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Red-bond exponents of the critical and the tricritical Ising model in three dimensions
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Using the Wolff and geometric cluster algorithms and finite-size scaling analysis, we investigate the critical
Ising and the tricritical Blume-Capel models with nearest-neighbor interactions on the simple-cubic lattice. The
sampling procedure involves the decomposition of the Ising configuration into geometric clusters, each of
which consists of a set of nearest-neighboring spins of the same sign connected with bond prghatibse
clusters include the well-known Kasteleyn-Fortuin clusters as a special cape forexg—2K), whereK is
the Ising spin-spin coupling. Along the critical lin€=K, the size distribution of geometric clusters is
investigated as a function qf. We observe that, unlike in the case of two-dimensional tricriticality, the
percolation threshold in both models liesmt1-exd—-2K,). Further, we determine the corresponding red-
bond exponents ag =0.7572) and 0.5015) for the critical Ising and the tricritical Blume-Capel models,
respectively. On this basis, we conjectyye=1/2 for thelatter model.
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I. INTRODUCTION where the sung ) is over all NN pairs, an&, is the coupling
constant. A correct geometric representation of this model
Second-order thermodynamic transitions are generally aczan be obtained as follows. For each pair of NN spins in
companied by long-range correlations in both time andhe same Potts state, a bond is placed with a probability
space. Itis thus plausible that the precise microscopic strugy,=1-exg-K,), such that the whole lattice is decomposed
ture of the system under consideration becomes unimportafito groups of sites connected via the occupied bonds, which
as far as the universal aspects of the transition are concernegte known as the Kasteleyn-FortuiKF) clusters. The sta-

and transitions in many different physical systems can beistical weight of each bond-variable configuration is then
within the same universality class. It was suspected long aggiven by the partition sum

[1-6] that, as indicated by the divergence of spatial correla-
tion lengths, thermodynamic singularities near a critical Z(u,q) =X ug  (u=€e%-1), 2
point can be represented in terms of some sort of “geometric b
clusters.” For instance, one may relate spontaneous longgnhere the sum is over all bond-variable configurations, and
range order below a critical temperature to the formation ofnID and n, are the total numbers of bonds and KF clusters,
an “infinite” cluster. As early as in 1967, Fishgt] intro-  yagpectively. As early as 1932, this partition sum had already
duced a phenomenological droplet model for the tWo-gppeared in the work of Whitngit3], and the corresponding
dimensional Ising model, in which geometric clusters consisigdel is referred to as the random-cluster model. It can be
of nearest-neighboring\NN) Ising spins of the same sign. shown[9-11] that the random-cluster model can be exactly
These clusters are referred to as Ising clusters, and topolog,'happed onto thg-state Potts model. The percolation thresh-
cal consideration$7] the percolation threshold of the Ising g|d of the former occur§9—12 precisely at the thermal criti-
clusters coir!cides'with the_ thermal critical point of the Ising ¢g| point in the latter. Scaling properties of KF clusters near
model two dimensions. This statement was further rigorouslyyiticality are governed by critical exponents of the Potts
proved by Coniglio and co-worke{8]. However, it can also  model(1). For instance, the fractal dimension of KF clusters
be shown[7] that Ising clusters are too “dense” to correctly gt criticality is identical to the magnetic scaling dimension
describe critical correlations of the Ismg model. X In fact, one may view the partition suf@) as a gener-
For theg-state Potts modeffor a review, see Refl9]),  jjization of the Potts model to noninteggrlt also includes
wh|ch mcludes_: the Ising model as the special pqse, a  some special cases such @s>0 and 1, where the latter
solution was given by Kasteleyn and Fortyi0,11 in 1969.  reduces to the uncorrelated bond-percolation méaié]. It
Thg Ham.lltoman. of a lattice Potts model with nearest-\y55 pbecause of the exact mapping between Bjsand (1)
neighbor interactions only can be expressed as that Swendsen and Wang could develap] a cluster Monte
Carlo method for the Potts model with integgx1,2,....
This method and its single-cluster version, the Wolff algo-
HikeT =~ Kp2, oy (0=1,2,...00), (1) rithm [16), significantly suppress the critical-slowing-down
Y effect which is very prominent in the standard Metropolis
method. Thus, these cluster algorithms have been extensively
used in the field of critical phenomena and phase transitions.
*Present address: Laboratory for Material Science, Delft The Potts mode{l) includes the Ising model as a special
University of Technology, Rotterdamseweg 137, 2628 AL Delft, case forg=2. For other values df, one can, in the same way
The Netherlands as for the Ising clusters defined earlier, form Potts clusters
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FIG. 2. Renormalization flow for the two-dimensional tricritical
FIG. 1. Renormalization flow for the limig— 1 of the mixed ~ Blume-Capel mode(4) with D fixed at the tricritical valueD.
Ising model described by E¢3) with q=2 in two dimensions. The ~The horizontal direction is the bond probabilify in geometric
dashed lineJ=K, is for the random-cluster representation of the clusters, and KF clusters are represented by the dasheggmi
Ising model, and arrows show the directions of renormalization= €XP(=2K).
flow.
However, the renormalization scheme in Fig. 1 is not gen-

[17-19 composed of NN sites in the same Potts state. Agrally valid [21] for two-dimensional models. For instance,
expected, these Potts clusters are also on average too “largé&e consider the two-dimensional Blume-Capel mof#s]
[20,21 to account for thermodynamic singularities of the With the Hamiltonian

Potts model. In the context of the renormalization group

theory, this can be understood from a “mixed” Potts model, HIKgT = - KE SS; + DE sﬁ (4)
as described by4,6] (i) k
_ where the spins can assume the values +1 and 0, and those
Hi kBT‘_JE (5wj B 1)5‘Ti‘7j B KPZ 5lfi0j' 3 in states=0 are referred to as vacancies. The abundance

- - of vacancies is controlled by the chemical potenbalFor

The second term is just the “pureistate Potts modefl); D — ~>, the vacancies are squeezed out, and the m@el

and the first term contains an auxiliary Potts variablereéduces to the spig-model. The critical coupling is an in-
r=1,2,...s. For the case that a pair of NN sites is in the creasing function oD, and the critical line&K(D) terminates
same Potts state for both variablesand 7, a bond is placed ~at a tricritical point(K;, D,). We mention that, for the Blume-
with the probabilityp,=1-exd-J). As shown in Refs[4] Capel model4), KF clusters should be constructed with the
and[6] one can then express the partition sum of @&y.in ~ Pond-occupation probabilitypr=1-exg-2K) instead of
such bond variables, and differentiate the resulting free enPkr=1-exd-K), due to the difference between the Potts
ergy with respect to the parametrwhich is now regarded and the Ising Hamiltonians, as shown by E¢b. and (4),
as a continuous variable. Taking the lirsit- 1, one obtains respectively. For the case that the chemical potemiak
the size distribution of geometric clusters composed of NNfixed at the tricritical valueD;, the renormalization flow of
sites in the same stateconnected with probabilitp,. Thus,  the Blume-Capel mod¢R1] is sketched in Fig. 2. The bond-
these clusters include KF and Potts clusters as two specidilution field near the random-cluster fixed poige(K,) is
cases ford=K, andpy=1, respectively. now irrelevant (y, <0), and the percolation threshofg. of

The renormalization flow of the mixed Potts mod@) in geometric clusters occurs atsmaller value thanpye(Ky).
two dimensions is schematically sho21] in Fig. 1, where  Thus, at tricriticality (K;,D;), the thermodynamic singulari-
the dashed linel=K,, represents the random-cluster modelties of the Blume-Capel model can be correctly represented
(2). Near the random-cluster fixed poidt=K,=K,, the by geometric clustersas long asthe bond probability
renormalization flow along the dashed line is governed byp,> py, including Ising clusters. It has been shof@i] that
the thermal exponeny; of the Potts model. Further, on the Fig. 2 applies to the whole tricritical branch of the Potts
critical line K=K, the percolation threshold of geometric model in two dimensions.
clusters occurs precisely atJ.=K [21]. The scaling field As a result of exact solutions, Coulomb gas treatments
parametrizing the critical line neal=K,. is the bond- [23], and conformal field theorf24], the critical behavior of
dilution field [6], and the associated exponent is called thehe Potts mode{1) is now well established in two dimen-
red-bond exponeny,. In contrast to the thermal and mag- sions. The exact values of a number of critical exponents
netic ones, the red-bond expongptcharacterizes geometric are known. The geometric- and random-cluster fixed points
properties of the Potts model, and does not have a therman Figs. 1 and 2 were recently conjecturiéd] to correspond
dynamic analog. The scaling properties of geometric clustergith a pair of critical and tricritical Potts systems. These
with py> pye(K,o), including Potts clusters, are governed by two models share the same conformal anomaly, and are re-
another fixed point, shown as the black square in Fig. 1. Thitated asgg’ =16 in terms of the Coulomb gas coupling con-
fixed point is irrelevanty, <0) in the p, direction, and we stantg [23].

refer to it as the geometric-cluster fixed poj@tl]. For the For the three-dimensional Ising model, however, exact in-
two-dimensional Ising model on the square lattice, it occurdormation is scarce, so that investigations have to depend on
in the unphysical regiopg>1 [19]. approximations, including Monte Carlo simulations as a
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powerful tool. A considerable amount of research activity hasimulations become incomplete, since they act only on Ising
been carried oui25—-33. For instance, there is some consen-spins. In this case, the Metropolis method, which allows
sus that the thermal and magnetic exponentsyard.587 fluctuations of the vacancy density, can be used in combina-
andy,=2.482, with uncertainties restricted to the last deci-tion with these cluster methods. Further, for the special case
mal place. Meanwhile, geometric properties of Ising system® =2 In 2, a full-cluster simulation has also been developed
have also received some attentif88—35. For the spin% [26,37 by mapping the syster#) onto a spin% model with
model on the simple-cubic lattice, infinite Ising clusters al-two independent variables=+1 andr,==*1. Near ftricriti-
ready exist even for zero coupling const&nt0. In the low-  cality, however, no efficient cluster method is available so far
temperature phask > K., infinite Ising clusters, composed to flip between vacancies and Ising spins. This problem was
of minority Ising spins, occur at about 1R5[33-35, be- partly solved in Ref.[39] by means of the so-called
fore the critical temperature is reached. However, in thre@eometric-cluster methof38]. This algorithm was devel-
dimensions, systematic investigations have not yet been r@ped on the basis of spatial symmetries, such as invariance
ported about the renormalization flows in the parameteunder spatial inversion and rotation operations. It moves
plane(K, py), as shown in Figs. 1 and 2. Particularly, it is not groups of Ising spins and vacancies over the lattice in accor-
obvious whether or not the percolation threshold of geometdance with the Boltzmann distribution, so that the magneti-
ric clusters on the critical lineK=K; coincides with the zation and the vacancy density are conserved. We have used
random-cluster fixed point; and the red-bond exporyemé-  a combination of Metropolis, Wolff, and geometric steps,
mains to be determined. which significantly suppresses the magnitude of critical
In addition to the critical Ising model, the present paperslowing down. Such simulations, together with other tech-
also investigates the tricritical Ising model in three dimen-niques such as the aforementioned simultaneous finite-size
sions[36]. Since the upper tricritical dimensionality Gf(n)  analysis, yield39] the tricritical point ask;=0.71331) and
systems ighree exact information for some universal quan- D;=2.03323) on the simple-cubic lattice. The vacancy den-
tities is available, one of the rare cases in three dimensionsity p, at the tricritical point isp,=p,=0.6485%2) [39].
Exact values of critical exponents can be obtained froniThese results are consistent with estimati¢#8,41 from
renormalization calculationf36] of the Landau-Ginzburg- other sourcex;=0.7064), D;=2.146), and p,;=0.65246),
Wilson Hamiltonian, and even from mean-field analyses. Thevithin two times the error margins as quoted between paren-
leading and subleading thermal expondB§] arey;;=2 and  theses.
Yi,=1, and the magnetic ones ayg;=5/2 andy,=3/2, In the present work, we used a constrained version of the
respectively. However, no exact results or numerical deterBlume-Capel model described by E@), namely, the total
minations for the red-bond exponenthave been reported to number of vacancies is conserved while they are still allowed
our knowledge; and it is even not obvious where the percoto move freely over the lattice. In this case, the chemical
lation threshold of geometric clusters occurs at tricriticality. potential D in Eq. (4) becomes implicit, and a full-cluster
It seems thus justified to perform a Monte Carlo investiga-simulation is realized by using a combination of Wolff and
tion for the tricritical Ising model in three dimensions. geometric cluster steps. It is knowB9,42 that some tric-
The organization of the remaining part of this paper is agitical singularities are strongly modified under this con-
follows. Section Il reviews the simulation methods and de-straint. For instance, as already noted in R8€], the con-
fines the sampled quantities. The Monte Carlo data are anatrained specific heat only reaches a finite cusp instead of
lyzed in Sec. Ill, and Sec. IV presents a short discussion. being divergent at tricriticality. Nevertheless, the constraint
does not lead to any change of the universality class, and the
Il. MONTE CARLO METHODS AND SAMPLED tricritical indices in the constrained and the unconstrained
QUANTITIES systems are exactly related. In particular, this constraint does
not qualitatively influence phase diagrams such as Figs. 1
For simplicity, we chose the spih-and the tricritical — and 2. In comparison with the Blume-Capel mog®| simu-
Blume-Capel models as the subject of our simulations, seations of its constrained version hardly suffer from critical
that the Hamiltonian of both models can be expressed by Eglowing down even at the tricritical point. This is consistent
(4). The systems are defined on thex L XL simple-cubic  with the Li-Sokal criterio{43] which specifies a lower limit
lattice with periodic boundary conditions. for the dynamic exponent, since the constrained tricritical
For the Spin% model, as described by Eq4) for  specific heat is finitg39]. Further, over a given number of
D—-=, one can simply apply the Swendsen-Wang andsamples, the statistical error margins of most quantities in the
Wolff cluster algorithms. In this case, the critical point on the constrained system are much smaller than those in the un-
simple-cubic lattice is knowii32] as K.=0.221 654 58), constrained system, because the critical fluctuations are
where the number in parentheses is the error margin in thstrongly suppressed for the former case.
last decimal place. The finite-size analysis in R82] used a The calculations in the present paper include two parts:
technique where Monte Carlo data for 11 Ising models werehe Monte Carlo simulations and the formation of geometric
simultaneously fitted, such that universal parameters occurlusters with bond-occupation probabiliy. The latter step
only once. In the present investigation, the precision of thds performed as follows. For each pair of NN Ising spins of
above determination df is considered to be sufficient. the same sign, a uniformly distributed random numbés
However, for the general Blume-Capel modé4) in the  drawn, and a bond is placed if<pg. This is done in an
presence of vacancies, the Swendsen-Wang or Wolff clustetnalogous way as in the well-known Swendsen-Wang proce-
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FIG. 3. Dimensionless rati® for the critical spin% model in
three dimensions, vs the bond probability The data points-, X,

0, O, A, and ¢ represent finite sizes=12, 16, 20, 24, 28, and 32,
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R=(I9%(3(1%) - 2(,)), (8)

which is equal to the magnetic rat@=(n?)?/(m*) for KF
clusters, i.e., fopy=pke. For the bond probabilityy # pge,

R will be different from Q; its value reflects the geometric
cluster size distribution. Further, the scaling behavior as a
function of the distancey—pkr is governed by the red-bond
exponenty,.

IIl. RESULTS
A. Spin-3 model

respectively. The error margins of these data points are much Simulations of the spir%— model were performed at the
smaller than the size of the above symbols. The clean intersectiogritical point K.=0.221 654 583) [32], where the bond-
reveals that the location of the percolation threshold agrees with th@ccupation probability in KF clusters satisfigg(K,) =1

random-cluster critical point.

—-exp(-2K,)=0.358 091 245). The system sizes were taken
in the range 6<L <48, and we sampled the geometric quan-

dures. In this case, the whole lattice is decomposed into gedaities I,, |,, andR, and the magnetic ratiQ. Several Wolff
metric clusters. The size of each cluster, defined as the totgluster steps were carried out between consecutive sampling
number of lattice sites in the cluster, is determined and usegrocedures. Part of the data fBris shown in Fig. 3, indi-

to calculate the quantities
1 1
IZ:EE n? andl4:m2 n?, (5)
| I

wheren, is the size of theth geometric cluster, and=L3 is

the volume of the system. For KF clusters in which the bon
probability pg=pye=1-exd-2K), it can be shown that the

quantities in Eq(5) are related to the magnetizatiomas

(M) = (1) and (m*) = 3(13) - (1,). (6)

The first equality in Eq(6) is derived as follows for the spin-

cating that the percolation threshold of geometric clusters is
near pg.~0.358, consistent with the random-cluster fixed
point pke(K.). According to the least-squares criterion, we
fitted the data foR by

4

d R(pgrl—) =Rot kz rk[(pg - pgt)l-y']k
=1

3
+ E ajl—yj + C(pg - pgr)l-yfryIr + b(pg - pgc)zl—y',
i=1

9)

% model. We denote the numbers of plus and minus spins aghere R, is the universal number gi,.. The terms with
N, and N_, respectively, so that the total magnetization isamplitudesr, describe the effect of the bond-dilution field,
M=N,-N_. Since all spins in a KF cluster are of the sameand those withg; account for finite-size corrections. We set
sign,M can be written in terms of cluster sizes of KF clustersthe exponenty;=y;=-0.82X15) [32], the leading irrelevant

asM=3,;n;7, wherer; is the sign of spins in thé&h cluster.

exponent of the three-dimensional Ising universality class.

The signr, assumes +1 and -1 with equal probability, and isOther exponents of the correction terms, as described in Ref.

uncorrelated between different KF clusters. Thus, one has [32],

1 1
#:ngnlnjﬂﬂzﬁz nI2 (7)

The derivation of the second equality in E@) follows
along similar lines.

On the basis of the quantitids and l,, we define a di-
mensionless rati® as

take values y,=d-2y,,=-1.964 and y;=Yy;—2y,
=-3.375. The term witly, arises from the field dependence
of the analytic part of the free energy, and that wjthis
introduced by the nonlinear dependence of the thermal scal-
ing field on the physical magnetic field. The term with am-
plitude c accounts for the “mixed” effect of the bond-dilution
field and the irrelevant thermal field. The last term arises
from nonlinear dependence of the bond-dilution field on the
bond probabilitypy. The data foiQ were also included in the

TABLE |. The fit of the dimensionless ratiR for the critical spin% model in three dimensions. The

numbers in parentheses are the statistical errors in the last decimal place.

Yr Pc Ro r I rs
0.7572) 0.358 091 136L5) 0.62385) -0.8116) -1.012) -0.963)
r4 a; a, as b c
4.505) 0.09633) 0.1323) 1.2(8) -0.352) 0.648)
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FIG. 4. Dimensionless rati® for the tricritical Blume-Capel
model in three dimensions, vs bond probability The data points
+, X, 0, O, A, and ¢ represent finite sizels=8, 16, 24, 32, 40,
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R, and denote th& data afL3p,] and[L%p,]+1 asR, and
R,, respectively. The tricritical value dR and its statistical
error margindR are then

R=XR, + (1 -X)R, and SR= V(xdR,)2+[(1 -X) R, %,
(10

respectively, whera=L3p,;—[L3p,].

At the tricritical point(K;, p,1), the bond probability at the
random-cluster fixed point is pye(Ky)=1-exg-2K,)
=0.75991). Part of the data foR is shown in Fig. 4, which
indicates that the percolation threshold of geometric clusters

and 60, respectively. The error margins of these data points ar@lSO occurs apg(Ky). The data foR were fitted by

much smaller than the size of the above symbols.

fit by Eq. (9) with pg=pke(K,). Further, we included th®

data atK., published in Ref[32]. These data, particularly
those for larger system sizés=48, 64, 128, and 256, were
found very helpful in the numerical analysis. To obtain a
satisfactory fit by Eq(9) according to the least-squares cri-
terion, it was necessary to discard tRedata for small sys-

tem sizes L=<6. We obtain Ry=0.62388), p;
=0.358 091 36L5)=pke(K,), andy,=0.75712), where the er-

4

R(pg.L) =Ro+ > rd(Pg = P LY T+ ay/In L + ay/In® L
k=1

+ag/L +a,/L? + ag/L3 + b(py — pg L
+ C(pg - pgc)zl-yr + g(pg - ng)/LZ.

The terms with amplitudes,; anda, account for logarithmic
correctiong36] for the tricritical Ising model in three dimen-
sions, as generally expected at borderline dimensionality of

11

ror margins are quoted as two standard deviations. The estibean-field-like behavior. The last term in E(L1) arises

mation of R, is in good agreement with the Binder ratip
=0.62414) [32]. We mention that, in Eq(9), the contribu-

from the field dependence of the analytical part of the free
energy, where the factor 1.7 is obtained ad ¢ %m with

tions from the terms wittb and ¢ are significant. This is Ym=5/2 [36]. In analogy with the procedure for the spin-
indicated by Table I, which lists detailed results of the abovemodel, theQ data of Ref[39] were included in the analysis

fit.

B. Tricritical Blume-Capel model

for R with the corresponding bond probabilifyy=pxe(Ky).
After a cutoff for small system size& <8, we obtain
R,=0.6903), y,=0.5013), and py=0.759 8763) =~ pxr(Ky).
Detailed results are shown in Table I, which indicates that

Using the Wolff and geometric cluster methods, we perthe amplitudesa; and a, for logarithmic corrections are
formed simulations of the Blume-Capel model at the esti+ather small. Further, we observe that the result does not

mated ftricritical pointK;=0.71331) and p,=0.648%2).

depend on whether the term wigh is included. Taking into

Geometric clusters were formed among Ising spins, and waccount the uncertainties of the estimated tricritical point
sampled,, |,, R, andQ. The system sizes were taken in the (K;,p,;), we obtain the red-bond exponentygs 0.5015).

range 6L <60. For a finite systerh at tricriticality, how-
ever, the total number of vacanciedp,; is not always an

As mentioned earlier, for the tricritical Ising model in
three dimensions, exact values of a number of universal pa-

integer. Therefore, the actual simulations were performed atmeters, including the thermal and magnetic exponents, are

[L3p,:] and[L3p,]+1, where the brackets] denote the in-

known as integers or simple fractiof&6]. Thus, on the basis

teger part. The value of a sampled quantity at the tricriticalof the numerical resuly,=0.5015), we conjecturethat the
point were obtained by a linear interpolation of the Montered-bond exponeng,=1/2 at thethree-dimensional Blume-
Carlo data. For instance, we consider the dimensionless rati@apel tricritical random-cluster fixed point.

TABLE II. The fit of the dimensionless ratiR for the tricritical Blume-Capel model in three dimensions.
The numbers in parentheses are the statistical errors in the last decimal place.

Y Pc Ro r r rs
0.50%3) 0.759 8763) 0.6903) -0.2486) -0.061) 0.083)
ry =Y a, a3 ay as
-0.22) -0.01445) 0.044) -0.2275) 1.203) -1.02)
as b c g

1.2Q3) 4.2(5) -0.405) -2.83)
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IV. DISCUSSION

Using Monte Carlo simulations and finite-size analysis,
we have investigated geometric properties of the critica
Ising and tricritical Ising models in three dimensions. We
find that the percolation threshold of critical geometric clus-
ters occurs at the random-cluster fixed point, and the corr

sponding red-bond exponents afe=0.7512) and 0.5015)

for the above two models, respectively. Just like the therm
and magnetic exponents, the results of the red-bond expone
y, apply to a large number of systems in the same universa

ity class.

In comparison with the two-dimensional case, geometri

properties of the tricritical Ising model are “qualitatively”

different in three dimensions. In two dimensions, tricritical

KF clusters are so “densg21] that the bond-dilution field

becomes irrelevant near the random-cluster fixed point; the
percolation threshold of geometric clusters occurs before

PHYSICAL REVIEW E70, 056132(2004)

does not have a thermodynamic analog. As a consequence,
the exact value ofy, has not been obtained even for the
ricritical Ising model in three dimensions. Although the con-
fectureyrzllz is inagreement with the numerical determi-
nationy,=0.5015), further investigations seem justified. For
instance, one may ask the question whether one can dgrive
rom mean-field-like considerations.

In addition to the red-bond exponewt, there are other
eometric critical exponents, such as the fractal dimensions

“backbonesT44-44 and of “chemical” path$47]. In the
percolation theory, these exponents have received consider-
able attention and are considered to be of some physical

Gelevance. For thg— 1 Potts model, the red-bond exponent

Yy, just reduces to the thermal exponempt which is about
1.142) in three dimension§48].
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