
Red-bond exponents of the critical and the tricritical Ising model in three dimensions

Youjin Deng1,* and Henk W. J. Blöte1,2

1Faculty of Applied Sciences, Delft University of Technology, P. O. Box 5046, 2600 GA Delft, The Netherlands
2Lorentz Institute, Leiden University, P. O. Box 9506, 2300 RA Leiden, The Netherlands

(Received 21 June 2004; published 24 November 2004)

Using the Wolff and geometric cluster algorithms and finite-size scaling analysis, we investigate the critical
Ising and the tricritical Blume-Capel models with nearest-neighbor interactions on the simple-cubic lattice. The
sampling procedure involves the decomposition of the Ising configuration into geometric clusters, each of
which consists of a set of nearest-neighboring spins of the same sign connected with bond probabilityp. These
clusters include the well-known Kasteleyn-Fortuin clusters as a special case forp=1−exps−2Kd, whereK is
the Ising spin-spin coupling. Along the critical lineK=Kc, the size distribution of geometric clusters is
investigated as a function ofp. We observe that, unlike in the case of two-dimensional tricriticality, the
percolation threshold in both models lies atpc=1−exps−2Kcd. Further, we determine the corresponding red-
bond exponents asyr =0.757s2d and 0.501(5) for the critical Ising and the tricritical Blume-Capel models,
respectively. On this basis, we conjectureyr =1/2 for thelatter model.
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I. INTRODUCTION

Second-order thermodynamic transitions are generally ac-
companied by long-range correlations in both time and
space. It is thus plausible that the precise microscopic struc-
ture of the system under consideration becomes unimportant
as far as the universal aspects of the transition are concerned,
and transitions in many different physical systems can be
within the same universality class. It was suspected long ago
[1–6] that, as indicated by the divergence of spatial correla-
tion lengths, thermodynamic singularities near a critical
point can be represented in terms of some sort of “geometric
clusters.” For instance, one may relate spontaneous long-
range order below a critical temperature to the formation of
an “infinite” cluster. As early as in 1967, Fisher[1] intro-
duced a phenomenological droplet model for the two-
dimensional Ising model, in which geometric clusters consist
of nearest-neighboring(NN) Ising spins of the same sign.
These clusters are referred to as Ising clusters, and topologi-
cal considerations[7] the percolation threshold of the Ising
clusters coincides with the thermal critical point of the Ising
model two dimensions. This statement was further rigorously
proved by Coniglio and co-workers[8]. However, it can also
be shown[7] that Ising clusters are too “dense” to correctly
describe critical correlations of the Ising model.

For theq-state Potts model(for a review, see Ref.[9]),
which includes the Ising model as the special caseq=2, a
solution was given by Kasteleyn and Fortuin[10,11] in 1969.
The Hamiltonian of a lattice Potts model with nearest-
neighbor interactions only can be expressed as

H/kBT = − Kpo
ki j l

dsis j
ss = 1,2, . . . ,qd, s1d

where the sumk l is over all NN pairs, andKp is the coupling
constant. A correct geometric representation of this model
can be obtained as follows. For each pair of NN spins in
the same Potts state, a bond is placed with a probability
pKF=1−exps−Kpd, such that the whole lattice is decomposed
into groups of sites connected via the occupied bonds, which
are known as the Kasteleyn-Fortuin(KF) clusters. The sta-
tistical weight of each bond-variable configuration is then
given by the partition sum

Zsu,qd = o
b

unbqnc su = eKp − 1d, s2d

where the sum is over all bond-variable configurations, and
nb and nc are the total numbers of bonds and KF clusters,
respectively. As early as 1932, this partition sum had already
appeared in the work of Whitney[13], and the corresponding
model is referred to as the random-cluster model. It can be
shown[9–11] that the random-cluster model can be exactly
mapped onto theq-state Potts model. The percolation thresh-
old of the former occurs[9–12] precisely at the thermal criti-
cal point in the latter. Scaling properties of KF clusters near
criticality are governed by critical exponents of the Potts
model(1). For instance, the fractal dimension of KF clusters
at criticality is identical to the magnetic scaling dimension
Xh. In fact, one may view the partition sum(2) as a gener-
alization of the Potts model to nonintegerq. It also includes
some special cases such asq→0 and 1, where the latter
reduces to the uncorrelated bond-percolation model[14]. It
was because of the exact mapping between Eqs.(2) and (1)
that Swendsen and Wang could develop[15] a cluster Monte
Carlo method for the Potts model with integerq=1,2, . . . .
This method and its single-cluster version, the Wolff algo-
rithm [16], significantly suppress the critical-slowing-down
effect which is very prominent in the standard Metropolis
method. Thus, these cluster algorithms have been extensively
used in the field of critical phenomena and phase transitions.

The Potts model(1) includes the Ising model as a special
case forq=2. For other values ofq, one can, in the same way
as for the Ising clusters defined earlier, form Potts clusters
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[17–19] composed of NN sites in the same Potts state. As
expected, these Potts clusters are also on average too “large”
[20,21] to account for thermodynamic singularities of the
Potts model. In the context of the renormalization group
theory, this can be understood from a “mixed” Potts model,
as described by[4,6]

H/kBT = − Jo
ki j l

sdti,t j
− 1ddsis j

− Kpo
ki j l

dsis j
. s3d

The second term is just the “pure”q-state Potts model(1);
and the first term contains an auxiliary Potts variable
t=1,2, . . . ,s. For the case that a pair of NN sites is in the
same Potts state for both variabless andt, a bond is placed
with the probabilitypg=1−exps−Jd. As shown in Refs.[4]
and [6] one can then express the partition sum of Eq.(3) in
such bond variables, and differentiate the resulting free en-
ergy with respect to the parameters, which is now regarded
as a continuous variable. Taking the limits→1, one obtains
the size distribution of geometric clusters composed of NN
sites in the same states connected with probabilitypg. Thus,
these clusters include KF and Potts clusters as two special
cases forJ=Kp andpg=1, respectively.

The renormalization flow of the mixed Potts model(3) in
two dimensions is schematically shown[21] in Fig. 1, where
the dashed lineJ=Kp represents the random-cluster model
(2). Near the random-cluster fixed pointJ=Kp=Kpc, the
renormalization flow along the dashed line is governed by
the thermal exponentyt of the Potts model. Further, on the
critical line K=Kpc, the percolation threshold of geometric
clusters occurs precisely atJ=Jc=Kpc [21]. The scaling field
parametrizing the critical line nearJ=Kpc is the bond-
dilution field [6], and the associated exponent is called the
red-bond exponentyr. In contrast to the thermal and mag-
netic ones, the red-bond exponentyr characterizes geometric
properties of the Potts model, and does not have a thermo-
dynamic analog. The scaling properties of geometric clusters
with pg.pKFsKpcd, including Potts clusters, are governed by
another fixed point, shown as the black square in Fig. 1. This
fixed point is irrelevantsyr ,0d in the pg direction, and we
refer to it as the geometric-cluster fixed point[21]. For the
two-dimensional Ising model on the square lattice, it occurs
in the unphysical regionpg.1 [19].

However, the renormalization scheme in Fig. 1 is not gen-
erally valid [21] for two-dimensional models. For instance,
we consider the two-dimensional Blume-Capel model[22]
with the Hamiltonian

H/kBT = − Ko
ki j l

sisj + Do
k

sk
2, s4d

where the spins can assume the values ±1 and 0, and those
in state s=0 are referred to as vacancies. The abundance
of vacancies is controlled by the chemical potentialD. For
D→−`, the vacancies are squeezed out, and the model(4)
reduces to the spin-1

2 model. The critical coupling is an in-
creasing function ofD, and the critical lineKcsDd terminates
at a tricritical pointsKt ,Dtd. We mention that, for the Blume-
Capel model(4), KF clusters should be constructed with the
bond-occupation probabilitypKF=1−exps−2Kd instead of
pKF=1−exps−Kd, due to the difference between the Potts
and the Ising Hamiltonians, as shown by Eqs.(1) and (4),
respectively. For the case that the chemical potentialD is
fixed at the tricritical valueDt, the renormalization flow of
the Blume-Capel model[21] is sketched in Fig. 2. The bond-
dilution field near the random-cluster fixed pointpKFsKtd is
now irrelevant syr ,0d, and the percolation thresholdpgc of
geometric clusters occurs at asmaller value thanpKFsKtd.
Thus, at tricriticalitysKt ,Dtd, the thermodynamic singulari-
ties of the Blume-Capel model can be correctly represented
by geometric clustersas long as the bond probability
pg.pgc, including Ising clusters. It has been shown[21] that
Fig. 2 applies to the whole tricritical branch of the Potts
model in two dimensions.

As a result of exact solutions, Coulomb gas treatments
[23], and conformal field theory[24], the critical behavior of
the Potts model(1) is now well established in two dimen-
sions. The exact values of a number of critical exponents
are known. The geometric- and random-cluster fixed points
in Figs. 1 and 2 were recently conjectured[21] to correspond
with a pair of critical and tricritical Potts systems. These
two models share the same conformal anomaly, and are re-
lated asgg8=16 in terms of the Coulomb gas coupling con-
stantg [23].

For the three-dimensional Ising model, however, exact in-
formation is scarce, so that investigations have to depend on
approximations, including Monte Carlo simulations as a

FIG. 1. Renormalization flow for the limits→1 of the mixed
Ising model described by Eq.(3) with q=2 in two dimensions. The
dashed lineJ=Kp is for the random-cluster representation of the
Ising model, and arrows show the directions of renormalization
flow.

FIG. 2. Renormalization flow for the two-dimensional tricritical
Blume-Capel model(4) with D fixed at the tricritical valueDt.
The horizontal direction is the bond probabilitypg in geometric
clusters, and KF clusters are represented by the dashed linepg=1
−exps−2Kd.
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powerful tool. A considerable amount of research activity has
been carried out[25–32]. For instance, there is some consen-
sus that the thermal and magnetic exponents areyt=1.587
and yh=2.482, with uncertainties restricted to the last deci-
mal place. Meanwhile, geometric properties of Ising systems
have also received some attention[33–35]. For the spin-12
model on the simple-cubic lattice, infinite Ising clusters al-
ready exist even for zero coupling constantK=0. In the low-
temperature phaseK.Kc, infinite Ising clusters, composed
of minority Ising spins, occur at about 1.05Kc [33–35], be-
fore the critical temperature is reached. However, in three
dimensions, systematic investigations have not yet been re-
ported about the renormalization flows in the parameter
planesK ,pgd, as shown in Figs. 1 and 2. Particularly, it is not
obvious whether or not the percolation threshold of geomet-
ric clusters on the critical lineK=Kc coincides with the
random-cluster fixed point; and the red-bond exponentyr re-
mains to be determined.

In addition to the critical Ising model, the present paper
also investigates the tricritical Ising model in three dimen-
sions[36]. Since the upper tricritical dimensionality ofOsnd
systems isthree, exact information for some universal quan-
tities is available, one of the rare cases in three dimensions.
Exact values of critical exponents can be obtained from
renormalization calculations[36] of the Landau-Ginzburg-
Wilson Hamiltonian, and even from mean-field analyses. The
leading and subleading thermal exponents[36] areyt1=2 and
yt2=1, and the magnetic ones areyh1=5/2 and yh2=3/2,
respectively. However, no exact results or numerical deter-
minations for the red-bond exponentyr have been reported to
our knowledge; and it is even not obvious where the perco-
lation threshold of geometric clusters occurs at tricriticality.
It seems thus justified to perform a Monte Carlo investiga-
tion for the tricritical Ising model in three dimensions.

The organization of the remaining part of this paper is as
follows. Section II reviews the simulation methods and de-
fines the sampled quantities. The Monte Carlo data are ana-
lyzed in Sec. III, and Sec. IV presents a short discussion.

II. MONTE CARLO METHODS AND SAMPLED
QUANTITIES

For simplicity, we chose the spin-1
2 and the tricritical

Blume-Capel models as the subject of our simulations, so
that the Hamiltonian of both models can be expressed by Eq.
(4). The systems are defined on theL3L3L simple-cubic
lattice with periodic boundary conditions.

For the spin-12 model, as described by Eq.(4) for
D→−`, one can simply apply the Swendsen-Wang and
Wolff cluster algorithms. In this case, the critical point on the
simple-cubic lattice is known[32] as Kc=0.221 654 55s3d,
where the number in parentheses is the error margin in the
last decimal place. The finite-size analysis in Ref.[32] used a
technique where Monte Carlo data for 11 Ising models were
simultaneously fitted, such that universal parameters occur
only once. In the present investigation, the precision of the
above determination ofKc is considered to be sufficient.

However, for the general Blume-Capel model(4) in the
presence of vacancies, the Swendsen-Wang or Wolff cluster

simulations become incomplete, since they act only on Ising
spins. In this case, the Metropolis method, which allows
fluctuations of the vacancy density, can be used in combina-
tion with these cluster methods. Further, for the special case
D=2 ln 2, a full-cluster simulation has also been developed
[26,37] by mapping the system(4) onto a spin-12 model with
two independent variablest1= ±1 andt2= ±1. Near tricriti-
cality, however, no efficient cluster method is available so far
to flip between vacancies and Ising spins. This problem was
partly solved in Ref. [39] by means of the so-called
geometric-cluster method[38]. This algorithm was devel-
oped on the basis of spatial symmetries, such as invariance
under spatial inversion and rotation operations. It moves
groups of Ising spins and vacancies over the lattice in accor-
dance with the Boltzmann distribution, so that the magneti-
zation and the vacancy density are conserved. We have used
a combination of Metropolis, Wolff, and geometric steps,
which significantly suppresses the magnitude of critical
slowing down. Such simulations, together with other tech-
niques such as the aforementioned simultaneous finite-size
analysis, yield[39] the tricritical point asKt=0.7133s1d and
Dt=2.0332s3d on the simple-cubic lattice. The vacancy den-
sity rv at the tricritical point isrv=rvt=0.6485s2d [39].
These results are consistent with estimations[40,41] from
other sourcesKt=0.706s4d, Dt=2.12s6d, and rvt=0.652s6d,
within two times the error margins as quoted between paren-
theses.

In the present work, we used a constrained version of the
Blume-Capel model described by Eq.(4), namely, the total
number of vacancies is conserved while they are still allowed
to move freely over the lattice. In this case, the chemical
potential D in Eq. (4) becomes implicit, and a full-cluster
simulation is realized by using a combination of Wolff and
geometric cluster steps. It is known[39,42] that some tric-
ritical singularities are strongly modified under this con-
straint. For instance, as already noted in Ref.[39], the con-
strained specific heat only reaches a finite cusp instead of
being divergent at tricriticality. Nevertheless, the constraint
does not lead to any change of the universality class, and the
tricritical indices in the constrained and the unconstrained
systems are exactly related. In particular, this constraint does
not qualitatively influence phase diagrams such as Figs. 1
and 2. In comparison with the Blume-Capel model(4), simu-
lations of its constrained version hardly suffer from critical
slowing down even at the tricritical point. This is consistent
with the Li-Sokal criterion[43] which specifies a lower limit
for the dynamic exponent, since the constrained tricritical
specific heat is finite[39]. Further, over a given number of
samples, the statistical error margins of most quantities in the
constrained system are much smaller than those in the un-
constrained system, because the critical fluctuations are
strongly suppressed for the former case.

The calculations in the present paper include two parts:
the Monte Carlo simulations and the formation of geometric
clusters with bond-occupation probabilitypg. The latter step
is performed as follows. For each pair of NN Ising spins of
the same sign, a uniformly distributed random numberr is
drawn, and a bond is placed ifr ,pg. This is done in an
analogous way as in the well-known Swendsen-Wang proce-
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dures. In this case, the whole lattice is decomposed into geo-
metric clusters. The size of each cluster, defined as the total
number of lattice sites in the cluster, is determined and used
to calculate the quantities

l2 =
1

N2o
i

ni
2 and l4 =

1

N4o
i

ni
4, s5d

whereni is the size of theith geometric cluster, andN=L3 is
the volume of the system. For KF clusters in which the bond
probability pg=pKF=1−exps−2Kd, it can be shown that the
quantities in Eq.(5) are related to the magnetizationm as

km2l = kl2l and km4l = 3kl2
2l − 2kl4l. s6d

The first equality in Eq.(6) is derived as follows for the spin-
1
2 model. We denote the numbers of plus and minus spins as
N+ and N−, respectively, so that the total magnetization is
M =N+−N−. Since all spins in a KF cluster are of the same
sign,M can be written in terms of cluster sizes of KF clusters
asM =oiniti, whereti is the sign of spins in theith cluster.
The signti assumes +1 and −1 with equal probability, and is
uncorrelated between different KF clusters. Thus, one has

m2 =
1

N2o
i

o
j

ninjtit j =
1

N2o
i

ni
2. s7d

The derivation of the second equality in Eq.(6) follows
along similar lines.

On the basis of the quantitiesl2 and l4, we define a di-
mensionless ratioR as

R= kl2l2/s3kl2
2l − 2kl4ld, s8d

which is equal to the magnetic ratioQ=km2l2/ km4l for KF
clusters, i.e., forpg=pKF. For the bond probabilitypgÞpKF,
R will be different from Q; its value reflects the geometric
cluster size distribution. Further, the scaling behavior as a
function of the distancepg−pKF is governed by the red-bond
exponentyr.

III. RESULTS

A. Spin-1
2 model

Simulations of the spin-12 model were performed at the
critical point Kc=0.221 654 55s3d [32], where the bond-
occupation probability in KF clusters satisfiespKFsKcd=1
−exps−2Kcd=0.358 091 24s5d. The system sizes were taken
in the range 6øLø48, and we sampled the geometric quan-
tities l2, l4, andR, and the magnetic ratioQ. Several Wolff
cluster steps were carried out between consecutive sampling
procedures. Part of the data forR is shown in Fig. 3, indi-
cating that the percolation threshold of geometric clusters is
near pgc<0.358, consistent with the random-cluster fixed
point pKFsKcd. According to the least-squares criterion, we
fitted the data forR by

Rspg,Ld = R0 + o
k=1

4

rkfspg − pgcdLyrgk

+ o
j=1

3

ajL
yj + cspg − pgcdLy1+yr + bspg − pgcd2Lyr ,

s9d

where R0 is the universal number atpgc. The terms with
amplitudesrk describe the effect of the bond-dilution field,
and those withaj account for finite-size corrections. We set
the exponenty1=yi =−0.821s5d [32], the leading irrelevant
exponent of the three-dimensional Ising universality class.
Other exponents of the correction terms, as described in Ref.
[32], take values y2=d−2yh=−1.964 and y3=yt−2yh
=−3.375. The term withy2 arises from the field dependence
of the analytic part of the free energy, and that withy3 is
introduced by the nonlinear dependence of the thermal scal-
ing field on the physical magnetic field. The term with am-
plitudec accounts for the “mixed” effect of the bond-dilution
field and the irrelevant thermal field. The last term arises
from nonlinear dependence of the bond-dilution field on the
bond probabilitypg. The data forQ were also included in the

TABLE I. The fit of the dimensionless ratioR for the critical spin-12 model in three dimensions. The
numbers in parentheses are the statistical errors in the last decimal place.

yr pc R0 r1 r2 r3

0.757(2) 0.358 091 135(15) 0.6238(5) −0.811s6d −1.01s2d −0.96s3d

r4 a1 a2 a3 b c

4.5(5) 0.0965(3) 0.132(3) 1.2(8) −0.35s2d 0.64(8)

FIG. 3. Dimensionless ratioR for the critical spin-12 model in
three dimensions, vs the bond probabilitypg. The data points1, 3,
h, s, n, andL represent finite sizesL=12, 16, 20, 24, 28, and 32,
respectively. The error margins of these data points are much
smaller than the size of the above symbols. The clean intersection
reveals that the location of the percolation threshold agrees with the
random-cluster critical point.
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fit by Eq. (9) with pg=pKFsKcd. Further, we included theQ
data atKc, published in Ref.[32]. These data, particularly
those for larger system sizesL=48, 64, 128, and 256, were
found very helpful in the numerical analysis. To obtain a
satisfactory fit by Eq.(9) according to the least-squares cri-
terion, it was necessary to discard theR data for small sys-
tem sizes Lø6. We obtain R0=0.6238s8d, pc

=0.358 091 35s15d=pKFsKcd, andyr =0.757s2d, where the er-
ror margins are quoted as two standard deviations. The esti-
mation of R0 is in good agreement with the Binder ratioQ
=0.6241s4d [32]. We mention that, in Eq.(9), the contribu-
tions from the terms withb and c are significant. This is
indicated by Table I, which lists detailed results of the above
fit.

B. Tricritical Blume-Capel model

Using the Wolff and geometric cluster methods, we per-
formed simulations of the Blume-Capel model at the esti-
mated tricritical point Kt=0.7133s1d and rvt=0.6485s2d.
Geometric clusters were formed among Ising spins, and we
sampledl2, l4, R, andQ. The system sizes were taken in the
range 6øLø60. For a finite systemL at tricriticality, how-
ever, the total number of vacanciesL3rvt is not always an
integer. Therefore, the actual simulations were performed at
fL3rvtg and fL3rvtg+1, where the brackets[ ] denote the in-
teger part. The value of a sampled quantity at the tricritical
point were obtained by a linear interpolation of the Monte
Carlo data. For instance, we consider the dimensionless ratio

R, and denote theR data atfL3rvtg andfL3rvtg+1 asRa and
Rb, respectively. The tricritical value ofR and its statistical
error margindR are then

R= xRb + s1 − xdRa and dR= ÎsxdRbd2 + fs1 − xddRbg2,

s10d

respectively, wherex=L3rvt−fL3rvtg.
At the tricritical pointsKt ,rvtd, the bond probability at the

random-cluster fixed point is pKFsKtd=1−exps−2Ktd
=0.7599s1d. Part of the data forR is shown in Fig. 4, which
indicates that the percolation threshold of geometric clusters
also occurs atpKFsKtd. The data forR were fitted by

Rspg,Ld = R0 + o
k=1

4

rkfspg − pgcdLyrgk + a1/ln L + a2/ln
2 L

+ a3/L + a4/L
2 + a5/L

3 + bspg − pgcdLyr−1

+ cspg − pgcd2Lyr + gspg − pgcd/L2. s11d

The terms with amplitudesa1 anda2 account for logarithmic
corrections[36] for the tricritical Ising model in three dimen-
sions, as generally expected at borderline dimensionality of
mean-field-like behavior. The last term in Eq.(11) arises
from the field dependence of the analytical part of the free
energy, where the factor 1/L2 is obtained asLd−2yh1 with
yh1=5/2 [36]. In analogy with the procedure for the spin-1

2
model, theQ data of Ref.[39] were included in the analysis
for R with the corresponding bond probabilitypg=pKFsKtd.
After a cutoff for small system sizesL,8, we obtain
R0=0.690s3d, yr =0.501s3d, and pg=0.759 876s3d<pKFsKtd.
Detailed results are shown in Table II, which indicates that
the amplitudesa1 and a2 for logarithmic corrections are
rather small. Further, we observe that the result does not
depend on whether the term witha2 is included. Taking into
account the uncertainties of the estimated tricritical point
sKt ,rvtd, we obtain the red-bond exponent asyr =0.501s5d.

As mentioned earlier, for the tricritical Ising model in
three dimensions, exact values of a number of universal pa-
rameters, including the thermal and magnetic exponents, are
known as integers or simple fractions[36]. Thus, on the basis
of the numerical resultyr =0.501s5d, we conjecturethat the
red-bond exponentyr =1/2 at thethree-dimensional Blume-
Capel tricritical random-cluster fixed point.

FIG. 4. Dimensionless ratioR for the tricritical Blume-Capel
model in three dimensions, vs bond probabilitypg. The data points
1, 3, h, s, n, andL represent finite sizesL=8, 16, 24, 32, 40,
and 60, respectively. The error margins of these data points are
much smaller than the size of the above symbols.

TABLE II. The fit of the dimensionless ratioR for the tricritical Blume-Capel model in three dimensions.
The numbers in parentheses are the statistical errors in the last decimal place.

yr pc R0 r1 r2 r3

0.501(3) 0.759 876(3) 0.690(3) −0.248s6d −0.06s1d 0.08(3)

r4 a1 a2 a3 a4 a5

−0.2s2d −0.0144s5d 0.04(4) −0.227s5d 1.20(3) −1.0s2d

a5 b c g

1.20(3) 4.2(5) −0.40s5d −2.8s3d
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IV. DISCUSSION

Using Monte Carlo simulations and finite-size analysis,
we have investigated geometric properties of the critical
Ising and tricritical Ising models in three dimensions. We
find that the percolation threshold of critical geometric clus-
ters occurs at the random-cluster fixed point, and the corre-
sponding red-bond exponents areyr =0.757s2d and 0.501(5)
for the above two models, respectively. Just like the thermal
and magnetic exponents, the results of the red-bond exponent
yr apply to a large number of systems in the same universal-
ity class.

In comparison with the two-dimensional case, geometric
properties of the tricritical Ising model are “qualitatively”
different in three dimensions. In two dimensions, tricritical
KF clusters are so “dense”[21] that the bond-dilution field
becomes irrelevant near the random-cluster fixed point; the
percolation threshold of geometric clusters occurs before
pKFsKtd, and belongs to a different universality class. In three
dimensions, however, the red-bond exponentyr .0 near
pKFsKtd, so thatonly KF clusters can correctly represent ther-
modynamic singularities near tricriticality.

As mention earlier, the red-bond exponentyr describes
geometric properties of the system under consideration, and

does not have a thermodynamic analog. As a consequence,
the exact value ofyr has not been obtained even for the
tricritical Ising model in three dimensions. Although the con-
jectureyr =1/2 is in agreement with the numerical determi-
nationyr =0.501s5d, further investigations seem justified. For
instance, one may ask the question whether one can deriveyr
from mean-field-like considerations.

In addition to the red-bond exponentyr, there are other
geometric critical exponents, such as the fractal dimensions
of “backbones”[44–46] and of “chemical” paths[47]. In the
percolation theory, these exponents have received consider-
able attention and are considered to be of some physical
relevance. For theq→1 Potts model, the red-bond exponent
yr just reduces to the thermal exponentyt, which is about
1.14(2) in three dimensions[48].
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