dimen-
sional response of the half-plane of particles closely resembles the Laplace domain response 
of the viscoelastic cascade for 20=maxi , Figure 4.23 shows that in the time domain, the 
responses of the two systems correspond only for a limited duration. Figure 4.23a addition-
ally shows that the duration at which the equivalent one-dimensional response of the half-
plane of particles corresponds with the response of the viscoelastic cascade increases with 
the number of particles per horizontal level, i.e. imax, that are accounted for when determining 
the equivalent one-dimensional response of the half-plane of particles. From the displace-
ment response in Figure 4.23a for both 10=maxi  and 20=maxi  and in Figure 4.23b only for 

20=maxi , it appears that the particles in the half-plane of particles are at some point in time 
subjected to a secondary wave. The time at which this wave appears in the response depends 
on the value of imax and for both considered values of imax this wave arrives well after the 
incident wave due to the applied pulse load. The appearance of this secondary wave can be 
explained by considering the relation described by equation (4.94); this relation shows that 
the obtained equivalent one-dimensional response of the half-plane of particles can be alter-
natively considered as the response of the particles at the z-axis to the uniform vertical load-
ing over the horizontal domain 2 2= − +i max maxm i i . Both edges of the horizontal domain 
defined by the value of imax induce waves in the half-plane of particles that propagate in both 
the positive and negative direction of the x-axis. As the equivalent one-dimensional response 

Figure 4.23: a) Time domain displacements of two particles in the half-plane (for 2 values of imax) and in the cascade; 
b) Time domain displacements of the loaded and the surface particle in the half-plane and in the cascade.
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of the half-plane of particles is determined exactly at the z-axis, and both edges of the applied 
loading are located at the same distance of the z-axis, the waves induced at the two edges 
arrive at the z-axis simultaneously, thereby explaining why only a single secondary wave 
appears in the equivalent one-dimensional response of the half-plane of particles.  

Although the edges of the applied loading in the half-plane of particles will induce both 
shear and compressional waves, the resulting waves are mainly characterized as shear waves. 
Not accounting for the damping in the half-plane, the dimensionless time at which the shear 
waves, induced by the edges of the applied loading, arrive at the z-axis can straightforwardly 
be derived from the chosen properties of the half-plane as 8arrt = maxi . For 10=maxi  and 

20=maxi , the dimensionless arrival times are therefore respectively obtained as 28.3arrt =

and 56.6arrt = . These values match well with the dimensionless arrival times observed for 
these waves in the equivalent one-dimensional response of the half-plane that are depicted in 
Figure 4.23.  

The correspondence between the equivalent one-dimensional time domain response of 
the half-plane of particles with that of the cascade can be improved by simply increasing the 
value of imax. As the results presented here already show that the equivalent one-dimensional 
response of the half-plane of particles matches the response of the cascade well, this is not 
further investigated.  

Comparison of the Green’s reaction forces in the half-plane and the cascade 
Figure 4.24 gives the corresponding real part, imaginary part and absolute value of the 
Green’s reaction forces at two different particles as a function of frequency for the equivalent 
one-dimensional behaviour of the half-plane of particles and for the semi-infinite viscoelastic 
cascade by using is =  . The Green’s reaction forces depicted here, are due to a load applied 
at the horizontal level 4=in . Figure 4.24a thus gives the Green’s reaction forces at a particle 
located in subsystem I, i.e. in the domain between the loaded particle and its surface or tip, 
in this case for 1=n , while Figure 4.24b gives the Green’s reaction forces at a particle lo-
cated in subsystem II, i.e. in the domain beyond the loaded particle, in this case for 8=n . 
Here, the continuous lines give the equivalent one-dimensional Green’s reaction forces for 
the half-plane of particles, which are respectively obtained by means of equations (4.99) and 
(4.100) for 20=maxi . The expressions for ( )h

z  appearing in equations (4.99) and (4.100) are 
derived in Appendix G.10 for both subsystems. Furthermore, the dashed lines give the 
Green’s reaction forces that are obtained for the viscoelastic cascade. Here, the Green’s re-
action force ( )Rg s1 , i.e. for particle 1=n  in subsystem I of the cascade, follows from equa-
tion (4.124), while the Green’s reaction force ( )Rg s8 , i.e for 8=n  in subsystem II of the 
cascade, follows from equation (4.125). 

The Green’s reaction forces at the surface of the half-plane, or at the tip of the cascade, 
are deliberately not shown here because the reaction forces at both the unloaded surface of 
the half-plane and at the unloaded tip of the cascade must be equal to zero at all times. For 
the cascade, this follows directly from equation (4.124), while for the half-plane of particles 
with 20=maxi , the reaction forces obtained incorporate some small numerical errors that are 
negligible. Additionally, also the reaction forces at the interior loaded particle, i.e. at 
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= =in n 4 are not shown here because at the applied load, the resulting reaction forces of
the half-particles in the two subsystems must satisfy equations (4.75) and (4.76). It turns out 
that in this case, the magnitude of the reaction forces in the half-particles in respectively
subsystem I and II are both half the magnitude of the applied load, which only shows that the 
applied load is evenly divided over the two half-particles. 

As the Green’s reaction forces for the equivalent one-dimensional response of the half-
plane of particles match the corresponding Green’s reaction forces for the viscoelastic cas-
cade, there is not much value in further elaborating on the corresponding reaction forces in 
either the Laplace or the time domain. Do note however that the time domain reaction forces 
in the half-plane of particles will again show the occurrence of the shear wave due to the 
edges of the applied loading that was previously observed for the time domain displacements 
depicted in Figure 4.23.  

Figure 4.20 to Figure 4.24 verify that the approach to obtain an equivalent one-dimen-
sional response of the half-plane of particles is valid for the given relations between the prop-
erties of the one- and two-dimensional particle systems, and that the routines to obtain the 
Green’s displacements and the Green’s reaction forces in the half-plane of particles are im-
plemented correctly.  

4.6 The half-plane of particles versus the continuum 
In this section, we compare the dynamic behaviour of the half-plane of particles with that of 
the continuous layer by considering their dispersive properties and their directionality. Here, 
we consider a continuous layer, i.e. a two-dimensional continuum with a fixed bottom, and 
not a continuous half-plane, because the continuous half-plane is known to move as a whole 
under the application of a vertical load. The difference between the geometry of the discrete 
particle system and the continuum does not influence the comparison between the dispersive 
properties of their body waves, but wave reflections from the fixed bottom of the layer do 
cause the response of the layer to be different than that of the half-plane of particles. 

Figure 4.24: Green’s reaction forces in the half-plane of particles (continuous lines) and in the viscoelastic  
cascade (dashed lines) for ni=4: a) interior particle in domain I, n=1; b) interior particle in domain II, n=8.
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4.6.1 Wave dispersion in the half-plane of particles and in the continuum 
To compare the dispersive properties of the half-plane of particles and the continuum, let us 
first regard the dispersion in both media along the principal axes, i.e. in x- and z-directions. 
For any two-dimensional solid medium, the dispersion relation for a wave propagating in x-
direction may be obtained from its two-dimensional dispersion relation by substituting 

0z = . Similarly, the dispersion relation for a wave propagating in z-direction is obtained 
by substituting 0x = . The corresponding dispersion relations have been derived accord-
ingly for the half-plane of particles with a hexagonal configuration in Appendix H.1 and for 
the continuous layer in Appendix H.2.  

In the hexagonal half-plane of particles, the dispersion relations for the propagation of 
shear and compressional waves in z-direction respectively follow from equation (4.56) as: 

2 2
, ,3 3 3cos 1 , cos 1 .
2 1 2 2 1 2

z S z Ps s
s s

 

 
= + = +

+ +
(4.126) 

Note that these equations were previously given by equation (4.91) for the equivalent one-
dimensional response of the half-plane of particles for waves propagating in z-direction. 

The corresponding dispersion relations for the propagation of shear and compressional 
waves in x-direction are respectively obtained as: 

2 2
, , 1 9 48cos 1 , cos 1 .

2 1 2 2 8 8 81 1 2
x S x Ps s

s s
 

 
= + = −  +

+ +
 (4.127) 

As explained in Appendix H.1, the expression for the propagation of compressional waves 
in x-direction consists of two solutions that correspond to two different segments of the dis-
persion relation within the first Brillouin zone. Furthermore note that, even though the right-
hand sides of the second dispersion relation in equation (4.126) and the first dispersion rela-
tion in equation (4.127) are identical, they relate to the propagation of waves in different 
directions, and given the fact that their left-hand sides are different as well, they also relate 
to different wavenumbers. 

For the continuous layer, as shown by the derivation in Appendix H.2, the dispersion 
relations for the shear and compressional waves in the continuum are decoupled and are in-
dependent from the direction of wave propagation. The dispersion relations for the propaga-
tion of shear and compressional waves in the continuum are respectively obtained as: 

8 is 8is , .
1 2 1 23

S P
s s

 
 

=  = 
+ +

(4.128) 

Figure 4.25 shows the dispersion curves for wave propagation in x- and z-directions in both 
the hexagonal half-plane of particles (HPoP) and in the continuous layer (Cont). These 
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dispersion curves are obtained as frequency-wavenumber relations by substituting is = 

into equations (4.126) to (4.128). Here, the dispersion curves are given for the particular case 
that there is no damping present. By including damping, the dispersion relations become 
complex-valued, but essentially the dispersion characteristics do not change significantly by 
including damping and therefore, the corresponding complex-valued dispersion relations are 
not investigated here. While Figure 4.25a gives the dispersion curves for the propagation of 
shear waves in x- and z-direction, Figure 4.25b gives the dispersion curves for the propaga-
tion of compressional waves in x- and z-directions. Since the dispersion curves are symmetric 
in the wavenumber and frequency axes, the dispersion curves are given here for positive 
values of wavenumber and frequency only. 

Figure 4.25 shows that in the long-wave limit, and for waves propagating in both x- and 
z-directions, the dispersive properties of the hexagonal half-plane of particles match those of
the continuum well. The correspondence between the two models can be considered to be
good on the wavenumber domain 1

20,x z  = =    , so that, within this domain, the phase 
velocities of the shear and compressional waves for both models match well in both direc-
tions. Figure 4.25 also clearly illustrates the differences in dispersive properties between the 
continuum and the hexagonal half-plane of particles for larger wavenumbers. For zero damp-
ing, the continuum has a linear dispersion relation, i.e. is non-dispersive, while the corre-
sponding dispersion relations for the hexagonal half-plane of particles are periodic for in-
creasing wavenumbers. This periodicity is due to the sinusoidal character of the dispersion 
relation. For waves propagating in x-direction, the periodic domain is found as 

 2 4 ,2 4x n n    = − + + , where n is an integer. Accordingly, for waves propagating in z-
direction, the periodic domain is found as 2 4 2 4

3 3 3 3
,z n n     = − + +

 
. The repeating 

zones in the dispersion relation correspond to the so-called Brillouin zones of the lattice 
[Brillouin, 1953] and are typical for the dynamic response of discrete particle systems.  

There are examples in literature stating that only the first Brillouin zone, corresponding 
to the given periodic domains for 0n = , should be considered, because the incorporation of 
higher Brillouin zones results in a non-unique relation between the frequency and the wave 
number [Suiker et al., 2001b]. This implies that within the zone of the dispersion curve that 
corresponds to a single Brillouin zone, the frequency-wavenumber relation is unique. As 

Figure 4.25: Frequency-wavenumber dispersion curves for the continuous layer and the half-plane of particles: 
a) shear waves; b) compressional waves. 
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shown by Figure 4.25, this statement holds for the dispersion curves that regard the propaga-
tion of shear waves in x- and z-directions and the propagation of compressional waves in z-
direction, but it does not hold for the propagation of compressional waves in x-direction. The 
dispersion curve for the horizontal propagation of the compressional wave in Figure 4.25a 
shows that within the domain of the first Brillouin zone, i.e. on the domain  0,2x = , two 
different values for the horizontal wavenumber correspond to one and the same frequency. 
At the frequency range 812

3 480.8165, 1.2290  =  
 

, the frequency-wavenumber dis-
persion relation is ambiguous. The fact that this frequency-wavenumber is ambiguous within 
the first Brillouin zone for the propagation of compressional waves in x-direction, but is 
unique for the propagation of compressional waves in z-direction, shows that the dispersion 
relations are distinctly dependent on the direction of wave propagation. We should therefore 
regard the Brillouin zones to fully characterize the frequency-wavenumber relation for the 
corresponding cells of the lattice, rather than regard the Brillouin-zones to describe a unique 
frequency-wavenumber relation. The reason that generally only the first Brillouin zone is 
considered is because the dispersive properties of the periodic discrete lattice are fully char-
acterized by its behaviour in a single, and thus in the first, Brillouin zone. 

Another consequence of the sinusoidal character of the dispersion relations in the half-
plane of particles is that the frequency range at which waves can propagate through the lattice 
is limited; while the continuum allows for wave propagation at all frequencies, the hexagonal 
half-plane of particles acts as a low-pass filter that transmits only relatively low frequencies. 
Here, the shear wave in x-direction has a frequency range , 0, 2x S   =

 
, while the shear 

wave in z-direction has a frequency range 2
, 30,z S   =

 
. Furthermore, the compressional 

wave in x-direction has a frequency range 81
, 480, 1.229x P   = 

 
 with a local minimum 

2
3 0.8165 =  . The compressional wave in z-direction has a frequency range 

, 0, 2z P   =
 

. At higher frequencies, i.e. at frequencies outside the given ranges for wave 
propagation, the frequency-wavenumber relation becomes complex-valued. At these fre-
quencies, so-called evanescent waves exist, which do not propagate. 

Directionality of wave propagation 
The above explanations and deliberations clearly identify that the dispersion within the hex-
agonal half-plane of particles is distinctly different when considering waves propagating in 
different directions. For the continuum on the other hand, the dispersion characteristics are 
independent from the direction of wave propagation. The fact that the dispersive characteris-
tics for the hexagonal half-plane are direction-dependent can be attributed to the fact that its 
geometry is distinctly different in, for example, x- and z-directions. The dependency of the 
dispersion characteristics on the direction of wave propagation is illustrated by Figure 4.26.  

Figure 4.26a shows the directionality of the shear waves in both the hexagonal half-plane 
and the continuous layer by including the dispersion curves in the wavenumber plane for 
several dimensionless frequencies. Accordingly, Figure 4.26b shows the directionality of the 
compressional waves in the hexagonal half-plane and the continuum. Here, note that the dis-
persion curves in the wavenumber plane are symmetric in both the horizontal and the vertical 
wavenumber axes, so that the first quadrant of the wavenumber plane includes the 
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information for wave propagation in all directions. Here, note that the dispersion curves in 
Figure 4.26 have been obtained by solving equation (4.57) for the wavenumbers ( )1

z  and 
( )2
z , and subsequently matching the resulting curves with the dispersion relations along the 

principal axes according to equations (4.126) and (4.127). 
Figure 4.26 shows that, for smaller frequencies and thus for large wavelengths, the dis-

persion in the hexagonal half-plane corresponds well with the dispersion in the continuous 
layer. Because of its isotropy, the dispersion curves for the continuum in the wavenumber 
plane are circular. For small frequencies, the dispersion curves for the hexagonal half-plane 
in the wavenumber plane are by approximation circular as well and therefore, the hexagonal 
half-plane by approximation behaves isotropically as well. For higher frequencies and thus 
for smaller wavelengths, the discrepancy between the hexagonal half-plane and the contin-
uum increases rapidly and the hexagonal half-plane is distinctly anisotropic. Note here that 
for the shear waves in the hexagonal half-plane, depicted by the red lines in Figure 4.26a, the 
orientations of the rheological elements correspond to the smallest magnitude of the wave-
number, while the largest magnitudes of the wavenumber are found in between any two rhe-
ological element orientations. For the compressional waves in the hexagonal half-plane how-
ever, depicted by the blue line in Figure 4.26b, the orientations of its rheological elements do 
correspond to the largest magnitudes of the wavenumber in the dispersion curves. The devi-
ation in the magnitude of the wavenumber appears to be most pronounced for shear waves. 

In addition to the anisotropy, it is also clear that for higher frequencies and smaller wave-
lengths, the wavenumbers in the hexagonal lattice are larger than those for the continuum. 
By increasing the frequency and by thus reducing the wavelength, the difference between the 
value of the wavenumbers in the two models increase, as we have already observed in Figure 
4.25. The differences in the directionality of the dispersion relations for the hexagonal half-
plane and the continuum for high frequencies is thereby not only due to the difference in 
geometry of the hexagonal half-plane in different directions, i.e. due to the anisotropic as-
pects, but also due to the differences in the material parameters of the two models. 

Figure 4.26: Directionality of wave propagation in the continuous layer and the half-plane of particles  
for several frequencies: a) shear waves; b) compressional waves.
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4.6.2 Direction-dependent polarization of body waves 
As opposed to the two-dimensional continuum, the shear and compressional waves in the 
discrete lattice are coupled and cannot be isolated in the dispersion relation (4.56). Thus, as 
the particles in the discrete lattice move in both x- and z-directions simultaneously, the motion 
in either direction may contribute to the propagation of both shear and compressional waves 
at the same time. As a result, the waves propagating in a given direction are not purely shear 
or compressional. Instead, they may be predominantly shear, predominantly compressional 
or even equally shear and compressional. In this section, we illustrate the differences in wave 
propagation properties for the discrete half-plane of particles and the continuous layer by 
considering the motion, at a certain particle in the lattice or at a certain point in the continuum, 
that is associated with the propagation of shear and compressional waves respectively, de-
pending on the direction of wave propagation in either medium. Moreover, this section shows 
that for certain specific directions of wave propagation and for some magnitudes of the wave-
number, the shear and compressional waves can be isolated, but only for a few specific cases. 

To determine the contributions of the shear and the compressional waves in any given 
direction of propagation, we consider the expression for ( )hD , previously given by equation 
(4.61), which describes the ratio between the vertical and horizontal amplitudes of the prop-
agating waves, respectively given by ( )hB  and ( )hA , where h corresponds to the propagation 
of either the shear or the compressional wave. Therefore, the value of ( )hD  describes the 
direction of the particle motion associated with respectively the shear and the compressional 
waves and thereby gives us information about the direction-dependent polarization of the 
body waves. Based on the equations derived in Section 4.4 however, we do not know to 
which type of wave each value for h corresponds.  

To determine ( )hD  for the shear and compressional waves respectively, first note that 
equation (4.61) expresses ( )hD  in terms of the Laplace parameter s, as well as in terms of the 
horizontal and vertical wavenumbers x  and z . To consider the direction-dependent polar-
ization of the wave propagation, we require the amplitude ratio ( )hD  in terms of the horizontal 
and vertical wavenumbers exclusively. Evidently, the Laplace parameter and the horizontal 
and vertical wavenumbers are related through the dispersion relation (4.56). Thus, solving 
the dispersion relation for the Laplace parameter s and substituting this solution into equation 
(4.61) allows us to express ( )hD  exclusively in terms of the horizontal and vertical wave-
numbers. Solving the dispersion relation (4.56) for s, principally yields four solutions for s. 
More conveniently however, we can solve the dispersion relation (4.56) for the common term 

( )21 1 2s s+ + . This yields: 
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(4.129) 

Substituting the above into equation (4.61), yields the amplitude ratio ( )hD , with 1..2h = , 
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exclusively in terms of the horizontal and vertical wavenumbers. As such, the resulting ex-
pressions for ( )hD  are independent of the damping ratio ζ, which shows that the damping 
does not influence the direction-dependent polarization of the shear and compressional 
waves. As an alternative, we can therefore also choose to solve the dispersion relation (4.56) 
for s for the case that the damping is zero, i.e. 0 = . This still yields four solutions for s, but 
since s remains in the dispersion relation as s2, we find two positive solutions for s, let’s say 
s1 and s2, and two negative solutions that are equal in magnitude to s1 and s2 respectively. 
Substituting these solutions for s into equation (4.61) for the case that 0 = , then again 
yields the two expressions for ( )hD  with 1..2h = . 

To consider the polarization of the shear and compressional waves in all directions, we 
choose to express ( )hD  in polar coordinates by introducing: 

cos , sin .x r z r     = = (4.130) 

Here, r  is the magnitude of the wavenumber and θ gives the direction of wave propagation, 
so that the case 0 =  corresponds to wave propagation in x-direction, ergo 0z = , and the 
case 2

 =  corresponds to wave propagation in z-direction, ergo 0x = . 
To determine which of the expressions for ( )hD  is specifically related to either the shear 

or the compressional waves, let us consider the zero damping solutions for s in the long-wave 
limit, i.e. for 0r → , obtained by solving the dispersion relation in terms of r and θ. Using 
a series expansion at 0r =  then yields the four solutions for the Laplace parameter s, as: 

( ) ( )1 21 3i , i .
8 8

r rs s =  =   (4.131) 

Since the phase speed of either wave corresponds to the Laplace parameter-wavenumber ra-
tio, it follows that ( ) ( )2 1 3c c= . Noting that the shear and compressional wave velocities in 
the two-dimensional continuum are known to be related as 3P Sc c= , and that this must 
also be the case for the lattice in the long wave limit, it follows that s(1) in equation (4.131) 
must be related to the shear wave, i.e. ( )1

Ss s= , and that s(2) in equation (4.131) is related to 
the compressional wave, i.e. ( )2

Ps s= . Since the positive and negative values for s(1) in equa-
tion (4.131) both yield the same expression for ( )hD , we find ( ) ( ) ( )( )1 1hD D s s= = as the 
relation for the shear wave. Accordingly, the positive and negative values for s(2) in equation 
(4.131) both yield the same expression for ( )hD  and thus, we find ( ) ( ) ( )( )2 2hD D s s= =  as 
the relation for the compressional wave. 

Figure 4.27 gives the resulting values for the amplitude ratios ( )1D  and ( )2D , and thereby 
shows the polarization of respectively the shear and compressional waves in the hexagonal 
half-plane, as a function of the angle θ, which describes the direction of wave propagation 
with respect to the x-axis. Here, Figure 4.27a gives the polarization in the long-wave limit, 
i.e. for 0r → , while Figure 4.27b shows the polarization for an arbitrary non-zero value of
the wavenumber magnitude, here 5r = . In both figures, the continuous red line gives the
value for ( )1D , related to the shear wave, while the continuous blue line gives the value for
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( )2D , related to the compressional wave. 
Note here that the resulting values for ( )hD  in the long-wave limit depicted in Figure 

4.27a are not obtained straightforwardly by substituting 0r = , as ( )1D  and ( )2D  are unde-
fined for 0r =  while both their numerators and denominators are equal to zero for this 
wavenumber. Additionally, applying l’Hôpital’s rule does not suffice, as the derivatives of 
both numerator and denominator with respect to the wavenumber r  are also equal to zero 
at 0r = . Instead, the results for the long-wave limit are obtained using a series expansion 
around 0r = . This yields ( )1D  and ( )2D  as a function of the direction of wave propagation 
in the long-wave limit as: 

( ) ( ) ( ) ( )1 2cos sin0 , 0 .
sin cos

r rD D 
 

 
→ = → = − (4.132) 

Note here that the results for the long-wave limit are easily verified by comparison with the 
results obtained from substituting a small but non-zero value for the wavenumber r  into the 
original expressions for ( )1D  and ( )2D . 

To interpret the results depicted in Figure 4.27, consider that ( )hD  describes the direction 
of the particle motion associated with the propagation of the shear and compressional waves 
for 1h =  and 2h =  respectively, as a ratio between the vertical and horizontal amplitudes. 
Consequently, the following typical values for ( )hD  are identified: 

( ) 0hD = : the wave amplitude in z-direction is equal to zero, while the wave amplitude 
in x-direction is non-zero. Therefore, the particle motion associated with the 
propagation of the corresponding wave is exclusively horizontal.  

( )hD =  : the wave amplitude in x-direction is equal to zero, while the wave amplitude 
in z-direction is not, so that the particle motion associated with the propaga-
tion of the corresponding wave is exclusively vertical. 

( ) 1hD =  : the horizontal and vertical wave amplitudes are equal in magnitude. The
value ( ) 1hD = + is given in Figure 4.27 by the dashed black line. 

Figure 4.27: Amplitude ratios of the shear and compressional waves depending on the direction of wave propagation 
in the hexagonal half-plane: a) in the long-wave limit, i.e. for ; b) for .
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The particle motions that correspond to these typical values for ( )hD  are depicted in Figure 
4.28. 

Accounting for the particle motion in the hexagonal half-plane as it depends on the value 
of ( )hD  according to Figure 4.28 and noting that the amplitude ratios in the long-wave limit, 
given by Figure 4.27a, match the amplitude ratios for the continuum, the results given by 
Figure 4.27a make perfect sense. As an example, let us first consider the wave propagation 
in x-direction, i.e. for 0 = . For the shear wave, we find ( )1D =  , which corresponds to 
a vertical particle motion that is thus normal to the direction of wave propagation. For the 
compressional wave, we find ( )2 0D =  corresponding to a horizontal particle motion, thus in 
the direction of wave propagation. Accordingly, for the wave propagation in z-direction, i.e. 
for 2

 = , we find ( )1 0D =  and ( )2D =  . Thus, for the shear wave propagating in z-direc-
tion the particle motion is horizontal, while for the compressional wave propagating in z-
direction the particle motion is vertical. These particle motions correspond to what is com-
monly expected for the propagation of shear and compressional waves in the continuum. 
Here, note that it can straightforwardly be derived from the expressions for the horizontal 
and vertical displacements of the continuum in the Laplace-wavenumber domain that the 
amplitude ratios for the continuum are independent from the wavenumber magnitude. Con-
sequently, the magnitude of the wavenumber has no influence on the direction-dependent 
polarization of the shear and compressional waves, so that Figure 4.27a is valid for the con-
tinuum for any magnitude of the wavenumber. Introducing the polar representation by sub-
stitution of equation (4.130) then shows that the expressions for ( )1D  and ( )2D  for the con-
tinuum coincide with those obtained for the hexagonal half-plane of particles in the long-
wave limit, as given by equation (4.132).  

As illustrated by Figure 4.27b, which shows the results for a wavenumber magnitude 
5r = , changing the wavenumber magnitude significantly changes the direction-dependent 

polarization of the shear and compressional waves. For example, if we again consider the 
wave propagation in x-direction, i.e. for 0 = , we now find that ( )1 0D =  and ( )2D =  ; 
this means that for 5r =  the shear wave propagating in x-direction is now associated with 
a horizontal particle motion, while the propagation of the compressional wave in x-direction 

Figure 4.28: Direction of the particle motion in the half-plane of particles depending on the amplitude ratio. 
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is now associated with a vertical particle motion. For the wave propagation in z-direction, i.e. 
for 2

 = , however, we still find that ( )1 0D =  and ( )2D =  , which corresponds to the 
results found for the long-wave limit, i.e. for 0r → . Clearly, the predominance of the shear 
and compressional waves in a certain direction depends on the magnitude of the wavenumber. 

The dependency of the shear and compressional wave amplitude ratios on the wave-
number magnitude is given in Figure 4.29, where Figure 4.29a and Figure 4.29b by approx-
imation consider the wave propagation in x- and z-direction respectively. Since ( )hD  is un-
defined at both 0 =  and 2

 = , Figure 4.29a gives ( )1D and ( )2D as a function of the wave-
number magnitude for 0.01 = , while Figure 4.29b gives the wavenumber dependence of 

( )1D and ( )2D for 2 0.01 = + . 
Figure 4.29a shows that for small magnitudes of the wavenumber, ( )1D  mostly has a large 

nonzero value, i.e. ( )1 0D  , which means that the propagation of the shear wave in x-di-
rection for these wavenumbers is predominantly associated with a vertical particle motion. 
At these wavenumbers, ( )2D  is found to be equal to zero, which means that the propagation 
of the compressional wave in x-direction for these wavenumbers is associated with a hori-
zontal particle motion only.  

At a wavenumber magnitude 4
3r = , which is exactly the wavenumber for which both 

the shear and the compressional wave propagating in x-direction correspond to the same fre-
quency, the directionality switches. Figure 4.29a thus shows that for the wavenumber domain 

84
3 3,r  = , which includes the value 5r = for which the amplitude ratios are given in 

Figure 4.27b, the value for ( )1D  is now equal to zero, while the value of ( )2D  is nonzero, its 
magnitude is mostly rather large and becomes infinite for 2r = . Consequently, for this 
wavenumber domain, the propagation of the shear wave in x-direction is associated with a 
horizontal particle motion only, while the propagation of the compressional wave in x-direc-
tion for these wavenumbers is also predominantly associated with a horizontal particle mo-
tion. For the wavenumber domain 8

3 , 2r  = , the directionality of the particle motion 
coincides with that of the wavenumber domain 4

30,r = , except that ( )1D  is negative on 
this domain. For increasing magnitudes of the wavenumber, the switching of the 
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directionality of the particle motion associated with the wave propagation of the shear and 
compressional waves in x-direction repeats itself every 4 . This is in accordance with the 
Brillouin zones for waves propagating in the lattice in x-direction. The peaks at 4r j = , 
with j an integer, are associated with a zero frequency in the dispersion relation, so that at 
these wavenumbers, the phase speed of waves propagating through the hexagonal half-plane 
in x-direction is equal to zero. 

For the propagation in z-direction, depicted in Figure 4.29b, it follows that for all wave-
numbers the shear waves are associated with horizontal particle motion only, while the com-
pressional waves are also predominantly associated with vertical particle motion. Only for 
wavenumbers 4

3r j =  with j an integer, the values for both ( )1D  and ( )2D  are undefined 
as these are the wavenumbers at which the phase speed of waves propagating in z-direction 
are equal to zero. For the wave propagation of shear and compressional waves in z-direction, 
the directionality of the particle motion repeats itself every 4

3
 , in accordance with the cor-

responding Brillouin zones for the lattice. 
The differences in wavenumber dependency for the propagation of shear and compres-

sional waves in respectively x- and z-direction as depicted in Figure 4.29, can be attributed 
to the different geometry of the hexagonal half-plane in x- and z-directions. For a square 
lattice geometry, which has the same geometry in x- and z-directions, the wavenumber de-
pendency for wave propagation in x- and z-directions are likely to be the same. Yet, choosing 
any other direction of wave propagation, will again change the wavenumber dependency, 
while only for the continuum, this dependency is direction independent. The fact that the 
wavenumber dependency for the propagation of shear and compressional waves is direction 
dependent, is thus a property of discrete particle systems. Additionally including different 
rheological elements, for example introducing shear elements, rather than only using axial 
elements, will also influence this behaviour. 

4.7 The two-dimensional fully discrete BKV system 
In this section, we discuss the two-dimensional fully discrete BKV system that is depicted in 
Figure 4.30 and is comprised of a hexagonal BKV lattice in the near field and a viscoelastic 
half-plane of particles in the far field. As before, there is an external time-dependent load 
applied at the particle with nodal coordinates 0,0 at the origin of the system. Each particle 
with nodal coordinates m,n inside the hexagonal BKV lattice has a mass Mm,n and the lattice 
has a distance . Principally, the parameters of the hexagonal BKV lattice in the near field 
may be varied such that it is described as an irregular lattice. For the hexagonal BKV lattice 
this means that only the average distance between adjacent particles initially equals , while 
for a regular lattice, such as depicted in Figure 4.30, the initial distance between any two 
adjacent particles always equals . For each BKV element between a particle m,n and an 
adjacent particle mj,nj, the Kelvin-Voigt element has a stiffness coefficient ;e jK m,n  and a damp-
ing coefficient ;e jCm,n , while the Bingham element has a damping coefficient ;f jCm,n and a crit-
ical friction force ;cr jF m,n . 

At its boundary the hexagonal BKV lattice is connected to a viscoelastic half-plane of 
particles. The location of the interface Γ between the lattice and the half-plane is chosen at 
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such a distance from the origin that nonlinearities due to the applied loading only occur in 
the vicinity of the load and never reach the interface. Here, the distance between the origin 
of the near-field lattice, i.e. the loaded particle, and any particle at the interface Γ is bridged 
by N rheological elements, where N equals the nodal coordinate of the horizontal segment of 
the interface. As a result, the number of particles in the hexagonal BKV lattice are found in 
terms of N as ( )1

2 3 2+ +N N and the number of rheological elements in the lattice is found as 
( )2 9 5+N N .  

To eliminate any unwanted wave reflections from the interface Γ between the lattice and 
the half-plane, the geometry of the cells in the interior of the half-plane matches the geometry 
of the cells in the interior of the BKV lattice and the material parameters of the half-plane are 
matched with the linear material parameters of the BKV lattice. The half-plane of particles 
is described as a regular lattice, so that the initial distance between any two adjacent particles 
in the half-plane is equal to the distance . Additionally, since nonlinearities do not have to 
be accounted for in the half-plane of particles, the interaction between its adjacent particles 
is described by Kelvin-Voigt elements with a constant stiffness coefficient Ke and a constant 
damping coefficient Ce. Furthermore, since nonlinearities do not reach the interface, the 
Bingham segments of the BKV elements that are connected to the interface are not activated 
and these elements behave as Kelvin-Voigt elements, and their stiffness and damping respec-
tively match the stiffness and damping of the Kelvin-Voigt elements in the far-field domain. 
Note here that as long as the material parameters of the hexagonal lattice and the discrete far-
field match, the material parameters of the two-dimensional fully discrete system do not nec-
essarily have to be related to macromaterial properties, such as density and Young’s modulus. 
Nevertheless, to enable a comparison between the fully discrete and the discrete-continuous 

Figure 4.30: The two-dimensional fully discrete BKV system consisting of a hexagonal  
BKV lattice and a viscoelastic half-plane of particles
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systems, the same macromaterial properties are adopted for both systems and the parameters 
of the fully discrete system may be derived in accordance with those derived for the discrete-
continuous system. 

In the following, we will first regard the interface Γ and the associated properties of the 
two-dimensional fully discrete system in further detail and discuss the corresponding differ-
ences with the two-dimensional discrete-continuous system. Then, in Section 4.7.2, the gov-
erning equations are given for the particles at the interface Γ in both the Laplace and the time 
domains that include the interaction with the half-plane of particles employing the boundary 
formulation presented in Section 4.3. The governing system of equations for the two-dimen-
sional fully discrete system is completed by including the governing equations for the parti-
cles in the interior and at the surface of the hexagonal BKV-lattice in Section 4.7.3. Subse-
quently, Section 4.7.4 regards the viscoelastic response of the two-dimensional fully discrete 
BKV system in comparison to the response of the full viscoelastic half-plane of particle. 
Finally, in Section 4.7.5, the nonlinear response of the two-dimensional fully discrete BKV 
system is presented and the performance of the viscoelastic half-plane of particles as a bound-
ary to the hexagonal BKV-lattice is discussed. 

4.7.1 Interface properties of the fully discrete system 
In Figure 4.30, the interface Γ between the near and the far field of the two-dimensional fully 
discrete system is given by a straight line between the corner points of the hexagonally shaped 
BKV lattice in the near field. The chosen shape of the interface may seem evident, but this 
shape is possible for the fully discrete system only because the reaction forces along the 
interface exist at the boundary particles as point loads. Thereby, the interaction between the 
BKV lattice and the half-plane of particles exclusively exists at the boundary particles. Nev-
ertheless, the chosen shape of the interface is not arbitrary as it directly determines the con-
figuration of the boundary cells. 

Note here that, in comparison, for the two-dimensional discrete-continuous system, pre-
viously depicted in Figure 3.22, choosing the interface Γ to be straight between the boundary 
particles is not a valid option. This is because in the discrete-continuous system, the reaction 
force at any of the lattice boundary particles must match the resultant of the tractions along 
the continuum boundary obtained by integrating the tractions over a representative domain 
of the interface Γ. To determine the corresponding Green’s functions of the continuum, and 
thereby the response of the continuum to its interaction with the near-field lattice, the shape 
of the interface Γ is required to be horizontal in the region of each boundary particle. Adjust-
ing the shape of the interface Γ accordingly results in the interface Γ for the discrete-contin-
uous system depicted in Figure 3.22. The fact that constructing an artificial shape of the in-
terface is not a necessity for the fully discrete system is a clear advantage over the discrete-
continuous system.  

Accounting for the shape of the interface Γ, Figure 4.31 depicts the area that the cells of 
each particle represent within the hexagonal BKV-lattice. Assuming this lattice to be regular 
and homogeneous, the depicted hexagon can be considered as the elementary unit of the lat-
tice, where the area of the unit hexagon straightforwardly follows from the distance . For 
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the particles in the interior of the particle half-plane, the area of the corresponding cells match 
the unit hexagon and their mass is denoted as the unit mass M. Based on the area that the 
cells of the other particles represent their relative or dimensionless masses can straightfor-
wardly be determined. The masses of the particles along the interface Γ thus vary depending 
on the location along the interface. For all cell types, the dimensionless particle mass is given 
in the table accompanying Figure 4.31. Here, note that only for the particles at the corners of 
the interface, respectively denoted as particles iv and v, the masses in the fully discrete system 
differ from those in the discrete-continuous system.  

In addition to the masses of the boundary particles, also the rheological elements at the 
interface Γ that are situated in between adjacent boundary particles, differ from those inside 
the half-plane. By choosing the interface Γ as a straight line between the boundary particles, 
the inner boundary cells effectively correspond to half an inner cell. As previously explained 
in Section 2.4.1 and corresponding to the surface elements, the rheological elements at the 
interface have half the stiffness and half the damping of the rheological elements in the inte-
rior of the lattice. 

Note here that, in line with the approach for the one-dimensional fully discrete system 
discussed in Section 4.1.1, the position and the shape of the interface Γ may be freely chosen 
as long as the fully discrete system is homogeneous in the vicinity of the interface. Changing 
the path of the interface Γ compared to the configuration depicted in Figure 4.31 however, 
changes the representative area of the corresponding cells and thereby changes the mass of 
the boundary particles. Nevertheless, the cumulative mass of an boundary particle and the 
corresponding sub-particle at the boundary of the half-plane must together always equal the 
unit mass M. Furthermore, changing the path or location of the interface also changes the 

Figure 4.31: Representative area of the cells and the corresponding mass of the particles in the hexagonal BKV lattice. 
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material parameters of some of the rheological elements in the cells of the boundary particles. 
This is again in correspondence with the one-dimensional fully discrete system discussed in 
Section 4.1.1. It is however emphasized here that choosing a different configuration for the 
interface does not only change the equations of motion of the boundary particles in the hex-
agonal BKV lattice, but it also changes the expressions for the Green’s reactions forces in 
the half-plane of particles that were previously derived in Section 4.4.4. In this thesis, the 
possible different configurations for the interface Γ are not further investigated and the con-
figuration of the interface according to Figure 4.31 is adopted. 

4.7.2 System of boundary integral equations 
While the force-displacement relations at the interface Γ, i.e. the dynamic stiffness and com-
pliance matrices, are derived in Section 4.3, this section presents the governing equations for 
the boundary particles that include the interaction with the viscoelastic half-plane of particles. 

In correspondence with the one-dimensional fully discrete system, we normalize the in-
terface equation by introducing the following dimensionless parameters for time, displace-
ment and mass: 

, ,
, ,dim dim

dim 0 , , .u Mt t u M
M

= = =
m n m n

m n m n

Here, the subscript ‘dim’ denotes the dimensional parameters and ω0 is the particle frequency 
of both the regular hexagonal BKV lattice and the half-plane of particles. Furthermore, the 
damping is normalized using the damping ratio e critC C = , where Ccrit is the critical parti-
cle damping. The particle frequency and critical particle damping are derived for the hexag-
onal lattice in Appendix B.4 and obtained as 0 3 eK M =  and as 2

03critC M=  respec-
tively. As explained in Appendix B.3, introducing these dimensionless parameters yields the 
following relations between respectively the dimensionless damping, stiffness and force, and 
their dimensional counterparts as: 

, , , , ,
; ,dim ; ,dim ; ,dim, , , dim dim

; ; 2 23
0 02

, , .
3 3

e j e j e j
e j e j

crit e e

C K K F FC K F
C K KM M 

= = = = =

m n m n m n m n m n
m n m n m n

Here, the numerator j refers to the BKV element between the particle m,n and an adjacent 
particle mj,nj. 

To account for the response of the viscoelastic half-plane of particles as the far-field do-
main for the hexagonal BKV lattice, the corresponding force-displacement relation at the 
interface Γ must be incorporated in the equations of motion for the boundary particles. Even 
though the properties of the far-field domain determine the dynamic stiffness relation at the 
boundary, the expression for the equations of motion of the boundary particles remains the 
same and is thereby identical to system of interface equations derived and presented for the 
two-dimensional discrete-continuous system in Section 3.6.2. Accordingly, the Laplace 
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domain system of equations for the boundary reads: 

( ) ( )( )2 0Int IntInt IntIntu s M s u C s K u+ + + = (4.133) 

Here, ( )s  is the dynamic compliance matrix according to equation (4.44) and IntM , IntC
and IntK  are respectively the mass, damping and stiffness matrices for the particles along the 
interface. Furthermore, the vector Intu contains only the Laplace domain displacements of
the boundary particles, while the vector u  also includes the Laplace domain displacements 
of all particles that are adjacent to the boundary particles. 

As derived in Section 3.6.2, successively applying the inverse Laplace transform to equa-
tion (4.133), differentiating the resulting time domain equation using Leibniz’ rule for differ-
entiation of integrals and applying the linearization for large elongations according to Ap-
pendix A.2, the governing system of interface equations for the two-dimensional fully dis-
crete system is expressed in the time domain as: 

( ) ( ) ( ) ( )
0

0 0
t

Int IntIntu F t t F d    + + − = (4.134) 

Here, ( )0  is the time domain dynamic compliance matrix at 0t =  and ( )t  is the time 
domain admittance matrix time, which may either be obtained as the time derivative of the 
time domain dynamic compliance matrix or by applying the inverse Laplace transform to the 
corresponding Laplace domain force-velocity relation. Furthermore, ( )IntF t  contains the 
forces that are applied by the boundary particles to the far-field domain and reads: 

( ) ,Int IntIntInt IntIntF t M u C u K u F = + + + (4.135) 

In correspondence with the expression for the time domain dynamic compliance obtained for 
the viscoelastic cascade in Section 4.1.3, all terms in the dynamic compliance matrix ( )t  
go to zero for 0t  . As a consequence, the accelerations of the boundary particles at the 
current time step are only present in equation (4.134) inside the convolution integral and their 
contribution thereby depends on the size of the time step used to evaluate the convolution 
integral. As explained in Section 4.2.3, the resulting boundary formulation is numerically 
unstable and therefore, we differentiate the boundary formulation a second time to obtain a 
nonzero acceleration term outside the convolution integral. Using Leibniz’ rule for differen-
tiation of integrals to apply this time differentiation to equation (4.134), yields the equation 
of motion for the boundary particles at the lattice boundary as: 

( ) ( ) ( ) ( )
0

0 0
t

Int IntIntu F t t F d    + + − = (4.136) 
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Here, ( )0  is the time domain admittance matrix at 0t =  and ( )t  is the time derivative 
of the time domain admittance matrix, or the second time derivative of the time domain dy-
namic compliance matrix. Due to applying the time differentiation a second time and noting 
that the diagonal terms of ( )0  are nonzero, the boundary integral equation (4.136) now 
includes, not one, but two acceleration terms that are independent of the convolution integral, 
and thereby equation (4.136) is numerically robust. Here, note that the manipulation of the 
boundary integral equation to properly isolate the contribution of the acceleration is required 
only because we described the Laplace domain interface relation, given by equation (4.133)
, in terms of the dynamic compliance matrix. After all, if we would have used the dynamic 
stiffness instead, the interaction force vector ( )IntF t , as well as the acceleration term it con-
tains, would not be in the convolution integral. Nevertheless, due to the increase of the dy-
namic stiffness with frequency, this is not an option. 

By applying the linearization for large elongations, the total elongation of the BKV ele-
ments in the lattice at a time t is described in terms of the particle displacements during the 
current time step dt, included in the displacement vector u , and the elongations of the in-
volved BKV elements at time t-dt. The forces in the springs of the involved BKV elements 
that follow from these elongations at time t-dt are given by the vector ,IntF  . Note here that 
even though the BKV elements in the boundary cells may be considered to behave viscoe-
lastically and therefore the elongations of these elements will be small compared to the elon-
gations closer to the load source, we include the linearization for large elongations in the 
system of interface equations to make sure that the governing system of equations for the 
two-dimensional fully discrete system is uniform throughout.  

Equation (4.136) gives the general system of equations of motion for the boundary parti-
cles of the hexagonal BKV lattice. Inserting the time domain dynamic compliance matrix for 
the viscoelastic half-plane of particles obtained by applying the inverse Laplace transform to 
the Laplace domain dynamic compliance matrix given by equation (4.44) completes the in-
terface relations for the two-dimensional fully discrete system. 

4.7.3 Equations of motion for interior and surface particles 
This section presents the governing equations of motion for the interior and surface particles 
of the hexagonal BKV lattice. Together with the governing equations of motion for the 
boundary particles derived in the previous section, these equations complete the governing 
system of equations of motion for the two-dimensional fully discrete system. 

The equations of motion for stick and slip presented in respectively Sections 2.4.3 and 
2.4.4 are derived for the particular case that the BKV elements of the considered inner cell 
are either all in stick, or all in slip. These equations of motion do not serve to properly de-
scribe the behaviour of the particles inside the hexagonal BKV lattice because the different 
BKV elements in a cell may simultaneously be in different motion states. Additionally, the 
motion states of all BKV elements in the lattice, that is if they are not part of a boundary cell, 
may change and vary individually depending on whether and when any of the state-transition 
thresholds, given in Section 2.4.6, are met. Consequently, for every state-transition that oc-
curs, the equations of motion for the hexagonal BKV lattice must be updated. In the 
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following, we present a full description of the governing system of equations of motion for 
the interior and surface particles of the hexagonal BKV lattice that accounts for any combi-
nation of motion states throughout the lattice at any given time. Next to accounting for stick 
and slip in the governing system of equations of motion, also the occurrence of lock, previ-
ously discussed in Section 2.4.5, is taken into account.  

Figure 4.32a and Figure 4.32b depict the cell configurations for a particle m,n respec-
tively in the interior and at the surface of the hexagonal BKV lattice. Note here that within 
each cell the BKV elements have two different orientations. The BKV elements with the 
Kelvin-Voigt element directly connected to the particle m,n are depicted in green, while the 
BKV elements with the Bingham element directly connected to the particle m,n are depicted 
in dark red. Accounting for the two different orientations, as well as accounting for the vari-
ation in motion states, the general governing equations of motion for any free particle, that 
thus either exists in the interior or at the surface of the hexagonal BKV lattice, read: 
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(4.138) 

Here, KVjm,n  and Bjm,n  denote the set of BKV elements in the cell that respectively have the 
Kelvin-Voigt element or the Bingham element directly connected to the particle m,n., while 

lockjm,n denotes the set of elements in the cell that are in lock-state. Furthermore, ;e jK m,n and 
;e jCm,n are respectively the stiffness and damping in the corresponding Kelvin-Voigt elements.

The elongation ;state jem,n , the elongation rate ;state jem,n  and the force ;state jF m,n  all follow from the 
motion state of the considered BKV element. Note here that for an element in stick or in slip, 

Figure 4.32: Cell configurations in the hexagonal BKV lattice : a) Inner cell; b) Surface cell. 
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and that is therefore not in lock, the force ;lock jF m,n does not have to be considered. 

Expressions for Stick 
If a BKV element between particles m,n and mj,nj is in stick-state, we find: 

; ; ; ; ; ;; , .state j j state j e j state j e j state jB je e F C e K e= − = +m,n m,n m,n m,n m,n m,n m,n m,n

Note here that the expression for ;state jem,n  is also incorporated in the expression for ;state jF m,n . 

Expressions for Slip 
If the BKV element between particles m,n and mj,nj is in slip-state, we find the elongation 
of the considered element and the force at the particle m,n as: 

; ; ;; ;; : ;, sgn .state j state j cr jKV j B jf j B slip je e F C e F F= = +m,n m,n m,n m,n m,n m,n m,n

For any BKV element that is in slip-state, the equation of motion for the slip-node interme-
diate particles m,n and mj,nj must be added to the system of equations of motion. The corre-
sponding equation of motion, previously given in its dimensional form by equation (2.38), 
reads: 

; ; ;; ; ;; : ;sgn 0e j e j cr jKV j KV j B jf j B slip jC e K e C e F F+ − − =m,n m,n m,n m,n m,n m,n m,n m,n  (4.139) 

Here, ;f jCm,n  and ;cr jF m,n are respectively the dimensionless damping and critical friction force
of the Bingham element. They are found in terms of their dimensional counterparts as: 

; ,dim ; ,dim
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C F
C F

C K
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Expressions for Lock 
If a BKV element between particles m,n and mj,nj is in lock-state, we find: 

( ); ; ; ; ; ;; 0;; ;, .state j j state j e j state j e j state j jB j jlock j lock je e F C e K e F K e D= − = + = + m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n

Here, the first two terms coincide with the expressions for stick, so that accordingly the ex-
pression for ;state jem,n  must be incorporated in the expression for ;state jF m,n . In the third term, ;lock jK m,n  
is the stiffness of the additional spring that is placed parallel to the BKV element to signifi-
cantly reduce the relative motion between the particles m,n and mj,nj. The stiffness of this 
additional spring is chosen to be a factor lock  larger than the stiffness of the spring in the 
BKV element, i.e. ;; lock e jlock jK K=m,n m,n . Instinctively, it would seem logical to choose a rather 
large value for this stiffness-factor to fully impede the relative motion between the two 
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particles involved. Choosing the value for lock  too large however, will lead to ill-conditioned 
matrices in the system of differential equations and is therefore not favourable, while choos-
ing a value 5lock =  is more than sufficient to significantly reduce the relative motion be-
tween the particles m,n and mj,nj, and to obtain the intended effect. Furthermore, 0; jD m,n  is 
the length reduction of the BKV element at which lock occurs. The value for 0; jD m,n  may be 
obtained as the difference between the initial distance 0; jDm,n  between the particles m,n and 
mj,nj and the threshold distance min; jDm,n  at which lock occurs in the considered element. 

Independent of the motion states and accounting for the linearization for large elongations 
according to Appendix A.2, the system of equations of motion for all free particles in the 
hexagonal lattice, being all particles not located at the lattice boundary, can be expressed in 
matrix format as: 

, ,free cr free extfreefree freefreeM u C u K u F F F+ + + + = (4.140) 

Here, freeM , freeC and freeK are respectively the mass, damping and stiffness matrices ex-
clusively for all free particles in the hexagonal lattice. Here, the matrix freeC contains the 
damping of both the Bingham and the Kelvin-Voigt elements in the lattice. Additionally, the 
vector , freeF   contains the contributions of the elongations j

m,n  of all BKV elements at time 
t-dt to the system of equations of motion, which follow from the applied linearization for
large elongations, while the vector ,cr freeF  contains all terms related to the critical friction 
force of the Bingham elements. Finally, the vector extF  contains any forces that are exter-
nally applied to the hexagonal lattice. 

Equations (4.136) and (4.140) together give the complete governing system of equations 
of motion for the two-dimensional fully discrete system. 

Figure 4.33: Mesh of the hexagonal lattice with dimension N equal to 8. 
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4.7.4 Linear response of the fully discrete BKV system 
This section presents and discusses the response of the fully discrete BKV system for the 
case that the occurrence of nonlinear phenomena is not allowed for in the near-field domain 
and its response is exclusively viscoelastic. Using a boundary formulation derived from a far-
field that is modelled as a viscoelastic half-plane of particles, the resulting system represents 
a homogeneous medium and its response is completely viscoelastic. To show that the equa-
tions of motion for the system are well formulated and the approach used is valid, the visco-
elastic response of the fully discrete BKV system is compared to the response of the viscoe-
lastic half-plane of particles, which should be expected to match exactly. 

The hexagonal BKV-lattice considered here has a dimension N equal to 8 and is depicted 
in Figure 4.33. This regular lattice consists of 117 particles and 308 Kelvin-Voigt elements 
as we here consider the viscoelastic response exclusively. The interparticle distance in the 
lattice is chosen as 0.2 m=  and the third dimension is arbitrarily chosen as 1 mdy = . 
Based on the macromaterial properties used throughout this thesis, the mass of the particles 
in the hexagonal lattice is found as 69.28 kgM =  and the stiffness of the springs in the lattice 
is found as 18.48 MN meK = . This yields the particle frequency of the hexagonal lattice as 

0 3 894,4 rad seK M = = and its critical damping as 2
03 41.31 kNs mcritC M= = . Fur-

thermore, the damping ratio is chosen as 0.2 = , so that the dashpots in the hexagonal lattice 
have a damping coefficient 8.26 kNs meC = . 

In this section, we consider the response of the viscoelastic discrete systems to a vertical 
single-sinus pulse load ( )zF t  applied at particle 0,0, located at the origin of the lattice. Figure 
4.34a gives the frequency dependency of the real part, the imaginary part and the absolute 
value of the single-sinus pulse load in the Laplace domain for an amplitude 0.1 MNF =  and 
a dimensionless angular frequency 0.5F =  for is =  . This load yields the vertical La-
place domain displacement response of particle 0,0 that is depicted in Figure 4.34b for both 
the fully discrete BKV system and the half-plane of particles. Even though the frequency 
domain dependency of the applied load at particle 0,0 in Figure 4.34a and the corresponding 
response in Figure 4.34b are given for different frequency ranges, it is clear from comparing 

Figure 4.34: a) Laplace domain pulse load applied at particle 0,0 in vertical direction; b) Laplace domain displacements of  
particle 0,0 in the half-plane of particles (continuous lines) and the fully discrete BKV system (dashed lines).
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the two graphs that the shapes of the real and imaginary parts of the Laplace domain dis-
placements are similar to the shapes of the real and imaginary parts of the Laplace domain 
loading.  

Figure 4.35a and Figure 4.35b respectively give the horizontal and vertical Laplace do-
main displacements of particle 8,4 for both the fully discrete BKV system and the half-plane 
of particles. Here, note that the location of particle 8,4 is given in Figure 4.33. The continuous 
lines in Figure 4.34b and Figure 4.35 give the real part, the imaginary part and the absolute 
value of the vertical Laplace domain displacements of respectively particle 0,0 and particle 
8,4 in the half-plane of particles, which are obtained directly from the Green’s displacements 
of the particles in the half-plane of particles. Furthermore, the dashed lines in Figure 4.34b 
and Figure 4.35 give the corresponding Laplace domain displacements for the particles in the 
fully discrete BKV system. These displacements have been obtained by solving the algebraic 
system of Laplace domain equations of motion for the hexagonal lattice that incorporates the 
dynamic compliance of the discrete far-field domain in its boundary formulation. From the 
comparison of the Laplace domain displacements presented by Figure 4.34b and Figure 4.35, 
it is evident that both models yield the exact same displacement response in the Laplace 
domain. This confirms that, at least for the Laplace domain, the implemented fully discrete 
BKV system incorporates the response of the far-field domain, modelled as a viscoelastic 
half-plane of particles, correctly. 

The time domain displacement response of particle 0,0 is depicted in Figure 4.36. Here, 
Figure 4.36a gives the overall vertical displacement response for both the half-plane of par-
ticles (HPoP) and the fully discrete BKV system (BKV), while Figure 4.36b gives a close-
up at a 40 times smaller scale to provide a more detailed comparison of the response for 
different approaches used. The continuous light blue line and the dashed blue line in Figure 
4.36 give the displacements of the loaded particle in respectively the half-plane of particles 
and the fully discrete BKV system, which are both obtained by applying the inverse Laplace 
transform to the Laplace domain displacements previously presented in Figure 4.34. For the 
fully discrete BKV system this means that the time domain displacements originate from first 

Figure 4.35: Laplace domain displacements of particle 8,4 in the half-plane of particles (continuous lines) and 
the fully discrete BKV system (dashed lines): a) horizontal displacements; b) vertical displacements.
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solving the algebraic system of equations of motion in the Laplace domain and then applying 
the inverse Laplace transform. This approach is here referred to as the frequency domain 
solution, or the FD-solution. Since the Laplace domain displacements for the fully discrete 
BKV system and the half-plane of particles were previously shown by Figure 4.34b to match 
closely, evidently the displacement responses that are obtained for the fully discrete BKV 
system and the half-plane of particles using the FD-solution must also closely match. This is 
verified by comparison of the continuous light blue line and the dashed blue line in Figure 
4.36. 

The dashed red line in Figure 4.36 gives the displacement response of the fully discrete 
BKV system that is obtained by numerically solving the system of ordinary differential equa-
tions (ODEs) directly in the time domain using the Runge-Kutta method. Here, the system of 
ODEs used includes the boundary formulation according to equation (4.136). We refer to this 
approach as the time domain solution, or the TD-solution. From Figure 4.36a, it is clear that 
the displacement response resulting from the TD-solution matches the corresponding re-
sponse for the FD-solution well and any differences are not visible at the scale of this figure. 
Nevertheless, as explained in Section 4.2.3, the numerical evaluation of the convolution in-
tegral that is incorporated in the boundary formulation in combination with the application 
of the Runge-Kutta method yields a small numerical error in the boundary formulation, which 
in turn causes small reflections from any incident waves arriving at the boundary. This small 
numerical error is visible in Figure 4.36b. While even at the scale of this close-up the re-
sponses of the half-plane of particles and for the FD-solution of the fully discrete BKV sys-
tem still match exactly, the response obtained using the TD-solution slightly deviates from 
those obtained using the FD-solution. Close examination of the results show that this devia-
tion is indeed due to a reflected incident wave and its magnitude depends on the time intervals 
used to evaluate the convolution integral and the time step used for the Runge-Kutta scheme. 

The additional continuous dark yellow line that is included in Figure 4.36b gives the dis-
placement response of the fully discrete BKV system that follows from the TD-solution using 
the linearization for large elongations, while the response given by the dashed red line follows 

Figure 4.36: Time domain displacements of particle 0,0 in the half-plane of particles and the fully discrete BKV system. 
a) Vertical displacement response; b) Close-up of the response.
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from applying the TD-solution using the linearization for small elongations. Note here that, 
as explained in Section 2.4.2, the linearization for large elongations solves the system of 
ODEs and obtains the lattice response at every time step by considering the positioning of 
the particles and elements in the lattice at the previous time step, while the linearization for 
small elongations obtains the lattice response relative to the initial positioning of its particles 
and elements, and is thus in correspondence with the FD-solution. Figure 4.36b shows that 
the response obtained using the linearization for large elongations is very close to the re-
sponse obtained using the linearization for small strains, so that the response of the lattice to 
a single-sinus pulse load with an amplitude 0.1 MNF =  is valid for the linearization for 
small elongations. 

Figure 4.37a and Figure 4.37b respectively depict the horizontal and vertical displace-
ment response of particle 8,4 for both the half-plane of particles and the fully discrete BKV 
system, and for the different solution methods considered. As before, the continuous light 
blue line and the dashed blue line respectively give the response of the half-plane of particles 
and the fully discrete BKV system for the FD-solution, while the dashed red line and the 
continuous yellow line give the response of the fully discrete BKV system for the TD-solu-
tion respectively using the linearizations for small and large elongations. Here, note that the 
amplitudes of the displacement response of particle 8,4 are approximately ten times smaller 
than the displacement response of the loaded particle, i.e. particle 0,0. This decline in ampli-
tude is attributed to both the viscous damping present in the Kelvin-Voigt elements and the 
geometric damping that exists in any two-dimensional medium. At the scale of these graphs, 
the responses obtained for the FD-solutions are not visible because they match the responses 
obtained for the TD-solutions well. Moreover, even at the scale of Figure 4.36b, the differ-
ences between the responses obtained by the FD-solutions and the TD-solutions would hardly 
be visible. For both the linearizations, Figure 4.38 therefore gives the difference between the 
time domain response and the frequency domain response. The continuous red lines in Figure 
4.38 give the difference between the displacement responses of the fully discrete BKV sys-
tem obtained using the FD-solution and the corresponding TD-solution for small elongations, 

Figure 4.37: Time domain displacements of particle 8,4 in the half-plane of particles and the fully discrete BKV system. 
a) Horizontal displacement; b) Vertical displacement.
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while the continuous blue lines give the difference between the responses obtained using the 
FD-solution and the corresponding TD-solution for large elongations. Specifically, Figure 
4.38a gives the differences in vertical displacement response for the loaded particle, i.e. par-
ticle 0,0, while Figure 4.38b gives the differences in vertical displacement response for par-
ticle 8,4.  

For both particles, any differences between the vertical displacement responses for the 
FD-solution and that of the TD-solution for small elongations, given in Figure 4.38 by the 
red lines, must be due to numerical errors, because the two solutions are two different ap-
proaches to finding the response of the same medium. For both particles, the numerical error 
in the displacement response is most pronounced during the incident wave, although relative 
to the amplitude of the incident wave, which is by approximation 100 times larger, these 
numerical errors are still quite small. After the incident wave has passed, the numerical error 
that remains must be exclusively due to reflections from the boundary in the TD-solution, 
and since the response obtained using the FD-solution has no reflections at all, this numerical 
error is of much more concern. From comparing the reflections in Figure 4.38a and Figure 
4.38b, we can observe that the magnitude of the reflected wave is significantly larger in the 
displacement response of particle 0,0 than in the displacement response of particle 8,4. Be-
cause of the presence of viscous damping however, the amplitude of the reflected wave in 
the response of particle 0,0 should be expected to be smaller than for the response for particle 
8,4. The fact that the amplitude of the reflected wave is more pronounced for particle 0,0 can 
be attributed to the position of this particle at the origin of the lattice. As the distance from 
the origin to any particle at the boundary of the lattice is equal, all reflections from these 
boundary particles will arrive back at the origin, i.e. at particle 0,0, at the same time. The 
reflected wave due to the numerical error in the boundary formulation is thereby greatly am-
plified at particle 0,0, and less significant for the displacement response of any other particles 
in the lattice. 

Furthermore, Figure 4.38 shows that the differences of the TD-solution with the response 
for the FD-solution are much larger for large elongations than for small elongations, and that 

Figure 4.38: Differences in displacement response of the time domain solutions versus the frequency domain solutions: 
a) vertical displacement of particle 0,0; b) vertical displacement of particle 8,4.
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these differences mainly occur during the incident wave. This is because the TD-solution for 
large elongations accounts for the change in geometry of the lattice due to its own response, 
and thereby gives a different representation of the fully discrete BKV system than the FD-
solution and the TD-solution for small elongations. The fact that the differences for the TD 
solution for large elongations are largest during the incident wave is a logical consequence 
of the properties of the corresponding medium. Because the lattice accounts for the changing 
angles in its system of equations, the corresponding displacements response may be expected 
to be amplified. Consequently, while the current load case and its response are still valid for 
small elongations, increasing the amplitude of the load, and thereby the amplitude of the 
response, will show a significant increase in these differences and require us to account for 
large elongations. 

As an example of this, Figure 4.39 presents the vertical displacement response of particle 
0,0 for a single-sinus pulse load with an amplitude 1.0 MNF =  and the same load frequency 
as before. Figure 4.39a gives the overall vertical displacement response for the fully discrete 
BKV system, while Figure 4.39b gives a close-up of this response at a 15 times smaller scale. 
While the response resulting from the TD-solution for small elongations is not distinguisha-
ble from the response obtained for the FD-solution at the scale of Figure 4.39a and the cor-
responding numerical error is barely visible at the scale of Figure 4.39b, the TD-solution for 
large elongations yields a response that is significantly different from the response obtained 
using the FD-solution. 

Here, note that the Green’s functions for the displacements and the reaction forces in the 
half-plane of particles, used to construct the dynamic compliance matrix according to equa-
tion (4.44) and the boundary integral equation according to equation (4.136), have been de-
rived using the linearization for small elongations and does not account for any geometrical 
nonlinearities. Thereby, the resulting boundary formulation is expected to yield a perfectly 
nonreflective boundary only when the particle displacements, and thus the elongations of the 
rheological elements, at the boundary of the near-field lattice are also small. Since the model 
for the near-field lattice allows for large elongations and accounts for geometrical 

Figure 4.39: Time domain displacements of particle 0,0 in the half-plane of particles and the fully discrete BKV system 
for a load amplitude of 1.0 MN. a) Overall displacement response; b) Fragment of the response.

15 30 45 60

-0.05

-0.04

-0.03

-0.02

-0.01

0

0 02 04 60

-0.3

-0.15

0

0.15

0.3

0.45

a ) b)

FD-solution - small elongations
TD-solution - small elongations
TD-solution - large elongations

),0 0u t(z

,0 0u t( )z

t

t



211 

nonlinearities, it is of interest to investigate the magnitude of the displacements and the elon-
gations in the near-field lattice. 

To address this, Figure 4.40 compares the total energy, Etot, present in the near-field lattice 
of the fully discrete BKV system as a function of time for the TD-solutions for small and 
large elongations, respectively given by the continuous red and blue lines. Here, Figure 4.40a 
gives the total energy in the near-field lattice as a function of time for a single-sinus pulse 
load applied at particle 0,0 with a load amplitude of 0.1 MN, while Figure 4.40b gives the 
corresponding results for a load amplitude of 1.0 MN. Because the elongations that occur in 
the near-field lattice due to a load amplitude of 0.1 MN can be considered to be small, the 
responses of both TD-solutions correspond well and therefore, the total energy in the near-
field over time presented in Figure 4.40a for both TD-solutions also correspond well. For a 
load amplitude of 1.0 MN however, Figure 4.39 shows that the TD-solutions for small and 
large elongations are different, and as a consequence, the total energy present in the near-
field lattice as a function of time, as presented in Figure 4.40b, is also different for both TD-
solutions.  

Figure 4.40 thus demonstrates that, even when physical nonlinearities, such as stick-to-
slip transitions, do not occur or are not accounted for in the near field lattice, the geometrical 
nonlinearities, associated with the changing angles of the lattice elements, may significantly 
influence the response of the BKV lattice depending on the magnitude of the applied loading. 
Despite the differences in the models applied for both TD-solutions however, the decay of 
the total energy over time is similar, implying that the boundary formulation that models the 
far-field domain as a half-plane of particles also performs well when we account for the ge-
ometrical nonlinearities in the near field lattice. 

4.7.5 Nonlinear response of the fully discrete BKV system 
To demonstrate that the boundary formulation that is obtained using the methodology pre-
sented in Section 4.3 also properly accounts for the behaviour of the far-field domain when 
physical nonlinearities occur in the near field, this section regards the nonlinear response of 

Figure 4.40: Total energy present in the near-field lattice comparing the models that allow for small and large elongations:  
a) for a load amplitude of 0.1 MN; b) for a load amplitude of 1.0 MN.

0 02 04 60

0

0.01

0.02

0.03

0.04

0.05

0 20 40 60

0

0.0001

0.0002

0.0003

0.0004

0.0005

a ) b)

t t

TD-solution - small elongations
TD-solution - large elongations

totE totE



212 

the fully discrete BKV system to an externally applied time-dependent load. In this section, 
we will show that, even for a nonlinear response of the near-field lattice, the waves properly 
propagate through the boundary, and that the boundary formulation that accounts for the far-
field domain by modelling it as a semi-infinite half-plane of particles yields a non-reflective 
boundary for the near-field BKV lattice. 

In Section 4.7.4, we have shown that the proposed methodology works for small elonga-
tions by comparing the viscoelastic time domain response of the fully discrete BKV system 
obtained using a time domain solution, i.e. by solving the time domain system of ODEs, with 
the response obtained using a frequency domain solution, in this case by solving the system 
of equations of motion algebraically in the Laplace domain. For the nonlinear response of the 
fully discrete system however, this frequency domain approach is not available. Although, 
based on the findings presented in Chapter 5, it is principally possible to obtain the nonlinear 
response of a two-dimensional system by repeatedly solving its algebraic system of equations 
in the frequency domain, we have not implemented this mixed time-frequency domain 
method for the two-dimensional systems as a part of this thesis. In this section, we will instead 
use the time domain approach to compare the nonlinear time domain response of two match-
ing fully discrete BKV systems, for which the near-field BKV lattice has different dimen-
sions and thereby, the boundary of the two BKV systems is located at a different distance 
from the origin and the load. Then, if the responses are the same for both BKV systems, the 
boundary must be non-reflective for both and the behaviour of the far-field domain is cor-
rectly incorporated in the boundary formulation. After all, due to the different distances of 
their boundaries from the origin, any wave reflections would cause the two BKV systems to 
respond differently. 

The matching configurations of the two fully discrete BKV systems are depicted in Figure 
4.41. Here, we consider one system where the BKV lattice has dimension N equal to 8 and 
one system where the BKV lattice has a dimension N equal to 12. The BKV lattice with 

Figure 4.41: Matching BKV lattices with respectively dimension N equal to 8 and N equal to 12, with a cluster of  
weak BKV elements and the locations of particles with nodal coordinates 0,0, -1,3 and 8,4.
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8=N consists of 117 particles and 308 BKV elements. Its geometry is randomized and de-
picted in Figure 4.41 representing its BKV elements by black lines. Here, note that the parti-
cle coordinates are randomized using a Gauss distribution with a mean that is equal to the 
interparticle distance chosen as 0.2 m= , and a standard deviation 1

6 . The BKV lattice 
with 12=N  consists of 247 particles and is depicted in Figure 4.41 representing its 678 BKV 
elements by dark red lines. Here, note that on the domain of the BKV lattice with 8=N , the
geometry of both lattices match and therefore the geometry of the lattice with 12=N  is not 
visible for that domain in Figure 4.41. To make sure that the geometry of both fully discrete 
systems match, the remainder of the lattice with 12=N  has deliberately not been random-
ized, because for the system with dimension 8=N  the particles at this domain lie within the 
half-plane of particles that has a regular geometry. 

To match the material properties of the lattice to the macromaterial properties presented 
in Section 2.5 and used throughout this thesis, the third dimension of the space that each 
particle represents is arbitrarily chosen as 1 mdy = . As a consequence, the particles in the
interior of the lattice have a mass 69.28 kgM = and the stiffness of the springs in the lattice
is found as 18.48 MN meK = . The corresponding particle natural frequency and critical 
damping in the lattice are respectively found as 0 3 894,4 rad seK M = =  and 

2
03 41.31 kNs mcritC M= = . Then, choosing a damping ratio 0.2 = , the dashpots in the 

lattice have a damping coefficient 8.262 kNs me fC C= = . 
To induce stick-slip behaviour in the BKV lattice, the critical friction force of the dry 

friction elements in the BKV lattice is chosen relative to the amplitude of the applied load as 
0.4crF F= , while the threshold distance for lock is set as min 0.9 initD D= . To enhance the 

possibility that nonlinear phenomena occur, the BKV lattice incorporates a cluster of weak 
BKV elements, depicted in Figure 4.41 by the red lines, that are five times weaker than the 
regular elements in the lattice, given in Figure 4.41 by the black lines. Consequently, the 
springs in the weak cluster of the lattice have a stiffness 3.695 MN mweak

eK =  and a damping 
coefficient 1.652 kNs mweak weak

e fC C= = . Furthermore, the critical friction force of the weak 
BKV elements is chosen as 0.2 0.08weak

cr crF F F= = . 
Figure 4.42, Figure 4.43 and Figure 4.44 give the time domain displacement responses of 

the three particles for which the locations are depicted in Figure 4.41, i.e. for the particles 
with nodal coordinates 0,0, -1,3 and 8,4 respectively. In each figure, the displacement re-
sponses of the corresponding particles are compared for the two BKV lattices and for two 
different load amplitudes of a vertical single-sinus pulse load applied at the origin of the 
lattice, i.e. at particle 0,0. Here, the applied pulse load has a dimensionless angular frequency 

0.5F = . The continuous blue line in these figures gives the displacement response for the 
lattice with dimension 8=N  and a load amplitude 1.0 MNF = , while the dashed light-blue 
line gives the corresponding displacement response for the lattice with dimension 12=N  
and the same load amplitude. Accordingly, the continuous red and the dashed dark-yellow 
line respectively give the displacement response for the lattices with dimension 8=N  and 
dimension 12=N , both for a load amplitude 2.0 MNF = .  

First and foremost, from evaluating the displacement responses in Figure 4.42 to Figure 
4.44, we observe that, at the scale of the depicted graphs, the response of the lattices with 
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Figure 4.42: Time domain response of the lattices with dimension N = 8 and N = 12 for two different load amplitudes: 
a) horizontal displacements of particle 0,0; b) vertical displacements of particle 0,0.

Figure 4.43: Time domain response of the lattices with dimension N = 8 and N = 12 for two different load amplitudes: 
a) horizontal displacements of particle -1,3; b) vertical displacements of particle -1,3.

Figure 4.44: Time domain response of the lattices with dimension N = 8 and N = 12 for two different load amplitudes: 
a) horizontal displacements of particle 8,4; b) vertical displacements of particle 8,4.
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dimensions 8=N  and 12=N  match exactly for both load amplitudes considered. Here, 
wave reflections exist and that their amplitudes are roughly proportional to the load specifi-
cally note that the response of the lattice with dimension 12=N  in all figures is depicted 
only up to dimensionless time 62.3t = . The reason for this is that, despite the implementation 
using sparse matrices, the large amount of degrees of freedom in the lattice with dimension 

12=N  combined with the presence of the convolution integral in the boundary equation and 
the small time step required to obtain an accurate time domain response, the computer on 
which we ran the calculations ran out of virtual memory and caused the calculations to stop 
at the given time moment. From the matching responses, we can nevertheless conclude that 
for both lattices, the boundary formulation as obtained using the methodology presented in 
Section 4.3 is non-reflective and thereby correctly represents the far-field behaviour of the 
fully discrete BKV system. That is, at the scale of the graphs depicted. From the results dis-
cussed in Sections 4.2.3 and 4.7.4 however, we know that using the time domain approach, 
and thereby numerically evaluating the convolution integral, yields a small numerical error 
in the boundary formulation. In turn, this causes the boundary to not be completely non-
reflective and return small reflections due to any incident waves arriving at the boundary. 
Due to the boundaries of the two lattices with dimensions 8=N  and 12=N  being located 
at different distances from the origin, these reflections occur at different moments in time 
and should therefore be visible by comparing the displacement response of any particle for 
both lattices.  

To illustrate this, Figure 4.45a and Figure 4.45b give the differences in the horizontal and 
vertical displacement response of particle 8,4 due to these wave reflections, respectively. 
Here, the continuous blue line gives the difference in displacement response of particle 8,4 
between the two lattices for a load amplitude 1.0 MNF = , while the continuous red line 
gives the corresponding difference for a load amplitude 2.0 MNF = . Figure 4.45 clearly 
shows that the aforementioned amplitude. Additionally, from comparing the range of the 
differences in displacement responses for the two lattices with the original displacement 

Figure 4.45: Differences in responses for the lattice with dimension N = 8 versus the lattice with dimension N = 12. 
a) Horizontal displacement of particle 8,4; b) Vertical displacement of particle 8,4.
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response, we find that the amplitudes of the reflected waves are roughly 200 to 300 times 
smaller than the amplitude of the incident wave. 

Next to showing that the displacement responses for the two lattices match well, the dis-
placement responses depicted in Figure 4.42 and Figure 4.43 show clear evidence of nonlin-
ear behaviour. The dashed blue and red lines in these figures give the final displacements of 
the considered particle for the corresponding direction and the two load amplitudes consid-
ered, when all energy due to the applied load has been dissipated by and from the near-field 
lattice. Comparing these permanent displacements for the different particles, it is clear that 
the deformation is most severe for the loaded particle, i.e. for particle 0,0, in vertical direction 
and that the deformation quickly reduces as the distance from the origin of the lattice in-
creases. This is also clearly visible in Figure 4.46, as it shows the positioning of all particles 
and elements in the two lattices at the end of the performed simulations compared to their 
initial positioning, given by the grey-lined mesh. In total, there were 18 BKV elements in the 
lattices that experienced one or multiple nonlinear events. These elements are depicted in 
Figure 4.46 by the blue lines. All these BKV elements are either close, or directly connected, 
to the loaded particle, or are part of the cluster of weak elements in the interior of the lattice. 
In total, 50 nonlinear events occurred during the simulation. Of these, there were 19 transition 
into lock, 19 lock-to-stick transitions, 6 stick-to-slip transitions and 6 slip-to-stick transitions. 
Since the lock-state only occurs in compression and not in tension, and lock occurs at a rela-
tively large ratio of the initial distance between the particles, the motion of the particles in 
positive z-direction is impeded, while the motion of these particles in negative z-direction is 
not. As a result of this, the final permanent deformation of particle 0,0 is directed upwards in 
Figure 4.46, but has a negative value in Figure 4.42b. 

The fact that the permanent deformation in vertical direction of particle 0,0 is far more 
severe than the deformation in horizontal direction is a logical consequence of the external 
dynamic load having been applied vertically. Here, note that the horizontal displacement 

Figure 4.46: Positioning of all particles and elements in the matching BKV lattices with dimensions N = 8 and N = 12  
at the end of the simulations performed. 
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response of the vertically loaded particle, i.e. particle 0,0, depicted in Figure 4.42a is nonzero 
only because the geometry has been randomized and is therefore no longer symmetric in the 
z-axis. Additionally, Figure 4.42b shows that the permanent deformation in vertical direction
is proportional to the amplitude of the applied load. For the vertical response under the ap-
plied vertical load, this makes sense.

Also for the vertical displacement response of particle -1,3, depicted in Figure 4.43b, we 
observe a similar proportionality with respect to the applied loading. Because particle -1,3 is 
located relatively close to the z-axis, and quite a bit closer to the origin of the lattice than 
particle 8,4, we observe that the displacement response in vertical direction is much more 
significant than the displacement response in horizontal direction. Furthermore, the horizon-
tal displacement response of particle -1,3, depicted in Figure 4.43a, shows a striking oscilla-
tory motion, which is likely present because this particle is located within the cluster of weak 
elements of the lattice. This can be explained by considering that at any interface at which 
material properties suddenly change, incident waves will, depending on the orientation of the 
interface, partially reflect and partially scatter. Accordingly, reflections and wave dispersions 
may originate from the occurrence of nonlinear events, such as the transitions to slip or lock, 
which actually correspond to a change in properties of the lattice. In this case, when the in-
cident wave due to the applied loading reaches the weak cluster of elements, it will partially 
reflect back to the lattice surface and partially transmit into the weak domain. Then, the wave 
energy that is transmitted into the weak domain, in turn partially reflects from the edges of 
the weak domain and partially reflects due to the occurrence of nonlinear events within the 
weak domain. As a result, the oscillatory motion present in the horizontal displacement re-
sponse of particle -1,3 also influences the horizontal displacement response of particle 0,0, 
depicted in Figure 4.42a, which shows a similar oscillatory motion. Nevertheless, note here 
that this oscillatory motion is also present in the vertical displacement responses of particles 
0,0 and -1,3, but is not equally apparent because their magnitude is significantly smaller than 
the amplitude of the direct vertical response to the applied pulse load. 

For particle 8,4, which is located at a larger distance from both the loaded particle and the 
z-axis and outside the domain of weak elements, the presence of damping causes these highly
oscillatory motions to no longer be present. Additionally, we observe that due to its position-
ing, the horizontal and vertical displacement responses of particle 8,4, respectively depicted
in Figure 4.44a and Figure 4.44b, have similar magnitudes.

Finally, Figure 4.47 shows how the total energy present in the two BKV-lattices changes 
over time and eventually disappears from both lattices. Here, Figure 4.47a compares the total 
energy over time in the two lattices with dimensions 8=N  and 12=N  for the applied pulse 
load with a load amplitude of 1.0 MN, while Figure 4.47a makes the same comparison, but 
now for the load with an amplitude of 2.0 MN. The continuous lines in Figure 4.47 both give 
the total energy in the BKV lattice with dimension 8=N , while the dashed lines correspond 
to the total energy in the BKV lattice with dimension 12=N .  

For both load cases, we see that up to dimensionless time 16t   the total energy over 
time is approximately equal for both lattices. This corresponds with the moment in time at 
which the front of the incident wave due to the applied pulse load can be observed to reach 
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the boundary of the BKV lattice with dimension 8=N  and is transmitted into the corre-
sponding far-field domain. At this time however, the front of the incident wave has not yet 
perceivably reached the boundary of the BKV lattice with dimension 12=N  and, as a con-
sequence, the total energy present inside is no longer the same for both lattices. Here, note 
that the maximum of the total energy in both lattices coincides with the moment at which the 
single-sinus pulse load has been fully applied, and from that moment onwards, the total en-
ergy in the system declines due to viscous damping and the occurrence of nonlinear events, 
although most of the nonlinear events occur during the application period of the load. This 
can be confirmed by comparing the total energy over time that is present for the nonlinear 
response of the BKV lattices for a load amplitude of 1.0 MN depicted in Figure 4.47a with 
the total energy over time present for the viscoelastic response depicted in Figure 4.40. While 
the applied loading is exactly the same in both cases, the shape of the total energy during the 
application of the load is quite different and the magnitude of the total energy in the system 
is much lower for the nonlinear response. As all other properties of the two lattices are exactly 
the same, the difference in total energy during the application of the load can only be due to 
the occurrence of nonlinear events. By comparing Figure 4.47a and Figure 4.40, it follows 
that it takes significantly longer for all the energy to dissipate from the lattice in which non-
linear events occur, as compared to the lattice that responds viscoelastically. This can be 
explained by considering the fact that, as mentioned above, both the presence of the cluster 
of weak elements and the occurrence of nonlinear events cause wave reflections within the 
BKV lattice. In many cases, these reflected waves will first travel back to the lattice surface 
and thereby will take a lot longer to finally arrive at the boundary, before their energy is 
transmitted into the far-field domain and removed from the BKV lattice. Nevertheless, for 
both load amplitudes, Figure 4.47 shows that the total energy eventually fully dissipates from 
both BKV lattices. 

From the findings in this section, we conclude that the boundary formulation as obtained 
using the methodology presented in Section 4.3 is not only valid for small elongations, i.e. 
when both physical and geometrical nonlinearities do not occur or are not accounted for in 

Figure 4.47: Total energy present in the lattice during its response comparing the lattices with dimension N = 8 and N = 12: 
a) for a load amplitude of 1.0 MN; b) for a load amplitude of 2.0 MN.
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the near field lattice as proven in section 4.7.4, but is also valid when large elongations occur 
and both physical and geometrical nonlinearities are accounted for. That is, as long as the 
boundary is sufficiently far away from the load so that both physical and geometrical nonlin-
earities do not reach the boundary. 
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5
A mixed time-frequency domain 

approach for 1D systems 

The BKV lattice models considered in this thesis are non-smooth dynamical systems [Kunze, 
2000] whose dynamic properties may change at any given moment in time, but where the 
change in behaviour is always instant. This means that, whenever a nonlinear event occurs, 
the motion state of the corresponding rheological element changes instantly, while both be-
fore and after the nonlinear event the lattice response is linear. The non-smooth dynamic 
response of a BKV lattice is thereby piecewise linear and, for the time period in which the 
response remains linear, the corresponding system of equations of motion can be solved al-
gebraically in the frequency domain. For each piecewise-linear time period however, the sys-
tem of equations of motion must be evaluated for a new set of nonzero initial conditions. To 
obtain the algebraic system of equations of motion in the frequency domain, we therefore 
apply the Laplace integral transform that is able to account for nonzero initial conditions. 

The approach discussed in this chapter can be considered as a mixed time-frequency do-
main method in the sense that the properties of the lattice change over time due to the occur-
rence of nonlinearities, while during each piecewise-linear time period, the response of the 
lattice is determined by solving its algebraic system of equations of motion in the frequency 
or Laplace domain. This approach may seem somewhat laborious, or even superfluous, for 
one-dimensional systems, because the non-smooth response of these lattices can be straight-
forwardly and efficiently modelled using time domain approaches. Nevertheless, as for ex-
ample illustrated by Figure 4.7, for one-dimensional systems that incorporate boundary for-
mulations there is an advantage of using frequency domain methods over time domain meth-
ods. Additionally, due to the longer calculation times that are generally required to obtain the 
response of two- and three-dimensional media, the mixed time-frequency method, or in short 
MTFD-method, shows the potential to be particularly effective to model the non-smooth re-
sponse of two- and three-dimensional models that incorporate boundary formulations. For 
the sake of simplicity and clarification however, the concept of the MTFD-method is here 
introduced on the basis of one-dimensional systems only.  
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5.1 Methodology of the mixed time-frequency domain approach 
Let us consider an arbitrary BKV lattice in which instant nonlinear events may occur due to 
an externally applied load. Assuming that, prior to time 0t = , the lattice is at rest and has 
zero initial conditions, the initial response of the lattice may be expected to be linear and thus 
without occurrences of nonlinear events in its response. To obtain the response of the lattice 
for the time period during which it responds linearly, i.e. until the occurrence of the first 
nonlinear event, we solve its system of equations of motion algebraically in the Laplace do-
main for all its degrees of freedom. We then obtain the time domain response of all degrees 
of freedom in the lattice by applying the inverse Laplace transform. This method to obtain 
the response in the time domain remains valid for as long as the lattice continues to behave 
in a linear manner. 

Now, suppose that at a given time 0t t= , a nonlinear event occurs in the BKV lattice, i.e. 
the motion state of one of its rheological elements changes instantly. After the occurrence of 
this nonlinear event, i.e. for 0t t , the response of the lattice is again linear until the next 
nonlinear event occurs. To properly consider the new situation for the lattice that starts at 

0t t=  in both the time and the Laplace domains, we reset the time parameter t. The time 
domain response of the lattice after the first nonlinear event is then obtained by algebraically 
solving its system of equations of motion in the Laplace domain, but now with nonzero initial 
conditions and possibly accounting for different motion states in its rheological elements, 
and subsequently applying the inverse Laplace transform at every time step until the next 
nonlinear event occurs. This procedure is repeated every time a nonlinear event occurs.  

The resulting approach is here referred to as the mixed time-frequency domain method, 
or in short the MTFD-method, and has been visualized in Figure 5.1. Starting with a zero 
initial displacement at 0t =  in the first period of linear response, the occurrence of a nonlin-
ear event at 0t t=  resets the time parameter t. This new time parameter then remains valid 
until another nonlinear event occurs. Every time a nonlinear event occurs and thus every time 
the time parameter t is reset, the response of the lattice prior to that time moment is included 
in the new time period by incorporating the nonzero initial conditions at 0t =  for that time 
period. 

Figure 5.1: Procedure of resetting the time parameter every time a nonlinear event occurs. 
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In the following, we will first exemplify the MTFD-method by considering a discrete-
continuous system consisting of a one-dimensional Hooke lattice in the near field and a lin-
ear-elastic rod in the far field in Section 5.2. Although this linear-elastic system does not 
allow for nonlinear events to occur, its system of equations of motion can be solved directly 
in both the Laplace and the time domains, so that application of the MTFD-method can be 
verified. Section 5.2 furthermore shows that incorporating nonzero initial conditions poses 
additional challenges when numerically evaluating the inverse Laplace transform to obtain 
the time domain response of the lattice. To address these challenges, an alternative approach 
is presented in Section 5.2.3, which greatly improves the performance of the numerical eval-
uation of the inverse Laplace transform. In Section 5.3, we apply the MTFD-method to a 
discrete-continuous system that consists of a one-dimensional BKV lattice in the near field 
and a viscoelastic rod in the far field. Thereby, we showcase the MTFD-method for a system 
that allows for the occurrence of nonlinear events and thus has a non-smooth response. This 
chapter is concluded by a discussion of the advantages and disadvantages of the MTFD-
method. 

5.2 The MTFD-method applied to 1D discrete-continuous systems 
To demonstrate the mixed time-frequency domain method, or MTFD-method, we here apply 
it to a one-dimensional discrete-continuous Hooke system which is the most elementary of 
one-dimensional systems. Thereby, it gives a good insight into the method and allows us to 
clarify all issues that must be accounted for when applying the MTFD-method.  

In Section 5.2.1, we first derive the equation of motion for the particle at the interface 
between the one-dimensional Hooke lattice and the linear-elastic rod that accounts for non-
zero initial conditions (ICs). Next, Section 5.2.2 presents the governing system of equations 
of motion for the one-dimensional discrete-continuous Hooke system that is valid for the 
MTFD-method. Here, Section 5.2.1 and Section 5.2.2 both regard the equations of motion 
for the discrete-continuous Hooke system in the Laplace domain. Subsequently, Section 5.2.3 
discusses the influence of the nonzero initial conditions on applying the inverse Laplace in-
tegral transform used to obtain the time domain response of the lattice. Additionally, this 
section shows that truncation of the semi-infinite domain, required to numerically apply the 
inverse Laplace transform, causes errors in the time domain response, especially near the 
nonzero initial conditions. Therefore, at the end of Section 5.2.3 an alternative formulation 
for the inverse Laplace transform is presented that greatly improves the behaviour of the time 
domain response. The results of applying the MTFD-method to the discrete-continuous 
Hooke system are presented in Section 5.2.4. 

5.2.1 Boundary formulation in the Laplace domain for nonzero ICs 
Let us consider the discrete-continuous Hooke system depicted in Figure 5.2 that consists of 
a one-dimensional Hooke lattice, i.e. a cascade of masses and springs, and the semi-infinite 
linear-elastic rod with a density ρ, Young’s modulus E and a cross-section area A, which was 
previously regarded for zero initial conditions in Appendix D.1. In the time domain, the be-
haviour of the linear-elastic rod in interaction with the Hooke lattice is described by the 
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following set of equations: 

( ) ( )1
2, , 0u x t u x t− = (5.1) 

( )1
2 ,e IntM u K e u x t+ =N N N-1,N N-1,N (5.2) 

( ),Intu u x t=N (5.3) 

Here, equation (5.1) gives the dimensionless wave equation for the linear-elastic rod on the 
domain Intx x , and equations (5.2) and (5.3) respectively describe the force equilibrium and 
the displacement continuity at the interface between the Hooke lattice and the linear-elastic 
rod.  

When the system has zero initial conditions, it may be solved straightforwardly using the 
approach discussed in Appendix D.1. However, applying the Laplace transform with respect 
to time taking into account nonzero initial conditions, as derived in Appendix J.1, yields 
equations (5.1) to (5.3) in the Laplace domain as: 

( ) ( ) ( ) ( )2 1
0 02, ,s u x s u x s su x v x− = + (5.4) 

( ) ( )2 1
0 0 2 ,e IntM s u M su v K e u x s− + + =N N N N N N-1,N N-1,N (5.5) 

( ),Intu u x s=N (5.6) 

Here, ( )0u x  and ( )0v x  are respectively the initial displacement and initial velocity along 
the linear-elastic rod. Accordingly, 0uN  and 0vN  denote the initial displacement and initial 
velocity of the boundary particle N. Note here that by extension of the displacement continu-
ity, previously given by equation (5.3), both the initial displacement and the initial velocity 
of the boundary particle N and the tip of the rod must coincide, i.e. ( )0 0 Intu u x=N  and 

( )0 0 Intv v x=N . 
Accounting for the proper behaviour of the linear-elastic rod for x →  and noting that 
( )Re 0s  , the general solution to equation (5.4) reads:

( ) ( )2, ,s x
pu x s Ae u x s−= + (5.7) 

The first term on the right-hand side of equation (5.7) is the solution to the homogeneous 
version of equation (5.4), where the amplitude A may be derived by considering the 

Figure 5.2: The one-dimensional semi-infinite discrete-continuous Hooke system. 
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displacement relation at the interface. Furthermore, ( ),pu x s  denotes its, yet unknown, par-
ticular solution due to the initial conditions ( )0u x  and ( )0v x  given on the right-hand side 
of equation (5.4). For zero initial conditions, equation (5.4) reduces to the corresponding 
homogeneous equation, which emphasizes that the particular solution exists exclusively due 
to the presence of nonzero initial conditions. 

Applying the differentiation to space to equation (5.7) and rearranging the resulting ex-
pression to isolate the Laplace domain displacement of the linear-elastic rod allows us to 
express its spatial derivative as: 

( ) ( ) ( ) ( ), 2 , 2 , ,p pu x s s u x s s u x s u x s = − + + (5.8) 

Substituting equation (5.8) into equation (5.5), as well as taking equation (5.6) into account, 
the Laplace domain equation of motion for the boundary particle N, describing the interaction 
between the one-dimensional Hooke lattice and the linear-elastic rod, becomes: 

( ) ( ) ( )2 1 1 1
0 02 2 22 2 , ,e p Int p IntM s u K e s u M su v s u x s u x s+ + = + + +N N N-1,N N-1,N N N N N (5.9) 

Here note that all terms related to the initial conditions are given at the right-hand side of 
equation (5.9). Consequently, for the particular case that the initial conditions are equal to 
zero, the right-hand side of equation (5.9) is equal to zero, so that this equation exactly 
matches the interface equation for zero initial conditions previously derived for the discrete-
continuous Hooke system in Appendix D.1. 

A Green’s function approach to obtain the response of the rod 
To find the particular solution to the equation of motion of the linear-elastic rod, given by 
equation (5.4), we use a Green’s function approach and express equation (5.4) as: 

( ) ( ) ( ) ( ) ( )2 1
2, , , ,

Intx

s u x s u x s f x s f s x d   
+

− = = − (5.10) 

Here, the variable of integration ξ gives a coordinate along the linear-elastic rod so that the 
integration is applied over the domain Intx = + . Furthermore, the expression for the 
function of ξ in the integral reads ( ) ( ) ( )0 0,f s su v  = +  and ( )  is the Dirac delta 
function. A particular solution to the equation of motion for the semi-infinite linear-elastic 
rod, given by equation (5.10), can then be found as: 

( ) ( ) ( ), , ,
Int

p u

x

u x s f s g x s d  


= − (5.11) 

Here, ( ),ug x s−  denotes the Green’s displacement of the linear-elastic rod, found as the 
solution to equation (5.10) for the case that ( ) ( ),f x s x = − . In Appendix I.3, it is derived 
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that, by applying the Fourier transform with respect to space, the corresponding Green’s dis-
placement in the Laplace-wavenumber domain is found as: 

( ) 2 2

2,
2

ug k s
s k

=
+

(5.12) 

Subsequently, applying the inverse Fourier transform to equation (5.12) yields the dimen-
sionless Green’s displacement of the linear-elastic rod in the Laplace domain. The resulting 
integral transform is evaluated using contour integration by means of the residue theorem. 
When 0x −  , the contour is chosen over the upper half of the complex k-plane to assure 
that the contribution of the infinite semi-circle that closes the contour is zero. Within this half 
of the complex k-plane the only pole, or singularity, is found as 1 i 2k s = + . Accordingly, 
when 0x −  , the contour is chosen over the lower half of the complex k-plane where we 
find a single pole at the wavenumber 2 i 2k s = − . As shown by Appendix I.3, the Green’s 
displacement of the linear-elastic rod in the Laplace domain is thus found as: 

( ) 21,
2

s x
ug x s e

s



− −

− = (5.13) 

Substituting equation (5.13) into equation (5.11), and using Leibniz’ integral rule for differ-
entiation of integrals [Abramowitz and Stegun, 1972; Woods, 1926], we respectively find the 
particular solution to the equation of motion for the semi-infinite linear-elastic rod and its 
spatial derivative as: 

( ) ( ) ( ) ( ) ( )2 21 1, , ,
2 2Int

x
s x s x

p

x x

u x s f s e d f s e d
s s

 
   

+
− − − −

= +  (5.14) 

( ) ( ) ( ) ( ) ( )2 2, , ,
Int

x
s x s x

p

x x

u x s f s e d f s e d 
   

+
− − − − = − +  (5.15) 

Substituting equations (5.14) and (5.15) into equation (5.9), as well as including the expres-
sion for ( ),f s , the Laplace domain equation of motion for the boundary particle N reads: 

( ) ( )2 1
0 0 02 2eM s u K e s u M su v f s+ + = + +N N N-1,N N-1,N N N N N (5.16) 

Here, the expression for ( )0f s  is found as: 

( ) ( ) ( ) ( )( )2
0 0 0

Int

Int

s x

x

f s e su v d
  

+
− −

= + (5.17) 

This expression signifies the contribution of the rod’s initial conditions to the interface 
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equation and therefore equation (5.16) does not yet describe the Laplace domain equation of 
motion for the boundary particle N exclusively in terms of the one-dimensional Hooke lattice, 
which would be the case when zero initial conditions are considered. In the following, we 
further analyse the integral expression given by equation (5.17). 

Analysis of the remaining integral expression 
Let us suppose that the Laplace domain equation of motion given by equation (5.16) is valid 
for a time period that, due to the occurrence of an instant nonlinear event, is reinitiated at 

0t t= . For that time period, the initial displacement and velocity along the linear-elastic rod, 
denoted in equation (5.17) as ( )0u   and ( )0v  , then correspond to the displacement and the 
velocity along the linear-elastic rod at time t0 of the previous time period. Since we only 
consider loads that are applied at the tip of the one-dimensional system, i.e. at particle 1, the 
response of the rod follows from its interaction with the lattice and, in accordance with Huy-
gens’ principle [Huygens, 1690], the lattice-rod interface may be considered as a source for 
the response along the rod. Then, to express the displacements and velocities along the linear-
elastic rod at any time t, and thus also at time t0, we must account for the full response history 
of the boundary particle N. 

When we consider time globally, so in terms of its original time parameter that has not 
been reset, and thus with zero initial conditions, the corresponding equation of motion for the 
linear-elastic rod in the Laplace domain is a homogeneous equation. Accounting for the 
proper behaviour of the rod at ξ → ∞, the Laplace domain displacement along the linear-
elastic rod is then found as ( ) 2, su s Ae  −= . Here, the expression for A follows from the 
displacement relation at the lattice-continuum interface, given by equation (5.6), as 

2 Ints xA u e+= N , thereby establishing the relation between the Laplace domain displacement 
( ),u s along the rod and the Laplace domain displacement uN at the boundary particle. 

Additionally noting that ( ) ( ), ,v s su s = and therefore v su=N N , we find the relations be-
tween respectively the displacement and velocity along the linear-elastic rod in terms of the 
displacement and velocity of the boundary particle N as: 

( ) ( )2, Ints xu s u e 


− −
= N (5.18) 

( ) ( )2, Ints xv s v e 


− −
= N (5.19) 

Applying the inverse Laplace transform to equations (5.18) and (5.19), and noting that the 
initial conditions ( )0u   and ( )0v   occur at time 0t t= , yield the initial conditions along the 
linear-elastic rod in terms of the displacement and velocity of the boundary particle N as: 

( ) ( )( ) ( )( )0 0 02 2Int Intu u t x H t x  = − − − −N (5.20) 

( ) ( )( ) ( )( )0 0 02 2Int Intv v t x H t x  = − − − −N (5.21) 

Here, ( )H  denotes the Heaviside function. Furthermore, note that equations (5.20) and 
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(5.21) are dimensionless expressions for the initial conditions ( )0u   and ( )0v   along the 
linear-elastic rod expressed in terms of respectively the displacement and velocity of the 
boundary particle N as a function of both time and space, and that the relation between time 
t and the position ξ along the linear-elastic rod is described by the wave velocity in the rod. 

Due to the Heaviside function in both equations (5.20) and (5.21), it follows that the initial 
conditions ( )0u   and ( )0v   are nonzero only in the segment 0 2Intx t  + . Substituting 
equations (5.20) and (5.21) into equation (5.17), the expression for ( )0f s  thus becomes: 

( ) ( ) ( )( ) ( )( )( )
0 2

2
0 0 02 2

Int

Int

Int

x t
s x

Int Int

x

f s e su t x v t x d
  

+

− −
= − − + − −

N N (5.22) 

Finally, replacing the variable of integration ξ in equation (5.22) by a variable of integration 
τ, where ( )2 Intx = − , yields the expression for ( )0f s  as: 

( ) ( ) ( )( )
0

1
0 0 02

0

2
t

sf s e su t v t d   −= − + −
N N (5.23) 

The expression for ( )0f s  according to equation (5.23) is a convolution integral over the time 
domain 00 t = . Here, 0 =  is the absolute starting point in the time domain, i.e. the time 
at which the complete lattice was at rest before any loading is applied, while 0t =  is the last 
time moment at which new initial conditions were considered for the lattice. Here, note that 
Appendix J.7 gives an alternative derivation to obtain equation (5.23) from equation (5.17). 

Equation (5.23) no longer contains any initial displacements or initial velocities of the 
linear-elastic rod. Instead, the expression for ( )0f s  now exclusively consists of terms related 
to the boundary particle N and thereby accounts for the response of the linear-elastic rod in 
terms of the motion at the lattice-rod interface. Having derived the equation of motion for the 
boundary particle N that includes the boundary formulation for the linear-elastic rod, let us 
consider the full system of equations of motion for the one-dimensional discrete-continuous 
Hooke system, depicted in Figure 5.2, accounting for nonzero initial conditions. 

5.2.2 Governing equations for the discrete-continuous Hooke system 
Applying the Laplace transform to the equations of motion for particles =n 1 N -1  in the 
one-dimensional Hooke lattice, given in Appendix D.1 for zero initial conditions, accounting 
for nonzero initial conditions, as well as including the Laplace domain interface equation, 
previously given by equation (5.16), the governing system of equations of motion for the 
one-dimensional discrete-continuous Hooke system with nonzero initial conditions is found 
in the Laplace domain as: 

( ) ( )2
0 0eM s u K e F s M su v− = + +1 1 1,2 1,2 1 1 1 (5.24) 

( )2
0 0e eM s u K e K e M su v+ − = +n n n-1,n n-1,n n,n+1 n,n+1 n n n (5.25) 
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( ) ( )2 1
0 0 02 2eM s u K e s u M su v f s+ + = + +N N N-1,N N-1,N N N N N (5.26) 

Here, 0un  and 0vn  are respectively the initial displacement and initial velocity of the particles 
in the one-dimensional Hooke lattice for =n 1 N , and ( )0f s  is given by equation (5.23). 
In equation (5.24), ( )F s  is the Laplace domain expression for the external force applied at 
particle 1. In general, the transformation of a time-dependent load to the Laplace domain is 
rather straightforward. Nevertheless, care should be taken that the Laplace domain expression 
for the applied load is used that corresponds to the correct time period, i.e. the time period 
for which new initial conditions are introduced at time t0.  

To clarify this, let us here consider the pulse load ( )F t  with a single sinus period TF, 
which is depicted in Figure 5.3 for two different cases: in the top graph, the pulse load is 
considered in time globally and thus for zero initial conditions with the sinus period TF fully 
included, while the bottom graph shows a time period for which the time parameter t has 
been reset at time t0, where t0 is chosen as 00 Ft T  , and that has nonzero initial conditions. 
In the time period that starts at time t0, the loading that is applied prior to time t0 is included 
in the lattice response by the nonzero initial conditions and the time-dependent load should 
therefore be considered to start at time t0. As a function of global time, and thus with zero 
initial conditions, the expression for the part of the load period that starts at time t0 then 
becomes: 

( ) ( ) ( ) ( )0sin FF t F t H T t H t t=  − − (5.27) 

Here, F  is the amplitude and Ω is the dimensionless angular frequency of the pulse load. 
Note here that for the case that 0 0t  , equation (5.27) reduces to the time domain expression 
for the full single-sinus pulse load, while for the case that 0 Ft T , the load is equal to zero. 

For the time period that starts at time t0, we must describe the applied loading to start at 
0t = . The expression for the applied load in this time period can then be obtained from 

equation (5.27), by replacing the time t by the time 0t t+ . In the time period for which the 
time parameter t has been reset at time t0, the expression for the load thus becomes: 

( ) ( )( ) ( )( ) ( )0 0sin FF t F t t H T t t H t=  + − + (5.28) 

Evaluating the Laplace transform to equation (5.28) analytically yields the expression for the 
sinus pulse load in the Laplace domain as: 

( )
( )

( )
0

0 0
02 2

sin cos Fs T t

F
s t t eF s F H T t

s

− −
 +  −

= −
+

(5.29) 

Here, the Heaviside function is included to make sure that the expression for the applied load 
in the Laplace domain is equal to zero for 0 Ft T .  
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In the example considered here, the applied load was chosen as a single sinus pulse load. 
A more elaborate derivation of the Laplace domain expression for this pulse load is given in 
Appendix J.5. In this appendix, additionally the corresponding Laplace domain expressions 
are derived for a continuous harmonic load and a half sinus pulse with a carrier frequency.  

With the Laplace domain expression for the external force ( )F s  known, equations (5.24) 
to (5.26) describe the full algebraic system of equations of motion for the one-dimensional 
discrete-continuous Hooke system. Solving this algebraic system yields the Laplace domain 
displacements un  for all particles n = 1…N  in the discrete-continuous Hooke system. 

5.2.3 Transformation to the time domain accounting for nonzero ICs 
For all particles, the time domain displacements un are obtained from the Laplace domain 
displacements un  by applying and numerically evaluating the inverse Laplace transform. To 
numerically evaluate the inverse Laplace transform, its semi-infinite integral domain is trun-
cated. Appendix J.2 shows how a time domain expression may be obtained by applying the 
inverse Laplace transform to a Laplace domain expression in terms of frequency ω rather 
than in terms of the complex-valued Laplace parameter s. Truncating the semi-infinite do-
main of the inverse Laplace transform at a frequency tr , thus yields the time domain dis-
placements un of a particle n from the Laplace domain displacements un  as: 

 
0

Re
trt

i teu u e d


 


= 
n n (5.30) 

Applying the inverse Laplace transform in accordance with equation (5.30) is only valid if 
its integrand is integrable and has decayed sufficiently within the truncated integral domain, 
so that the part of the integral that is not included, i.e. the integral over the domain 

tr =  , is negligible. 
Let us consider this for the Laplace domain displacement un  of a particle n in the interior 

of the discrete-continuous Hooke system. Assuming that the lattice is homogeneous, the par-
ticle n has a mass M and all Hooke elements have a stiffness Ke, so that the dimensionless 

Figure 5.3: A single-sinus pulse load in global time with zero initial conditions and  
for a new time period with nonzero initial conditions.
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mass and stiffnesses are respectively found as 1M =n  and 1
2e eK K= =n-1,n n,n+1 . The Laplace 

domain displacement un  of a particle n can then be obtained from equation (5.25) as: 

( )
0 0
2 21 2 1

su v u uu
s s
+ +

= +
+ +

n n n-1 n+1
n (5.31) 

For any particle n in the interior of the lattice, the decay of its Laplace domain displacements 
for ω → ∞ must be similar. Thus, if the Laplace domain displacement un  tends to zero for 
ω → ∞, the second term on the right-hand side of equation (5.31) must always tend to zero 
as well. Considering the first term on the right-hand side of equation (5.31) then shows that 
the Laplace domain displacement un  decays with a rate ω-1 for ω → ∞.  

Laplace domain velocity and acceleration for nonzero initial conditions 
The corresponding velocities and the accelerations of particle n may either be obtained from 
time differentiation, i.e. by taking the first and second time derivatives of equation (5.30) 
respectively, or by evaluation of the Laplace transforms of the velocities and accelerations. 
In this case, obtaining the velocity and acceleration by time differentiation of equation (5.30) 
is only allowed for zero initial conditions, because for nonzero initial conditions its integral 
is not convergent. This is illustrated by Figure 5.4a and Figure 5.4b that give the absolute 
values of the corresponding Laplace domain expressions for a one-mass-spring system, 
which according to Appendix J.4 are respectively found as sun  and 2s un , for respectively 
zero and nonzero initial conditions. Here, Figure 5.4b shows that the magnitudes of both 
these expressions do not tend to zero for ω → ∞ for nonzero initial conditions. 

Instead, we derive the Laplace domain expressions for the velocity and acceleration of a 
particle n by evaluating the Laplace transforms of the corresponding time domain expres-
sions. Appendix J.1 shows that evaluating the Laplace transforms of the velocity and accel-
eration, respectively yields the expressions for the Laplace domain velocity and acceleration 
as 0v su u= −n n n  and 2

0 0a s u su v= − −n n n n . 
Substituting equation (5.31) into the expressions for the Laplace domain velocity and 

acceleration that include the initial conditions, we respectively find: 

( )
( )

0 0
0 2 21 2 1

s u uu svv su u
s s

+− +
= − = +

+ +

n-1 n+1n n
n n n (5.32) 

( )
( )

2
0 02

0 0 2 21 2 1

s u usu va s u su v
s s

+− −
= − − = +

+ +

n-1 n+1n n
n n n n (5.33) 

From equations (5.32) and (5.33) it follows that, if we account for the initial conditions in the 
Laplace domain expressions for the velocity and acceleration of a particle n, both the Laplace 
domain velocity and acceleration tend to zero for ω → ∞ and have a decay rate that is similar 
to that of the Laplace domain displacement obtained in equation (5.31). 
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The expression for the Laplace domain displacement u1  of particle 1 contains an addi-
tional term that is related to the applied load, denoted in the Laplace domain as ( )F s . From 
equation (5.29) it can be straightforwardly determined that, for any time t0, the magnitude of 
the Laplace domain expression for the single sinus pulse load decays with a rate of at least 
ω-1 for ω → ∞. Accordingly, the expression for the Laplace domain displacement of particle 
N located at the interface between the lattice and the rod, i.e. uN , contains an additional term 
related to the expression for ( )0f s . From incorporating ( )0f s  into the expression for the 
displacement of particle N, it cannot be unambiguously determined whether the correspond-
ing term in the displacement uN  will tend to zero for ω → ∞. Nevertheless, as ( )0f s  de-
scribes the contribution of the rod’s initial conditions at time t0 in terms of the displacement 
of particle N prior to time t0, its decay for ω → ∞ is expected to be similar to the decay of 
the Laplace domain displacement of any other particle in the lattice. The fact that the term 
related to ( )0f s  in the Laplace domain displacement uN  indeed tends to zero for ω → ∞ for 
either particle in the interior of the lattice has numerically been verified. 

Erroneous response at and shortly after reinitiation of the time parameter 
Since the magnitude of each of the obtained Laplace domain expressions for the displace-
ment, velocity and acceleration of a particle n, given by equations (5.31) to (5.33), tend to 
zero for ω → ∞, the displacement, velocity and acceleration of a particle n in the interior of 
the lattice may respectively be obtained in the time domain by analytically evaluating their 
inverse Laplace transforms. Nevertheless, when these inverse Laplace transforms are evalu-
ated numerically, and their semi-infinite integral domains are truncated, they do not yield the 
proper time domain response. 

To illustrate this, let us consider the time domain expression for the displacement un of a 
particle n in the interior of the lattice, given by equation (5.30), which follows from applying 
the inverse Laplace transform. Appendix J.3 shows that by employing the causality principle, 
the integrand of the inverse Laplace transform, in equation (5.30) given as  Re i tu e n , may 
alternatively be described as either  2Re cosu tn  or  2 Im sinu t− n . These integrands 
can only yield the exact same and correct time domain displacement when the full semi-

Figure 5.4: Absolute value of several expressions related to the Laplace domain displacement of a
one-mass-spring system, with: a) Zero initial conditions; b) Nonzero initial conditions.
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infinite domain of the inverse Laplace transform is taken into account. Therefore, let us com-
pare the time domain displacements that result from numerically applying the inverse Laplace 
transform to each of these integrands. As an alternative to equation (5.30), applying the trun-
cation of the semi-infinite domain of the inverse Laplace transform at frequency tr , the time 
domain displacement un of a particle n may be obtained from the Laplace domain displace-
ments un  as either one of: 

 
0

2 Re cos
trteu u td



 


= 
n n (5.34) 

 
0

2 Im sin
trte u td



 


−
= 

n (5.35) 

Figure 5.5 shows the different instances of the time domain displacement of the mass in a 
one-mass-spring system due to an applied single sinus pulse load, obtained by respectively 
employing the inverse Laplace transform according to equations (5.30), (5.34) and (5.35). To 
enforce the necessity to take nonzero initial conditions into account, the time domain simu-
lation was manually reinitiated at respectively time t0, t1 and t2. Here, Figure 5.5a shows the 
displacements as a function of the global time parameter t, while Figure 5.5b shows the dis-
placements in the time period for which the time parameter t has been reset at time t0. In both 
figures, the dashed black line shows the exact solution. 

Figure 5.5a clearly shows that, each time the time variable is reset and new nonzero initial 
conditions are taken into account, numerically applying the inverse Laplace transform with 
a finite domain of integration yields an error in the displacement near the reinitiation point. 
The error for the different instances of the inverse Laplace transform according to respec-
tively equations (5.30), (5.34) and (5.35) are clearly visible in Figure 5.5b. The displacement 
obtained by applying the inverse Laplace transform according to equation (5.35) is given by 
the red line and has the largest error. This large error can be explained by considering that, 
for a finite domain of integration and thus independent of the truncation frequency tr , the 
term sin t  in equation (5.35) will always be equal to zero for 0t = . Consequently, noting 
that  Im un  is finite for all frequencies within the integral domain, the numerical integration 
over a finite integral domain according to equation (5.35) will also always be equal to zero 
for time 0t =  and can never yield a nonzero result. Thereby, the identity of the inverse La-
place transform according to equation (5.35) is invalid for nonzero initial conditions. 

Although Figure 5.5b clearly shows that applying the inverse Laplace transform accord-
ing to equation (5.34), given by the blue line, yields a relatively accurate displacement, a 
certain error remains. Taking the time derivative of equation (5.34), it can be straightfor-
wardly derived that the initial velocity is related to the corresponding initial displacement as 

0 0u u= . Now, generally the Laplace parameter σ is chosen as a small real positive value 
and is included only to make sure that the inverse Laplace transform over its integrand is in 
the region of convergence. In the limit of the Laplace parameter σ going to zero, it follows 
that 0u  must tend to zero, and thereby does not coincide with the initial velocity at 0t = . As 
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a result, the initial slope of the displacement of the one-mass-spring system, obtained by 
applying the inverse Laplace equation using equation (5.34), is significantly smaller than the 
slope of the exact solution. Nevertheless, its error is significantly smaller than the error ob-
tained by using equation (5.35). 

The green lines in Figure 5.5 show the resulting displacement of the one-mass-spring 
system obtained by applying the inverse Laplace transform according to equation (5.30). By 
expanding the integrand of equation (5.30) using Euler’s formula, it can be straightforwardly 
shown that the resulting displacement must be the exact average of the displacements ob-
tained by employing equations (5.34) and (5.35). The oscillation of the obtained displace-
ments around the exact displacement as a function of time is a logical consequence of the 
error at the time of reinitiation. Note here that the behaviour of the corresponding velocities 
and accelerations of a particle n in the lattice, for which the expressions are given in Appen-
dix J.4, is even worse. This is testified by Appendix J.6, which considers the application of 
the MTFD-method to the one-mass-spring system, and thereby includes all derivations for 
the example of the one-mass-spring system discussed here. 

If we analytically evaluate the inverse Laplace transforms according to equations (5.30), 
(5.34) and (5.35) for a semi-infinite integral domain, i.e. for tr =  , each would yield the 
exact same and correct time domain displacements. Figure 5.5 however shows that numeri-
cally evaluating these inverse Laplace transforms for a finite domain of integration yields 
unsatisfactory results for nonzero initial conditions. In the following, we will introduce a 
formulation for the inverse Laplace transform that greatly improves the performance for a 
finite integration domain and is generally applicable for nonzero initial conditions. 

Improved formulation for the inverse Laplace transform accounting for nonzero ICs 
To improve the results for the numerical evaluation of the inverse Laplace transform when 
using a truncated, and thus finite, domain of integration for a lattice that, in the time domain, 
has nonzero initial conditions, we extract the contribution of the initial conditions from the 
corresponding Laplace domain expression and separately include their contribution in the 
time domain. As a consequence, the remaining Laplace domain expression, henceforth 

Figure 5.5: Error in the time domain displacement due to the truncation of the semi-infinite integral domain of the inverse  
Laplace transform: a) As a function of global time; b) In the time period that is reset at t0.
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denoted as the improved Laplace domain expression, can be considered as a Laplace domain 
expression for a lattice with zero initial conditions. To clarify this, let us consider an arbitrary 
Laplace domain relation f  that is valid for a lattice with a nonzero initial condition f0 in the 
time domain. Extracting the contribution of the nonzero initial condition f0 then yields the 
corresponding time domain relation as: 

( )     ( )
0 01 1 1 1

0imp
f ff t f f f f H t
s s

− − − −   
= = − + = +   

   
(5.36) 

Here, impf  is the so-called improved Laplace domain relation that corresponds to a time do-
main relation with zero initial conditions. Consequently, numerically evaluating the inverse 
Laplace transform of the improved Laplace domain relation impf  over a finite integral domain 
should not result in any erroneous behaviour in the time domain response after reinitiation of 
the time variable and the introduction of new nonzero initial conditions. 

To obtain an improved expression for the Laplace domain displacement of a particle n in 
the interior of the discrete-continuous Hooke system, we do not only extract the contribution 
of the initial displacement, but we also extract the contributions of the initial velocity and the 
initial acceleration from the Laplace domain displacement. Similarly, next to extracting the 
contribution of the initial velocity from the expression for the Laplace domain velocity, we 
additionally extract the contribution of the initial acceleration. Thus, the improved Laplace 
domain expressions for the displacement, velocity and acceleration of a particle n respec-
tively read: 

0 0 0
2 3imp

u v au u
s s s

= − − −
n n n

n n (5.37) 

0 0
2imp

v av v
s s

= − −
n n

n n (5.38) 

0
imp

aa a
s

= −
n

n n (5.39) 

Taking into account that the Laplace domain velocity and acceleration are respectively ob-
tained as 0v su u= −n n n  and 2

0 0a s u su v= − −n n n n , we may express the improved Laplace do-
main expressions for the velocity and acceleration as imp impv su=n n  and 2

imp impa s u=n n  respec-
tively. Applying the inverse Laplace transform then yields the time domain displacement, 
velocity and acceleration of particle n in the discrete-continuous Hooke system for 0t   as: 

 i 21
0 0 02

0

Re
t

t
imp

eu u e d u v t a t


 


+

= + + +
n n n n n (5.40) 

 i
0 0

0

Re
t

t
imp

eu su e d v a t
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+
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 2 i
0

0

Re
t

t
imp

eu s u e d a


 


+

= +
n n n (5.42) 

The expressions for the velocity and the acceleration according to equations (5.41) and (5.42) 
may alternatively be obtained by direct time differentiation of equation (5.40).  

Substituting the Laplace domain displacement un , given by equation (5.31), into equa-
tion (5.37) yields the improved Laplace domain expression for the displacement as: 

( ) ( )
0 0 0

32 2 21 2 1
imp

su v a u uu
ss s s

+ +
= − − +

+ +

n n n n-1 n+1
n (5.43) 

The improved Laplace domain displacement according to equation (5.43) decays with a rate 
ω-3 for ω → ∞. Consequently, the improved Laplace domain velocity and acceleration re-
spectively decay with a rate ω-2 and ω-1 for ω → ∞. Evidently, comparing equation (5.43) 
with equation (5.31) shows that the improved Laplace domain expressions decay and tend to 
zero for ω → ∞ with a rate ω2 faster than the original Laplace domain expressions. 

Alternate time domain expressions following from the causality principle 
By employing the causality principle, as demonstrated in Appendix J.3, we may, as an alter-
native to equation (5.40), obtain the time domain displacement of a particle n in the discrete-
continuous Hooke system for 0t   as either one of: 

  21
0 0 02

0

2 Re cos
t

imp
eu u td u v t a t


 


+

= + + +
n n n n n (5.44) 

  21
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0

2 Im sin
t

imp
e u td u v t a t


 


+
−

= + + +
n n n n (5.45) 

Figure 5.6: Error in the displacement due to the truncation of the semi-infinite domain of: a) Using the original  
expression; and b) Using the improved expression for the inverse Laplace transform.
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Corresponding alternative expressions for the velocity and acceleration of a particle n in the 
discrete-continuous Hooke system may be obtained from equations (5.44) and (5.45) by dif-
ferentiation to time. The resulting expressions are given in Appendix J.4. 

To illustrate the improvements of the time domain displacements resulting from numeri-
cally applying the inverse Laplace transform according to respectively equations (5.40), 
(5.44) and (5.45) compared to numerically applying the inverse Laplace transform according 
to the original expression, we here once again consider the one-mass-spring system. Figure 
5.6a is a close-up of Figure 5.5b and thus shows the displacements that were previously ob-
tained by numerically applying the inverse Laplace transform according to respectively equa-
tions (5.30), (5.34) and (5.35) right after the lattice was reinitiated at time t0. For the same 
time segment, Figure 5.6b shows the displacements obtained by applying the inverse Laplace 
transform according to respectively equations (5.40), (5.44) and (5.45). 

According to Figure 5.6b equations (5.40), (5.44) and (5.45) each yield practically the 
same time domain displacement as the exact displacement, again given by the dashed black 
line. Comparing Figure 5.6a and Figure 5.6b it is apparent that, for the example of the one-
mass-spring system, the behaviour near the nonzero initial conditions has significantly im-
proved by numerically applying the inverse Laplace transform according to equations (5.40)
, (5.44) and (5.45). The improvement is even more striking when noting that the displace-
ments of Figure 5.6a were obtained using a numerical integration scheme with a four times 
finer mesh than the numerical scheme used to acquire the displacements of Figure 5.6b. 

Figure 5.7a and Figure 5.7b respectively show the velocities and accelerations of the one-
mass-spring system resulting from respectively applying the inverse Laplace transform ac-
cording to equations (5.41) and (5.42), as well as the velocities and accelerations that follow 
from applying the inverse Laplace transforms that are obtained by respectively differentiating 
equations (5.44) and (5.45) to time once and twice. From Figure 5.7a it is evident that, just 
like the displacements, the obtained velocities of the one-mass-spring system are in corre-
spondence with the exact solution. Although significantly improved, Figure 5.7b clearly 
shows that, using the improved formulation for the inverse Laplace transform, the accelera-
tions of the one-mass-spring system resulting from equations (5.40) and (5.44) still have a 
small deviation from the exact solution at and shortly after resetting the time parameter, i.e. 

Figure 5.7: a) Velocity; and b) Acceleration of the one-mass-spring system obtained using the improved  
expressions for the inverse Laplace transform accounting for nonzero initial conditions.
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at and shortly after time t0. The error of the accelerations at the reinitiation point is much 
more pronounced than the error of either the displacement or velocity because the decay of 
the improved Laplace domain acceleration for ω → ∞ is much slower than the decay of the 
corresponding relations for the displacement and velocity. When numerically evaluating the 
inverse Laplace transform of the accelerations, using a smaller frequency interval, as well as 
increasing the truncation frequency tr  will both reduce the absolute error. 

5.2.4 Response of the 1D Hooke system using the MTFD-method 
The parameters of the one-dimensional discrete-continuous Hooke system, depicted in Figure 
5.2, are here chosen in accordance with the parameters of the one-dimensional discrete-con-
tinuous BKV system for which the response is depicted in Figure 3.5 in Section 3.2.5. The 
one-dimensional discrete-continuous Hooke system thus has a Young’s modulus 

20 MPaE = , a mass density 32000 kg m = and a cross-section area 21 mA dy dz=  = . 
The featured one-dimensional Hooke lattice consists of 80 particles at an interparticle dis-
tance of 0.2 m= , and the mass of its particles and the stiffness of its elements respectively 
follow from the general properties as 400 kgM =  and 100 MN meK = . Consequently, the 
particle frequency of the homogeneous Hooke lattice is found as 0 707.1 rad s = . 

Figure 5.8 shows the longitudinal displacements along the one-dimensional discrete-con-
tinuous Hooke system at eight consecutive time moments that are due to a single-sinus pulse 
load applied to particle 1. In its dimensionless form, the pulse load is expressed as: 

( ) ( ) ( ) ( )sin FF t F t H T t H t=  −

In this case, the amplitude and angular frequency of the sinus in the pulse load are respec-
tively chosen as 1 MNF = and 80 rad sF = . The given load frequency F corresponds 
to a dimensionless frequency of the sinus in the applied single-sinus pulse load of 

0.113F = . The period TF of the applied pulse consists of exactly 200 time steps and the 
total time simulation consists of a 1000 time steps. 

The continuous red line in Figure 5.8 gives the displacement that results from applying 
the MTFD-method, where the time parameter was reinitiated every 100 time steps, while the 
dashed blue line gives the displacements resulting from the frequency domain solution. Note 
here that, without reinitiation of the time parameter, the MTFD-method and the frequency 
domain solution would be exactly the same. At each reinitiation, the error of the acceleration, 
as portrayed by Figure 5.7b for the one-mass-spring system, also occurs for the discrete-
continuous Hooke system. Under the loads applied here however, the magnitude of this error 
is only slightly larger than the precision of the numerical model. Consequently, only in the 
vicinity of each reinitiation point, the time domain response of the MTFD-method and fre-
quency domain solution are slightly different, while Figure 5.8 verifies that these differences 
are negligible on the depicted scale.  

In Figure 5.8, the continuous green line shows the displacement resulting from applying 
a Runge-Kutta scheme to solve the system directly in the time domain, here denoted as the 
time domain solution. The displacement obtained by the time domain solution is slightly 
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shifted rightward compared to the displacements found by the MTFD-method and the fre-
quency domain solution, but as the continuous green line, which is behind the continuous red 
and dashed blue lines, is hardly visible in Figure 5.8, the differences are very small.  

To compare the calculation time spent by respectively the MTFD-method, the frequency 
domain solution and the time domain solution, we consider the average of ten runs for each 
corresponding numerical model. The purpose of this is to minimize the influence on the cal-
culation time of other computer processes running in the background, while running each of 
the numerical models. Here, we consider the calculation time as the time spent on actually 
solving the equations and for example time spent on data traffic and output are not included. 
For the MTFD-method and the frequency domain solution this involves solving the algebraic 
system of equations in the frequency domain and applying the inverse Laplace transform to 
obtain the time domain displacements for every time step. For the time domain solution the 
calculation time solely consists of applying the Runge-Kutta scheme to obtain the time do-
main displacement for every time step directly.  

For each method of solution, Table 5.1 gives the range as well as the average of the cal-
culation times that were found for the ten runs and thereby gives a good impression of the 
numerical effort that each of the numerical models require. The frequency domain solution 
on average takes approximately 1.75 seconds of calculation time during the numerical simu-
lation. This is logically the least amount of required calculation time as it only needs to solve 
the algebraic system of equations in the frequency domain once and for zero initial condi-
tions. Performing the numerical simulation using the MTFD-method on average requires ap-
proximately 2.85 seconds of calculation time. Thus, reinitiating the time parameter every 100 
time steps and consequently solving the algebraic system of equations in the frequency do-
main another nine times for nonzero initial conditions requires a little over a second addi-
tional calculation time. At an average of approximately 5.27 seconds of required calculation 
time, the time domain solution is significantly slower. Linearly extrapolating the required 

Figure 5.8: Longitudinal displacement along the one-dimensional discrete-continuous linear-elastic Hooke system  
at successive time moments due to a single-sinus pulse load applied at the first particle.
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calculation time for the MTFD-method as a function of the amount of time-parameter-rei-
nitiations, it follows that at roughly 32 reinitiations of the time parameter, the MTFD-method 
and the time domain solution will require the same amount of calculation time. 

Since the MTFD-method is here manually applied to the rather simplistic discrete-con-
tinuous Hooke system, it does not actually yield any computational profit, after all, the Hooke 
system may always be evaluated using the frequency domain solution. Nevertheless, once 
we consider the nonlinear behaviour of for example the BKV system, the frequency domain 
solution is no longer valid to determine the overall response of the system. Additionally, 
taking into account that a time domain solution requires more calculation time when nonlin-
ear events are accounted for, the real potential of the MTFD-method is found in its application 
to a lattice that allows for nonlinear phenomena. In the following section, we will therefore 
apply the MTFD-method to a discrete-continuous BKV system. Compared to the discrete-
continuous Hooke system, the discrete-continuous BKV system does not only pose additional 
challenges by allowing for nonlinear events, but also by incorporating viscous damping. 

5.3 The MTFD-method applied to a discrete-continuous BKV system 
In Section 5.2, the mixed time-frequency domain, or MTFD-, method was applied to a one-
dimensional discrete-continuous Hooke system to demonstrate how the method works and to 
emphasize several issues that must be accounted for when applying this method. As the 
MTFD-method is particularly developed for media that incorporate nonlinear effects, ergo 
non-smooth dynamic systems, its application to the Hooke system is superfluous. In this sec-
tion, we will therefore apply the MTFD-method to the discrete-continuous BKV system that 
consists of a one-dimensional BKV-lattice in the near field and a viscoelastic rod in the far 
field, as previously depicted in Figure 3.2. Note here that, although the BKV-lattice allows 
for the non-smooth dynamic response to an externally applied load, nonlinear phenomena are 
only allowed within the domain of the BKV-lattice and should not reach the interface with 
the viscoelastic rod. After all, the interface with the viscoelastic rod is chosen at such a dis-
tance from the load that the system response at this interface is linear.  

In Section 5.3.1, we will first derive the equation of motion for the interface between the 
BKV-lattice and the viscoelastic rod specifically accounting for nonzero initial conditions 
(ICs). Subsequently, in Section 5.3.2, we state the governing system of equations of motion 
for the discrete-continuous BKV system accounting for nonzero initial conditions in the La-
place domain. Then, in Section 5.3.3, we will present the response of the discrete-continuous 
to an external load source as obtained by numerical implementation of the MTFD-method, 

Table 5.1: Minimum, average and maximum calculation times for ten separate runs of  
the MTFD-method, frequency domain and time domain solutions.

TD-solutionFD-solutionMTFD-method

5,087 s1,607 s2,434 sMin

5,271 s1,747 s2,847 sAverage

5,477 s1,856 s3,370 sMax
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and verify the method by comparing its results to the corresponding response obtained by 
using a direct time domain approach. Finally, the advantages and disadvantages of the 
MTFD-method are discussed in Section 5.3.4. 

5.3.1 Boundary formulation for the BKV system with nonzero ICs 
The behaviour of the viscoelastic rod in interaction with the one-dimensional BKV lattice 
was previously described in the time domain by equations (3.11) to (3.13). Applying the 
Laplace transform with respect to time as derived in Appendix J.1, and thereby accounting 
for nonzero initial conditions, yields equations (3.11) to (3.13) in the Laplace domain as: 
 

( ) ( ) ( ) ( ) ( ) ( )2 1
0 0 02, 1 2 ,s u x s s u x s su x v x u x  − + = + −  (5.46) 
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+ +

 − + − = + −

N N N-1,N N-1,N N-1,N

N N N N-1,N N-1,N
 (5.47) 

( ),Intu u x s=N  (5.48) 
 
Here, ( )0u x , ( )0v x , 0uN  and 0vN  are the initial displacements and initial velocities along the 
viscoelastic rod and of the boundary particle N in the time domain respectively. Whereas 
equations (5.47) and (5.48) are respectively the force and displacement relations at the dis-
crete-continuous interface, equation (5.46) gives the equation of motion of the viscoelastic 
rod and is valid only for Intx x . 

Introducing 1 2s s s = +  and choosing the featured square root such that the real part 
of s  is positive, i.e. ( )Re 0s  , the general solution to equation (5.46) that accounts for 
the proper behaviour of the viscoelastic rod for x → ∞ reads: 
 

( ) ( )2, ,s x
pu x s Ae u x s−

= +  (5.49) 
 
The first term on the right-hand side of equation (5.49) is the solution to the homogeneous 
version of equation (5.46), previously given as equation (3.14), where the amplitude A may 
be derived by considering the displacement relation at Intx x=  and, comparing its expression 
to the dispersion relations given in Appendix E.1, s  can be considered as a complex-valued 
wavenumber. Furthermore, ( ),pu x s  denotes the particular solution to equation (5.46), which 
exclusively exists for nonzero initial conditions for the rod.  

In accordance with the approach used for the discrete-continuous Hooke system, applying 
the differentiation to space to equation (5.49) and isolating the Laplace domain displacement 
of the viscoelastic rod, we may express its spatial derivative as: 
 

( ) ( ) ( ) ( ), 2 , 2 , ,p pu x s s u x s s u x s u x s  = − + +  (5.50) 
 
Substituting equation (5.50) into equation (5.47), accounting for equation (5.48), and 
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collecting all nonzero initial conditions on its right-hand side, we find the Laplace domain 
interface equation as: 
 

( ) ( ) ( ) ( )2
0 0 00e e eM s u C s K e s u M su v C e f s+ + + = + + +N N N-1,N N-1,N N-1,N N N N N N-1,N N-1,N  (5.51) 

 
Here, the dynamic stiffness of the viscoelastic rod is equal to the dynamic stiffness previously 
found for the lattice with zero initial conditions and reads ( ) 1

2 2 4s s s = + . Furthermore, 
the expression for ( )0f s  reads: 
 

( ) ( ) ( ) ( )  ( )1
0 02 1 2 2 , ,p Int p Int Intf s s s u x s u x s u x  = + + −  (5.52) 

 
For the case of zero initial conditions, the right-hand side of equation (5.51) is equal to zero, 
so that equation (5.51) exactly matches the corresponding interface equation for zero initial 
conditions previously derived as equation (3.20). 

Obtaining the particular solution 
In correspondence with the derivation of the particular solution for the linear-elastic rod, we 
use a Green’s function approach to find the particular solution to the equation of motion of 
the viscoelastic rod. To do this, we express equation (5.46) as: 
 

( ) ( ) ( ) ( ) ( )2 1
2, , , ,

Intx

s u x s u x s f x s f s x d    
+

− = = −  (5.53) 

 
Here, the variable of integration ξ gives a coordinate along the linear-elastic rod, so that the 
integration is applied over the domain Intx =  . The expression for ( ),f s  is found as: 
 

( )
( ) ( ) ( )0 0 0,

1 2
su v u

f s
s

   




+ −
=

+
 

 
To obtain the particular solution to the equation of motion for the semi-infinite viscoelastic 
rod, given by equation (5.53), we may apply the same Green’s function approach as previ-
ously used for the discrete-continuous Hooke system in Section 5.2.1. In fact, as shown in 
Appendix I.4, the particular solution for the viscoelastic rod may be obtained directly from 
the particular solution for the linear-elastic rod by substituting s s= . The particular solution 
to the equation of motion for the semi-infinite viscoelastic rod is thus found as: 
 

( ) ( ) ( ) ( ) ( )2 21 1, , ,
2 2Int

x
s x s x

p

x x

u x s f s e d f s e d
s s

  

 

   
+

− − − −
= +   (5.54) 

 
Substituting the particular solution, given by equation (5.54), and its spatial derivative, 



 243 

obtained by applying Leibniz’ rule for differentiation of integrals, into equation (5.52) as well 
as taking into account the expression for ( ),f s , the expression for ( )0f s  becomes: 
 

( ) ( ) ( ) ( ) ( ) ( )( )2
0 0 0 0 0

Int

Int

s x
Int

x

f s u x e su v u d 
     

+
− − = − + + −  (5.55) 

 
Applying integration by parts to the part of the integrand that is related to ( )0u   yields: 
 

( ) ( ) ( ) ( ) ( ) ( )2 22
0 0 0 02 2Int Int

Int Int

s x s x
Int Int

x x

u e d u x s u x s u e d  
    

+ +
− − − − = − − +   (5.56) 

 
Substituting equation (5.56) into equation (5.55) and noting that the initial displacement of 
the rod’s tip is equal to the initial displacement of the boundary particle, i.e. ( )0 0Intu x u= N , 
allows us to rearrange the expression for ( )0f s  as: 
 

( ) ( ) ( ) ( )
2

2
0 0 0 02 Int

Int

s x

x

sf s s u e u v d
s

 
   

+
− −  

= + + 
 


N  (5.57) 

 
The integral in equation (5.57) describes the contribution of the rod’s initial conditions to the 
interface equation. In the current form, the expression for ( )0f s  does not yet describe the 
Laplace domain interface equation exclusively in terms of the one-dimensional BKV-lattice, 
which would be true if zero initial conditions were considered. In the following, we will show 
how the explicit dependency on the motion of the viscoelastic rod can be removed from the 
interface equation by further analysing the expression for ( )0f s  given by equation (5.57). 

Analysis of the remaining integral expression 
Following Huygens’ principle, the response of the lattice-rod interface can be considered as 
the input for the response of the viscoelastic rod. Therefore, the displacement and velocity of 
the viscoelastic rod can always be expressed in terms of the displacement and velocity of the 
boundary particle N, by accounting for the full response history of this particle.  

To this purpose, we note that the initial displacement ( )0u   and the initial velocity ( )0v   
along the rod for a new time period respectively correspond to the displacement and the ve-
locity along the viscoelastic rod at time t0 in terms of global time. We then express the dis-
placement and the velocity at time t0, given in the integral of equation (5.57), as the inverse 
Laplace transform of the corresponding Laplace domain expressions. This yields equation 
(5.57) as: 
 

( ) ( ) ( )  ( ) 
2

2 1 1
0 ˆ ˆ0 2 , ,ˆ ˆInt

Int

s
s x

s
x

sf s s u e u v ds s
s

 
   

+
− − − − 

= + + 
 


N  (5.58) 
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Here, ŝ is the complex-valued Laplace parameter that corresponds to the application of the 
inverse Laplace transform with respect to time t0, which is denoted as such to distinguish it 
from the Laplace parameter s already appearing in equations (5.57) and (5.58). The corre-
sponding inverse Laplace transform is defined as: 
 

( )  ( ) 0

i

ˆ
i

ˆ1 1, lim , ˆ
2

ˆ
i

ˆ s
s

ts s sf f e d
 


 

 


+

−

→
−

=   (5.59) 

 
For the inverse Laplace transforms in equation (5.58), we consider the response of the visco-
elastic rod at time t0 in time globally, so in terms of its original time parameter that has not 
been reset, and thus for zero initial conditions. To obtain these inverse transforms, we may 
therefore disregard the particular solution that was previously included in for example equa-
tion (5.49). Accounting for the proper behaviour of the rod at ξ → ∞, the Laplace domain 
displacement along the viscoelastic rod is then found as ( ) ˆ 2ˆ, ssu Ae   −

= , where 
ˆ ˆ ˆ1 2s s s = + . Taking the displacement relation at the lattice-continuum interface into ac-

count, given by equation (5.48), and noting that ( ) ( )ˆ ˆ, ,ŝ s sv u =  and therefore 
( ) ( )ˆ ˆ ˆs s sv u=N N , the Laplace domain displacement and velocity along the viscoelastic rod 

for zero initial conditions respectively follow from equation (5.49) as: 
 

( ) ( ) ( )ˆ 2ˆ, ˆ Ints xu u es s  


− −
= N  (5.60) 

( ) ( ) ( )ˆ 2ˆ, ˆ Ints xv v es s  


− −
= N  (5.61) 

 
In these expressions, the Laplace parameter ŝ has been included as an argument to emphasize 
that the given displacements and velocities depend on ŝ rather than on s.  

Substituting the Laplace domain displacement and velocity of the viscoelastic rod, i.e. 
equations (5.60) and (5.61), into equation (5.58), changing the order of integration and ana-
lytically solving the remaining integral over the semi-infinite domain of the viscoelastic rod, 
then yields: 
 

( ) ( ) ( )0 ˆ

2
1

0
1 12

ˆ2
ˆ ˆs

s s sf s s u u v
s s s




 

 −
   

= + +  
+   

N N N  (5.62) 

 
As the displacement and velocity of the boundary particle in equation (5.62) are both related 
to the Laplace parameter ŝ, the inverse Laplace transforms with respect to this Laplace pa-
rameter may be obtained as the convolution of its separate components. Consequently, equa-
tion (5.62) becomes: 
 

( ) ( ) ( ) ( )
0

ˆ

2
1

0 0 0 0

0

1 12
ˆ2 s

t sf s s u u t v t d
s s s




 

    −   
= + − + −   

+   


N N N  (5.63) 
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The remaining integral in the expression for ( )0f s  in equation (5.69) is a convolution inte-
gral over the time period 00 t = . Here, 0 =  is the absolute starting point in time, i.e. the 
time at which the complete system was at rest before any loading is applied and thus has zero 
initial conditions, while 0t =  is the last time moment at which the time parameter was reset 
and new nonzero initial conditions were introduced. 

The inverse Laplace transform in the convolution integral of equation (5.63) cannot be 
solved analytically and with a decay rate 

1
2̂

−  for ̂  → ∞, its argument does not tend to zero 
fast enough to evaluate it numerically. Alternatively, we could substitute ( ) ( )ˆ ˆ ˆs s sv u=N N  
into equation (5.62) and solve the remaining inverse Laplace transform for ( )ŝuN , but this 
will only reduce the decay rate of its argument for ̂  → ∞ by an order ̂ . Instead, we both 
multiply and divide the argument of the inverse Laplace transform in equation (5.62) by ŝ 
and rearrange the resulting Laplace domain expression. Substituting ( ) ( )ˆ ˆ ˆs su v s=N N  and 

( ) ( )ˆ ˆ ˆs sv a s=N N  then yields: 
 

( )
( )

( ) ( ) ( )
0 2

1
0 0 0 0

0
ˆ

12
ˆ2ˆs

t sf s s u v t a t d
ss ss




 

    −
    

= + − + −   
+    


N N N  (5.64) 

 
Compared to equation (5.63), the decay rate of the inverse Laplace transform for ̂  → ∞ 
remaining in equation (5.64) now has increased by an order ̂  and thereby decays suffi-
ciently fast to numerically evaluate the inverse Laplace transform for a finite integral domain. 

Solution to the remaining inverse Laplace transform 
To evaluate the inverse Laplace transform that remains in equation (5.64), we denote its ar-
gument, i.e. the corresponding Laplace domain expression, as ( )ˆf s . Substituting the expres-
sions for s  and ŝ , we rearrange the Laplace domain expression for ( )ˆf s  as: 
 

( )
( )

( ) ( )( )
( )

( ) ( )2 22 2

ˆ ˆ2 4 1 2 1 2 2 4
ˆ

ˆ ˆ2 4 2 4ˆˆ ˆ2 4 2 4
s s s s s

f s
s s s ss s s s s

   

  

+ + + +
= −

+ − ++ − +
 (5.65) 

 
Here, note that, as before, the featured square roots are chosen such that their real parts are 
positive, so that ( )Re 0s   and the general solution for the displacement in the rod, given 
by equation (5.49), satisfies the infinity condition.  

Now, the first term on the right-hand side of equation (5.65), henceforth denoted as ( )1 ˆf s
, is a polynomial function with regard to ŝ . Consequently, its inverse Laplace transform with 
respect to ŝ can be obtained analytically and reads:  
 

( ) 
( )

( ) ( )1
ˆ
1 2

1
2 4ˆ 2 1 1 2

4 1
s

s

s
ss

f s s e e s
s s




 



−

− +
 +

= + − − + 
 +  

 (5.66) 

 
The inverse Laplace transform of the second term on the right-hand side of equation (5.65), 
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henceforth denoted as ( )2 ˆf s , cannot be obtained accordingly. Instead, we evaluate its in-
verse Laplace transform with respect to ŝ using contour integration by means of the residue 
theorem. The application of the contour integration to obtain the inverse Laplace transform 
of ( )2 ˆf s  is extensively discussed in Appendix I.5. Note here that the contour integration is 
performed to obtain an inverse Laplace transform and thus corresponds to a line integral 
running parallel to the imaginary axis, while previously contour integration was applied to 
determine the inverse Fourier transform and therefore considered an integral along the real 
axis. Particular about applying the contour integration to ( )2 ˆf s  in comparison with for ex-
ample performing the contour integration to obtain equation (5.66), is that, next to the exist-
ence of poles at respectively ( )1̂ 1 2s ss  = − +  and 2ŝ s = , additionally there is a branch 
point at ( )ˆ 1 2s • = − , and therefore a branch cut is applied along the real axis for 

( )ˆ 1 2s = − − . Ultimately, the inverse Laplace transform of ( )2 ˆf s  is found as: 
 

( ) 
( )

( )
( )

( ) ( )

1
2 ˆ

1 1 2
2ˆ 22 ˆ

ˆ1 2 2 42 4 1ˆ ˆ1 2
ˆ4 1 2 4 2 4

s
s

s

s
s e ss

f s e e
s

d
s

s
s

s
s

s
s s

 


 


   

−

−

−

+

−

  + − −+
= − + − 

 + + − + 
  (5.67) 

 
Here, note that the square root in the numerator of the integrand in equation (5.67) has been 
rewritten using ˆ ˆ2 4 i 2 4s s + =  − −  to assure that the square root is always real on the 
considered domain of the contour integral. Thereby, the remaining integral is an integral over 
the real axis of ŝ that decays sufficiently fast for ̂  → -∞ that thus can be evaluated numer-
ically. Subtracting equation (5.67) from equation (5.66) then finally yields the inverse La-
place transform of ( )ˆf s , denoted as the convolution term ( )f  , in terms of the time domain 
operator τ, as: 
 

( )
( )

( )

( ) ( )

1
2 ˆ

1 2
22

ˆ1 2 2 42 4 1 ˆ1
ˆ2 1 2 4 2 4ˆ

s s
s e ss

f
s

s s s
s e ds

s s s

 


 

 
   

−−

+

−

  + − −+
= + − − 

 + + − + 
  (5.68) 

 
And thus, the final expression for ( )0f s  becomes: 
 

( ) ( ) ( ) ( )
0 2

0 0 0 0

0

2
t sf s s u f v t a t d

s


    
 

= + − + − 
 


N N N  (5.69) 

 
The expression given by equation (5.69) now exclusively consists of terms related to the 
boundary particle N. Note that the approach applied here is different from the approach ap-
plied to obtain equation (5.23) for the linear-elastic rod in Section 5.2.1. Appendix J.7 how-
ever shows that applying the derivation above to the problem for the linear-elastic rod also 
leads to equation (5.23). Alternatively, for zero damping s  and ŝ  are respectively replaced 
by 2s  and ˆ 2s , and the remaining inverse Laplace transform can be evaluated straight-
forwardly, so that equation (5.63) reduces to the expression for the linear-elastic rod, previ-
ously given by equation (5.23). 
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5.3.2 Governing Laplace domain equations for the 1D BKV-lattice 
The governing system of equations of motion for the one-dimensional discrete-continuous 
BKV system, depicted in Figure 5.9, is previously given in Section 3.2.4. Because the system 
in Section 3.2.4 is given in the time domain, it holds for both zero and nonzero initial condi-
tions. For the application of the MTFD-method, we here give the corresponding Laplace do-
main system of equations that accounts for nonzero initial conditions and for the different 
motion states according to which any BKV-element may behave. 

Applying the Laplace integral transform to the time domain system of equations of mo-
tion, previously given in Section 3.2.4, accounting for nonzero initial conditions yields the 
dimensionless equations of motion for particles =n 1 N -1  as: 

( ) ( ) ( )2 1
0 0 ;0e e state e e statestatelockM s u C s K e F F s M su v C e s K −− + − = + + − −1 1 1,2 1,2 1,2 1,2 1 1 1 1,2 1,2 1,2 1,2 (5.70) 

( )

( )

2

1
0 0 ;0

state e e statelock lock

e e statestate

M s u F F C s K e F

M su v C e s K −

+ + − + − =

+ − −

n n n-1,n n-1,n n,n+1 n,n+1 n,n+1 n,n+1

n n n n,n+1 n,n+1 n,n+1 n,n+1
(5.71) 

Note here that the Laplace domain expression for the load applied at particle 1, denoted as 
( )F s , must be adapted such that it is valid for the time period reinitiated at time t0. For a 

single sinus pulse load, the corresponding expression for ( )F s is previously given by equa-
tion (5.29). Appendix J.5 gives the derivation of the expression for ( )F s that is valid for the 
time period reinitiated at time t0, for respectively the single sinus pulse load, a continuous
harmonic load and a half sinus pulse with a carrier frequency.

In equations (5.70) and (5.71), stateen,n+1  denotes the total elongation of the rheological ele-
ment between particles n and n+1, while ;0stateen,n+1  denotes the corresponding elongation at time 
t0. Furthermore, state n,n+1  is included to account for the constant elongation of the Bingham 
element during stick, while stateF n-1,n  is the Laplace domain expression for the force in the rhe-
ological element between particles n-1 and n. Finally, lockF n-1,n  and lockF n,n+1  give the forces in 
the parallel springs that are activated when the corresponding BKV elements lock.  

For the case that the BKV element between particles n and n+1 is in stick-state, we find: 

( ) 1
0 ;0

;0 0 ;0

, ,

, , 0.

state e e e e stateB

statestate B lock

F C s K e C e s K e e e

e e e F

−= + − − =

= = =

n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1

n,n+1 n,n+1 n,n+1 n,n+1 n,n+1

Figure 5.9: The one-dimensional semi-infinite discrete-continuous BKV system. 
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While for the case that the BKV element between particles n and n+1 is in slip-state, we find: 

1
;0 ;

;0 ;0

sgn , ,

, 0, 0.
state cr stateB KVBf f B slip

statestate KV lock

F C se C e s F F e e

e e F

−= − + =

= = =

n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1

n,n+1 n,n+1 n,n+1 n,n+1

In the expressions given above, the subscripts KV and B respectively refer to the Kelvin-
Voigt and Bingham elements that together comprise the BKV element. For any BKV element 
between particles n and n+1 that is in slip-state, the following equation of motion for the slip-
node intermediate particles n and n+1 is added to the system of equations of motion: 

( ) 1
;0 ;0:sgne e cr eKV B KV Bf B slip fC s K e C se s F F C e C e−+ − − = −n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 (5.72)

Finally, for the case that the BKV-element between particles n and n+1 is in lock-state, we 
find: 

( )

( )

1
0 ;0

1
;0 0 ;0 0

, ,

, , .

state e e e e stateB

statestate B lock lock

F C s K e C e s K e e e

e e e F K e s D

−

−

= + − − =

= = = + 

n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1

n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1

When applying the MTFD-method, the state-transitions can straightforwardly be monitored 
in the time domain according to the rules discussed in Section 2.3.5. Here, note that all pos-
sible state-transitions are instant nonlinear events, and that the resulting system of equations 
of motion is linear for the duration of each motion state. 

Finally, note that the equation of motion for the boundary particle N is previously given 
as the interface equation (5.51), where the expression for ( )0f s  in equation (5.51) is given 
by equation (5.69). Here, note that the equation of motion for the boundary particle N is not 
subject to different motion states.  

Equations (5.70) to (5.72), together with equation (5.51), describe the full dimensionless 
system of equations of motion for the one-dimensional discrete-continuous BKV system in 
the Laplace domain accounting for nonzero initial conditions and for different motion states 
that is thereby applicable to the MTFD-method. Solving the algebraic system of equations of 
motion in the Laplace domain then yields the Laplace domain displacements of all particles 
in the BKV system. To obtain the response of the discrete-continuous BKV system in the 
time domain, we employ the improved formulations for the inverse Laplace transform given 
by equations (5.40) to (5.42). 

5.3.3 Response of the 1D BKV system using the MTFD-method 
In this section, both a linear and a nonlinear response of the discrete-continuous BKV system 
to an applied single sinus pulse load are presented and discussed. Subsequently, we discuss 
the calculation times that were required for the different solution methods to obtain the linear 
and nonlinear responses of the BKV system. 
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Linear response of the discrete-continuous BKV system to a single sinus pulse load 
To verify the MTFD-method, and its application to the discrete-continuous BKV system, 
depicted in Figure 5.9, we have first simulated the longitudinal response to a unit single sinus 
pulse load where the properties of the BKV system are chosen such that its response is ex-
clusively linear. The purpose of performing this simulation is to verify that the viscous damp-
ing of the BKV system is correctly incorporated in the equations of motion for both the lattice 
and the lattice-rod interface. The resulting longitudinal response is depicted in Figure 5.10 
for eight consecutive time moments.  

The parameters that are used here to obtain the response of the discrete-continuous BKV 
system by means of the MTFD-method match those previously used in Section 3.2.5 to obtain 
Figure 3.5, as well as those used in Section 5.2.4 to obtain Figure 5.8. Consequently the 
Young’s modulus, density and damping ratio of the discrete-continuous BKV system are 
chosen as 20 MPaE = , 32000 kg m =  and 0.75 =  respectively. As before, the visco-
elastic rod has a cross-section area of , while the one-dimensional BKV lattice con-
sists of 80 particles at an interparticle distance of 0.2 m= . The mass, damping and stiffness 
in the lattice elements then follow from equation (3.9) as 400 kgM = , 212.1 kNs meC =

and 100 MN meK = . Consequently, the particle frequency in the BKV-lattice is found as 
0 707.1 rad s = . The amplitude and angular frequency of the single sinus pulse load are 

respectively chosen as 1 MNF =  and 80 rad sF = . The duration of the applied single si-
nus pulse is set to exactly 200 time steps and the total time simulation lasts a 1000 time steps. 
For the MTFD-method and the frequency domain solution, the time domain displacements 
are obtained from the frequency domain displacements numerically. To this purpose, the 
semi-infinite domain of the inverse Laplace transform is truncated at 1200 rad str =  and 
discretized using 300 frequency steps. 

To assure the linear viscoelastic behaviour of the discrete-continuous BKV system, the 
critical friction force of the featured Bingham elements is chosen larger than the amplitude 

21A m=

Figure 5.10: Displacement along the one-dimensional discrete-continuous BKV system, with properties 
 that yield a linear response, at consecutive time moments due to a single sinus pulse load.
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of the single sinus pulse load, i.e. crF Fn,n+1 . As a consequence the Bingham elements will 
not be activated and the discrete-continuous BKV system acts as a purely viscoelastic system 
composed of a one-dimensional Kelvin-Voigt lattice and a viscoelastic rod. 

In Figure 5.10, the displacements along the discrete-continuous BKV system that result 
from applying the MTFD-method are given by the continuous red line, while the dashed blue 
line gives the longitudinal displacements that result from the frequency domain solution. The 
only difference between the two simulations is that for the MTFD-method, the time parame-
ter was reinitiated every 100 time steps, where at every reinitiation, the algebraic system of 
Laplace domain equations of motion is solved anew for a corresponding set of nonzero initial 
conditions. Additionally, the continuous green line in Figure 5.10 gives the displacements 
along the BKV system obtained by solving the system of differential equations directly in 
the time domain using a Runge-Kutta scheme. Note here that the linear response of the BKV 
system obtained through the time domain solution was previously given in Figure 3.5 by the 
dashed blue line. As a reference, the yellow line in Figure 5.10 portrays the purely linear-
elastic response of the discrete-continuous Hooke system, previously depicted in Figure 5.8. 

Comparing the longitudinal displacements along the BKV system obtained by applying 
the MTFD-method with the responses of the BKV system obtained by both the frequency 
and time domain solutions, it is evident that the viscous damping has correctly been incorpo-
rated into the governing system of Laplace domain equations of motion that accounts for 
nonzero initial conditions and thereby allows for the application of the MTFD-method. 

Although, on the scale of Figure 5.10, the difference between the three obtained viscoe-
lastic responses of the one-dimensional discrete-continuous BKV system appear to be negli-
gible, the differences between the three solution methods become apparent if we consider the 
reflection of the corresponding incident wave at the lattice-rod interface depicted in Figure 
5.11a for four consecutive moments in time. The scale of the response given by Figure 5.11a 
is approximately 100 times smaller than the scale of the response depicted in Figure 5.10. 

Figure 5.11: Reflection of the incident wave along the one-dimensional discrete-continuous BKV system  
at consecutive time moments: a) ζ = 0.75 and Ω = 0.16; b) ζ = 0.1 and Ω = 0.5. 
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Additionally, Figure 5.11b shows the reflection of the incident wave at the lattice-rod inter-
face of the linearly behaving one-dimensional discrete-continuous BKV system that corre-
sponds to the reflection previously depicted in Figure 4.7a and Figure 4.7b for respectively 
the time domain and frequency domain solutions. Note here that the parameters for the re-
sponses in Figure 5.11a and Figure 5.11b are identical except for the damping ratio of the 
considered system and the angular frequency of the applied single-sinus pulse load. For the 
response depicted by Figure 5.11a the damping ratio and the dimensionless frequency are 
respectively 0.75 =  and 0.16 = , while the response depicted by Figure 5.11b is obtained 
for a damping ratio 0.1 =  and a dimensionless frequency 0.5 = . 

As expected, Figure 5.11a and Figure 5.11b both show that the responses obtained by the 
frequency domain solution and the MTFD-method, respectively given by the dashed blue 
line and the continuous red line, yield a much smaller reflection than the response obtained 
by the time domain method, which is given by the continuous green line. 

If properly implemented, we would expect the MTFD-method to yield exactly the same 
response, and thus the same reflections, as the frequency domain solution. Nevertheless as 
shown by the last two graphs in Figure 5.11b, i.e. the displacements along the Kelvin-Voigt 
lattice at t870 and t1000, the response obtained by respectively the MTFD-method and the fre-
quency domain solution start to deviate. The difference is most pronounced near the lattice-
rod interface, and is caused by a numerical error in the expression for ( )0f s  that appears in 
the equation of motion of the boundary particle N, given by equation (5.51). According to 
equation (5.69), the expression for ( )0f s  contains the convolution of a term ( )f   and the 
response of the boundary particle N over the global time period 00 t = . As the expression 
for ( )f  , as given by equation (5.68), contains an integral with a semi-infinite domain that 
must be evaluated numerically and is thus truncated, its result is not without a small numeri-
cal error. Consequently, every time the system is reinitiated and the domain of the convolu-
tion integral increases, the contribution of the numerical error in the expression for ( )f   to 
the total error in the numerically applied convolution integral accumulates, causing a reduc-
tion in the accuracy of the expression for ( )0f s . Eventually, this leads to a significant error 
in the expression for ( )0f s  and therefore in a significant error in the displacement of the 
boundary particle N. The resulting nonzero displacement of the boundary particle N can be 
considered as an input of energy into the one-dimensional lattice, to which the lattice will 
respond. This does not only explain why this error originates from the lattice-rod interface, 
it also explains its influence on the lattice response at later time steps. The magnitude of this 
error is proportional to the chosen time step of the simulation and can thus be reduced by 
choosing a smaller time step. 

Nonlinear response of the BKV system to a single-sinus pulse load 
Figure 5.12 again shows the longitudinal response of the discrete-continuous BKV-lattice to 
the unit single-sinus pulse load, but now its properties are chosen to accommodate the occur-
rence of nonlinear events. The chosen properties of the discrete-continuous BKV system and 
the applied single-sinus pulse load are the same as for the linear response, except for the 
critical friction force of the Bingham elements, which is now chosen as 80% of the amplitude 
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of the sinus pulse, i.e. 0.8crF F= , thereby allowing for the activation of the featured Bing-
ham elements. The damping of the Bingham elements is chosen equal to that of the Kelvin-
Voigt elements, i.e. f eC C= . In addition to the change of the overall critical friction force, 
the BKV elements between particles 20 40=n  are chosen weaker than the other elements; 
these particles are chosen to have a critical friction force equal to 40% of the amplitude of 
the single sinus pulse, i.e. 0.4crF F=n,n+1 , while the damping of the Bingham and the Kelvin-
Voigt elements between particles 20 40=n  is reduced by 20%, so that for these elements 

169.7 kNs me fC C= =n,n+1 n,n+1 . 
The resulting nonlinear response of the discrete-continuous BKV system is depicted in 

Figure 5.12. Here, the continuous red line again gives the displacement response of the dis-
crete-continuous BKV system obtained by applying the MTFD-method, while the dashed 
blue line now gives the displacements obtained from applying the direct time domain solu-
tion, which was previously depicted for the same set of consecutive time moments in Figure 
3.5. Note here that, due to the occurring nonlinear events, the nonlinear response of the dis-
crete-continuous BKV system can no longer be obtained by a frequency domain solution. As 
a reference, the green line in Figure 5.12 gives the purely viscoelastic response of the dis-
crete-continuous BKV system. Again the differences between the responses that follow from 
respectively applying the MTFD-method and the direct time domain solution are negligible. 
Consequently, Figure 5.12 verifies that the MTFD-method has been applied correctly and 
may indeed be used to obtain the response of non-smooth dynamical systems.  

Comparison of calculation times required by the difference solution methods 
For both the linear and nonlinear responses of the discrete-continuous BKV system, Table 
5.2 gives an overview of the calculation times required by respectively applying the MTFD-

Figure 5.12: Displacement response along the discrete-continuous BKV system  
to a single sinus pulse load at consecutive time moments.
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method, the frequency domain solution and the time domain solution. To minimize the influ-
ence on the calculation time of other computer processes running in the background, we have 
applied ten simulations for each numerical model; the minimum, average and maximum cal-
culation time required are given in Table 5.2 for each solution method. For the MTFD-
method and the frequency domain solution the calculation time involves the time spent on 
solving the algebraic system of equations in the frequency domain as well as applying the 
inverse Laplace transform to obtain the time domain displacements at every time step. For 
the time domain solution, the calculation time solely consists of applying the Runge-Kutta 
scheme to obtain the time domain displacement for every time step directly. For example, 
the time spent on data trafficking and writing output are not included. 

For the linear response of the discrete-continuous BKV system, i.e. without nonlinear 
events, Table 5.2 shows that, at an average of approximately 1.74 seconds of required calcu-
lation time, the frequency domain solution requires the smallest computational effort. This is 
according to expectation, as for the frequency domain solution the algebraic system of equa-
tions of motion in the frequency domain is solved only once for zero initial conditions. In the 
numerical simulation using the MTFD-method, the time parameter was manually reinitiated 
every 100 time steps, so that, in addition to the frequency domain solution, the algebraic 
system of equations in the frequency domain was solved nine times for nonzero initial con-
ditions. Consequently, using the MTFD-method, this simulation required on average 0.9 sec-
onds of additional calculation time compared to the frequency domain solution. For the linear 
response, the largest computational effort was required for the time domain solution. Assum-
ing that additional time domain reinitiations linearly increase the required calculation time 
for the MTFD-method, it follows that at roughly 32 reinitiations, the MTFD-method and the 
time domain solution will require similar computational effort. 

Comparing the required calculation times for the viscoelastic response in Table 5.2 with 
the corresponding calculation times required for the linear-elastic response given in Table 
5.1, we find that the computational effort for the frequency domain solution is similar for 
both models, while for both the MTFD-method and the time domain solution determining 
the viscoelastic response requires less computational effort than the linear-elastic response. 
For the MTFD-method this is due to a faster decay rate of the improved Laplace domain 
displacements within the finite domain of integration, while for the time domain solution this 
is due to a smaller amount of iteration steps required. Do note however that the error of the 
time domain solution is slightly larger for the viscoelastic response than the error for the 
linear-elastic response. Furthermore note that the differences between the simulations for the 
viscoelastic and linear-elastic responses are generally very small, and that computational ef-
forts for the viscoelastic and linear-elastic responses are of the same order of magnitude.  

Once the response of the discrete-continuous BKV system includes nonlinearities, the 
frequency domain solution is no longer valid and therefore the corresponding calculation 
times are not included in Table 5.2. Comparing the resulting calculation times for the non-
linear response of the discrete-continuous BKV system depicted in Figure 5.12, it is evident 
that the MTFD-method now requires significantly more computational effort than the time 
domain solution. In fact, for the time domain solution, the required calculation time for the 
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simulation of the nonlinear response is only slightly larger than the time required for the 
linear response, while for the MTFD-method this difference is much more significant. 

In the nonlinear response, a total of 108 nonlinear events occurred, but as some of the 
nonlinear events occurred at the same time step, this yielded 101 time domain-reinitiations 
in the simulation employing the MTFD-method. For the linear response, we already derived 
that the MTFD-method and time domain solution would require similar computational effort 
when the MTFD-method is employed with 32 time domain-reinitiations. It is therefore clear 
that at 101 time domain-reinitiations, the MTFD-method indeed becomes slower than the 
time domain solution. In fact, for the linear response, it was found that every time domain-
reinitiation required approximately 0.1 second of additional calculation time for the MTFD-
method compared to the frequency domain solution, which coincides with the nonlinear re-
sponse in approximate sense. This can be illustrated by considering that, if we would apply 
101 time domain-reinitiations in the linear response, the MTFD-method would require ap-
proximately 11.8 seconds of calculation time, which is in the same order of magnitude as the 
required computational effort by employing the MTFD-method for the nonlinear response.  

Although the additional computation effort required by the MTFD-method can be ex-
plained, these results are somewhat disappointing. After all, as the system of equations of 
motion becomes larger when the motion of slip-nodes must be accounted for, the influence 
of the nonlinear events on the required calculation time for the time domain solution were 
expected to be more significant. However, per time step only very few BKV-elements are in 
slip-state simultaneously, so that in the nonlinear response, the amount of additional degrees 
of freedom that has to be taken into account by the time domain solution is limited. Conse-
quently, the increase in calculation time is also limited. When multiple nonlinear events occur 
simultaneously, it is expected that the advantage of the time domain solution compared to 
employing the MTFD-method is reduced. 

Nevertheless, as the MTFD-method is a non-iterative method, it is more exact than the 
time domain solution, of which the error slightly increases with every occurrence of a non-
linear event. In fact, due to the small, but existing, differences in displacement response be-
tween the results from the MTFD-method and the time domain solution, the nonlinear events 

Table 5.2: Minimum, average and maximum calculation times for ten separate runs of the MTFD-method, frequency- and time 
domain solutions, for respectively the linear and nonlinear response of the discrete-continuous BKV system.

TD-solutionFD-solutionMTFD-method

4,680 s1,591 s2,371 sMin

4,934 s1,741 s2,641 sAverageLinear 
Response

5,132 s1,950 s2,870 sMax

4,898 s-11,700 sMin
Nonlinear 
Response: 

108 nonlinear 
events

5,111 s-12,833 sAverage

5,335 s-13,541 sMax
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in both simulations do not occur at exactly the same time steps. Especially in more complex, 
or multi-dimensional, models this effect may quickly accumulate and lead to more significant 
errors. Furthermore, it should also be taken into account that for the time domain solution the 
highly optimized Fortran-library RK-suite [Brankin and Gladwell, 1997] is used, while the 
code for the MTFD-method has been developed as part of this research and is prone to further 
optimalisation. 

5.3.4 Advantages and disadvantages of the MTFD-method 
It is important to emphasize that the mixed time-frequency domain method does not only 
allow one to model non-smooth dynamical processes taking advantage of the algebraic sys-
tem of equations of motion that is obtained when solving dynamic problems in the frequency 
domain; the mixed time-frequency domain method also improves the general applicability of 
the regular frequency domain solutions due to regularly reinitiating its time parameter, as 
discussed in the following. 

To explain this, let us consider that, after the algebraic system of equations is solved to 
obtain the frequency or Laplace domain response, we generally have to numerically apply 
the inverse integral Laplace transform to obtain the corresponding response in the time do-
main. The expression for the inverse Laplace transform, as used in both the frequency domain 
solution and the MTFD-method, is expressed in terms of frequency as: 

( ) ( )  ( ) 1 i

0

Re
t

tef t f s f s e d


 


+

−= =  (5.73) 

Here note that the integrand of the inverse Laplace transform includes an exponent i te  . Con-
sequently, for large values of the time variable t, this integrand becomes highly oscillatory, 
which dramatically reduces the precision of any applied numerical integration scheme or re-
quires more sophisticated quadrature schemes. Do note that there are quadrature schemes 
available for highly oscillatory functions that are numerically efficient [Iserles et al., 2006], 
but not having to apply these sophisticated schemes at all is more efficient still. Alternatively, 
the step size of the frequency must be dramatically reduced to maintain some level of accu-
racy. 

Next to the highly oscillatory integrand, there is another issue that occurs for large values 
of the time variable t. This issue is particular for the Laplace integral transform and is due to 
the exponent te . Here, σ is the small positive real value of the complex-valued Laplace 
parameter that is commonly defined as is  = + . Because σ is real and positive, the value 
of the exponent te  will become tremendous for large values of the time variable t, even 
though σ itself is small. Consequently, as long as the result of the integral in equation (5.73) 
is nonzero, which it always will be for large values of t due to the degradation of the quadra-
ture scheme, the exponent te  will eventually blow up any numerical error in the integral and 
cause severe numerical inaccuracy in the considered time domain response. Figure 5.13a 
clearly shows the occurrence of this numerical inaccuracy for the frequency domain solution 
of the one-dimensional discrete-continuous Kelvin-Voigt system. This figure depicts the 
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response of the first half of the discrete-continuous Kelvin-Voigt system for five consecutive 
time moments for both the frequency domain solution and the MTFD-method, respectively 
given by the dashed blue and continuous red lines. Here, the first time moment at t100 shows 
the magnitude of the incident wave induced by the single sinus pulse load, after which the 
second time moment shows that the incident wave has propagated beyond the depicted do-
main of the lattice. The next three time moments show how the numerical inaccuracy origi-
nates from the tip, slowly increases in magnitude and propagates into the one-dimensional 
lattice even though the incident wave has travelled far past the lattice-rod interface and only 
the much smaller reflected waves remain. The MTFD-method was here employed by reiniti-
ating the time parameter at respectively t500 and t1000, which is clearly sufficient to prevent 
the occurrence of the numerical inaccuracy. 

Note here that the numerical inaccuracy first shows at the tip of the Kelvin-Voigt system 
because the Laplace domain displacement of particle 1 at the tip has the slowest decay rate 
for ω → ∞. This is confirmed by Figure 5.13b that depicts the Laplace domain displacements 
of several particles at and near the tip of the system. Because the inverse Laplace transform 
is applied numerically over a finite domain of the frequency, the slower decay rate of the 
Laplace domain displacement of this particle at the tip of the system yields the largest nu-
merical error. Although the numerical error of the inverse Laplace transform is marginal, the 
multiplication with the exponent te  and, more significantly, the degradation of the quadra-
ture scheme magnify the error for large values of the time variable t until eventually it is of 
the same order of magnitude as the original incident wave. Evidently, the time at which this 
numerical inaccuracy occurs is dependent on the chosen values for σ. So, for example, choos-
ing 0 =  will remove the magnification of the numerical error due to multiplication with 
the exponent te . Doing so however, increases the sharpness of the peaks, and thus the deg-
radation of the quadrature scheme, in the vicinity of the poles in the Laplace domain. As a 
consequence choosing 0 =  only slightly delays the occurrence of the numerical inaccu-
racy.  

Figure 5.13: a) Response of the discrete-continuous Kelvin-Voigt system for large values of the time variable t;  
b) Laplace domain displacements of several particles at and near the tip of the Kelvin-Voigt system.
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Despite the availability of several options to increase the value of the time parameter t at 
which the numerically applied inverse Laplace transform is still accurate, eventually this ac-
curacy will always be lost. Since the MTFD-method allows for the regular reinitiation of the 
time parameter, this method allows you to keep the value of the time parameter t small, for 
which the application of the inverse Laplace transform is numerically more efficient and its 
results are more accurate. Hence, even for linear dynamical processes, application of the 
MTFD-method with periodic reinitiations of the time parameter allows for much longer time 
simulations than using the regular frequency domain solution method. 
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6
Conclusions and 

Recommendations 

As explained in the introduction, this thesis aims to efficiently model a medium that exhibits 
non-smooth behaviour in the vicinity of a dynamic load, by replacing the domain of the me-
dium that responds linearly, i.e. the far-field domain, and representing it by a boundary for-
mulation at the limits of the near-field domain. Thereby, the main objective to this thesis is: 

To develop a methodology capable of efficiently describing  
the nonlinear time domain response of a medium in the near field, 

while properly accounting for its response in the far field. 

This chapter discusses to what extent this objective has been achieved, summarizes the most 
relevant findings and provides recommendations for further research. First, Section 6.1 dis-
cusses conclusions and recommendations regarding the ability and the performance of the 
presented discrete lattices to model non-smooth phenomena in the vicinity of an externally 
applied dynamic load. Subsequently, findings with respect to using boundary formulations 
to account for the linearly behaving far-field domain are extensively regarded in Section 6.2. 
This section generally discusses the application of boundary formulations in both one-dimen-
sional and two-dimensional systems, as well as the performance of using either a continuum 
or a discrete far-field domain, which in combination with the discrete lattice in the near-field 
are respectively referred to as the discrete-continuous and fully discrete approaches. Sections 
6.2.1 and 6.2.2 specifically discuss the conclusions and recommendations that regard the two-
dimensional discrete-continuous and two-dimensional fully discrete systems respectively. Fi-
nally, Section 6.3 discusses findings with regard to applying the proposed methodology in 
both the frequency and the time domains, as well as the application of the so-called mixed 
time-frequency domain method. Both Sections 6.2 and 6.3 include conclusions with regard 
to the numerical implementation and the resulting limitations of the modelling, as well as 
recommendations to extend and improve the applicability of the applied methodology. 
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6.1 Discrete lattice models for non-smooth dynamic phenomena 
The one-dimensional and two-dimensional discrete lattice models, presented in Chapter 2 of 
this thesis, are well able to capture non-smooth dynamic phenomena that may occur in the 
vicinity of a load source as convincingly shown by the response of the hexagonal BKV lattice 
presented and discussed in Section 2.6.  

Both the one-dimensional and two-dimensional lattice models incorporate stick-slip be-
haviour based on Coulomb friction, and collisions between particles by temporarily ‘locking’ 
the interaction between these particles. It is important to emphasize that these discrete lattice 
models were not specifically aimed at mimicking real-life material behaviour. Instead, stick, 
slip and lock were incorporated in the lattice as motion states with the sole aim of showing 
that the methodology to determine boundary integral formulations to account for the far-field 
domain could be applied to systems that allow for both linear and non-smooth behaviour in 
the near field. Chapter 2 shows that, because of the intrinsic discrete nature of nonlinear and 
non-smooth phenomena in material behaviour, it is fairly straightforward to properly account 
for these effects and to do so efficiently. In fact, while here only stick-slip and lock were 
incorporated, other nonlinear material behaviour such as fracture could have easily been in-
cluded, for example by deleting rheological elements that are extended beyond a certain 
threshold, or to include the interaction between particles that are initially far apart from each 
other, by adding new rheological elements. To improve its performance to mimic real-life 
behaviour, it is generally recommended to update the lattice models to specifically account 
for these desired phenomena and validate the models using measurements of real-life cases.  

While the workings of the discussed non-smooth phenomena and the transitions between 
stick, slip and lock are the same for lattice models in either dimension, there are several 
properties that should be specifically accounted for when considering lattices in two or more 
dimensions. The most notable here is that in two-dimensional lattices, rheological elements 
rotate and that the expressions for the elongations of these elements must therefore not only 
be linearized to be able to obtain the corresponding system of equations of motion as a set of 
linear ordinary differential equations, but the lattice geometry must also be updated over time 
when the corresponding deformations become large. In this thesis, linearizations are applied 
for both small and large elongations, where the geometry is generally assumed constant when 
small elongations are considered, while the geometry is generally updated over time when 
large elongations are considered. As shown in Section 2.6, the chosen linearization very much 
influences the response and behaviour of the lattice. While both linearizations yield the same 
results for loads that yield small deformations, the differences between the two linearizations 
become apparent as loads and the resulting deformations increase. Since the rotation of rhe-
ological elements in the lattice is a property of the modelling approach and not necessarily a 
property of the modelled medium, the aforementioned validation, by comparing model re-
sults to real-life or test results, will have to show to what extent either linearization is best 
capable of mimicking real-life material behaviour. For now, it is therefore best to regard the 
linearizations for small and large elongations as two different modelling approaches, rather 
than stating that the linearization for large elongations is by definition better than the linear-
ization for small elongations. 
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Recommendations to improve discrete lattice modelling 
Next to incorporating any of the additional non-smooth properties proposed above, other ad-
aptations can be proposed to increase the potential and flexibility of using discrete lattice 
models. For example, choosing to incorporate gravity, as self-weight has not been accounted 
for in the lattice models presented in this thesis, or choosing to change the lattice configura-
tion altogether, for example by modelling the lattice using a square instead of a hexagonal 
geometry. Otherwise maintaining the hexagonal configuration, the macromaterial behaviour 
of a medium may be adapted by describing the interactions between the particles differently. 
For example, although the hexagonal lattice by itself is anisotropic, incorporating additional 
rheological elements, as for example done for the so-called extended hexagonal lattice [Askes 
and Metrikine, 2004], allows hexagonal lattices to be used to model isotropy. Additionally, 
instead of only considering interactions between particles in longitudinal direction, also 
transverse and rotational interactions can be introduced. In fact, it would academically be 
very interesting to determine how such adaptations of the discrete lattice modelling would 
affect the formulation of the boundary integral equations according to the methodology pre-
sented in this thesis. 

6.2 Boundary integral formulations to account for the far-field domain 
This thesis presents a methodology that successfully describes the nonlinear response in the 
vicinity of an applied dynamic load by means of a discrete lattice while properly accounting 
for the linear response of the far-field domain by using boundary integral formulations. This 
methodology was successfully applied for both semi-infinite and finite one-dimensional con-
tinuous far-fields, as demonstrated in Sections 3.2.5 and 3.4 respectively, as well as for semi-
infinite one-dimensional discrete far-fields, as demonstrated in Section 4.1.5. Furthermore, 
the nonlinear response of a two-dimensional fully discrete BKV system was successfully 
obtained in Section 4.7.5. Thereby, this thesis presents the first derivation of a boundary in-
tegral formulation for a far-field domain described as a semi-infinite system of discrete par-
ticles and its successful application to a nonlinear discrete lattice in the near-field. Based on 
the findings in this thesis, it is reasonable to assume that a boundary formulation for a corre-
sponding finite discrete far-field can straightforwardly be obtained by deriving the required 
Green’s functions for the relevant boundary conditions. 

Analytically, both the one-dimensional and two-dimensional semi-infinite fully discrete 
systems are non-reflective for all frequencies, as discussed in Sections 4.2 and 4.7 respec-
tively. The corresponding discrete-continuous systems however are only non-reflective in the 
long-wave limit and the magnitude of the wave reflection has therefore been extensively dis-
cussed in Section 3.3.2, specifically for one-dimensional continuous far-field models. As 
shown by the analysis of the reflection coefficient in this section, the reflections from the 
one-dimensional continuous far-field are a consequence of their dispersive properties being 
different from those of the near-field lattice, and a continuous far-field can thereby never 
yield the non-reflectiveness of a discrete far-field. As discussed in Section 3.6.3, in two-
dimensional discrete-continuous systems, this non-reflectiveness is further degraded due to 
the geometrical mismatch at the lattice-continuum interface. 
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Numerical implementation of boundary formulations 
Even though the non-reflectiveness of the fully discrete systems has been demonstrated by 
numerically solving the corresponding system of equations of motion in the frequency do-
main, the level of non-reflectiveness for the semi-infinite fully discrete systems when the 
corresponding system of ordinary differential equations is solved in the time domain is de-
termined by the quality of the numerical implementation. In fact, as shown in Section 4.2.3, 
depending on the modelling approach and load parameters used, it is possible that the reflec-
tions from the boundary in a discrete-continuous system are smaller than the corresponding 
reflections in fully discrete systems. This is remarkable, because the reflections in the dis-
crete-continuous system logically result from the difference in properties between the lattice 
and the continuous far-field domain, while the reflections in both one-dimensional and two-
dimensional fully discrete systems are exclusively due to numerical errors in the implemen-
tation of the boundary integral equations.  

While these numerical errors are mainly due to the numerical evaluation of the convolu-
tion integral present in the boundary formulation, and the error is thereby proportional to the 
area under the convolution integral, there are several pointers available to minimize these 
errors. First and foremost, as any time domain system of ordinary differential equations is 
typically solved for the highest time derivative present, it is vital to obtain acceleration terms 
in the boundary integral equation that do not exclusively follow from the convolution inte-
gral, so that its contribution is independent from the size of the time step used. Thereby, the 
performance of the boundary integral equation can be improved by reducing the time step 
and by using a higher-order numerical integration scheme for the convolution integral. 

In this thesis, the suggested form of the boundary integral equation has been obtained by 
first applying the inverse Laplace transform to the force-displacement relation in the Laplace 
domain, and subsequently applying time differentiation to the resulting time domain equa-
tions. The same boundary integral equation can however also be obtained directly from ap-
plying the inverse Laplace transform to the force-acceleration relation in the Laplace domain, 
or alternatively starting from the corresponding force-velocity relation. Nevertheless, the fact 
that the boundary integral equation must be manipulated in order to obtain a proper contri-
bution of the acceleration terms is triggered by the numerical application of the inverse La-
place transform. As explained in Section 3.1, to obtain an accurate time domain expression 
for the interface relation, the inverse Laplace transform is applied to the dynamic compliance 
relation rather than to the dynamic stiffness relation. The main reason for this is that to apply 
the inverse Laplace transform numerically, its semi-infinite domain of integration must be 
truncated and the magnitude of the corresponding Laplace domain expression must decrease 
sufficiently fast for increasing frequencies. Since the dynamic stiffness increases with fre-
quency, its inverse relation known as the dynamic compliance is used instead. However, as 
a result of using the dynamic compliance relation, the acceleration terms in the boundary 
integral equation are present in the convolution integral, while starting from the dynamic 
stiffness relation, these acceleration terms would be outside the convolution integral and ad-
ditional manipulation of the interface equation would not have been required. Finally, as dis-
cussed in Section 5.2.3, the truncation of the semi-infinite domain of the inverse Laplace 
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integral transform, which is required to obtain the dynamic compliance numerically in the 
time domain, yields different results for different identities of the inverse Laplace transform. 
The chosen identity, i.e. the chosen expression for its integrand, thereby significantly influ-
ences the performance of the numerical evaluation. 

Despite taking all of the above considerations into account, as well as using sparse matri-
ces in the implementation, Section 4.7.5 shows that the number of degrees of freedom that 
the current implementation can handle is still fairly limited and further improvements to the 
numerical implementation should be made to make it more robust and make it more widely 
applicable. The main recommendation is thereby to improve the data management in the 
current implementation and thereby reduce the requirements with regard to (virtual) memory. 
This would not only allow for a larger number of degrees of freedom, but would also allow 
for more and thus smaller time steps. Another recommendation is to look for improvements 
of or alternatives for the Runge-Kutta method, with the aim to improve the numerical ap-
proximation of the solution to the system of ordinary differential equations in the time do-
main. Finally, the numerical performance can also be improved by redesigning the numerical 
implementation to make it fit for parallel and/or concurrent computing. 

6.2.1 Two-dimensional discrete-continuous systems 
In the introduction of this thesis, it was stated that, despite their different properties, it is 
worth deriving a boundary formulation for the near-field lattice by modelling the far-field 
domain as a continuum. As argued in Section 1.3, applications of boundary formulations that 
account for the far-field domain by modelling it using semi-infinite continuum models are 
abundantly available in literature, while the corresponding literature that treats unbounded 
discrete models to represent the far-field domain is very limited, if not absent. This has led 
to the expectation that deriving and implementing a boundary formulation that models the 
far-field domain as a continuum would be relatively easy. This thesis however shows that 
when the near-field is modelled as a hexagonal lattice, this is not necessarily the case. 

Despite considerable efforts, the implementation of a numerical model that uses the meth-
odology presented in Section 3.5 to obtain a boundary formulation that accounts for the far-
field domain by modelling it as a two-dimensional continuum was unsuccessful. This is 
mainly because, specifically in two dimensions, using a continuum as a far-field domain for 
a discrete near-field domain has several clear disadvantages over using a far-field domain 
that matches the discrete properties of the near-field. First of all, note that any forces applied 
by the lattice to the continuum are point loads and that the application of point loads to a 
continuum yields singular displacements under these point loads. To circumvent this issue, 
shape functions were introduced that convert the point loads at the lattice-continuum inter-
face to equivalent distributed loads. To satisfy the boundary conditions used to derive the 
Green’s functions for the continuum, the resulting distributed loads had to be restricted to the 
horizontal segments of the discrete-continuous interface and therefore, narrow shape func-
tions were used that quickly decay in horizontal direction. The shape of these load distribu-
tions however significantly increased the required size of the contour and the number of poles 
required to obtain the corresponding Green’s functions using the contour integration. Not 
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only did this increase computation time, but it additionally caused degradation of the discrete-
continuous interface relations, because the accuracy of the poles decreases with increasing 
distance to the origin of the complex k-plane. Next to the difficulties encountered to properly 
describe the dynamic interaction at the discrete-continuous interface, there are some concerns 
related to modelling the continuous far-field domain as a layer with a fixed bottom, which 
was used instead of a continuous half-plane because the dynamic compliance of the half-
plane is infinitely large at zero frequency. Despite the geometrical damping, this fixed bottom 
will always result in reflected waves that travel back into the near-field lattice. If the aim is 
to model finite media, this does not necessarily yield any issues, but for semi-infinite media, 
for which the far-field domain is supposed to be non-reflective, this is a problem, and clearly 
limits the applicability of using a continuum as a far-field domain. 

As explained in Section 3.6.3 however, it is still considered to be feasible to model the 
far-field domain as a continuum and thereby obtain a valid boundary formulation for any 
lattice that is by approximation non-reflective in the long-wave limit. To do so, it is recom-
mended to first determine the displacement and traction fields along the interface of a fully 
continuous system and then use these to derive shape functions that approximate a more re-
alistic traction field along the boundary of the far-field domain. Despite these and other pos-
sible improvements discussed in Section 3.6.3, it remains evident that a boundary formulation 
for the hexagonal lattice that models the far-field domain as a continuum will never yield the 
same performance as a boundary formulation for a matching discrete far-field domain.  

6.2.2 Two-dimensional fully discrete systems 
The latter conclusion of the previous section supports the claim made in Section 1.3 that to 
achieve a perfect boundary formulation such that there are no unwanted wave reflections at 
the boundary, the far-field domain should at least match the discrete properties of the near-
field domain. At this point, this statement can be extended and completed by listing the com-
ponents that are required to achieve a perfect boundary formulation. First, note that both the 
macromaterial and the dispersive properties of the far-field domain must match those of the 
near-field domain. Additionally, in the region of the interface between the near-field and the 
far-field domain, the material properties of both models must match. Because the far-field 
domain is both linear and assumes small elongations, this practically means that any nonlin-
ear phenomena that occur in the near-field domain may not reach the interface with the far-
field domain. Last but not least, the geometrical properties of the near-field and the far-field 
domain must match at their interface.  

In Section 4.4, the Green’s functions for the displacements and the reaction forces of the 
discrete half-plane of particles with a matching hexagonal geometry were successfully de-
rived, thereby meeting all the property-requirements listed above and serving as a perfect 
boundary formulation for the nonlinear hexagonal lattice. To verify that the discrete half-
plane of particles gives the proper response, the equivalent one-dimensional response of the 
half-plane of particles, obtained by applying an infinitely-long uniformly-distributed load at 
its surface, has been compared to the corresponding response obtained for the one-dimen-
sional cascade in Section 4.5. Even though the edges of the ‘infinitely-long’ loading applied 
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at the surface induced some wave propagation in horizontal direction, both displacements 
and reaction forces were found to match well in both discrete particle systems. Here, note 
that the domain of the applied surface load was finite simply because it was not possible to 
consider infinitely many particles in the direct numerical simulation. To avoid the resulting 
horizontal wave propagation in the half-plane of particles and thereby improve the corre-
spondence of its response with that of the cascade, boundary formulations can be used at the 
edges of the load. 

Here note that by modelling the discrete far-field domain as a semi-infinite half-plane, 
the boundary formulation is completely non-reflective by design. Alternatively, the discrete 
far-field domain may also be modelled to have a finite domain, for example by introducing 
a fixed bottom, that would result in reflected waves entering the near-field domain. Thereby, 
the methodology presented in this thesis is more widely applicable than approaches solely 
aimed at suppressing wave reflections and introducing silent boundaries. Nevertheless, to 
extend the field of application, it is recommended to investigate how the corresponding 
Green’s functions can be derived for a discrete far-field that is finite in both x- and z-direction, 
rather than only in z-direction.  

In Section 4.6, the wave propagation properties of the hexagonal half-plane of particles 
were analysed to show that, as opposed to the two-dimensional continuum, the wave propa-
gation properties of both shear and compressional waves in the hexagonal half-plane of par-
ticles are distinctly direction-dependent. The anisotropy of the hexagonal particle system is 
attributed to its geometry, which is quite different in, for example, x- and z-directions, and 
becomes more distinct for higher frequencies. Due to this anisotropy, the shear and compres-
sional waves in the hexagonal particle system are coupled and cannot be isolated in the dis-
persion relation. As a consequence, the particle motion in most directions contributes to the 
propagation of both shear and compressional waves at the same time, while only for certain 
specific directions of wave propagation and for certain specific magnitudes of the wave-
number, the corresponding particle motion exclusively contributes to either shear or com-
pressional waves. 

As explained in Section 2.4.2, the system of equations of motion was linearized and the 
geometrical nonlinearity was accounted for to allow for large elongations that will undenia-
bly occur when accounting for nonlinear phenomena in the near-field lattice. The boundary 
formulation at the interface with the far-field domain however, has been determined in the 
Laplace domain, and its representation in the time domain is therefore by default valid only 
for small elongations and does not take the geometrical nonlinearity into account. The two 
load cases considered in Section 4.7.5 show that despite the different modelling approaches, 
the corresponding boundary formulation performs well, even when large elongations occur 
in the near field. The reason for this is that due to the distance of the load source to the lattice 
boundary, in combination with the energy dissipation due to the geometrical damping, the 
viscous damping and the occurrence of nonlinear events in the vicinity of the load, the elon-
gations that occur in the elements at the boundary of the near-field lattice are small and the 
corresponding geometrical nonlinearities are negligible. This assures that the fully discrete 
BKV system is homogeneous in the region of the interface. 
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The shape of the interface between the near-field and far-field systems 
As explained in Section 4.7.1, the shape of the near-field boundary was chosen as the shortest 
path that connects all boundary particles, where all boundary particles are located at the same 
distance to the loaded particle at the origin of the near-field lattice. Choosing a boundary that 
directly connects the discrete particles and disregards the orientation of the interface at these 
particles is only allowed because the reaction forces along the interface exist only at the 
boundary particles as point loads. After all, for the discrete-continuous system the corre-
sponding tractions exist along the whole boundary and thereby impose additional restrictions 
to its shape. Alternatively however, as discussed in Section 4.1.1 and shown in Figure 4.2 for 
the corresponding one-dimensional systems, it is also possible to choose the boundary exactly 
in between the particles, so that it coincides with the edges of the representative area that 
each particle represents. As such, all particles in the near-field lattice would have the same 
mass, but then the properties of the elements at this boundary would have to be adapted to let 
the near-field lattice interact homogeneously with the discrete far-field domain. While this 
limits the number of degrees of freedom involved in the interaction per interface node, and 
thereby simplifies the derivation of the corresponding Green’s reaction forces, this approxi-
mately doubles the number of interface nodes that need to be accounted for in the correspond-
ing boundary formulation. Choosing the boundary nodes in between the particles thus signif-
icantly increases the dimension of the dynamic compliance matrix, and thereby limits the 
numerical performance of the fully discrete system. To minimize the size of the dynamic 
compliance matrix, and thus optimize the total number of degrees of freedom that the imple-
mentation for the fully discrete system can handle, it is therefore recommended to choose the 
path of the lattice boundary by connecting particles. Here, note that this path between parti-
cles principally can be chosen at random, but that again for numerical reasons, it is wise to 
choose this boundary as short as possible. 

6.3 The time domain versus the frequency domain 
Comparing the linear responses that were obtained for the near-field lattice by either solving 
its system of equations of motion algebraically in the frequency domain, or by solving the 
corresponding system of ordinary differential equations in the time domain, it is evident that 
the frequency domain solution always yields the best results. This is mainly because an alge-
braic solution is always far more accurate than numerically solving a system of ordinary 
differential equations, while transforming the resulting displacements or the corresponding 
system of equations from the frequency to the time domain hardly influences this accuracy. 
As already concluded in Section 6.1, specifically for systems that include a boundary formu-
lation, solving the system of ordinary differential equations poses additional numerical diffi-
culties due to the presence of the convolution integral. Therefore, one should principally al-
ways attempt to solve any system of equations of motion in the frequency domain and invert 
only the resulting frequency domain response to the time domain. While the common under-
standing is that any model that accounts for nonlinear phenomena must be evaluated in the 
time domain, by showcasing the mixed time-frequency domain method for the one-dimen-
sional discrete-continuous BKV system in Section 5.3, this thesis has demonstrated that even 
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when regarding the nonlinear response near a load source, the corresponding system of equa-
tions of motion can be solved in the frequency domain. 

Application of the mixed time-frequency domain method 
The mixed time-frequency domain, or MTFD, method is a non-iterative method that can be 
applied to simulate the non-smooth dynamic response of particle systems by solving the cor-
responding algebraic system of equations of motion in the frequency domain for nonzero 
initial conditions after each occurrence of a nonlinear event. Subsequently, the inverse La-
place integral transform is used to obtain the corresponding time domain response. Here, the 
use of the Laplace transform is preferred over using the Fourier transform, because the La-
place integral domain is by definition one-sided and thereby is able to account for initial 
conditions. Alternatively however, a one-sided Fourier integral transform could also be suc-
cessfully applied. Nevertheless, as discussed and explained in Section 5.2.3, it is here im-
portant to emphasize that when numerically applying the inverse Laplace transform, the trun-
cation of its semi-infinite domain of integration yields significant erroneous behaviour of the 
time domain relations near the nonzero initial conditions. To repair this, an improved formu-
lation of the inverse Laplace transform was introduced that extracts the contribution of the 
nonzero initial conditions from its Laplace domain expression and separately includes their 
analytically known contribution in the time domain. As demonstrated in Section 5.2.3, this 
approach greatly improves the performance of the integral transform when nonzero initial 
conditions have to be accounted for. 

In principal, the MTFD-method may only be applied to non-smooth dynamical systems 
that exclusively feature instant nonlinear events, meaning that the nonlinearities change the 
systems behaviour instantly, but in between these nonlinear events the considered system 
behaves in a linear manner. Nonetheless, by reinitiating the time parameter t at every single 
time step, the MTFD-method may also be used to model the dynamic response of systems 
that involve gradual, or smooth, nonlinear properties. In this case, any occurring smooth non-
linear events are discretized by the time stepping scheme and therefore, the influence of this 
discretisation on the proper dynamic response must be investigated. For example, the size of 
the time step may have to be adapted to make sure that the incorporated nonlinear effects are 
accounted for correctly. In any case, in its current implementation, the computational effort 
required by the MTFD-method is highly dependent on the number of required time domain 
reinitiations. Consequently, applying the MTFD-method with reinitiations at every single 
time step for the duration of a gradual nonlinear event may dramatically increase the required 
computational effort and is therefore currently not advised. It is nevertheless recommended 
to investigate ways to further optimize the numerical implementation of the MTFD-method 
with the aim to reduce the required computational effort. 

Even though Chapter 5 only considers the application of the MTFD-method to one-di-
mensional discrete-continuous systems, the MTFD-method may straightforwardly be applied 
to the one-dimensional fully discrete BKV system in similar fashion. Applying the MTFD-
method for the two-dimensional fully discrete systems presented in this thesis, will increase 
the complexity of the equations of motion of the boundary particles, which could potentially 
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increase the numerical problems involved with the evaluation of the boundary integral equa-
tion in the time domain. Fortunately however, when applying the MTFD-method and thereby 
solving the system of equations of motion algebraically in the frequency domain, the numer-
ical evaluation of the convolution integral is not required. Additionally, for systems with 
increasing numbers of degrees-of-freedom, the advantage of numerically solving a system of 
algebraic equations over numerically solving a system of differential equations increases as 
well. Consequently, for two- and three-dimensional systems, the performance of the MTFD-
method is expected to improve significantly compared to the performance of the time domain 
solution. Even so, the application of the MTFD-method to fully discrete systems, whether 
one-, two- or three-dimensional, has not been further considered in this thesis. 

Finally, it is here important to emphasize that the MTFD method is not solely of use when 
considering the non-smooth dynamic response of discrete systems, but can also be used to 
address numerical issues due to the highly oscillatory behaviour that comes with large values 
of time, for example when considering the viscoelastic response of a medium. Using the 
MTFD-method to reset time at regular intervals, the value of time can be kept small, which 
allows the simulation time of any numerical simulation to be extended greatly.  
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A Linearization of elongations in rheological elements 
To describe the system of equations of motion for a two-dimensional lattice as a system of 
linear ordinary differential equations, the expressions for the elongations of its rheological 
elements must be linearized. The way these elongations are linearized depends on the mag-
nitude and the definition of the involved particle displacements. This appendix gives an over-
view of several linearizations that apply to different magnitudes of the elongation. 

A.1 Linearization for small elongations
Figure A.1a shows the displacement of a particle mj,nj relative to the position of a particle
m,n in two-dimensional space. Here, the interaction between particles m,n and mj,nj is de-
scribed by a linear spring. The spring between particles m,n and mj,nj initially has a length

,
j

m n and an angle ,
jm n  with respect to the x-axis. Following the geometry depicted in Figure 

A.1a, we can express the elongation of the spring between particles m,n and mj,nj as:

( ) ( )
2 2, , , , , ,

; ; ; ;j x j x j z j z j je e e= + + + −m n m n m n m n m n m n (A.1) 

As the particles m,n and mj,nj move relative to each other, both the elongation and the angle 
of the spring change continuously. Although the horizontal and vertical components of the 
initial spring length, respectively denoted as ,

;x j
m n  and ,

;z j
m n , can be described in terms of the 

length ,
j

m n  through the angle ,
jm n , the horizontal and vertical components of the elongation,

respectively denoted as ,
;x jem n  and ,

;z jem n , cannot. Then, using trigonometry to express the hor-
izontal and vertical length components, as well as taking the spring length out from under the 
square root, the elongation of the spring between particles m,n and mj,nj becomes: 

( )
2 2, ,

; ;, , , , , , ,
; z;, , ,

21 cos sin x j z j
j j x j j j j j

j j j

e e
e e e 

   
= + + + + −   

   

m n m n
m n m n m n m n m n m n m n

m n m n m n (A.2) 

Figure A.1: Parameters used to describe the elongation of a spring between particles m,n and mj,nj for:  
a) small elongations; b) large elongations.
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For small strains, we linearize the expression for the elongation of the spring between parti-
cles m,n and mj,nj by comparing it to the initial spring length. Provided that the horizontal 
and vertical components of the elongation are significantly smaller than the initial spring 
length, it follows that the quadratic terms under the square root are negligible. Additionally, 
the second term under the square root must be significantly smaller than one. To approximate 
the elongation, we can take the Taylor series of the square root in equation (A.2) and only 
take the linear terms into account so that 21 1 aa+ = + . Rearranging the remainder of equa-
tion (A.2) then yields the elongation as: 

, , , , ,
; ;cos sinj x j j z j je e e = +m n m n m n m n m n (A.3) 

Note here that the higher-order terms of the involved Taylor series are neglected because they 
are related to, or are of the same order as, the quadratic terms previously neglected. 

The horizontal and vertical displacement of a particle m,n are defined as the total distance 
that the particle has travelled in respectively horizontal and vertical direction at time t com-
pared to its initial position at time t0. The horizontal and vertical displacements of a particle 
m,n may thus respectively be expressed as: 

( ) ( ), , ,
0xu x t x t= −m n m n m n (A.4) 

( ) ( ), , ,
0zu z t z t= −m n m n m n (A.5) 

The displacements ,
xu j jm n  and ,

zu j jm n of particle mj,nj may be described accordingly. Conse-
quently, the horizontal and vertical components of the elongation may be expressed as: 

( ) ( ), ,, , , ,
; ; x xx j x je x t x t u u= − − = −j j j jm n m nm n m n m n m n (A.6) 

( ) ( ), ,, , , ,
; ; z zz j z je z t z t u u= − − = −j j j jm n m nm n m n m n m n (A.7) 

Substituting equations (A.6) and (A.7) into equation (A.3), the elongation of the spring be-
tween particles m,n and mj,nj becomes: 

( ) ( ), ,, , , , ,cos sinx x z zj j je u u u u = − + −j j j jm n m nm n m n m n m n m n (A.8) 

Let us emphasize here that the elongation of the spring between particles m,n and mj,nj may 
only be approximated by equation (A.8) when the elongation is small compared to the initial 
spring length. In many cases and especially when considering nonlinear behaviour, we can 
not assume that the displacements and elongations in a lattice are small. In Appendix A.2, 
we will therefore consider a linearization that is appropriate for large elongations. 

For one-dimensional lattices, or cascades, the angle of all rheological elements is the same 
and does not change. Consequently, the expression for the elongation of a rheological ele-
ment between two adjacent particles n and n+1 is independent from its angle and may be 
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derived directly and without making any assumptions from equation (A.1) as: 

,e u u= −n n+1 n+1 n (A.9) 

Due to the straightforward expression for the elongation given by equation (A.9), one-dimen-
sional lattice models do not require linearization. 

A.2 Linearization for large elongations
To allow for large elongations, i.e. elongations that are of the same order as the initial length,
we linearize the expression for the elongation of the spring between particles m,n and mj,nj

about its current state, rather than about its original state. To do so, we alter the definition for
the displacements of the particles in the lattice; instead of describing the particle displacement
relative to its initial position, we now define the particle displacement as the distance between
its position at time t compared to its previous position at the time t-dt. The horizontal and
vertical displacement of a particle m,n may thus respectively be expressed as:

( ) ( ), , ,
xu x t x t dt= − −m n m n m n (A.10) 

( ) ( ), , ,
zu z t z t dt= − −m n m n m n (A.11) 

Here, ( ),x tm n  and ( ),z tm n  respectively denote the horizontal and vertical coordinates of 
particle m,n at time t. The displacements ,

xu j jm n  and ,
zu j jm n of particle mj,nj are derived ac-

cordingly. The corresponding displacement of a particle mj,nj relative to the position of a 
particle m,n in two-dimensional space is depicted in Figure A.1b. Here, ,

jDm n  is the distance 
between particles m,n and mj,nj at time t-dt and ,

jm n now denotes the angle of the spring 
with respect to the x-axis at time t-dt. Following the geometry depicted in Figure A.1b, we 
can then express the elongation ,

jem n  of the spring between particles m,n and mj,nj as: 

( ) ( )
2 2, , , , , ,

; ; z; ;j x j x j j z j je D D = + + + −m n m n m n m n m n m n  (A.12) 

Here, ,
;x jDm n  and ,

;z jDm n  respectively denote the horizontal and vertical distance between parti-
cles m,n and mj,nj at time t-dt and ,

j
m n  is the initial length of the spring at time t0. Further-

more, ,
;x j m n  and ,

;z j m n respectively denote the change in horizontal and vertical distance be-
tween the particles during the current time step dt. 

Expressing ,
;x jDm n  and ,

;z jDm n  in terms of the distance ,
jDm n  using the angle ,

jm n , as well 
as taking ,

jDm n out from under the square root, the elongation of the spring between particles 
m,n and mj,nj follows from equation (A.12) as: 

( )
2 2, ,

; ;, , , , , , ,
; ;, , ,

21 cos sin x j z j
j j x j j z j j j

j j j

e D
D D D

 
   

   
= + + + + −   

   

m n m n
m n m n m n m n m n m n m n

m n m n m n (A.13) 
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According to the definition given by equations (A.10) and (A.11), we describe the displace-
ments of a particle as the distance travelled by that particle during the current time step dt. 
Consequently, the change in respectively the horizontal and vertical distance between the 
particles during the current time step can then be described in terms of the particle displace-
ments as: 

( ) ( ), ,, , , ,
; ; x xx j x jx t x t D u u = − − = −j j j jm n m nm n m n m n m n (A.14) 

( ) ( ), ,, , , ,
; ; z zz j z jz t z t D u u = − − = −j j j jm n m nm n m n m n m n (A.15) 

As ,
;x j m n  and ,

;z j m n  only describe the change in the horizontal and vertical distance between 
particles m,n and mj,nj during the current time step dt, their magnitudes are small compared 
to the interparticle distance jDm,n  at time t-dt. That is, if the time step dt is chosen sufficiently 
small. Consequently, the quadratic terms under the square root are negligible and the second 
term under the square root is significantly smaller than one, allowing us to approximate the 
elongation using a truncated Taylor approximation, so that 21 1 aa+ = + . Thus, here we only 
take the linear terms of the involved Taylor series into account and neglect the higher-order 
terms because they are related to, or are of the same order as, the quadratic terms previously 
neglected. This yields the elongation of the spring between particles m,n and mj,nj as: 

( ) ( ), ,, , , , , ,cos sinx x z zj j j je u u u u  = − + − +j j j jm n m nm n m n m n m n m n m n (A.16) 

Here, ,
j
m n  is the elongation of the spring between particles m,n and mj,nj at time t-dt that 

during the current time step is a constant and can be obtained as , , ,
j j jD = −m n m n m n . Express-

ing the elongation ,
jem n according to equation (A.16) allows for significantly larger defor-

mations in the lattice than equation (A.8), which is valid for small deformations. 
For the one-dimensional case, the angle of all rheological elements is constant and equal 

to zero at all times and the expression for the corresponding elongation between two adjacent 
particles n and n+1, follows from equation (A.12) without any assumptions or linearization 
as: 

, ,e u u = − +n n+1 n+1 n n n+1 (A.17) 

Here, , n n+1 is the elongation of the rheological element between particles n and n+1 at time 
t-dt, which may be obtained as , , ,D = −n n+1 n n+1 n n+1 . 

A.3 A higher-order approach for large elongations
In the preceding section, we have linearized the expression for the elongation according to
equation (A.13) by assuming that the quadratic terms under the square root are negligible and
using a truncated Taylor approximation. By maintaining the quadratic terms under the square
root in equation (A.13) before applying the Taylor approximation, a more accurate expres-
sion for the elongation can be obtained. To be consistent with taking the quadratic terms in
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equation (A.13) into account, we approximate the elongation by taking the Taylor series up 
to its second order term, so that 21 1

2 81 1a a a+ = + − . This yields the elongation of the spring 
between particles m,n and mj,nj as: 

( ) ( ) ( ) ( )( )

( ) ( )
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j z j
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+m,n m,n
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(A.18) 

Here, ,
j
m n is again the elongation of the spring between particles m,n and mj,nj at time t-dt 

that is constant during the current time step dt, and can be obtained as , , ,
j j jD = −m n m n m n . 

Since ,
;x j m n  and ,

;z j m n describe the change in the horizontal and vertical distance between 
particles m,n and mj,nj only during the current time step, and assuming that the time step dt 
is chosen sufficiently small, their magnitudes are significantly smaller than the interparticle 
distance jDm,n  at time t-dt. In this case, we can safely neglect the last two terms as they 
include a division by the interparticle distance jDm,n  with an order of two or higher. Thus, 
equation (A.18) reduces to: 

( ) ( )

( ) ( ) ( ) ( )( )

, ,, ,

2 22 2
; ; ; ;

cos sin

1 1 cos 2 sin cos 1 sin
2

x x z zj j j j

x j j x j z j j j z j j
j

e u u u u

D

  

       

= − + − +

+ − − + −

j j j jm n m nm,n m n m,n m n m,n m,n

m,n m,n m,n m,n m,n m,n m,n m,n
m,n

 (A.19) 

Compared to the linearized expression for large elongations, previously given by equation 
(A.16), equation (A.19) includes a second-order term with respect to ;x j m,n  and ;z j m,n . Note 
here that for the additional term, equations (A.14) and (A.15) have not been substituted as 
this would yield the system of equations of motion as a system of nonlinear differential equa-
tions. Instead, we assume that the change in horizontal and vertical distance between particles 
m,n and mj,nj during the current time step dt is equal to the corresponding distance changes 
during the prior time step. Since the values for ;x j m,n  and ;z j m,n  during the time step prior to 
the current time step are constants during the current time step, this reduces the whole last 
term in equation (A.19) to a constant. The additional error made by this assumption is an 
order of magnitude smaller than the error made by completely neglecting the last term, as the 
error is not directly related to ;x j m,n  and ;z j m,n , but to their time derivatives. 
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B Normalisation and dimensionless parameters 

B.1 Normalisation in one-dimensional discrete-continuous systems
To discuss the normalisation in one-dimensional discrete-continuous systems, let us consider
the system that is comprised of a one-dimensional Kelvin-Voigt lattice and the viscoelastic
rod. According to Section 3.2.1, the material parameters of the lattice match the material
properties of the continuum for the following relations:

, , .e e e
EA EAM A C K = = = (B.1) 

Here, M is the mass of a particle in the interior of the one-dimensional Kelvin-Voigt lattice, 
while Ce and Ke are the corresponding damping and stiffness of the Kelvin-Voigt elements 
in the interior of the lattice. Furthermore, ρ, A, E, ζe and  respectively denote the density, 
cross-sectional area, Young’s modulus, damping of the viscoelastic rod and the distance be-
tween two adjacent particles.  

To normalize the system, we introduce the following dimensionless parameters: 

dim dim
dim 0 , , .u Mt t u M

A



= = =

n n
n n (B.2) 

Here, ω0 is the particle frequency, i.e. the natural frequency of a particle in the homogeneous 
lattice for the particular case that the motion of all adjacent particles is impeded. In the rela-
tions given by equation (B.2), the subscript dim is used to denote dimensional variables, and 
to distinguish them from their corresponding dimensionless forms. 

From the dimensionless parameters given by equation (B.2), we can derive corresponding 
dimensionless parameters for the damping and the stiffness of the Kelvin-Voigt elements, as 
well as for any applied external force. To derive these dimensionless parameters, consider 
the system of equations of motion for the Kelvin-Voigt lattice, where the surface particle is 
loaded by a time-dependent force in its dimensional form: 

( ) ( ) ( )dim dim dim dim dim dim dim,dim ,dime eM u C u u K u u F t+ − + − =0 0 0,1 0 1 0,1 0 1 0 (B.3) 

( ) ( )dim dim dim dim dim dim dim dim,dim ,dim2 2 0e eM u C u u u K u u u+ − − + − − =n n n,n+1 n n-1 n+1 n,n+1 n n-1 n+1 (B.4) 

Replacing the variables for time and space in equations (B.3) and (B.4) by the dimensionless 
parameters for time and space according to the relations given by equation (B.2), we find: 

( ) ( ) ( )2
dim 0 0 dim,dim ,dime eM u C u u K u u F t + − + − =0 0 0,1 0 1 0,1 0 1 0 (B.5) 

( ) ( )2
dim 0 0,dim ,dim2 2 0e eM u C u u u K u u u + − − + − − =n n n,n+1 n n-1 n+1 n,n+1 n n-1 n+1 (B.6) 
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Then, dividing equations (B.5) and (B.6) by 2 2
0A   respectively yields: 

( ) ( )
( )dimdim ,dim ,dim

2 2 2
0 0 0

e e F tC KM u u u u u
A A A A      

+ − + − =

00,1 0,10
0 0 1 0 1 (B.7) 

( ) ( )dim ,dim ,dim
2

0 0
2 2 0e eC KM u u u u u u u

A A A    
+ − − + − − =

n,n+1 n,n+1n
n n n-1 n+1 n n-1 n+1 (B.8) 

The multiplicator of the dimensionless acceleration ün now equals the normalized or dimen-
sionless mass previously given in equation (B.2).  

Noting that the particle frequency and the critical particle damping of the one-dimensional 
lattice are respectively found as 0 2 eK M =  and 0critC M=  and inserting the relations 
given by equation (B.1), it follows that 0 critA C  =  and 2 2

0 2A EA  = . Substituting 
these relations into equations (B.7) and (B.8), the dimensionless system of equations may 
now be written as: 

( ) ( ) ( )e eM u C u u K u u F t+ − + − =0 0 0,1 0 1 0,1 0 1 0 (B.9) 

( ) ( )2 2 0e eM u C u u u K u u u+ − − + − − =n n n,n+1 n n-1 n+1 n,n+1 n n-1 n+1 (B.10) 

Here, the dimensionless parameters for respectively the damping and the stiffness of the Kel-
vin-Voigt elements in the one-dimensional lattice, as well as the expression for the applied 
dimensionless force, are described as: 

dim dim;dim ;dim ;dim, , .
2 2 2 2

e e e
e e

crit e e

C K K F FC K F
C EA K EA K

= = = = =

n,n+1 n,n+1 n,n+1 n n
n,n+1 n,n+1 n  (B.11) 

In equation (B.1), the damping Ce of a Kelvin-Voigt element in the homogeneous one-di-
mensional lattice is found by multiplication of the stiffness Ke with the dimensional damping 
coefficient ζe. In its dimensionless form, the damping is commonly described by means of 
the so-called damping ratio as e critC C = . Incorporating the dimensional relation for the 
damping Ce from equation (B.1), as well as substituting the expression for the critical particle 
damping, the relation between the damping ratio and the dimensional damping coefficient is 
obtained as: 

1
02

0

e e e
e

crit

C K
C M


  


= = = (B.12) 

Note here that, for a homogeneous lattice, the expressions given by equations (B.2) and 
(B.11), yield the dimensionless mass, damping and stiffness as 1M =n , eC =n,n+1  and 

1
2eK =n,n+1 respectively. 
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B.2 Normalisation in two-dimensional discrete-continuous systems
To discuss the normalisation in two-dimensional discrete-continuous systems, we consider
the discrete-continuous system that is comprised of the hexagonal Kelvin-Voigt lattice and
the viscoelastic continuous layer. As derived in Section 3.6.1, the material parameters of the
lattice coincide with the material properties of the continuum for the following relations:

23 8 8
2 5 3 5 3

, ,e e eM dy C Edy K Edy = = = (B.13) 

Here, M is the mass of a particle in the interior of the hexagonal Kelvin-Voigt lattice, while 
Ce and Ke respectively denote the damping and the stiffness of the Kelvin-Voigt elements in 
the lattice. Furthermore,  denotes the unit particle distance in the lattice, while ρ, E, ζe and 
dy respectively denote the density, Young’s modulus, damping coefficient and unit width or 
third dimension of the continuous layer. 

To normalize the two-dimensional system, the following dimensionless parameters for 
time, space and mass are introduced: 

, ,
, ,dim dim

dim 0 23
2

, , .u Mt t u M
dy




= = =
m n m n

m n m n (B.14) 

Here, ω0 is the particle frequency in the hexagonal lattice, i.e. the natural frequency of a 
particle in the lattice when the motion of all adjacent particles is impeded, and the subscript 
dim is used to denote dimensional variables, as opposed to their dimensionless counterparts. 

To derive dimensionless parameters for the damping and stiffness of the Kelvin-Voigt 
elements, as well as for any applied external force, we consider the dimensional system of 
equations of motion for the hexagonal Kelvin-Voigt lattice with a load applied at its surface: 

( ) ( ) ( ), , , , , , ,
dim dim ; ,dim dim ; ,dim dim dime j e j

j j
M u C f u K f u F t+ + = m 0 m 0 m 0 m 0 m 0 m 0 m 0 (B.15) 

( ) ( ), , , , , ,
dim dim ; ,dim dim ; ,dim dim 0e j e j

j j
M u C f u K f u+ + = m n m n m n m n m n m n (B.16) 

Note here that equations of motion (B.15) and (B.16) for the particles in the hexagonal lattice 
are valid in both x- and z-directions and that the subscripts for the x- and z-directions of the 
displacements are omitted, because the direction is not of importance for the normalisation.  

Replacing the variables for dimensional time and space in equation (B.15) and (B.16) by 
the corresponding dimensionless parameters according to equation (B.14), as well as dividing 
by 2 33

02 dy , we find the system of equations of motion for the hexagonal lattice as:

( ) ( )
( ), , ,,

; ,dim ; ,dim dim, , ,dim
2 2 2 2 2 33 3 3 3

0 0 02 2 2 2

e j e j

j j

C K F tM u f u f u
dy dy dy dy   

+ + = 
m 0 m 0 m 0m 0

m 0 m 0 m 0 (B.17) 
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( ) ( )
, ,,

; ,dim ; ,dim, , ,dim
2 2 2 23 3 3

0 02 2 2

0e j e j

j j

C KM u f u f u
dy dy dy  

+ + = 
m n m nm n

m n m n m n (B.18) 

Evidently, the multiplicator of the dimensionless acceleration ,um n  now equals the dimen-
sionless mass previously given in equation (B.14).  

Combining the relations in equation (B.13) with the expressions for the particle frequency 
and the critical particle damping of the lattice, respectively found as 0 3 eK M =  and 

2
03critC M= , we find the relations 23 3

02 2 critdy C = and 2 23 8 3
02 5 E = . Substituting 

these relations into equations (B.17) and (B.18), the dimensionless system of equations reads: 

( ) ( ) ( ), , , , , , ,
; ;e j e j

j j
M u C f u K f u F t+ + = m 0 m 0 m 0 m 0 m 0 m 0 m 0 (B.19) 

( ) ( ), , , , , ,
; ; 0e j e j

j j
M u C f u K f u+ + = m n m n m n m n m n m n (B.20) 

Here, the dimensionless parameters for respectively the damping and the stiffness of the Kel-
vin-Voigt elements in the one-dimensional lattice, as well as the expression for the applied 
dimensionless force are described as: 

, , , , , ,
; ,dim ; ,dim ; ,dim ; ,dim, , , dim dim

; ;3 88 3 8 3
2 5 55 3

, , .
3 3 3

e j e j e j e j
e j e j

crit e e

C K K K F FC K F
C Edy K KEdy Edy

= = = = = =

m n m n m n m n m n m n
m n m n m n  (B.21) 

As stated by equation (B.13), the damping coefficient ζe relates the damping and the stiffness 
of the Kelvin-Voigt elements. In its dimensionless form, the damping is commonly described 
by means of the damping ratio as e critC C = . As the critical particle damping is expressed 
as 2

03critC M= , the relation between the damping ratio and the dimensional damping coef-
ficient follows as: 

1
02

0

3
2

e e e
e

crit

C K
C M


  


= = = (B.22) 

Here note that, for a homogeneous lattice, the expressions given by equations (B.14) and 
(B.21) yield the dimensionless mass, damping and stiffness as , 1M =m n , , 2

; 3e jC =m n  and 
, 1

; 3e jK =m n  respectively. 

B.3 Normalisation in 1D and 2D fully discrete systems
The normalisation for the fully discrete systems is applied in accordance with the normalisa-
tion for the discrete-continuous systems. However, as stated in the introduction to Chapter 4, 
the configuration of the far-field particle system is chosen to match the configuration of the 
near-field lattice for the case that the near-field lattice is homogeneous. Therefore, consider-
ing a fully discrete system comprised of a Kelvin-Voigt lattice and a semi-infinite viscoelastic 
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discrete particle system of corresponding dimension, the mass of all particles in the interior 
of the homogeneous far-field system is denoted as M, while the damping and the stiffness of 
the Kelvin-Voigt elements in the interior of the homogeneous far-field system are denoted as 
Ce and Ke respectively. 

To normalize the system, we introduce the following dimensionless parameters: 

( )
( )

( )
( ), ,

, ,dim dim
dim 0 , , .u Mt t u M

M
= = =

m n m n
m n m n (B.23) 

Here, ω0 is the particle frequency of both the homogeneous Kelvin-Voigt lattice and the vis-
coelastic far-field particle system. The subscript dim is here again used to distinguish the 
dimensional variables from the corresponding dimensionless varaiables. Furthermore, re-
garding the superscript notation used in equation (B.23) note that including the part between 
brackets refers to a particle m,n in the two-dimensional system, while neglecting the part 
between brackets refers to a particle n in the one-dimensional cascade. 

Dimensionless parameters for damping and stiffness of the Kelvin-Voigt elements, as 
well as that for the applied loading, are derived from the relations given by equation (B.23). 

Normalisation in the one-dimensional fully discrete system 
The system of equations of motion for the one-dimensional Kelvin-Voigt lattice is previously 
given by equations (B.3) and (B.4). Replacing the dimensional variables for time and space 
by their dimensionless counterparts according to equation (B.23), subsequently dividing the 
remainder by 2

0M as well as incorporating the expressions for the particle frequency and 
the critical particle damping of the cascade, respectively found as 0 2 eK M =  and 

0critC M= , the dimensionless system of equations of motion for the one-dimensional Kel-
vin-Voigt lattice becomes: 

( ) ( ) ( )e eM u C u u K u u F t+ − + − =0 0 0,1 0 1 0,1 0 1 0 (B.24) 

( ) ( )2 2 0e eM u C u u u K u u u+ − − + − − =n n n,n+1 n n-1 n+1 n,n+1 n n-1 n+1 (B.25) 

Note here that equations (B.24) and (B.25) exactly match equations (B.9) and (B.10) previ-
ously obtained for the lattice in the discrete-continuous system. The expressions for the di-
mensionless parameters in the above system of equations however, are different for the lattice 
in the one-dimensional fully discrete system; whereas the dimensionless parameter for the 
mass was previously given by equation (B.23), the dimensionless parameters for respectively 
the damping and the stiffness of the Kelvin-Voigt elements in the one-dimensional Kelvin-
Voigt lattice, as well as the expression for the applied dimensionless force are described as: 

dim dim,dim ,dim ,dim
2 2
0 0

, , .
2 2

e e e
e e

crit e e

C K K F FC K F
C K KM M 

= = = = =

n,n+1 n,n+1 n,n+1 n n
n,n+1 n,n+1 n (B.26) 
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Note here that for the homogeneous far-field system, i.e. the one-dimensional semi-infinitie 
cascade, the dimensionless mass, damping and stiffness in this system are respectively found 
as 1M =n , eC =n,n+1  and 1

2eK =n,n+1 . Here, ζ is the damping ratio, which is commonly 
described as e critC C = . 

Normalisation in the two-dimensional fully discrete system 
The system of equations of motion for the hexagonal Kelvin-Voigt lattice is previously given 
by equations (B.15) and (B.16). Replacing the dimensional variables for time and space by 
their dimensionless counterparts according to equation (B.23), subsequently dividing the re-
mainder by 2

0M and incorporating the expressions for the particle frequency and the crit-
ical particle damping of the cascade, found as 0 3 eK M =  and 2

03critC M=  respec-
tively, the dimensionless system of equations of motion for the hexagonal Kelvin-Voigt lat-
tice may now be expressed as: 

( ) ( ) ( ), , , , , , ,
; ;e j e j

j j
M u C f u K f u F t+ + = m 0 m 0 m n m 0 m n m 0 m 0 (B.27) 

( ) ( ), , , , , ,
; ; 0e j e j

j j
M u C f u K f u+ + = m n m n m n m n m n m n (B.28) 

Note here that equations (B.27) and (B.28) exactly match equations (B.19) and (B.20) previ-
ously obtained for the hexagonal lattice in the discrete-continuous system. Here, the expres-
sion for the dimensionless mass is given by equation (B.23), while the dimensionless param-
eters for respectively the damping and the stiffness of the Kelvin-Voigt elements in the one-
dimensional Kelvin-Voigt lattice, as well as the expression for the applied dimensionless load 
are described as: 

, , , , ,
; ,dim ; ,dim ; ,dim, , , dim dim

; ; 2 23
0 02

, , .
3 3

e j e j e j
e j e j

crit e e

C K K F FC K F
C K KM M 

= = = = =

m n m n m n m n m n
m n m n m n (B.29) 

Here, the dimensionless mass, damping and stiffness of the homogeneous half-plane of par-
ticles are respectively found as , 1M =m n , , 2

; 3e jC =m n  and , 1
; 3e jK =m n , where ζ is the damping 

ratio that is commonly described as e critC C = . 

B.4 Particle natural frequency and critical particle damping
It is commonly known that continuous semi-infinite one-dimensional systems have no natural
frequencies. Finite lumped mass systems that consist of several degrees of freedom however,
do have natural frequencies that depend on the material parameters and the geometry of the
complete system. Additionally, Dieterman and Metrikine [1997] have shown that semi-infi-
nite lumped mass systems, such as the one-dimensional lattices considered in this thesis, may
have both real and imaginary natural frequencies depending on the mass of the boundary
particle. Next to these natural frequencies of the system, another type of natural frequencies
exist in lumped-mass systems that are associated with the motion of a single particle for the
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particular case that the motion of all adjacent particles is impeded. These frequencies are 
sometimes called ‘partial frequencies’, but in this thesis, we refer to them as ‘particle fre-
quencies’. Although in some particular cases, a natural frequency of a system may coincide 
with a particle frequency, they are not the same; as opposed to the natural frequencies of the 
enitre system, particle frequencies are independent of whether a system is finite or semi-
infinite. In accordance with the particle frequency, also a critical damping may be derived 
separately for each particle in a system under the condition that the motion of adjacent parti-
cles is impeded. In this thesis, we will refer to this damping as the ‘critical particle damping’. 

For a single mass-spring system, the commonly known natural frequency coincides with 
the particle frequency and is straightforwardly derived as 0 eK M = . Accordingly, for a 
single mass-spring system, the critical damping coincides with the critical particle damping, 
which is obtained as 02 2crit eC M K M= = . In this thesis, the particle frequency and the 
critical particle damping of the homogeneous one- and two-dimensional lattices are used for 
normalisation of its corresponding systems of equations of motion. Although the derivations 
of the particle frequency and critical particle damping in one-dimensional lattices are quite 
straightforward, they are included here for the insight they provide with regard to the corre-
sponding derivations for the hexagonal lattice, in which the particles have two degrees of 
freedom. 

Particle frequency in a homogeneous one-dimensional viscoelastic lattice 
Figure B.1a depicts a particle n in the interior of the homogeneous one-dimensional Kelvin-
Voigt lattice, where all masses are equal to M and the stiffness and damping of its elements 
are respectively equal to Ke and Ce. Defining un as the total displacement of the particle n, 
the equation of motion for the particle n is straightforwardly obtained as: 

( ) ( )2 2 0e eM u C u u u K u u u+ − − + − − =n n n n-1 n+1 n n-1 n+1 (B.30) 

To determine the particle frequency for particle n, i.e. the natural frequency of particle n for 
the particular case that the motion of all adjacent particles is impeded, damping is assumed 
to be equal to zero, i.e. 0eC = . The particle frequency is independent of any applied loading 
and follows from the free-field solution that satisfies the homogeneous equation (B.30). Ini-
tially given a certain deflection, the particle n will freely vibrate at its particle frequency and 
the corresponding displacement un may then be described by an oscillatory function as 

( ) 0i tu t Ae =n , where A is the amplitude and 0  is the particle frequency. Substituting the 
given expression for the displacement un into the dampingless version of equation (B.30), 
assuming zero displacement and zero velocity for adjacent particles and solving for 0 , then 
yields the particle frequency as: 

0
2 eK
M

 = (B.31) 
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For the lattice to be homogeneous, the surface particle, i.e. particle 1 in Figure B.1b, must 
have the same particle frequency as the particles in the interior of the lattice. Denoting the 
mass of the surface particle as M1, the equation of motion for the surface particle reads: 

( ) ( ) 0e eM u C u u K u u+ − + − =1 1 1 2 1 2 (B.32) 

Equation (B.32) yields the particle frequency of the surface particle as 0 eK M = 1 . Thus, 
for the surface particle to have the same particle frequency as the interior particles, the mass 
of the surface particle must be equal to 1

2 M . 

Critical particle damping in a homogeneous one-dimensional lattice 
The critical particle damping for a particle n in the one-dimensional lattice may be obtained 
from its equations of motion that incorporates damping, previously given for an interior and 
a surface particle by respectively equations (B.30) and (B.32), by assuming that the displace-
ment of the particle n is of the form ( ) stu t Ae=n , where s is complex-valued. Substituting 
the given expression for the displacement un of particle n into equation (B.30) and assuming 
zero motion of adjacent particles yields the following algebraic equation: 

2 2 2 0e eMs C s K+ + = (B.33) 

Note here that, for the case that 1
2M M=1 , substituting ( ) stu t Ae=n  into equation (B.32) 

yields the exact same algebraic equation. Solving equation (B.33) for s using the quadratic 
formula and rearranging, yields the following solutions: 

2
1,2

i 2e
e e

Cs K M C
M M

= −  − (B.34) 

The negative real part of the complex-valued constant s corresponds to an exponential decay 
of the displacement over time, while the imaginary part describes the oscillatory segment of 
the displacement response. The damping Ce for which the second term in equation (B.34) is 
equal to zero corresponds to the critical particle damping Ccrit in the homogeneous one-di-
mensional lattice as: 

02crit eC K M M= = (B.35) 

Figure B.1: Particles in the homogeneous one-dimensional lattice: a) particle in the interior; b) surface particle. 
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Particle frequency in a homogeneous hexagonal lattice 
Figure B.2a shows a particle m,n in the interior of the homogeneous hexagonal Kelvin-Voigt 
lattice, where all masses are equal to M and the stiffness and damping of the elements are 
respectively equal to Ke and Ce. The equations of horizontal and vertical motion for a particle 
m,n in the homogeneous hexagonal Kelvin-Voigt lattice are obtained as: 

( ) ( ) 
6

2

1

ˆ cos sin cos 0x e x x z zj j j
j

Mu K u u u u  
=

− − + − = j j j jm ,n m ,nm,n m,n m,n m,n m,n m,n (B.36) 

( ) ( ) 
6

2

1

ˆ cos sin sin 0z e x x z zj j j
j

Mu K u u u u  
=

− − + − = j j j jm ,n m ,nm,n m,n m,n m,n m,n m,n (B.37) 

Here, ˆ eK  is an operator that describes the viscoelasticity of the BKV elements in terms of 
the stiffness and damping as ˆ e e e tK K C 


= + . For the angles jm,n  of the six evenly divided 

Kelvin-Voigt elements in the cell of particle m,n as depicted in Figure B.2a, the equations of 
motion for particle m,n in the interior of the homogeneous hexagonal lattice become:  

( )

( )

1
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4
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x x x x x x x

x e

z z z z

u u u u u u u
Mu K

u u u u

 − − − + + +
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(B.39) 

To determine the particle frequency of the particle m,n, we consider its equations of motion 
for the case that all its adjacent particles are fixed. This reduces equations (B.38) and (B.39) 
to respectively: 

3 3 0x e x e xMu C u K u+ + =m,n m,n m,n (B.40) 

Figure B.2: Particles in the homogeneous hexagonal lattice: a) interior particle; b) surface particle. 
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3 3 0z e z e zMu C u K u+ + =m,n m,n m,n (B.41) 

Comparing equations (B.40) and (B.41) clearly shows that the particle m,n behaves the same 
in both x- and z-direction and therefore has the same particle frequency for both degrees of 
freedom. To determine the particle frequency, we neglect the damping and describe the dis-
placements of the particle m,n as ( ) 0i

/
t

x zu t Ae =m,n , where A is the amplitude and 0  is the 
particle frequency. Substituting the given displacement for the corresponding degree of free-
dom into either equation (B.40) or (B.41) and solving for 0 , then yields the particle fre-
quency in the hexagonal lattice as: 

0
3 eK
M

 = (B.42) 

For the hexagonal lattice to be homogeneous, the surface particle must have the same particle 
frequency as the particles in the interior of the hexagonal lattice. Describing the viscoelastic 
behaviour of the Kelvin-Voigt elements at the half-plane surface using the operator ˆ eK 0 , 
while describing the viscoelastic behaviour of the Kelvin-Voigt elements in the interior of 
the half-plane using the operator ˆ eK , the equations of motion for a surface particle m,0 are 
obtained as: 

( )
( )

( )

, , ,1
4, , , , ,

, ,3
4

2
ˆ ˆ2 0

x x x

x e x x x e

z z

u u u
M u K u u u K

u u

 − − 
+ − − + = 

+ −  

m 0 m-1 1 m+1 1
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 (B.43) 

( ) ( ) , , , , , , ,33
4 4

ˆ 2 0z e z z z x xM u K u u u u u+ − − + − =m 0 m 0 m 0 m-1 1 m+1 1 m-1 1 m+1 1 (B.44)

In accordance with the one-dimensional lattice, any particle at the surface of the hexagonal 
lattice represents only half the area of a particle in its interior and thus it follows that the mass 
of a surface particle is equal to half the mass of an interior particle, i.e. , 1

2M M=m 0 . Again 
assuming that the displacements of adjacent particles are equal to zero and additionally de-
scribing the viscoelastic behaviour of the surface elements in terms of the viscoelastic behav-
iour of the interior elements using the operator ˆ ˆe eK K=0 , equations (B.43) and (B.44) re-
duce to: 

( ) ( ), , ,1 1 1
2 2 24 1 4 1 0x e x e xMu C u K u + + + + =m 0 m 0 m 0 (B.45) 

, , ,3 31
2 2 2 0z e z e zMu C u K u+ + =m 0 m 0 m 0 (B.46) 

In the homogeneous hexagonal lattice, the behaviour of the particle m,0 must be the same for 
both degrees of freedom and thus it follows that 1

2 = . Ergo, the damping and the stiffness 
of the surface elements are equal to half that of the elements inside the lattice, i.e. 1

2e eK K=0  
and 1

2e eC C=0 . The resulting configuration of the surface particle m,0 is depicted in Figure
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B.2b. Note here that multiplying both sides of equations (B.45) and (B.46) by two yields the
horizontal and vertical equations of motion for the surface particles that are exactly the same
as those previously found for a particle m,n in the interior of the hexagonal lattice as equa-
tions (B.40) and (B.41). Consequently, the particle frequency of the surface particles must
coincide with the particle frequency of the particles in the interior of the hexagonal lattice as
given by equation (B.42).

Critical particle damping in a homogeneous hexagonal lattice 
The critical particle damping for a particle m,n in the hexagonal lattice may be obtained from 
the equation of motion for either degree of freedom, given by equations (B.40) and (B.41), 
by assuming that its displacement is of the form ( )/

st
x zu t Ae=m,n , where s is complex-valued. 

Substituting the given displacement for the corresponding degree of freedom into either equa-
tions (B.40) or (B.41) yields the following algebraic equation: 

2 3 3 0e eMs C s K+ + = (B.47) 

Note here that substituting the given displacement into either equation of motion for the sur-
face particle, described by equations (B.45) and (B.46), yields exactly the same. Solving 
equation (B.47) using the quadratic formula yields the following solutions for the complex-
valued constant s: 

24
1,2 3

3 3i
2 2

e
e e

Cs K M C
M M

= −  − (B.48) 

By analogy of the approach for the one-dimensional lattice, the critical particle damping for 
the response of any particle in the homogeneous hexagonal Kelvin-Voigt lattice is thus found 
as: 

4 2
03 3crit eC K M M= = (B.49) 
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C Parameters of one- and two-dimensional lattices 

C.1 Derivation of material parameters for the hexagonal lattice
Section 2.6.2 shows that the relation between the mass M of a particle in the interior of the
hexagonal lattice and the mass density ρ of the material it represents is found as:

23
2M dy= (C.1) 

Here,  is the unit particle distance in the lattice and dy is the unit third dimension. 
To obtain relations between the material parameters of the hexagonal lattice and the 

macro-material properties, the equations of motion of a particle the homogeneous hexagonal 
lattice must in the long-wave limit reduce to the equations of motion for a corresponding two-
dimensional continuum [Maradudin et al., 1963; Suiker et al., 2001]. The general equations 
of motion for a particle m,n in the interior of the hexagonal Kelvin-Voigt lattice were previ-
ously given by equations (B.36) and (B.37). The equations of motion of a particle in the 
lattice may be obtained in the long-wave limit by replacing the particle displacements xum,n  
and zum,n  by their continuum counterparts, i.e. ( ), ,xu x z t  and ( ), ,zu x z t , and replacing the 
particle displacements of the adjacent particles by corresponding expressions derived from 
the given continuum displacements by applying the Taylor expansion [Metrikine and Askes, 
2006; Suiker et al., 2001]. The second order Taylor polynomials that are used to replace the 
adjacent particle displacements xu j jm ,n  and zu j jm ,n  are obtained as: 

( ) ( ) ( ) ( )

( ) ( ) ( )

/ ; ; / ; / z; //
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x zx z

 
= + + = + +

 

  
+ + +

  

j jm ,n

Here, ;x j  and z; j  are respectively the horizontal and vertical distance between the particle 
m,n and the adjacent particle mj,nj, which are respectively expressed in terms of the unit 
interparticle distance as ; cosx j j= m,n  and z; sinj j= m,n . Replacing the particle dis-
placements xum,n  and zum,n  in equations (B.36) and (B.37) by ( ), ,xu x z t  and ( ), ,zu x z t  re-
spectively, as well as incorporating the second order Taylor polynomial given above for ad-
jacent particles and choosing the angles of the Kelvin-Voigt elements to be evenly divided 
as depicted in Figure B.2, the long-wave limit equations of motion for a particle m,n in the 
interior of the hexagonal lattice become: 

( ) ( ) ( ) ( )
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The motion of the two-dimensional continuum may be described by the commonly known 
two-dimensional elastodynamic wave equation [Achenbach, 1973] that respectively de-
scribes the horizontal and vertical equations of motion for the continuum as: 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2

2 2
ˆ ˆˆ ˆ ˆ, , 2 , , , , , , 0x x x zu x z t u x z t u x z t u x z t

x zx z
     

  
− + − − + =

  
(C.4) 
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     

  
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   
(C.5) 

Comparing the long-wave limit equations of motion for a particle inside the lattice, given by 
equations (C.2) and (C.3), with the corresponding elastodynamic equations (C.4) and (C.5), 
the relations between the material parameters of the hexagonal Kelvin-Voigt lattice and the 
two-dimensional continuum are straightforwardly obtained. Accounting for equation (C.1) 
that gives the relation between the particle mass M and the mass density ρ, the relations be-
tween the Lamé operators ̂  and ̂  and the operator ˆ eK  can be derived. Noting that, as 
stated in Section 3.5.3, the Lamé operators describe the viscoelastic behavour of the contin-
uum through the damping coefficient e  as ( )ˆ 1 e t   


= + and ( )ˆ 1 e t   


= + , while the 

operator ˆ eK  describes the viscoelasticity of the Kelvin-Voigt elements in terms of the stiff-
ness and damping as ˆ e e e tK K C 


= + , the relations between the Lamé operators, the stiffness 

and the damping of the Kelvin-Voigt elements read: 

ˆ3 3ˆ ˆ ,
4 4

e e
e e e

K K C K
dy dy

    = = → = = =  (C.6) 

Because the Lamé constants λ and μ describe the elastic macromaterial properties through 
the Young’s modulus E and the Poisson’s ratio ν respectively as ( ) ( )1 2 1E   = − +  and 

( )1
2 1E = + , and that according to equation (C.6) the Lamé constants λ and μ must be 

equal, it follows that the material parameters of the hexagonal lattice only match the macro-
material properties for a Poisson’s ratio 1

4 = . For this Poisson’s ratio, the Lamé constants 
are related to the Young’s modulus as 2

5 E = = . Substituting this relationship into equa-
tion (C.6) shows that 8

5 3eK Edy= . 
Furthermore, the corresponding shear and compressional wave velocities then follow as: 

2 22 3 2 6 9, 3 .
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e e
S P S

E K E Kc c c
M M

  

   

+
= = = = = = = (C.7) 

Summarizing, the material properties of the Kelvin-Voigt lattice and the macro-material 
properties are related as: 

23 8 8
2 5 3 5 3

, ,e e eM dy C Edy K Edy = = = (C.8) 
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C.2 Lock in the one-dimensional BKV lattice by means of a rigid bar
Section 2.3.4 describes lock as the motion state of a rheological element between two adja-
cent particles during an inelastic collision. Particles in a lattice collide when they move closer
to each other than a certain given threshold, i.e. the minimum allowed distance between two
particles. Assuming a nonzero threshold, a collision in a one-dimensional lattice can only
occur between particles that are adjacent. A collision between two particles n and n+1 occurs
when the distance D jn,n  between these particles becomes equal to, or is inclined to become
smaller than, the threshold distance minD jn,n . Upon reaching this threshold, the relative motion
between the two particles is impeded and they continue their motion in unison.

In this thesis, the lock-element is generally modelled by a spring with a stiffness signifi-
cantly larger than the stiffness of the spring in the BKV elements, but alternatively we can 
also model lock by using rigid bars. Figure C.1 shows a fragment of the one-dimensional 
BKV lattice, where a rigid bar lock-element is located parallel to the BKV element between 
particles n and n+1. Figure C.1a shows the situation where the BKV element is not in lock. 
Here, the distance Dn,n+1 between particles n and n+1 is larger than the threshold distance 

minDn,n+1 and therefore a certain distance minD D D = −n,n+1 n,n+1 n,n+1 remains before the particles 
n and n+1 collide, i.e. 0D n,n+1 . While the BKV element is not in lock, there is no force 
in the lock element, i.e. 0lockF =n,n+1 . 

The situation where the BKV element is in lock is depicted by Figure C.1b. Here, the 
distance Dn,n+1 between particles n and n+1 is equal to the threshold distance minDn,n+1  and thus 

0D =n,n+1 . The relative movement between particles n and n+1 is impeded and the lock-
element is activated so that it carries an axial compressive load 0lockF n,n+1 . Thus, when an 
element between particles n and n+1 is in lock, the original rheological element remains 
intact, while parallel to the original element a lock-element is introduced that impedes the 
relative motion between particles n and n+1. Here, note that lock only occurs in compression 
and for as long as that compression remains. 

Figure C.1: A segment of the one-dimensional BKV with a lock element added to the BKV element 
between particles n and n+1: a) while not in lock-state; b) during lock-state.
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Behaviour of the BKV element that remains parallel to the rigid bar during lock 
To determine the equations of motion of a particle n when the element between particles n 
and n+1 is in lock, we must first establish what happens in the BKV element that remains 
parallel to the lock-element. For Hooke or Kelvin-Voigt elements this is rather straightfor-
ward, as we only need to account for the force in the spring due to its constant elongation 
during lock. Due to the dual nature of the BKV element however, we must first determine 
the response of the node intermediate particles n and n+1. The response of this node depends 
on the motion state of the corresponding BKV element right before lock is initiated. 

When lock occurs while the BKV element is in stick, the Bingham element that has been 
inactive during stick will remain inactive during lock. After all, due to the activation of the 
lock-element, the relative motion between particles n and n+1 stops and, since the compres-
sive force working on the Bingham element did not activate the dry friction element before, 
it will also not activate the dry friction element during lock. Thus, after a stick-to-lock tran-
sition and for the duration that the element remains in lock, the elongation of the Bingham 
element is constant and equal to its elongation right before the stick-to-lock transition. Con-
sequently, during lock, the displacement of the node intermediate particles n and n+1 is equal 
to the displacement of particle n+1 and the BKV element behaves as a Kelvin-Voigt element. 

When lock occurs while the BKV element is in slip, the behaviour of the BKV element 
is less evident. For the case of a slip-to-lock transition, the Bingham element is active during 
the onset of lock. Clearly as lock sets in, the elongation rate of the BKV element is equal to 
zero and the elongation of the BKV element becomes constant. If we follow the principles of 
the slip-to-stick transition as discussed in Section 2.3.5, the Bingham element will remain 
active and continue to shorten until the node intermediate particles n and n+1 is inclined to 
change direction. Because the relative motion between the particles n and n+1 stops com-
pletely, it follows that the corresponding Kelvin-Voigt element will relax as the Bingham 
element continues to become shorter. As a result, eventually the force applied by the Kelvin-
Voigt element on the Bingham element will reverse and the node intermediate particles n and 
n+1 wants to change its direction of motion and the BKV element sticks. Now, since the 
intermediate node has no mass and therefore no inertia, it is quite reasonable to assume that 
this slip-to-stick-transition occurs quickly after the initiation of lock. Consequently, follow-
ing a slip-to-lock transition, we assume that the Bingham element is inactive during lock, and 
therefore, as depicted in Figure C.1b, we generally assume that during lock the BKV element 
behaves as a Kelvin-Voigt element independent from the motion state before lock.  

The position of the node intermediate particles n and n+1, and thereby the elongation of 
the Bingham element, at the end of a lock-state are different after a slip-to-lock transition 
then after a stick-to-lock transition. In this case, the elongation of the Bingham element after 
a slip-to-lock transition follows from the equilibrium of forces at the time the slip-to-stick 
transition occurs in the BKV element. For a BKV element under compression, this equilib-
rium reads: 

0e e crKV KV BfC e K e C e F+ − + =n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 (C.9) 
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At the exact moment that the slip-to-stick transition occurs, it follows that the elongation rate 
of the Bingham element is equal to zero, i.e. 0Be =n,n+1 . As this transition occurs in a BKV 
element that is parallel to a rigid bar, the elongation rate of the whole BKV element is equal 
to zero and therefore the elongation rate of the Kelvin-Voigt element is also equal to zero, 
i.e. 0KVe =n,n+1 . Now noting that the elongation of the Kelvin-Voigt element can be expressed 
as KV Be e = −n,n+1 n,n+1 n,n+1 and that the magnitude of the elongation of the BKV element during 
lock must be equal to the allowed shortening at which lock occurs, we find the elongation of 
the Bingham element during the lock-state that occurs after a slip-to-lock transition as: 

( ) 00 cr
e crB B

e

FK e F D
K

 − + = → = −
n,n+1

n,n+1 n,n+1 n,n+1 n,n+1 n,n+1 n,n+1
n,n+1  (C.10) 

Here, 0D n,n+1  is the allowed shortening at which lock occurs in the element between particles 
n and n+1. This allowed shortening is given by the difference between the initial length of 
the BKV element, or the initial distance 0Dn,n+1  between particles n and n+1, and the tresh-
hold distance minDn,n+1  at which lock occurs, so that 0 0 minD D D = −n,n+1 n,n+1 n,n+1 . 

When modeling the lock-element as a rigid bar, the equations of motion for particles n 
and n+1 with the BKV element in-between in lock, depend on the motion states of the adja-
cent BKV elements between respectively particles n-1 and n, and particles n+1 and n+2. 
Although the motion states of these elements can vary between stick, slip or lock, and are 
generally not the same, we will here derive the equations of motion for particles n and n+1 
with both adjacent BKV elements in either stick- or slip-state. The equations for any other 
configuration of motion states can be straightforwardly derived from these. 

Lock represented by a rigid bar in a BKV element with its adjacent elements in stick 
During lock, the distance between particles n and n+1 does not change and the elongation 
en,n+1 of the element in-between is constant. Assuming large elongations, so that the elonga-
tion of the element between particles n and n+1 is given by equation (A.17), it follows that 
during lock the elongation en,n+1 is equal to the elongation constant εn,n+1. As explained above, 
the Bingham element in a locked BKV element can be considered as a rigid bar with a con-
stant elongation B

n,n+1 . Consequently, the Kelvin-Voigt element in the locked BKV element 
between particles n and n+1 has a constant elongation KV n,n+1  during lock. 

When the BKV element between particles n and n+1 is in lock, and the BKV element 
between particles n-1 and n is in stick, the equation of motion for particle n follows from the 
corresponding equation of motion for a particle n in the one-dimensional BKV lattice with 
all involved BKV elements in stick, previously given in Section 2.3.2. Accounting for the 
constant elongation of the Kelvin-Voigt element and the non-conservative axial force lockF n,n+1  
in the lock-element, we find: 

( )e e eB KV lockM u C e K e K F + + − − = −n n n-1,n n-1,n n-1,n n-1,n n-1,n n,n+1 n,n+1 n,n+1 (C.11) 



298 

The equation of motion for particle n+1 with the BKV element between particles n and n+1 
in lock and the element between particles n+1 and n+2 in stick is found accordingly as: 

( )e e eKV B lockM u K C e K e F + − − − = +n+1 n+1 n,n+1 n,n+1 n+1,n+2 n+1,n+2 n+1,n+2 n+1,n+2 n+1,n+2 n,n+1 (C.12)

Note here that the forces working inside the locked BKV element between particles n and 
n+1 are depicted in Figure C.1b. 

Equations (C.11) and (C.12) may not simply be used to replace the original equations of 
motion in the system of equations of motion for the one-dimensional BKV lattice as we 
thereby introduce the unknown lock force lockF n,n+1  into the system. Instead, we remove the 
unknown lock force lockF n,n+1  from the system of equations of motion by adding equations 
(C.11) and (C.12), and note that the accelerations ün and ün+1 are equal since the particles n 
and n+1 move together during lock. Consequently, the equation of motion for a particle n 
with the BKV element between particles n and n+1 in lock and the BKV element between 
particles n-1 and n in stick, is ultimately found as: 

( ) ( )

( ) 0

e e B

e e B

M M u C e K e

C e K e





+ + + −

− − − =

n n+1 n n-1,n n-1,n n-1,n n-1,n n-1,n

n+1,n+2 n+1,n+2 n+1,n+2 n+1,n+2 n+1,n+2
(C.13) 

The equation of motion for particle n+1 with the BKV element between particles n and n+1 
in lock and the element between particles n+1 and n+2 in stick follows directly from equation 
(C.13) by substituting u u=n n+1 . Note here, that equation (C.13) does not contain any terms 
related to the forces inside the locked element between particles n and n+1. This makes sense, 
seeing that the relative movement between these particles is impeded. 

The unknown axial force lockF n,n+1  in the lock-element is derived by subtracting equations 
(C.11) and (C.12) from one another instead of adding them. This yields: 

( ) ( )

( )
1
2

e e B
e KVlock

e e B

M M u C e K e
F K

C e K e






 − + + −
 = −
 + + −
 

n n+1 n n-1,n n-1,n n-1,n n-1,n n-1,n

n,n+1 n,n+1 n,n+1

n+1,n+2 n+1,n+2 n+1,n+2 n+1,n+2 n+1,n+2
(C.14) 

Equation (C.14) is required to determine if or when a possible lock-to-stick transition occurs. 
As the lock element cannot carry tensile loads, the lock-to-stick transition occurs when the 
axial lock force lockF n,n+1  becomes smaller than or equal to zero. This occurs when the internal 
force in the BKV element, given by the term e KVK n,n+1 n,n+1 , becomes equal to or larger than 
the external force working on the BKV element, which is given by the second term on the 
right-hand side of equation (C.14). Note furthermore that the acceleration ün of particle n 
may be freely replaced by the acceleration ün+1 of particle n+1, as they are the same. 

‘Lock’ represented by a rigid bar in a BKV element with its adjacent elements in slip 
The equations of motion for particles n and n+1, with the BKV element between particles n 
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and n+1 in lock and both its adjacent BKV elements in slip, are derived in accordance with 
the equations of motion for the situation with the adjacent BKV elements in stick discussed 
previously. For the situation where both the BKV elements between respectively particles n-
1 and n, and particles n+1 and n+2, are in slip, while the BKV element between particles n 
and n+1 is in lock, the equation of motion for a particle n may be derived from the equation 
of motion for particle n with all involved BKV elements in slip, previously given in Section 
2.3.3. Adding the non-conservative axial force in the lock-element, lockF n,n+1 , as well as noting 
that the elongation of the Kelvin-Voigt element is a constant, yields the equation of motion 
for particle n as: 

:sgncr eB KVf B slip lockM u C e F F K F+ + − = −n n n-1,n n-1,n n-1,n n-1,n n,n+1 n,n+1 n,n+1 (C.15) 

Accordingly, when the BKV element between particles n and n+1 is in lock and the element 
between particles n+1 and n+2 is in slip, the equation of motion for particle n+1 becomes: 

e e eKV KV KV lockM u K C e K e F+ − − = +n+1 n+1 n,n+1 n,n+1 n+1,n+2 n+1,n+2 n+1,n+2 n+1,n+2 n,n+1 (C.16) 

Adding equations (C.15) and (C.16), and taking into account that the accelerations ün and 
ün+1 of particles n and n+1 are the same, yields the equation of motion for a particle n, with 
the BKV element between particles n and n+1 in lock and both its adjacent BKV elements 
in slip, as: 

( ) :sgn

0

crBf B slip

e eKV KV

M M u C e F F

C e K e

+ + +

− − =

n n+1 n n-1,n n-1,n n-1,n n-1,n

n+1,n+2 n+1,n+2 n+1,n+2 n+1,n+2
(C.17) 

The corresponding equation of motion for particle n+1 follows from equation (C.17) by sub-
stituting u u=n n+1 . 

For the situation where its adjacent BKV elements are in slip, the axial lock force lockF n,n+1  
in the locked BKV element between particles n and n+1 is found by subtracting equations 
(C.15) and (C.16) from one another. This results in: 

( ) :sgn1
2

crBf B slip
e KVlock

e eKV KV

M M u C e F F
F K

C e K e


 − + +
 = −
 + + 

n n+1 n n-1,n n-1,n n-1,n n-1,n
n,n+1 n,n+1 n,n+1

n+1,n+2 n+1,n+2 n+1,n+2 n+1,n+2
(C.18) 

It can be seen from comparing equations (C.14) and (C.18), that the motion state of the ele-
ments adjacent to locked element only influence the forces applied externally to the locked 
element, as only the second term on the right-hand side of both equations is different. Evi-
dently, the term e KVK  n,n+1  describing the internal force in the locked BKV element is the same 
for both equations. Note furthermore that if the masses Mn and Mn+1 of particles n and n+1 
are the same, the acceleration terms will not appear in equations (C.14) and (C.18). 
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C.3 Lock in the hexagonal BKV lattice by means of a rigid bar
As explained in Sections 2.3.4, it is not very straightforward and rather laborious to obtain
the equations of motion for the hexagonal BKV lattice for the case that we model the lock-
state using rigid bar elements. This is especially true when multiple adjacent BKV elements
are in lock. Therefore, instead of using rigid bars, in this thesis the lock-state is modelled by
adding a spring with a large stiffness parallel to the BKV element. Nevertheless, to illustrate
the approach of using rigid bars to model the lock-state, we here derive the corresponding
equations of motion for a particle m,n, as well as for an adjacent particle p,q, where only the
BKV element between particles m,n and p,q is in lock. Here, we will only consider the equa-
tions of motion for the particular case that all other elements are in stick-state. The equations
of motion for the case that all adjacent elements are in slip, or for any combination of motion
states, may be derived accordingly.

Figure C.2a shows the interior of the hexagonal BKV lattice, where the element between 
two adjacent particles m,n and p,q is in lock. Any particles adjacent to m,n and p,q are 
referred to by their position relative to m,n and p,q, so that, for example, the nodal coordi-
nates m+2,n and p+1,q-1 both refer to the same particle. Accordingly, the nodal coordinates 
m-1,n+1 and p-2,q also refer to the same particle.

For the case where the BKV element between particles m,n and p,q is in lock, and all
other BKV elements in the cell of particle m,n are in stick, the equations of motion for that 
particle can be derived from the corresponding equations of motion for a particle m,n in the 
hexagonal BKV lattice with all involved BKV elements in stick, previously given in Section 
2.4.3.  

We here have to take into account that the Kelvin-Voigt element in the locked BKV ele-
ment between particles m,n and p,q has a constant elongation, i.e. ; ;j B j KV je  − =m,n m,n m,n , where 
the elongation of the Bingham element depends on the motion state of the BKV element 
between particles m,n and p,q prior to lock. The elongation of the Bingham element may be 
determined fully in accordance with the approach for the one-dimensional system discussed 
in Appendix C.2. This means that after a stick-to-lock transition and for the duration that the 

Figure C.2: a) A fragment of the hexagonal BKV lattice with a lock element parallel to the BKV element between 
particles m,n and p,q; b) The forces in the BKV element between particles m,n and p,q during lock.

m - 2,n
m,n

m + 2,n

p + 1,q -1

p,q
p - 2,q

m - 1,n + 1

p + 2,q

p + 1,q + 1p -1,q + 1

m + 1,n -1m -1,n -1a ) b)

lockα m,n

m,n

z

0
0

lock

lockF
ΔD

>
=

e l; ock KV lock;

e lock KV; ;lock

K

K

ε

ε=

m,n m,n

p,q p,q

xxm,n xp,q

zp,q

zm,n

p,q

lockα p,q
lock ;zF p,q

lock ;xF p,q

lock ;xFm,n

lock ;zFm,n



301 

element remains in lock, the elongation of the Bingham element is equal to its elongation 
during the instance of stick prior to lock. Furthermore, after a slip-to-lock transition and for 
the duration that the element remains in lock, the elongation of the Bingham element is found 
as: 

;
; 0;

;

cr j
B j j

e j

F
D

K
 = − 

m,n
m,n m,n

m,n (C.19) 

Here, 0; jD m,n  is the shortening at which lock in the considered BKV element is induced. This 
allowed shortening is given by the difference between the initial distance 0; jDm,n  between par-
ticles m,n and p,q, and the treshhold distance min; jDm,n  at which lock occurs. 

Denoting the locked BKV element between particles m,n and p,q as the element j J=  
and accounting for the internal forces that work in the locked BKV element between particles 
m,n or p,q as depicted in Figure C.2b, we find the equations of motion for the particle m,n 
with all other BKV elements in the cell of particle m,n in stick, as: 

( )
5

; ; ; ; ;
1

ˆ cos cos cosx e j j jB j e J KV J J Jlock J
j

M u K e K F    
=

− − − = −m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n (C.20)

( )
5

; ; ; ; ;
1

ˆ sin sin sinz e j j jB j e J KV J J Jlock J
j

M u K e K F    
=

− − − = −m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n m,n (C.21) 

Accordingly, the equations of motion for the particle p,q with the BKV element between 
particles m,n and p,q in lock and all other BKV elements in the cell of particle p,q in stick 
are found as: 

( )
5

; ; ; ; ;
1

ˆ cos cos cosx e j j jB j e J KV J J Jlock J
j

M u K e K F    
=

− − − = −p,q p,q p,q p,q p,q p,q p,q p,q p,q p,q p,q (C.22) 

( )
5

; ; ; ; ;
1

ˆ sin sin sinz e j j jB j e J KV J J Jlock J
j

M u K e K F    
=

− − − = −p,q p,q p,q p,q p,q p,q p,q p,q p,q p,q p,q (C.23) 

Equations (C.20) to (C.23) may not simply be included in the system of equations of motion 
for the two-dimensional BKV lattice as this introduces an additional unknown lock force 

; ;lock J lock JF F=m,n p,q  into the system and thereby requires an additional equation of motion. To keep 
the dimension of the system of equations of motion the same for all motion states, we com-
bine the equations above to remove the unknown lock force from the system, and subse-
quently introduce two new equations that follow from the locked element between particles 
m,n and p,q.  

Here, the angles J
m,n  and J

p,q  of the locked element are related as J J  = p,q m,n , so 
that cos cosJ J = −p,q m,n  and sin sinJ J = −p,q m,n . Substituting these relations into respec-
tively equations (C.22) and (C.23), and subsequently adding equations (C.22) and (C.20), as 
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well as adding equations (C.23) and (C.21), yields the following: 

( ) ( )
5 5

; ;; ;
1 1

ˆ ˆcos cos 0x x e j j j e j j jB j B j
j j

M u M u K e K e   
= =

+ − − − − = m,n m,n p,q p,q m,n m,n m,n m,n p,q p,q p,q p,q (C.24) 

( ) ( )
5 5

; ;; ;
1 1

ˆ ˆsin sin 0z z e j j j e j j jB j B j
j j

M u M u K e K e   
= =

+ − − − − = m,n m,n p,q p,q m,n m,n m,n m,n p,q p,q p,q p,q  (C.25) 

Thus, equations (C.24) and (C.25) no longer contain any terms related to the forces inside 
the locked BKV element between particles m,n and p,q. 

For the one-dimensional BKV lattice, with a locked BKV element between particles n 
and n+1, adding the equations of motion for particles n and n+1 yields one independent 
equation of motion, while the second required independent equation follows from the identi-
cal motion of these particles. In the hexagonal BKV lattice, respectively adding the equations 
for the horizontal and vertical motion of particles m,n and p,q yields two independent equa-
tions, given by equations (C.24) and (C.25). As each particle in the hexagonal lattice has two 
degrees of freedom, we require two more equations to properly describe the motion of parti-
cles m,n and p,q. The other two independent equations follow from the relations that must 
exist between the motions of particles m,n and p,q. The approach however is not as straight-
forward as for the corresponding one-dimensional system, because the BKV element be-
tween particles m,n and p,q can still rotate during lock..  

The first additional equation follows from the relation between the horizontal and vertical 
lock forces working on either particle m,n or p,q. The horizontal and vertical lock forces on 
particle m,n are related by the corresponding angle of the element as: 

;

;

sintan
cos

lock z Jlock
J

Jlock x lock

F F
F F





= =

m,n m,n m,n
m,n

m,n m,n m,n

The horizontal and vertical lock forces previously appeared in the right-hand side of equa-
tions (C.20) and (C.21), thus combining these equations using the above relation yields the 
third equation of motion for the particles m,n and p,q as: 
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x e j j jB j J
j
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m,n m,n m,n m,n m,n m,n m,n

m,n m,n m,n m,n m,n m,n

(C.26) 

By considering the horizontal and vertical lock forces working on particle p,q, we would be 
able to obtain another equation of motion. The resulting equation however is not independent 
and may also be found by combining equations (C.24), (C.25) and (C.26). 

The second additional equation follows from the distance between particles m,n and p,q 
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that remains constant during lock. Along the locked BKV element, the relative displace-
ments, velocities and accelerations of particles m,n and p,q should thus be the same. Ac-
counting for the known relation between the angles J

p,q  and J
m,n  yields the last equation 

of motion from the relation between the displacements of the particles m,n and p,q as: 

( ) ( )cos sin 0x x z zJ Ju u u u − + − =m,n p,q m,n m,n p,q m,n (C.27) 

Here, note that equation (C.27) may also be described in terms of velocity or displacement, 
but is deliberately described in terms of the acceleration as this is the highest time derivative 
for which the system of ordinary differential equations is evaluated numerically.  

When the BKV element between particles m,n and p,q is in lock and all other BKV ele-
ments in the cells of particles m,n and p,q are in stick, the motion of the particles m,n and 
p,q is described by equations (C.24) to (C.27). None of these equations contain any additional 
unknowns and they may therefore replace the equations of motion (C.20) to (C.23) in the 
system of equations of motion for the hexagonal BKV lattice. 

To determine when the locked BKV element between particles m,n and p,q transits from 
lock to stick, we need to determine the axial lock force lockF m,n . The lock force lockF m,n  can be 
derived by subtracting equations (C.20) and (C.22) from one another and taking the relation 
between the angles J

p,q  and J
m,n  into account. We thus find the axial lock force lockF m,n  as: 

( )

( )

5

; ;
1

; ; 5

; ;
1

ˆ cos
1

2cos ˆ cos

x e j j jB j
j

e J KV Jlock
J

x e j j jB j
j

M u K e
F K

M u K e

 




 

=

=

 
− − 

 = −
 

− + −  
 





m,n m,n m,n m,n m,n m,n

m,n m,n m,n
m,n

p,q p,q p,q p,q p,q p,q

(C.28) 

Alternatively, we may also find the lock force lockF m,n  by subtracting equations (C.21) and 
(C.23) from one another. This yields. 
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(C.29) 

In both equations (C.28) and (C.29), the term ; ;e J KV JK m,n m,n  gives the internal force in the locked 
BKV element between particles m,n and p,q. The second term on the right-hand side of both 
equations (C.28) and (C.29) gives the force that is applied to the locked BKV element exter-
nally. Although the expressions for these equations are different they must both result in the 
same axial lock force; whereas equation (C.28) follows from the horizontal components of 
the externally applied loads working on the locked BKV element, equation (C.29) follows 
from the corresponding vertical components. 
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D One-dimensional systems in the time domain 

D.1 The one-dimensional discrete-continuous Hooke system
The one-dimensional semi-infinite Hooke system, depicted in Figure D.1, is comprised of a
one-dimensional Hooke lattice and a semi-infinite linear-elastic rod. The Hooke lattice con-
sists of N particles and features N-1 Hooke elements, where each particle n has a mass Mn,
the distance between the particles is , and the Hooke elements between adjacent particles
n and n+1 have a stiffness eK n,n+1 . The one-dimensional Hooke lattice and the semi-infinite
linear-elastic rod are connected at the boundary particle N, which is fixed to the viscoelastic
rod at coordinate Intx x= . The semi-infinite linear-elastic rod has a density ρ, a cross-section 
area A and a Young’s modulus E. 

To determine a boundary equation at particle N that accounts for the behaviour of the 
semi-infinite linear-elastic rod, we consider the one-dimensional wave equation of the linear-
elastic rod, as well as the balance of forces and the displacement continuity at the lattice-rod 
interface. In the time domain, these equations read: 

( ) ( ), , 0Au x t EAu x t − = (D.1) 

( ),e IntM u K e EAu x t+ =N N N-1,N N-1,N (D.2) 

( ),Intu u x t=N (D.3) 

Here, ( ),u x t  is the displacement in the semi-infinite linear-elastic rod valid for Intx x . 
To correctly describe the one-dimensional semi-infinite Hooke system as a linear-elastic 

homogeneous medium that is partly modelled by a lattice and partly by a continuum, we 
match the material parameters of the Hooke lattice with the material properties of the rod by 
matching the equation of motion for the particles inside the Hooke lattice in the long-wave 
limit, with the equation of motion for the linear-elastic rod, given by equation (D.1). Here, 
the mass of the particles and the stiffness of the Hooke elements in the lattice are constant 
and respectively denoted as M and Ke. Defining the particle displacement un as the distance 
between its current and its initial position, the equation of motion for a particle n in the inte-
rior of the one-dimensional Hooke lattice reads: 

( )2 0eMu K u u u+ − − =n n n-1 n+1 (D.4) 

To obtain the continualized equation of motion of the lattice in the long-wave limit, we 

Figure D.1: The one-dimensional semi-infinite discrete-continuous Hooke system. 
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replace the particle displacement un by the continuous displacement ( ),u x t  and subse-
quently apply a Taylor series expansion with respect to this displacement. The displacements 
un-1 and un+1 of adjacent particles n-1 and n+1 are then replaced by the second order Taylor 
polynomials ( ),u x t  [Maradudin et al., 1963; Suiker et al., 2001]. Comparing the resulting 
expression to equation (D.1), and noting that the mass per unit length of both models must 
match, we find the following relations: 

, .e
EAM A K= =

Choosing the interface between the lattice and the continuum according to Figure D.1, the 
correct distribution of mass over the length of the one-dimensional Hooke system yields the 
mass of the boundary particle N as 1

2M M=N . 

Dimensionless boundary equations in the Laplace and in the time domain 
To consider the fundamental properties of the Hooke system, we normalize it by introducing 
the following dimensionless parameters in accordance with Appendix B.1: 

dim dim ;dim
dim 0 , , , .

2
e

e
Ku Mt t u M K

A EA



= = = =

n,n+1n n
n n n,n+1

Here, the particle frequency ω0 of the homogeneous Hooke lattice reads 0 2 eK M = .  
Application of these dimensionless variables and subsequently applying the Laplace in-

tegral transform with respect to time yields the dimensionless wave equation for the linear 
elastic rod and the two dimensionless interface conditions in the Laplace domain as: 

( ) ( )2 1
2, , 0s u x s u x s− = (D.5) 

( )2 1
2 ,e IntM s u K e u x s+ =N N N-1,N N-1,N (D.6) 

( ),Intu u x s=N (D.7) 

Here, s is the complex-valued Laplace parameter and a tilde over a variable denotes that 
variable in the Laplace domain. Noting that ( )Re 0s  , the general solution to equation (D.5)
that satisfies the infinity condition, and thus accounts for the proper behaviour of the linear-
elastic rod for x → ∞, reads ( ) 2, s xu x s Ae−= , where A is the wave amplitude. Taking its 
spatial derivative and substituting equation (D.7) then yields ( ), 2Intu x s s u = − N . Conse-
quently, the Laplace domain equation of motion of the boundary particle N reads: 

( )2 0eM s u K e s u+ + =N N N-1,N N-1,N N (D.8) 

Here, the dynamic stiffness for the linear-elastic rod is found as ( ) 1
2 2s s = . Applying the 

inverse Laplace integral transform to equation (D.8) then yields the equation of motion of the 



306 

boundary particle N in the time domain as: 

1
2 2 0eM u K e u+ + =N N N-1,N N-1,N N (D.9) 

Thus, when we model the far-field domain as a semi-infinite linear-elastic rod, the boundary 
equation is an ordinary differential equation. For systems that include damping or dispersion, 
this relation is obtained as a boundary integral equation.  

Furthermore note that equation (D.9) can alternatively be obtained from equations (D.1) 
to (D.3) using d’Alembert’s solution [D'Alembert, 1747]. However, as soon as damping is 
included, d’Alembert’s solution can no longer be used. 

Sensitivity of the dynamic stiffness in the time domain 
To review the influence of the dynamic stiffness on the response of discrete-continuous 
Hooke system, we here derive its complete system of equations of motion. Noting that the 
load ( )F t  is applied at the leftmost particle in Figure D.1 and introducing dimensionless 
parameters, the equations of motion for particles =n 1 N -1  read: 

( )eM u K e F t− =1 1 1,2 1,2 (D.10) 

0e eM u K e K e+ − =n n n-1,n n-1,n n,n+1 n,n+1 (D.11) 

Rewriting the equation of motion for the boundary particle N, given by equation:(D.9), as: 

0e rodM u K e C u+ + =N N N-1,N N-1,N N (D.12) 

Figure D.2a shows how the magnitude of the damping Crod influences the displacement re-
sponse of particle 1, i.e. the particle at the tip of the Hooke lattice, to a sinusoidal pulse load. 
Here, the one-dimensional Hooke lattice consists of ten particles and the sinusoidal pulse 
load at particle 1 is described as ( ) ( ) ( ) ( )sin FF t F t H T t H t=  − . Here, F , Ω and TF are 
respectively the amplitude, the frequency and the period of the sinusoidal pulse. 

Figure D.2: The influence of: a) the magnitude of the damping Crod; b) the foundation stiffness kd;  
on the response of the one-dimensional discrete-continuous Hooke system.
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The red line in Figure D.2a gives the response for the discrete-continuous Hooke system 
that represents a homogeneous linear-elastic medium and for which the boundary equation is 
given by equation (D.9), i.e. 1

2 2rodC = . For this situation, the displacement response al-
most fully coincides with the applied sinusoidal pulse load. However, after the pulse load a 
small vibration remains in the displacement response of particle 1. This shows that there is a 
difference in the dispersive properties of the lattice and the rod, and that the wavelength of 
the sinusoidal pulse is not very close to the long-wave limit. Compared to the other responses 
however, the boundary equation (D.9) yields a small reflection from the linear-elastic rod. 
Changing the value of the damping Crod in equation (D.12) yields a discrete-continuous sys-
tem that no longer represents a homogeneous medium and therefore yields much larger re-
flections. Here, note that an infinitely large value for Crod corresponds to a particle N that is 
fixed, while choosing Crod equal to zero yields the boundary particle N to be unconstrained. 
In both cases, the pulse will endlessly reflect between particles 1 and N. 

Dimensionless boundary equations in terms of the dynamic compliance 
For the one-dimensional discrete-continuous Hooke system, the boundary equation may be 
obtained in the time domain by applying the inverse Laplace transform analytically. For most 
other media however, the boundary equation can only be obtained in the time domain by 
numerically evaluating the inverse Laplace transform, which requires the corresponding 
boundary equation to be expressed in terms of the dynamic compliance. 

The Laplace domain boundary equation for the Hooke system in terms of the dynamic 
compliance may straightforwardly be obtained by multiplying boundary equation (D.8) by 
the dynamic compliance ( )s . This yields: 

( ) 2 0eu s M s u K e+ + =N N N N-1,N N-1,N (D.13) 

Here, the dynamic compliance follows from the dynamic stiffness as ( ) 1 2s s −= . Apply-
ing the inverse Laplace transform to equation (D.13) then yields: 

( ) ( )
0

0
t

eu t M u K e d   + − + =
N N N N-1,N N-1,N (D.14) 

Applying differentiation to time to equation (D.14) by using Leibniz’ rule for differentiation 
of integrals [Abramowitz and Stegun, 1972; Woods, 1926], we find: 

( )  ( ) ( )
0

0 0
t

e eu M u K e t M u K e d    + + + − + =
N N N N-1,N N-1,N N N N-1,N N-1,N (D.15) 

Within the domain of the integral in equation (D.14), the inverse Laplace transform of the 
dynamic compliance is found as ( ) 2t =  and is thus constant, so that its time derivative 
is equal to zero, i.e. ( ) 0t = . Consequently, the integral in the boundary integral equation 
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(D.15) is zero, yielding the boundary equation for the discrete-continuous Hooke system as: 

 2 0eu M u K e+ + =N N N N-1,N N-1,N  (D.16) 

Equation (D.16) exactly equals equation (D.9), showing that the use of either the dynamic 
stiffness or the dynamic compliance leads to the same boundary equation in the time domain. 

D.2 The elastically supported 1D discrete-continuous Hooke system
The elastically supported one-dimensional discrete-continuous Hooke system is depicted in
Figure D.3. In the lattice, the elastic foundation is incorporated as a founded spring with
stiffness dkn  at each particle n, while for the rod, the elastic foundation is incorporated as a
distributed spring with stiffness krod. The elastically supported linear-elastic rod is henceforth
referred to as the linear-elasic dispersive rod, because the distributed spring causes the wave
propagation in the rod to be dispersive.

The other material parameters of the elastically supported Hooke system coincide with 
the discrete-continuous Hooke system discussed in Appendix D.1. In the time domain, the 
corresponding wave equation of the dispersive rod and the two interface conditions at the 
lattice-rod interface read: 

( ) ( ) ( ), , , 0rodAu x t EAu x t k u x t − + = (D.17) 

( ),e d IntM u K e k u EAu x t+ + =N N N-1,N N-1,N N N (D.18) 

( ),N
Intu u x t= (D.19) 

Here, ( ),u x t  is the displacement in the semi-infinite dispersive rod valid for Intx x . 
The material parameters of the elastically supported one-dimensional Hooke lattice match 

the material properties of the dispersive rod if the following relations are satisfied: 

, , .e d rod
EAM A K k k= = =

For an even distribution of the mass and the elastic foundation near the interface, the mass of 
the boundary particle and the corresponding foundation stiffness are respectively obtained as 

Figure D.3: The elastically supported one-dimensional semi-infinite discrete-continuous Hooke system. 
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1
2M M=N and 1

2d dk k=N .  
Furthermore, we introduce the following set of dimensionless parameters: 

dim dim ;dim;dim
dim 0

0
, , , , , .

2 2
d de

e d d
Ku M kt t u M K k

A EA EA



 

= = = = =  =

n,n+1n n n
n n n,n+1 n

Here, ω0 is the particle frequency of the lattice, found as 0 2 eK M = , and ωd is the natural 
frequency of the elastic foundation, found as d dk M = .  

Inserting the dimensionless parameters and applying the Laplace integral transform yields 
the dimensionless wave equation and interface conditions at the lattice-rod interface as: 

( ) ( ) ( )2 2 1
2, , 0ds u x s u x s+ − = (D.20) 

( )2 1
2 ,se d IntM s u K e k u u x+ + =N N N-1,N N-1,N N N (D.21) 

( ),N
Intu u x s= (D.22) 

Accounting for the proper behaviour of the rod for x → ∞, the general solution to the wave 
equation for the dispersive rod reads ( ) 1, xu x s A e −= , where 2 22 ds = + . Substituting 
the general solution as well as equation (D.22) into equation (D.21), then yields the boundary 
equation, i.e. the equation of motion of the boundary particle N, in the Laplace domain as: 

( )2 0N
e dM s u K e k u s u+ + + =N N N-1,N N-1,N N N (D.23) 

Here, the dynamic stiffness of the semi-infinite linear-elastic dispersive rod is found as: 

( ) ( )2 21
2 2 ds s = + (D.24) 

The inverse Laplace transform of equation (D.24) is known analytically and yields the bound-
ary equation in the time domain as:  

( )( )
( )

11
2

0

2 0
t

d N
e d d

J t
M u K e k u u u d

t


 


  −
+ + + + = 

 − 


N N N-1,N N-1,N N N N (D.25)

Here, ( )1J  denotes the first-order Bessel function of the first kind. 
The integrand of the convolution integral in equation (D.25) is singular for t = . In ac-

cordance with the approach applied for the one-dimensional discrete-continuous Kelvin-
Voigt system in Section 3.2.3, an approximate solution to the integral in equation (D.25) may 
be obtained by evaluating the integral numerically for the domain 0 t t = −  and solving 
the integral analytically on the domain t t t = −  by assuming that in this domain the 
displacement ( )u N  is linear. 
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Boundary integral equation in terms of the dynamic compliance 
Although the boundary integral equation for the elastically supported one-dimensional dis-
crete-continuous Hooke system can be obtained analytically using the dynamic stiffness, an 
alternative boundary integral equation can be obtained using the dynamic compliance. 

For the linear-elastic dispersive rod, the dynamic compliance ( )s  may straightfor-
wardly be obtained as the inverse of the dynamic stiffness given by equation (D.24): 

( )
( )2 2

2

2 d

s
s

 =
+

(D.26) 

The boundary integral equation for the elastically supported discrete-continuous Hooke sys-
tem is found in accordance with the approach for the regular discrete-continuous Hooke sys-
tem, discussed in Appendix D.1, and given by equation (D.15). Within the domain of the 
boundary integral equation, i.e. for 0t  , the inverse Laplace transform of the dynamic com-
pliance given by equation (D.26) and its time derivative are respectively found as: 

( ) ( ) ( ) ( )0 12 , 2 .d d dt J t t J t =  = −   (D.27) 

Substituting the above expressions into equation (D.15) then yields: 

( )( ) ( )1
12

0

2 0
t

e d d dM u K e k u u J t F d  + + + −  − =
N N N-1,N N-1,N N N N N (D.28)

Here, ( )F tN  is the force that the boundary particle N in the Hooke lattice applies to the 
linear-elastic dispersive rod at the lattice-rod interface.  

Figure D.2b shows how the magnitude of the foundation stiffness kd influences the dis-
placement response of particle 1, located at the tip of the lattice, to a single-sinus pulse load 
an amplitude F , a frequency Ω and a period TF. Here, the red line shows the response in the 
non-dispersive case, i.e. 0dk = , that coincides with the red line for 1

2 2rodC = in Figure 
D.2a. The green and blue lines in Figure D.2b respectively show the displacement response
for 1

4dk =  and 1dk = . Note here that by increasing the foundation stiffness, the particle mo-
tion is reduced and that in the limit of the foundation stiffness going to infinity, the motion 
of all particles in the system is impeded. 

D.3 The one-dimensional fully discrete Hooke system
Figure D.4 depicts the one-dimensional fully discrete Hooke system that is comprised of a
one-dimensional Hooke lattice and a one-dimensional semi-infinite linear-elastic discrete
particle system, henceforth referred to as the semi-infinite linear-elastic cascade [Dieterman
and Metrikine, 1997]. The one-dimensional lattice consists of N particles, where each particle
n has a mass Mn and the distance between any two adjacent particles is denoted as . Fur-
thermore, the one-dimensional Hooke lattice consists of N-1 Hooke elements in series, where
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any Hooke element between adjacent particles n and n+1 has a stiffness eK n,n+1 . The param-
eters of the semi-infinite linear-elastic cascade match those of the lattice, such that the dis-
tance is again equal to , the mass of all particles inside the cascade is equal to M and the 
interaction between adjacent particles is modelled by springs with a stiffness Ke. 

The governing equation of motion for a particle p in the semi-infinite linear-elastic cas-
cade and the two interface conditions, respectively describing the balance of forces and the 
displacement continuity at the lattice-cascade interface, respectively read in the time domain: 

( )2 0eMu K u u u+ − − =p p p-1 p+1 (D.29) 

( )e eM u K e M u K u u+ = − − −N N N-1,N N-1,N P P P P+1 (D.30) 

u u=N P (D.31) 

Here, up  is the axial displacement of a particle p in the interior of the semi-infinite linear-
elastic cascade, where p P .  

By choosing the location of the interface between the near-field and far-field systems at 
a particle, the masses of the subparticles N and P must together equal the mass M. Addition-
ally assuming an even distribution of mass over the length of the fully discrete Hooke system, 
the masses of the subparticles must be equal and are found as 1

2M M M= =N P . 

Dimensionless boundary equations in the Laplace and in the time domain 
To consider the fully discrete system in its dimensionless form, we introduce the following 
dimensionless parameters for time, space, mass and stiffness: 

dim dim ;dim
dim 0 , , , .

2
e

e
e

Ku Mt t u M K
M K

= = = =

n,n+1n n
n n n,n+1

Here, the particle frequency of the homogeneous Hooke lattice is found as 0 2 eK M = .  
Incorporating the dimensionless parameters and applying the Laplace transform with re-

spect to time yields the dimensionless wave equation and interface conditions as: 

( )2 1
2 2 0s u u u u+ − − =p p p-1 p+1 (D.32) 

( )2 2 1
2eM s u K e M s u u u+ = − − −N N N-1,N N-1,N P P P P+1 (D.33) 

u u=N P (D.34) 

Figure D.4: The one-dimensional fully discrete Hooke system. 
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As before, s is the complex-valued Laplace parameter and a tilde denotes that variable in the 
Laplace domain. 

Describing the general solution to the dimensionless wave equation for the linear-elastic 
cascade in the form of harmonic waves, accounting for the proper behaviour of the linear-
elastic cascade for x → ∞ and accounting for the displacement relation (D.34), the Laplace 
domain displacement of particle p in the semi-infinite cascade reads ( )iu u e − −

=
p Pp N . Here, 

κ is the dimensionless wavenumber. Substituting the expression for the displacement of par-
ticle p into equation (D.33) yields the Laplace domain equation of motion of particle N as: 

( )2 0eM s u K e s u+ + =N N N-1,N N-1,N N (D.35) 

The dimensionless dynamic stiffness of the semi-infinite linear-elastic cascade is found as: 

( ) ( )2 i1
2 1s M s e  −= + −P (D.36) 

The dispersion relation for the semi-infinite cascade, derived in Appendix E.2, yields the 
following relations between the Laplace parameter s and the dimensionless wavenumber κ. 

2 2cos 1 , sin i 2 .s s s = + = − + (D.37) 

Using Euler’s formula to rearrange equation (D.36), substituting equations (D.37), as well as 
noting that the dimensionless mass of the subparticle P is found as 1

2M =P , we find the 
dynamic stiffness of the semi-infinite linear-elastic cascade as: 

( ) 21
2 2s s s = + (D.38) 

The dynamic stiffness of the semi-infinite linear-elastic cascade according to equation (D.38) 
is depicted in Figure D.5a as a function of frequency by substituting is =  . 

The inverse Laplace transform of equation (D.38) can be obtained analytically and yields 
the equation of motion for the boundary particle N at the lattice cascade interface as: 

( )
( )( ) ( )( )

( )
( )

0 1
1 1
2 2 2

0

2 2 2
0

t

e

J t J t
M u K e u u d

t t

 
 

 

 − − 
+ + + + − = 

− −  


N N N-1,N N-1,N N N (D.39) 

Here, ( )0J  and ( )1J  are the Bessel functions of the first kind of respectively order zero 
and order one. The integrand of the convolution integral in equation (D.39) is singular for 

t = . Despite this singularity, the integral in equation (D.39) may be approximated by as-
suming that, on the domain t t t = − , the displacement ( )u N  is linear and then solving 
the integral on this segment of its domain analytically. 
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Dimensionless boundary equations in terms of the dynamic compliance 
Alternatively, we may express the Laplace domain boundary equation for the fully discrete 
Hooke system using the dynamic compliance according to equation (D.13). The dynamic 
compliance of the semi-infinite linear-elastic cascade follows from equation (D.38) as: 

( )
2

2
2

s
s s

 =
+

(D.40) 

In accordance with the approach for the discrete-continuous Hooke system in Appendix D.1, 
the boundary integral equation for the fully discrete Hooke system may be obtained in the 
form of equation (D.15). Thus, applying the inverse Laplace transform to equation (D.40), 
yields the dynamic compliance and its derivative in the time domain for 0t   as: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )0 1 1 0 02 2 2 2 2 , 2 2 .t t t J t t t J t t J t   = + − =H H (D.41)

Here, ( )0H  and ( )1H  are respectively the Struve functions of orders zero and one. 
Noting that the time domain dynamic compliance of the semi-infinite linear-elastic cas-

cade is equal to zero at 0t = , i.e. ( )0 0t = = , and substituting the time domain expression 
for the admittance ( )t  into equation (D.15) then yields this boundary integral equation as: 

( ) ( )0

0

2 2 0
t

eu J t M u K e d + + =
N N N N-1,N N-1,N (D.42) 

The convolution integral in equation (D.42) may be evaluated numerically in accordance with 
the approach for the semi-infinite viscoelastic cascade presented in Section 4.1.3. 

Comparing the expressions for the dynamic compliance for the semi-infinite linear-elastic 

Figure D.5: Comparison of the semi-infinite linear-elastic rod (dashed) and the semi-infinite  
linear-elastic cascade (continuous) for: a) Dynamic stiffness; b) Dynamic compliance.
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rod, previously found as ( ) 1 2s s −= , and the dynamic compliance for the semi-infinite 
linear-elastic cascade, given by equation (D.40), we find that the difference between these 
two expressions consists of a term 2s  under the square root. The influence of this term is 
clearly visible in Figure D.5, where Figure D.5a and Figure D.5b respectively compare the 
dynamic stiffnesses and the dynamic compliances of the semi-infinite linear-elastic rod and 
the semi-infinite linear-elastic cascade as a function of frequency. Here, the continuous green, 
red and blue lines respectively give the absolute value, the real part and the imaginary part 
of the dynamic stiffness and the dynamic compliance for the semi-infinite linear-elastic cas-
cade. The dashed lines in Figure D.5 give the corresponding results for the semi-infinite lin-
ear-elastic rod. Both figures show that the response of the rod and the cascade correspond for 
small frequencies, while the differences are significant for larger frequencies.  

Alternative representation of the boundary integral equation in the time domain 
In accordance with the approach for the semi-infinite viscoelastic cascade in Section 4.1.3, 
we can differentiate the equation of motion for the boundary particle a second time to isolate 
the contribution of the convolution integral to the current integration step more appropriately. 
This is possible because the time domain admittance, i.e. the time derivative of the dynamic 
compliance, of the linear-elastic rod is both non-infinite and non-zero at 0t = . 

Applying time differentiation to the boundary integral equation given by equation (D.42) 
using Leibniz’ rule for differentiation of integrals and noting that the time domain expression 
for the admittance of the linear-elastic cascade at 0t =  yields ( )0 2t = = , the equation of 
motion for the boundary particle becomes: 

( ) ( ) ( )
0

2 1 2 0
t

e eM u K e t M u K e d   + + + − + =
N N N-1,N N-1,N N N N-1,N N-1,N  (D.43) 

Here, ( )t  is the second time derivative of the time domain expression for the dynamic 
compliance, or alternatively the time derivative of the time domain admittance. Within the 
domain of the integral in equation (D.43), i.e. for 0t  , the expression for the time derivative 
of the time domain admittance straightforwardly follows from equation (D.41) as: 

( ) ( )12 2 2t J t = − (D.44) 

Here, ( )1J  denotes the Bessel functions of the first kind of order one. 
Substituting equation (D.44) into equation (D.43) and subsequently dividing the remain-

der by two then yields the boundary integral equation for the fully discrete Hooke system as: 

( ) ( )( ) ( )1
12

0

2 2 0
t

e eM u K e J t M u K e d  + + − − + =
N N N-1,N N-1,N N N N-1,N N-1,N  (D.45) 
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D.4 The 1D fully discrete Hooke system - alternate interface
In Appendix D.3, the interface between the lattice and the cascade in the fully discrete Hooke
system was chosen at a particle. As depicted in Figure D.6, we may alternatively choose the
lattice-cascade interface in the middle of a rheological element in-between two particles.

Matching the parameters of the lattice and the cascade for an alternate interface 
To determine the stiffness of the interface springs for which the fully discrete Hooke system 
with the alternate lattice-cascade interface is homogeneous, we first state the equations of 
motion of the particle P and of the massless interface, which respectively read: 

( ) ( ) 0e Int eM u K u u K u u+ − + − =P P P P P P+1 (D.46) 

( ) ( ) 0e Int e IntK u u K u u− + − =N N P P (D.47) 

Here, uInt is the axial displacement of the massless lattice-cascade interface at coordinate 
Intx x=  and eK N  and eK P  are the stiffnesses of the springs connected to the lattice-cascade 

interface respectively in the lattice and in the cascade. Furthermore, assuming an even distri-
bution of the mass and assuming the particles to be equally spaced, they must all have the 
same mass M, so that M M M= =N P . Solving equation (D.47) for the interface displace-
ment uInt and substituting the resulting expression into equation (D.46) then yields: 

( ) 0e e
e e

e e

K u K uMu K u K u u
K K

 +
+ − + − = 

+ 

N N P P
P P P P P+1

N P (D.48) 

Given that the response of the system should be independent from the location of the lattice-
cascade interface, the equation of motion for particle P as given by equation (D.48) must 
coincide with the equation of motion for any other particle in the interior of the cascade, 
previously given by equation (D.29). Comparing the two equations shows that: 

( )e e
e e

e e

K u K uK u K u u
K K

 +
− = − 

+ 

N N P P
P P P N

N P (D.49) 

Let us assume that the relation between the stiffnesses eK N  and eK P  of the interface springs 

Figure D.6: The one-dimensional fully discrete Hooke lattice with the interface in between particles N and P. 
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may be described by a ratio φe, such that e e eK K=P N . Equation (D.49) then yields the stiff-
nesses of the interface springs in the lattice and the cascade as: 

( )
1 , 1 .e

e e e e e
e

K K K K




+
= = +N P (D.50) 

Choosing equal stiffnesses, i.e. 1e = , we find 2e e eK K K= =N P . 

Boundary equations for the fully discrete Hooke lattice with an alternate interface 
To determine the dynamic stiffness of the linear-elastic cascade for the alternate location of 
the interface depicted in Figure D.6, we consider the governing equation of motion for a 
particle p inside the semi-infinite linear-elastic cascade, the equation of motion for the parti-
cle P next to the interface and the force balance between the springs at the massless lattice-
cascade interface, previously given by equations (D.46) and (D.47). Substituting the stiffness 
relation 2e eK K=P  for the first spring in the cascade, the corresponding equations read: 

( )2 0eMu K u u u+ − − =p p p-1 p+1 (D.51) 

( )3 2 0e IntMu K u u u+ − − =P P P+1 (D.52) 

( ) ( )2e Int e IntK u u K u u− = − −N N P (D.53) 

Introducing dimensionless parameters for time, space, mass and stiffness in accordance with 
Appendix D.3, as well as applying the Laplace integral transform with respect to time, the 
corresponding dimensionless equations read: 

( )2 1
2 2 0s u u u u+ − − =p p p-1 p+1 (D.54) 

( )2 1
2 3 2 0Ints u u u u+ − − =P P P+1 (D.55) 

( ) ( )e Int IntK u u u u− = − −N N P (D.56) 

Describing the general solution to the dimensionless wave equation for the semi-infinite lin-
ear-elastic cascade in the form of harmonic waves and accounting for the proper behaviour 
of the cascade for x → ∞, the Laplace domain displacement of a particle p in the cascade 
may be expressed as iu Ae −=p p . Substituting this expression into the equation of motion for 
the particle P, given by equation (D.55), yields the expression for the unknown wave ampli-
tude A, so that the Laplace domain displacement for a particle p in the interior of the semi-
infinite cascade reads: 

( )i
2 i

2
2 3

Intu u e
s e





− −

−
=

+ −

p Pp (D.57) 
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Substituting equation (D.57) into equation (D.56) then yields the equation of motion of the 
massless lattice-cascade interface as: 

( ) ( ) 0e Int IntK u u s u− + =N N (D.58) 

Here, the dynamic stiffness of the semi-infinite linear-elastic cascade is found as: 

( )
2 i

2 i 2 i

2 2 11
2 3 2 3

s es
s e s e



 


−

− −

+ −
= − =

+ − + −
(D.59) 

Applying Euler’s formula and incorporating the dispersion relations (D.37), the dynamic 
stiffness of the semi-infinite linear-elastic cascade may alternatively be expressed as: 

( )
2 2

2 2

2
2 2

s s ss
s s s


+ +

=
+ + +

(D.60) 

Consequently, the dynamic compliance of the semi-infinite linear-elastic cascade reads:

( )
2 2

21
2

s
s s s

 = +
+ +

(D.61) 

The derivation of the dynamic compliance of the semi-infinite linear-elastic cascade, given 
by equation (D.61), which is valid for the fully discrete system depicted in Figure D.6, is 
given here as an example to show that the interface between the near-field and far-field sys-
tems may be chosen at any given location. Additionally, this derivation shows how the dy-
namic compliance between the near-field lattice and the far-field cascade changes depending 
on the location of the interface.  

The expression for the time domain equation of motion of the lattice-cascade interface 
may again be obtained by applying the inverse Laplace transform to equation (D.58), but its 
results, either in terms of the dynamic stiffness or in terms of the dynamic compliance, are 
not further elaborated here. 

D.5 The elastically supported 1D discrete-continuous KV-system
Figure D.7 depicts the elastically supported one-dimensional discrete-continuous Kelvin-
Voigt system. In the lattice, the elastic support is incorporated as a founded spring with stiff-
ness dkn  at each particle n, while the elastic support in the rod, consists of a distributed spring
with stiffness krod. Because the distributed spring causes the wave propagation in the elas-
tically supported viscoelastic rod to be dispersive, it is henceforth referred to as the viscoe-
lastic dispersive rod.

In the time domain, the wave equation for the viscoelastic dispersive rod and the two 
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interface conditions at the lattice-rod interface respectively read: 

( ) ( ) ( ) ( ), , , , 0e rodAu x t EA u x t EAu x t k u x t   − − + = (D.62) 

( ) ( ), ,e e d e Int IntM u C e K e k u EA u x t EAu x t  + + + = +N N N-1,N N-1,N N-1,N N-1,N N N (D.63) 

( ),N
Intu u x t= (D.64) 

Here, ζe and krod are respectively the damping and the foundation stiffness of the semi-infinite 
viscoelastic dispersive rod, while ( ),u x t  denotes its displacement valid for Intx x .  

The material parameters of the elastically supported one-dimensional Kelvin-Voigt lattice 
match the material properties of the viscoelastic dispersive rod for the following relations: 

, , , .e e e d rod
EA EAM A C K k k = = = = (D.65) 

For an even distribution of the mass and the elastic foundation along the elastically supported 
Kelvin-Voigt system, the mass of the boundary particle and the foundation stiffness at the 
boundary particle are respectively obtained as 1

2M M=N  and 1
2d dk k=N . Furthermore, we 

introduce the following set of dimensionless parameters: 

dim dim 1
dim 0 02

;dim;dim ;dim

0

, , , ,

, , , .
2 2

e

d de e
e e d d

crit

u Mt t u M
A

C K kC K k
C EA EA

   






= = = =

= = =  =

n n
n n

n,n+1 n,n+1 n
n,n+1 n,n+1 n

Here, the particle frequency ω0 is found as 0 2 eK M = , and the cutoff frequency ωd of 
the elastic foundation reads d dk M = . Furthermore, ζ is the damping ratio, which is 
defined as e critC C = , where the critical particle damping Ccrit of the homogeneous Kelvin-
Voigt lattice is found as 0critC M= . 

Inserting the dimensionless parameters and applying the Laplace integral transform re-
spectively yields the dimensionless wave equation and the interface conditions in the Laplace 
domain as: 

( ) ( ) ( ) ( )2 2 1
2, 1 2 ,s 0ds u x s s u x + − + = (D.66) 

( ) ( ) ( )2 1
2 1 2 ,e e d IntM s u C s K e k u s u x s + + + = +N N N-1,N N-1,N N-1,N N N (D.67) 

( ),Intu u x s=N (D.68) 

Accounting for the proper behaviour of the rod for x → ∞, the general solution for the dis-
persive rod reads ( ) 2

1, s xu x s A e −
= , where 2 2 1 2ds s s = + + . Substituting the gen-

eral solution, as well as equation (D.68), into equation (D.67), yields the boundary equation, 
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i.e. the equation of motion of the boundary particle N, in the Laplace domain as:

( ) ( )2 0N
e e dM s u C s K e k u s u+ + + + =N N N-1,N N-1,N N-1,N N N (D.69) 

Here, the dynamic stiffness of the semi-infinite viscoelastic dispersive rod is found as: 

( ) 2 21
2 2 4ds s s = + + (D.70) 

In correspondence with the dynamic stiffness for the viscoelastic rod, a time domain expres-
sion for the dynamic stiffness of the viscoelastic dispersive rod cannot be obtained analyti-
cally, because the expression given by equation (D.70) does not tend to zero for for ω → ∞. 
Instead, we divide equation (D.69) by the dynamic stiffness, and consider the Laplace domain 
boundary equation for the elastically supported Kelvin-Voigt system in terms of the dynamic 
compliance. 

Boundary integral equation in terms of the dynamic compliance 
The dynamic compliance of the viscoelastic dispersive rod is straightforwardly obtained as 
the inverse of the dynamic stiffness given by equation (D.70) and thus reads: 

( )
2 2

2
2 4d

s
s s




=
+ +

(D.71) 

Following the approach for the discrete-continuous Hooke system in Appendix D.1, the Sub-
boundary integral equation for the elastically supported one-dimensional discrete-continuous 
Kelvin-Voigt system is described by equation (D.15). For 0t  , the inverse Laplace trans-
form of equation (D.71) yields the following time domain expression for the dynamic com-
pliance: 

( ) ( )( ) ( )
( )

( )

1 1
2 2

0 0

0 0

tt t

d d
e et J t d J t d

t

   

   
  

− − −

=  − = 
−

   (D.72) 

Then, applying Leibniz’ rule for differentiation of integrals, we find the time derivative of 

Figure D.7: The elastically supported one-dimensional semi-infinite discrete-continuous Kelvin-Voigt system. 
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the dynamic compliance, i.e. the time domain expression for the admittance, for 0t   as: 

( ) ( )( )
1 1
2 2

1

0

t t

d d
e et J t d

t

  

  
 

− −

= −  − (D.73) 

Substituting equations (D.72) and (D.73) into equation (D.15), the boundary integral equation 
for the elastically supported discrete-continuous Kelvin-Voigt system reads: 

( ) ( )
0

0
t

e e du t M u C e K e k u d   + − + + + =
N N N N-1,N N-1,N N-1,N N-1,N N N (D.74) 

In correspondence with the time domain admittance of the viscoelastic rod, the time domain 
admittance of the viscoelastic dispersive rod, given by equation (D.73) is singular for 0t = . 
To address this issue, we rearrange the convolution integral in equation (D.73) using its com-
mutativity property and split its integral domain to obtain the time domain admittance as: 

( ) ( )
( )

( )
( )

( )

( )

1 1 1
2 2 2

1 1

0

t t tt t t

d d d d

t t

e e et J d J d
t t t

    

    
    

− − − − −−

−

= −  − 
− −

  (D.75)

As all values within the domain of integration 0 t t = −  are known at time t, the corre-
sponding integral in equation (D.75) may be obtained numerically as a constant at time t, 
here denoted as 0B . Then, approximating the Bessel function over the domain t t t = −

by a linear function, i.e. ( )1 dJ t at b = + , we can rearrange equation (D.75) as: 

( )
( )

( )
( )

1 1
2 2

0

t tt

d d

t t

e et B a b d
t t

  

  
  

− − −

−

= − − +
−

 (D.76) 

Expressions for the unknowns a and b may be derived by noting that, at time t-Δt, the ap-
proximated Bessel function reads ( )( ) ( )1 dJ t t a t t b − = − + . This yields: 

( ) ( )( ) ( )( ) ( ) ( )1 1 1 1
, .

d d d dJ t J t t tJ t t t t J t
a b

t t
 −  −  − − − 

= =
 

Substituting these expressions for a and b into equation (D.76) and then solving the remaining 
integral analytically, the time domain expression for the admittance may be obtained as: 

( ) ( ) ( ) ( ) ( )( )( )
1
2

0 1 1 2 1,   with:
t

B B d d d
et f t f t B B J t B J t t

t






−

= + = − +  +  − (D.77) 
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Here, the terms B0, B1 and B2 are respectively found as: 

( )( )
1
2

2
0 1 1 2 2

0

2, 2erf , erf 2 .
2 2

tt t

d
e t tB J t d B B B e

t t

 

 
 

  

−−
− 

=  − = − = −
   

Here, ( )erf  is the error function, or Gauss error function. 
Furthermore, note that the term ( )Bf t  in equation (D.77) is a known constant at time t, 

because the three terms B0, B1 and B2, all consist of parameters that are either constants, or 
are known at time t.  

Then, substituting equation (D.77) into the integral over the domain t t t = −  allows 
us to express the boundary integral equation as: 

( )

( )
( ) ( ) ( ) ( ) ( )

1
2

0

0
tt t t t

B

t t t t

eu F d f t F d t F d
t

 

        
 

− − −

− −

+ + − + − =
−

  
N N N N (D.78) 

Here, the force at the boundary reads ( ) e e dF t M u C e K e k u= + + +N N N N-1,N N-1,N N-1,N N-1,N N N . 
Next, we assume that this force is linear over the domain t t t = − and found as 

( )F t ct d= +N . This yields the expressions for the unknowns c and d respectively as: 

( ) ( ) ( ) ( ) ( )
, .

F t F t t tF t t t t F t
c d

t t
− − − − −

= =
 

N N N N

Substituting the above expressions into equation (D.78) and analytically solving the left-most 
integral then finally yields the interface equation as: 

( ) ( ) ( ) ( ) ( ) ( )1 2

0

0
t t t

B

t t

u B F t B F t t f t F d t F d      
−

−

+ + − + − + − = 
N N N N N  (D.79) 

Note here that ( )Bf t  is not singular for 0t =  and thus the corresponding integral can be 
obtained numerically.  
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E Wave propagation in one-dimensional systems 
The performance of any boundary integral equation can be determined by considering the 
reflection and transmission of an incident wave as it travels through the boundary. Corre-
sponding reflection and transmission coefficients are defined as the absolute value of the ratio 
between the amplitudes, or the energies, of either the reflected or transmitted waves and the 
incident wave. The amplitude reflection coefficient RA, energy reflection coefficient RE, am-
plitude transmission coefficient TA and the energy transmission coefficients TE thus read: 

, , , .ref ref tra tra
A E A E

inc inc inc inc

A E A ER R T T
A E A E

= = = =

In this appendix, the amplitude and energy reflection and transmission coefficients are de-
rived in their dimensionless forms. Before respectively deriving the dimensionless reflection 
and transmission coefficients for the linear-elastic and viscoelastic one-dimensional discrete-
continuous systems in Appendices 0 and E.5, Appendices E.1 to E.3 present the dimension-
less dispersion relations for both one-dimensional continuous systems and one-dimensional 
discrete particle systems. 

E.1 Dispersion in linear-elastic and viscoelastic rods
To determine the dimensionless dispersion relation for the linear-elastic rod, let us consider
its dimensionless equation of motion, which is obtained from inserting the dimensionless
parameters from Appendix B.1 into its dimensional form as given by equation (D.1):

( ) ( )1
2, , 0u x t u x t− = (E.1) 

Assuming a harmonic wave, with a dimensionless frequency Ω and dimensionless wave-
number κ, that travels through a linear-elastic rod into the direction for which the dimension-
less coordinate x increases, the displacement in the rod may be expressed as: 

( ) ( )i, t xu x t Ae  −
= (E.2) 

Here, A is the wave amplitude. Furthermore, note that the dimensionless parameters are re-
lated to their dimensional counterparts as 0  = , k =  and dimx x= .  

Substituting equation (E.2) into equation (E.1) and choosing the branch of the square root 
that assures the proper behaviour of the linear-elastic rod for x → ∞, yields the dimensionless 
dispersion relation for a linear-elastic rod as: 

2 2 21
2 0 2 2 − + = → =  =  (E.3) 

To obtain the dispersion relation between the wavenumber κ and the Laplace parameter s, we 
assume that ( ) i, st xu x t Ae −= . Choosing the branch of the square root that assures the proper 
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behaviour for x → ∞, the dimensionless dispersion relation for the linear-elastic rod reads: 

2 2 2 2 21
2 0 2 2i i 2s s s s + = → = − = = − (E.4) 

Dispersion in the viscoelastic rod 
The dimensionless equation of motion for the viscoelastic rod is given in Section 3.2.2 as: 

( ) ( ) ( )1
2, , , 0u x t u x t u x t  − − = (E.5) 

Assuming that the displacement in the rod due to a harmonic wave, with amplitude A, dimen-
sionless frequency Ω and dimensionless wavenumber κ, is expressed as ( ) ( )i, t xu x t Ae  −

=

and choosing the square root such that it assures the proper behaviour for x → ∞, the dimen-
sionless dispersion relation is obtained as: 

( )2 21
2

21 2i 0 2 4i
1 2i 1 2i

   
 

 
− + +  = → = +  =

+  + 
(E.6) 

Alternatively, we can obtain the dispersion relation as a relation between the wavenumber κ 
and the Laplace parameter s by assuming that ( ) i, st xu x t Ae −= . Again, accounting for the 
proper behaviour for x → ∞, the dispersion relation for the viscoelastic rod reads: 

( )2 21
2

i i 21 2 0 2 4
1 2 1 2

s ss s s
s s

   
 

− −
+ + = → = + =

+ +
(E.7) 

Note here that the dispersion relation for the linear-elastic rod, given by equation (E.4) can 
be obtained from equation (E.7) by choosing the damping ratio equal to zero, i.e. 0 = , and 
that the dispersion relation according to equation (E.6) can be obtained from equation (E.7) 
by substituting is =  . 

Alternatively, we may describe the dispersion relation in terms of the complex conjugate 
of the wavenumber κ, denoted as  . To obtain this dispersion relation, we describe the dis-
placement in the rod due to a harmonic wave as ( ) ( )i, t xu x t Ae −  −

= . Accounting for the 
proper behaviour for x → ∞, we find the dispersion relation for the viscoelastic rod as: 

( )2 21
2

21 2i 0 2 4i
1 2i 1 2i

   
 

 
− + −  = → = −  =

−  − 
(E.8) 

The dispersion relation that describes the relation between the dimensionless complex con-
jugate wavenumber   and the dimensionless Laplace parameter s may straightfowardly be 
obtained by describing the displacement in the rod as ( ) i, st xu x t Ae − += . 
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E.2 Dispersion in one-dimensional linear-elastic particle systems
To determine the dispersion relations for one-dimensional linear-elastic discrete particle sys-
tems, let us first consider the dimensionless equation of motion for a particle p in its interior.
This equation is straightforwardly obtained by inserting the dimensionless parameters from
Appendix B.1 into the equation of motion for the linear-elastic cascade, given by equation
(D.29). This yields:

( )1
2 2 0u u u u+ − − =p p p-1 p+1 (E.9) 

Assuming a forward travelling harmonic incident wave with dimensionless frequency Ω and 
dimensionless wavenumber κ, the displacement of particle p may be expressed as: 

( )i tu Ae  −
=

pp (E.10) 

Here, A is the wave amplitude and the dimensionless frequency and dimensionless wave-
number are respectively found in terms of dimensional variables as 0  =  and k = . 

Substituting equation (E.10) into equation (E.9) yields the dispersion relation for a linear-
elastic discrete particle system, or cascade, that relates frequency and wavenumber as: 

2 22sin 0
2


− + = (E.11) 

From this dispersion relation, we find the following useful frequency-wavenumber relations: 

2 2cos 1 , sin 2 . = − =  − (E.12) 

When considering harmonic wave propagation, it is most convenient to assume that the fre-
quency Ω is always real. According to equation (E.12), it then follows that the wavenumber 
κ is also real for 2  , but that the wavenumber is imaginary for 2  . 

Alternatively, we may obtain the dispersion relation as a relation between the dimension-
less wavenumber κ and the dimensionless Laplace parameter s by assuming that the displace-
ment of particle p reads istu Ae −=p p . Substituting this expression into equation (E.9), yields: 

2 2 21 cos 2sin 0
2

s s 
+ − = + = (E.13) 

Accounting for the proper behaviour of the linear-elastic cascade for x → ∞, the dispersion 
relation yields the following useful relations: 

2 2cos 1 , sin i 2 .s s s = + = − + (E.14) 
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E.3 Dispersion in one-dimensional viscoelastic particle systems
The dispersion relations for the one-dimensional viscoelastic discrete particle systems follow
from the dimensionless equation of motion for a particle p in the interior of a viscoelastic
discrete particle system has been obtained in Section 4.1.2 as:

( ) ( )1
22 2 0u u u u u u u+ − − + − − =p p p-1 p+1 p p-1 p+1 (E.15) 

Assuming that the displacement of particle p due to a forward travelling harmonic incident 
wave, with dimensionless amplitude A, dimensionless frequency Ω and dimensionless wave-
number κ, is expressed as ( )i tu Ae  −

=
pp , the dimensionless dispersion relation for the vis-

coelastic particle system reads: 

( )2 21 2i 2sin 0
2


− + +  = (E.16) 

From the dispersion relation given by equation (E.16), the following relations between the 
dimensionless frequency Ω and dimensionless wavenumber κ can be obtained: 

2
2cos 1 , sin 2 4i .

1 2i 1 2i
  

 

 
= − = + −

+  + 
(E.17) 

As for the continuous systems, substituting 0 =  reduces the dispersion relations for the 
viscoelastic system to those for the linear-elastic system, as given by equation (E.12).  

When considering the propagation of harmonic waves, it is most convenient to work with 
real frequencies. From equations (E.17), it then follows that by incorporating damping the 
wavenumber κ must be complex-valued for any real non-zero frequency Ω.  

We can alternatively obtain the dispersion relation as a relation between the wavenumber 
κ and the Laplace parameter s by assuming that istu Ae −=p p . Accounting for the proper 
behaviour for x → ∞, this dispersion relation reads: 

( )2 22 1 2 sin 0
2

s s 
+ + = (E.18) 

Note that, to obtain the dispersion relation according to equation (E.18), we may alternatively 
start from the equation of motion for the particle p in the Laplace domain, given in Section 
4.1.2, by expressing the Laplace domain displacement as iu Ae −=p p .  

The dispersion relation (E.18) yields the following useful relations: 

2
2icos 1 , sin 2 4 .

1 2 1 2
s s s s

s s
  

 

−
= + = + +

+ +
(E.19) 
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The square root in the expression for the sine of κ in equation (E.19) is chosen such that the 
forward travelling wave fades for n → ∞.  

Substituting iR I  = +  into the expression for the Laplace domain displacement up , 
then yields : 

i R Iu Ae e − +=p p p (E.20) 

From equation (E.20) it is evident that the square root must be chosen such that the imaginary 
part of the wavenumber is negative. This coincides with the sign of the square root chosen to 
obtain the expression for the sine of κ in equation (E.19). 

Dispersion relations for the complex conjugate wavenumbers 
To derive the energy reflection and transmission coefficients for an incident wave that travels 
through a boundary in one-dimensional systems, we additionally require dispersion relations 
in terms of complex conjugate wavenumbers.  

To obtain the dispersion relation between the real-valued frequency Ω and the complex 
conjugate wavenumber  , we describe the displacement of particle p due to a corresponding 
harmonic wave with wave amplitude A as: 

( )i tu Ae −  −
=

pp (E.21) 

Substituting equation (E.21) into the equation of motion for particle p, given by equation 
(E.15), then yields the dispersion relation for the complex conjugate wavenumber as: 

( )2 21 2i 2sin 0
2


− + −  = (E.22) 

From this dispersion relation, we find the following useful relations between the dimension-
less frequency and the dimensionless complex conjugate wavenumber as: 

2
2cos 1 , sin 2 4i .

1 2i 1 2i
  

 

 
= − = − −

−  − 
(E.23) 

The corresponding dispersion relation that describes the relation between the dimensionless 
complex conjugate wavenumber   and the dimensionless Laplace parameter s may be ob-
tained in a similar manner by expressing the displacement of particle p as istu Ae − +=p p . 
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E.4 Reflection coefficients for discrete-continuous Hooke systems

Amplitude coefficients for the discrete-continuous Hooke system 
The amplitude reflection coefficient, defined as the ratio between the amplitude of a reflected 
and its incident wave, for a wave that reflects from the discrete-continuous interface of the 
corresponding one-dimensional Hooke system is obtained starting from the equation of mo-
tion of its boundary particle N, which is found as: 

( ) ( )1
2 ,e IntM u K u u u x t+ − =N N N-1,N N N-1 (E.24) 

Assuming the incident, reflected and transmitted waves to be harmonic, the displacement of 
an arbitrary particle n in the one-dimensional Hooke lattice and the displacement at a coor-
dinate x in the linear-elastic rod are respectively described as: 

( ) ( )i it t
inc refu A e A e  −  +

= +
n nn (E.25) 

( ) ( )i, rodt x
trau x t A e  −

= (E.26) 

Here, Ainc, Aref and Atra are the complex amplitudes of respectively the incident, reflected and 
transmitted waves and κrod denotes the wavenumber in the linear-elastic rod that, according 
to the dispersion relation (E.3), is related to the frequency as 2rod =  . Substituting equa-
tion (E.3), the spatial derivate of equation (E.26) reads ( ) ( ), i 2 ,u x t u x t = −  . Then, noting 
that the displacement of the linear-elastic rod at the discrete-continuous interface must be 
equal to the displacement of particle N, i.e. ( ),Intu x t u= N , equation (E.24) becomes: 

( ) 1
2 i 2 0eM u K u u u+ − +  =N N N-1,N N N-1 N (E.27) 

Substituting the displacement of the boundary particle N according to equation (E.25) into 
equation (E.27) and rearranging the remainder using both Euler’s formula and the dispersion 
relations given by equation (E.12), the ratio between the amplitudes of the reflected and the 
incident waves may be derived as: 

( ) ( )
( ) ( )

2 1i 2

i 2 1
2

i 2 2

i 2 2

e e
ref

inc e e

K M KA e
A e K M K





+

−

− − + − −
=

− + − +

N-1,N N N-1,N
N

N N-1,N N N-1,N
(E.28) 

Noting that Ainc and Aref are the complex amplitudes of respectively the incident and reflected 
waves at the surface particle, i.e. for 0=n , it follows that i

incA e − N  and i
refA e + N  are the 

complex amplitudes of respectively the incident and reflected waves at the boundary particle 
N. Equation (E.28) thus describes the amplitude reflection coefficient for an incident wave
that reflects from the discrete-continuous interface of the Hooke lattice and the linear-elastic
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rod at the boundary particle N. 
According to equation (E.28), there will be no wave reflection in the long-wave limit, if 

the mass of the boundary particle and the stiffness of the attached spring are related as 
eM K=N N-1,N . Accordingly, the configuration of the lattice boundary for the one-dimensional 

discrete-continuous systems in this thesis, as discussed in Section 0, yields the dimensionless 
mass of the boundary particle and the dimensionless stiffness of the springs respectively as 

1
2M =N and 1

2eK =N-1,N . Consequently, the amplitude reflection coefficient at the boundary 
particle N of the one-dimensional discrete-continuous Hooke system reads: 

i 2

i 2

2 2
2 2

ref ref
A

inc inc

A A eR
A A e





+

−

− −
= = =

− +

N N
N

N N (E.29) 

Energy exchange at the lattice-rod interface in the linear-elastic Hooke system 
It is most straightforward to determine the energy reflection and transmission coefficients in 
a medium by separately considering the energy fluxes of the isolated incident wave, the iso-
lated reflected wave and the isolated transmitted wave. This approach has been presented in 
Section 3.3.2 for the discrete-continuous Kelvin-Voigt system and, due to the energy flux 
being independent of the damping, will yield the same results for the discrete-continuous 
Hooke system. 

It is however of interest to review the interaction between the incident wave and the re-
flected wave near the boundary where these waves are not isolated and possibly interfere. To 
this purpose, we consider the energy exchange between the incident, the reflected and the 
transmitted waves at the boundary particle N in the discrete-continuous Hooke system. Mul-
tiplying the force balance at the lattice-rod interface, i.e. the equation of motion for the bound-
ary particle N given by equation (E.24), with the velocity of the interface in their respective 
models, as well as substituting the dimensionless mass of the boundary particle and the di-
mensionless stiffness of the springs respectively as 1

2M =N  and 1
2eK =N-1,N , yields the di-

mensionless energy balance that describes this energy exchange as: 

( ) ( ) ( ), ,Int Intu u u u u u x t u x t+ − =N N N N-1 N (E.30) 

In the energy balance given by equation (E.30), the first term on the left-hand side describes 
the change in kinetic energy of the boundary particle over time, while the second term on the 
left-hand side gives the energy flux through the lattice-rod interface applied by the lattice, 
thus due to the incident and the reflected waves both. The right-hand side of equation (E.30) 
describes the energy flux through the lattice-rod interface applied by the rod, thus due to the 
transmitted wave. 

Even though the dispersion relation for the Hooke lattice, given by equation (E.12), yields 
wavenumbers that are either real or imaginary, and the dispersion relation for the linear-elas-
tic rod, given by equation (E.3), yields real wavenumbers, let us here, as a general case, 
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assume that the wavenumbers in the Hooke lattice and the linear-elastic rod are complex-
valued. Then, to assure that the expressions for the displacements in the Hooke lattice and 
the rod are real-valued, we account for both the complex wavenumbers and their complex 
conjugates. This yields the expressions for the displacements of the lattice particles and the 
displacement along the linear-elastic rod as: 

( ) ( )  ( ) ( ) i i i i1 1
2 2

t t t t
inc inc ref refu A e A e A e A e    − −  −  + −  +

= + + +
n n n nn (E.31) 

( ) ( ) ( ) i i1
2, rod rodt x t x

tra trau x t A e A e  − −  −
= + (E.32) 

Here, the amplitudes incA , refA  and traA  are the complex conjugates of the dimensionless 
amplitudes Ainc, Aref and Atra of the incident, reflected and transmitted waves respectively. 
Furthermore,   and rod  are the complex conjugates of the dimensionless wavenumbers κ 
and κrod in respectively the Hooke lattice and the linear-elastic rod.  

Substituting equations (E.31) and (E.32) into equation (E.30), averaging the energy bal-
ance over a single period of the harmonic incident wave, and substituting the dispersion re-
lations for the linear-elastic rod, given by equation (E.3), then yields the energy balance as: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

i i+i i +i +i

+i +i ii i i +i 2 2i rod rod Int

inc inc inc ref

x
inc ref ref ref tra tra

A A e e e A A e e e

A A e e e A A e e e A A e

      

        

− − − +−

+ − − −− − −

− + −

+ − + − = 

N N

N N
(E.33) 

Here, note that the particle number N present in the exponents for the incident and reflected 
waves describes the decay of the wave amplitude at the boundary particle N relative to the 
wave amplitudes Ainc and Aref at the tip of the lattice. Thereby, i

incA e − N  and i
refA e + N  are the 

wave amplitudes of the incident and reflected waves at the boundary particle N, while 
i

incA e + N and i
refA e − N are the complex conjugates of the corresponding wave amplitudes at

the boundary particle N. Accordingly, the coordinate xInt in the exponent for the transmitted 
wave describes the decay of the amplitude of the transmitted wave relative to Atra, so that 

i rod Intx
traA e −  and i rod Intx

traA e +  are respectively the wave amplitude of the transmitted wave at 
the tip of the rod and its complex conjugate. Denoting the wave amplitudes of the incident, 
reflected and transmitted waves and their complex conjugates at the interface as incAN , refAN , 

Intx
traA , incAN , refAN  and Intx

traA , we can rewrite equation (E.33) as: 

( ) ( )

( ) ( )

+i i +i +i

i i i +i 2 2i Int Int

inc inc inc ref

x x
inc ref ref ref tra tra

A A e e A A e e

A A e e A A e e A A

   

   

−

− − −

− + −

+ − + − = 

N N N N

N N N N
(E.34) 

As noted previously, the wavenumber κ in the Hooke lattice is real for 2   and imaginary 
for 2  . In the following, we will therefore separately consider the energy exchange in 
the discrete-continuous Hooke system for the two domains for the dimensionless frequency 
that respectively coincide with real and imaginary wavenumbers. 
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Energy exchange at the lattice-rod interface for real wavenumbers 
For real wavenumbers, the wavenumber and its complex conjugate are equal, i.e.  = . 
Substituting this into equation (E.34) yields the energy balance at the lattice-rod interface as: 

 
2 2 2

sin 2 Intx
inc ref traA A A− = N N (E.35) 

Substituting the dispersion relation for the linear-elastic particle system, previously given by 
equation (E.12), the energy balance may be rearranged as: 

2 2

2 221
2

1 1
1

Intx
ref tra

inc inc

A A

A A
+ =

− 

N

N N
(E.36) 

The first term in equation (E.36) matches the energy reflection coefficient as derived in Sec-
tion 3.3.2 for isolated incident and reflected waves. The second term in equation (E.36) re-
lates the energy of the transmitted wave to the energy of the incident wave in a similar man-
ner, and is therefore referred to as the energy transmission coefficient. The energy reflection 
and transmission coefficients for a harmonic incident wave in the discrete-continuous Hooke 
system are thus found as: 

2 2

21
2

1, .
1

Int Intx x
ref ref tra tra

E E
inc inc inc inc

S A S AR T
S A S A

= = = =
− 

N N

N N N N (E.37) 

Substituting the amplitude reflection coefficient, given by equation (E.29), into the expres-
sion for the energy reflection coefficient, then yields the energy reflection coefficients as: 

2 21
2

2 21
2

2 4 2

2 4 2
ER

−  − − 
=

−  + − 
(E.38) 

For dimensionless frequencies 2  , note that both the numerator and the denominator in
equation (E.38) are real and positive. 

The energy transmission coefficient is now straightforwardly determined as 1E ET R= − .  

Energy exchange at the lattice-rod interface for imaginary wavenumbers 
For imaginary wavenumbers, the wavenumber and its complex conjugate are opposite. Thus, 
substituting  = −  into equation (E.34) yields the energy balance at the interface as: 

 
2

sin 2 Intx
inc ref inc ref traA A A A A− = N N N N (E.39) 
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Noting that for frequencies 2  , the dispersion relation of the linear-elastic particle sys-
tem follows from equation (E.12) as 2sin i 2 =   − , the energy balance may be rear-
ranged as: 

2

21
2

1 0
1

Intx
inc ref inc ref traA A A A A− + =

− 

N N N N (E.40) 

Because the first two terms in equation (E.40) are cross terms of the amplitudes of the inci-
dent and the reflected waves, but are not related to the transmitted wave, these terms must be 
related to the interference between the incident and the reflected waves.  

To interpret equation (E.40) further, let us first consider the energy flux of an isolated 
incident wave that travels through the one-dimensional Hooke lattice undisturbed. As dis-
cussed in Section 3.3.2, the energy flux at a particle n in the interior of one-dimensional 
lattice, may be obtained as: 

( )1
2inc inc inc incS u u u= −n n n-1 n (E.41) 

Assuming the incident wave to be harmonic, the real-valued displacement of the particle n is 
described in terms of the wavenumber κ as well as in terms of its complex conjugate   as: 

( ) ( ) i i1
2

t t
inc inc incu A e A e  − −  −
= +

n nn (E.42) 

Substituting equation (E.42) into equation (E.41) and averaging over a single period of the 
incident wave, yields the energy flux of the incident wave at a particle n as: 

( ) ( )i+i i1
8 iinc inc incS e e A A e    − −−=  −

nn (E.43) 

Introducing i
inc incA A e −=n n  and i

inc incA A e +=n n as the wave amplitude and its complex con-
jugate at particle n, as well as subsituting  =  for 2  , and  = −  for 2   re-
spectively, shows that for a harmonic incident wave, the energy flux at a particle n reads: 

21
4 sin , 2

0, 2

inc
inc

A
S

−   
= 
  

n
n (E.44) 

According to equation (E.44), there is no energy flux, and therefore no transfer of energy 
through the one-dimensional Hooke lattice for dimensionless frequencies 2  . There-
fore, 2co =  is the dimensionless cutoff frequency above which waves do not propagate 
in the Hooke lattice.  
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E.5 Reflection coefficients for discrete-continuous KV systems

Amplitude coefficients for the discrete-continuous Kelvin-Voigt system 
The amplitude reflection coefficient at the boundary particle N of the one-dimensional dis-
crete-continuous Kelvin-Voigt system is obtained starting from its equation of motion, pre-
viously obtained in Section 3.2.2 as: 

( ) ( ) ( ) ( )1
2, ,e e Int IntM u C u u K u u u x t u x t  + − + − = +N N N-1,N N N-1 N-1,N N N-1 (E.45) 

In accordance with the approach for the linear-elastic system in Appendix 0, the displace-
ments in the viscoelastic rod and the Kelvin-Voigt lattice are described by equations (E.25) 
and (E.26). Substituting equation (E.26) and the dimensionless dispersion relation given by 
equation (E.6) into equation (E.45), as well as noting that ( ),Intu x t u= N  then yields: 

( ) ( ) 1
2 i 2 4i 0e eM u C u u K u u u+ − + − +  +  =N N N-1,N N N-1 N-1,N N N-1 N (E.46) 

Then, substituting the displacement of the boundary particle N according to equation (E.25) 
into equation (E.46), rearranging using Euler’s formula and the dispersion relations for the 
Kelvin-Voigt lattice, given by equation (E.17), as well as introducing 2 4iz = +  , yields: 

( )

( )

2 1
2i

i
2 1

2

i i i
1 2i

i i i
1 2i

e e

ref

inc e e

K CM z z
A e
A e K CM z z









+

−

+ 
− + − − +

+ 
=

+ 
− + − −

+ 

N-1,N N-1,N
N

N

N N-1,N N-1,N
N

(E.47) 

In the discrete-continuous Kelvin-Voigt system, the dimensionless mass of the boundary par-
ticle, as well as the dimensionless stiffness and dimensionless damping of the element be-
tween particles N-1 and N are respectively found as 1

2M =N , eC =N-1,N  and 1
2eK =N-1,N . 

Substituting these reduces equation (E.47) to: 

i 2

i 2

ref

inc

A e z z
A e z z





+

−

− −
=

− +

N

N (E.48) 

Introducing i
inc incA A e −=N N  and i

ref refA A e +=N N  as the complex amplitudes of respectively 
the incident and the reflected wave at the boundary particle N, the amplitude reflection coef-
ficient at the boundary particle N of the discrete-continuous Kelvin-Voigt system reads: 

i 2

i 2

ref ref
A

inc inc

A A e z zR
A A e z z





+

−

− −
= = =

− +

N N
N

N N (E.49) 
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Complex conjugate amplitude coefficients for the Kelvin-Voigt system 
Alternatively, we may also derive the amplitude reflection coefficient at the boundary particle 
N in the one-dimensional Kelvin-Voigt system by expressing the displacements in the lattice 
and the rod in terms of their complex conjugate wavenumbers as: 

( ) ( )i it t
inc refu A e A e −  − −  +

= +
n nn (E.50) 

( ) ( )i, rodt x
trau x t A e −  −

= (E.51) 

Substituting equation (E.51) into the equation of motion of the boundary particle N, given by 
equation (E.45), as well as substituting the dimensionless dispersion relation for the complex 
conjugate wavenumber, given by equation (E.23), and noting that ( ),Intu x t u= N yields:

( ) ( ) ( )1
2 i 2 4i 0e eM u C u u K u u u+ − + − −  −  =N N N-1,N N N-1 N-1,N N N-1 N (E.52) 

Substituting the dimensionless material parameters of the Kelvin-Voigt lattice, respectively 
found as 1

2M =N , eC =N-1,N  and 1
2eK =N-1,N , as well as equation (E.50) for the displace-

ment of particle N, into equation (E.52), and rearranging the remainder using Euler’s formula 
and by introducing 2 4iz = −  , then yields the complex conjugate amplitude ratio as: 

i 2

i 2

ref

inc

A e z z
A e z z





−

+

− −
=

− +

N

N (E.53) 

Introducing i
inc incA A e −=N N  and i

ref refA A e +=N N  as the complex conjugates of the amplitudes 
of respectively the incident and the reflected wave at the boundary particle N, the amplitude 
reflection coefficient at the boundary particle N of the discrete-continuous Kelvin-Voigt sys-
tem in terms of the complex conjugate wavenumber reads: 

i 2

i 2

ref ref
A

inc inc

A A e z zR
A A e z z





−

+

− −
= = =

− +

N N
N

N N (E.54) 

Here, note that it can be shown that the ratio ref incA AN N given by equation (E.54) is, and must
be, the complex conjugate of the ratio ref incA AN N  described by equation (E.48), so that the 
amplitude reflection coefficients given by equations (E.49) and (E.54) must be equal. 

Energy exchange at the lattice-rod interface in the viscoelastic Kelvin-Voigt system 
In accordance with the approach for the discrete-continuous Hooke system, we here consider 
the interaction and possibly the interference between the incident wave and the reflected 
wave in the vicinity of the boundary particle N. To this purpose, we obtain the energy ex-
change between the incident, the reflected and the transmitted waves at the boundary particle 
N by multiplying its equation of motion, given by equation (E.45), with the velocity of the 
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interface. Additionally, we substitute the dimensionless material parameters of the boundary 
particle N, respectively as 1

2M =N , eC =N-1,N  and 1
2eK =N-1,N . This yields a dimensionless 

energy balance that describes the energy exchange at the boundary particle N as: 

( ) ( ) ( ) ( ) ( ) ( )2 2 , , , ,Int Int Int Intu u u u u u u u u x t u x t u x t u x t   + − + − = +N N N N-1 N N N-1 N  (E.55) 

In the energy balance given by equation (E.55), the first term on the left-hand side describes 
the change in kinetic energy of the boundary particle over time. Furthermore, the second term 
on the left-hand side and the first term on the right-hand side describe the energy dissipation 
due to the damping respectively in the lattice and the rod over time. The third term on the 
left-hand side and the second term on the right-hand side give the energy fluxes through the 
lattice-rod interface by respectively the lattice and the rod. 

According to the dispersion relations for the one-dimensional viscoelastic particle system 
and the viscoelastic rod, given in respectively Appendix E.3 and Appendix E.1, the wave-
numbers are complex-valued for any real non-zero frequency. To assure real-valued expres-
sions for the displacements in the lattice and the rod, we account for both the wavenumbers 
and their complex conjugates. This yields the displacements of the lattice particles and along 
the viscoelastic rod as: 

( ) ( )  ( ) ( ) i i i i1 1
2 2

t t t t
inc inc ref refu A e A e A e A e    − −  −  + −  +

= + + +
n n n nn (E.56) 

( ) ( ) ( ) i i1
2, rod rodt x t x

tra trau x t A e A e  − −  −
= + (E.57) 

Here, the amplitudes incA , refA  and traA  are the complex conjugates of the dimensionless 
amplitudes Ainc, Aref and Atra of the incident, reflected and transmitted waves respectively. 
Furthermore,   and rod  are the complex conjugates of the dimensionless wavenumbers κ 
and κrod in respectively the Kelvin-Voigt lattice and the viscoelastic rod.  

Substituting equations (E.56) and (E.57) into equation (E.55), and subsequently substi-
tuting the dispersion relations for the dimensionless wavenumber κ and its complex conju-
gate, given by equations (E.17) and (E.23), as well as the dispersion relations for the dimen-
sionless wavenumber κrod of the viscoelastic rod and its complex conjugate, respectively 
given by equations (E.6) and (E.8), then averaging the energy balance over a single period of 
the harmonic incident wave, as well as introducing both 2 4iz = +   and its complex con-
jugate 2 4iz = −  , yields the energy exchange at the boundary particle N as: 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )

i i2 2

i i2 2

i rod rod Int

inc inc ref ref

inc ref ref inc

x
tra tra

z z A A e A A e

z z A A e A A e

z z A A e

   

   

 

− − + −

− + + +

− −

− + − −

+ − − − −

= +

N N

N N (E.58) 
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Here, note that both the particle number N and the coordinate xInt present in the exponents of 
the transmitted, incident and reflected waves describe the decay of the wave amplitude at 
interface relative to the wave amplitudes Ainc, Aref and Atra. Thus, introducing the wave am-
plitudes of the incident, reflected and transmitted waves at the interface as i

inc incA A e −=N N , 
i

ref refA A e +=N N and iInt rod Intx x
tra traA A e −= , as well as introducing the corresponding complex

conjugate wave amplitudes as i
inc incA A e +=N N , i

ref refA A e −=N N  and iInt rod Intx x
tra traA A e += , we 

can rewrite equation (E.58) as: 

( )( )

( )( ) ( )

2 2

2 2 Int Int

inc inc ref ref

x x
inc ref ref inc tra tra

z z A A A A

z z A A A A z z A A

− + − −

+ − − − − = +

N N N N

N N N N
(E.59) 

Rearranging equation (E.59) by first isolating 
2

incAN  and then dividing by 
2

incAN , we find the 
energy balance at the discrete-continuous interface of the one-dimensional Kelvin-Voigt sys-
tem as: 

2 22 2

2 22 2 2 2
1

Intx
ref inc ref inc ref tra

inc incinc inc

A z z A A A A z z A
A Az z z zA A

 
− − − + + − + =

 − + − − + −
 

N N N N N

N NN N
 (E.60) 

As explained in Section 3.2.2, the first term in equation (E.60) is the energy reflection coef-
ficient, previously given by equation (E.37), the second term is an interference term that we 
refer to as the energy interference coefficient and the third term in equation (E.60) gives the 
energy transmission coefficient. Noting that the energy interference coefficient can be further 
simplified, the three obtained energy coefficients are separately obtained as: 

2
ref

E
inc

AR
A

=
N

N (E.61) 

2 2

2 2

ref ref
E

inc inc

z z A AI
A Az z

 − − −
= − 

− + −  

N N

N N (E.62) 

2

2 2

Intx
tra

E
inc

z z AT
Az z

+
=

− + −
N (E.63) 

For the particular case that there is no damping, i.e. 0 = , it follows that 2z z= = , so that 
equations (E.61) and (E.63) for the one-dimensional discrete-continuous Kelvin-Voigt sys-
tem reduce to equations (E.37) for the one-dimensional discrete-continuous Hooke system. 
Accordingly, for zero damping, it follows from equation (E.62) that the energy interference 
coefficient is equal to zero, i.e. 0EI = , thus explaining its absence in the energy balance for 
the one-dimensional discrete-continuous Hooke system, given by equation (E.36). 
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F The dynamic compliance of the continuous layer 
The expression for the dynamic compliance matrix of the continuous layer with a surface 
cavity is found in Section 3.5.1 as:  

( ) ( ) ( ) ( )( )
T1 1s T s G s T s

− −
= (F.1) 

Here, ( )T s  is known as the lumping matrix, while ( )G s  is commonly known as the flexi-
bility matrix. The properties of the lumping and flexibility matrices are discussed in the fol-
lowing two sections of this appendix respectively. Additionally, in Appendix F.2, the sym-
metry of the flexibility matrix, and thereby the symmetry of the dynamic compliance matrix, 
is proven mathematically. The terms appearing in the lumping and flexibility matrices follow 
from the Green’s functions for the displacements, tractions and stresses in the continuum. 
For quick reading, these Green’s functions are respectively referred to as Green’s displace-
ments, Green’s tractions and Green’s stresses. 

In Appendix F.3, the governing equations for the displacements and stresses are derived 
using Helmholtz’ orthogonal decomposition and transformed to the Laplace-wavenumber 
domain. Finally, in Appendices F.4 and F.5, the Green’s functions for the displacements and 
stresses are determined for a load inside and for a load at the surface of the continuum re-
spectively. 

F.1 Properties of the lumping matrix
The lumping matrix was previously given in Section 3.5.1 as:

( ) ( ) ( )
T,T s t s H d  =  1

Γ
(F.2) 

Here, the modified Green’s traction matrix ( ),t s1  contains the so-called modified Green’s 
functions for the tractions along the boundary Γ that are due to a unit load distribution along 
the boundary Γ. Furthermore, ( )H   is a matrix that contains Heaviside functions for the 
subdomains of all boundary particles. In matrix notation, the modified Green’s traction ma-
trix and the Heaviside matrix respectively read:  

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
; ; ; ;

; ; ; ;

, , , ,
,

, , , ,
xx xz xx xz

zx zz zx zz

t s t s t s t s
t s

t s t s t s t s
   


   

 
=  
 

Int Int

Int Int

1 1 N N
1 1 1 1

1 1 1 N N
1 1 1 1

 (F.3) 

( )
( ) ( )

( ) ( )

0 0
0 0

H H
H

H H
 


 

 
=  
 

Int

Int

1 N

1 N (F.4) 

For a two-dimensional system, there are four relations between any two particles and conse-
quently, the lumping matrix is a square matrix with the order 2NInt, where NInt is the number 
of particles at the lattice-continuum interface. The four terms in the lumping matrix that 
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describe the lumping relation between two particles i and j along the boundary Γ are: 

( ) ( ) ( ) ( )2 1,2 1 ; ;, ,xx xxT s t s H d t s d
 

 

      

+

− −

−

=  − − = 
j

j

i i
i j 1 j 1

Γ
 (F.5) 

( ) ( ) ( ) ( )2 1,2 ; ;, ,zx zxT s t s H d t s d
 

 

      

+

−

−

=  − − = 
j

j

i i
i j 1 j 1

Γ
 (F.6) 

( ) ( ) ( ) ( )2 ,2 1 ; ;, ,xz xzT s t s H d t s d
 

 

      

+

−

−

=  − − = 
j

j

i i
i j 1 j 1

Γ
 (F.7) 

( ) ( ) ( ) ( )2 ,2 ; ;, ,zz zzT s t s H d t s d
 

 

      

+

−

=  − − = 
j

j

i i
i j 1 j 1

Γ
 (F.8) 

Here, the numerator i refers to the particle at the boundary Γ at which the unit load distribu-
tion is applied that generates the modified Green’s tractions along Γ. Consequently, the mod-
ified Green’s traction ( ); ,abt si

1  is the traction along the boundary Γ in the direction of the 
index a due to a unit load distribution at the boundary particle i in the direction of the index 
b. For example, ( ); ,xzt si

1  is the horizontal Green’s traction along Γ due to the vertical unit 
load distribution at particle i. 

The numerator j denotes the particle on the boundary Γ for which the subdomain along Γ 
is considered. An example of the integrand of a term in the lumping matrix ( )T s  is depicted 
in Figure F.1a, where the green line shows an arbitrary modified Green’s traction ( ),t si

1

along the boundary Γ, due to a unit load distribution at particle i and the red line shows the 
Heaviside function ( )H    − −j  at particle j. For example the term ( )2 ,2 1T s−i j  may thus 
be considered as the result of all horizontal tractions on the domain of particle j due to the 
unit load distribution applied at particle i. 

F.2 Properties of the flexibility matrix
The flexibility matrix was previously given in Section 3.5.1 as: 

( ) ( ) ( )
T, ,G s t s u s d  =  1 1Γ

(F.9) 

Figure F.1: a) The Green’s tractions along Γ due to a unit load distribution at particle i versus the Heaviside function at  
particle j; b) The Green’s tractions and displacements along Γ due to unit load distributionss at particles i and j. 

Γ

i

 i ξ ,t s( )1

 i ,t s( )Hξ ξΔ − ξ −ξ( )1 j

j

jz ξ ξ− Δ ξ ξ ξ+ Δjj  ξ ,u s( )j
1

x xa ) b)

z

Γ

i

j

 i ξ ,t s( )1
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In accordance with the modified Green’s traction matrix ( ),t s1 , the modified Green’s dis-
placement matrix ( ),u s

1
 contains the so-called modified Green’s functions for the dis-

placements along the boundary Γ due to a unit load distribution along the boundary Γ, and 
may be expressed in matrix notation in accordance with equation (F.3). 

For a two-dimensional boundary Γ, the flexibility matrix is a square matrix with the order 
2NInt, where NInt is the number of particles along Γ. The modified Green’s tractions and 
modified Green’s displacements compose the terms in the flexibility matrix ( )G s  as: 
 

( ) ( ) ( ) ( ) ( )2 1,2 1 ; ;; ;, , , ,xx zxxx zxG s t s u s d t s u s d     − − = + 
i j i j

i j 1 11 1Γ Γ
 (F.10) 

( ) ( ) ( ) ( ) ( )2 1,2 ; ;; ;, , , ,xx zxxz zzG s t s u s d t s u s d     − = + 
i j i j

i j 1 11 1Γ Γ
 (F.11) 

( ) ( ) ( ) ( ) ( )2 ,2 1 ; ;; ;, , , ,xz zzxx zxG s t s u s d t s u s d     − = + 
i j i j

i j 1 11 1Γ Γ
 (F.12) 

( ) ( ) ( ) ( ) ( )2 ,2 ; ;; ;, , , ,xz zzxz zzG s t s u s d t s u s d     = + 
i j i j

i j 1 11 1Γ Γ
 (F.13) 

 
Here, i refers to the particle on the boundary Γ at which the unit load distribution is applied 
that generates the considered modified Green’s tractions, while j refers to the particle on the 
boundary Γ at which the unit load distribution is applied that generates the considered 
Green’s displacement. The modified Green’s traction ( ); ,abt si

1  and modified Green’s dis-
placement ( ); ,abu sj

1  are respectively the traction and the displacement along Γ in the direc-
tion of index a due to the unit load distribution applied at respectively particles i and j in the 
direction of the index b. For example, the modified Green’s displacement ( ); ,xzu sj

1  is the 
horizontal displacement along Γ due to a vertical unit load distribution at particle j.  

An example of the integrand of a term in the flexibility matrix ( )G s  is given in Figure 
F.1b. Here, the green line shows the modified Green’s traction ( ),t si

1  along Γ due to a unit 
load distribution at a particle i, while the red line shows the modified Green’s displacement 

( ),u sj
1  along Γ due to a unit load distribution at particle j.  

Proof of symmetry in the flexibility matrix 
The symmetry of the flexibility matrix can be mathematically proven by showing that all 
terms in the flexibility matrix are exactly equal to their symmetric counterparts.  

For each combination of the particles i and j, the flexibility matrix consists of the four 
terms given by equations (F.10) to (F.13). The flexibility matrix can only be symmetric if 
each of these terms is equal to its symmetric counterpart, thus its symmetry is proven by 
showing that: 
 

( ) ( )2 1,2 1 2 1,2 1G s G s− − − −=i j j i  (F.14) 

( ) ( )2 1,2 2 ,2 1G s G s− −=i j j i  (F.15) 

( ) ( )2 ,2 1 2 1,2G s G s− −=i j j i  (F.16) 

( ) ( )2 ,2 2 ,2G s G s=i j j i  (F.17) 
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Substituting equations (F.10) to (F.13) into equations (F.14) to (F.17) yields: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

; ;; ;

; ;; ;

, , , ,

, , , ,

xx zxxx zx

xx zxxx zx

t s u s d t s u s d

t s u s d t s u s d

     

     

+

= +

 

 

i j i j
1 11 1Γ Γ

j i j i
1 11 1Γ Γ

(F.18) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

; ;; ;

; ;; ;

, , , ,

, , , ,

xx zxxz zz

xx zxxz zz

t s u s d t s u s d

t s u s d t s u s d

     

     

+

= +

 

 

i j i j
1 11 1Γ Γ

j i j i
1 11 1Γ Γ

(F.19) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

; ;; ;

; ;; ;

, , , ,

, , , ,

xz zzxx zx

xz zzxx zx

t s u s d t s u s d

t s u s d t s u s d

     

     

+

= +

 

 

i j i j
1 11 1Γ Γ

j i j i
1 11 1Γ Γ

(F.20) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

; ;; ;

; ;; ;

, , , ,

, , , ,

xz zzxz zz

xz zzxz zz

t s u s d t s u s d

t s u s d t s u s d

     

     

+

= +

 

 

i j i j
1 11 1Γ Γ

j i j i
1 11 1Γ Γ

(F.21) 

Each of the modified Green’s displacements and tractions can be multiplied by corresponding 
load magnitudes to obtain displacements and tractions along Γ. Thus, multiplying equation 
(F.18) by the magnitude of the horizontal loads at both particles i and j, i.e. x

iP  and x
jP , then 

yields the relations between the actual displacements and tractions along the boundary Γ due 
to the loads applied at particles i and j. Accordingly, we multiply equation (F.19) with x

iP

and z
jP , equation (F.20) with z

iP  and x
jP , and equation (F.21) with z

iP and z
jP . This yields: 

( ) ( ) ( ) ( )
T T

; ; ; ;, , , ,x x x xt s u s d t s u s d     = 
i jj i

Γ Γ
(F.22) 

( ) ( ) ( ) ( )
T T

; ; ; ;, , , ,x z z xt s u s d t s u s d     = 
i jj i

Γ Γ
(F.23) 

( ) ( ) ( ) ( )
T T

; ; ; ,, , , ,z x x zt s u s d t s u s d     = 
i jj i

Γ Γ
(F.24) 

( ) ( ) ( ) ( )
T T

; ; ; ;, , , ,z z z zt s u s d t s u s d     = 
i jj i

Γ Γ
(F.25) 

Here, ( ); ,au s
n  and ( ); ,at s

n  respectively describe the displacements and tractions along the 
boundary Γ due to a load applied at particle n, where the load is in the direction of index a. 

Equations (F.22) to (F.25) all honour the dynamic reciprocal work theorem and since they 
hold for all combinations of particles i and j, all terms in the flexibility matrix are equal to 
their symmetric counterparts and the flexibility matrix is thereby proven to be symmetric. 

F.3 Displacements and stresses in the Laplace-wavenumber domain
Assuming plane-strain conditions, the displacements and stresses in a continuum due to a
dynamic load are derived from the two-dimensional elastodynamic equation that reads:

( ) ( ) ( )( ) ( )2
, , ,

ˆ ˆ ˆ, , , , , ,x z x z x zu x z t u x z t u x z t   = +    +  (F.26) 
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Applying Helmholtz’ orthogonal decomposition, we express the continuum displacement 
vector as ( ), ,u x z t  =  + . For plane-strain conditions, the Lamé vector potential   
and the Lamé scalar potential ϕ are respectively chosen as ( )( )0, , ,x z t = −  and 

( ), ,x z t = . From Helmholtz’ orthogonal decomposition, it then follows directly that the
displacements of a continuum may be expressed through the Lamé potentials as: 

( ) ( ), , , , ,x zu x z t u x z t
x z x z
      

= + = − +
   

(F.27) 

Using elasticity theory, the stresses inside a continuum may be derived in terms of the Lamé 
potentials from equation (F.27) as: 

( )
2 2 2 2

2 2 2
ˆ ˆ, , 2xx x z t

x zx z x
   

  
      

= + + +   
      

(F.28) 

( ) ( )
2 2 2

2 2
ˆ, , , , 2zx xzx z t x z t

x zx z
  

  
   

= = − + + 
   

(F.29) 

( )
2 2 2 2

2 2 2
ˆ ˆ, , 2zz x z t

x zx z z
   

  
      

= + + − +   
      

(F.30) 

Applying the Fourier transform with respect to horizontal space and the Laplace transform 
with respect to time to equations (F.27) to (F.30) yields the displacements and stresses in the 
Laplace-wavenumber domain as: 

( ) ( ), ,s i , , ,s ix zu k z k u k z k
z z
 

 
 

= + = − +
 

(F.31) 

( ) ( )
2

2
2

ˆ ˆˆ ˆ, ,s 2 2 ixx k z k k
zz

 
     

 
= − + + +


(F.32) 

( ) ( )
2

2
2

ˆ ˆ, ,s , ,s 2izx xzk z k z k k
zz

 
    

  
= = + + 

 
(F.33) 

( ) ( )
2

2
2

ˆ ˆ ˆ ˆ, ,s 2 2 izz k z k k
zz

 
     

 
= − + + −


(F.34) 

Substituting the displacement vector according to Helmholtz’ decomposition into equation 
(F.26), the two-dimensional elastodynamic equation splits into two independent expressions 
for the Lamé scalar and vector potentials: 

2 2 2 2
2 2

2 2 2 2
ˆ ˆ0, 0.S Pc c

x z x z
   

 
      

− + = − + =   
      

 (F.35) 
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Applying the Fourier and Laplace transforms with respect to respectively space and time to 
equations (F.35) then yields: 
 

2 2

2 20,          0.S PR R
z z
 

 
 

− = − =
 

 (F.36) 

 
where RS and RP are respectively found as 2 2 2 2ˆS SR k s c= +  and 2 2 2 2ˆP PR k s c= + . The general 
solutions to equations (F.36) are respectively found as: 
 

1 2 3 4, .S S P PR z R z R z R zA e A e A e A e + − + −= + = +  (F.37) 
 
Substituting the Lamé potentials from equation (F.37) into equations (F.31) to (F.34) then 
gives the displacements and stresses in the continuum as: 
 

( ) ( ) ( )1 2 3 4, ,s iS S P PR z R z R z R z
x Su k z R A e A e k A e A e+ − + −= − + +  (F.38) 

( ) ( ) ( )1 2 3 4, ,s i S S P PR z R z R z R z
z Pu k z k A e A e R A e A e+ − + −= − + + −  (F.39) 

( ) ( ) ( )1 2 3 4ˆ ˆ, ,s 2 i S S P PR z R z R z R z
xx S Pk z kR A e A e A e A e  + − + −= − − +  (F.40) 

( ) ( ) ( ) ( )1 2 3 4ˆ ˆ, ,s , ,s 2iS S P PR z R z R z R z
zx xz S Pk z k z A e A e k R A e A e   + − + −= = + + −  (F.41) 

( ) ( ) ( )1 2 3 4ˆ ˆ, ,s 2 i S S P PR z R z R z R z
zz S Sk z kR A e A e A e A e  + − + −= − − + +  (F.42) 

 
Here, S and P are respectively found as 2 2 2ˆ2S S SR s c = −  and 2 2 2ˆ2P P SR s c = − . 

F.4 Green’s functions for a load inside the continuous layer 
Substituting the expressions for the displacements of and stresses in the continuous layer, 
previously obtained in the Laplace-wavenumber domain in Appendix F.3, into the boundary 
conditions for a load inside the continuous layer, given in Section 3.5.3, yields the system of 
eight algebraic equations that is to be solved for the wave amplitudes A1 to A8. Thus, at the 
surface of the continuous layer, we find: 
 

( ) ( )1 2 3 4ˆ ˆ2 i 0S PA A kR A A + + − =  (F.43) 

( ) ( )1 2 3 4ˆ ˆ2 i 0S SkR A A A A − − + + =  (F.44) 
 
Furthermore, at the horizontal level of the applied unit load, substitution of the corresponding 
displacements and stresses yields the following boundary conditions: 
 

( ) ( )( ) ( ) ( )( )5 1 6 2 7 3 8 4+i 0S S P PR z R z R z R z
SR A A e A A e k A A e A A e+ − + −− − − − + − =i i i i  (F.45) 

( ) ( )( ) ( ) ( )( )5 1 6 2 7 3 8 4i 0S S P PR z R z R z R z
Pk A A e A A e R A A e A A e+ − + −− − + − + − − − =i i i i  (F.46) 
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( ) ( )( )

( ) ( )( ) ( )

5 1 6 2

i
7 3 8 4 ,

ˆ

ˆ2 i

S S

P P

R z R z
S

R z R z kx
P x

A A e A A e

kR A A e A A e p k e





+ −

+ − −

+ − + −

+ − − − =

i i

i i i
1

(F.47) 

( ) ( )( )

( ) ( )( ) ( )

5 1 6 2

i
7 3 8 4 ,

ˆ2 i

ˆ

S S

P P

R z R z
S

R z R z kx
S z

kR A A e A A e

A A e A A e p k e





+ −

+ − −

− − − −

+ − + − =

i i

i i i
1

(F.48) 

At the bottom of the continuous layer, substitution of the corresponding displacements yield: 

( ) ( )5 6 7 8+i 0S b S b P b P bR z R z R z R z
SR A e A e k A e A e+ − + −− + = (F.49) 

( ) ( )5 6 7 8i 0S b S b P b P bR z R z R z R z
Lk A e A e R A e A e+ − + −− + + − = (F.50) 

In matrix format, the system of algebraic equations (F.43) to (F.50) reads ( )D k A P= , where 
the vector A  includes the wave amplitudes A1 to A8. The determinant of ( )D k  is found as: 

( )  ( ) ( )
24 2ˆdet 16 2P S SD k R R k k = − −  (F.51) 

Here, ( )k  is a common denominator that reads: 

( ) ( )

( )

2 2 2 2 2

4 2

4 4 sinh sinh

4 cosh cosh

P S S P S S P b S b

P S S P b S b

k k R R k R R R z R z

R R k R z R z

 



 = + +

− +

The Green’s displacements and Green’s stresses are obtained separately for horizontal and 
vertical unit loads. The Green’s functions for a horizontal unit load applied at a particle i are 
obtained by solving the system of boundary conditions for ( ), 1xp k =1  and ( ), 0zp k =1 , 
yielding the wave amplitudes ;1xAi  to ;8xAi . Accordingly, for a vertical unit load at a particle 
i, the system is solved for ( ), 0xp k =1  and ( ), 1zp k =1 , resulting in the wave amplitudes ;1zAi

to ;8zAi . Then, substituting the resulting wave amplitudes into the expressions for the dis-
placements and stresses in the Laplace-wavenumber domain given in Section 3.5.2, we find 
the Green’s displacements in the surface layer due to a horizontal load at particle i as: 

( ) ( ) ( ), , ;1 ;2 ;3 ;4, , iS S P PR z R z R z R z
u xx I S x x x xg k z s R A e A e k A e A e+ − + −= − + +i i i i i (F.52) 

( ) ( ) ( ), , ;1 ;2 ;3 ;4, , i S S P PR z R z R z R z
u zx I x x P x xg k z s k A e A e R A e A e+ − + −= − + + −i i i i i (F.53) 

The Green’s displacements in the surface layer due to a vertical load at particle i read: 

( ) ( ) ( ), , ;1 ;3 ;3 ;4, , iS S P PR z R z R z R z
u xz I S z z z zg k z s R A e A e k A e A e+ − + −= − + +i i i i i (F.54) 

( ) ( ) ( ), , ;1 ;2 ;3 ;4, , i S S P PR z R z R z R z
u zz I z z P z zg k z s k A e A e R A e A e+ − + −= − + + −i i i i i (F.55) 
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Accordingly, the Green’s stresses in the surface layer due to a horizontal load at particle i 
are: 

( ) ( ) ( ), , ;1 ;2 ;3 ;4ˆ ˆ, , 2 i S S P PR z R z R z R z
xxx I S x x P x xg k z s kR A e A e A e A e  + − + −= − − +i i i i i (F.56) 

( ) ( ) ( ), , ;1 ;2 ;3 ;4ˆ ˆ, , 2iS S P PR z R z R z R z
zxx I S x x P x xg k z s A e A e k R A e A e  + − + −= + + −i i i i i (F.57) 

( ) ( ) ( ), , ;1 ;2 ;3 ;4ˆ ˆ, , 2 i S S P PR z R z R z R z
zzx I S x x S x xg k z s kR A e A e A e A e  + − + −= − − + +i i i i i (F.58) 

And the Green’s stresses in the surface layer due to a vertical load at particle i are found as: 

( ) ( ) ( ), , ;1 ;2 ;3 ;4ˆ ˆ, , 2 i S S P PR z R z R z R z
xxz I S z z P z zg k z s kR A e A e A e A e  + − + −= − − +i i i i i (F.59) 

( ) ( ) ( ), , ;1 ;2 ;3 ;4ˆ ˆ, , 2iS S P PR z R z R z R z
zxz I S z z P z zg k z s A e A e k R A e A e  + − + −= + + −i i i i i (F.60) 

( ) ( ) ( ), , ;1 ;2 ;3 ;4ˆ ˆ, , 2 i S S P PR z R z R z R z
zzz I S z z S z zg k z s kR A e A e A e A e  + − + −= − − + +i i i i i (F.61) 

The Green’s displacements and Green’s stresses in the bottom layer are found in terms of the 
wave amplitudes ;5xAi  to ;8xAi  and ;5zAi  to ;8zAi  from the expressions for the displacements 
and stresses in the Laplace-wavenumber domain given in Section 3.5.2. 

Here and in the following, ( ), , , ,u ab Lg k z si  denotes the Green’s displacement in the con-
tinuous layer L in the direction of a due to a load applied at a particle i in the direction of b. 
Furthermore, ( ), , ,,abc Lg k z s

i  denotes the normal or shear Green’s stress, depending on 
whether indices a and b are equal or not, in the direction of b due to a unit load at particle i 
in the direction of c. 

Green’s displacements in the surface layer in the Laplace-wavenumber domain 
Solving the system of algebraic equations following from the boundary conditions, and in-
troducing ( ) ( )22 Tk k = −  , the horizontal and vertical Green’s displacements in the sur-
face layer due to a horizontal unit load applied at particle i are respectively found as: 
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The horizontal and vertical Green’s displacements in the surface layer due to a vertical unit 
load at particle i are respectively found as: 
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Green’s displacements in the bottom layer in the Laplace-wavenumber domain 
Again using ( ) ( )22 Tk k = −  , the horizontal and vertical Green’s displacements in the
bottom layer due to a horizontal unit load at particle i are respectively found as: 
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The horizontal and vertical Green’s displacements in the bottom layer due to a vertical unit 
load at particle i are respectively found as: 
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Green’s stresses in the surface layer in the Laplace-wavenumber domain 
The Green’s stresses in the surface layer due to a horizontal unit load at particle i read: 
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The Green’s stresses in the surface layer due to a vertical unit load at particle i are found as: 
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Green’s stresses in the bottom layer in the Laplace-wavenumber domain 
The Green’s stresses in the bottom layer due to a horizontal unit load at particle i read: 
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The Green’s stresses in the bottom layer due to a vertical unit load at particle i are found as: 
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F.5 Green’s functions for a load at the surface of the continuum
The displacements and stresses in the continuous layer due to a load applied at its surface are 
obtained from equations (F.38) to (F.42) following the same approach as for a load inside the 
continuous layer. The expressions for these displacements and stresses due to a load at a 
particle i at the surface of the continuum, and thus with z-coordinate 0z =i , coincide with 
the expressions for the displacements and stresses in the bottom layer given in Section 3.5.3. 

The expressions for the wave amplitudes follow from the boundary conditions of the con-
tinuous layer for a unit load applied at a particle i located at its surface. The boundary condi-
tions at respectively the surface and the bottom of the continuous layer are found as: 
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( ) ( ), ,, , , , 0
b b

x II z II
z z z z

u k z s u k z s
= =

= = (F.64) 

Substituting the corresponding expressions for the displacements and stresses into the bound-
ary conditions above yields the following system of four algebraic equations: 

( ) ( ) ( ) i
5 6 7 8 xˆ ˆ2 i kx

S PA A kR A A p k e  −+ + − = ii (F.65) 

( ) ( ) ( ) i
5 6 7 8ˆ ˆ2 i kx

S S zkR A A A A p k e  −− − + + = ii (F.66) 

( ) ( )5 6 7 8i 0S b S b P b P bR z R z R z R z
sR A e A e k A e A e+ − + −− + + = (F.67) 

( ) ( )5 6 7 8i 0S b S b P b P bR z R z R z R z
Pk A e A e R A e A e+ − + −− + + − = (F.68) 

In matrix format, the system of algebraic equations (F.65) to (F.68) reads ( )D k A P= , where 
the vector A  consists of the wave amplitudes A5 to A8. The determinant of ( )D k  reads: 

( )  ( )2ˆdet 4D k k=  (F.69) 

Where, ( )k  is the single-valued common denominator, previously given in Section 3.5.3. 
For a horizontal unit load at the surface of the continuum, we find the wave amplitudes 

;5xAi  to ;8xAi  by solving the system of boundary conditions for ( ), 1xp k =1  and ( ), 0zp k =1 . 
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Accordingly, we find the wave amplitudes ;5zAi  to ;8zAi  by solving the system for ( ), 0xp k =1  
and ( ), 1zp k =1 . The expressions for the displacements and stresses in the Laplace-wave-
number domain given in Section 3.5.2 then yield the Green’s displacements in the continuous 
layer due to respectively a horizontal and a vertical load at a particle i as: 

( ) ( ) ( ), , ;5 ;6 ;7 ;8, , iS S P PR z R z R z R z
u xx II S x x x xg k z s R A e A e k A e A e+ − + −= − + +i i i i i (F.70) 

( ) ( ) ( ), , ;5 ;6 ;7 ;8, , i S S P PR z R z R z R z
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( ) ( ) ( ), , ;5 ;6 ;7 ;8, , i S S P PR z R z R z R z
u zz II z z P z zg k z s k A e A e R A e A e+ − + −= − + + −i i i i i (F.73) 

Accordingly, the Green’s stresses in the surface layer due to respectively a horizontal and a 
vertical load at a particle i are: 
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( ) ( ) ( ), , ;5 ;6 ;7 ;8ˆ ˆ, , 2 iS S P PR z R z R z R z
zxx II S x x P x xg k z s A e A e kR A e A e  + − + −= + + −i i i i i (F.75) 

( ) ( ) ( ), , ;5 ;6 ;7 ;8ˆ ˆ, , 2 i S S P PR z R z R z R z
zzx II S x x S x xg k z s kR A e A e A e A e  + − + −= − − + +i i i i i (F.76) 
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Here, ( ), , , ,u ab IIg k z si  denotes the Green’s displacement in the continuum in the direction of 
a due to a unit load applied at particle i in the direction of b. Accordingly ( ), , , ,abc IIg k z s

i  
denotes the normal or shear Green’s stress, depending on whether indices a and b are equal 
or not, in the direction of b due to a load at particle i in the direction of c. 

Green’s displacements in the Laplace-wavenumber domain 
Solving the algebraic system of boundary conditions for the wave amplitudes and substituting 
the resulting expressions into equations (F.70) and (F.71), the horizontal and vertical Green’s 
displacements due to a horizontal unit load at a surface particle i are respectively found as: 
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Accordingly, the horizontal and vertical Green’s displacements due to a vertical unit load at 
a surface particle i are respectively found as: 
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Green’s stresses in the Laplace-wavenumber domain 
The Green’s stresses due to a horizontal unit load at a surface particle i are found as: 
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The Green’s stresses due to a vertical unit load at a surface particle i are found as: 
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G The dynamic compliance of the half-plane of particles 
In Section 4.3.2, the expression for the dynamic compliance matrix of the half-plane of par-
ticles with a surface cavity is obtained as: 

( ) ( ) ( )( )
T1

R us g s g s
−

= (G.1) 

Here, ( )ug s  and ( )Rg s  are matrices that respectively contain the Green’s functions for the 
displacements and the reaction forces of all particles j along the boundary Γ due to unit loads 
applied at any particle i along the boundary Γ. For quick reading, these Green’s functions are 
respectively referred to as Green’s displacements and Green’s reaction forces. 

In Section 4.4.2, the boundary conditions for the half-plane of particles are given in terms 
of displacements and reaction forces. In the following, the system of boundary conditions is 
derived in terms of the wave amplitudes. First, in Appendix G.1, the system of six boundary 
conditions is derived for a load inside the half-plane of particles, while in Appendix G.2, the 
system of two boundary conditions is derived for a load at the surface of the half-plane.  

The expressions for the Green’s displacements are given in Section 4.4.3 in terms of the 
wave amplitudes and require no further investigation. The general expressions for the 
Green’s reaction forces at the particles along Γ have previously been given in Section 4.4.4. 
As stated in that section, the expressions for ( )

;
h

x r  and ( )
;
h

z r , with 1..3r =  and 1..2h = , are 
found depending on the location of the particles i and j and on the cell configuration of par-
ticle j along Γ. The expressions for ( )

;
h

x r and ( )
;
h

z r  are derived for seven existing cell config-
urations along the boundary Γ in respectively Appendices G.3 to G.9. Appendix G.10 ad-
dresses the reaction forces in the half-plane of particles for the equivalent one-dimensional 
response of the half-plane of particles to an infinitely-long uniform vertical load. 

G.1 Boundary conditions for a load inside the half-plane of particles
When a load is applied at a particle i in the interior of the half-plane, we divide the half-plane
into two subsystems, a layer of particles that ranges from the surface to the horizontal level
of particle i, referred to as subsystem I, and the remaining subsystem, referred to as subsystem
II, which is a half-plane with its surface at the horizontal level of the loaded particle i.

The first two boundary conditions follow from the force equilibrium at the unloaded sur-
face of the half-plane. These boundary conditions thus read: 

, , 0x I z IR R= =m,0 m,0  (G.2) 

Note here that at the free surface of any system of particles, the horizontal and vertical reac-
tion forces follow directly from respectively the horizontal and vertical force equilibrium, i.e. 
the equation of motion, of that particle. Note furthermore that, in accordance with a surface 
particle in the hexagonal lattice, the mass of a particle at the surface of the half-plane of 
particles is half the mass of a particle in the interior of the half-plane, i.e. , 1

2M M=m 0 . Ac-
cordingly, the stiffness and the damping of the elements at the surface are respectively equal 
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to half the stiffness and half the damping of the elements in the interior of the half-plane. In 
terms of the operator ˆ eK  that describes the viscoelastic behaviour of the rheological elements 
as ˆ e e e tK K C 


= + , this yields , , 1

;1 ;2 2
ˆ ˆ ˆ ee eK K K= =m 0 m 0  and , ,

;3 ;4
ˆ ˆ ˆ ee eK K K= =m 0 m 0 . The dimensional

equations of motion for a surface particle, and thereby the first two boundary conditions for 
a load applied inside the half-plane of particles, are thus found in the time domain as: 

( ) ( ) , , , , , , , ,31 1 1
, , , , , , , ,2 2 2 2

ˆ 3 0ex I x I x I x I x I x I z I z IMu K u u u u u u u+ − − − + + − =m 0 m 0 m-2 0 m+2 0 m-1 1 m+1 1 m-1 1 m+1 1 (G.3) 

( ) ( ) , , , , , ,331 1
, , , , , ,2 2 2 2

ˆ 3 0ez I z I z I z I x I x IMu K u u u u u+ − + + − =m 0 m 0 m-1 1 m+1 1 m-1 1 m+1 1 (G.4) 

To obtain the corresponding dimensionless boundary conditions, we here introduce the fol-
lowing dimensionless parameters for time and space: 

dim dim
dim 0 , , .x zt t x z= = =

Inserting the dimensionless parameters into equations (G.3) and (G.4), inserting the expres-
sions for the operator ˆ eK , as well as dividing by 2

0M , applying the Laplace transform and
introducing the operator 1 2K s = + , we find the Laplace domain boundary conditions at 
the surface of the half-plane of particles as: 

( ) ( ) ( ) 2 , , , , , , , ,31 1
, , , , , , , ,3 6 6 0x I x I x I x I x I x I z I z Is u K u u u u u u u+ − + − + + − =m 0 m 0 m-2 0 m+2 0 m-1 1 m+1 1 m-1 1 m+1 1 (G.5) 

( ) ( ) 2 , , , , , ,3 1
, , , , , ,6 2 0z I z I x I x I z I z Is u K u u u u u+ + − − + =m 0 m 0 m-1 1 m+1 1 m-1 1 m+1 1 (G.6) 

In Section 4.4.1, the horizontal and vertical displacements of a particle m,n in subsystem I 
were expressed in terms of the horizontal wave amplitudes as: 
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Substituting equations (G.7) and (G.8) into equations (G.5) and (G.6) yields the horizontal 
and vertical boundary conditions at the half-plane surface as: 
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When their integrands are equal to zero, the integrals in equations (G.9) and (G.10) must also 
be equal to zero, and thus we find: 
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(G.12) 

Equations (G.11) and (G.12) are the first two boundary conditions for a load at a particle in 
the interior of the half-plane of particles expressed in terms of the wave amplitudes ( ),

1;2
hAi . 

The other four boundary conditions are found at the interface between subsystems I and 
II, i.e. at the horizontal level of the loaded particle i. As the displacements of the upper and 
lower half-particles at the level with vertical nodal coordinate = in n  must coincide, we find: 

0x,II x,Iu u− =i im,n m,n (G.13) 
0z,II z,Iu u− =i im,n m,n  (G.14) 

The remaining two boundary conditions follow from the force equilibrium at = in n  as: 

, , xx II x IR R P− =i i
i

m,n m,n
m m (G.15) 

, , zz II z IR R P− =i i
i

m,n m,n
m m (G.16) 

The horizontal and vertical displacements of a particle m,n in subsystem I are given in the 
Laplace domain by equations (G.7) and (G.8). In Section 4.4.1, the horizontal and vertical 
displacements of a particle m,n in subsystem II were obtained in the Laplace domain as: 
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Thus, applying the Laplace transform to equations (G.13) and (G.14), and substituting equa-
tions (G.7) and (G.8), as well as equations (G.17) and (G.18), into the remainder yields the 
two displacement boundary conditions at the interface of the two subsystems in terms of the 
wave amplitudes as: 
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As the interface between subsystems I and II is by definition horizontal, the expressions for 
the reaction forces at the lower half-particle in subsystem II coincide with the equations of 
motion for a particle at the surface of the half-plane of particles, previously given by equa-
tions (G.3) and (G.4). Adapting the subscript to denote a half-particle located in subsystem 
II, the horizontal and vertical reaction forces at the lower half-particle are found as: 

( )

( )
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ex II x II

z II z II

u u u u u
R Mu K

u u

 − − − + 
= +  

+ −  

i i i i i

i i

i i

m n m-2 n m+2 n m-1 n +1 m+1 n +1

m,n m n

m-1 n +1 m+1 n +1
(G.21) 

( ) ( ) , , , , , ,331 1
, , , , , , ,2 2 2 2

ˆ 3ez II z II z II z II z II x II x IIR Mu K u u u u u= + − + + −i i i i i i im,n m n m n m-1 n +1 m+1 n +1 m-1 n +1 m+1 n +1 (G.22) 

The reaction forces at the upper half-particle at the interface between subsystems I and II are 
derived in the same manner. The mass of the half-particles at the interface between subsys-
tems I and II are equal to half the mass of a particle in the interior of either subsystem, i.e. 

, 1
2M M=im n , and the stiffness and the damping of the elements at the half-plane surface are 

respectively equal to half the stiffness and half the damping of the elements in the interior, 
so that , , 1

;1 ;2 2
ˆ ˆ ˆ ee eK K K= =i im n m n  and , ,

;5 ;6
ˆ ˆ ˆ ee eK K K= =i im n m n .  

Noting that the direction of the reaction forces of the upper half-particle is opposite to 
those of the lower half-particle, the horizontal and vertical reaction forces at the upper half-
particle respectively become: 
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(G.23) 

( ) ( ) 331 1
, , , , , , ,2 2 2 2

ˆ 3ez I z I z I z I z I x I x IR Mu K u u u u u= − − − + − −i i i i i i im,n m,n m,n m-1,n -1 m+1,n -1 m-1,n -1 m+1,n -1 (G.24) 

Substituting equations (G.21) to (G.24) into equations (G.15) and (G.16) yields the reaction 
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force boundary conditions at the interface between subsystems I and II, as: 
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(G.26) 

To obtain the corresponding dimensionless boundary conditions, we introduce the following 
dimensionless parameters for time, space and force: 

dim dim dim dim
dim 0 2

0
, , , .

3 e

x z P Pt t x z P
KM




= = = = = (G.27) 

Noting that ˆ e e e tK K C 


= + , substituting the dimensionless parameters into equations (G.25)

and (G.26), as well as dividing by 2
0M , applying the Laplace transform and introducing

the operator 1 2K s = + , the Laplace domain reaction force boundary conditions read: 
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(G.28) 
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(G.29) 

Substituting equations (G.7), (G.8), (G.17) and (G.18) into equations (G.28) and (G.29), as 
well as incorporating the integral representation for the Kronecker Delta, we ultimately find: 
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(G.31)

Together, equations (G.11), (G.12), (G.19), (G.20), (G.30) and (G.31), give the complete 
system of boundary conditions in terms of the wave amplitudes. Solving this system for 

1xP = and 0zP =  yields the wave amplitudes ( ),
;1

h
xAi , ( ),

;2
h

xAi and ( ),
;3

h
xAi for 1..2h = . Accord-

ingly, solving the given system for 0xP =  and 1zP =  yields the wave amplitudes ( ),
z;1

hAi  to 
( ),

z;3
hAi for 1..2h = . 

G.2 Boundary conditions for a load at the half-plane surface
For a load applied at the surface of the half-plane of particles, we consider the half-plane as 
a single system that, comparing it with the approach for a load inside the half-plane of parti-
cles, coincides with subsystem II for the case that 0=in . In this case, we only require the 
two boundary conditions at the surface of the half-plane of particles. Incorporating the hori-
zontal and vertical components of a load applied at a particle i at the surface of the half-plane 
by means of the Kronecker Delta, the force balance at the surface of the half-plane of particles 
yields the two boundary conditions as: 

, xx IIR P= i
m,0

m m (G.32) 

, zz IIR P= i
m,0

m m (G.33) 

As stated previously, at a free surface of the system of particles, the reaction forces follow 
directly from the respective force equilibria, i.e. the equations of motion, of that particle. The 
expressions for the horizontal and vertical reaction forces for a half-particle in subsystem II 
were previously given by equations (G.21) and (G.22). Adapting the given expressions for 
the reaction forces to denote a surface particle by substituting 0=in  and incorporating them 
into equations (G.32) and (G.33) yields the following boundary conditions at the surface of 
the half-plane: 

( )

( )

, , , , ,1
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i
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m 0
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(G.34) 

( ) ( ) , , , , , ,33
, , , , , ,2 2

ˆ 3 2e zz II z II z II z II x II x IIMu K u u u u u P+ − + + − = i
m 0 m 0 m-1 1 m+1 1 m-1 1 m+1 1

m m (G.35)

To obtain the corresponding dimensionless boundary conditions, we introduce the dimen-
sionless parameters for time, space and force previously given by equation (G.27). Then, 
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noting that ˆ e e e tK K C 


= + , as well as dividing by 2

0M , applying the Laplace transform 
and introducing the operator 1 2K s = + , the Laplace domain reaction force boundary con-
ditions at the half-plane surface read: 

( ) ( )

( )

, , , , ,1 1
, , , , ,3 62 ,
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, ,6

2
x II x II x II x II x II
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( ) ( ) 2 , , , , , ,31
, , , , , ,2 6 2 zz II z II z II z II x II x IIs u K u u u u u P + − + + − = i

m 0 m 0 m-1 1 m+1 1 m-1 1 m+1 1
m m (G.37) 

Substituting the horizontal and vertical displacements of a particle m,n in subsystem II, pre-
viously given by equations (G.17) and (G.18), into equations (G.36) and (G.37), as well as 
incorporating the integral representation for the Kronecker Delta, we ultimately find: 
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G.3 Green’s reaction forces at the left surface particle
The cell configuration for the left surface particle j at the boundary Γ is depicted in Figure
G.1. As stated in Section 4.4.4, the reaction forces must be obtained for the subparticles along
the boundary Γ of the far-field body V, rather than along the boundary Γcav of the near-field,
or cavity, body Vcav.

Disregarding the involved subsystems that follow from the location of the loaded particle 
i, the horizontal and vertical reaction forces at the left surface particle are found as: 
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The corresponding Green’s reaction forces are obtained from equations (G.40) and (G.41) by 
substituting the given Laplace domain displacements by the corresponding Green’s displace-
ments. 

In the following, the expressions for ( )
;
h

x r  and ( )
;
h

z r , with 1..3r = , will first be obtained 
for a loaded particle in the interior of the half-plane and, subsequently, for a loaded particle 
at the surface of the half-plane. 
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For a load at a particle in the interior of the half-plane 
When the loaded particle i is located in inside the half-plane of particles, i.e. i jn n , it fol-
lows that all displacements in equations (G.40) and (G.41) may be considered as degrees of 
freedom of subsystem I. Substituting the Green’s displacements for a particle j in subsystem 
I, previously given in Section 4.4.3, into equations (G.40) and (G.41), thus yields the corre-
sponding Green’s reaction forces. The expressions for ( )

;
h

x r  with 1..3r =  are in this case 
found as: 
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Accordingly, the expressions for ( )
;
h

z r with 1..3r =  are respectively found as: 
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Figure G.1: Cell configuration of the left surface particle. 
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For a load at a particle at the half-plane surface 
When the loaded particle i is located at the surface of the half-plane, i.e. for =in 0 , the half-
plane is considered as a single system and consists of degrees of freedom of subsystem II. 
Substituting the Green’s displacements from Section 4.4.3 specifically for a particle j in sub-
system II, into equations (G.40) and (G.41) yields the expressions for ( )

;
h

x r  with 1..3r =  re-
spectively as: 
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Accordingly, the expressions for ( )
;
h

z r with 1..3r =  are respectively found as: 
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G.4 Green’s reaction forces at a particle along the left slope
The cell configuration for a particle j along the left slope of the interface Γ is depicted in
Figure G.2a. Disregarding the involved subsystems, the horizontal and vertical reaction
forces at a particle along the left slope of the interface Γ are obtained as:
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The corresponding Green’s reaction forces are obtained from equations (G.42) and (G.43) by 
replacing the given Laplace domain displacements by the corresponding Green’s displace-
ments.  

For a load at a particle further from the surface of the half-plane  
When the loaded particle i is located further from the surface of the half-plane than particle 
j, i.e. when i jn n , all displacements in equations (G.42) and (G.43) may be considered as 
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degrees of freedom of subsystem I. Substituting the Green’s displacements for a particle j in 
subsystem I from Section 4.4.3 into equations (G.42) and (G.43), we find the expressions for 
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;
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x r with 1..3r =  as:
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Accordingly, we find the expressions for ( )
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Figure G.2: a) Cell configuration of a particle along the left slope; b) Cell configuration of the left corner particle. 
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For a load at a particle closer to the surface of the half-plane 
When the loaded particle i is located closer to the surface of the half-plane of particles than 
the particle j, i.e. for i jn n , the Green’s displacements in equations (G.42) and (G.43) are 
all degrees of freedom of subsystem II. Substituting the Green’s displacements for a particle 
j in subsystem II from Section 4.4.3 into equations (G.42) and (G.43), the expressions for 

( )
;
h

x r and ( )
;
h

z r  with 1..3r =  are: 
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For a load at the same level of the considered particle 
When the loaded particle i is located at the same level of the half-plane of particles as particle 
j, i.e. when =i jn n , the displacements appearing in equations (G.42) and (G.43) no longer 
all belong to the same subsystem. The particles with horizontal nodal coordinate jn -1  be-
long to subsystem I, while the particles with nodal coordinate jn +1  belong to subsystem II. 
The particles with horizontal nodal coordinate nj are located at the interface of the subsys-
tems, and their displacements are therefore degrees of freedom that exist in both subsystems. 
In this case, we choose to let the corresponding subsystem of a particle at the interface of the 
two susbsystems depend on the location of its associated rheological element. This means 
that when a rheological element is for example located in subsystem I, the degrees of freedom 
associated with the elongation of that element are also considered to be part of subsystem I.  

Substituting the corresponding Green’s displacements into equations (G.42) and (G.43) 
yields the expressions for ( )

;
h

x r  and ( )
;
h

z r  with 1..3r =  respectively as: 
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G.5 Green’s reaction forces at the left corner particle
The cell configuration for the left corner particle j along Γ is depicted in Figure G.2b. Disre-
garding the involved subsystems, the reaction forces at the left corner particle j are:
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Since particles i and j are both located along Γ and the left corner particle is at the bottom, 
the loaded particle i is either at the same level as particle j, or closer to the half-plane surface. 

For a load at a particle closer to the surface of the half-plane 
When the loaded particle i is closer to the surface of the half-plane than particle j, i.e. for 

i jn n , the displacements in equations (G.44) and (G.45) may all be considered degrees of 
freedom of subsystem II. Substituting the corresponding Green’s displacements for a particle 
j in subsystem II, the expressions for ( )

;
h

x r  and ( )
;
h

z r  with 1..3r =  are obtained as: 
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For a load at the same level of the considered particle 
When the loaded particle i is located at the same level as particle j, i.e. when =i jn n , all 
displacements in equations (G.44) and (G.45) may be considered as degrees of freedom of 
subsystem I. Substituting the corresponding Green’s displacements for a particle j in subsys-
tem I, the expressions for ( )

;
h

x r and ( )
;
h

z r  with 1..3r =  are respectively found as: 
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G.6 Green’s reaction forces at a particle along the horizontal domain
The cell configuration for a particle j located at the horizontal domain of the interface Γ is
depicted in Figure G.3a. Disregarding the involved subsystems, the horizontal and vertical
reaction forces at a particle located on the horizontal domain of the interface Γ are found as:
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Since both particles i and j are located at the horizontal segment of the boundary Γ, the loaded 
particle i is located either at the same horizontal level as the particle j, or at a particle closer 
to the half-plane surface. For both cases, i.e. for i jn n , the displacements in equations 
(G.46) and (G.47) are all degrees of freedom of subsystem II. Substituting the Green’s dis-
placements for particle j in subsystem II from Section 4.4.3, we obtain the expressions for 

( )
;
h

x r and ( )
;
h

z r with 1..3r =  as:
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G.7 Green’s reaction forces at the right corner particle
The configuration for the right corner particle j along Γ is depicted in Figure G.3b. Disre-
garding the involved subsystems, the reaction forces at the right corner particle j read:
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Since both particles i and j are located at the interface Γ and the right corner particle is at the 
bottom of the interface Γ, the loaded particle i is located either at the same horizontal level 
as the particle j, or at a particle closer to the surface of the half-plane. 

For a load at a particle closer to the surface of the half-plane 
When particle i, at which the load is applied, is located closer to the surface of the half-plane 
than particle j, i.e. for i jn n , the displacements in equations (G.48) and (G.49) may all be 
considered degrees of freedom of subsystem II. This yields the expressions for ( )

;
h

x r  and ( )
;
h

z r

Figure G.3: a) Cell configuration of a particle along the horizontal domain; b) Cell configuration of the right corner particle. 
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with 1..3r =  as: 
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For a load at the level of the considered particle 
When the loaded particle i is located at the same level as particle j, i.e. when =i jn n , all 
displacements in equations (G.48) and (G.49) may be considered as degrees of freedom of 
subsystem I. Substituting the corresponding Green’s displacements for a particle j in subsys-
tem I, the corresponding expressions for ( )

;
h

x r and ( )
;
h

z r  with 1..3r =  are found as: 

( ) ( )( )
( )

( )
31

2 2i i2 i1 1 1
;1 6 6 41 1 3 1

h
x zxh h

x s K e D e e 


− −− = + − + − − 
 

( ) ( )( )
( )

( )
31

2 2i i2 i1 1 1
;2 6 6 41 1 3 1

h
x zxh h

x s K e D e e 


− +− = + − + + − 
 

( ) ( )
( )3

2 i21 1
;3 2 6 3 2cos cos i 3 sin

2 2
h

zx xh h
xx s K D e 



 
 

+  
= + − − −  

  

( ) ( ) ( )( )
( )

( )
31

2 2i i2 31 1
;1 6 6 4 1 3 1

h
x zh h h

z s D K D e e 


− −
= − − −

Figure G.4: a) Cell configuration of a particle along the right slope; b) Cell configuration of the right surface particle. 
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G.8 Green’s reaction forces at a particle along the right slope
The configuration for a particle j along the right slope of the boundary Γ is depicted in Figure
G.4a. Disregarding the involved subsystems, the reaction forces at a particle along the right
slope of the boundary Γ are respectively derived as:
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For a load at a particle further from the surface of the half-plane 
When i jn n , all displacements in equations (G.50) and (G.51) are degrees of freedom of 
subsystem I. The expressions for ( )

;
h

x r and ( )
z;

h
r  with 1..3r =  now respectively become: 
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For a load at a particle closer to the surface of the half-plane 
When the loaded particle i is closer to the surface of the half-plane than particle j, i.e. for 

i jn n , the displacements in equations (G.50) and (G.51) are all degrees of freedom of sub-
system II. This yields the expressions for ( )

;
h

x r  and ( )
;
h

z r  with 1..3r =  as: 
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For a load at the same level of the considered particle 
If the loaded particle i is located at the same level as particle j, i.e. when =i jn n , the dis-
placements in equations (G.50) and (G.51) belong to different subsystems. The particles with 
horizontal nodal coordinate jn -1  belong to subsystem I, while the particles with nodal co-
ordinate jn +1  belong to subsystem II. In this case, we let the corresponding subsystem of 
the particles at the interface of the two susbsystems depend on the location of its associated 
rheological element. This yields the expressions for ( )

;
h

x r  and ( )
;
h

z r  with 1..3r =  as: 
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G.9 Green’s reaction forces at the right surface particle
The cell configuration for a right surface particle j along Γ is depicted in Figure G.4b. Dis-
regarding the involved subsystems, the reaction forces at the left surface particle read:
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As the particle j is located at the surface, the loaded particle i is either located in the interior 
of the half-plane, or at the same horizontal level as the particle j. 

For a load at a particle in the interior of the half-plane 
When the loaded particle i is located inside the half-plane of particles, i.e. i jn n , it follows 
that the displacements in equations (G.52) and (G.53) are degrees of freedom of subsystem 
I. This yields the expressions for ( )

;
h

x r and ( )
;
h

z r  with 1..3r =  respectively as: 
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For a load at a particle at the half-plane surface 
When the loaded particle i is located at the surface of the half-plane, i.e. for =i jn n , the 
displacements in equations (G.52) and (G.53) are all degrees of freedom of subsystem II. 
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This yields the corresponding expressions for ( )
;
h

x r and ( )
;
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z r  with 1..3r =  respectively as: 
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G.10 Equivalent 1D Green’s reaction forces in the half-plane of particles
For the equivalent one-dimensional response of the half-plane of particles, discussed in Sec-
tion 4.5, we consider the Green’s reaction forces at a particle in the half-plane. While Section 
4.5 considers the particular case of an applied vertical uniform load at the half-plane surface, 
this appendix considers the more general case of a uniform vertical load along any horizontal 
level of the half-plane. The corresponding Green’s reaction forces are thus obtained as: 
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To obtain the equivalent one-dimensional 
Green’s reaction forces, we make the assump-
tion that for the equivalent one-dimensional re-
sponse, the Green’s reaction forces are deter-
mined along the horizontal line that divides the 
considered particle into two exact halves. The re-
sulting cell configuration for a particle m,n lo-
cated in the half-plane, depicted in Figure G.5, 
then exactly corresponds to that of a particle 
along the horizontal domain of the boundary Γ, 
previously discussed in Appendix G.6. Disre-
garding the involved subsystems, the corre-
sponding horizontal and vertical reaction forces Figure G.5: Cell configuration of a particle along  

a horizontal domain; 
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at the particle j with nodal coordinates mj,nj due to a load applied at particle i are then de-
scribed by equations (G.46) and (G.47). Replacing the Laplace domain displacements in 
these equations by the corresponding Green’s displacements then yields the corresponding 
Green’s reaction forces.  

As the loaded particle i and particle j, at which the Green’s reaction forces are considered, 
can be anywhere, note that, next to the case that i jn n  considered in Appendix G.6, for the 
equivalent one-dimensional response we must also consider the case that i jn n .  

For a load at a particle further from the surface of the half-plane  
When the loaded particle i is located further from the surface of the half-plane than the par-
ticle j at which the reaction forces are to be determined, i.e. if i jn n , the Laplace domain 
displacements in equations (G.46) and (G.47) are all degrees of freedom of subsystem I. 
Susbtituting the corresponding Green’s displacements from Section 4.4.3, then yields the ex-
pressions for ( )

;
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x r  and ( )
;
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z r  for 1..3r =  as: 
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For a load at a particle closer to the surface of the half-plane 
When the loaded particle i is located at the same level as, or is located closer to the surface 
of the half-plane than, the particle j at which the reaction forces are to be determined, i.e. if 

i jn n , the Laplace domain displacements in equations (G.46) and (G.47) are all degrees of 
freedom of subsystem II. In correspondence with Appendix G.6, this yields the expressions 
for ( )
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z r  with 1..3r =  respectively as: 
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H Wave propagation in two-dimensional systems 

H.1 Dispersion in the half-plane of particles 
In this appendix, we consider the dispersion relations for the shear and compressional waves 
propagating through the half-plane of particles in its principal directions, i.e. in x- and z-
direction, for comparison with the corresponding one-dimensional system, discussed in Sec-
tion 4.5.1, and with the continuous layer, discussed in Section 4.6.  

In Section 4.4, the dimensionless dispersion relation for the viscoelastic half-plane of 
particles with a hexagonal configuration is obtained as: 
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Equation (H.1) is the general dispersion relation for wave propagation in the viscoelastic half-
plane of particles in all directions. The dispersion relation for waves propagating in z-direc-
tion follows from equation (H.1) by substituting 0x = . This yields: 
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The above dispersion relation has two solutions that are obtained as: 
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As discussed in Section 4.5.1, the second dispersion relation in equation (H.3) must be related 
to the propagation of compressional waves in z-direction, i.e. ,2 ,z z P → . As a consequence, 
the first dispersion relation in equation (H.3) must be related to the propagation of shear 
waves in z-direction, i.e. ,1 ,z z S → . Alternatively, solving these dispersions relations for 
the Laplace parameter s and for zero damping shows that the phase speeds of the two waves 
are related as ,2 ,1 3z zc c= . Then, noting that the shear and compressional wave velocities in 
the two-dimensional continuum are known to be related as 3P Sc c=  and that this must also 
be the case for the half-plane of particles in the long wave limit, yields the same conclusion. 

Substituting 0z =  into equation (H.1), yields the dispersion relation for waves propa-
gating in x-direction as: 
 

2 2

3 1 2cos cos 1 cos 0
1 2 2 1 2 2

x x
x

s s
s s

 


 

    
+ − − + − =     + +    

 (H.4) 
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The two solutions to the above dispersion relation are obtained as: 

2 2
,1 ,2

,2
3cos 1 , cos 2cos 2 1 .

2 1 2 2 1 2
x x

x
s s

s s
 


 

= + + − = +
+ +

(H.5) 

Solving both dispersion relations for the Laplace parameter s assuming zero damping shows 
that the phase speeds for the two dispersion relations in equation (H.5) are related as 

,2 ,1 3x xc c= . Assuming that the phase speeds of shear and compressional waves are the same 
in x- and z- direction, the first dispersion relation in equation (H.5) must be related to the 
propagation of shear waves, i.e. ,1 ,x x S → , while the second dispersion relation in equation
(H.5) appears to correspond to the propagation of compressional waves, i.e. ,2 ,x x P → . 

Using trigonometry to rewrite and rearrange the second relation in equation (H.5) exclu-
sively in terms of 1

2cos x , and solving the remainder for 1
2cos x using the quadratic equa-

tion, we find: 

2
, 1 9 48cos 1

2 8 8 81 1 2
x P s

s



= −  +

+
(H.6) 

The dispersion equation (H.6) for the propagation of compressional waves in x-direction has 
two solutions that correspond to two segments within the first Brillouin zone. These two 
segments are depicted in Figure H.1 for zero damping. Here, the continuous blue line gives 
the frequency-wavenumber relation that follows from equation (H.6) by substituting is =   
and using a positive sign for the square root, while the dashed blue line gives the correspond-
ing relation using a negative sign for the square 
root. Furthermore, the red line gives the fre-
quency-wavenumber relation for the shear 
wave in x-direction. Figure H.1 shows that for a 
certain frequency range within the first Bril-
louin zone, a single frequency corresponds to 
two wavenumbers. 

Note here that the shear wave has a fre-
quency range 0 2 = , while for the com-
pressional wave the frequency ranges from zero 
to 81

48 1,229 =  . The dispersion curve for 
the compressional wave has a local minimum at 

2
3 0,8165 =  . The maximum frequency in 

the dispersion curve for the compressional 
wave corresponds to 1 1

,2 8cos x P = − .  
Figure H.1: Dispersion relation for wave propagation 

in x-direction for the 1st Brillouin zone.
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H.2 Dispersion in the continuous layer
Although the derivation of the dispersion relation for a two-dimensional continuum can be
considered as commonly known textbook material, we here shortly address this derivation in
the appendix specifically for the case that the material properties of the continuum coincide
with the material parameters of the half-plane of particles with a hexagonal configuration

The dispersion relation for two-dimensional continuum under plane-strain conditions is 
derived starting from the commonly known two-dimensional elastodynamic wave equation 
[Achenbach, 1973]. To this purpose, we divide the horizontal and vertical equations of mo-
tion for the continuum, previously given by equations (C.4) and (C.5), by the density ρ and 
note that the viscoelastic shear and compressional wave velocities may respectively be ex-
pressed in terms of the Lamé operators as 2ˆ ˆSc  =  and ( )2 ˆˆ ˆ2Pc   = + . Applying the
Fourier transform with respect to horizontal space and the Laplace transform with respect to 
time then yields:  

( ) ( ) ( ) ( ) ( )
2

2 2 2 2 2 2
2

ˆ ˆ ˆ ˆ, , , , i , , 0P x x x S x x x S P z xs c k u k z s c u k z s k c c u k z s
zz

 
+ − + − =


(H.7) 

( ) ( ) ( ) ( ) ( )
2

2 2 2 2 2 2
2

ˆ ˆ ˆ ˆi , , , , , , 0x S P x x S x z x P z xk c c u k z s s c k u k z s c u k z s
z z
 

− + + − =
 

(H.8) 

Here, kx denotes the horizontal wavenumber. Note that in Section 3.5.3 and in Appendix F.3, 
the horizontal wavenumber was simply expressed as the wavenumber k, while in this appen-
dix the subscript x is used to emphasize its horizontal orientation as opposed to the vertical 
wavenumber. 

To find a general solution to equations (H.7) and (H.8), we assume plane harmonic waves 
and describe the horizontal and vertical displacements of the continuum in the Laplace-wave-
number domain in terms of the vertical wavenumber kz as: 

( ) ( )i i, , , , ,z zk z k z
x x z xu k z s Ae u k z s Be− −= = (H.9) 

Substituting equations (H.9) into equations (H.7) and (H.8), and noting that the determinant 
of the resulting system of equations of motion must be equal to zero, shows that the shear 
and compressional waves in the continuum are decoupled, and that we find separate disper-
sion relations for the propagation of the shear and compressional waves as: 

( ) ( )2 2 2 2 2 2 2 2ˆ ˆ0, 0.S x z P x zs c k k s c k k+ + = + + = (H.10) 

To compare the dispersion in the continuum with the dispersion in the half-plane of particles, 
we replace the Laplace parameter and wavenumber in equation (H.10) by the dimensionless 
Laplace parameter as dim 0s s =  and the dimensionless wavenumber as k =  respecti-
vely. Subsequently, we express the shear and compressional wave velocities in terms of the 
Lamé parameters, and note that the Lamé operators describe the viscoelastic behavour of the 
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continuum in terms of the damping ratio as ( )ˆ 1 2 s  = + and ( )ˆ 1 2 s  = + . Then, 
matching the material parameters of the hexagonal lattice with the material properties of the 
continuous layer, so that the Lamé operators are related to the Young’s modulus as 

2
5 E = = , and additionally, taking into account the relation 2 2 16

0 5 E =  previously ob-
tained in Appendix B.2, the dimensionless dispersion relations for the propagation of shear 
and compressional waves in the continuum are respectively found as: 

2 2
2 2 2 2

2 20, 0.
ˆ ˆx z x z

S P

s s
c c

   + + = + + =  (H.11) 

Here, the dimensionless shear and compressional wave velocities are respectively found as: 

( ) ( )
1 3ˆ ˆ1 2 , 1 2 .
8 8

S Pc s c s =  + =  + (H.12) 

The dispersion relations for wave propagation in either x- or z-direction are obtained from 
equation (H.11) by substituting 0z =  and 0x =  respectively. Evidently, the dispersion 
relations for the propagation of shear and compressional waves in the continuum are the same 
for both directions. In fact, expressing these dispersion relations in polar coordinates by in-
troducing cosx r  =  and sinz r  = , where r  is the wavenumber magnitude and   
gives the direction of wave propagation, it follows that 2 2 2

x z r  + = , so that both dispersion 
relations are independent of the direction of wave propagation. Noting that the first dispersion 
relation in equation (H.11) is related to the propagation of shear waves, and the second dis-
persion relation is related to the propagation of compressional waves, the direction-independ-
ent dispersion relations for the propagation of shear and compressional waves in the contin-
uum are respectively obtained as: 

8 i 8i , .
1 2 1 23

S P
ss

s s
 

 
=  = 

+ +
(H.13) 

Corresponding inverse dispersion relations for the continuous layer are obtained by rearrang-
ing and solving equation (H.11) for the Laplace parameter s using the quadratic formula. 
Then, expressing the Laplace parameter in terms of frequency using is = + , with 0 =

, we find the direction-independent dispersion relations for the propagation of the shear and 
compressional waves as: 

2 2 2 2 2 21 1 3 3 8i 8 , i .
8 8 8 8 3

S r r r P r r r          =  −  =  − (H.14) 

Here, r  is the magnitude of the dimensionless wavenumber in the continuous layer in the 
direction of wave propagation. 
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I Contour integration and the residue theorem 

I.1 Contour integration to evaluate the inverse Fourier transform 
Consider a complex-valued function ( )f k  in the wavenumber domain. To obtain the corre-
sponding function ( )f x  in the space domain, we apply the inverse Fourier transform with 
respect to the wavenumber k as: 
 

( ) ( ) i1
2

kxf x f k e dk


+

−

=   (I.1) 

 
To evaluate the inverse Fourier transform according to equation (I.1), we apply contour inte-
gration and the residue theorem [Ahlfors, 1966]. The residue theorem states that the line 
integral over the closed contour of a complex-valued function ( )g k  is obtained through its 
residues as: 
 

( ) ( )( )2 i Res
jk kj

g k dk g k
=

=    (I.2) 

 
Here, jk  denotes a pole, or singularity, of the function ( )g k  in the complex wavenumber 
domain within the closed contour. Provided that jk  is a simple pole, the residue of a com-
plex-valued function at a complex wavenumber jk  is found as: 
 

( )( )
( )
( )

,
Res

,j
j

j

k k
k k k

g k
g k

g k





=
 =


=


 (I.3) 

 
Where ( ),g k  and ( ),g k  respectively denote the numerator and denominator of the func-
tion ( )g k  in the wavenumber domain that must both be single-valued.  

While the inverse Fourier transform in equation (I.1) is an integral over the real domain 
of the wavenumber k, the contour integral in equation (I.2) is applied over a contour in the 
complex wavenumber domain. Therefore, to be able to evaluate the inverse Fourier transform 
by means of the integration over a closed contour in the complex wavenumber domain, the 
contour must include the real axis, and the direction of the contour integration must match 
the direction of the considered integral transform. Next to the real axis, the closed contour 
consist of a semicircle over either the upper or lower half of the complex k-plane. The sign 
of the right-hand side of equation (I.2) is then determined by the half of the complex k-plane 
that is included in the contour; if the contour is closed over the upper half of the complex k-
plane, as depicted in Figure I.1, the line integration along the contour is applied in a counter-
clockwise, i.e. mathematically positive, direction yielding a positive sign. The sign of the 
right-hand side of equation (I.2) becomes negative when the contour is closed over the lower 
half of the complex k-plane and the line integration along the contour is applied in clockwise 
direction. Consequently, the contour integral over ( )g k  may be expressed as a set of separate 
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line integrals over respectively the real axis and the semicircle with radius R over either half 
of the complex k-plane as: 

( ) ( ) ( )
( )

( )

0

RR

R R

g k dk g k dk g k dk
+

−

= +   (I.4) 

Note here that the closed contour as shown in Figure I.1, is only valid if the function ( )g k  
in the complex k-plane is single-valued. If the function ( )g k  is multi-valued, the contour 
must be adapted by applying a so-called branch cut. An example of a contour integral that 
involves a branch cut is discussed in Appendix I.5. 

For the case that the function ( )g k  goes to zero for infinitely large complex wave-
numbers, it logically follows that in the limit of R → ∞, the result of the line integral over the 
semicircle goes to zero. It then follows from equation (I.4) that: 

( ) ( )lim
R

g k dk g k dk
+

→
−

=  (I.5) 

Substituting ( ) ( ) ikxg k f k e= , as well as noting that the exponent ikxe  itself does not contain 
any poles, it follows from combining equations (I.2), (I.3) and (I.5) that the inverse Fourier 
transform may be obtained as: 

( ) ( ) ( )( )
( )

( )
ii i

,1 i Res i
2 ,

j

j

j

j k xkx kx

k kj j k k k

f k
f x f k e dk f k e e

f k







+

=
− 

=


= =  = 


  (I.6) 

Here, the summation over j must include all existing poles of the function ( )f k  within either 
the upper or lower half of the complex k-plane. Note furthermore that, as depicted in Figure 
I.1, the poles of a complex-valued function ( )g k  may either be real or complex.

Figure I.1: A closed contour over the upper half of the complex k-plane. 
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I.2 Algorithm to find the roots of a function in the complex plane 
To evaluate the contour integration of a complex-valued function by means of Cauchy’s res-
idue theorem, we must estimate the locations of the poles, or singularities, of that function, 
and thus we must estimate the locations of the roots, or zeroes, of its denominator in the 
complex plane. For the two-dimensional system considered here, the Green’s functions for 
the displacements and the stresses all have the same determinant, yielding the common de-
nominator ( )k , that has infinitely many roots. Consequently, depending on the expression 
for the denominator, the size of the complex domain required to obtain sufficient convergence 
may differ. Therefore, let us emphasize here that to apply the residue theorem correctly, the 
radius of the semicircle-segment of the contour, and thus the domain for which the roots of 
the denominator are to be considered, must be chosen large enough to assure that the contri-
bution of an additional root to the integration result is negligible.  

The domain of the complex k-plane for which the roots, or zeroes, of the common de-
nominator are considered, has in this case been established empirically. 

Determining the number of roots within the complex k-plane 
Once the domain of the complex k-plane has been established, we apply Cauchy’s Argument 
Principle [Krantz, 1999] to determine the number of roots that exist within this domain of the 
complex k-plane. According to the Argument Principle, the winding number about the origin 
of the complex k-plane of the common denominator along a closed contour C yields the dif-
ference between the number of roots and the number of poles inside that contour. We may 
write this as: 
 

( )

( )

1
2 C

k
dk

i k


=  −

  (I.7) 

 
Here, Ν and Ρ respectively denote the number of roots and poles inside the closed contour C. 
Thus, choosing the denominator ( )k  such that it has no poles or singularities, the Argument 
Principle exactly yields the number of roots within the closed contour C. For the Argument 
Principle to hold, note that the closed contour may not intersect itself. Numerically, we de-
termine the winding number by considering the denominator ( )k  at small increments along 
the contour C. To make sure that we do not miss a single wind, we determine the winding 
number along the contour multiple times, each time significantly decreasing the step-size 
along the closed contour up to the point that the calculated number of roots no longer changes.  

Division of the complex k-plane into single-root subdomains 
Once the total number of roots in the considered domain of the complex k-plane is estab-
lished, we divide this domain into subdomains such that each subdomain contains exactly 
one root. To manage this, the considered domain is arbitrarily divided into a number of sub-
domains, after which the Argument Principle is applied for each subdomain to determine the 
number of roots within using the winding number of the denominator ( )k  along the closed 
subcontours of each subdomain. As the denominator ( )k  is a single-valued function, each 
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root has a multiplicity of one. Thus, when the amount of roots in a subdomain is found to be 
larger than one, that subdomain contains multiple roots and is therefore again divided into 
smaller segments. When there are no roots found within a subdomain, this subdomain is dis-
regarded. This process is repeated until the number of subdomains that remain is exactly 
equal to the amount of roots found within the domain of the complex k-plane originally con-
sidered. Note here that care should be taken that the division of the full domain into single-
root subdomains is applied correctly such that each subdomain contains exactly one wind 
around the origin of the complex plane. If the subdomains are chosen such that the considered 
function contains partial winds along the subcontours, the number of single-root subdomains 
found, and thus the total amount of roots found in all subdomains together, may no longer 
coincide with the number of roots found in the full domain.  

Finding the locations of the roots within each single-root subdomain 
The exact position of the root in each subdomain of the complex k-plane is found by applying 
the Nelder-Mead algorithm [Nelder and Mead, 1965]. The Nelder-Mead algorithm is an op-
timized simplex method to find the minimum of a given two-dimensional function, in this 
case the absolute value of the complex denominator ( )k . As a first step of the Nelder-Mead 
algorithm, the values of the considered function are calculated at the vertices of a simplex, 
i.e. a triangle in the complex k-plane. The vertex that gives the largest value for the considered 
function is then replaced by a new point in the complex k-plane that is found by reflecting 
the original vertex in the opposite face of the vertex. This new point in the complex k-plane 
is then used to construct a new simplex together with the two smallest values of the initial 
simplex. This process is repeated until the algorithm no longer finds a new minimum and 
thus a new simplex. The minimum vertex of the final simplex then gives the minimum of the 
supplied function.  

It is possible that the minimum obtained by the Nelder-Mead algorithm is a local mini-
mum and does not yield the intended root. When this occurs, there are two possible remedies. 
Either the vertices of the initial simplex are chosen differently, or the considered subdomain 
is divided into a set of smaller subdomains, after which the Nelder-Mead algorithm is re-
applied to a simplex in the subdomain that contains the root. This process is repeated for each 
single-root subdomain until all roots within the original domain of the complex k-plane are 
obtained. 

To make sure that the complex-valued roots located closest to the origin of the complex 
k-plane are considered first and those furthest away are considered last, the roots are sorted 
using the heapsort method [Williams, 1964]. The heapsort method is a comparison-based 
sorting algorithm with a worst-case runtime order of logn n  where n is the number of roots 
considered. 

Path of the roots in the complex k-plane as a function of frequency 
Independent of whether we apply a frequency or time domain approach to obtain the dis-
placements and stresses in the two-dimensional continuum, we do require its Green’s func-
tions for the displacements and the stresses and thus the roots of the denominator ( )k  for 
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a range of frequencies. In this appendix, we have so far only considered an algorithm to find 
the roots in complex k-plane for a single given frequency. Although it works well and this 
algorithm can be applied to any frequency, considering every frequency separately is numer-
ically elaborate and rather inefficient. Instead, noting that each root only shifts slightly in the 
complex k-plane for one frequency to the next, the locations of the roots in the complex k-
plane for any frequency may be determined using the roots of a nearby frequency. As the 
roots of a nearby frequency are close, using them as a starting point for the Nelder-Mead 
algorithm is a numerically efficient way to find the roots for a set or range of frequencies. 
Effectively, we thus only need to apply the root-finder algorithm to find the location of all 
roots in the complex k-plane only for a single frequency, after which the roots for all frequen-
cies can be derived from the path that each root travels through the complex k-plane as a 
function of frequency. 

Figure I.2a and Figure I.2b show the path of the first six roots of the denominator ( )k  
in both the upper and the lower half of the complex k-plane, for respectively damping ratios 

0.1 =  and 0.75 = . For both damping ratio’s, the starting position of the roots, i.e. the 
location of the roots in the complex k-plane for zero frequency, here given by the black 
crosses, is the same. Note here that in both the upper and lower halves of the complex k-
plane, the root located closest to the origin is nonzero only due to the nonzero real part of the 
Laplace parameter s. For increasing frequency, the complex-valued roots first move closer to 
the real axis and subsequently, with an increase of their real values slowly deviate from the 
real axis. For a damping ratio 0.75 = , this effect is much more pronounced then for a 
damping ratio of 0.1 = . Note here that for a linear-elastic material, i.e. for a damping ratio 

0 = , the roots become real as the frequency increases. 

I.3 Green’s functions of the linear-elastic rod 
For the particular case of nonzero initial conditions (ICs), the Laplace domain equation of 
motion for the linear-elastic rod may be written as: 
 

( ) ( ) ( ) ( ) ( )2 1
2, , , ,

Intx

s u x s u x s f x s f s x d   
+

− = = −  (I.8) 

 
Here, the variable of integration ξ gives a coordinate along the linear-elastic rod and the in-
tegration is therefore applied over the domain Intx = + . The function ( ),f x s , and 
therefore also the function ( ),f s , contains the contribution of the initial conditions to the 
equation of motion. The particular solution to equation (I.8), is then found as: 
 

( ) ( ) ( ), , ,
Int

p u

x

u x s f s g x s d  


= −  (I.9) 

 
Here, ( ),ug x s−  denotes the Green’s function for the displacement of the linear-elastic 
rod, henceforth referred to as the Green’s displacement of the rod, and found as the solution 
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to equation (I.8) for the case that ( ),f x s  is equal to the Dirac delta function ( )x − . The 
Green’s displacement ( ),ug x s−  is thus found as the solution to the following equation: 

( ) ( ) ( )2 1
2, ,u us g x s g x s x   − − − = − (I.10) 

Note here that the Green’s displacement ( ),ug x s−  is valid for an infinitely long rod so 
that the boundary conditions of the rod in the discrete-continuous system are not accounted 
for. Applying the Fourier transform with respect to space to equation (I.10) then yields: 

( ) ( ) ( ) ( ) ( )i i2 1
2, , k x k x

u us g k s g x s e dx x e dx 
  

+ +
− − − −

− −

− − = −  (I.11) 

The Fourier transform of ( ),ug x s − is obtained by applying integration by parts as:

( ) ( ) ( ) ( ) ( )i i2 2, , ,k x k x
u u ug x s e dx k g x s e dx k g k s 

 
+ +

− − − −

− −

 − = − − = − 

Substituting the above into equation (I.11) and noting that the Fourier transform over a Dirac 
delta function is by definition equal to one, the Green’s displacement in the Laplace-wave-
number domain may be straightforwardly derived as: 

( ) 2 2

2,
2

ug k s
s k

=
+

(I.12) 

Applying the inverse Fourier transform to equation (I.12) yields the Green’s displacement of 
the linear-elastic rod in the Laplace domain. The resulting integral equation is evaluated using 

Figure I.2: Frequency-dependent paths of the first six roots of the denominator Δ(k) in the complex wavenumber  
domain: a) for a damping ratio ζ = 0.1; b) for a damping ratio ζ = 0.75.
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contour integration and the residue theorem as previously discussed in Appendix I.1.  
To assure that equation (I.5) holds, i.e. to assure that the contribution of the complex part 

of the contour that is not on the real axis reduces to zero in the limit of ( )Im k →  , the 
contour is chosen over the upper half of the complex k-plane when 0x −   and the contour 
integration is applied in mathematically positive, i.e. counter-clockwise, direction. Accord-
ingly, for the situation that 0x −  , the contour is chosen over the lower half of the com-
plex k-plane and the contour integration is applied in the mathematically negative, i.e. clock-
wise, direction. Using the contour integration and the residue theorem to apply the inverse 
Fourier transform, thus yields the Green’s displacement in the Laplace domain as: 
 

( ) ( ) ( )
( )i

i
2 2

1, , 2i Res
2 2j

k x
k x

u u
k kj

eg x s g k s e dk
s k





 

+ −
−

=
−

 
− = =    + 

  (I.13) 

 
Respectively choosing the numerator and denominator of the inverse Fourier integrand in a 
straightforward manner as ( ) ( )i, k xf k e −

 =  and ( ) 2 2, 2f k s k = + , we find the residue at 
a pole jk  as: 
 

( ) ( )
( )
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i

i
2 2

, 1Res
2 2,

j

j

j
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k
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f ke e
s k kf k









−

−


= 


=

 
= =  +  

 (I.14) 

 
The denominator ( ),f k  yields poles at the wavenumbers 1 i 2k s = +  and 2 i 2k s = − , 
where 1k  is the only pole in the upper half of the complex k-plane, while 2k  is the only pole 
in the lower half of the complex k-plane. Thus, we find the Green’s displacements for respec-
tively 0x −   and 0x −   in respectively the upper and lower half of the complex k-
planes as: 
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 (I.16) 

 
Thus, applying the residue theorem, the Green’s displacement of the linear-elastic rod may 
generally be expressed in the Laplace domain as: 
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s x
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I.4 Green’s functions of the viscoelastic rod 
Taking into account nonzero initial conditions (ICs), the equation of motion for the viscoe-
lastic rod may, in the Laplace domain, be written as: 
 

( ) ( ) ( ) ( ) ( )2 1
2, , , ,

Intx

s u x s u x s f x s f s x d    
+

− = = −  (I.18) 

 
Here, we find 1 2s s s = + . Again, the variable of integration ξ gives a coordinate along 
the viscoelastic rod, therefore the integration is applied over the domain Intx = + , and 
the particular solution to equation (I.18) may be obtained as: 
 

( ) ( ) ( ), , ,
Int

p u

x

u x s f s g x s d  


= −  (I.19) 

 
Here, ( ),ug x s−  denotes the Green’s function for the displacement along the viscoelastic 
rod, henceforth referred to as the Green’s displacement, which is obtained in accordance with 
the approach for the linear-elastic rod. In fact, the equation of motion for the viscoelastic rod 
may be obtained from that of the linear-elastic rod by substituting s s= . Since the Green’s 
displacement in the Laplace-wavenumber domain is obtained by applying the Fourier trans-
form with respect to space, the dependency on s is not altered and the Green’s displacement 
for the viscoelastic rod in the Laplace-wavenumber domain follows from substituting s s=  
into equation (I.12) as: 
 

( ) 2 2

2,
2

ug k s
s k

=
+

 (I.20) 

 
The Green’s displacement in the Laplace domain is now obtained by applying the inverse 
Fourier transform to equation (I.20) with respect to the wavenumber. During this operation 
the dependency on s is again not altered and therefore applying contour integration and the 
residue theorem will show that the Laplace domain Green’s displacement of the viscoelastic 
rod follows from substituting s s=  into equation (I.17) as:  
 

( ) 21,
2

s x
ug x s e

s
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Substituting equation (I.21) into equation (I.19), we then find the particular solution as: 
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I.5 Convolution term in the Green’s function for the viscoelastic rod 
As discussed in Section 5.3.1, the equation of motion for the particle N at the lattice-rod 
interface of the one-dimensional discrete-continuous Kelvin-Voigt lattice that accounts for 
nonzero initial conditions contains an expression that reads: 
 

( ) ( ) ( ) ( )
0 2

0 0 0 0

0

2
t sf s s u f v t a t d

s


    
 

= + − + − 
 


N N N  (I.23) 

 
Here, the function ( )f   is found as the inverse Laplace transform of the Laplace domain 
function ( )ˆf s  that is applied with respect to the complex-valued Laplace parameter ŝ to 
obtain the time domain displacement and time domain velocity along the viscoelastic rod at 
time t0, rather than at time t. The complex-valued Laplace parameter ŝ is expressed in terms 
of frequency as ˆˆ ˆis  = + . The corresponding inverse Laplace transform is generally ex-
pressed by the Bromwich integral as: 
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Here, the expression for ( )ˆf s  is found as: 
 

( )
( )

1 1ˆ
ˆ ˆ2

f s
s s s 
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+

 (I.25) 

 
Noting that 1 2s s s = +  and ˆ ˆ ˆ1 2s s s = + , and multiplying both the denominator 
and the numerator of equation (I.25) first by respectively the square roots 1 2 s+  and 

1 ˆ2 s+ , and subsequently by the expression ˆ2 4 2 4ˆs s s s + − +  yields: 
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Here, note that the square roots in equation (I.26) are chosen such that their real parts are 
positive, i.e. ( )Re 0s  , and that the general solution for the displacement in the rod satis-
fies the infinity condition.  

Then, respectively denoting the first and second terms on the right-hand side of equation 
(I.26) as ( )1 ŝf  and ( )2 ŝf , the corresponding expression in terms of the time domain opera-
tor τ may be obtained from applying the inverse Laplace transform as: 
 

( ) ( )  ( ) 1 ˆ
1

2ˆ
1 ˆ ˆs ss sf f f − −= −  (I.27) 
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To evaluate the inverse Laplace transform according to equation (I.24), we apply contour 
integration and the residue theorem. As stated by equation (I.2), the residue theorem allows 
us to obtain the contour integral of a complex-valued function through the residues of that 
complex-valued function within the contour.  

First consider the inverse Laplace transform of ( )2 ŝf , i.e. the second term on the right-
hand side of equation (I.26). Due to the square root in its numerator, ( )2 ŝf  is generally a 
multi-valued function, unless the argument of the square root is equal to zero. In other words, 
the function ( )2 ŝf  has a branch point when ˆ2 4 0s+ = . Within the complex ŝ-plane, this 
branch point is found as ( )ˆ 1 2s • = − . Additionally, we find that the function ( )2 ŝf  has 
two poles, respectively found as ( )1̂ 1 2s ss  = − +  and 2ŝ s = .  

Here, first of all note that the integration involved with applying the inverse Laplace 
transform is applied over a line parallel to the imaginary axis. According to the range of the 
convolution integral in equation (I.23) the time parameter τ is always equal to or larger than 
zero. To make sure that the contribution of the corresponding part of the contour integral is 
equal to zero, we close the contour by a semicircle with an infinite radius over the left half 
of the complex ŝ-plane, i.e. for ( )ˆRe s →− . Additionally, both poles of the function ( )2 ŝf  
must be located within the contour. As the pole 1̂s  is located in the left half of the complex 
ŝ-plane, it is apparent that this pole lies within the chosen contour. The pole 2ŝ  however has 
a positive real part equal to σ and therefore, to include this pole, the line parallel to the imag-
inary axis, must be chosen at a positive real value that is larger than σ, i.e. ̂  . Finally, to 
assure that the contour integration is applied over a single-valued domain of the function 

( )2 ŝf  in the complex ŝ-plane, we apply a branch cut along the real axis of the complex ŝ-
plane from minus infinity to the branch point, i.e. on the domain ( )ˆ 1 2s = − − . This 
results in the contour depicted in Figure I.3. The contour integral over the inverse Laplace 
integrand is then found as the summation of the line integrals over all segments of the closed 
contour. Note here that, as previously stated, the contribution of the line integral over the 
segments of the contour for which ( )ˆRe s →−  are equal to zero. Furthermore, as the radius 

Figure I.3: The closed contour applied to obtain the inverse Laplace transform. 

Im ŝ( )

R → ∞

f ŝ( )

Re ŝ( )
ŝ•
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of the segment of the contour around the branch point is infinitesimal, its contribution is equal 
to zero as well. Consequently, we find the contour integral over the inverse Laplace integrand 
as: 

( ) ( )  ( ) ( )
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Note here that the contour integration is applied in counter-clockwise, i.e. mathematically 
positive, direction to account for the proper domain of integration of the inverse Laplace 
transform. According to the residue theorem, we find the above contour integral in terms of 
its residues as: 
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From combining equations (I.28) and (I.29), the inverse Laplace transform of ( )2 ŝf  may 
now be obtained as: 
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Choosing the numerator and denominator of the inverse Laplace integrand in accordance 
with the second term on the right-hand side of equation (I.26), the residue at a pole ˆ js  is 
found as: 
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(I.31) 

We previously found that ( )2 ŝf  has two poles at ( )1̂ 1 2s ss  = − + and 2ŝ s = respectively. 
The corresponding residues are respectively found as: 

( )( )
( )

( ) ( )

1

1

1

2
ˆ

ˆ ˆ

1ˆ 1 2
2

ˆ ˆ
2

ˆ

, 2 4ˆRes
4 1,

ˆ

ˆ

s s
s

s s

s

s

s

s

f e
f s e e

s

s

f

s
ss

 

  











+

=


=

− +
= =

+
(I.32) 

( )( )
( )

( )
( )

( )

2

2

2

2 2ˆ
2

ˆ ˆ
2

ˆ

ˆ ˆ ˆ

, 2 4ˆRes 1 2
4 1

ˆ

ˆ,

s

s
s

s

s

s

s s
s

s
s

f e s
f s e

s
e

sf



  












=


=

 +
= = − +

+
(I.33) 



385 

The integrals remaining in equation (I.30) correspond to the segments of the contour integral 
along the branch cut that are applied at the real axis of the complex ŝ-plane. To assure that 
the square root in the numerator of the function ( )2 ŝf  itself is always real on the considered 
domain of the contour integral, we write the square root as ˆ ˆ2 4 i 2 4s s + =  − − . Then, 
for the line integral along the real axis in the upper half of the complex ŝ-plane, with the 
domain ( )ˆ 1 2s = − − , we substitute ˆ2 4 s+  by ˆ+i 2 4 s− − , and accordingly 
along the real axis in the lower half plane, on the domain ( )ˆ 1 2s = − − , we substitute 

ˆ2 4 s+ by ˆi 2 4 s− − − . Evaluating the line integrals along the branch cut that appear in 
equation (I.30), we find: 
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Substituting equations (I.32), (I.33) and (I.34) into equation (I.30), now yields: 
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Note here that the integral remaining in equation (I.35) is an integral over the real domain of 
ŝ that quickly decays for ω → ∞ and can be straightforwardly evaluated numerically. 

Now, since ( )1 ŝf  is a polynomial function with regard to ŝ, and has no branch points, its 
inverse Laplace transform with respect to ŝ can be obtained analytically by applying the con-
tour integration in accordance with Appendix I.1. Using the same contour as for the function 

( )2 ŝf but without the branch cut, the inverse Laplace transform of ( )1 ŝf  may be obtained
as:  
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Choosing the numerator and denominator of the inverse Laplace integrand in accordance 
with the numerator and denominator of ( )1 ŝf  as stated by the first term on the right-hand 
side of equation (I.26), the corresponding residue at a pole ˆ js  in the complex ŝ-plane is found 
as: 
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Here, ( )1 ŝf  has three poles; of which two are the same as the poles found for ( )2 ŝf , i.e. 
( )1̂ 1 2s ss  = − +  and 2ŝ s = , while the third pole is found as 3̂ 0s = . Their residues are 
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respectively found as: 
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Substituting equation (I.38) to (I.40) into equation (I.36) then yields the inverse Laplace 
transform of ( )1 ŝf  as: 
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Substituting equations (I.35) and (I.41) into equation (I.27), we ultimately find the convolu-
tion term ( )f  , in terms of the time domain operator τ, as: 
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J The Laplace transform and nonzero initial conditions 

J.1 Identities of the Laplace transform
The Laplace transform of an arbitrary but locally integrable function of time ( )f t  reads:

( ) ( )  ( )
0

stf s f t f t e dt
+

−= =  (J.1) 

Here, s is the complex-valued Laplace parameter. 
When applying the Laplace transform to an equation of motion, we may also have to 

apply it to any time derivatives of the function ( )f t . The Laplace transform of the first time 
derivative of ( )f t  may be derived from equation (J.1) using integration by parts as: 

( )  ( ) ( ) ( ) ( ) ( ) ( )
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tt
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= = + = − + 

As the Laplace parameter s is found as is  = + , where σ is a small positive real value,
and noting that the function ( )f t  is not infinite at t → ∞, it follows that ( )lim 0st

t
f t e−

→
= . 

Thus, the Laplace transform of the first time derivative of a function ( )f t  with nonzero 
initial condition ( ) 00f t f= = , reads: 

( )  ( ) 0f t sf s f= − (J.2) 

Accordingly, the Laplace transform of the second derivative of a function ( )f t  with nonzero 
initial conditions ( ) 00f t f= =  and ( ) 00f t f= = , reads: 

( )  ( )2
0 0f t s f s sf f= − − (J.3) 

Equations (J.1) to (J.3) show that the application of the Laplace transform to a time domain 
function ( )f t  and its derivatives accounts for its initial conditions in the time domain, as 
opposed to, for example, the bilateral Fourier transform. 

J.2 The inverse Laplace transform in terms of frequency
A common representation of the inverse Laplace transform is given by the Bromwich inte-
gral, also known as the Fourier-Mellin Integral or Mellin’s inverse formula, and reads:

( ) ( )  ( )
i

1

i
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2 i

stf t f s f s e ds
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
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−
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−

= =  (J.4) 

The inverse Laplace transform is obtained by applying the integration along the vertical line 
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( )s  = in the complex s-plane, where σ is a positive real value chosen larger than the real
part of the singularities of ( )f s  to assure that the integration is in the region of convergence. 

For further applications, we choose to write the Bromwich integral as an equivalent inte-
gral in the frequency domain. The relation between the complex-valued Laplace parameter s 
and frequency ω reads is  = + , where σ is a small positive real value. And thus, it straight-
forwardly follows that ids d= . Additionally, by noting that ( )i s = − − , the domain of 
integration of the Bromwich integral in terms of frequency becomes bilaterally infinite and 
the inverse Laplace transform may therefore be expressed as: 
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Note here that if the singularities of ( )f s  are all located left of the imaginary axis, the La-
place parameter σ may be set to zero and the inverse Laplace transform reduces to the inverse 
Fourier transform. 

Splitting the integrand of the inverse Laplace transform into its real and imaginary parts 
and rearranging equation (J.5) yields: 
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As the left-hand side of equation (J.6) is a real-valued function, it follows directly that: 
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Expanding the integrands in equations (J.7) and (J.8) using Euler’s formula and separately 
considering the real and imaginary parts of ( )f s , we can rewrite these equations as: 

( ) ( )  ( ) ( )2 Re cos Im sint f t f s t f s t d
e


  
+

−

= − (J.9) 

( )  ( ) ( )Re sin Im cos 0f s t f s t d  
+

−

+ = (J.10) 

Noting that sin t  and cos t  are respectively anti-symmetric and symmetric, it follows that 
the real and imaginary parts of ( )f s  must respectively be symmetric and anti-symmetric for 
equation (J.10) to hold. 

Taking into account that the real and imaginary parts of the expression for ( )f s , as well 
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as the terms cos t  and sin t , are respectively symmetric and anti-symmetric, the integrand 
in equation (J.9) must be symmetric, so that: 

( ) ( )  ( ) ( ) ( ) i

0 0

Re cos Im sin Re t
t f t f s t f s t d f s e d

e





   

+ +

= − =  (J.11)

Thus, the inverse Laplace transform may be expressed in terms of the frequency ω as: 

( ) ( )  ( )  ( ) ( )i

0 0

Re Re cos Im sin
t t

te ef t f s e d f s t f s t d
 

    
 

+ +

= = −  (J.12) 

J.3 The causality principle and the Laplace transform
A causal system is a system that obeys the rules of cause and effect. For any process that
starts at 0t =  and is at rest for 0t  , the integral over the domain ,0−  has no contribution
to the total integral. In the following, the causality principle is used to derive a relation be-
tween the real and imaginary parts of a Laplace domain function ( )f s .

Substituting is  = + into equation (J.1) and employing Euler’s formula, the real and 
imaginary parts of the Laplace domain function ( )f s  may be separately expressed as: 

( )  ( )
0

Re costf s f t e tdt 
+

−=  (J.13) 

( )  ( )
0

Im sintf s f t e tdt 
+

−= −  (J.14) 

To find a relation between the real and imaginary parts of ( )f s , we first use the Hilbert 
transform to express a relation between sin t  and cos t . Applying the Hilbert transform 
with respect to frequency ω, the following relations are known to exist: 

( )
1 coscos sintH t PV d t


  

  

+

−


 = = −

 − (J.15) 

( )
1 sinsin costH t PV d t


  

  

+

−


 = = +

 − (J.16) 

Here, the notation PV means that the Cauchy principle value is taken in the integral. Substi-
tuting equation (J.16) into equation (J.13) and rearranging the resulting expression by chang-
ing the order of integration yields: 

( )  ( ) ( )
0 0

1 cos 1 1Re sint ttf s f t e PV d dt PV f t e tdt d 
  

     

+ + + +

− −

− −


  = =

 − −    (J.17) 
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Substituting equation (J.14), where ω is replaced by ωʹ, it follows from equation (J.17) that 
we can now express the real part of ( )f s  as: 

( ) 
( ) Im1Re

f s
f s PV d

  

+

−


= −

 − (J.18) 

Here, the variable sʹ is described as is   = + .  
Alternatively, substituting equation (J.15) into equation (J.14), rearranging the result and 

substituting equation (J.13) with ω substituted by ωʹ, yields the imaginary part of ( )f s  as:  

( ) 
( ) Re1Im

f s
f s PV d

  

+

−


=

 − (J.19) 

Equation (J.18) and (J.19) are commonly known as the Kramers-Krönig relations. 
If we multiply both sides of equation (J.19) by respectively sin t  and cos t  and apply 

bilateral integration over the frequency ω, we obtain: 

( )  ( ) 
1 sinIm sin Re tf s td f s PV d d

   
  

+ + +

− − −

 =
 −   (J.20) 

( )  ( ) 
1 cosIm cos Re tf s td f s PV d d

   
  

+ + +

− − −

 =
 −   (J.21) 

Substituting the Hilbert transforms of sin t  and cos t  with respect to the operator ωʹ, 
which are found from equations (J.15) and (J.16) by interchanging ω and ωʹ, into respectively 
equations (J.20) and (J.21) shows that: 

( )  ( ) Im sin Re cosf s td f s td   
+ +

− −

  = −  (J.22) 

( )  ( ) Im cos Re sinf s td f s td   
+ +

− −

  = +  (J.23) 

Without loss of generality, the variable of integration ωʹ on the right-hand side of equations 
(J.22) and (J.23) may be replaced by the frequency ω. This yields: 

( )  ( ) Im sin Re cosf s td f s td   
+ +

− −

= −  (J.24) 

( )  ( ) Im cos Re sinf s td f s td   
+ +

− −

= +  (J.25) 
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In Appendix J.2, we found that the real and imaginary parts of the function ( )f s , as well as 
cos t  and sin t , are respectively symmetric and anti-symmetric. Therefore, the above in-
tegral relations may be more specifically expressed using unilateral integrals as: 

( )  ( ) 
0 0

Im sin Re cosf s td f s td   
+ +

= −  (J.26) 

( )  ( ) 
0 0

Im cos Re sinf s td f s td   
+ +

= +   (J.27) 

J.4 Identities of the inverse Laplace transform
Substituting equation (J.26) into equation (J.12) shows that it follows from the causality prin-
ciple that the inverse Laplace transform may be expressed as either one of:

( ) ( )  ( ) 1 i

0

Re
t

tef t f s f s e d


 


+

−= =  (J.28) 

( ) 
0

2 Re cos
te f s td



 


+

=  (J.29) 

( ) 
0

2 Im sin
te f s td



 


+
−

=  (J.30) 

To obtain the first and second time derivatives of the time domain function ( )f t , we differ-
entiate equation (J.28), (J.29) or (J.30) to time respectively once and twice. This however is 
only allowed if these integrals are uniformly convergent. 

Assuming that the integral in equation (J.28) is uniformly convergent, time differentiation 
yields the first and second time derivatives of the time domain function ( )f t  as: 

( ) ( ) i

0

Re
t

tef t sf s e d


 


+

=  (J.31) 

( ) ( ) 2 i

0

Re
t

tef t s f s e d


 


+

=  (J.32) 

Using the form of the inverse Laplace transform according to equation (J.29), and assuming 
that its integral is uniformly convergent, the first and second time derivatives of ( )f t  read: 

( ) ( ) ( )
0

2 Re cos sin
tef t f s t t d



    


+

= − (J.33) 

( ) ( )  ( )( )2 2

0

2 Re cos 2 sin
tef t f s t t d



     


+

= − − (J.34) 
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Using the form of the inverse Laplace transform according to equation (J.30), and assuming 
that its integral is uniformly convergent, the first and second time derivatives of ( )f t  read: 

( ) ( ) ( )
0

2 Im sin cos
tef t f s t t d



    


+
−

= + (J.35)

( ) ( )  ( )( )2 2

0

2 Im sin 2 cos
tef t f s t t d



     


+
−

= − + (J.36) 

Instead of applying time differentiation to equation (J.12), we may also obtain the time de-
rivatives of ( )f t  by applying the inverse Laplace transform to the Laplace transforms of 
( )f t  and ( )f t , previously given by equations (J.2) and (J.3) respectively. This yields:  

( ) ( )   ( )( ) 1 i
0

0

Re
t

tef t f t sf s f e d


 


+

−= = − (J.37) 

( ) ( )   ( )( ) 1 2 i
0 0

0

Re
t

tef t f t s f s sf f e d


 


+

−= = − − (J.38) 

Here, f0 and 0f  are the initial conditions of ( )f t , where ( )0 0f f t= =  and . ( )0 0f f t= =

.. Furthermore, note here that for zero initial conditions, i.e. 0 0 0f f= = , equations (J.37) and 
(J.38) coincide with equations (J.31) and (J.32).  

Alternatively, we can derive the first and second time derivatives of ( )f t  in the form of 
either equations (J.29) or (J.30) by expanding the integrands in equations (J.37) and (J.38) 
and respectively substituting equations (J.26) and (J.27). Using the form according to equa-
tion (J.29), the first and second time derivatives of ( )f t  are found as: 

( ) ( ) ( )( )0

0

2Re cos sin cos
tef t f s t t f t d



     


+

= − − (J.39) 

( )
( )  ( )( )

( )

2 2

0 0 0

2Re cos 2 sin

cos sin cos

t f s t tef t d
f t t f t

     


     

+  − −
 =
 − − − 
 (J.40)

Using the form of the inverse Laplace transform according to equation (J.30), the first and 
second time derivatives of the time domain function ( )f t  are found as: 

( ) ( ) ( )( )0

0

2Im sin cos cos
tef t f s t t f t d



     


+
−

= + + (J.41) 

( )
( )  ( )( )

( )

2 2

0 0 0

2Im sin 2 cos

cos sin cos

t f s t tef t d
f t t f t

     


     

+  − +−  =
 + − + 
 (J.42) 
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J.5 Laplace domain expressions for applied loads
In this appendix, the Laplace domain expression for three types of loads are derived: a single-
sinus pulse load, a continuous harmonic load and a half sinus pulse with a carrier frequency.

A single sinus pulse load 
Let us consider a pulse load that consists of a single sinus period that starts at a time 0t = , 
then the time domain expression for this single sinus pulse reads: 

( ) ( ) ( ) ( )sin FF t F t H T t H t=  − (J.43) 

Here, F  is the load amplitude, Ω is the load frequency and TF is the period. The single sinus 
pulse load corresponding to equation (J.43) is depicted in Figure J.1a. 

Now, let us consider the same pulse load for a certain time period where the time param-
eter t has been reset at a time t0, where t0 is chosen as 00 Ft T  as depicted in Figure J.1b. 
The loading applied prior to time t0 is then included in the system response by the nonzero 
initial conditions, while the load is considered to start at time t0. In global time, i.e. in terms 
of the original time parameter that has not been reset, the single sinus pulse load that starts at 
time t0 is then found as: 

( ) ( ) ( ) ( )0sin FF t F t H T t H t t=  − − (J.44) 

To obtain the Laplace domain expression for this load in the new time period, i.e. in terms of 
the new time parameter that has been reset at time t0 and thus starts at 0t = , we replace the 
time parameter t in equation (J.44) by 0t t+ . This yields: 

( ) ( )( ) ( )( ) ( )0 0sin FF t F t t H T t t H t=  + − + (J.45) 

Applying the Laplace transform to equation (J.45) now yields: 

( ) ( )( )
0

0

0

sin
FT t

stF s F t t e dt
−

−=  + (J.46) 

Figure J.1: A single sinus pulse load: a) in global time with zero initial conditions; 
b) for a new time period with nonzero initial conditions.
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F t( )

0=t t

Global time with
zero initial conditions
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F t( ) Time period with
nonzero initial conditions

0Ft T= − t

a ) b)
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The above integral can be solved analytically as: 

( )
( )

( )
0

0 0
02 2

sin cos Fs T t

F
s t t eF s F H T t

s

− −
 +  −

= −
+

(J.47)

Here, the Heaviside function is maintained to assure that, for 0 Ft T , the resultant Laplace 
domain load is equal to zero. For the particular case that 0 0t = , we then find: 

( ) ( )2 2 1 FsTF s F e
s

−
= −

+
(J.48) 

Here, note that equation (J.48) corresponds to the Laplace transform for the single sinus pulse 
load given by equation (J.43).  

A continuous harmonic load 
The continuous harmonic load that starts at a time 0t =  is expressed in the time domain as: 

( ) ( ) ( )sinF t F t H t=  (J.49) 

Here, the Heaviside function ( )H t  is included to indicate that the load is equal to zero for 
0t  . Assuming that the time parameter t is reset at a certain time t0, where t0 is chosen as 

00 Ft T  , so that t0 is the starting point of a new time period. The time domain expression 
for the continuous harmonic load in this new time period then becomes: 

( ) ( )( ) ( )0sinF t F t t H t=  + (J.50) 

Applying the Laplace transform and analytically solving the resulting integral then yields the 
Laplace domain expression for a continuous harmonic load in the new time period as: 

( )
0 0
2 2

sin coss t tF s F
s

 + 
=

+
(J.51) 

Figure J.2: A continuous harmonic load: a) in global time with zero initial conditions; 
b) for a new time period with nonzero initial conditions.
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Here, note that for 0 0t =  equation (J.51) reduces to the expression for the continuous har-
monic load in global time, which is the Laplace transform of equation (J.49) and reads: 

( ) 2 2F s F
s


=
+

(J.52) 

A half-sinus pulse with a carrier frequency 
The half-sinus pulse load with a carrier frequency that starts at a time 0t =  is expressed in 
the time domain as: 

( ) ( ) ( ) ( ) ( )1
2sin sin car FF t F t t H T t H t=   − (J.53) 

Here, Ωcar is the carrier frequency. Assuming that the time parameter t is reset at a certain 
time t0, where t0 is chosen as 00 Ft T  , so that t0 is the starting point of a new time period.
The time domain expression for the pulse load with a carrier frequency in this new time 
period then becomes: 

( ) ( )( ) ( )( ) ( )( ) ( )1
0 0 02sin sin car FF t F t t t t H T t t H t=  +  + − + (J.54) 

Applying the Laplace transform and analytically solving the resulting integral yields the La-
place domain expression for the pulse load in the new time period as: 

( )
( )

( )

( ) ( )1 02

2 2 2
2 2 2

0 0 0

2 2 2

0 0 022 2 2 2 2

2 2 2

cos sin sin

2 cos sin cos
4

2 cos sin F

car
car car

car
car car

car car

s T tcar car
car car

ss t s t t

F sF s s t t t
s

s s e  − −

  + +
+ −  +    

  
 

  − + = +  +    
  + + −  
 

   
+  + + −     

(J.55) 

Here, note that if we choose 0 0t = , equation (J.55) reduces to the expression for the half-
sinus pulse load with a carrier frequency in global time that has zero initial conditions, which 

Figure J.3: A half-sinus pulse load with a carrier frequency: a) in global time with zero initial conditions; 
b) for a new time period with nonzero initial conditions.
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corresponds to the Laplace transform of equation (J.53) and reads: 
 

( )
( )

( )
1
22 2 2

22 2 2 2 2
2 2 cos sin

4
Fs Tcar car

car car car

car car

FF s s s s e
s

  −     
=  +  + + −  

   + + −  

 (J.56) 

 

J.6 The MTFD-method applied to a one-mass-spring-system 
As an example, we here apply the MTFD-method to a one-mass-spring system with mass M 
and spring stiffness Ke, subjected to a single sinus pulse load ( )F t . In the time domain, the 
equation of motion for this one -mass-spring system reads: 
 

( )eMu K u F t+ =  (J.57) 
 
Here, u is the displacement of the mass M. The expression for the single-sinus pulse load 
depends on whether the time parameter t has been reset or not. When the time parameter has 
not been reset, or if we consider time globally, the single sinus period is fully included and 
the expression for the pulse load is given by equation (J.43). Otherwise, when a new time 
period is considered for which the time parameter has been reset at time t0, where t0 is chosen 
as 00 Ft T  , and that has nonzero initial conditions, the expression for the single-sinus 
pulse load is given by equation (J.45).  

Applying the Laplace transform to equation (J.57), as well as introducing dimensionless 
parameters for time and space as dim 0t t =  and dimu u=  respectively, where ω0 is the nat-
ural frequency of the one-mass-spring system, i.e. 0 eK M = , and  is the initial length 
of the spring, yields the dimensionless equation of motion for the one-mass-spring-system 
with nonzero initial conditions in the Laplace domain as: 
 

( ) ( )2
0 01s u F s su v+ = + +  (J.58) 

 
Here, ( )F s  is the Laplace domain expression for the applied load, which is previously given 
by equation (J.47) for any time t0, where 00 Ft T  , and s is the complex-valued Laplace 
parameter. Furthermore, u0 and v0 are respectively the initial displacement and the initial 
velocity of the mass for the considered time period. 

Laplace domain expressions for the displacement, the velocity and the acceleration 
The Laplace domain expression for the displacement of the mass may be directly derived 
from equation (J.58) as: 
 

( )0 0
2 21 1

F ssu vu
s s
+

= +
+ +

 (J.59) 

 
Subsituting equation (J.59) into equations (J.2) and (J.3) that account for nonzero initial 



 397 

conditiosn, the Laplace domain expressions for the velocity and the acceleration of the mass 
M are respectively found as: 
 

( )0 0
0 2 21 1

sF su svv su u
s s

− +
= − = +

+ +
 (J.60) 

( )2
0 02

0 0 2 21 1
s F ssu va s u su v

s s
− −

= − − = +
+ +

 (J.61) 

 
Because the Laplace domain expression for the applied load, given by equation (J.47), itself 
already tends to zero with a rate ω-1 for ω → ∞, it follows that the first terms on the right-
hand sides of equations (J.59) to (J.61) govern the decay of the Laplace domain expressions 
for the displacement, velocity and acceleration of the mass and that each of these expressions 
decays with a rate ω-1 for ω → ∞.  

Numerical evaluation of the inverse Laplace transform 
To determine the displacements, velocities and accelerations of the mass in the one-mass-
spring system, we can now apply the inverse Laplace transform according to either one of 
the expressions given by equations (J.28), (J.29) and (J.30), where equations (J.29) and (J.30) 
are derived from equation (J.28) by employing the causality principle. Analytically, i.e. when 
the full semi-infinite domain of the involved integrals is taken into account, each of these 
equations yields the exact same response in the time domain. When evaluating the inverse 
Laplace transforms numerically however, the semi-infinite domains of integration must be 
truncated, causing equations (J.28), (J.29) and (J.30) to yield different results.  

Figure J.4, Figure J.5 and Figure J.6 respectively present the displacements, velocities 
and accelerations of the mass in the one-mass-spring system due to a single sinus pulse load 
by numerically evaluating the inverse Laplace transforms given by equations (J.28), (J.29) 
and (J.30) using a truncated, and thus finite, domain of integration. The applied single sinus 
pulse has a dimensionless angular frequency that is arbitrarily chosen as 0.2 = , so that its 
dimensionless period is found as 10FT = . The dimensional mass and stiffness of the one-
mass-spring system are respectively chosen as 392 kgM =  and 98 MN meK = . 

Figure J.4 shows the different displacements of the mass in the one-mass-spring system 
that result from numerically evaluating the different instances of the inverse Laplace trans-
forms. Here, Figure J.4a shows the displacements due to the applied load as a function of the 
global time parameter t, where the time domain simulation was manually reset at respectively 
time t0, t1 and t2. Furthermore, Figure J.4b shows the displacements of the mass in the time 
period for which the time parameter has been reset at time t0. As shown in Figure J.4a, each 
time the time parameter t is reset and new nonzero initial conditions are introduced, the nu-
merical evaluation of the inverse Laplace transform according to either of equations (J.28), 
(J.29) and (J.30) leads to erroneous behaviour near the reinitiation point. The result of equa-
tion (J.29), which employs the real part of the Laplace domain displacement ũ, is given by 
the blue line and leads to the most accurate displacements, while the result of employing the 
imaginary part of the Laplace domain displacement ũ according to equation (J.30), given by 
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Figure J.4: Error in the time domain displacement due to the truncation of the semi-infinite integral domain of the inverse  
Laplace transform: a) As a function of global time; b) In the time period reset at t0.

Figure J.5: Error in the time domain velocity due to the truncation of the semi-infinite integral domain of the inverse  
Laplace transform: a) As a function of global time; b) In the time period reset at t0.

Figure J.6: Error in the time domain acceleration due to the truncation of the semi-infinite integral domain of the inverse  
Laplace transform: a) As a function of global time; b) In the time period reset at t0.
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the red line, yields the largest error. The reason that equation (J.30) gives the largest error is 
due to the term sin t  in its integrand. Due to this term, numerically evaluating equation 
(J.30) for a finite domain of integration always yields a zero displacement at time 0t = . This 
is independent of the chosen truncation frequency and therefore occurs for any size and any 
resolution of the truncated domain of integration. Evidently, this is only an issue for nonzero 
initial conditions. The oscillation of the obtained displacement around the correct displace-
ment as a function of time is a logical consequence of the error at the start of the considered 
time period. 

Note here that the result of applying the inverse Laplace transform according to equation 
(J.28) must always give the exact average of the red and blue lines, respectively giving the 
results of equations (J.29) and (J.30). This can easily be verified by expanding the integrand 
of equation (J.28) using Euler’s formula, which yields: 

( ) ( )  ( ) ( )
0

Re cos Im sin
tef t f s t f s t d



  


+

= − (J.62) 

Because equation (J.62) incorporates both the real and imaginary parts of the Laplace domain 
displacement equally, the displacement according to this expression is numerically found as 
the exact average of equations (J.29) and (J.30). 

Figure J.5 and Figure J.6 respectively show the velocities and accelerations for the one-
mass-spring system that result from numerically evaluating the different instances of the in-
verse Laplace transforms derived in Appendix J.4. Figure J.5 and Figure J.6 clearly show that 
the erroneous behaviour after each reset of the time parameter t are much worse for the ve-
locities and the accelerations than for the displacements. Additionally, the resulting velocities 
in Figure J.5 do not seem to correspond to the time derivative of the displacements given in 
Figure J.4 and accordingly, the accelerations in Figure J.6 do not seem to correspond to the 
time derivative of the velocities given in Figure J.5.  

Thus, although analytically the instances of the inverse Laplace transforms that are given 
by equations (J.28), (J.29) and (J.30) are all valid and must yield the same displacements, 
velocities and accelerations, numerically evaluating these inverse Laplace transforms for a 
truncated, and thus finite, domain of integration leads to severe problems. The mismatch 
between the analytically and numerically obtained responses is most severe near the time of 
reinitiation, i.e. the time moment at which the time parameter t is reset and new nonzero 
initial conditions are introduced. 

Response obtained using an improved statement for the inverse Laplace transform 
To improve the results for the numerical evaluation of the inverse Laplace transform when 
using a truncated, and thus finite, domain of integration for a system that, in the time domain, 
has nonzero initial conditions, we extract the contribution of the initial conditions from the 
corresponding Laplace domain expression and separately include their contribution in time 
domain.  

In Section 5.2.3, it was shown that if we extract a nonzero initial condition f0 from a 
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Laplace domain function f , applying the inverse Laplace transform then yields the corre-
sponding time domain expression as: 

( )     ( )
0 01 1 1 1

0imp
f ff t f f f f H t
s s

− − − −   
= = − + = +   

   
(J.63) 

If we separately introduce the improved Laplace domain expressions for the displacement, 
velocity and acceleration of the mass in the one-mass-spring system in accordance to equa-
tion (J.63), we find the improved Laplace domain displacement, velocity and acceleration of 
the mass M as: 

0 0 0, , .imp imp imp
u v au u v v a a
s s s

= − = − = −

Here note that previously, the Laplace domain velocity and acceleration were given for non-
zero initial conditions by respectively equations (J.60) and (J.61) as 0v su u= −  and 

2
0 0a s u su v= − − .

Applying the inverse Laplace transform, we respectively find the displacement, velocity 
and acceleration of the mass in the one-mass-spring-system in the time domain for 0t   as: 

 i
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Re
t

t
imp

eu u e d u


 
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+

= + (J.64) 
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= + (J.65) 
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t
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eu a e d a


 


+

= + (J.66) 

When numerically evaluating the inverse Laplace transform according to equations (J.64) to 
(J.66)for a truncated domain of integration, each equation will yield reasonable results in the 
time domain as the contribution of the respective initial conditions have been extracted from 
the Laplace domain expressions. Nevertheless, although equations (J.64) to (J.66) do respec-
tively describe the displacement, velocity and acceleration for the mass in the one-mass-
spring-system, the expressions for the velocity and the acceleration, respectively given by 
equations (J.65) and (J.66), cannot be obtained from time differentiation of equation (J.64). 

Thus, to further improve the expressions for the inverse Laplace transforms, we do not 
only extract the contribution of the initial displacement from the corresponding Laplace do-
main expression, but also the contributions of the initial velocity and the initial acceleration. 
Furthermore, next to extracting the contribution of the initial velocity, we also extract the 
contribution of the initial acceleration from the Laplace domain velocity. The improved La-
place domain expressions for the displacement, velocity and acceleration of the mass in the 
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one-mass-spring-system then become: 

0 0 0
2 3imp

u v au u
s s s

= − − − (J.67) 

0 0
2imp imp

v av su v
s s

= = − − (J.68) 

02
imp imp

aa s u a
s

= = − (J.69) 

The corresponding time domain expressions for the displacement, velocity and acceleration 
are then obtained for 0t   as: 

 i 21
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t

t
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
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

+

= + (J.72) 

Equations (J.71) and (J.72) may be found directly from equation (J.70) by applying time 
differentiation once and twice respectively. Additionally, the displacement and velocity ac-
cording to equations (J.70) and (J.71) yield more exact results than the expressions for the 
displacements and velocities given by equations (J.64) and (J.65) because the improved La-
place domain expressions decay much faster for ω → ∞ than the original Laplace domain 
expressions. This can easily be verified by comparing the involved Laplace domain expres-
sions. For example, substituting equation (J.59) into equation (J.67) and rearranging yields: 

( )
( )0 0 0

3 22 2 11
imp

F ssu v au
s ss s

+
= − − +

++
(J.73) 

Noting that the applied load decays with a rate ω-1 for ω → ∞, equation (J.73) shows that the 
improved Laplace domain displacement ũimp decays with a rate ω-3 for ω → ∞. As the im-
proved Laplace domain velocity and acceleration of the one-mass-spring-system are respec-
tively obtained as imp impv su=  and 2

imp impa s u= , the resulting expressions for the velocity and 
acceleration respectively decay with a rate ω-2 and ω-1 for ω → ∞. Furthermore, since the 
contribution of the initial conditions in equations (J.70) to (J.72) has been taken out of the 
integral, the improved Laplace domain expressions to which the inverse Laplace transform 
is to be applied may be considered to have zero initial conditions. As such, the erroneous 
behaviour in the time domain due to applying the inverse Laplace transforms with a truncated 
domain of integration for a set of nonzero initial conditions is virtually removed. 



402 

Figure J.7: Displacements in the time domain obtained from applying the inverse Laplace transform to the improved 
Laplace domain expressions a) As a function of global time; b) In the time period reset at t0. 

Figure J.8: Velocities in the time domain obtained from applying the inverse Laplace transform to the improved 
Laplace domain expressions a) As a function of global time; b) In the time period reset at t0.

Figure J.9: Accelerations in the time domain obtained from applying the inverse Laplace transform to the improved 
Laplace domain expressions a) As a function of global time; b) In the time period reset at t0.
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Figure J.7, Figure J.8 and Figure J.9 respectively show the time domain displacements, 
velocities and accelerations obtained by applying the improved statements for the inverse 
Laplace transform, but still for a truncated, and thus finite, domain of integration. In each of 
these figures, the yellow line shows the results obtained by applying the inverse Laplace 
transform according to respectively equations (J.70) to (J.72). Alternative expressions to 
equations (J.70) to (J.72) that are exclusively expressed in terms of either the real or imagi-
nary part of the improved Laplace domain displacement ũimp can be obtained by employing 
the causality principle. In terms of the real part of the improved Laplace domain displacement 
ũimp, we may thus respectively obtain the displacement, velocity and acceleration of the one-
mass-spring system as: 

  21
0 0 02

0

2 Re cos
t

imp
eu u td u v t a t


 


+

= + + + (J.74) 
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eu u t t d v a t
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
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= − + + (J.75) 
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eu u t t d a


     


+

= − − + (J.76) 

The displacement, velocity and acceleration according to respectively equations (J.74), (J.75) 
and (J.76) are given in respectively Figure J.7, Figure J.8 and Figure J.9 by the blue line. 

In terms of the imaginary part of the improved Laplace domain displacement ũimp, we 
respectively obtain the displacement, velocity and acceleration of the one-mass-spring sys-
tem as: 
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eu u td

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
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Applying the inverse Laplace transform according to respectively equations (J.77), (J.78) and 
(J.79) yields the displacement, velocity and acceleration of the one-mass-spring-system given 
in respectively Figure J.7, Figure J.8 and Figure J.9 by the red line. 

Comparing Figure J.7, Figure J.8 and Figure J.9 to respectively Figure J.4, Figure J.5 and 
Figure J.6, shows that extracting the nonzero initial conditions from the corresponding La-
place domain expressions yields a spectacular improvement of the time domain displace-
ment, velocity and acceleration. Only Figure J.9b, depicting a close-up of the acceleration 
after reinitiation of the time domain at t0, visibly shows a small error near the point where 
new nonzero initial conditions have been introduced. 
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J.7 Alternative derivation of the convolution for the linear-elastic rod
Accounting for nonzero initial conditions, the equation of motion for particle N at the lattice-
rod interface of the one-dimensional discrete-continuous Hooke system reads:

( ) ( ) ( )2
0 0 0eM s u K e s u M su v f s+ + = + +N N N-1,N N-1,N N N N N (J.80) 

Here, the dynamic stiffness is found as ( ) 1
2 2s s =  and the expression for ( )0f s  contains 

the contribution of the rod’s initial conditions to the interface equation, which is found as: 

( ) ( ) ( ) ( )( )2
0 0 0

Int

Int

s x

x

f s e su v d
  

+
− −

= + (J.81) 

In Section 5.2.1, this expression is analysed further by finding a Laplace domain relation that 
describes the response of the rod in terms of the response of the boundary particle and sub-
sequently applying the inverse Laplace transform analytically. For the viscoelastic rod how-
ever, discussed in Section 5.3.1, the involved inverse Laplace transforms cannot be solved 
analytically and an alternate approach was used to describe ( )0f s  in terms of the response 
of boundary particle. This appendix applies this alternate approach to show that it yields the 
same convolution integral for the linear-elastic rod as derived in Section 5.2.1 before. 

First, let us suppose that equation (J.81) is valid for a time period where the time param-
eter t was reset at a global time t0. The initial displacement ( )0u   and the initial velocity 

( )0v   along the linear-elastic rod of this new time period, then correspond to the displace-
ment ( )0,u t  and the velocity ( )0,v t  at time t0 in global time. Within the integral of equa-
tion (J.81), we then express this displacement and this velocity by the inverse Laplace trans-
forms of their Laplace domain expressions. This yields: 

( ) ( ) ( )  ( ) ( )2 1 1
0 ˆ ˆˆ ˆ, ,Int

Int

s x
s s

x

f s e s u s v s d
  

+
− − − −= + (J.82)

Here, ŝ is the complex-valued Laplace parameter that corresponds to the application of the 
inverse Laplace transform with respect to time t0. The applied inverse Laplace transform thus 
reads: 

( ) ( ) ( )  ( ) 
0

0

ˆ
ˆ1 i

0 0 ˆ
0

ˆ ˆ, , Re
t

t
s

ef f t f s f s e d

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

+

−= = =  (J.83) 

Because we here consider the response along the linear-elastic rod at a time t0 in terms of the 
full history of the response of the boundary particle N, we consider time globally and with 
zero initial conditions. Thus, accounting for the proper behaviour of the rod at ξ → ∞, the 
Laplace domain displacement along the linear-elastic rod is found as ( ) ˆ 2ˆ, su s Ae  −= , 
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where the constant A is found as ( ) ˆ 2ˆ Ints xA u s e+= N  from the displacement relation at the 
lattice-rod interface. For zero initial conditions, the Laplace domain relation for the velocity 
along the rod follows from the corresponding displacement as ( ) ( )ˆ ˆ ˆ, ,v s su s =  and there-
fore ( ) ( )ˆ ˆ ˆv s su s=N N . The relations between the displacement and velocity along the linear-
elastic rod and, respectively, the displacement and velocity of the boundary particle N, are 
thus found in the Laplace domain as: 

( ) ( ) ( )ˆ 2ˆ ˆ, Ints xu s u s e 


− −
= N (J.84) 

( ) ( ) ( )ˆ 2ˆ ˆ, Ints xv s v s e 


− −
= N (J.85) 

Substituting equations (J.84) and (J.85) into equation (J.82) and changing the order of inte-
gration then yields the expression for ( )0f s  as: 

( ) ( ) ( ) ( ) ( )( )ˆ ˆ2 21
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

N N (J.86)

The integral over the semi-infinite domain of the linear-elastic rod in equation (J.86) may be 
straightforwardly obtained analytically. This yields the expression for ( )0f s  as: 

( ) ( ) ( )( )11
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ˆsf s su s v s

s s
−  

= + 
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N N  (J.87) 

The inverse Laplace transform of two Laplace domain equations may always be found as the 
convolution of the corresponding time domain expressions, so that equation (J.87) becomes: 
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The remaining inverse Laplace transform is found analytically as: 
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And substitution of equation (J.89) into equation (J.88) then gives: 

( ) ( ) ( )( )
0

1
0 0 02

0

2
t

sf s e su t v t d   −= − + −
N N (J.90) 

Which is exactly equal to the equation previously given at the end of Section 5.2.1. 
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Samenvatting 
De dynamische interactie tussen constructies en het omringende medium speelt een cruciale 
rol in tal van technische toepassingen. In gevallen waarin een dynamisch belast medium zich 
niet-lineair gedraagt, zoals bij dynamische interacties tussen constructies en de ondergrond 
of tussen ijs en constructies op zee, moet een model voor dat medium met niet-lineaire ver-
schijnselen kunnen omgaan om de respons van het medium accuraat weer te geven. Om de 
rekentijd te minimaliseren is het wenselijk om het domein van het model dat deze niet-line-
ariteiten meeneemt zo klein mogelijk te houden. Dit proefschrift behandelt de ontwikkeling 
van een methodologie waarmee de niet-gelijkmatige dynamische respons van een vast me-
dium in het tijdsdomein efficiënt en robuust kan worden beschreven, waarbij tegelijkertijd 
op juiste wijze rekening wordt gehouden met het omringende lineaire verre veld. 

Daartoe wordt het medium opgedeeld in twee domeinen: een geavanceerd domein in de 
regio van interactie met een dynamische belasting waarin niet-lineaire fenomenen kunnen 
worden gemodelleerd, en een omringend domein op zodanige afstand van de dynamische 
bron dat de respons lineair is. Het nabij veld wordt gemodelleerd met behulp van discrete 
lattices, die in staat zijn niet-gelijkmatig dynamisch gedrag te beschrijven door het toepassen 
van niet-lineaire reologische elementen. Het verre veld wordt beschreven met behulp van een 
randintegraalvergelijking, die de respons van het verre veld uitsluitend op de grenslijn met 
het nabije veld beschrijft, terwijl het gedrag van het volledige verre veld achter deze grenslijn 
meegenomen wordt. Deze aanpak maakt een accurate en efficiënte modellering mogelijk van 
eindige, oneindige en semi-oneindige verre velden, waarbij golven zich zonder verstoring 
over de grens tussen beide domeinen kunnen propageren. 

De discrete lattice-modellering in het nabije veld maakt gebruik van zogenoemde Bingham-
Kelvin-Voigt (BKV)-elementen, bestaande uit een combinatie van veren, dempers en droge-
frictiecomponenten. Door de aanwezigheid van deze droge-frictiecomponenten, evenals het 
beschouwen van mogelijke inelastische botsingen, wordt het gedrag van deze lattices geken-
merkt door overgangen tussen verschillende bewegingsmodes, zoals stick, slip en lock, die 
worden gestuurd door de dynamische belasting en de drempelwaarden van de reologische 
elementen. 

Om de lineaire respons van het verre veld te modelleren, zijn de randintegraalvergelijkin-
gen (RIVs) afgeleid voor zowel continue als discrete representaties van het verre veld. Waar 
RIVs voor continue media goed gedocumenteerd zijn in de literatuur, presenteert dit proef-
schrift een van de eerste afleidingen van RIVs voor een domein dat bestaat uit een eindig of 
semi-oneindig discrete systeem van massa’s en veren. Deze RIVs worden doorgaans uitge-
drukt in termen van de dynamische stijfheid of, omgekeerd, in termen van de dynamische 
flexibiliteit, die de kracht-verplaatsingsrelatie in het Laplace-domein beschrijven. Voor een-
dimensionale systemen kunnen deze relaties vaak analytisch worden afgeleid, maar tijdsdo-
meinanalyses vereisen doorgaans numerieke evaluatie, waardoor het gebruik van de dynami-
sche flexibiliteit de voorkeur heeft. Voor tweedimensionale systemen is de formulering van 
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de RIVs gebaseerd op de Greense functies van het betreffende medium en zijn numerieke 
randmethoden nodig om de corresponderende dynamische flexibiliteitsmatrices te verkrij-
gen. Aangezien deze Greense functies niet altijd bekend zijn en vaak niet eenvoudig verkre-
gen kunnen worden, vormt het bepalen ervan doorgaans de grootste uitdaging bij het afleiden 
van RIVs. 

Gezien de rekenkundige uitdagingen bij tijdsdomeinsimulaties van niet-lineaire systemen, is 
een gemengde tijd-frequentie-domein (MTFD) methode ontwikkeld. Deze hybride benade-
ring benut de efficiëntie van frequentiedomeintechnieken tijdens perioden van lineair gedrag, 
terwijl elke keer dat er niet-lineair gedrag optreedt gebeurt, de eigenschappen van het medium 
in de tijd worden aangepast. De voorgestelde methodologie heeft de potentie om de rekentijd 
aanzienlijk te verkorten, vooral in systemen waarin niet-lineair gedrag instantaan optreedt. 

De resultaten die in dit proefschrift worden gepresenteerd tonen aan dat discrete lattice-mo-
dellen uitermate geschikt zijn voor het beschrijven van niet-gelijkmatige dynamische feno-
menen, en onderstrepen het belang van een accurate modellering van het grensvlak met het 
verre veld. De vergelijking tussen discrete-continue en volledig discrete systemen laat zien 
dat de representatie van het verre veld een significante invloed heeft op de totale dynamische 
respons. In combinatie met discrete lattice modellen, presteren RIVs die zijn gebaseerd op 
een discreet verre veld veel beter dan RIVs gebaseerd op een verre veld dat gemodelleerd is 
als een continuum, met name op het gebied van compatibiliteit en ongestoorde golfvoort-
planting door de grenslijn. Eventueel vervolgonderzoek zou zich moeten toespitsen op de 
invloed van variaties in de lattice-configuratie op de formulering van RIVs, bijvoorbeeld door 
over te stappen van een hexagonaal naar een vierkant rooster, interacties met tweede buren 
te modelleren of aanvullende reologische elementen toe te voegen voor transversale en rote-
rende interacties. De prestaties van RIVs gebaseerd op discrete modellen worden daarnaast 
sterk beïnvloed door de kwaliteit van de numerieke implementatie, en verdere verbeteringen 
daarin zijn nodig om deze aanpak robuuster en breder toepasbaar te maken. 

Hoewel algemeen wordt aangenomen dat modellen die niet-lineair gedrag beschrijven 
noodzakelijkerwijs in het tijdsdomein geëvalueerd moeten worden, laat de niet-iteratieve 
MTFD-methode zien dat het mogelijk is om frequentiedomeintechnieken uit te breiden naar 
toepassingen waarin niet-lineair gedrag in het tijdsdomein wordt gemodelleerd. 

Tot slot biedt dit proefschrift zowel de theoretische grondslagen als de numerieke instrumen-
ten voor het efficiënt modelleren van niet-lineaire golfvoortplanting in vaste media. Daarmee 
levert dit werk een bijdrage aan de verdere ontwikkeling van modelleringstechnieken voor 
niet-gelijkmatige dynamisch gedrag in het tijdsdomein, met potentiële toepassingen in uit-
eenlopende civieltechnische, geotechnische en offshore engineeringvraagstukken. 
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