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Abstract
This work addresses visual localization for intelligent vehicles. The task of cross-view matching-based
localization is to estimate the geo-location of a vehicle-mounted camera bymatching the captured street
view image with an overhead-view satellite map containing the vehicle’s local surroundings. This local
satellite view image can be obtained using any rough localization prior, e.g., from a global navigation
satellite system or temporal filtering. Existing cross-viewmatchingmethods are global image descriptor-
based and achieve considerably lower localization performance than structure-based methods with 3D
maps. Whereas structure-based methods utilized global image descriptors in the past, recent structure-
based work has shown that significantly better localization performance can be achieved using local
image descriptors to find pixel-level correspondences between the query street view image and the 3D
map. Hence, using local image descriptors may be the key to improving the localization performance
of cross-view matching methods. However, the street and the satellite view do exhibit not only very
different visual appearances but also have distinctive geometric configurations. As a result, finding
correspondences between the two views is not a trivial task. We observe that the geometric relationship
between the street and satellite view implies that every vertical line in the street view image has a
corresponding azimuth direction in the satellite view image. Based on this prior, we devise a novel
neural network architecture called SliceNet that extracts local image descriptors from both images
and matches these to compute a dense spatial distribution for the camera’s location. Specifically, the
geometric prior is used as a weakly supervised signal to enable SliceNet to learn the correspondences
between the two views. As an additional task, we also show that the extracted local image descriptors
can be used to determine the heading of the camera. SliceNet outperforms global image descriptor-
based cross-view matching methods and achieves state-of-the-art localization results on the VIGOR
dataset. Notably, the proposed method reduces the median metric localization error by 21% and 4%
compared to the state-of-the-art methods when generalizing, respectively, in the same area and across
areas.
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1
Introduction

According to the World Health Organization [53], about 1.3 million people die each year due to road
traffic crashes. Road traffic injuries are even the leading cause of death for children and young adults
aged 5-29 years. Moreover, road traffic injuries cause considerable economic losses to individuals, their
families, and nations. Since care is needed for the injured persons, the productivity of these persons
may decrease, and family members may not be able to continue going to school or work. Therefore, in
2021, the United Nations General Assembly has set an ambitious target of halving the global number
of deaths and injuries from road traffic crashes by 2030 [53].

Autonomous vehicles could play a significant role in assuring road safety [20] as more than 90 per-
cent of all accidents are caused by human error [19]. Besides, automated driving could improve traffic
flows, promote the mobility and productivity of people, and improve driving comfort [96]. Highly accu-
rate and detailed lane-level maps, also known as high-definition maps, are crucial for safe automated
driving [97]. They contain precise definitions of the road lanes, augment vehicle sensor information for
contextual analysis of the environment, and assist the vehicle in executing controlled maneuvers be-
yond its sensing range [98]. In order to use these maps, an accurate localization technique is required
to provide vehicle positioning in map coordinates.

Vehicle localization is the task of determining a vehicle’s location relative to a given map of the en-
vironment [78]. The high-definition map is defined in a coordinate system of the environment, which
is different from the vehicle’s local coordinate system. Global localization can establish the correspon-
dence between these two coordinate systems, but the coordinate transformation cannot be measured
directly with a sensor [78].

A global navigation satellite system, i.e., GNSS, is commonly used to estimate the vehicle’s location
as it can provide global positioning without error accumulation [8, 11]. However, GNSS is only effective
in places with a clear sky view because GNSS receivers tend to output inaccurate location estimations
when operating in urban regions [2, 8]. This is primarily due to tall buildings, which often block a
receiver’s line of sight to the navigation satellites. Modern GNSS receivers are sensitive enough to
receive the indirect signal reflected from the buildings, but this can still result in poor performance
in urban canyons with errors of tens of meters [8, 90, 91]. These errors are in strong contrast with
the requirements for automated driving systems based on the road geometry standards of the United
States [58], namely, for vehicles operating on freeway roads, the required lateral en longitudinal error
upper bounds are 0.57 and 1.40 meters, respectively. The road geometry makes requirements even
more stringent on local streets with lateral and longitudinal error upper bounds of 0.29 meters.

Suppose the situation where an autonomous vehicle drives through an urban region (see Fig. 1.1).
The vehicle has multiple onboard sensors, such as a GNSS receiver and an RGB camera. The GNSS
receiver can provide a coarse localization, but this signal has an offset of several meters. Therefore
it is not known in which lane the vehicle is driving. However, sensing the environment can be used
to improve the localization [30, 62, 72, 92, 107]. The vehicle’s local surroundings are visible to the
camera, and thus the camera images can be used to determine a more accurate localization using
visual localization. The vehicle’s localization process then consists of two steps. The first step is to get
a coarse localization for the vehicle using any rough localization prior, e.g., wheel odometry (see green
arrow in Fig. 1.1), GNSS (see orange arrow in Fig. 1.1), or temporal filtering. The second step is to
use visual localization to improve the vehicle’s localization and get a fine localization (see yellow arrow
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Figure 1.1: The localization of an autonomous vehicle. A coarse localization can be obtained using any rough localization
prior, e.g., from wheel odometry in combination with an old location, a GNSS, or temporal filtering. The green and the orange
arrow indicate wheel odometry and GNSS-based localization, respectively. Both techniques can approximate the vehicle location
at time t. A more accurate localization technique, e.g., visual localization, can be used to refine the localization using the coarse
vehicle location (yellow arrow). The function p(x) indicates the probability density at vehicle location x.

in Fig. 1.1). The advantage of cameras to sense the environment over other onboard sensors such
as Radar and LiDAR is that cameras are relatively cheap and can provide significantly more semantic
information. Besides, they have the desirable advantages of detecting long-range distance objects and
identifying vision-based road elements [38].

Visual localization [3, 15, 16, 50, 62, 64] has attracted considerable attention in the past few years be-
cause of its practical applications in various fields, including autonomous driving, virtual and augmented
reality, and digital forensics. The technique aims to determine the geo-location of a query image using
a reference database of geo-tagged images. Usually, visual localization uses a street view image for
both the query and the reference images. However, the disadvantage of using street images as refer-
ences is that they are not available for all areas, and it takes a lot of effort to keep such a database up
to date. In contrast, satellite databases are available that densely cover the Earth and the collection of
new satellite images is much more convenient. As a result, matching street images to satellite images
has become a popular approach for visual localization [29, 72, 73, 85, 88, 92, 107].

Street-to-satellite image matching, also known as cross-view matching, is challenging because of
the drastic viewpoint difference between the street and the satellite view. The viewpoint difference
causes that typically the side of an object is visible in the street image, while the satellite image shows
the top of the object. For example, in Fig. 1.2, it can be seen that the street image shows the facades
of some buildings, while the satellite image shows roofs. Even for a human, it can be challenging to
figure out which roof from the satellite image belongs to which house from the street image. In addition,
perspective is only present in the street view. The size with which an object appears in the street images
depends on the object’s distance to the street camera. In contrast, in the satellite image, two equal-
sized objects appear equal-sized because of the relatively large distance between the ground and the
satellite. Apart from the viewpoint difference, there is also a difference in capture time. In practice, the
satellite images are captured earlier than the street images as the satellite images are needed for the
reference database. As a result, different weather and light conditions may occur, which can cause the
appearance of both images to differ significantly. Besides, the difference in capture time can also affect
the presence of non-stationary objects.

Early cross-viewmatching work formulated the localization task as an instance of image retrieval [29,
73, 85, 88]. For each query street image, the most similar satellite image is searched from the refer-
ence database, and the geo-tag of the retrieved image is used as a rough estimate of the location of
the street camera. However, a rough estimate can also be obtained with GNSS [92]. Moreover, the lo-
calization accuracy is limited by the sample density of database images, so there is a trade-off between
computational efficiency and localization accuracy [72].

Recent cross-view matching work [72, 82, 92, 107] makes the switch from image retrieval to image
metric localization, i.e., meter-level localization, and proposes to localize the street camera in a single
satellite image to obtain a more accurate localization. Some methods [72, 92] also determine the
orientation of the street camera so that a 3-DoF pose is predicted. The satellite image showing the
vehicle’s local surroundings can be obtained using any rough localization prior (see Fig. 1.1).
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(a) Street (360° panorama) image (b) Satellite image

Figure 1.2: A street and satellite image pair. The yellow dot indicates the street camera location in the satellite image, and
the yellow line indicates North in each image. The image pair is part of the VIGOR dataset [107].

Existing cross-view imagemetric localization methods [92, 107] create a global street image descrip-
tor, i.e., a high-dimensional vector, that encodes the entire street image and one or multiple descrip-
tors for the satellite image. The location is predicted using these descriptors, and the methods have
localization errors in the order of several meters. In contrast, structure-based methods match query
street images with 3D maps of the environment for estimating the 6-DoF street camera pose, and these
methods achieve centimeter-level accurate localization [62, 65, 77]. Whereas structure-basedmethods
utilized global image descriptors in the past, recent structure-based work has shown that significantly
better localization performance can be obtained using local image descriptors rather than global image
descriptors [62]. The local descriptors are used to get one-to-one correspondences between the query
image and the 3D map. Subsequently, geometric verification is used to estimate the 6-DoF camera
pose. Hence, if we can do something similar for cross-view matching, this may be the key to improving
the localization performance of cross-view matching methods. Unfortunately, the viewpoint difference
for cross-view image matching is considerably more significant than for structure-based matching, mak-
ing matching local descriptors between the street and the satellite view more difficult. Local can mean
different things depending on the context, e.g., pixel-level or object-level. In this work, we define local
as a term that refers to object-level unless otherwise stated. Thus local descriptors can be used to
obtain object-level matches between images.

Predicting the 6-DoF camera pose using 3D maps differs from cross-view matching in several ways.
First, structure-based methods use the street view for both the query and reference images, while
cross-view matching uses the satellite view for the reference images. Consequently, structure-based
methods can use the same feature extractor for the query and references, whereas cross-view match-
ing requires a separate feature extractor for each view because the two views are so different [29, 62].
Second, for structure-basedmethods, one-to-one correspondences between a query and the reference
image are available during training [62, 65, 77]. In contrast, for cross-view matching, explicitly labeled
correspondences between the two views are unavailable [62, 72, 107]. However, learning local de-
scriptors requires correspondence between the two views. Therefore, an alternative way to link local
information between the two views is needed.

The geometric relationship between the street and the satellite view, i.e., the azimuth prior, has been
noted by many cross-view matching works [37, 42, 73, 74, 75, 86, 106]. The relationship implies
that every vertical line in the street image has a corresponding azimuth direction in the satellite image.
Methods have been proposed that use the prior to bridge the gap between the two image domains by
transforming an image from one image domain to the other image domain [37, 73, 75] and by adding
the orientation information as an extra network input [42]. However, no work has used the azimuth prior
for learning explicit local correspondences between the two views.

The ground truth street camera pose for each street and satellite image pair is available during
training. Therefore, line pairs between the two views can be made by exploiting the prior (see the blue
line in Fig. 1.3). Using two different azimuth directions (see the blue and orange line in Fig. 1.3), an
image region, i.e., slice, can be delineated in both images. Two belonging slices have a visual overlap.
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(a) Street (360° panorama) image (b) Satellite image

Figure 1.3: A street and satellite image pair that shows the azimuth prior, i.e., the geometric relationship that every
vertical line in the street image has a corresponding azimuth direction in the satellite image. The yellow dot indicates
the street camera location in the satellite image, and the yellow lines indicate the compass strokes. Both the blue and the
orange lines show an azimuth direction. These two lines delineate a slice in both images, i.e., the transparent region. The street
image slice and the satellite image slice belong to each other and have a visual overlap. The image pair is part of the VIGOR
dataset [107].

Local image features for cross-view matching may be learned by exploiting the azimuth prior. A street
and satellite slice pair can indicate what a particular object looks like in the two views due to the visual
overlap (see Fig. 1.3). However, a slice may contain multiple objects, and the visual overlap may be
minimal, e.g., because an object blocks the view. Therefore, how this visual overlap can be used to
learn correspondences between the two views is an open problem.

In addition, some objects do not help determine the street camera location because they are only
visible in one of the two images or are not discriminative. Therefore, we also need to develop a method
to select features so that sparse features can be extracted from the images. In this work, we define
sparse features as a term that refers to a subset of a set of features.

When local correspondences between the two views can be learned, this needs to be used to de-
termine the street camera location in the satellite image. However, an extracted feature may match
several features of the other image. Therefore, an open problem is how the local image features can
be matched and how the matching can be used to determine the street camera location. Based on the
identified open problems, the following main research question is formulated:

How can we end-to-end learn sparse local image features across the street and
the satellite view without using explicitly labeled correspondences, and how can this

be used for localizing the street camera in the satellite image?

In order to answer the main research question, three subquestions are researched:
1. How can we end-to-end learn local image features across the street and satellite view without

using explicitly labeled correspondences?
2. How can we extract sparse features from the street and satellite view?
3. How can we use local image feature matching for localizing the street camera in the satellite

image?

Departing from the use of global image descriptors for cross-view metric localization, we devise a novel
neural network architecture called SliceNet that exploits the azimuth prior in order to match sparse local
image features between the street and the satellite view and compute a dense spatial distribution for
the location of the street camera. Specifically, SliceNet extracts deep features from the images and
uses attention to select discriminative features for both views. Subsequently, it divides both images into
slices and computes a slice descriptor for each slice. Finally, SliceNet matches the slice descriptors to
obtain the dense spatial distribution for the location of the street camera. We evaluate SliceNet on the
VIGOR dataset [107].

Chapter structure: In Chapter 2, the literature related to street-to-satellite image matching, local im-
age feature matching, and exploiting the azimuth prior is reviewed. Subsequently, in Chapter 3, the
methodology used to answer the research questions is explained. Then, the experimental results are
presented in Chapter 4. Lastly, Chapter 5 contains the conclusion along with proposed future work.



2
Related Work

In this chapter, we review the work that is the most related to street-to-satellite image matching, local
image feature matching, and exploiting the geometric relationship between the street and the satellite
view.

2.1. Street-to-Satellite Image Retrieval
The objective of street-to-satellite image retrieval is to find matching images from a reference database
with satellite images so that the GNSS data from the retrieved images can be used as a geo-localization
estimate for the query street image [29, 73, 79, 107]. The reference database is obtained by dividing
a satellite map into satellite patches. The key problem is to build viewpoint and appearance invariant
image representations that can be matched so that the corresponding satellite images can be retrieved
for the query street image.

In general, street-to-satellite image retrieval is done by creating a global image descriptor for the
query street image and each satellite image from the reference database [29, 57, 72, 73, 79, 92, 93, 106,
107]. Such a descriptor is a high-dimensional vector containing an image’s encoding. The term global
image descriptor is used because the descriptor is an encoding for the entire image. The concept
is that the descriptor of a street image is similar to the descriptors of the matching satellite images
while differing from the descriptors of non-matching satellite images. In other words, satellite images
that show very different environments should have different encoding. After a global image descriptor
is created for the query street image and the satellite images, the reference database can be sorted
based on the similarities between the street descriptor and the satellite descriptors. The top k ranked
satellite images are the output of the image retrieval system.

2.1.1. Handcrafted Descriptors
In the early stages of the street-to-satellite image retrieval field, handcrafted feature representation
approaches were used to create the descriptors. These approaches rely on handcrafted feature ex-
tractors to extract representative features from the street and satellite images. Typically, the extracted
features can be directly used as a global image descriptor. Features extractors such as SIFT [43] and
SURF [6] were used to create a descriptor [4, 40, 49, 68, 69, 84]. These methods match by looking for
object features that appear in both images. However, they failed to achieve high performance because
of the difference in viewpoint between the two views [29].

2.1.2. Early Deep Learning-based Descriptors
In 2015, Workman and Jacobs [88] were the first to use a convolutional neural network, i.e., CNN, for
street-to-satellite image retrieval. They used the intermediate feature representation of one of the top
fully connected layers of AlexNet [36] as the global image descriptor, achieving better performance
than the state-of-the-art with handcrafted features. Lin et al. [41] were the first to present a Siamese-
like network [12, 17], i.e., a network with two branches, for street-to-oblique aerial image retrieval.
These two views have more common object features because in oblique aerial images, for example,
the facades of buildings can be visible. This makes the matching for street-to-oblique aerial image
matching easier than for street-to-satellite imagematching. Later in 2015, Workman et al. [89] proposed
the MCVPlaces model, the first Siamese-like network for street-to-satellite image retrieval.

5
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Figure 2.1: The standard street-to-satellite image retrieval framework for deep learning-based descriptors. The network
has a Siamese-like architecture, containing a street and a satellite branch. The variables I, I′ , F , and f̂ indicate the image,
transformed image, feature map, and normalized global image descriptor of a branch, respectively. The ground-level street view
and the satellite view are indicated by g and s, respectively, to avoid confusion.

2.1.3. Standard Framework for Deep Learning-based Descriptors
The year 2015 can be seen as the year in which the street-to-satellite image retrieval field made
the switch from handcrafted descriptors methods to deep learning-based descriptor methods using
Siamese-like networks [41, 88, 89]. Fig. 2.1 shows the standard framework on which post-2015 meth-
ods are typically based [29, 57, 73, 79, 90, 91, 93, 106, 107]. The network has a street and a satellite
branch. Both branches consist of three components: (1) an image transformation block, (2) a feature
extractor, and (3) a descriptor network. The network computes a global image descriptor for both the
street and satellite image. The descriptors are used to retrieve the matching satellite images and to
determine the loss. Usually, the similarity between descriptors is measured with the Euclidean dis-
tance [21, 31, 87] and the triplet loss [29, 57, 73, 79, 93, 106, 107] is used to learn discriminative
descriptors.

Image transformations (see green blocks in Fig. 2.1) can be applied to reduce the image domain
gap between the two images. An example is the polar transformation [73] which maps the satellite
image to a synthetic street image. However, not all methods use image transformation. Therefore, this
block is considered optional.

The feature extractor is usually a CNN responsible for encoding the features of a branch’s (trans-
formed) input image. The output of the CNN is a feature map and contains semantic and geometric
information. Subsequently, this information is used by the descriptor network to create a global image
descriptor. This way, a street and satellite descriptor are created for the street and satellite image,
respectively. The descriptors are normalized so that all descriptors lie on the surface of the same
high-dimensional hypersphere.

2.1.4. Deep Learning-based Descriptors
Hu et al. [29] proposed CVM-Net for learning viewpoint-invariant image descriptors. CVM-Net is a
Siamese-like network using two branches, each consisting of a VGG16 [76] combined with a NetVLAD
layer [3]. Cai et al. [14] proposed an attention module that uses feature and spatial attention to reweigh
both the street feature map and the satellite feature map to emphasize visually salient features.

Liu and Li [42] noticed that previous methods focused on capturing image similarity in terms of visual
appearance and semantic content and overlooked a crucial geometric cue for localization, namely the
geometric relation between the two views. Therefore, they proposed a method that explicitly encodes
the orientation of each image pixel. Shi et al. [73] observed similarly to Liu and Li. that image content
visible on the pixels lying in the same azimuth direction of a satellite image approximately corresponds
to the content of a column of pixels of the street image. Based on this, they proposed to use a polar
transformation to map a satellite image to a synthetic street image which significantly increased the
performance of their method. The polar transform is a simple approximation for the cross-view image
transformation and gives a lot of visual distortion. Therefore, Shi et al. [75] proposed the projective
transformation as a replacement for the polar transformation.

In contrast, Li et al. [37] tried to bridge the domain gap between the two views by using an inverse
polar transformation to make the street image approximately aligned with the satellite image. The
advantage of the inverse polar transformation over the polar transformation is that no street camera
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location needs to be assumed in the satellite image. The disadvantage, however, is that there are large
visual differences between the satellite image and the synthetic satellite image.

Regmi and Shah [57] and Toker et al. [79] proposed using a generative adversarial network, i.e.,
GAN, to minimize the domain gap between the two views. The method of Regmi and Shah creates a
synthetic satellite image and extracts features from that image. Subsequently, the extracted features
are fused with the original street image’s features to obtain a robust query representation. In contrast,
Toker et al. create a synthetic street image instead of a synthetic satellite image. In addition, they use
the features of the latent space of the GAN, while Regmi and Shah use the synthetic street image as
input to a feature extractor.

Yang et al. [93] stated that existing work imposes a strong assumption on the positional knowledge
by concatenating the spherical directions of each pixel to the images [42] and by using the polar trans-
formation [73, 74]. Therefore, they proposed a method that exploits the positional encoding of the
Transformer [81] to help the model to understand and correspond geometric configurations between
the street and satellite view. Instead of hardcoded orientation information or a predefined transforma-
tion, they let the model learn the positional embeddings through the training objective. Besides, work
has been proposed that tries to use the mutual benefits between the two views by devising two sym-
metrical generative sub-modules to improve the attention mechanism of the Transformer [103]. Lastly,
Zhu et al. [105] adopted the Vision Transformer for cross-view image retrieval.

2.1.5. Shortcomings for Localization
During the past few years, the performance of street-to-satellite image retrieval methods has advanced
significantly. Methods have been proposed to create viewpoint and appearance invariant global image
descriptors. However, it is generally assumed that the street camera is located in the center of the
satellite image [42, 99], while this cannot be guaranteed during inference [107]. In addition, there is a
trade-off between the localization accuracy and the computational efficiency [72, 92]. To achieve meter-
level accuracy, the reference satellite imagesmust have a high overlap with each other. Thus, the global
image descriptor of the query street image must be compared with many satellite descriptors, which
is not computationally efficient. Therefore, it is not practical to use street-to-satellite image retrieval to
geo-localize an autonomous vehicle.

2.2. Street-to-Satellite Image Metric Localization
Recent cross-view matching work [72, 82, 92, 107] goes a step further than retrieving matching satellite
images and attempts to determine the location and sometimes the orientation of the street camera in the
matching satellite image. This allows for obtaining a more accurate location and orientation. Moreover,
this solves the localization accuracy and computational efficiency trade-off of image retrieval because
only one satellite image is used.

2.2.1. Methods
The work of Verde et al. [82] can be seen as the first work that presented a street-to-satellite image
metric localization method. They proposed a landmark graph matching-based method that attempts to
localize a street panorama image in a satellite image without requiring information about the orientation
of both images. A landmark graph is a relational graph structure that models the adjacency of salient
objects in the scene [82]. The proposed method is an unsupervised approach, and it is based on the
observation that proximity relationships between nearby objects or landmarks are maintained in both
views. The authors manually annotated landmarks on sample image pairs to demonstrate their method.
However, they did not explain how landmarks can be detected without having labeled landmarks to train
a detector and left that as future work. Therefore, Verde et al.’s method is not considered to be an end-
to-end method for street-to-satellite image metric localization.

Zhu et al. [107] proposed the cross-view regression method, which can localize a street image in a
satellite image in a coarse-to-fine manner. First, image retrieval is used to obtain the matching satellite
image. After that, the location of the street image is predicted in the retrieved satellite image. Location
prediction is performed by concatenating the global image descriptors of both views and giving them
as an input to a multilayer perceptron, i.e., MLP, that predicts a 2D image location. The network is a
direct extension of the image retrieval network of Shi et al. [73]. The MLP matches the content of the
two global image descriptors implicitly for predicting the street camera location. While Zhu et al. note
the geometric relationship between the two views, they do not use this prior to improve the matching
between them.
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Xia et al. [92] proposed a classification-based method for street-to-satellite imagemetric localization.
Rather than formulating it as a regression task as Zhu et al. did, they proposed to produce a dense
multi-modal distribution to capture localization ambiguities and avoid regressing to the center between
multiple visually similar places. They noted that the cross-view regression method does global coarse
and local metric localization with a global image descriptor for both views. A global image descriptor
may contain information about the entire image of a view, so it could be the case that the location pre-
diction branch lacks fine-grained scene information. Therefore, Xia et al. proposed to split the satellite
feature map into a grid and create a separate descriptor for each grid cell. Splitting the satellite feature
map allows the method to match the content of the street global image descriptor with local regions of
the satellite image. However, Xia et al. do not divide the street image into local regions. In contrast,
local regions of the street image could be matched with the local regions of the satellite image to obtain
one-to-one correspondences. This would also offer the possibility of using the geometric relationship
between the two views to avoid certain matches and to help the network learn the correspondences.

Shi et al. [72] argued that the significant domain differences between the street and satellite view
make it difficult to obtain accurate regression with the cross-view regression method. Therefore, they
proposed to formulate the problem as a 3-DoF pose estimation problem and solve it using neural
network-based optimization. In contrast to the methods of Zhu et al. and Xia et al., their method can do
location and orientation estimation directly. Shi et al. noted that the street and satellite image overlap
mainly lies on the ground plane. Therefore, they assumed that everything visible in the satellite image
lies on the ground plane of the street view, i.e., at the same height as the road. A geometry projection
module is used to project the satellite features on this ground plane using the camera parameters and
the height of the street camera above the road. This provides a prediction of what the street view
features would look like with the current camera pose. Using optimization, they try to converge to a
pose where the predicted features are similar to the observed features of the street view.

We note that none of the existing street-to-satellite image metric localization methods learns explicit
local correspondences between the two views. Besides, Shi et al.’s method is the only method that
uses the azimuth prior. However, they use the prior to map satellite features to a street view with a
hardcoded transformation and not to learn explicit local correspondences between the two views.

2.2.2. Method Comparison
The proposed street-to-satellite imagemetric localizationmethods discussed in the previous subsection
are compared in Tab. 2.1. All four methods can do location estimation. However, only the methods of
Xia et al. [92] and Shi et al. [72] can do orientation estimation. The method of Shi et al. directly outputs
a 3-DoF pose, while the method of Xia et al. does orientation estimation indirectly. Xia et al. compared
the activations of the activation map before the final softmax operation for different orientations of the
street image. They noted that the orientation can be predicted by taking the orientation of the street
image associated with the highest activation. So multiple forward passes of the network are needed to
estimate the orientation.

Both the graph matching-based approach of Verde et al. [82] and the method of Xia et al. output a
probability distribution for the location of the street camera in the satellite image. The method of Verde
et al. is the only method where objects are explicitly matched between the two views, and the graph can
be used to gain insights into how the method’s prediction was produced. However, Xia et al.’s method
splits the satellite feature map into a grid and computes local satellite features. Therefore, that method
is also considered to make explicit local matches between the two views. Finally, the method of Shi et
al. requires the height of the street camera above the ground plane and the camera parameters.

Table 2.1: Comparison of the existing street-to-satellite image metric localization methods. Dense output means a multi-
modal output such as a probability distribution.

Method Year Location Orientation Dense Explicit local Camera
estimation estimation output matches parameters

Verde et al. [82] 2020 ✓ X ✓ ✓ X
Zhu et al. [107] 2021 ✓ X X X X
Xia et al. [92] 2022 ✓ ✓(indirect) ✓ ✓(satellite) X
Shi et al. [72] 2022 ✓ ✓ X X ✓
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2.2.3. Datasets
Zhu et al. [107] proposed the VIGOR dataset for street-to-satellite image metric localization. The street
image locations can occur throughout the entire satellite image. For each street and satellite image
pair, the location of the street image in the satellite image is known in pixels. In addition, the ground
resolution is available, which can be used to convert a distance in pixels to meters. This allows for
meter-level evaluation.

The supplemented version of the Oxford RobotCar dataset proposed by Xia et al. [90] can also be
used for image retrieval and metric localization. This dataset has a satellite map of Oxford (United
Kingdom) so that satellite images can be extracted. The street images of the Oxford RobotCar dataset
are normal camera images and, therefore, have a limited horizontal field of view. The original street
images have a horizontal field of view of 66° [47], but Xia et al. [92] cropped the street images to a field
of view of 60°.

Shi et al. [72] extended the KITTI [25] and Ford multi-AV dataset [1] in a similar way as Xia et al.
did for the Oxford RobotCar dataset. The original KITTI and the Ford multi-AV dataset both contain
street images captured by a vehicle-mounted camera but without satellite maps. Therefore, Shi et al.
supplemented them with the corresponding satellite images. Tab. 2.2 shows a comparison between
the VIGOR, Oxford RobotCar, KITTI, and Ford multi-AV datasets.

Table 2.2: Comparison between the street-to-satellite image metric localization datasets. The data in the table is based
on the sources cited for a dataset. The street and satellite image resolutions are not the raw resolutions but the resolutions used
for training the methods. The ground resolution is based on the specified satellite image resolution in the table, and the unit is
meters/pixel.

VIGOR [107] Oxford RobotCar KITTI Ford multi-AV
[46, 47, 90] [25, 72] [1, 72]

Number of street images 238,696 23,854 [92] 30,970 50,441
Street panorama images ✓ X X X
Street image resolution 320 x 640 154 x 231 [92] 256 x 1024 256 x 1024
Satellite image resolution 640 x 640 800 x 800 [92] 512 x 512 512 x 512
Ground resolution 0.114 0.092 [92] 0.200 0.220
Generalisation same-area same-area same-area same-area

cross-area across time cross-area

2.3. Local Image Feature Matching
Feature-based image matching methods use local image features, i.e., local image descriptors, to find
correspondences between images. Usually, these methods have a pipeline consisting of three compo-
nents: (1) feature detection and description, (2) feature matching, and (3) geometric verification [44].
Feature detection extracts distinctive points from an image, while feature describing encodes image
information. Feature matching compares the information of a set of detected and described points to
a reference set using a similarity measure. Geometric verification determines how well the matching
satisfies one or more geometric constraints according to a metric. The result of the geometric verifica-
tion can be a subset of the matches that can then be used for, for example, pose estimation [62] or
determining a score for image retrieval [15, 50].

Manymethods do the detecting and describing of the image interest point simultaneously to improve
the final matching performance [18, 23, 51, 70, 94]. These are also called detect and describemethods.
The core challenge of thesemethods is to make the whole process differentiable and trainable [44]. The
difficulty of learning to detect and describe simultaneously is that at the beginning of the training, both
the detections and descriptors are relatively poor, so the detector cannot use good descriptions and
vice versa. Therefore, the network may not learn anything.

2.3.1. Detect and Describe Image Interest Points
Image interest points are 2D locations in an image that have properties like repeatability, invariance,
robustness, and efficiency [18, 23, 44]. Repeatability implies that a relatively high ratio of the detected
interest points can be matched with the detected points of the other view. Invariance and robustness
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mean that the detected interest points can be matched despite different lighting conditions and view-
points. Lastly, efficiency means that the detection of interest points is computationally efficient so that
it can be incorporated into real-time applications, for example.

In general, a distinction is made between two types of keypoints, namely (1) semantic keypoints and
(2) interest points. A semantic keypoint is a point with semantic meaning for an object in the image [27,
35]. Image interest points are low-level points without a clear semantic meaning, such as a corner
point of a cube or an endpoint of a line segment. This ensures that an image usually has a relatively
large number of interest points, and the semantic meaning of those points is ill-defined, which makes
annotating interest points in an image difficult. In this work, we only consider image interest points.

Detection: The detection of image interest points has a long history predating deep learning and
several well-known methods have been proposed including SIFT [43], FAST [59], and ORB [60]. In-
spired by handcrafted feature detectors, a general solution for CNN-based detection is constructing a
response map to search for interest points. A response map is a map of typically the same spatial size
as the image with interest point scores for each pixel location. Interest points can then be obtained
by using the points with a score exceeding a certain threshold. Interest points close to each other can
be filtered using non-maximum suppression. The creation of the response maps can be done in a
supervised [83, 94, 101], self-supervised [23, 100], and unsupervised manner [5, 18, 51].

The task of detecting interest points is often formulated as a regression problem. Supervised meth-
ods have demonstrated the benefits of anchors that can guide the training. For example, these anchors
can be obtained with SIFT [43]. However, the performance of such methods may be limited by the cre-
ation of the anchors because it is difficult to define an anchor, and the method will not learn to detect
interest points in areas where there are no anchors [5]. Self-supervised and unsupervised methods
train detectors without human annotations by using image transformations and geometric constraints [5,
18, 23, 51, 100].

Description: After image interest points have been detected, a descriptor must be assigned to each
point in order to establish feature correspondence correctly and efficiently across the views [44]. In
other words, the descriptors encode the local image information in a discriminative vector so that two
matching features have a similar encoding and two non-matching features have a dissimilar encod-
ing. The procedure for creating descriptors can be divided into three steps, namely (1) local low-level
feature extraction, (2) spatial pooling, and (3) feature normalization [13, 43, 60]. First, the low-level
information of the local image region of the interest point must be encoded. Second, the local patch is
divided into several parts, and the information is pooled in each part and then concatenated by using
pooling methods [43, 48, 60, 80]. Finally, a descriptor is obtained from the normalized results of the
pooled local information.

Detect and describe methods: Yi et al. [94] proposed LIFT to simultaneously implement interest point
detection, orientation estimation, and feature description by end-to-end CNN networks. LIFT can be
regarded as a trainable version of the SIFT method.

DeTone et al. [23] noted that LIFT is trained with supervised learning and uses patches to detect
interest points, meaning many patches must be created to detect interest points for an entire image.
Therefore, they proposed SuperPoint, a fully convolutional model that can detect and describe interest
points for full-sized images. SuperPoint is trained with a self-supervised learning framework that con-
sists of three steps. Step 1 is to train a network called MagicPoint on a synthetic dataset with simple
geometric shapes whose ground truth interest points are available. Step 2 is to use homographic adap-
tation where the input of the trained MagicPoint is varied, i.e., different homographies, to get pseudo
ground truth interest points. Step 3 is the joint training of the detector and descriptor using the pseudo
ground truth interest points from step 2. UnsuperPoint [18] eliminated steps 1 and 2 of SuperPoint’s
framework, which means that a synthetic dataset is no longer required. The concept is that interest
points emerge naturally during training. Because steps 1 and 2 are not used, pseudo ground truth
interest points are unavailable. This is solved by forming point pairs by mapping detected points from
the source view to the target view and searching for the nearest neighbor in the target view for each
point. This does require a known transformation between the two views.

Ono et al. [51] introduced a fully convolutional model called LF-Net that does detection and descrip-
tion sequentially rather than simultaneously with two or more branches, such as SuperPoint and Unsu-
perPoint. LF-Net also works with full-sized images and is trained with self-supervision. The detector
generates a scale-space score map along with orientation estimates for detecting interest points. From
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the score map, the K highest scoring interest points and their image locations are extracted. These
are used to extract a patch for each interest point from the normalized image. The patches are used
to create descriptors. RF-Net is proposed as an improvement of LF-Net. It has a receptive field-based
detector which generates more effective scale-space score maps than the detector of LF-Net. LF-Net
uses ResNet [28] to produce feature maps from the input image and generates response maps for
different scales by resizing the feature maps. This ensures that the response on each map has a large
receptive field. On the other hand, RF-Net creates response maps using different receptive fields.

Barroso-Laguna et al. [5] combined handcrafted and learned CNN filters within a shallowmulti-scale
architecture called Key.Net. The handcrafted filters provide anchor structures for localizing, scoring,
and ranking repeatable features that are fed to learned filters, and they reduce the number of learnable
parameters of the network. The design of the handcrafted filters was inspired by the success of Har-
ris [26] and Hessian [7] detectors, which used first and second-order derivatives to compute the salient
corner responses. The detector is trained with weak supervision as only the ground truth transformation
between two images of an image pair is used during training.

2.3.2. Match Image Interest Points
The matching task aims to establish the correct image pixel or point correspondences between two
images using feature detection and description. This task has played a significant role in the entire
image matching pipeline [44]. Descriptor matching followed by mismatch removal, also called indirect
image matching, casts the matching task into a two-stage problem. First, preliminary correspondences
are established by measuring the distance between descriptors with a similarity measure. Several
common strategies, including fixed threshold, nearest neighbor, mutual nearest neighbor, and nearest
neighbor distance ratio, are available for constructing these correspondences [44]. Second, the incor-
rect matches are removed using geometrical constraints. Usually, the classic RANSAC algorithm [24],
or a modified version of it, is used to remove incorrect matches [44].

Learning from points: Point-based learning, particularly for feature matching, has only been intro-
duced in recent years because using deep learning techniques for point data is more difficult than for
raw images due to the unordered structure and dispersed nature of sparse points [44]. Besides, op-
erating and extracting the spatial relationships among points, e.g., neighboring elements and relative
positions, is challenging. However, using deep learning techniques to solve points-based tasks has re-
ceived increasing attention [44, 63]. These techniques can be roughly divided into parameter fitting [9,
56] and point classification or segmentation [45, 54, 55, 95, 102]. The parameter fitting techniques
are inspired by the RANSAC algorithm and aim to estimate the transformation model, such as epipolar
geometry [9], using a data-driven optimization strategy with CNNs. On the other hand, point classifica-
tion or segmentation techniques tend to train a classifier to identify the correct matches from the set of
preliminary correspondences. In general, the parameter fitting and point classification techniques are
trained jointly to enhance performance.

For parameter fitting, Brachmann et al. [9] proposed a differentiable RANSAC called DSAC for train-
able fundamental matrix estimation. DSAC is based on reinforcement learning and has probabilistic se-
lection instead of the deterministic hypothesis selection of RANSAC to decrease the expected loss and
optimize the learnable parameters. Subsequently, Ranftl and Koltun [56] proposed a trainable method
for fundamental matrix estimation from noise. Similar techniques as DSAC have been proposed by
Brachmann and Rother [10] and Kluger et al. [34]. Brachmann and Rother proposed NG-RANSAC, a
robust estimator using learned guidance of hypothesis sampling. It uses the inlier count as a training
objective to facilitate self-supervised learning of NG-RANSAC. Kluger et al. presented CONSAC, a
robust estimator for fitting multiple parametric models of the same form to noisy measurements.

For mismatch removal, several learning-based methods have been proposed in recent years. Moo
Yi et al. [95] proposed LFGC, which aims to label the preliminary correspondences as inliers and outliers,
and Ma et al. [45] proposed a general framework to learn a two-class classifier for mismatch removal
called LMR. Sarlin et al. [63] proposed SuperGlue, a neural network that matches two sets of local
image features by jointly finding correspondences and rejecting non-matchable points. Assignments
are estimated by solving a differentiable optimal transport problem, whose costs are predicted by a
graph neural network [66]. Compared to traditional, handcrafted heuristics, their technique learns priors
over geometric transformations and regularities of the 3D world through end-to-end training from image
pairs.
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(a) (b) (c)

Figure 2.2: Visualization of the detected interest points with RK-Net [39] for three images of the University-1652
dataset [104]. The figures were taken from Lin et al. [39].

2.3.3. Local Image Features for Street-to-Satellite Image Matching
Cross-view matching methods use global image descriptors to match the street and satellite images
(see Sections 2.1 and 2.2). However, Lin et al. [39] proposed RK-Net to jointly learn a discriminative
representation and detect salient interest points with a single network. The authors introduced a unit
subtraction attention module that automatically discovers representative interest points from feature
maps and draws attention to the salient regions. The detected interest points are used for reweighing
the feature map and not for direct matching with interest points of the other view. The unit subtraction
attention module contains few learning parameters but yields significant performance improvement and
can be plugged into different networks [39]. Fig. 2.2 shows visualizations of interest points detected by
RK-Net.

We note that detect and describe methods use one-to-one correspondences between images to
train the detector and descriptor. SuperPoint uses homography to create pseudo ground truth interest
points. In contrast, the viewpoint difference for street-to-satellite image matching is significantly larger
than for multiple-view image matching. Therefore, homography cannot be applied to create pseudo
image pairs. Besides, unsupervised learning cannot be used directly for detecting image interest points
since it requires interest point pairs during training. For cross-view matching, it is difficult to get these
as only the azimuth prior is available. So for a point in the street image, the azimuth angle can be used
to determine in the satellite image the azimuth direction on which a possible matching point lies and
vice versa. However, it is unknown if (1) there is a matching point and (2) which point on the line is the
possible matching point. Besides, due to the large viewpoint difference between the two views, different
sides may be visible in the images of objects. So for those objects, direct matches do not exist. Lastly,
the azimuth prior can be used as a constraint for filtering preliminary correspondences, but learning-
based methods for interest point matching also depend on ground truth point pairs. Therefore, the
methods described in this section cannot directly be used for street-to-satellite imagemetric localization.

2.4. Azimuth Prior
The geometric relationship between the street and the satellite view, i.e., the azimuth prior, has been
noted by many cross-view matching works [37, 42, 73, 74, 75, 86, 106]. The relationship implies that
every vertical line in the street image has a corresponding azimuth direction in the satellite image.

Several cross-view matching approaches have been proposed that map the street image using
stereo vision and the camera parameters to a bird’s-eye view so that the street image looks more
like the satellite image [49, 68, 84]. However, these methods still rely on common object features
between the two views. For example, road signs on the road can be used for matching, but objects
such as buildings can still not be used. In addition, stereo vision is usually unavailable for cross-view
matching [29, 73, 79, 107].

Image retrieval methods have been proposed that use the azimuth prior to transform an image
from one view to another view (see Subsection 2.1.4). Shi et al. [73] assumed that the street camera
location is at the center of the satellite image and proposed the polar transformation for transforming a
satellite image into a synthetic street image. Later, Shi et al. [75] proposed the projective transform, an
improved version of the polar transformation in which the camera parameters are used to create a more
realistic synthetic street image. In contrast, Li et al. [37] proposed the inverse polar transformation for
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(a) Sequential slicing

(b) Column slicing

Figure 2.3: The two slicing methods proposed by Wang et al. [86]. The figure was taken from Wang et al. [86].

mapping a street image to a synthetic satellite image. All these image transformations are hardcoded
and exhibit image distortions because the depth is unknown, and there is a lack of object information
for mapping to the other view.

Liu and Li [42] used the azimuth prior for providing orientation information as additional input to the
network. Yang et al. [93] noted the azimuth prior but did not use hardcoded orientation embedding.
Instead, they use learnable embeddings to let the network learn the geometric relationship via the
training objective.

Wang et al. [86] proposed partitioning the feature maps that follow from the feature extractors into
slices. The slicing ensures that only information from the feature maps likely to show the same portion
of the local surroundings is matched. They proposed two slice methods for street-to-satellite image
matching, namely (1) sequential partitioning and (2) column partitioning. Fig. 2.3a shows the sequential
partitioning. This partitioning is based on the observation that objects higher in the street image are
generally further away from the street camera. It is assumed that the street camera was located at the
center of the satellite image. A polar-transformed satellite image is used for column partitioning (see
Fig. 2.3b). This partitioning is based on the azimuth prior, where the azimuth range is divided into a
discrete number of blocks.

The azimuth prior has also been used in fields related to cross-view matching. Shi et al. [71] used
the prior for synthesizing street panoramas using satellite imagery. Saha et al. [61] used the prior
for mapping street images to segmented overhead maps, i.e., the bird’s eye view of the world. They
assume a one-to-one correspondence between a vertical scanline in the street image and rays passing
through the camera location in the overhead map. This lets them formulate map generation from an
image as a set of sequence-to-sequence translations.

We note that the azimuth prior has been used to transform an image from one view to another.
In addition, the prior has been used to adjust network inputs so that the model can use hardcoded
orientation information directly or learn the geometric relationship between the two views. Also, the prior
has been used to split feature maps so that only information expected to show the same part of the local
surroundings is matched. Finally, the prior has been used for synthesizing realistic street panoramas
using satellite imagery and mapping street images to segmented overhead maps. However, none of
the methods used the prior as a weakly supervised signal for learning correspondences between the
two views.

2.5. Our contributions
Existing street-to-satellite imagemetric localizationmethods do not learn explicit local correspondences
between the street and satellite view and do not use the azimuth prior for improving the localization
performance (see Section 2.2). Besides, we note that local image feature matching methods use
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one-to-one correspondences during training, while these are unavailable for street-to-satellite image
matching (see Section 2.3). Lastly, the azimuth prior has been used to improve the performance of
street-to-satellite image retrieval methods and related fields for mapping images to another view (see
Section 2.4). However, the prior has not been used for learning local correspondences between the
two views.

We use the azimuth prior as a weakly supervised signal to learn local correspondences between
the street and satellite view for street-to-satellite image metric localization. The contributions of this
work can be summarized as follows:

1. This work proposes SliceNet, the first end-to-end local image feature matching-based network
for street-to-satellite image metric localization, which can predict a dense pose distribution for the
street camera in the satellite image. SliceNet sets a new state-of-the-art for localization on the
VIGOR dataset when generalizing in the same area and across areas.

2. This work quantitatively and qualitatively investigated the role of horizontal and vertical street
image slices in localizing the street camera in the satellite image. It has been shown that the
localization performance can be increased by using more horizontal slices. Moreover, it has been
demonstrated that SliceNet achieves a significantly higher inference speed than the baselines.

3. This work discovered that the original ground truth labels of the VIGOR dataset contained an error
due to the use of an incorrect ground resolution. New ground resolutions have been determined,
and the ground truth labels have been corrected. Moreover, all existing baselines for the VIGOR
dataset have been trained and evaluated with the corrected ground truth labels.



3
Methodology

This chapter describes the methodology used to answer the research questions posed in the Introduc-
tion (see Chapter 1). Section 3.1 motivates the need for learning sparse local image feature matching
for street-to-satellite image metric localization and Section 3.2 presents the baselines against which we
compare. Subsequently, Section 3.3 describes the plan for achieving sparse local image feature match-
ing. After that, the proposed method is described in Section 3.4. This chapter ends with Section 3.5
that compares the proposed method with the baselines.

3.1. Problem Definition
The objective of street-to-satellite image metric localization is to determine the street camera location
Xc = (hc, wc) ∈ R2 in the satellite image Is ∈ RHsxWsxC using the street image Ig ∈ RHgxWgxC . This
image location can be converted to the longitude and latitude of the street camera using the geo-tag
and ground resolution, i.e., the number of meters per pixel, of the satellite image. The variables H, W ,
and C indicate an image’s height, width, and the number of channels, respectively. The ground-level
street view and the satellite view are indicated by g and s, respectively, to avoid confusion.

For each street and satellite image pair, a ground truth street camera pose ξGT = (hGT , wGT , θGT )
is known during training at which the street image has been captured with hGT ∈ [0,Hs], wGT ∈ [0,Ws],
and θGT ∈ [0◦, 360◦). Both hGT and wGT have the unit pixels. The street camera orientation indicates
the angular difference of the vertical centerline of the street image to North in the satellite image. Here
counterclockwise is defined as positive in the satellite image. It is assumed that the horizontal field of
view ϕ ∈ (0◦, 360◦] of the street image is known. Fig. 3.1 shows the defined variables for an image pair.

Figure 3.1: A schematic street and satellite image pair with the ground truth street camera pose indicated. The left and
right images are the street image and the satellite image, respectively. The yellow dot in the satellite image indicates the ground
truth location XGT at which the street image has been captured. The satellite image’s red line indicates the street image’s
viewing direction. This line is the vertical centerline of the street image. The ground truth orientation θGT is defined as the
angular difference between the vertical centerline of the street image (red line) and North in the satellite image (green line). For
this orientation, counterclockwise is positive (satellite view). The blue lines indicate the edges of the horizontal field of view ϕ of
the street image. The variables h and w indicate the height and width of an image location, respectively.

15
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(a) Street (360° panorama) image (b) Satellite image

Figure 3.2: A street and satellite image pair with manual annotations. Each annotated point in the street image has a
corresponding annotation, i.e., the same number, in the satellite image. The red contour indicates an entire tree. The image pair
is part of the VIGOR dataset [107].

3.1.1. One-to-One Matches between Views
Street camera localization requires matching the content of the street image with that of the satellite
image. The street and the satellite image both show the local surroundings of the street camera, and
thus one-to-one matches can be made between the two images. Fig. 3.2 shows an image pair with
manual annotations for the corners of the buildings and the sidewalks. Each annotated point in the
street image has a matching annotation in the satellite image. Apart from these points, one-to-one
matches could also be made for other objects, such as the crosswalk.

For trees, it is more challenging to make one-to-one matches because of the difference in viewpoint,
e.g., the street image shows the side view of the trees, and the satellite image shows the bird’s-eye
view. In addition, the images were not created simultaneously, so each tree in the street image looks
slightly different than in the satellite image. However, an entire tree can be matched, as indicated by
the red contour in both images.

There are also parts of the local surroundings that can only be seen in one of the two images. For
example, the street image shows the sides of the buildings, while the satellite image shows the roofs
of the buildings. Besides, objects visible in the street image in the distance may not be seen on the
satellite image due to the limited area of the local surroundings shown by the satellite image. Objects
only visible in one of the two images cannot be matched. Therefore, only sparse one-to-one matches
are possible between the two views, i.e., only a subset of the visible objects can be matched.

3.1.2. Determine Street Camera Location and Orientation
Street-to-satellite matches can be used to determine the street camera location in the satellite image.
One way the matches can be used to determine the location is by combining matches, i.e., one-to-one
pairs. The geometric relationship [42, 73, 74, 106] between the street and the satellite view implies that
every vertical line in the street image has a corresponding azimuth direction in the satellite image (see
Fig. 1.3). Thus, two pairs whose street points approximate a vertical line in the street image construct
a line in the satellite image that passes through the location of the street camera.

Fig. 3.2 shows two one-to-one pairs, i.e., the green and orange lines. The points labeled 2 and
4 are approximately on the green vertical line in the street image, and this line passes through the
location of the street camera in the satellite image. The same applies to the orange line formed by
the points with labels 24 and 25. Intersections of constructed lines can be used as a street camera
location estimation. Subsequently, the orientation of the street image can be estimated by determining
the angular difference between the azimuth direction of the street image’s vertical centerline and North
in the satellite image.

For objects such as trees for which the two views show different parts of the object, it is unclear
which location should be used for the matching. Therefore, matching those objects requires a local
descriptor representative of an entire object, i.e., of multiple pixels. An example would be all pixels
within a red contour in Fig. 3.2. A location within the contour can still be used to construct a line with
another one-to-one pair. However, the uncertainty about the line parameters is then more significant.
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3.1.3. Learn Local Correspondences
Annotated one-to-one correspondences between the two views are unavailable for street and satellite
image pairs. Thus, we do not have labels that can be used to learn the one-to-one matches. Therefore,
an alternative must be found so a network can still learn the local correspondences. This is described in
Section 3.3, but first, Section 3.2 describes what baselines are used and how these methods determine
the street camera location.

3.2. Baselines
Section 3.1 described the street-to-satellite image metric localization task and explained how sparse
local image features could be used to determine the street camera location. Existing methods [72,
92, 107] do not use local image features for predicting the street camera location, and a total of three
end-to-end methods have been proposed: (1) the cross-view regression method of Zhu et al. [107], (2)
the multi-class classification method of Xia et al. [92], and (3) the optimization-based method of Shi et
al. [72]. The cross-view regression method and the multi-class classification method are also known
as the CVR model and the MCC model, respectively [92].

3.2.1. Required Update Frequency
In the introduction (see Chapter 1), bounds for the localization error for autonomous vehicles have been
stated. Besides the localization accuracy, the update frequency of a method is also important because
a lag in the position update leads directly to further uncertainty in the localization [58]. This uncertainty
is predominantly in the longitudinal direction.

An update frequency equal to 100 hertz or greater appears to be the appropriate update rate for
freeway roads and local streets [58]. This requirement does not mean that the image metric localization
method must achieve this update frequency because the vision-based predictions could be combined
with temporal filtering, for example. However, we do consider the inference speed of the existing
methods for choosing our baselines.

Shi et al. noted that the pose optimization runtime for a single image pair is around 500 milliseconds
for their method. This long runtime is because the optimization uses iterations to determine the camera
pose. In contrast, Xia et al. measured that a forward pass of the CVR model and the MCC model takes
around 20 and 30 milliseconds, respectively. In addition, the optimization-based method of Shi et al.
requires the height of the street camera above the road to be known, while the CVR model and the
MCC model do not need this height. Consequently, it has been decided to use the CVR model and the
MCC model as our baselines because these methods are significantly faster than Shi et al.’s method,
and they do not require additional information about the street camera for predicting the location.

3.2.2. Regression Baseline
The CVR model can localize the street camera in a satellite image in a coarse-to-fine manner by first
doing image retrieval and then predicting the location of the street image in the retrieved satellite image
(see Subsection 2.2.1). The architecture of the CVRmodel consists of a street and satellite branch with
each a VGG16 [76] as feature extractor and a SAFA module [73] as descriptor network (see Fig. 3.3).

For the street branch, feature extractor 1 computes the street feature map Fg using the street view

Figure 3.3: The architecture of the CVR model [107]. The architecture consists of a street and satellite branch with each a
VGG16 [76] as feature extractor and a SAFA module [73] as descriptor network. The output of the two branches is concatenated
and fed into a multilayer perceptron that predicts the location of the street camera in the satellite image.
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image Ig as input, and descriptor network 1 uses this feature map to make the street global image
descriptor fg. Similarly, the satellite branch uses the satellite view image Is to compute the satellite
feature map Fs and the satellite global image descriptor fs. The two global descriptors are used to
do image retrieval. Subsequently, metric localization is performed by predicting an offset for the street
camera location with respect to the satellite image center. The offset prediction is made with amultilayer
perceptron, and the input consists of the concatenated global descriptors.

We only employ the CVR model for the metric localization task but keep its proposed architecture.
However, we will not train and use it for image retrieval because we assume that the matching satellite
image is already available (see Section 3.1). For training the model, the standard mean squared error
loss, i.e., the L2 loss, is used to minimize the error between the predicted offset and the ground truth
offset. More details about the CVR model can be found in the work of Zhu et al. [107].

3.2.3. Classification Baseline
The MCC model computes a dense distribution for the street camera location in the satellite image
(see Subsection 2.2.1). The architecture of the MCC model consists of a street and satellite branch
combined with a decoder (see Fig. 3.4).

The street branch is identical to the street branch of the CVR model (see Fig. 3.3). However, the
satellite branch splits the satellite feature map Fs in a grid and computes for each grid cell a descriptor.
The street global descriptor is fused with the satellite descriptors by calculating the cosine similarity
between the street global descriptor and the satellite grid descriptors. The decoder uses the resulting
matching map in combination with the satellite descriptors to predict a probability distribution for the
street camera location. Residual connections are used so the decoder can use intermediate feature
representations from the satellite branch. More details about the MCC model can be found in the work
of Xia et al. [92].

Figure 3.4: The architecture of the MCC model [92]. The architecture consists of a street and satellite branch with each a
VGG16 [76] as feature extractor and a SAFA module [73] as descriptor network. The street branch computes the street global
descriptor fg , while the satellite branch splits the satellite feature map into a grid and computes K satellite descriptors fs,k, i.e.,
for each grid cell one. The output of the two branches is matched with the cosine similarity. The decoder upsamples the matching
map, denoted by Mat. map. Light gray arrows indicate residual connections between the satellite branch and the decoder.

3.2.4. Baseline Comparison
There are three main differences between the CVR model and the MCC model. First, the CVR model
computes a single descriptor for the satellite image, while theMCCmodel splits the satellite feature map
into a grid and computes a descriptor for each grid cell. Second, the CVR model does not match the
two global descriptors explicitly but fuses the information from the two branches by concatenating the
descriptors. In comparison, the MCC model measures the cosine similarity between the street global
descriptor and the satellite descriptors. Third, the CVR model computes the street camera location
offset with respect to the center of the satellite image. In contrast, the MCC model uses a decoder to
predict a probability distribution for the street camera location.

3.3. Achieving Sparse Local Image Feature Matching
Section 3.1 described that we do not have labeled correspondences between the street and satellite
view that can be used to learn sparse local image features. However, we do have the geometric relation-
ship between the street and satellite image, i.e., the azimuth prior. This prior implies that every vertical
line in the street image has a corresponding azimuth direction in the satellite image (see Fig. 1.3).
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(a) Street (360° panorama) image (b) Satellite image

Figure 3.5: A street and satellite image pair with eight image slices that have been made with horizontal slicing. Each
street slice has a corresponding satellite slice, and the number of the slice indicates this. The street image is not aligned with
the satellite image, i.e., the viewing direction of the street image (blue line) does not correspond with North in the satellite image.
The image pair is part of the VIGOR dataset [107].

For the azimuth prior to be valid, we make three assumptions. First, it is assumed that the au-
tonomous vehicle has no roll rotation and that the street camera is horizontally aligned. In other words,
a vertical line in the street image corresponds to a vertical plane in the real world. Second, it is as-
sumed that the image plane of the satellite camera is parallel to the road. Third, it is assumed that an
orthographic correction has been applied to the satellite image. This means that all projection lines are
parallel to each other and perpendicular to the projection plane. Thus, it ensures that the visible area
on the satellite image is viewing distance invariant. The three assumptions usually apply to vehicle
localization.

Based on the second and the third assumption, a vertical plane in the real world is projected as a
straight line in the satellite image. Therefore, a vertical line in the street image (the first assumption)
corresponds to a line in the satellite image, i.e., the azimuth direction.

3.3.1. Horizontal Slicing
Image slices in the street and the satellite image can be constructed by exploiting the azimuth prior.
Based on this prior, the horizontal field of view of the street image can be divided into N equal-sized
image slices, i.e., rectangular image patches. Similarly, the satellite image can be divided into N pie
part-like slices using the azimuth directions corresponding to the vertical lines used to create the street
slices. Fig. 3.5 shows an image pair with eight slices per image.

This way of slicing is defined as horizontal slicing because the azimuth directions in the satellite
image are parallel to the road, i.e., the horizontal ground plane. Each street slice has a corresponding
satellite slice. Corresponding slices, i.e., matching slices, overlap in terms of the local surroundings they
show, while non-matching slices have no overlap. However, non-matching slices can have semantic
overlap if, for example, two slices both show a tree.

3.3.2. Orientation Estimation
The orientation of the street image with respect to the satellite image can roughly be determined when
we match the street slices with the satellite slices. Fig. 3.5 is used to explain this. The viewing direction
of the street image is the vertical line that separates slices 2 and 3 (blue line). By finding the matching
satellite slices for these two street slices, the orientation of the street image can be determined. The
slices are numbered, and thus it can be seen that the viewing direction of the street image is West in
the satellite image, i.e., the street image orientation is 90° according to the definition of Fig. 3.1. For
this image pair, slices are aligned so that each street slice only overlaps with one satellite slice. If this
is not the case, it is impossible to determine the street orientation based on one-to-one slice matches
exactly, and there is an error that depends on the size of the field of view associated with a single slice.

We hypothesize that we can learn orientation discriminative descriptors for the street and satellite
slices where descriptors of matching slices are similar, i.e., close together in the feature space of the
descriptors, and descriptors of non-matching slices are dissimilar. Creating the satellite slices requires
the street camera pose, so this can only be done during the training of the network. If we can learn
discriminative slice descriptors, then we can obtain a rough orientation estimate for the street image,
as explained above.
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(a) Street (360° panorama) image (b) Satellite image

Figure 3.6: A street and satellite image pair with eight horizontal street image slices, and four locations in the satellite
image are used to create satellite image slices. Based on the orientation information of street slice 1, street slice descriptor
1 should only be matched with the descriptors of the colored slices in the satellite image. The matching for other street slice
descriptors can be done similarly. The image pair is part of the VIGOR dataset [107].

For each image, N slice descriptors are created. Each street slice descriptor can be matched with
all slice descriptors of the satellite image. However, we can use the spatial structure of the slicing, i.e.,
which slices are adjacent to a particular slice. Only permutations of the satellite slice descriptors that
are consistent with the spatial structure of the slicing need to be used for matching, and there are N
valid permutations, i.e., we can rotate the pie N times. The orientation estimate is not directly of value
as we use the ground truth pose for the slicing. However, learning orientation discriminative descriptors
is a step towards achieving sparse local image feature matching.

3.3.3. Location Estimation
The location of the street camera in the satellite image can be estimated if we use multiple locations in
the satellite image for the slicing and choose the location for which the satellite slices match the best
with the street slices, i.e., the highest similarity.

The street camera pose is required to make the correct satellite slices. Therefore, we cannot create
these slices during inference. However, if we do the slicing for many locations in the satellite image,
we can assume that one of the used locations is close to the camera location. This implies that we
create N satellite slice descriptors for each location used in the satellite image. The location of the
street camera can then be estimated by measuring the similarity of the street slice descriptors with the
satellite slice descriptors of each location used and choosing the location with the highest similarity.

During training, the street camera pose can be used to determine the ground truth satellite slice
descriptors and learn that those descriptors should have a higher similarity with the street slice de-
scriptors than the descriptors of other locations. Whereas during inference, the slicing can be done
for predetermined locations, and the true location can be estimated by measuring the similarity of the
descriptors for each location.

We hypothesize that we can learn location discriminative satellite slice descriptors for which the
satellite slice descriptors belonging to the street camera location are more similar to the street slice
descriptors than the satellite descriptors of other locations in the satellite image. Fig. 3.6 shows an
image pair with eight street slices, and four locations in the satellite image are used for the slicing. If
the street image orientation is assumed to be known, i.e., the orientation is not estimated, then street
slice descriptor 1 only needs to be matched with the descriptors of the four colored slices in the satellite
image. The matching for other street slice descriptors can be done similarly.

3.3.4. Pose Estimation
For localization, it is assumed that the true orientation is known during inference. We can also drop this
assumption by matching a street slice descriptor with all satellite slice descriptors instead of only with
descriptors belonging to slices with a particular orientation. This can be seen as combining orientation
estimation (see Subsection 3.3.2) and location estimation (see Subsection 3.3.3).

Wehypothesize that we can learn pose discriminative satellite slice descriptors for which the satellite
slice descriptors belonging to the street camera pose are more similar to the street slice descriptors
than the satellite descriptors of other poses in the satellite image. During training, analogous to what
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(a) Street (360° panorama) image (b) Satellite image

Figure 3.7: A street and satellite image pair with eight horizontal image slices and four vertical image cells per slice in
the street image. The designated cell in the street image shows a tree. In the satellite image, regions with trees are indicated
by colored contours. The orange contour indicates the tree region to which the tree in the indicated street cell belongs, while the
red contours are different tree regions. The image pair is part of the VIGOR dataset [107].

can be done for location estimation, we can use the street camera pose to determine the ground truth
satellite slice descriptors and learn that those descriptors should have a higher similarity with the street
slice descriptors than the descriptors of other poses. Whereas during inference, the slicing can be
done for predetermined poses, and the true pose can be estimated by measuring the similarity of the
descriptors for each pose. This way, localization can be done, and a rough estimate can be made for
the orientation of the street image.

3.3.5. Vertical Slicing
We observe that a street slice can be divided intoM vertical cells based on the semantic content visible
in the slice. This way of slicing is defined as vertical slicing because the vertical direction of the street
image is divided into vertical cells. In general, an image column consists of roughly four semantic parts,
namely from bottom to top (1) the road, (2) the sidewalk or crosswalk, (3) buildings or trees, and (4)
the sky. This observation can be used to structure the encoding of the street slice descriptor.

Fig. 3.7 shows an image pair where each horizontal slice of the street image is divided into four
vertical cells. A separate descriptor can be created for each cell of a street slice, and the cell descriptors
can be combined to get the slice descriptor. In contrast, the satellite slices cannot be divided in a similar
way because objects can appear at any position in the satellite image. However, parts of the satellite
image can be selected based on the type of content. By choosing particular objects in the satellite
image for each vertical cell row in the street image, different descriptors can be created for a satellite
slice. These descriptors can then be combined to create the satellite slice descriptor.

We hypothesize that we can learn to select objects in the satellite image that correspond to a spe-
cific vertical cell row and make discriminative cell descriptors that can be used for localizing the street
camera in the satellite image. Splitting the street slice can be seen as an extension of the location
estimation (see Subsection 3.3.3) and pose estimation (see Subsection 3.3.4).

3.3.6. Search for Specific Vertical Cell
The vertical slicing treats all cells of a particular vertical cell row equally. However, we can go one step
further and search for matching content in the satellite image for a specific cell instead of an entire
vertical cell row. This way, cells from the same vertical row can select different objects. Fig. 3.7 shows
an image pair where each horizontal slice of the street image is divided into four vertical cells. The
designated street cell shows a tree. In the satellite image, the orange contour indicates the matching
tree region, while the red contours indicate non-matching tree regions. So for the designated cell, these
three regions should be selected, while all other objects in the satellite image should not be used to
create the corresponding satellite cell descriptor.

We hypothesize that we can learn to select objects in the satellite image that correspond to a specific
vertical cell of a street slice and make discriminative cell descriptors that can be used for localizing the
street image in the satellite image.
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3.4. The SliceNet Architecture
The architecture of SliceNet is based on the pipeline of local feature matching-based methods (see
Subsection 2.3). This pipeline consists of three components: (1) feature detection and description, (2)
feature matching, and (3) geometric verification.

SliceNet extracts local features, i.e., slice descriptors, from the input street and satellite image. This
is feature detection and description. Subsequently, the spatial structure of the horizontal slicing is used
to combine the street and satellite slice descriptors into a street and satellite descriptor, respectively.
The satellite descriptor depends on the used pose in the satellite image for the horizontal slicing (see
Subsection 3.3.4). After the image descriptors have been formed, the descriptors are matched to
determine the similarity for a pose in the satellite image. This is the feature matching. The street
camera pose is estimated by taking the pose with the highest similarity. Geometric verification is not
applied after the matching step since the geometric relationship between the two views is already used
to create the image descriptors, so only descriptors that satisfy the geometric constraint are matched
(see Subsection 3.4.4).

Fig. 3.8 shows the architecture of SliceNet. SliceNet has a Siamese-like architecture consisting of
a street view and a satellite view branch. Both branches consist of three components: (1) a feature
extractor that extracts deep features from the input image, (2) a cell attentionmodule that selects vertical
cell-specific features, and (3) a slice descriptor generator that creates slice descriptors given a feature
map. The normalized slice descriptors that follow from a slice descriptor generator are combined to
obtain the image descriptor of a view. This descriptor incorporates pose information. The symbols
associated with the arrows in the figure are explained in the subsequent subsections.

We differentiate between two versions of SliceNet: (1) SliceNet Basic and (2) SliceNet Select.
SliceNet Basic does not use cell attention modules, while SliceNet Select does use these modules.
A cell attention module can select specific features from a feature map (see Subsection 3.4.2). Below,
we first highlight the three components of the SliceNet architecture, and then the loss function and
street camera pose prediction are discussed.

Figure 3.8: The Siamese-like architecture of SliceNet. The architecture consists of two branches: a street view and a satellite
view branch. Both branches contain a feature extractor, a cell attention module, and a slice descriptor generator. The feature
extractor creates a feature map given an input image, the cell attention module reweighs the feature map, and this reweighed
feature map is used in the slice descriptor generator to create slice descriptors. The normalized slice descriptors are combined
to form an image descriptor. SliceNet Basic does not use cell attention modules, while SliceNet Select does use these modules.
The light gray arrow indicates the cross branch connection.

3.4.1. Component 1: Feature Extractor
In both branches, a CNN is used as feature extractor. The feature extractors of the street and the
satellite view branch are denoted by CNNg and CNNs, respectively, and are used to obtain the street
feature map Fg = CNNg(Ig) and the satellite feature map Fs = CNNs(Is). The street and the satellite
feature maps have a shape ofH ′

g xW
′

g xC
′ andH

′

s xW
′

s xC
′ , respectively. Both feature maps have the

same number of feature channels. However, the spatial size can differ depending on the input images’
spatial size. The stride of the feature extractors causes the spatial size of a feature map to be equal to
or smaller than that of an input image. For a fair comparison with the baselines (see Section 3.2), we
employ the same CNN as the baselines use, i.e., a VGG16 [76].



3.4. The SliceNet Architecture 23

Figure 3.9: Feature Attention Mechanism. A spatial mask is obtained by applying 1x1 convolution to the input feature map
followed by a sigmoid activation function. The feature map is multiplied with the mask to obtain the reweighed feature map.

3.4.2. Component 2: Cell Attention Module
The cell attention modules of the street and the satellite view branch are denoted by CAMg and CAMs,
respectively. Thesemodules enable SliceNet to select important features in a featuremap (see Fig. 3.9).
Unimportant features are multiplied by relatively small values, i.e., close to zero, while important fea-
tures are multiplied by a relatively large value, i.e., close to one. As a result, important features will
have more impact on a slice descriptor because the features of a slice are averaged to compute the
slice descriptor (see Subsection 3.4.3). The cell attention module has been inspired by the work of Cai
et al. [14]. They proposed an attention module that uses feature attention to reweigh both the street and
the satellite feature map to emphasize visually salient features for street-to-satellite image retrieval.

Street Branch
The street cell attention module CAMg uses 1x1 convolution to obtain the spatial maskMatt

g with shape
H

′

g x W
′

g. Subsequently, the Hadamard product is used to obtain the reweighed street feature map,

F
′

g = CAMg(F
′

g) = Matt
g ⊙ Fg ∈ RH

′
g x W

′
g x C

′

. (3.1)

Here, the Hadamard product is indicated by the ⊙ symbol.

Satellite Branch
The street cell attention module creates one mask to reweigh the entire street feature map. However,
the satellite cell attention module selects features in the satellite feature map for each vertical cell in
the street image. A street image has NM vertical cells because the image is divided horizontally into
N slices and vertically into M vertical cell rows. For creating a mask for a specific vertical cell, the
satellite feature map and associated cell descriptor are used (see the light gray arrow in Fig. 3.8).

The process of constructing a spatial maskMatt
s,(m,n) for a specific vertical cell consists of three steps.

Here m ∈ {1, 2, ..,M} is the index of the vertical cell row, and n ∈ {1, 2, .., N} is the index of the street
slice. First, the cosine similarity between cell descriptor fg,(m,n) and all satellite features is determined.
This results in a matching map with a shape ofH ′

s xW
′

s x 1. Second, the matching map is concatenated
to the satellite featuremap so that a feature volume is obtained with a shape ofH ′

s xW
′

s x (C
′
+1). Lastly,

1x1 convolution is used to determine the mask Matt
s,(m,n). The concatenation of the matching map is

similar to how the street global image descriptor is fused with the satellite features in the architecture
of the MCC method [92]. The MCC method is one of our baselines (see Section 3.2).

The satellite cell attention module CAMs uses the Hadamard product to obtain the reweighed satel-
lite feature map for each vertical cell,

F
′

s,(m,n) = CAMs(Fs, fg,(m,n)) = Matt
s,(m,n) ⊙ Fs ∈ RH

′
s x W

′
s x C

′

. (3.2)

Subsequently, the obtained reweighed feature maps for each vertical cell are concatenated along the
feature channel to obtain the final reweighed satellite feature map,

F
′

s = F
′

s,(1,1) ⊕ ...⊕ F
′

s,(m,1) ⊕ ...⊕ F
′

s,(1,n) ⊕ ...⊕ F
′

s,(m,n) ∈ RH
′
s x W

′
s x NMC

′

. (3.3)

Here, the order is based on the vertical cell index m and slice index n. The ⊕ symbol indicates con-
catenation.
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3.4.3. Component 3: Slice Descriptor Generator
The slice descriptor generators of the street and the satellite view branch are denoted by SDGg and
SDGs, respectively. The process of generating the slice descriptors consists of 3 steps: (1) determining
the cell descriptors, (2) combining the cell descriptors into a slice descriptor, and (3) normalizing the
obtained slice descriptor. In metric learning, it is common to normalize descriptors so that they can be
compared [44].

Street Branch
A street cell descriptor fg,(m,n) is obtained by averaging the features of the reweighed street feature
map F

′

g belonging to the specific vertical cell. This is done by computing the Hadamard product spatially
between the reweighed feature map and a cell mask Mcell

g,(m,n). This mask has the same spatial size
as the reweighed feature map, and each weight of the mask indicates whether a feature belongs to the
specific cell (weight equal to one) or does not belong to the cell (weight equal to zero). Subsequently,
all elements of this product are spatially summed and then divided by the sum of all weights of the
mask, i.e., the number of features belonging to the cell.

The street slice descriptor generator SDGg concatenates all M cell descriptors fg,(m,n) of a slice n
to obtain the slice descriptor,

f̂g,n = SDGg(Fg, n) = fg,(1,n) ⊕ ...⊕ fg,(m,n) ∈ RMC
′

with ∥f̂g,n∥2 = 1 for n ∈ {1, 2, .., N}. (3.4)

Here, the order is based on the vertical cell index m, and the obtained slice descriptor is normalized.

Satellite Branch
The satellite slice descriptor generator SDGs does require a street camera pose ξA = (hA, wA, θA) for
the horizontal slicing since the pose defines the edges of the N slices. A satellite image has slices
but no cells. However, a reweighed version of the satellite feature map has been determined for each
vertical cell in the street image. Therefore, for each slice, there are M reweighed feature volumes,
each with a shape of H ′

s x W
′

s x C
′ .

The satellite cell descriptor fs,(m,n) is obtained by averaging the features of the reweighed satellite
feature map F

′

s,(m,n) belonging to slice n. This is done by first multiplying the reweighed feature map
by a slice mask Mslice

g,(m,n). Subsequently, all elements of this product are spatially summed and then
divided by the sum of all weights of the mask. So for a satellite cell descriptor, the entire slice is used,
while for a street cell descriptor, only a cell of the slice is used.

The satellite slice descriptor generator SDGs concatenates all M cell descriptors fs,(m,n) of a slice
n to obtain the slice descriptor,

f̂A
s,n = SDGs(Fs, ξA, n) = fA

s,(1,n) ⊕ ...⊕ fA
s,(m,n) ∈ RMC

′

with ∥f̂A
s,n∥2 = 1 for n ∈ {1, 2, .., N}. (3.5)

Here, the order is again based on the vertical cell index m, and the obtained slice descriptor is normal-
ized.

3.4.4. Image Descriptors
In Subsection 3.3.2, it has been stated that the spatial structure of the horizontal slicing, i.e., which
slices are adjacent to a particular slice, can be used for the matching. Only permutations of the satellite
slice descriptors that are consistent with the spatial structure of the slicing need to be matched. The
slice indices n of the street and satellite slices depend on the street image orientation and the pose
used in the satellite image, respectively. By concatenating the slice descriptors according to the order
of the slice indices, a descriptor is obtained for each image that incorporates this information.
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Street Branch
The street descriptor is obtained by concatenating the N normalized street slice descriptors,

f̂g =
1√
N

(f̂g,1 ⊕ ...⊕ f̂g,N ) ∈ RNMC
′

for n ∈ {1, 2, .., N} and ∥f̂g∥2 = 1. (3.6)

Here, the order is based on the slice index n. The 1/
√
N term is for the normalization of the descriptor

as there are N slice descriptors, each with unit length. The descriptor consists of NM cell descriptors
each with a length C

′ . Thus, the image descriptor has a length NMC
′ .

Satellite Branch
Similarly, the normalized satellite descriptor can be obtained by concatenating the N normalized satel-
lite slice descriptors and multiplying by 1/

√
N ,

f̂A
s =

1√
N

(f̂A
s,1 ⊕ ...⊕ f̂A

s,N ) ∈ RNMC
′

for n ∈ {1, 2, .., N} and ∥f̂A
s ∥2 = 1. (3.7)

3.4.5. Similarity
The similarity between two image descriptors is measured using the cosine similarity,

SA = sim(f̂g, f̂
A
s ) = f̂g · f̂A

s with − 1 ≤ Sa ≤ 1. (3.8)

Here, the cosine similarity is equal to the dot product between the two descriptors because both image
descriptors have been normalized.

3.4.6. Loss Function
The training objective is to make the similarity SGT higher than the similarity SA for all poses ξA ̸= ξGT .
A modified version of the infoNCE loss [52] from contrastive representation learning [32] is used as a
loss function,

L = − log

(
exp(SGT /τ)

α( 1
T

∑T
t=1 exp(SAt

/τ)) + exp(SGT /τ)

)
(3.9)

Here, T is the number of (predetermined) negative poses. We introduce hyperparameter α in the loss.
The original infoNCE loss can be obtained by taking α = T . The infoNCE loss can be seen as a
generalized version of the triplet loss [67] and is used in image retrieval in the case multiple negative
samples are presented at the same time.

For each image pair, T negative poses ξAt are used and the positive, i.e., ground truth, pose ξGT .
The adjustment of the infoNCE loss by introducing hyperparameter α concerns the scaling of the neg-
ative term in the denominator. The average negative term is computed by dividing by the number of
negatives T . This average is scaled by the term α. The hyperparameter τ has a similar role as the
margin between the positive and negative samples in the triplet loss [92].

3.4.7. Street Camera Pose prediction
The pose of the street camera can be predicted by determining for K poses ξk the similarity Sk and
taking the pose ξk with the highest similarity Sk,

ξpredicted = ξk with k = argmaxSk
({Sk | k ∈ {1, ...,K}}). (3.10)

Here, the accuracy with which the true street camera pose ξGT can be approximated depends on the
number of poses used. For pose estimation, (Hs/∆r+1)(Ws/∆r+1)(360◦/∆θ) poses are required if for
localization and orientation estimation a resolution of∆r (pixels) and∆θ (degrees) is used, respectively.
When the orientation of the street image is known, pose estimation becomes localizing, and then there
are (Hs/∆r + 1)(Ws/∆r + 1) poses required. This comes down to the situation where there are K
locations used, and at each location, the true orientation is used for the slicing in the satellite image.
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3.5. SliceNet Architecture compared to Baselines
SliceNet, similar to the CVR model [107] and the MCC model [92], uses a VGG16 [76] as a feature
extractor for both branches. Furthermore, all three methods process the feature maps and fuse the
information from the two branches to determine the camera location. However, the way the features
are used to determine the street camera location in the satellite image differs.

The CVR model uses a SAFA module [73] as the descriptor network and creates a global image
descriptor for both images. These descriptors are concatenated, and an MLP is used to predict the
camera location. The MCC model also uses SAFA modules. However, it divides the satellite image
into a grid and determines a descriptor for each grid cell. Then the street global image descriptor is
matched with the satellite descriptors to obtain a matching map. The decoder uses this matching map,
the satellite descriptors, and the satellite feature map to predict a probability distribution for the camera
location. SliceNet, on the other hand, divides both images into N slices and creates a slice descriptor
for each slice. For matching, the slice descriptors of an image are concatenated, and the obtained
image descriptors are matched using the cosine similarity.

It can be noted that there are two crucial differences between SliceNet and baselines. First, SliceNet
creates more than one descriptor for both images, while the baselines create a single global image
descriptor for the street image. Second, SliceNet indirectly predicts the camera location by taking the
argmax over the similarities of different poses, while the baselines directly predict the location.



4
Experiments

In this chapter, we first introduce the dataset in Section 4.1 and the evaluation metrics for our experi-
ments in Section 4.2. Then, we provide the implementation details of SliceNet in Section 4.3. Subse-
quently, Section 4.4 and Section 4.5 present the proof of concept for SliceNet and the ablation studies,
respectively. In Section 4.6, SliceNet is compared to the two state-of-the-art baselines to show our
advantage in metric localization in generalizing to new measurements in the same area and across
areas. Finally, in Section 4.7, the runtime performance of SliceNet is compared to the baselines.

4.1. Dataset
The VIGOR [107] dataset is used to evaluate the performance of SliceNet. This dataset contains street
panorama images. Due to their unlimited horizontal field of view, these images can more clearly show
the advantage of using the azimuth prior for learning local correspondences between the two views
than street images with a limited field of view. Besides, the VIGOR dataset allows for both same-area
and cross-area evaluation (see Tab. 2.2).

The VIGOR dataset contains geo-tagged street and satellite image pairs collected in four cities in
the United States, namely (1) Chicago, (2) New York, (3) San Francisco, and (4) Seattle. Fig. 4.1
shows the distribution of the street images and the aerial coverage of the satellite images. The raw
image sizes for the street view and the satellite view are 2048 x 1024 pixels and 640 x 640 pixels,
respectively.

(a) Chicago (b) New York (c) San Francisco (d) Seattle

Figure 4.1: The distribution of the street images (red dots) and the aerial coverage of the satellite images (black polygon)
of the VIGOR dataset. The images are taken from the work of Zhu et al. [107].

Industrial-grade GPS tags for both street and satellite images are provided for meter-level evalua-
tion [107]. The street image’s geo-tag indicates the street camera’s location, while the satellite image’s
geo-tag indicates the satellite image’s center. The street images are 360° panorama images. Besides,
the image pairs are aligned so that the vertical centerline of the street image corresponds to North in
the satellite image, i.e., the orientation of a street image with respect to the satellite image is equal to
zero. Fig. 4.2 shows an example of a street and satellite image pair from the dataset.

27
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(a) Street (360° panorama) image (b) Satellite image

Figure 4.2: A street and satellite image pair from the VIGOR dataset [107]. The image pair shows a location in Seattle.

Asmentioned in the introduction (see Chapter 1), the localization of the autonomous vehicle involves
two steps. First, a localization prior is used to obtain a coarse localization. Subsequently, street-to-
satellite image metric localization can be used to refine the coarse localization. The required satellite
image is extracted from the satellite map using the coarse localization. The required size of the area
visible in the satellite image depends on the accuracy of the coarse localization.

The image pairs of the VIGOR dataset are categorized into positive and semi-positive image pairs.
An image pair is denoted as positive if the street image’s location is within the satellite’s center quarter
area. Otherwise, it is semi-positive. As a result, the coarse localization must have a maximum error of
about 18 meters for the positive image pairs and about 36 meters for the semi-positive image pairs. As
has been stated by Reid et al. [58], the localization upper bound on local streets for autonomous vehicles
is 0.29 meters, and the required update frequency is at least 100 Hertz. Suppose the system achieves
this performance. In that case, the previous fine localization can be used as a coarse localization
estimate for the current location, and the error is significantly smaller than 18 meters. Therefore, only
the positive image pairs are used in this work.

4.1.1. Corrected Ground Truth Labels
The original ground truth locations of the dataset contain an error due to an incorrect ground resolution
that had been used to convert a geo-location to an image location. Therefore, we have determined a
new ground resolution for each city, and the labels of the dataset have been corrected. More information
about the corrected ground truth labels can be found in Appendix A. The original positive split with the
new ground truth labels has been used for the experiments.

4.1.2. Data Splits
We adopt the same-area and cross-area splits from Zhu et al. [107] to test the model’s generalization
in the same cities and across different cities. The same-area setting uses image pairs from all four
cities for the training and testing, while the cross-area setting only uses images from New York and
Seattle for training and Chicago and San Francisco for testing. This split corresponds to a training and
testing dataset size of 52609 and 52605 image pairs for same-area and 51520 and 53694 image pars
for cross-area. Tab. 4.1 shows the number of image pairs for the four different cities for the same-area
and cross-area settings. We use the same-area training image pairs of Chicago as tuning split for
hyperparameter optimization and ablation studies.

Table 4.1: The number of positive image pairs for the same-area and cross-area settings of the VIGOR dataset [107].

Same-area Cross-area

Training Testing Training Testing

Chicago 12740 12739 0 25479
New York 13885 13884 27769 0
San Francisco 14108 14107 0 28215
Seattle 11876 11875 23751 0
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4.2. Evaluation Metrics
In Subsection 3.4.7, it is described that SliceNet determines for K poses ξk the similarity Sk. The pose
with the highest similarity is used as the prediction for the camera location.

Localization Performance
The localization error is computed for each image pair to measure the localization performance. This
error is given by,

lerror = ρground · ∥XGT −Xpred∥2. (4.1)

Here, XGT = (hGT , wGT ) and Xpred = (hpred, wpred) are the ground truth and predicted street camera
location in the satellite image in meters, respectively. The variable ρground is the ground resolution of
the satellite image in meters/pixel. We follow the convention of Xia et al. [92] and report the mean and
median localization error over all test image pairs as localization performance.

The mean localization error can be sensitive to outliers. Sometimes a satellite image has multiple
locations similar to the local surroundings visible on the street image. However, only the location with
the highest similarity is used as the prediction. Using a visually similar location as a prediction can
result in a relatively large error, and, as a result, these large errors may influence the mean error
significantly. The median error is more robust against outliers because the value of the midpoint of the
error distribution is taken.

Orientation Estimation Performance
If the street camera orientation is unknown, the orientation of the predicted pose can be used as an
estimate for the orientation. For measuring the orientation estimation performance, the absolute orien-
tation error is used. This error is given by,

θerror = min(θGT − θpred, 360
◦ − (θGT − θpred)) ∈ [0, 180◦]. (4.2)

Here, θGT and θpred are the ground truth and predicted orientation of the street camera in the satellite
image in degrees, respectively. As for the localization error, the mean and median error over all test
image pairs are reported.

4.3. Implementation Details
For SliceNet Basic and SliceNet Select, VGG16 [76] up to stage 5 is used as the feature extractor for
both branches, and the activation function and pooling operation of the last layer are removed. The
feature extractors do not share their weights, and each feature extractor’s stride is equal to 16. The
used VGG feature extractors have been pre-trained on ImageNet [22].

Each cell attention module uses two sequential convolution layers with a kernel size of 1 to create
a spatial mask given a feature volume. The first convolution layer has 64 kernels, and the number of
kernels of the second layer equals the number of masks the cell attention module needs to create. For
the street view, this is 1 mask, and for the satellite view, these are NM masks (see Subsection 3.4.2).
Before every convolutional layer, batch normalization in combination with a ReLU activation function is
used. After the second convolutional layer, a Sigmoid activation function is used to obtain the mask.

Each slice descriptor generator has the number of horizontal slices N and the number of vertical
cellsM as hyperparameters, and it has no learnable parameters. We initially set the number of horizon-
tal slices to eight for each view and present an ablation study about the effect of the number of horizontal
slices in Subsection 4.5.1. Only SliceNet Select can use more than one vertical cell per slice because
the attention masks are needed to select different features in the satellite image. So for SliceNet Basic,
one vertical cell is used. For SliceNet Select, we initially set the number of vertical cells to one, and we
present an ablation study about the effect of the number of vertical cells in Subsection 4.5.2.

Predetermined poses for loss function
The loss function (see Section 3.4) uses T negative poses and 1 positive pose, i.e., the ground truth
pose. A hyperparameter search was done to determine the appropriate number of grid locations for
training. The investigation shows that a better localization performance can be obtained if more grid
locations are used. However, the performance increase stagnates if grids are used with more than 7
locations per dimension. Therefore it has been decided to use a uniform grid of 7 x 7 locations during
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(a) Training grid (7 x 7) (b) Evaluation grid (25 x 25)

Figure 4.3: The location grid used for the training and evaluation of SliceNet. The black contour indicates the edges of
the satellite image. The resized satellite image has a resolution of 512 x 512 pixels. (a) The location grid for training. (b) The
location grid for evaluation.

the training. On the other hand, a larger grid is used for evaluation so that the street camera pose can
be accurately determined: a uniform grid of 25 x 25. Fig. 4.3 shows the grids used for the training and
evaluation.

Optimizing model parameters
For the loss function, a hyperparameter search was done with α ∈ {2, 4, 8, 16}, and based on those
results, α = 4 was taken. Furthermore, τ = 0.1 is used as was done by Oord et al. [52] and Xia et
al. [92]. The loss has been optimized by the Adam optimizer [33] with a learning rate of 10−5. For this
optimizer, the default values β1 = 0.9 and β2 = 0.999 were used. A batch size equal to four was used
for each experiment unless otherwise stated.

Input images and feature map sizes
The street and satellite images are resized to 320 x 640 pixels and 512 x 512 pixels following the
convention of Xia et al. [92]. The stride of the feature extractor is 16, and the last convolutional layer of
the feature extractor has 512 kernels. As a result, the street and satellite feature maps have a shape
of 20 x 40 x 512 and 32 x 32 x 512, respectively. The reweighed feature maps have the same spatial
size as the original feature maps.

4.4. Proof of Concept
In Section 3.3, we hypothesized whether we can learn orientation discriminative descriptors for the
street and satellite slices where descriptors of matching slices are similar, i.e., close together in the
feature space of the descriptors, and descriptors of non-matching slices are dissimilar. We refer to this
as the orientation hypothesis. The ground truth street camera pose is required for the horizontal slicing
of the satellite view. So the orientation discriminative descriptors could only be used to determine which
street slice belongs to which satellite slice. However, the slices cannot be made during inference as
this requires the ground truth street camera pose.

In order to reduce the dependence on the camera pose, we hypothesized that we can learn location
discriminative satellite slice descriptors for which the satellite slice descriptors belonging to the street
camera location are more similar to the street slice descriptors than the satellite descriptors of other
locations in the satellite image. For these location discriminative descriptors, only the ground truth
orientation is needed during inference. So if the street and satellite image are aligned, then the slicing
can be done, and the camera location can be predicted. This hypothesis is referred to as the location
hypothesis.

We further stated that the concepts for orientation and location estimation can be combined to de-
termine the location and orientation of unaligned street images. During training, the ground truth pose
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is needed, and during inference, the camera pose can then be predicted by measuring the similarity
for different poses in the satellite image. This is referred to as the pose hypothesis. We hypothesize
whether we can learn pose discriminative satellite slice descriptors for which the satellite slice descrip-
tors belonging to the street camera pose are more similar to the street slice descriptors than the satellite
descriptors of other poses in the satellite image.

For testing the hypotheses, a proof of concept experiment is designed using SliceNet Basic to
determine the camera location for aligned image pairs and the camera location and orientation for
unaligned image pairs. Three different versions of the loss function (see Section 3.4) are used to
test the hypotheses, i.e., one loss version for each hypothesis. These versions are referred to as the
orientation loss, location loss, and pose loss. The difference between the loss versions is the negative
poses that are used.

Positive pose
The street feature map has a spatial size of 20 x 40 features and is divided with horizontal slicing into
8 slices of 20 x 5 features each. The slice descriptor of each street slice is obtained by averaging the
features of the slice. The ground truth street camera pose can then be used to divide the satellite feature
map into eight slices too. These satellite slices can have different sizes depending on the camera
location in the satellite image. Similarly to the street view, the satellite slice descriptors can be obtained
by averaging the features of each slice. In this manner, eight street slice descriptors are obtained for
the street view, and eight satellite slice descriptors are obtained for the satellite view. The slice indices
are used to combine the slice descriptors into a single descriptor for each image. This results in a street
descriptor and satellite descriptor, each with a length of 4096, i.e., eight slice descriptors with a length
of 512. This satellite descriptor is used to determine the positive similarity in the loss function because
this descriptor is based on the ground truth camera pose.

Negative poses
During training, the slices of the street and satellite image must be aligned such that each street slice
overlaps with only one satellite slice so that there is one matching satellite slice for each street slice.
This results in two options for the negative poses that can be used: (1) for each location, the ground
truth orientation can be used, and (2) for each location, the N possible orientations can be used. In
the case of the first option, it is assumed that the orientation of the street image is known, while for the
second option, it is assumed that each slice has one matching satellite slice and that the orientation is
one of the N possibilities.

For the orientation hypothesis, the second option is used in combination with the ground truth loca-
tion. This results in seven negative poses since one of the eight orientations is the true orientation. The
training grid is used for the location and pose hypotheses, i.e., 7 x 7 grid locations. All grid locations
are considered negative locations even though the ground location may be close to one of the grid
locations. Such grid locations are regarded as hard negative locations. The location hypothesis uses
the ground truth orientation, so 49 negative poses are used, i.e., one pose for each grid location. In
contrast, the pose hypothesis uses all eight orientations for each location. This results in eight poses
per grid location and, thus, 392 negative poses.

Experiment
The three loss versions are used to train instances of SliceNet Basic. For training and evaluation
SliceNet, the tuning split is divided into a training and validation dataset with an 80/20 split. Evaluation
is donewith aligned and unaligned image pairs. Aligned image pairs are used to quantify the localization
performance. Since these image pairs are aligned, slicing can be done during inference, where each
slice has one matching slice in the other view. In contrast, unaligned image pairs are used to measure
localization and orientation performance. This means that each street image has a random orientation
whichmay cause the slices to be unaligned. This differs from the training objective since, during training,
each slice only overlaps with one slice in the other view. However, the purpose of this experiment is
only to test whether the learned descriptors are indeed orientation, location, or pose discriminative.
Each configuration is trained three times, and the instance with the lowest mean validation localization
error for aligned image pairs is used.
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Table 4.2: Localization error for aligned and unaligned image pairs on the tuning split of the VIGOR dataset [107]. The
orientation error is also listed for unaligned image pairs. Best performance in bold. Coarse localization denotes using the
satellite image center as the prediction and North as orientation. SliceNet Basic is denoted by SB.

Aligned image pairs Unaligned image pairs

Localization error (m) Localization error (m) Orientation error (deg)

Mean Median Mean Median Mean Median

Coarse localization 14.40 15.36 14.40 15.36 90.48 89.44
SB: Orientation loss 10.55 7.61 15.44 11.57 42.53 15.75
SB: Location loss 8.70 5.98 11.93 9.02 50.40 18.00
SB: Pose loss 8.23 6.41 11.22 8.74 39.50 15.19

Quantitative Results
The quantitative comparison between the three losses is summarized in Tab. 4.2. The performance is
also given for the coarse localization. The coarse localization, e.g., GNSS-based localization, is used to
obtain the satellite image and corresponds to the center location of the satellite image. The idea is that
street-to-satellite metric localization can improve this coarse localization. Thus, the coarse localization
is considered the baseline for the proof of concept. For the orientation estimation, North is used as the
baseline. It was expected that with North as the orientation estimate, a mean orientation error would
be obtained of about 90°. The minimum and maximum orientation errors are 0° and 180°, respectively.
Thus, 90° is the midpoint of this range. This expectation is consistent with the results since the mean
and median orientation error obtained using North as prediction are both approximately equal to 90°.

The SliceNet Basic instances have been optimized for the mean error, and the pose loss is the
best-performing loss function for both the aligned and unaligned image pairs. This result is in line
with the expectation that the generalization is better when we use more different poses, i.e., more
negative slices, during training. The training is done with aligned image pairs, thus not optimized for
street images with a random orientation. For all versions of the loss function, the localization errors
are significantly higher than those for aligned image pairs. However, this is also expected because
unaligned image pairs are more challenging because a street slice may overlap with two satellite slices.
Interestingly, training with the location loss makes the orientation estimation capability of SliceNet Basic
close to the orientation estimation capability of SliceNet Basic trained with the orientation loss.

Qualitative Results
Fig. 4.4 and Fig. 4.5 show three aligned image pairs with the similarity map that has been created with
SliceNet Basic (pose loss). It can be seen that the predicted location is close to the ground truth location
for the first and third image pair. However, Fig. 4.5b shows a relatively large region of uncertainty, and
the prediction is relatively far from the ground truth location. In general, the similarity is low for locations
located on the roof of a building, and high regions of similarity are aligned with the road. Lastly, Fig. 4.5d
shows a multi-modal output.

(a) Street image (image pair 1) (b) Satellite image (image pair 1)

Figure 4.4: Image pair 1 with the corresponding similarity map in overlay on the satellite image. SliceNet Basic (pose
loss) with eight horizontal slices has been used. The image pair is aligned. The images are part of the test split of Chicago
(same-area) of the VIGOR dataset [107].
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(a) Street image (image pair 2) (b) Satellite image (image pair 2)

(c) Street image (image pair 3) (d) Satellite image (image pair 3)

Figure 4.5: Image pairs 2 and 3 with the corresponding similarity map in overlay on the satellite image. SliceNet Basic
(pose loss) with eight horizontal slices has been used. All image pairs are aligned. The images are part of the test split of Chicago
(same-area) of the VIGOR dataset [107].

Preliminary conclusions
First, SliceNet Basic achieves significantly better mean and median orientation error for unaligned
image pairs with the orientation loss than using North as prediction. Therefore, it is concluded that
SliceNet Basic trained with the orientation loss learned orientation discriminative slice descriptors. Sec-
ond, the SliceNet Basic instance trained with the location loss achieves a considerably better mean and
median localization performance for the aligned image pairs than the coarse localization. Moreover,
a better mean and median localization performance are also obtained for the unaligned image pairs.
Therefore, it is concluded that the horizontal slices can be used to learn location discriminative de-
scriptors. Lastly, the localization and orientation error of SliceNet Basic trained with the pose loss for
unaligned image pairs is significantly better than the localization performance obtained with the coarse
localization and North as prediction. Therefore, we conclude that the horizontal slices can be used to
learn pose discriminative slice descriptors. In the other experiments, the pose loss will be used to train
SliceNet, and we will only use aligned image pairs, i.e., we do localization only.

4.5. Ablation Study
Section 4.4 presented the proof of concept for SliceNet. The results show that SliceNet Basic can
achieve better localization performance than the coarse localization, i.e., the center of the satellite
image. For that experiment, eight horizontal slices were used for both views. In Subsection 4.5.1, the
effect of the number of horizontal slices on localization performance is studied.

SliceNet Select can use the cell attention modules to select features in the street and satellite feature
maps. In this regard, a street slice can be divided into M vertical cells. Subsection 4.5.2 presents an
ablation study on the effect of the number of vertical cells on the localization performance and the effect
of using a street cell descriptor to create the mask.

4.5.1. Number of Horizontal Slices
This subsection describes the experiment for studying the effect of the number of horizontal slices on
the localization performance. The experiment is explained first, and then the quantitative and qualitative
results are presented. Finally, some conclusions are drawn based on the results.
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Experiment
In order to study the effect of the number of horizontal slices on localization performance, instances of
SliceNet Basic are trained with different values for the number of horizontal slices. Experiments are
done with 4, 8, 12, 16, 20, 24, 28, 32, 36, and 40 horizontal slices. The same training and validation
split of the tuning split is used as for the proof of concept experiment. It is assumed that image pairs
are aligned, i.e., the ground truth orientation can be used for creating the slices during inference. Each
configuration is trained three times, and the instance with the lowest mean validation localization error
is used. We do this because it has been noticed that the performance of SliceNet sometimes varies
for the same experiment. This way, we try not to let this variation affect the results.

Quantitative results
The quantitative comparison between the different numbers of horizontal slices is summarized in Tab. 4.2.
The performance of the coarse localization and SliceNet with 8 horizontal slices are from the proof of
concept experiment. In general, a lower mean and median error can be obtained by using more hor-
izontal slices. This is in line with the expectation that more horizontal slices enable a more accurate
localization because when more horizontal slices are used, a small change of the location reduces
the overlap between matching slices more. However, it can be seen that the increase in performance
saturates. The mean localization error for 8 horizontal slices is remarkably low compared to the perfor-
mance of 4, 12, 16, and 20 horizontal slices.

Table 4.3: Localization error for different number of horizontal slices on the tuning split of the VIGOR dataset [107]. Best
performance in bold. Coarse denotes the coarse localization, i.e., using the satellite view image center as the prediction.

Number of horizontal slices (N)

Coarse 4 8 12 16 20 24 28 32 36 40

Mean 14.40 9.30 8.23 9.13 8.89 8.51 8.41 8.28 8.63 8.18 8.68
Median 15.36 7.04 6.41 6.74 6.34 5.73 5.78 5.38 5.62 5.66 5.62

Qualitative results
Fig. 4.6 shows the similarity map for three different satellite images for 4, 8, and 20 horizontal slices. The
same three image pairs were used as for the proof of concept of SliceNet. It can be seen that there are
large differences between the similarity maps. The similarity maps of SliceNet with 4 horizontal slices
show relatively high uncertainty. In those similarity maps, almost every grid location has the same
similarity. However, for all three image pairs, the predicted location is close to the ground truth location.
The similarity maps of SliceNet with 8 and 20 horizontal slices show considerably less uncertainty than
those of SliceNet with 4 horizontal slices. Moreover, the similarity maps for image pair 3 show a clear
multi-modal distribution. Besides, it can be seen that the uncertainty in the similarity maps decreases
for an increasing number of horizontal slices. This is consistent with the quantitative results since they
show the trend that the mean and median localization error decreases if more horizontal slices are
used.

Preliminary conclusions
It can be concluded that both the mean and median localization error decrease if more horizontal slices
are used. Thus, a higher localization performance can be achieved with more horizontal slices. In
addition, the qualitative results show that the similarity maps show less uncertainty if more horizontal
slices are used. Both the quantitative and the qualitative results are in line with the expectation that the
localization performance improves whenmore horizontal slices are used because whenmore horizontal
slices are used, a small change of the location reduces the overlap between matching slices more.
However, the increase in localization performance does plateau when more than about 20 horizontal
slices are used. Therefore, we will use 20 horizontal slices for our best model.

4.5.2. Number of Vertical Cells
In Section 3.3, we hypothesized whether we can learn to select objects in the satellite image that
correspond to a specific vertical cell row and make discriminative cell descriptors that can be used for
localizing the street camera in the satellite image. Besides, we noted that a street cell descriptor could
be used to search for a specific cell instead of an entire vertical cell row. Therefore, we hypothesized
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(a) N = 4 (image pair 1) (b) N = 8 (image pair 1) (c) N = 20 (image pair 1)

(d) N = 4 (image pair 2) (e) N = 8 (image pair 2) (f) N = 20 (image pair 2)

(g) N = 4 (image pair 3) (h) N = 8 (image pair 3) (i) N = 20 (image pair 3)

Figure 4.6: The similarity maps for three different values for the number of horizontal slices: 4, 8, and 20. SliceNet Basic
(pose loss) has been used. The corresponding street image for each satellite image can be seen in Fig. 4.4 and Fig. 4.5. The
images are part of the test split of Chicago (same-area) of the VIGOR dataset [107].

whether we can learn to select objects in the satellite image that correspond to a specific vertical cell of
a street slice and make discriminative cell descriptors that can be used for localizing the street image
in the satellite image.

SliceNet Select reweighs the feature maps that follow from the feature extractors and divides the
column of the street image into M parts (see Section 3.4). The street cell descriptors can be used
to create the attention maps for reweighing the satellite features (see the light gray arrow in Fig. 3.8).
For this purpose, the matching map obtained by determining the cosine similarity between a street cell
descriptor and the satellite features is used in combination with the satellite feature map to create the
attention map. An ablation study has been conducted to investigate the effect of the number of vertical
cells and the use of the matching map. Two versions of SliceNet Select were investigated, namely (1)
without the matching map, i.e., SliceNet Select (w/o matching map), and (2) with the matching map,
i.e., SliceNet Select (matching map). Below, the experiment is first explained, and then the quantitative
and qualitative results are presented. Finally, some conclusions are drawn based on the results.



4.5. Ablation Study 36

Experiment
In order to study the effect of the number of vertical cells on localization performance, instances of
SliceNet Basic are trained with different values for the number of vertical cells. Eight horizontal slices
are used. Experiments are done with 1, 2, 4, and 8 vertical cells and using the matching map. The
same training and validation split of the tuning split is used as for the proof of concept. It is assumed
that image pairs are aligned, i.e., the ground truth orientation can be used for creating the slices during
inference. Each configuration is trained three times, and the instance with the lowest mean validation
localization error is used.

Quantitative results
The quantitative comparison between the different numbers of vertical slices without the use of the
matching map is summarized in Tab. 4.2. The performance of the coarse localization and no attention,
i.e., SliceNet Basic with eight horizontal slices, are from the proof of concept experiment. SliceNet
Select (w/o matching map) performs better than SliceNet Basic for all values of the number of vertical
cells. Reweighing the featuremaps does improve the performance considerably. The best performance
is obtained using only one vertical cell, and the performance decreases when the number of vertical
cells increases.

In Tab. 4.5, the quantitative comparison between the different numbers of vertical slices with the use
of the matching map is summarized. The results for SliceNet Select (matching map) show a similar
trend for the number of vertical cells, namely that the performance decreases when more vertical cells
are used. SliceNet Select (matching map) also performs better than SliceNet Basic for all used values
for the number of vertical cells. It follows from the results of Tab. 4.4 and Tab. 4.5 that using thematching
map is beneficial for the performance of SliceNet Select because using the matching map increases
the performance for values that have been used for the number of vertical cells.

Table 4.4: Localization error for different number of vertical cells for SliceNet Select (w/o matching map) on the tuning
split of the VIGOR dataset [107]. Best performance in bold. Coarse denotes the coarse localization, i.e., using the satellite
view image center as the prediction. No attentionmeans not reweighing the feature maps, and this is the performance of SliceNet
Basic from Tab. 4.2.

Number of vertical cells (M)

Center-only No attention 1 2 4 8

Mean 14.40 8.23 7.01 7.66 8.14 8.30
Median 15.36 6.41 4.92 5.48 6.03 6.20

Table 4.5: Localization error for different number of vertical cells for SliceNet Select (matching map) on the tuning split
of the VIGOR dataset [107]. Best performance in bold. Coarse denotes the coarse localization, i.e., using the satellite view
image center as the prediction. No attention means not reweighing the feature maps, and this is the performance of SliceNet
Basic from Tab. 4.2.

Number of vertical cells (M)

Center-only No attention 1 2 4 8

Mean 14.40 8.23 6.70 6.76 6.86 7.16
Median 15.36 6.41 4.78 4.94 4.96 5.29

Qualitative results
Fig. 4.7 shows the similarity map and the attention maps for two image pairs created with SliceNet
Select (w/o matching map) with one vertical cell. The similarity maps of SliceNet Select (w/o matching
map) are similar to those of SliceNet Basic: the prediction is close to the ground truth location for both
image pairs, and the similarity map is aligned with the road. Attention is used in SliceNet Select to
reweigh the features of the street and satellite feature map. The feature maps have a smaller spatial
size than the input images due to the stride of max-pooling layers of the feature extractor. However, the
attention maps can be overlaid on top of the images. The stride of the feature extractor is 16, so each
cell from an attention map corresponds to a pixel area of 16 x 16 pixels. Fig. 4.7 shows that SliceNet



4.5. Ablation Study 37

Select (w/o matching map) reweighs features that show the horizon near a road more heavily. A visible
horizon near a road indicates that the road is heading in that direction. This can be an important cue for
creating a slice descriptor. When only one vertical cell is used, the network has the freedom to reweigh
features from the entire height of the street feature map and use them to create the slice descriptor.
This means that it can be learned to give road and sky a relatively low weight and the horizon near a
road a relatively high weight, as can be seen in Fig. 4.7.

SliceNet Select (w/o matching map) with four vertical cells cannot ignore the road, and the sky as
this model is forced to create a quarter of the slice descriptor for each vertical cell. In Fig. 4.8g and 4.8h,
it can be seen that the model learns to weigh everything the same for vertical cell 4, i.e., all features
in that vertical cell are equally discriminative. Besides, in Fig. 4.8c and Fig. 4.8d, it can be seen that
SliceNet Select learns to weigh trees for vertical cell 2 more heavily in both the street image and the
satellite image. The same can be seen for the road in vertical cell 3 in Fig. 4.8e and Fig. 4.8f. In the
street image, the horizon near a road is weighed more heavily, and in the satellite image, the entire
road is weighed more heavily.

In general, vertical cells contain different content. Fig. 4.8 shows that vertical cell 2 mainly shows
trees and buildings, while vertical cell 3 shows roads and cars (transient objects). It follows from the
street and satellite attention maps of this figure that the model has learned to reweigh trees more heavily
for vertical cell 2 (see Fig. 4.8c and Fig. 4.8d) and roads for vertical cell 3 (see Fig. 4.8e and Fig. 4.8f).
So the model can learn that some vertical cells differ in content and can reweigh the features belonging
to that vertical cell more heavily in the satellite view.

Fig. 4.9 shows the similarity map and some attention maps for one image pairs that have been
created with SliceNet Select (matching map) with one vertical cell. It can be concluded that SliceNet
Select (matching map) shows similar similarity and attention maps as SliceNet Select (w/o matching
map). This version of SliceNet uses street cell descriptors to create satellite attention maps. It can
be seen that the attention maps for different street slice indices differ considerably. For example, the
attention map for street slice 2 mainly pays attention to the horizon near the road in the street image
(see Fig. 4.9c) and to the entire road in the satellite image (see Fig. 4.9d). In contrast, for street slice
8, the main focus is on the trees in both the street image and the satellite image (see Fig. 4.9g and
Fig. 4.9h).

Fig. 4.10 shows the similarity map and some attentionmaps for one image pair created with SliceNet
Select (matching map) with four vertical cells. It can be seen that the attention map for the satellite
image differs for each street image cell used. The cell in Fig. 4.10c shows the side of a building, and
in the corresponding attention mask of Fig. 4.10d, it can be seen that attention is mainly paid to the
sidewalk. Again, this version of SliceNet learns to ignore the sky. Fig. 4.10e and Fig. 4.10f show that
sky features are almost uniformly weighed with a relatively low weight compared to the weights in the
other attention masks.

Preliminary conclusions
It can be concluded that using cell attention modules can improve the localization performance of
SliceNet. For all values used for the number of vertical cells, the performance of SliceNet Select is
higher than that of SliceNet Basic. The best performance is achieved with one vertical cell. Besides,
the performance monotonically decreases if more vertical cells are used. Finally, using the matching
map improves localization performance.

In the created attention maps, it can be seen that SliceNet Select (w/o matching map) learns to pay
attention to different features in the satellite image for different vertical cells in the street image. This is
consistent with the hypothesis that we can learn to select objects in the satellite image that correspond
to a specific vertical cell row and make discriminative cell descriptors that can be used for localizing
the street camera in the satellite image. In addition, the attention maps of SliceNet Select (matching
map) show that we can learn to pay attention to certain features for a specific street vertical cell in the
satellite image. This is consistent with the hypothesis that we can learn to select objects in the satellite
image that correspond to a specific vertical cell of a street slice and make discriminative cell descriptors
that can be used for localizing the street image in the satellite image.
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(a) Street image (image pair 1) (b) Satellite image (image pair 1)

(c) Vertical cell 1 (image pair 1) (d) Vertical Cell 1 (image pair 1)

(e) Street image (image pair 2) (f) Satellite image (image pair 2)

(g) Vertical Cell 1 (image pair 2) (h) Vertical Cell 1 (image pair 2)

Figure 4.7: Image pair 1 and 2 with the corresponding similarity map in overlay on the satellite image and the attention
maps. The model that has been used is SliceNet Select (w/o matching map) with eight horizontal slices and one vertical cell. All
street attention maps use the same color bar as the satellite attention maps. All image pairs are aligned. The images are part of
the test split of Chicago (same-area) of the VIGOR dataset [107].
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(a) Street image (b) Satellite image

(c) Vertical Cell 2 (d) Vertical Cell 2

(e) Vertical Cell 3 (f) Vertical Cell 3

(g) Vertical Cell 4 (h) Vertical Cell 4

Figure 4.8: Image pair 2 with the corresponding similarity map in overlay on the satellite image and the attention maps.
The model that has been used is SliceNet Select (w/o matching map) with eight horizontal slices and four vertical cells. All street
attention maps use the same color bar as the satellite attention maps. The image pair is aligned. The images are part of the test
split of Chicago (same-area) of the VIGOR dataset [107].
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(a) Street image (b) Satellite image

(c) Vertical Cell 2 (d) Vertical Cell 2

(e) Vertical Cell 3 (f) Vertical Cell 3

(g) Vertical Cell 4 (h) Vertical Cell 4

Figure 4.9: Image pair 2 with the corresponding similarity map in overlay on the satellite image and the attention maps.
The model that has been used is SliceNet Select (matching map) with eight horizontal slices and one vertical cell. All street
attention maps use the same color bar as the satellite attention maps. The image pair is aligned. The images are part of the test
split of Chicago (same-area) of the VIGOR dataset [107].



4.5. Ablation Study 41

(a) Street image (b) Satellite image

(c) Vertical Cell 2 (d) Vertical Cell 2

(e) Vertical Cell 3 (f) Vertical Cell 3

(g) Vertical Cell 4 (h) Vertical Cell 4

Figure 4.10: Image pair 1 with the corresponding similarity map in overlay on the satellite image and the attention maps.
The model that has been used is SliceNet Select (matching map) with eight horizontal slices and four vertical cells. All street
attention maps use the same color bar as the satellite attention maps. The image pair is aligned. The images are part of the test
split of Chicago (same-area) of the VIGOR dataset [107].
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4.6. Generalization in the Same Area and Across Areas
This section compares SliceNet with the two baselines (see Section 3.2): the CVR model [107] and
the MCC model [92]. Below, the experiment is first explained. This is followed by the quantitative and
qualitative results. This section ends with preliminary conclusions.

Experiment
The same-area and cross-area settings of the VIGOR dataset are used to compare SliceNet to the
baselines. As described in Subsection 4.1.1, we corrected the ground truth labels of the VIGOR dataset
because the original labels contained an error. This means that the baselines also need to be retrained.
For training the baselines, a PyTorch implementation for the CVR model was created, and the original
TensorFlow implementation of the MCC model was used. The CVR model and the MCC model were
trained according to the original implementation details.

Several versions were trained for SliceNet. First, SliceNet Basic with eight horizontal slices was
trained since this model was used for the proof of concept of SliceNet and was used as a reference for
the performance of SliceNet Select. In addition, two versions of SliceNet Select (matching map) were
trained: (1) a version with eight horizontal slices and one vertical cell and (2) a version with twenty
horizontal slices and one vertical cell. It follows from the ablation study with the number of horizontal
slices that the localization performance increases if more horizontal slices are used. However, this
increase stagnates for about twenty horizontal slices. Therefore, it has been decided to use twenty
horizontal slices for the best model. It follows from the ablation study on the number of vertical cells
and the matching map that the best performance is achieved with one vertical cell and that the matching
map for each configuration of SliceNet Select tested improves localization performance. Therefore, the
matching map is used for both versions of SliceNet Select.

Quantitative results
Tab. 4.6 shows the results for the same-area and cross-area settings. It can be seen that SliceNet Select
with twenty horizontal slices achieves the best localization performance for the same-area setting and
the best median localization error for the cross-area setting. The mean localization error of SliceNet
Select with twenty horizontal slices is slightly higher than that of the CVR model.

Xia et al. [92] used the original ground truth labels to compare their MCC model with the coarse
localization and the CVR model. They obtained with their MCC model for the original labels the best
mean and median localization error for the same-area setting and the best median localization error
for the cross-area setting. The CVR model had a slightly better mean localization error for the cross-
area setting. This same trend can be seen in Tab. 4.6. The MCC model again has a better mean
and median localization error for the same-area setting and a better median localization error for the
cross-area setting. Also, the CVR model has a better mean localization error for the cross-area setting
this time. Therefore, it can be concluded that the performances for the retrained CVR model and MCC
model are consistent with the performances achieved for the original ground truth labels.

All trained versions of SliceNet achieve better performance than the coarse localization for both the
same-area and cross-area settings. For SliceNet, SliceNet Select with eight horizontal slices achieves

Table 4.6: Localization error for same-area and across area settings on the VIGOR dataset [107]. Best performance in
bold. Coarse localization denotes using the satellite view image center as the prediction.

Same-area Cross-area

Localization error (m) Localization error (m)

Mean Median Mean Median

Coarse localization 14.23 14.89 14.15 14.77
CVR model [107] 7.08 5.70 7.91 6.65
MCC model [92] 6.94 3.64 9.05 5.14

SliceNet Basic (N = 8) 7.75 4.51 9.08 5.84
SliceNet Select (N = 8; M = 1) 6.33 3.98 8.50 5.44
SliceNet Select (N = 20; M = 1) 5.85 3.13 7.99 4.93
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lower errors than SliceNet Basic for both settings, and SliceNet Select with twenty horizontal slices
performs even better. SliceNet Basic performs similarly to the CVR model but performs less well than
the MCCmodel. In contrast, SliceNet Select with twenty horizontal slices achieves a mean and median
localization error for the same-area setting of more than one meter and half a meter less than the
MCC model. Also, for the cross-area setting, SliceNet Select significantly outperforms the MCC model.
However, it achieves a lower mean localization error than the CVR model.

Xia et al. noted that the CVR model tends to output the average between the visually similar areas,
which can result in a location near the center, but that is intuitively unreasonable, e.g., within some
vegetation, even though it may have a smaller distance to the ground truth location. This may be the
reason that the CVR model achieves a lower mean localization error for the cross-area setting than
SliceNet Select with twenty horizontal slices. This explanation is consistent with the significantly lower
median localization error obtained by SliceNet. It follows from the localization error distribution that
SliceNet has a low localization error for a relatively large number of the image pairs, but it sometimes
predicts a location far from the ground truth location.

Qualitative results: success cases
Fig. 4.11 shows four image pairs with the corresponding similarity map in overlay on the satellite image.
SliceNet Select with twenty horizontal slices and one vertical cell has been used for the predictions. The
predictions of the CVRmodel and the MCCmodel are also plotted. However, the probability distribution
of the MCC model is not shown.

The first two image pairs of Fig. 4.11 belong to the same-area setting, while the other two image
pairs belong to the cross-area setting. It can be seen in Fig. 4.11b that both the CVR model and the
MCC model predict a location on the roof of the building, while SliceNet predicts a location near the
ground truth location. In addition, SliceNet predicts a multi-modal output, and the second peak is a
visually similar place.

In Fig. 4.11d, it can be seen that SliceNet has relatively high similarity along the road and predicts
a location near the ground truth location. In contrast, the MCC model predicts a location at the location
of a tree.

Fig. 4.11f shows a satellite image where SliceNet and the MCC model both predict near the ground
truth, while the CVR model chooses a location near the center of the satellite image. Remarkably, from
the location predicted by the CVRmodel, the trees on the street image can also be seen, however, from
a different direction. In SliceNet, the orientation information is used to create the image descriptors so
that a specific part of the descriptor indicates that trees should be visible in the western direction. In
the descriptors of the CVR model, this orientation information is not explicitly encoded.

Finally, Fig. 4.11h shows that SliceNet predicts close to the ground truth location, while both the CVR
model and the MCC model predict a location that is not visually similar to the ground truth location.

Qualitative results: failure cases
Fig. 4.12 shows some failure cases of SliceNet. Again, the first two image pairs are part of the same-
area setting, and the last two image pairs are part of the cross-area setting. SliceNet predicts for the
first image pair (see Fig. 4.12a and Fig. 4.12b) a location that is far from the ground truth location,
while both the CVR model and the MCC model predict a location close to the ground truth location.
This image pair is challenging because of the trees. However, road turnings can be seen on the street
image, while they cannot be seen at the location that SliceNet predicts. This indicates that SliceNet
may be missing a global understanding of the street image.

The second image pair shows a location at an intersection, however SliceNet predicts a location
far ahead of the intersection (see Fig. 4.12c and Fig. 4.12d). The third street image (see Fig. 4.12e)
shows a traffic circle close to the street camera, but SliceNet predicts a location far from the traffic circle.
However, SliceNet does have a second peak in the similarity map near the traffic circle.

For the last image pair, SliceNet also predicts a location that is far from the ground truth location
(see Fig. 4.12g and Fig. 4.12h). Moreover, a lot of uncertainty is visible in the similarity map. Although
the predicted location is visually similar to the ground truth location, the right part of the street image
could have been used to know that the predicted location is incorrect. In the street image, buildings
can be seen through the trees, while there are no buildings behind the trees at the predicted location
by SliceNet (East direction). More visualization can be found in Fig. B.1, Fig. B.2, and Fig. B.3.

Preliminary conclusions
It can be concluded that SliceNet achieves a lower mean and median localization error for the same-
area setting than the baselines. In addition, a lower median localization error is achieved for the cross-
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area setting. However, the mean localization error of the CVR model is slightly lower than that of
SliceNet. This can be explained by the fact that SliceNet sometimes predicts a multi-model output,
while the CVR model may predict the center between two visually similar places [92]. As a result, the
CVR model could have a lower mean error but a higher median error. This is consistent with the results
from Tab. 4.6. In addition, it can be seen on the visualizations that the CVR model indeed sometimes
predicts a location between two similarity peaks from SliceNet.

SliceNet’s failure cases indicate that SliceNet may lack a global understanding of the local surround-
ings. For some image pairs, information may be seen in the street image that contradicts the location
predicted by SliceNet. SliceNet descriptors consist of slice descriptors, each containing the encoding
of a single slice. However, the SliceNet architecture does not include an operation for modeling global
connections as can be done with self-attention [81], for example.
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(a) Street image (image pair 4) (b) Satellite image (image pair 4)

(c) Street image (image pair 5) (d) Satellite image (image pair 5)

(e) Street image (image pair 6) (f) Satellite image (image pair 6)

(g) Street image (image pair 7) (h) Satellite image (image pair 7)

Figure 4.11: Image pairs 4, 5, 6, and 7 with the corresponding similarity map in overlay on the satellite image. The model
that has been used is SliceNet Select (matching map) with twenty horizontal slices and one vertical cell. The first two image pairs
are part of the same-area setting, and the last two image pairs are part of the cross-area setting. All image pairs are aligned.
The images are part of the VIGOR dataset [107].
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(a) Street image (image pair 8) (b) Satellite (image pair 8)

(c) Street image (image pair 9) (d) Satellite image (image pair 9)

(e) Street image (image pair 10) (f) Satellite image (image pair 10)

(g) Street image (image pair 11) (h) Satellite image (image pair 11)

Figure 4.12: Image pairs 8, 9, 10, and 11 with the corresponding similarity map in overlay on the satellite image. The
model that has been used is SliceNet Select (matching map) with twenty horizontal slices and one vertical cell. The first two
image pairs are part of the same-area setting, and the last two image pairs are part of the cross-area setting. All image pairs are
aligned. The images are part of the VIGOR dataset [107].
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4.7. Runtime Performance en Number of Parameters
This section compares the runtime performance and number of parameters of SliceNet with those
of the baselines. In Section 4.6, it has been shown that SliceNet Select with twenty horizontal cells
achieves better median localization performance than the baselines for the same-area and the cross-
area settings of the VIGOR dataset [107]. However, runtime performance is also important as stated
in Subsection 3.2.1.

In order to compare runtime performance, two aspects are considered: (1) the inference speed
for a single image pair and (2) the GPU memory usage. An update frequency of at least 100 Hertz
is required for the autonomous vehicle [58], and thus the inference speed of the network for a single
image pair should be as low as possible. In addition, it is advantageous if the GPU memory usage
is low because then more memory can be used for other algorithms of the autonomous vehicle. The
number of learnable parameters of each network is also determined. This gives an indication of the
complexity of the network.

The versions of SliceNet and baselines used to test the generalization for the same-area and cross-
area settings were all tested on an NVIDIA V100 GPU with 32GB of memory. PyTorch 1.12.0 was used
to implement SliceNet and the CVR model, while TensorFlow 1.14 was used to implement the MCC
model. In order to test the inference speed, the test dataset from the same-area setting was used with
a batch size equal to one. A forward pass was then done 1000 times, and the time of each forward was
measured. The experiment results, along with the GPU memory usage and the number of learnable
parameters, are summarized in Tab. 4.7.

SliceNet Basic achieves the lowest mean and median inference speed of all models tested. In
addition, each version of SliceNet is faster than the baselines. The mean inference speed of SliceNet
Basic corresponds to about 230 frames per second. Thus, this is considerably more than the required
100 frames per second. SliceNet Select with twenty horizontal slices also achieves more than 100
frames per second, at about 170 frames per second. The CVRmodel uses by far the least GPUmemory.
In contrast, all versions of SliceNet have a significantly lower number of learnable parameters than the
baselines. Interestingly, the MCC model performs worse for the inference speed, the GPU memory
usage, and the number of learnable parameters than the CVR model and SliceNet. However, the
MCC model is the only model implemented in TensorFlow, making comparison difficult. Besides, the
inference speed and GPU memory usage depend on the implementation of the models.

Table 4.7: The runtime performance and the number of learnable parameters of SliceNet and baselines. Best performance
in bold. GPU memory denotes the GPU memory usage, and Parameters denotes the number of learnable parameters of the
network.

Method Inference speed (ms) GPU memory (MB) Parameters

Mean Median

CVR model [107] 6.4 6.3 690 47,155,714
MCC model [92] 35.6 35.7 8,161 79,696,881

SliceNet Basic (N = 8) 4.3 4.3 1,113 29,429,376
SliceNet Select (N = 8; M = 1) 5.3 5.3 1,118 29,497,284
SliceNet Select (N = 20; M = 1) 5.9 5.8 1,118 29,497,284
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Conclusion

The introduction stated that about 1.3 million people die each year due to road traffic crashes and that
road traffic injuries are even the leading cause of death for children and young adults aged 5-29 years.
Autonomous vehicles could play a significant role in assuring road safety, as more than 90 percent of all
accidents are caused by human error. Besides, automated driving could improve traffic flows, promote
the mobility and productivity of people, and improve driving comfort.

High-definition maps are crucial for safe automated driving as they contain a detailed description of
the vehicle’s surroundings. In order to use these maps, an accurate localization technique is required
to provide vehicle positioning in map coordinates. GNSS-based localization techniques can provide
global localization. However, the localization performance is poor in urban regions due to the presence
of tall buildings. As a result, there can be localization errors in the order of tens of meters. These
errors are in strong contrast with the requirements for automated driving systems based on the road
geometry standards of the United States. The required lateral en longitudinal error bounds for vehicles
operating on freeway roads are 0.57 and 1.40 meters, respectively. Besides, the road geometry makes
requirements even more stringent on local streets with lateral and longitudinal error bounds of 0.29
meters.

However, onboard vehicle sensors can be used to obtain a more accurate localization. This pro-
cess consists of two steps. The first step is to get a coarse localization for the vehicle using any rough
localization prior, and the second step is to use visual localization to improve the vehicle’s localiza-
tion and get a fine localization. In this work, cross-view image matching-based localization has been
considered for obtaining fine localization. Recent cross-view matching work proposed to localize the
street camera in a single satellite image to get an accurate localization, but these methods achieved
localization errors in the order of several meters. Although this can improve the coarse localization, the
performance is not yet high enough for using it to localize autonomous vehicles.

We observed that existing cross-view image metric localization methods create a global street image
descriptor and one or multiple satellite descriptors, and use these for predicting the camera location. In
contrast, structure-based methods employ local feature matching to estimate the 6-DoF street camera
pose and achieve centimeter-level accurate localization. Hence, we wondered whether something
similar could be done for cross-view matching, as this may be the key to improving the localization
performance of cross-view matching methods.

Unfortunately, the viewpoint difference for cross-view image matching is considerably more signif-
icant than for structure-based matching, making matching local descriptors between the street and
the satellite view more difficult. For structure-based methods, one-to-one correspondences between a
query and the reference image are available during training. In contrast, explicitly labeled correspon-
dences between the two views are unavailable for cross-view matching while learning local descriptors
requires correspondence between the two views.

However, we noted that the geometric relationship between the street and satellite view can be used
to find local correspondences. The relationship implies that every vertical line in the street image has
a corresponding azimuth direction in the satellite image. Line pairs can be used to delineate an image
slice in both images, and two belonging slices have a visual overlap.

We hypothesized that the image slices can be used for learning local correspondences between
the views. However, we noted that it is an open problem how this visual overlap can be used to learn
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the correspondences. In addition, we stated that some objects cannot be used for matching, and there-
fore, there is a need to select sparse features from the images. Besides, we noted that it is an open
problem how the local image features can be matched and how the matching can be used to determine
the street camera location. Based on the identified open problems, the main research question of this
work, as stated in the introduction (see Chapter 1), was formulated as:

How can we end-to-end learn sparse local image features across the street and
the satellite view without using explicitly labeled correspondences, and how can this

be used for localizing the street camera in the satellite image?

In order to answer the main research question, three subquestions were researched:

1. How can we end-to-end learn local image features across the street and satellite view without
using explicitly labeled correspondences?

2. How can we extract sparse features from the street and satellite view?
3. How can we use local image feature matching for localizing the street camera in the satellite

image?

In Chapter 2, the literature related to cross-view matching, local image feature matching, and exploiting
the azimuth prior has been reviewed. We noted that existing cross-view image metric localization
methods do not learn explicit local correspondences between the street and satellite view and do not
use the azimuth prior for improving the localization performance. Besides, we concluded that local
image feature matching methods use one-to-one correspondences during training, while these are
unavailable for cross-view matching. Lastly, we observed that the azimuth prior has been used to
improve the performance of cross-view image retrieval methods and related fields for mapping images
to another view. However, the prior has not been used for learning local correspondences between the
two views.

Subsequently, in Chapter 3, the methodology used to answer the research questions has been
explained. In that chapter, we first stated the problem definition of street-to-satellite image metric local-
ization. After that, we explained how sparse local matches between the street and satellite views could
be used to determine the street camera location. Then, we described the baselines against which we
compared our proposed method and explained our plan for learning local correspondences between
the views. Finally, we presented the architecture of SliceNet and compared it with that of the baselines.

Lastly, the experimental results have been presented in Chapter 4. First, it was motivated why the
VIGOR dataset [107] is used to evaluate the methods, and it was stated what metrics are used to mea-
sure the methods’ performances. After that, the implementation details of SliceNet were described,
and the proof of concept experiment for SliceNet was presented. Then, an ablation study on the effect
of the number of horizontal and vertical image slices on localization performance was presented. Sub-
sequently, SliceNet was compared to baselines for generalization in the same-area and across-areas.
Finally, the runtime performance and the number of parameters of SliceNet and the baselines were
compared.

The answers to the three subquestions are described below. This is followed by the answer to the main
research question.

First subquestion: How can we end-to-end learn local image features across the street and satellite
view without using explicitly labeled correspondences?

The horizontal field of view of the street camera can be divided into N equally-sized slices using the
azimuth prior (see Subsection 3.3.1). This prior states that each vertical line in the street image has a
corresponding azimuth direction in the satellite image. This allows the street image to be divided into N
rectangular image slices using vertical lines. In combination with the street camera pose, the azimuth
directions of these vertical lines can be used to divide the satellite image into N pie-like image slices.
Matching slices have a visual overlap. Slice descriptors can be created for each slice, and a similarity
measure can be used to measure the similarity between two descriptors.

We hypothesized that visual overlap can be used to learn that matching slice descriptors are similar
while non-matching slice descriptors are dissimilar (see Subsection 3.3.2). This was called the orienta-
tion hypothesis. We noted that creating the satellite slices requires the street camera pose. However,
other locations in the satellite image can also be used to create the satellite slices. Therefore, we
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hypothesized that the visual overlap between matching slices can be used to learn that the satellite
slice descriptors of the camera location are more similar to the street slice descriptors than the satellite
slice descriptors of any other location in the satellite image (see Subsection 3.3.3). This was called the
location hypothesis.

The orientation hypothesis relies on the assumption that the camera pose is available for slicing in
the satellite image, while the location hypothesis assumes that the orientation is known for slicing. The
pose hypothesis was proposed as the next step, namely that both the location and orientation of the
camera are not used for slicing in the satellite image. We hypothesized that the visual overlap can be
used to learn that the satellite slice descriptors of the camera pose are more similar to street slice de-
scriptors than the satellite slice descriptors of other poses in the satellite image (see Subsection 3.3.4).

In order to test these hypotheses, SliceNet Basic was developed (see Section 3.4). SliceNet Basic
extracts deep features from both images, uses horizontal slicing to divide the feature maps into slices,
and determines a descriptor for each slice. The infoNCE loss [52] was used to learn that matching slice
descriptors must be similar and non-matching slice descriptors must be dissimilar. In order to test each
hypothesis, different negative samples were used for the loss function.

The results show that SliceNet Basic can learn orientation, location, and pose discriminative local
features (see Section 4.4). Therefore, it is concluded that the azimuth prior, combined with horizontal
slicing, can be used to learn end-to-end local image features across the street and satellite view without
using explicitly labeled correspondences.

Second subquestion: How can we extract sparse features from the street and satellite view?
We noted that a street slice can be divided into vertical cells based on the semantic content visible

in the slice and called this vertical slicing. In addition, we stated that this observation could be used for
structuring the slice descriptor (see Subsection 3.3.5). A separate descriptor can be created for each
cell of a street slice, and the cell descriptors can be combined to create the street slice descriptor. How-
ever, satellite slices cannot be partitioned in a similar way. However, matching objects in the satellite
image can be selected for each vertical cell of the street image. We hypothesized that we can learn to
select objects in the satellite image that belong to a particular vertical cell row (see Subsection 3.3.5).
In addition, we argued that matching features can be searched for a single vertical cell rather than a
vertical row. Therefore, we hypothesized that we can learn to select objects in the satellite image that
belong to a particular vertical cell (see Subsection 3.3.6).

In order to test these hypotheses, SliceNet Select was developed (see Section 3.4). This is an
extension of SliceNet Basic, where each branch has an attention module to reweigh the features of a
feature map. This allows the network to give important features a higher weight than unimportant fea-
tures. In addition, SliceNet Select includes a cross-branch connection so that the street cell descriptor
can be used to select features in the satellite feature map.

It follows from the results that without the cross branch connection, SliceNet Select learns to pay
attention to different features in the satellite image for different vertical cell rows in the street image.
This is consistent with the hypothesis that we can learn to select objects in the satellite image that
correspond to a specific vertical cell row. In addition, the attention maps of SliceNet Select with the
cross branch connection show that we can learn to pay attention to certain features for a specific street
vertical cell in the satellite image. This is consistent with the hypothesis that we can learn to select
objects in the satellite image that correspond to a specific vertical cell of a street slice. Therefore, it is
concluded that attention can be used to extract sparse features for the street and satellite view.

Third subquestion: How can we use local image feature matching for localizing the street camera in
the satellite image?

For the first subquestion, it is described that horizontal slicing can be used to create image slices,
and a slice descriptor can be created for each slice. The slice descriptors of a view can be concatenated
using the spatial structure of the slicing. This results in a street image descriptor and a satellite image
descriptor. The satellite descriptor depends on the pose used in the satellite image for the slicing.
Therefore, the similarity between the street image descriptors and satellite image descriptors can be
used for localization. It can be learned that the satellite descriptor made with the street camera pose
should be more similar to the street image descriptor than the satellite image descriptors made with
other poses. During inference, different poses can be evaluated, and the true camera pose can be
estimated by choosing the pose whose satellite image descriptor has the highest similarity.

The effect of the number of horizontal image slices on localization performance was studied by
training SliceNet Basic for different values for the number of horizontal slices (see Subsection 4.5.1).
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The results show that the localization error decreases whenmore horizontal slices are used. In addition,
the qualitative results show that less uncertainty is present for the localization when more horizontal
slices are used. Both the quantitative and the qualitative results are in line with the expectation that the
localization performance improves whenmore horizontal slices are used because whenmore horizontal
slices are used, a small change of the location reduces the overlap between matching slices more.
However, the increase in localization performance does plateau when more than about 20 horizontal
slices are used.

In addition, the effect of the number of vertical cells on localization performance was studied by
training SliceNet Select for different values for the number of vertical cells (see Subsection 4.5.2). The
results show that using the attention map improves localization performance, and the best performance
is achieved for one vertical cell. The localization performance decreases monotonically when the num-
ber of vertical cells increases. Lastly, using the street cell descriptor to create the satellite attention
map, i.e., the cross branch connection, improves the localization performance.

Main research question: How can we end-to-end learn sparse local image features across the street
and the satellite view without using explicitly labeled correspondences, and how can this be used for
localizing the street camera in the satellite image?

The answer to the main research questions is obtained by combining the answers of the subques-
tions. The azimuth prior can be used to divide the street and satellite image into image slices. Each
street slice has a corresponding satellite slice and a pair of slices has a visual overlap. Subsequently,
a slice descriptor can be created for each slice, and the slice descriptors of a view can be combined
into image descriptors. The visual overlap between matching slices can be used to learn discriminative
descriptors. It can be learned that the satellite image descriptor created with the camera pose is more
similar to the street image descriptor than a satellite image descriptor created with a different pose. Dur-
ing inference, the similarity can be determined for predetermined poses, and the pose with the highest
similarity is used as the prediction. Besides, attention masks can be used to reweigh the feature maps
of the images to select features. Therefore, we conclude that we can learn sparse local image features
across the street and satellite view end-to-end without using explicitly labeled correspondences, and
the camera can be located in the satellite image. Moreover, the orientation of the street image can be
predicted if the street and the satellite image are not aligned.

In extensive experiments on the VIGOR dataset [107], we have shown that local image descriptors
can be learned to localize the street camera. After that, we showed that the localization performance
can be improved by using more horizontal slices. Then, we showed that SliceNet can learn to attend to
specific parts of the satellite image based on the content of the street image to build more discriminative
slice descriptors.

We achieve state-of-the-art performance for metric localization on the VIGOR dataset. Notably, our
method reduces the median metric localization error by 21% and 4% compared to the state-of-the-art
methods when generalizing, respectively, in the same area and across areas. In addition, SliceNet
achieves a higher inference speed than the state-of-the-art methods, and it has significantly fewer
learnable parameters. Finally, SliceNet is the first street-to-satellite image metric localization method
that can output a dense distribution for the 3-DoF pose of the street camera.

The state-of-the-art methods create a global image descriptor for the street image and match it with
one or more satellite descriptors. This combines all the information from the street image into a single
encoding, and the matching is done implicitly. These methods can learn priors about the geometric
relationship between the street and satellite image through the training objective. However, there is
no guarantee that the matching of these methods satisfies that relationship. In contrast, SliceNet con-
catenates the slice descriptors, making an image’s descriptor clearly structured. This ensures that only
slice permutations that satisfy the geometric relationship between the views are matched.

SliceNet’s failure cases indicate that SliceNet may lack a global understanding of the local surround-
ings. For some image pairs, information may be seen in the street image that contradicts the location
predicted by SliceNet. The location predicted by SliceNet is the location for which the highest similarity
is obtained. This means that if relatively many of the satellite slice descriptors match well with the street
slice descriptors, a location may be predicted for which a single street slice descriptor does not match.
However, slice descriptors do not contain information about the matching of other slice descriptors.

Despite the fact that SliceNet improves the state-of-the-art localization performance for the VIGOR
dataset, the obtained performance does not meet the requirements for localizing autonomous vehicles.
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For example, SliceNet achieves a median localization error of more than 3 meters for the same-area
setting of the VIGOR dataset, while for local streets, there is an upper bound of 0.29 meters. Therefore,
it can be concluded that there is still a large gap between the current performance achieved for street-
to-satellite image matching and the performance required for autonomous vehicles.

However, local feature matching is considered the correct direction for the cross-view image metric
localization field. The use of local feature matching makes it possible to filter matches based on the
geometric relationship between the two views. Moreover, the explicit matches can be used to better
understand the matching.

As future work, it is proposed to evaluate SliceNet for the other existing cross-view image metric local-
ization datasets such as the Oxford RobotCar dataset [46, 47, 90], the KITTI dataset [25, 72] and the
Ford multi-AV dataset [1, 72]. These datasets contain street images with a limited horizontal field of
view. The effect of this on SliceNet’s localization performance needs to be investigated.

SliceNet’s failure cases suggest that the slice descriptors lack information about the content and
matching of the other slice descriptors. Therefore, how this information could be incorporated into the
slice descriptor could be investigated. For this purpose, the SuperGlue method [63] could be examined.
This method uses self-attention (intra-image) and cross-attention (inter-image) to leverage both the
spatial relationships of features and their visual appearance.

Lastly, SliceNet determines the slices for multiple poses in the satellite image and estimates the true
camera location by using the location of the pose with the highest similarity. However, it may be more
efficient if the satellite image features were matched directly with the street features. For this purpose,
inspiration could be used from image matching methods such as SuperPoint [23] and LF-Net [51]. The
obtained one-to-onematches between the two views could then be used to determine the street camera
location as described in Subsection 3.1.2.
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A
Ground Truth Labels of VIGOR Dataset

We have visually inspected the image pairs of the VIGOR dataset and noticed a location inconsistency
between image pairs that share the street image, as can be seen in Fig. A.1. Depending on the satellite
image, the original ground truth location (yellow dot) is in different locations. However, this should be
the same visual location for all satellite images belonging to this specific street image.

The authors of the VIGOR dataset [107] have used a ground resolution equal to 0.114 meters/pixel
for all four cities of the dataset to convert the longitude and latitude of a street image to a satellite image
location. This ground resolution is based on satellite images with a size of 640 x 640 pixels. We have
measured the ground resolution ourselves, and it turns out that the ground resolutions differ per city.
The measured value for the ground resolution of New York is almost equal to the ground resolution that
the authors of the dataset have used. However, the resolutions of the other cities differ significantly
(see Tab. A.1).

Figure A.1: A street image together with the four matching satellite images. South, West, North, and East are the orange,
pink, green, and blue lines, respectively. The locations of the street image according to the original ground truth labels are
indicated by the yellow dots. The red diamonds show the corrected street image locations. The images are part of the VIGOR
dataset [107].
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Table A.1: The original ground resolution and the measured ground resolutions for the four cities of the VIGOR
dataset [107]. The original ground resolution was provided by the authors of the dataset, and the ground resolution for each city
individually was measured by ourselves. The ground resolutions correspond to satellite images with a size of 640 x 640 pixels,
and the unit of the ground resolution is meters/pixel.

Original ground resolution Chicago New York San Francisco Seattle

0.114 0.111 0.113 0.118 0.101

The difference between the original and the corrected labels has been determined. Tab. A.2 shows
statistics on the absolute error, i.e., the distance between the original and the corrected location. The
positive image pairs of the dataset were used to determine the statistics since only those image pairs
were used for the experiments (see Section 4.1). Seattle has the highest mean absolute error because
its ground resolution deviates the most from the original ground resolution (see Tab. A.1). Fig. A.2
shows histograms of the absolute error for the four cities.

Table A.2: Statistics on the absolute error of the original labels for the four cities of the VIGOR dataset [107]. The
absolute error is defined as the distance between the original and the corrected locations. Only the positive image pairs of the
dataset were used to determine the statistics.

City Absolute error (pixels) Absolute error (meters)

Min. Mean Median Max. Min. Mean Median Max.

Chicago 0.00 3.87 4.00 7.21 0.00 0.43 0.45 0.80
New York 0.00 2.18 2.24 4.14 0.00 0.25 0.25 0.47
San Francisco 0.00 3.90 4.12 8.06 0.00 0.46 0.49 0.95
Seattle 0.00 17.04 17.72 31.14 0.00 1.72 1.79 3.14

(a) Chicago (b) New York

(c) San Francisco (d) Seattle

Figure A.2: Histograms of the absolute error of the original labels for the four cities of the VIGOR dataset [107]. The
absolute error is defined as the distance between the original and the corrected locations. Only the positive image pairs of the
dataset were used to determine the statistics.
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SliceNet Prediction Visualizations

(a) Street image (image pair 13) (b) Satellite image (image pair 13)

(c) Street image (image pair 14) (d) Satellite image (image pair 14)

Figure B.1: Two image pairs with the corresponding similarity map in overlay on the satellite image. The model that has
been used is SliceNet Select (matching map) with twenty horizontal slices and one vertical cell. Both image pairs are part of the
same-area setting and are aligned. The images are part of the VIGOR dataset [107].
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(a) Street image (image pair 15) (b) Satellite image (image pair 15)

Figure B.2: One image pairs with the corresponding similarity map in overlay on the satellite image. The model that has
been used is SliceNet Select (matching map) with twenty horizontal slices and one vertical cell. The image pair is part of the
cross-area setting and is aligned. The images are part of the VIGOR dataset [107].

(a) Street image (image pair 16) (b) Satellite image (image pair 16)

(c) Street image (image pair 17) (d) Satellite image (image pair 17)

(e) Street image (image pair 18) (f) Satellite image (image pair 18)

Figure B.3: Four image pairs with the corresponding similarity map in overlay on the satellite image. The model that has
been used is SliceNet Select (matching map) with twenty horizontal slices and one vertical cell. The first image pair is part of
the same-area setting and the last two image pairs are part of the cross-area setting. All image pairs are aligned. The images
are part of the VIGOR dataset [107].
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