

Delft University of Technology

A particle filter-based data assimilation framework for discrete event simulations

Xie, Xu; Verbraeck, Alexander

DOI
10.1177/0037549718798466
Publication date
2018
Document Version
Final published version
Published in
Simulation

Citation (APA)
Xie, X., & Verbraeck, A. (2018). A particle filter-based data assimilation framework for discrete event
simulations. Simulation. https://doi.org/10.1177/0037549718798466

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1177/0037549718798466
https://doi.org/10.1177/0037549718798466

Methodology

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

1–27

� The Author(s) 2018

DOI: 10.1177/0037549718798466

journals.sagepub.com/home/sim

A particle filter-based data assimilation
framework for discrete event
simulations

Xu Xie1,2 and Alexander Verbraeck1

Abstract
With the advent of new sensor technologies and communication solutions, the availability of data for discrete event sys-
tems has greatly increased. This motivates research on data assimilation for discrete event simulations that has not yet
fully matured. This paper presents a particle filter-based data assimilation framework for discrete event simulations. The
framework is formally defined based on the Discrete Event System Specification formalism. To effectively apply particle
filtering in discrete event simulations, we introduce an interpolation operation that considers the elapsed time (i.e., the
time elapsed since the last state transition) when retrieving the model state (which was ignored in related work) in
order to obtain updated state values. The data assimilation problem finally boils down to estimating the posterior distri-
bution of a state trajectory with variable dimension. This seems to be problematic; however, it is proven that in practice
we can safely apply the sequential importance sampling algorithm to update the random measure (i.e., a set of particles
and their importance weights) that approximates this posterior distribution of the state trajectory with variable dimen-
sion. To illustrate the working of the proposed data assimilation framework, a case is studied in a gold mine system to
estimate truck arrival times at the bottom of the vertical shaft. The results show that the framework is able to provide
accurate estimation results in discrete event simulations; it is also shown that the framework is robust to errors both in
the simulation model and in the data.

Keywords
Data assimilation, discrete event simulations, particle filters, state interpolation

1 Introduction

Enabled by the increased availability of data, the data

assimilation technique,1 which incorporates measured

observations into a dynamical system model to produce

a time sequence of estimated system states, is gaining

popularity. The main reason is that it can produce more

accurate estimation results than using a single source of

information from either the simulation model or the

measurements. Due to this benefit, the data assimilation

technique has been applied in many continuous systems

applications, but very little data assimilation research

has been found for discrete event simulations. With the

application of new sensor technologies and communica-

tion solutions, such as smart sensors, or Internet of

Things,2 the availability of data for discrete event sys-

tems has increased as well, such as data from machines

and processes,3 or high-resolution event data in traffic.4

The increased data availability for discrete event systems

but the lack of related data assimilation techniques thus

motivates this work on data assimilation in discrete

event simulations.

1.1 Characteristics of discrete event simulations

Discrete event systems are usually man-made dynamic sys-

tems, for example, production or assembly lines, computer/

communication networks, or traffic systems. These systems

are not easily described by (partial) differential equations or

difference equations; instead, they are modeled and simulated

1Department of Multi Actor Systems, Faculty of Technology, Policy, and

Management, Delft University of Technology, Netherlands
2Department of Modeling and Simulation, College of System Engineering,

National University of Defense Technology, China

Corresponding author:

Xu Xie, Department of Multi Actor Systems, Faculty of Technology,

Policy, and Management, Delft University of Technology, Jaffalaan 5, 2628

BX Delft, Netherlands.

Email: x.xie@hotmail.com

https://doi.org/10.1177/0037549718798466
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0037549718798466&domain=pdf&date_stamp=2018-10-03

by the discrete event approach.5 This approach abstracts the

physical time and the state of the physical system as a contin-

uous simulation time and a collection of state variables,

respectively. A point on this continuous time axis at which at

least one state variable changes is called instant.6 State

changes are only captured at discrete, but possibly random,

instants,7 where such a change in state occurring at an instant

is called an event.6 Since the discrete event approach jumps

from one event to the next, omitting the behavior in between,

it can be very efficient.8

The key characteristics of discrete event simulations

can be summarized as follows. Firstly, the model state is

defined as a collection of atomic model states, each of

which is represented by a combination of continuous and

discrete variables. Take the case study in the gold mine

system (see Section 3) as an example. The position of the

elevator is a continuous state variable; the number of

trucks that are waiting for loading is a discrete state vari-

able; and the status of the miner, that is, busy or idle, is

also a discrete state variable. Secondly, the behavior of dis-

crete event simulations is highly nonlinear, non-Gaussian.

In a discrete event simulation, the state evolution is usually

based on rules, which define what the next state will be

when the time advance expires, how to react when external

events occur, etc. These functions are highly nonlinear step

functions, because state changes in a discrete event simula-

tion happen instantaneously at the event. The Gaussian

error assumption is easily violated, since both state vari-

ables and measurements can be non-numerical. Finally,

state updates in a discrete event simulation happen locally

and asynchronously within each atomic model component;

for each atomic model component, its state is updated at

time instants lying irregularly on a continuous time axis,

and the duration between two consecutive state updates is

usually not fixed. The state trajectory of a discrete event

simulation model is thus piecewise constant, as shown in

Figure 1, which only captures changes of interest in the

real state evolution.

1.2 Data assimilation in discrete event simulations

The aim of data assimilation is to incorporate measured

(noisy) observations into a dynamical system model in

order to produce accurate estimates of all the current (and

future) state variables of the system.9 Therefore, data

assimilation relies on the following three elements to

work, namely the system model that describes the evolu-

tion of the state over time, the measurement model that

relates noisy observations to the state, and the data assimi-

lation techniques that carry out state estimation based on

information from both the model and the measurements,

and in the process address measurement and modeling

errors.1 In the literature, many data assimilation techniques

exist, such as the Kalman filter,10 the extended Kalman fil-

ter,11 and the ensemble Kalman filter.12 However, their

working relies on certain assumptions, such as the liner

model assumption or the Gaussian error assumption.13

Another powerful data assimilation technique is particle

filters.10,14 The particle filters approximate a probability

density function by a set of particles and their associated

importance weights, and therefore they put no assumption

on the properties of the system model. As a result, they

can effectively deal with nonlinear and/or non-Gaussian

applications.15–17

As explained in Section 1.1, discrete event simulations

are highly nonlinear, non-Gaussian systems, and therefore

particle filters are in principle applicable to discrete event

simulations. However, applying particle filtering in dis-

crete event simulations still encounters several theoretical

and practical problems. In discrete event simulations, state

updates happen locally and asynchronously within each

(atomic) model component, and the system state takes a

new value when one of its components has a state update.

Consequently, the time between two consecutive state

updates is usually not fixed, that is, the discrete event state

process is asynchronous with the measurement process,

which usually feeds data at fixed times. The mismatch

Figure 1. Discrete event simulation of continuous and discrete state variables. (Color online only.)

2 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

between the two processes incurs two problems that hinder

the application of particle filtering in discrete event simu-

lations. The first problem is the state retrieval problem,

which means that the model state retrieved from a discrete

event simulation model is a combination of sequential

states (without the elapsed time; see Figure 1) of atomic

components that were updated at past time instants. The

consequence of ignoring the elapsed time is that the parti-

cles will be evaluated inaccurately, since the measure-

ments are wrongly related to the states that were updated

at past time instants. This effect is evident for continuous

states (see Figure 1(a)); for discrete states (see Figure

1(b)), in order to compute the weight of a particle, one

probably needs the elapsed time to define a proper mea-

surement model that relates the discrete state to the mea-

surement. However, ignoring the elapsed time will also

make this definition and computation inaccurate. The sec-

ond problem is the variable dimension problem. The

‘‘dimension’’ refers to the dimension of a discrete event

state trajectory during a fixed time interval, which is

defined as the number of state points contained in the dis-

crete event state trajectory during that time interval. Since

the duration between two consecutive state updates in a

discrete event simulation is not fixed, the dimension of a

discrete event state trajectory during a fixed time interval

is a random variable. This will lead to inapplicability of

the standard sequential importance sampling algo-

rithm.18,19 Other practical problems, which mainly relate

to data issues, such as non-numerical data, for example,

event sequences, also make particle filtering in discrete

event simulations highly problematic.

The research closely related to the topic of this paper is

the work on data assimilation in wildfire spread simula-

tions.15,16,20,21 However, the two problems explained

above were not explicitly considered. In their work, the

simulation model for wildfire spread is a cellular

automaton-based discrete event simulation model called

DEVS-FIRE22,23; the measurements are temperature val-

ues from sensors deployed in the fire field; particle filters

are employed to assimilate these measurements into the

DEVS-FIRE model to estimate the spread of the fire front.

Since the measurement in the wildfire application is the

temperature at a time instant, and it is only related to the

system state (fire front) at the same time, their system

model can be formalized as a discrete time state space

model that only focuses on the state evolution at time

instants when measurements are available, and the detailed

evolution in between (not of interest in their application)

is done with the DEVS-FIRE model. However, when

retrieving the system state at the time instant when a mea-

surement is available, the retrieved state is only a combi-

nation of sequential states of all atomic components (i.e.,

cells), which do not reflect any elapsed time information.

As a result, errors exist, as explained in Figure 1.

1.3 Contribution and outline of this paper

In this paper, we propose a particle filter-based data assim-

ilation framework for discrete event simulations, in which

we assume that model components do not change over

time (i.e., closed systems). The measurements fed at time

step k 2 f1, 2, . . .g are assumed to be distributed over the

last measurement interval (i.e., data fed at time step k can

contain observations occurring at any time instant during

½(k � 1)DT , kDT �, where DT is the measurement interval),

implying that the measurements are dependent on the state

transitions during that interval. To define the data assimila-

tion framework formally, we adopt the Discrete Event

System Specification (DEVS) formalism8; in this frame-

work, we solve the state retrieval problem and the variable

dimension problem explained in Section 1.2. To illustrate

the working of the proposed data assimilation framework,

we study a case in a gold mine system in which noisy data

(partial event sequences, entity positions with Gaussian

errors) is assimilated into the discrete event gold mine

simulation model in order to estimate truck arrival times at

the bottom of the vertical shaft. The results show that the

proposed data assimilation framework is able to provide

accurate estimation results in discrete event simulations; it

is also shown that the proposed framework is robust to

errors both in the simulation model and in the data.

The rest of this paper is organized as follows. Section 2

presents the particle filter-based data assimilation frame-

work, which includes the system model, the measurement

model, and the particle filtering algorithm for discrete

event simulations. The case in the gold mine system is

studied in Section 3 (tailoring the generic data assimilation

framework to the specific estimation problem), Section 4

(qualitative analysis), and Section 5 (quantitative analysis).

Finally, the paper is concluded in Section 6.

2 The particle filter-based data
assimilation framework for discrete
event simulations

In this section, the proposed data assimilation framework

for discrete event simulations is presented. In order to for-

malize the data assimilation problem, we need to formalize

the state transitions in a discrete event model as an integer

indexed state process (i.e., in the same form with a discrete

time model), therefore, in Section 2.1, we show how to

achieve such formalization. In Section 2.2, the interpola-

tion operation is introduced in order to obtain updated state

values, and the measurement model is formalized accord-

ingly. On the basis of the integer indexed state process and

the measurement model, the particle filtering algorithm is

formalized in Section 2.3, in which the variable dimension

problem is addressed. Finally some practical remarks that

can help simplify the application of the data assimilation

framework are given in Section 2.4.

Xie and Verbraeck 3

2.1 System model

In order to describe the discrete event simulations for-

mally, we need to adopt certain discrete event modeling

and simulation formalism. Therefore, in Section 2.1.1, we

briefly introduce the DEVS formalism,8 which is adopted

widely in the simulation community. Subsequently, in

Section 2.1.2, we introduce how the state is evolved in a

DEVS model. Finally, in Section 2.1.3, we show how to

formalize the state transitions in a DEVS model as an inte-

ger indexed state process.

2.1.1 Discrete Event System Specification. DEVS8 allows for

the description of system behavior at two levels: the atomic

level and the coupled level. An atomic DEVS model

describes the autonomous behavior of a discrete event system

as a sequence of deterministic transitions between sequential

states over time as well as how it reacts to external input

(events) and how it generates output (events). Formally, an

atomic DEVS model M is defined by the following structure:

M =\ X , Y , S, dint, dext, l, ta .

where X and Y are the sets of input and output events, S is

a set of sequential states, dint : S ! S is the internal state

transition function, dext : Q 3 X ! S is the external state

transition function, where Q= f(s, e)js 2 S, 04 e4
ta(s)g is the total state set, e is the time elapsed since the

last transition, l : S ! Y is the output function, and

ta : S ! R+
0,‘ is the time advance function, where R

+
0,‘ is

the positive real with 0 and ‘.

Atomic models can be coupled to form a lager model.

A DEVS coupled model N is defined by the following

structure:

N =\ X , Y ,D, fMig, fIig, fZi, jg, Select . ð1Þ

where
� X and Y are the sets of input and output events of

the coupled model,
� D is a set of component names, and for each i 2 D,

Mi is an atomic DEVS model defined as follows:

Mi =\ Xi, Yi, Si, dint, i, dext, i, li, tai . , 8i 2 D

� for each i 2 D [fNg, Ii is the set of components

that are influenced by component i, and

Ii � D [fNg, i 62 Ii,
� for each j 2 Ii, Zi, j is the output-to-input translation

function, where:

Zi, j :
X ! Xj if i=N and j 2 D

Yi ! Y if i 2 D and j=N

Yi ! Xj if i 2 D and j 2 D

8<
:

� Select: 2D ! D is a tie-breaking function with

Select(E) 2 E to arbitrate the occurrence of simul-

taneous events.

DEVS models are closed under coupling, that is, the

coupling of DEVS models defines an equivalent atomic

DEVS model.24

2.1.2 State evolution in a coupled DEVS model. Consider a

coupled DEVS model N defined in Equation (1). The state

evolution of its atomic component Mi is achieved by

executing internal state transition dint, i(si) and external

state transition dext, i(si, ei, xi). In this section, we clarify

how state evolution of the coupled DEVS model N is dri-

ven by state evolutions of its atomic components.

Since DEVS models are closed under coupling,24 the

coupled DEVS model N is equivalent to an atomic DEVS

model M =\ X , Y , S, dint, dext, l, ta . (the construction

of M can be found in Vangheluwe24). The sequential state

of M (equivalent to the coupled DEVS model N) can be

represented as follows:

s=(. . . , (si, ei), . . .) 2 S = 3 i2DQi ð2Þ

where Qi = f(si, ei)jsi 2 Si, 04 ei 4 tai(si)g. The state

evolution of the coupled DEVS model is triggered by

either an internal state transition of the selected imminent

component i�,24 which transforms the different parts of the

total state as follows:

dint(s)= (. . . , (s0i, e0i), . . .)
where (s0i, e0i)

=
(dint, i(si), 0) if i= i�

(dext, i(si, ei + ta(s), Zi�, i(li�(si�))), 0) if i 2 Ii�

(si, ei + ta(s)) otherwise

8<
:

where ta(s)=minfsi = tai(si)� eiji 2 Dg

or an external state transition, which transforms the differ-

ent parts of the total state as follows:

dext(s, e, x)= (. . . , (s0i, e0i), . . .)

where (s0i, e0i)=
(dext, i(si, ei + e, ZN , i(x)), 0) if i 2 IN

(si, ei + e) otherwise

�

2.1.3 Formalize discrete event state evolution as an integer
indexed state process. In order to formalize the data assimi-

lation problem, we need to formalize the state transitions

in a DEVS model as an integer indexed state process:

x~k =(s~k , t~k)

= ((. . . , (si, ~ki
, ei, ~ki

), . . .), t~k), i 2 D;

~k = 0, 1, 2, . . . ; ~ki = 0, 1, 2, . . .

ð3Þ

where s~k 2 S is a sequential state of a coupled DEVS

model as defined in Equation (2), and t~k 2 R
+
0,‘ is the time

instant when the model transfers to state s~k , and we assign

t0 = 0. si, ~ki
2 Si is the sequential state of component

i 2 D; ei, ~ki
= t~k � ti, ~ki

is the time elapsed since component

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

i made a state transition to state si, ~ki
2 Si at time

ti, ~ki
2 R

+
0,‘. Essentially, xi, ~ki

=(si, ~ki
, ti, ~ki

) also defines an

integer indexed state process for atomic DEVS component

i 2 D. Since state evolutions of different components are

again asynchronous with each other, the state index is dif-

ferent from component to component at the same time;

therefore, the state index ~k is associated with the compo-

nent index i, that is, ~ki. Obviously, 8t~k , 9i 2 D,
s:t: t~k = ti, ~ki

, which means that a coupled model takes a

new state value when one of its atomic components has a

state update. The integer indexed state process is illu-

strated in Figure 2.

We denote the input event segment for the coupled

DEVS model as w : (t~k , t~k + ta(s~k)� ! X [=X [f[g,
where ta(s~k)= tai� (si�, ~ki�

)� ei�, ~ki�
=minfsi, ~ki

= tai(si, ~ki
)

�ei, ~ki
ji 2 Dg, that is, i� is the selected imminent compo-

nent. Based on x~k =(s~k , t~k) and the input segment w, the

next state x~k + 1 =(s~k + 1, t~k + 1) is defined as follows:

� if there is no external event during (t~k , t~k + ta(s~k)�,
that is, 9= t 2 (t~k , t~k + ta(s~k)�, s:t: w(t) 6¼ [,

x~k + 1 = (s~k + 1, t~k + 1) is determined as follows:

s~k + 1 = dint(s~k)= (. . . , (si, ~k0
i
, ei, ~k0

i
), . . .)

t~k + 1 = t~k + ta(s~k)
ð4Þ

where (si, ~k0
i
, ei, ~k0

i
) is defined as follows:

(si, ~k0
i
, ei, ~k0

i
)=

(dint, i(si, ~ki
), 0)= (si, ~ki + 1, 0) if i= i�

(dext, i(si, ~ki
, ei, ~ki

+ ta(s~k), Zi�, i(li� (si�, ~ki�
))), 0)= (si, ~ki + 1, 0) if i 2 Ii�

(si, ~ki
, ei, ~ki

+ ta(s~k)) otherwise

8><
>:

� if there exist external events during (t~k , t~k + ta(s~k)�,
that is, 9t 2 (t~k , t~k + ta(s~k)�, s:t: w(t) 6¼ [\ 9= t0 2
ðt~k ; tÞ; s:t: wðt0Þ 6¼ [, x~k + 1 =(s~k + 1, t~k + 1) is

determined as follows:

x~k + 1 = dext(s~k , t � t~k ,w(t))= (. . . , (si, ~k0
i
, ei, ~k0

i
), . . .)

t~k + 1 = t ð5Þ

where (si, ~k0
i
, ei, ~k0

i
) is defined as follows:

(si, ~k0
i
, ei, ~k0

i
)=

(dext, i(si, ~ki
, ei, ~ki

+ t � t~k , ZN , i(w(t))), 0)

= (si, ~ki + 1, 0) if i 2 IN

(si, ~ki
, ei, ~ki

+ t � t~k) otherwise

8><
>:

Finally, we can formalize the state evolution of a

coupled DEVS model as an integer indexed state process:

x~k + 1 = SIM(x~k ,w)+ n~k ,
~k = 0, 1, 2, . . . ð6Þ

where w is the input event segment and SIM is a discrete

event simulation model that transfers state x~k to x~k + 1

based on Equations (4) and (5); n~k is the process noise.

Notice that the time duration between two consecutive

state points, that is, t~k + 1 � t~k , is not a constant, but a ran-

dom variable. In this paper, we focus on closed systems;

therefore, w=[.

Figure 2. The integer indexed state process (each red circle represents a state point x~k = (s~k,t~k)). (Color online only.)

Xie and Verbraeck 5

2.2 Measurement model

The (discrete time) measurement model relates noisy

observations to the system state:

mk = gk(sk)+ ek , k = 1, 2, . . . ð7Þ

where ek is the measurement noise. Notice that the mea-

surement process is assumed to feed data at fixed times,

that is, every DT time units, and therefore the time of the

measurement process can be represented as an integer k

(the corresponding simulation time is t= kDT ; see Figure

3). The state points in the discrete event state process can

also be indexed by an integer ~k (see section 2.1.3), but

since these state points lie irregularly on the continuous

axis, we need to explicitly represent the time instants (i.e.,

t~k , which is a continuous variable) when the system trans-

fers to these states.

In a discrete event simulation, the state values are only

updated when events happen. As shown in Figure 1, if we

directly retrieve the model state at a time instant t, the

retrieved value will be a combination of sequential states

of all atomic components, which were updated at past time

instants. If these retrieved states (updated at past time

instants) were used for estimation, inaccurate estimation

results would be obtained. This will incur the state retrieval

problem, as introduced in Section 1.2. To get an updated

(thus more accurate) state value at a time instant t, we need

to consider the time elapsed since the model transfers to

the current (sequential) state as well. Therefore, we intro-

duce an interpolation operation to obtain the updated state

value, which infers the state value at a time instant t based

on the states lying around that time (i.e., neighborhood of

t). How many states are involved in the interpolation is

determined by the interpolation method we use. In the

measurement model, the time is represented by an integer

k; therefore, we define how to obtain the state value at time

k (i.e., kDT) given the integer indexed state process x~k . To

this end, we first define a neighborhood of states around

time k:

xN k
= fx~k ,

~k 2 N k(x0:‘)g

where x0:‘ = fxi, i= 0, 1, 2, . . .g is a sequence of state

points defined in Equation (3); N k(x0:‘) defines a set of

indexes of states that are required for the interpolation

operation in order to compute the state at time k. For

example, in Figure 3, if we use linear interpolation,

N k(x0:‘)= f~k � 1, ~kg. Then we can compute an updated

state by interpolation: ŝk = interpolate(xN k
). Based on ŝk ,

we can now formalize the measurement model between ŝk

and mk:

mk;p(mk ĵsk)= p(mk jxN k
) ð8Þ

which is just a reformulation of Equation (7).

In this research, we want to generalize the measurement

model to include situations where measurements are

dependent on the state trajectory, that is, the history of

state transitions, which means that mk will contain obser-

vations that are distributed over the last measurement

interval ½(k � 1)DT , kDT �. This assumption holds in many

applications, such as vehicle passages (event data) col-

lected at a loop detector during 1 minute.4 In this case, the

measurement mk is not only related to a specific state at a

time instant, but also related to a sequence of states over a

period of time. Therefore, we define a generalized form of

the measurement model:

mk;p(mk jxN+
k�1 + 1:N+

k
) ð9Þ

where N+
k =maxfi 2 N kg, and xN+

k�1 + 1:N+
k
represents a

sequence of states that are indexed from N+
k�1 + 1 toN+

k .

2.3 State estimation using particle filters
2.3.1 Principles of particle filters. A general discrete time

state evolution can be expressed by the following:

sk = fk(sk�1)+ nk�1, k = 1, 2, . . .

where fk is a possibly nonlinear function of the state sk�1
and nk�1 is the process noise. The measurement at time k

is given by the following:

mk = gk(sk)+ ek , k = 1, 2, . . .

where gk is possibly a nonlinear function that maps the

state to the measurement and ek is the measurement noise.

The objective of the particle filter is to estimate the

conditional distribution of all states up to time k given all

available measurements up to k, that is, p(s0:k jm1:k), where

Figure 3. Time representation of the discrete event state process (each black dot indicates a state update) and the (discrete time)
measurement process (each black dot represents the arrival of a measurement).

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

s0:k=fsi, i= 0, 1, 2, . . . , kg, m1:k = fmj, j= 1, 2, . . . , kg.
Since an analytic solution of p(s0:k jm1:k) is usually intract-

able, we generate a set of Monte Carlo samples (particles)

with their associated weights to approximate this posterior

distribution. If the number of particles is sufficiently large,

the posterior can be approximated to an arbitrary accu-

racy.10,14 With this sample of particles all relevant statisti-

cal moments can be obtained using standard Monte Carlo

integration techniques.

Let xk = fsi
0:k ,w

i
kg

Np

i= 1 represent a random measure

that characterizes the posterior distribution p(s0:k jm1:k),

where fsi
0:kg

Np

i= 1 is a set of support points (particles) and

fwi
kg

Np

i= 1 the set of associated weights. Then p(s0:k jm1:k)

can be approximated as follows:

p(s0:k jm1:k)’
XNp

i= 1

wi
kd(s0:k � si

0:k) ð10Þ

where d(�) is the Dirac delta function. A very important

concept in particle filtering is the principle of importance

sampling. If we can generate the particles fsi
0:kg

Np

i= 1 from

p(s0:k jm1:k), each of them will be assigned a weight equal

to 1=Np. However, direct sampling from p(s0:k jm1:k) is usu-

ally intractable. An alternative (i.e., importance sampling)

is to generate the particles from a distribution q(s0:k jm1:k),
known as importance density,10,14 and assign weights

according to the following:

wi
k =

p(si
0:k jm1:k)

q(si
0:k jm1:k)

Based on Bayes’ theorem, p(s0:k jm1:k) can be expressed as

p(s0:k jm1:k)=
p(s0:k)p(m1:k js0:k)

p(m1:k)
. Similarly, we have

p(s0:k�1jm1:k�1)=
p(s0:k�1)p(m1:k�1js0:k�1)

p(m1:k�1)
. Therefore, we

can obtain a sequential update equation as follows:

p(s0:k jm1:k)=
p(mk jsk)p(sk jsk�1)p(s0:k�1jm1:k�1)

p(mk jm1:k�1)

} p(mk jsk)p(sk jsk�1)p(s0:k�1jm1:k�1):

ð11Þ

In the case that the importance density is chosen to

factorize such that q(s0:k jm1:k)= q(sk js0:k�1,m1:k)
q(s0:k�1jm1:k�1), the random measure xk�1 =

fsi
0:k�1,w

i
k�1g

Np

i= 1 can be updated sequentially whenever

new measurements mk become available. The procedure

then becomes the following:

� obtain samples si
0:k;q(s0:k jm1:k) by augmenting

samples from the previous time step

si
0:k�1;q(s0:k�1jm1:k�1) with the new state

si
k;q(sk jsi

0:k�1,m1:k);

� update weights by the following:

wi
k =

p(si
0:k jm1:k)

q(si
0:k jm1:k)

}
p(mk jsi

k)p(s
i
k jsi

k�1)p(s
i
0:k�1jm1:k�1)

q(si
k jsi

0:k�1,m1:k)q(s
i
0:k�1jm1:k�1)

=
p(mk jsi

k)p(s
i
k jsi

k�1)

q(si
k jsi

0:k�1,m1:k)
wi

k�1

If we assume that q(sk js0:k�1,m1:k)= q(sk jsk�1,mk),
that is, the importance density depends on sk�1 and mk

only, we have the following:

wi
k }

p(mk jsi
k)p(s

i
k jsi

k�1)

q(si
k jsi

k�1,mk)
wi

k�1 ð12Þ

A pragmatic choice for the importance density is the

system transition density, that is, q(sk jsk�1,mk)=
p(sk jsk�1). As a result, Equation (12) simplifies to the

following:

wi
k } p(mk jsi

k)w
i
k�1 ð13Þ

A major problem of particle filters is that the discrete

random measure degenerates quickly.10,14 In other words,

most particles except for a few are assigned negligible

weights. The solution is to resample the particles after they

are updated. Different resampling algorithms and methods

exist to determine when resampling is necessary.10,14,25 A

simple and often adopted resampling method is to repli-

cate particles in proportion to their weights. It has been

shown that a sufficiently large number of particles are able

to converge to the true posterior distribution even in non-

linear, non-Gaussian dynamic systems.10,14

2.3.2 Application in discrete event simulations. Consider a dis-

crete event system with sensors deployed to monitor its

operation. The measurement fed at time k, that is, mk , con-

tains the partial observations of the system collected during

the last measurement interval ½(k � 1)DT , kDT �. We are

interested in the conditional distribution of the state trajec-

tory x0:N+
k
, given all measurements, that is, p(x0:N+

k
jm1:k).

Based on Bayes’ theorem, p(x0:N+
k
jm1:k) can be expressed

as p(x0:N+
k
jm1:k)=

p(x0:N+
k
)p(m1:k jx0:N+

k
)

p(m1:k)
. Similarly, we

have p(x0:N+
k�1
jm1:k�1)=

p(x0:N+
k�1
)p(m1:k�1jx0:N+

k�1
)

p(m1:k�1)
.

Therefore, we have the following:

p(x0:N+
k
jm1:k)

p(x0:N+
k�1
jm1:k�1)

=
p(mk jxN+

k�1 + 1:N+
k
)p(xN+

k�1 + 1:N+
k
jxN+

k�1
)

p(mk jm1:k�1)

Consequently, we can obtain a sequential update equation:

Xie and Verbraeck 7

p(x0:N+
k
jm1:k)=

p(mk jxN+
k�1 + 1:N+

k
)p(xN+

k�1 + 1:N+
k
jxN+

k�1
)

p(mk jm1:k�1)

3 p(x0:N+
k�1
jm1:k�1)

} p(mk jxN+
k�1 + 1:N+

k
)p(xN+

k�1 + 1:N+
k
jxN+

k�1
)

3 p(x0:N+
k�1
jm1:k�1)

ð14Þ

This sequential update equation is similar in form to

that in Equation (11), but an important difference here is

that N+
k is a random variable, which means that the

dimension of x0:N+
k
, that is, the number of state points in

x0:N+
k
, is also random. The variable dimension problem

will lead to inapplicability of the standard sequential

importance sampling algorithm (see section 2.3.1).18,19

In Godsill et al.,19 the authors proposed a solution to solve

the variable dimension problem. Instead of estimating

p(x0:N+
k
jm1:k) directly, they estimate p(x0:K jm1:k), where

x0:K consists of two segments: x0:N+
k

(our interest) and

xN+
k + 1:K (extension). K is a sufficiently large constant inte-

ger such that for every k, the neighborhood xN k
is complete.

If xN k
contains all state points that are required for interpola-

tion at time k, we say that xN k
is complete. Since x0:K has

fixed dimension, the standard sequential importance sampling

algorithm can be applied. Once samples from joint distribu-

tion p(x0:K jm1:k) are available, samples from its marginal

p(x0:N+
k
jm1:k) can be obtained from the original joint samples

by simply discarding the components (i.e., xN+
k + 1:K) that

are not of interest and retaining the original weights. Finally,

the weight is updated by the following:

wk =
p(x0:K jm1:k)

q(x0:K jm1:k)

}
p(mk jxN+

k�1 + 1:N+
k
)p(xN+

k�1 + 1:N+
k
jxN+

k�1
)

q(xN+
k�1 + 1:N+

k
jx0:N+

k�1
,m1:k)

3 wk�1

ð15Þ

where q(�) is the importance density. The weight update is

independent of states xN+
k + 1:K and, as a result, the exten-

sion xN+
k + 1:K is never generated in practice. More detailed

proof can be found in Godsill et al.19 and Godsill and

Vermaak.18

Suppose we have a large number Np of weighted sam-

ples xk�1 = fxi

0:N+
k�1
,wi

k�1g
Np

i= 1, which approximate the

posterior distribution p(x0:N+
k�1
jm1:k�1) at the previous time

step; when new measurement mk is available, samples

xk = fxi

0:N+
k

,wi
kg

Np

i= 1, which approximate the posterior

distribution p(x0:N+
k
jm1:k) at time k, can be obtained by

Algorithm 1.

2.4 Practical remarks
2.4.1 The sampling procedure. As shown in Algorithm 1,

once N+
k is complete, one can stop generating new state

points. This stopping condition is quite straightforward to

check in simple models, for example, the equation-based

model. However, in discrete event simulations that involve

a large number of interacting components, this stopping

condition is not easy to capture since the model is

Algorithm 1. A generic particle filter for discrete event simulations.

1. % initialization of particles at k= 0
2. for i= 1 : Np do
3. generate the i-th sample xi

0 = (si
0,ti0), where si

0 ∼ p(s0) (p(s0) is the probability distribution of the initial state), and ti0 = 0
4. set weight wi

0 = 1=Np

5. end
6. % the sampling step for any time kø1
7. for i= 1 : Np do
8. sample particles according to the importance density q(·):

• set j=N +i

k�1
• while N k

i
is incomplete:

- set j= j+ 1
- sample xi

j ∼ q(xjjxi
0:j�1,m1:k)

set N +i

k = j, and append the newly generated states to particle: xi
0:N+

k

= (xi
0:N+

k�1
,xi
N+

k�1 + 1:N +
k

), where N +
0 ≡ 0

update weight:

wi
k /

p(mkjxi
N+

k�1 + 1:N +
k

)p(xi
N+

k�1 + 1:N+
k

jxi
N +

k�1
)

q(xi
N+

k�1 + 1:N +
k

jxi
0:N+

k�1
,m1:k)

×wi
k�1

9. end

10. normalize the weights, such that
PNp

i= 1 wi
k = 1

11. % the resampling step

12. resample particles fxi
0:N +

k

,wi
kg

Np

i= 1 based on the chosen resampling method, which can be found in Douc et al.25

8 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

separated from its simulator. One possible solution is to

put a little more effort into modeling by adding certain

attributes that can make the interpolation operation con-

ducted at a time instant independent of the states beyond

that time. This solution is reasonable since the causal rela-

tionship should be obeyed in the modeling process, which

means that the current state should not be influenced by

events that will happen in the future. For example, in the

gold mine case that will be studied in subsequent sections,

we have a speed attribute for moving entities; as a conse-

quence, when we need to get an entity position at a time

instant, we only need the last updated state (which con-

tains speed and location) and the elapsed time to fulfill lin-

ear interpolation in order to get updated entity positions.

The two state generation processes are compared in

Figure 4. The blue and red dots represent state points in a

discrete event state process. Specifically, the blue dots rep-

resent state points generated in the (k � 1)-th data assimila-

tion iteration, while the red dots are generated in the k-th

iteration. Suppose now we need to obtain the state value at

time instant kDT using linear interpolation. In the state

generation process in Algorithm 1 (Figure 4(a)), the dis-

crete event simulation needs to generate one more state

point beyond time instant kDT to apply linear interpolation.

In contrast, if the interpolation operation at a time instant is

independent of state points beyond that time (Figure 4(b)),

we can simply stop the simulation at time instant kDT ,

since we only need one state point that lies on the left-hand

side of kDT and the elapsed time to fulfill linear interpola-

tion. The benefit of the state generation process in Figure

4(b) is that we do not need to check the stopping condition

any more, and we can simply stop state generation (e.g.,

the simulation execution) at time instant kDT and all infor-

mation is already sufficient for interpolation. In follow-on

iterations, new states will then be generated from the inter-

polated state. In such a case, the sequential update rule in

Equation (14) will be simplified to the following:

p(x0:N+
k
jm1:k)= p(s0:k jm1:k)

} p(mk jsk�1:k)p(sk�1:k ĵsk�1)p(s0:k�1jm1:k�1)
ð16Þ

where the partial state trajectory sk�1:k and the full state

trajectory s0:k are defined as follows:

sk�1:k = fs~k jx~k =(s~k , t~k) \ (k � 1)DT 4 t~k 4 kDTg [fŝkg
s0:k = s0:k�1 [sk�1:k

ð17Þ

The weight update in Equation (15) will thus be modi-

fied to the following:

wk =
p(x0:K jm1:k)

q(x0:K jm1:k)
}

p(mk jsk�1:k)p(sk�1:k ĵsk�1)

q(sk�1:k js0:k�1,m1:k)
3 wk�1

ð18Þ

2.4.2 Generating initial particles. Generating initial particles

boils down to generating initial model states. For a discrete

event simulation model, we cannot generate its initial state

arbitrarily (i.e., we cannot generate the initial state of each

atomic model independently), since an arbitrary combina-

tion (of atomic model states) might be infeasible in reality.

For example, in the gold mine case that will be studied in

subsequent sections, if we generate initial states arbitrarily,

we might generate a system state which indicates that the

miner is drilling while no trucks are present. Therefore, ini-

tial states should be generated from a set of feasible combi-

nations of atomic model states. Suppose the state of an

atomic model can be represented as s= fp, ug, where p

denotes the phase and u indicates the corresponding para-

meters (state variables). Note that u can be a combination

of discrete and continuous variables. Let FS � 3 i2DPi

denote a set of feasible combinations of phases of atomic

components, where D is the set of names of components of

the discrete event model (i.e., a coupled DEVS model) and

Pi is the set of possible phases of component i. We denote

the combination of initial phases of all atomic components

as a random variable P0, and it should take value from FS.

Since P0 is a discrete random variable, we formalize its

probability distribution as follows:

P(P0 = p
j
0)= pj, p

j
0 2 FS, pj 2 (0, 1) ð19Þ

Figure 4. The state points generation process (the blue (generated in the (k� 1)-th iteration) and red (generated in the k-th
iteration) dots represent state points in a discrete event state process, while the green dots represent interpolated state points;
color online only).

Xie and Verbraeck 9

and
PjFSj

j= 1 pj = 1. Notice that p
j
0 =(. . . , p j

0, i, . . .),
i 2 D, p

j
0, i 2 Pi. Based on this discrete probability distribu-

tion, generating an initial model state is done as follows.

� Generate a feasible combination of initial phases of

all atomic components, p
j
0=(. . . , p j

0, i, . . .) 2
FS, i 2 D, p

j
0, i 2 Pi, by sampling the discrete prob-

ability distribution P(P0).
� For each atomic component i 2 D, its initial phase

is p
j
0, i, and we now need to generate values for its

corresponding parameters u
j
0, i:

- For a discrete variable in u
j
0, i, its value can be

generated by sampling certain discrete prob-

ability distribution.

- For a continuous variable in u
j
0, i, its value can

be generated by sampling certain continuous

probability distribution. For example, in the

gold mine case that will be studied in Section

3, suppose the initial phase of the elevator is

GO_DOWN_EMPTY, one of its continuous

parameters pos (the position of the elevator; see

the more detailed definition in Table 1) can be

generated by sampling a Uniform distribution

U (bottom, top), where bottom and top represent

the bottom position and top position of the ver-

tical elevator shaft, respectively.

Then the initial state of atomic component i can be

represented as s
j
0, i = fp

j
0, i, u

j
0, ig and the initial state

of the coupled model can be represented as s
j
0 =

(. . . , s j
0, i, . . .), i 2 D.

� Once we have generated the initial state s
j
0, i for

atomic component i 2 D, we can compute its time

advance, which is denoted as ta(s j
0, i). For each

atomic component i, we can simply set its elapsed

time ei = 0.

� Finally, combining the generated state s
j
0, i, the time

advance ta(s j
0, i), and the elapsed time ei for each

atomic component i 2 D, we can initialize the dis-

crete event simulation model.

3 Case study – estimating truck arrivals in
a gold mine system

In this section and subsequent sections, we study a case in

a gold mine system, to illustrate the working of the parti-

cle filter-based data assimilation framework introduced in

Section 2. In this section, we focus on how to tailor the

generic data assimilation framework to the specific estima-

tion problem in the gold mine system.

3.1 Scenario description

A gold mine system is shown in Figure 5, and its operation

is based on the coordination among miners, two trucks,

and an elevator.

� Miners drill at the mine shaft end, and they can

only drill when an empty truck is present. Loading

a truck varies very much. Creating a full truckload

takes minimally 15 minutes, maximally 30 minutes.
� Two trucks are available to transport ore; each truck

travels 250/3 m/min when full through the mine

shaft, and 500/3 m/min when empty. The current

mine shaft is 400 m long.
� An elevator can take a batch of gold ore up. The

depth of the elevator shaft is 100 m; it takes the ele-

vator 8 min to go up with ore and 3 min to go down

empty.

When a truck is full, the miners ask the elevator to come

down, so it will be at the bottom of the vertical shaft when

the full truck arrives. When a truck of ore arrives at the

bottom of the vertical shaft, it needs to be unloaded from

Table 1. State variables of key components in the Discrete Event System Specification gold mine model.

Component type Phases Parameters Description

Miner TRANSIENT_PHASE serving_truck The truck that is being loaded
HAVE_REQUEST
DRILLING

Truck TRAVEL_TO_MINER
TRAVEL_TO_ELEVATOR pos The position of the truck
TRANSIENT_PHASE v The velocity of the truck
WAITING

Elevator IDLE_AT_TOP
GO_DOWN_EMPTY
TRANSIENT_PHASE pos The position of the elevator
HAVE_REQUEST v The velocity of the elevator
UNLOAD_TRUCK_AT_BOTTOM serving_truck The truck that is being unloaded
GO_UP_WITH_ORE hasUnprocessedRequest If there is any unprocessed request from miner
UNLOAD_ORE_AT_TOP

10 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

the truck before the elevator can go up. Unloading takes

between 5 and 10 min. After that, the elevator can go up,

and the truck can go back. Unloading at the top of the ver-

tical shaft takes between 2 and 4 min before the load can

be put on a 100-m long conveyor belt that transports the

gold ore to a processing plant. The conveyor belt has a

speed of 10 m/min.

The gold mine is monitored by multiple sensors, which

can provide partial observations of the gold mine system

(the detailed available data will be explained in Section

3.4). The problem is that, given these partial observations,

can we estimate when the trucks arrive at the bottom of

the vertical shaft? The arrival information is important for

efficient operation of the elevator, which may improve the

overall performance of the gold mine system.

3.2 Modeling the gold mine system in the DEVS
formalism

The scenario described in Section 3.1 is a typical discrete

event system, and therefore we model it using the DEVS

formalism,8 as shown in Figure 6. Notice that the gold

mine simulation model has no external inputs. We model

each component into different phases,26 and each phase

has a name and a life time, where the name indicates the

activity that the component is undergoing, and the life time

tells how long the entity will stay in that phase. The phases

and associated parameters (i.e., state variables) of several

key components (i.e., Miner, Truck, and Elevator) are

listed in Table 1, while other components (such as Queue,

Conveyor, Observer) are quite simple, and therefore we do

not describe them in detail due to space limitations.

As shown in Table 1, each component has a transient

phase, that is, TRANSIENT_PHASE, which has zero

length of life time and is used to request resources or jobs.

For example, when Miner finishes drilling and loading, it

will first make a transition from DRILLING to

TRANSIENT_PHASE; since TRANSIENT_PHASE has

zero length of life time, a message is immediately sent to

TruckQueueShaftEnd to say that Miner is idle and can

drill and load other trucks if there are any; then Miner

transfers to HAVE_REQUEST (i.e., idle) to wait for new

trucks. Truck and Elevator work in a similar way. The

movement of the elevator and the trucks is assumed with

constant speed (although not realistic).

The unloading times at the bottom and the top of the

vertical shaft are modeled as Uniform distribution

U (5:0, 10:0) and Uniform distribution U (2:0, 4:0), respec-
tively. The drilling time of the Miner is modeled as a

Figure 5. The gold mine system. (Color online only.)

Xie and Verbraeck 11

Triangular distribution with varying modes (shown in

Figure 7). The purpose of varying modes is to simulate

miners’ tiredness, which means that miners can become

tired, that is, the longer time they has been working, the

longer time they spend to load a truck. In the beginning

(t = ts), the mode c= cts ; while in the end (t = te), the

mode will increase to c= cte ; at any time instants

t1, t2 2 (ts, te), if t1 \ t2, we have ct1 \ ct2 . In our simula-

tion, the run length is 480; therefore, we set

a= 15, b= 30, ts = 0, te = 480, cts = a+ 1
4
(b� a), cte

= a+ 3
4
(b� a); for any t 2 (ts, te), we have

ct = a+(1
4
+ 1

2
3 t�ts

te�ts
)3 (b� a). The unit of time is

minutes.

We denote the set of component names as D =

{TruckQueueShaftEnd, TruckQueueElevatorBottom,

Miner, Truck_0, Truck_1, Elevator, Conveyor, Observer}.

For any component i 2 D, the (sequential) state of compo-

nent i can be represented as si = fpi, uig, where pi is the

phase (name) and ui is the corresponding state parameters

(variables). Consequently, the sequential state of the gold

mine model can be represented as follows:

s=(. . . , (si, ei), . . .) 2 S = 3 i2DQi ð20Þ

where Qi = f(si, ei)jsi 2 Si, 04 ei 4 tai(si)g. Based on

the derivation shown in Section 2.1.3, we can easily for-

malize the state evolution of the gold mine model as an

integer indexed state process (i.e., the system model of the

gold mine system):

x~k =((. . . , (si, ~ki
, ei, ~ki

), . . .), t~k), i 2 D

x~k + 1 =GoldMineSim(x~k)+ n~k ,
~k = 0, 1, 2, . . .

ð21Þ

where GoldMineSim is the (discrete event) gold mine

simulation model and n~k is the system noise, such as posi-

tion uncertainty incurred by small deviations in speed.

3.3 Interpolation operation

In this section, we introduce the interpolation method used

in our gold mine case, and show the difference between

the simulated state trajectory and the interpolated state tra-

jectory. Considering that discrete state variables cannot be

interpolated, we distinguish continuous states from discrete

states as shown in Figure 1.

3.3.1 Continuous state. Continuous states can be interpo-

lated. We take the elevator as an example, whose (sequen-

tial) state is represented as s=(phase, pos, v) (the

component index is omitted here), where phase is the

phase name and pos and v are its position and velocity,

respectively. Although the state contains a string-type vari-

able (phase name), we still consider it as a continuous

state since our focus is the elevator’s movement.

As introduced in Section 3.2, the elevator moves with

constant speed. Therefore, we use linear interpolation to

update the elevator’s state. Suppose that the last state

Figure 7. Triangular distribution with varying modes.

5. Elevator_Arrived_Top

4. Elevator_Arrived_Bottom

3. Ore_Arrived_Plant

1. Truck_Arrived_ShaftEnd

2. Truck_Arrived_ElevatorBottom

Observer

ElevatorMiner

TurckQueueElevatorBottom
(FIFO)

arrival request

comedown

Truck_0
load_finsh unload_finsh

request_truck finish_drill

in

TurckQueueShaftEnd
(FIFO)

arrivalrequest

beReady

out2miner out2elevator

request_truck

in

beReady

unload_truckTruck_1
load_finsh unload_finsh

out2miner out2elevator

request_elevator
Conveyorin out

unload_ore

in

3

out

4, 5

out

out

1, 2
1, 2

Figure 6. The Discrete Event System Specification model of the gold mine system. FIFO: first-in, first-out. (Color online only.)

12 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

update was at time tl due to the occurrence of an internal

or external event, and the state was updated to

s(tl)= (phasel, posl, vl); in that event handler, the next

state update was scheduled at time tn, i.e., ta(sl)= tn � tl.

Since we have velocity in the state definition, we can

obtain the updated state at time t 2 (tl, tn) based on the

state at tl and the elapsed time e:

ŝ(t)= interpolate(s(tl), e)

where
phaset = phasel

post = posl + vl 3 e= posl + vl 3 (t � tl)
vt = vl

8<
:

ð22Þ

which is independent of the states beyond time t.

3.3.2 Discrete state. Discrete states cannot be interpolated.

For example, the (sequential) state of the miner is

s=(phase, serving truck), where phase is the phase

name and serving_truck is the name of the truck that is

being loaded. Suppose that the last state update was at

time tl, and the state was updated to s(tl); in that event

handler, the next state update was scheduled at time tn.

Since the discrete state cannot be interpolated, the interpo-

lation operation gives the following:

ŝ(t)= interpolate(s(tl), e)= (s(tl), e) ð23Þ

where the elapsed time e= t � tl. We still denote (s(tl), e)
as ŝ(t), that is, (s(tl), e) is equivalent to those continuous

states that can be interpolated (e.g., Equation (22)). Since

s(tl) cannot be interpolated, we need an elapsed time e to

reflect the state evolution. If the measurement is related to

the discrete state, one probably needs the elapsed time to

define a measurement model that relates the discrete state

to the measurement.

3.3.3 Interpolated state. Suppose that the (sequential) state

of the coupled model at time instant tl is s(tl)=
(. . . , (si, ei), . . .), i 2 D, and ta(s(tl))=minfsi = tai(si)
�ei, i 2 Dg. At any time t 2 (tl, tl + ta(s(tl))), the interpo-
lated state can be represented as follows:

ŝ(t)= interpolate(s(tl), e)= (. . . , (s0i, e0i), . . .), where

(s0i, e0i)=

(interpolate(si, ei), 0)

if si can be interpolated (see Equation(22))

(si, ei + t � tl)

if si cannot be interpolated (see Equation(23))

8>>><
>>>:

ð24Þ

Notice that the time advance of state interpolate(si, ei) will
be ta(si)� ei. In Section 2.2, when computing

ŝk , k = 1, 2, . . ., we essentially compute ŝk = ŝ(kDT)
based on Equation (24).

3.3.4 Simulated state trajectory versus interpolated state
trajectory. In this section, we show the difference between

the simulated state trajectory and the interpolated state tra-

jectory. We take the state of the elevator in terms of posi-

tion as an example. As shown in Figure 8, the positions of

the elevator in the discrete event simulation are captured in

blue, while the interpolated state trajectory is depicted in

red. Since states only change when events occur, the simu-

lated state trajectory of the elevator in terms of position is

a piecewise constant curve, while the interpolated state tra-

jectory is a piecewise linear curve since the velocity is con-

stant and we adopt the liner interpolation method. Note

that the piecewise constant segments between the elevator

top and the elevator bottom in Figure 8 are the result of the

elevator processing external events, for example, miners

ask the elevator to come down.

As explained in the previous section, the elevator moves

with constant speed. Therefore, the true state trajectory of

the elevator in terms of position is also a piecewise linear

curve, which overlaps the interpolated state trajectory. In

this specific case, the resulted state trajectory by interpola-

tion is equivalent to that if we simulate the continuous state

variable (the position of the elevator) using Generalized

Discrete Event Specification (GDEVS)27 with the degree

of the polynomial equal to 1. Notice that if the elevator has

a different speed profile, for example, accelerate–constant

speed–decelerate, the true state trajectory in terms of posi-

tion and the interpolated state trajectory will not overlap

any more. From Figure 8, we can clearly see that if we

retrieve the state of a discrete event simulation model with-

out interpolation, the retrieved state is only a past state that

was updated at a past time instant, which cannot reflect

real-time evolutions of the state; therefore, errors would be

incurred if the outdated states are used for estimation. This

will be proven in Section 5.

3.4 Available data and measurement model

The simulated data is generated by running the gold mine

simulation (Section 3.2) for 480 min. During the run, all

events are recorded; the states of the elevator and the

trucks are sampled (using interpolation) and recorded very

densely (every 0.01 min) in order to obtain their detailed

evolutions; the data recorded for the elevator and the

trucks includes phase names and their real-time positions.

This ground-truth data is then processed as follows.

� We extract the event sequence that only contains

the following types of events (as shown in Figure

5): trucks arriving at the shaft end

(Truck_Arrived_ShaftEnd); the elevator arriving at

Xie and Verbraeck 13

the top or the bottom of the vertical shaft

(Elevator_Arrived_Top, Elevator_Arrived_Bottom);

and a batch of ore arriving at the plant

(Ore_Arrived_Plant). This event sequence is par-

tial, but accurate (i.e., no missed events, and occur-

rence times are accurate).
� We add Gaussian noise to the positions of the ele-

vator and the trucks, respectively; specifically, we

add noise drawn from N (0,s2
e) for the elevator,

and add noise drawn from N (0,s2
t) for the trucks.

The noisy dataset is used for data assimilation, and we set

the measurement interval to DT = 30 min. The measure-

ment at time k is denoted as mo
k , which contains the follow-

ing noisy data collected during ½(k � 1)DT , kDT �:

Figure 8. The state trajectory of the elevator in terms of position (the piecewise constant segments between the elevator top and
the elevator bottom are the result of the elevator processing external events; each black triangle represents a time instant when a
noisy observation of the elevator position is available; color online only).

14 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

� Event sequence Ek = f(t1, e1), (t2, e2), . . . ,
(tn, en)g, (k � 1)DT 4 t1 4 t2 4 . . . 4 tn 4 kDT ;
ei 2 {Truck_Arrived_ShaftEnd, Elevator_Arrived_

Top, Elevator_Arrived_Bottom, Ore_Arrived_Plant}.
� PXk = f(phase j(tj), pos j(tj))jj 2 fElevator, Truck

0, Truck 1g, tj 2 ½(k � 1)DT , kDT �g, which repre-

sents the phase and position of the elevator and the

trucks, where phase j(tj) indicates the name of the

phase of component j at time tj, while pos j(tj) is

the noisy position of component j at time tj. Notice

that during ½(k � 1)DT , kDT �, there is only one

observation for each component in fElevator,
Truck 0, Truck 1g; the times of observation for dif-

ferent components are not necessarily the same. As

shown in Figure 8, the black triangles represent the

time instants when noisy observations from the ele-

vator are available. These observation times are

randomly chosen, but in order to illustrate the

effect of interpolation, we choose time instants

when the component (either the elevator or the

trucks) is moving, since when components are still,

their position does not change, whether interpolate

or not has no difference.

To summarize, the measurement available at time k can

be represented as follows:

mo
k = fEk ,PXkg ð25Þ

and the measurement model can be formalized as follows:

mo
k;p(mo

k jxN+
k�1 + 1:N+

k
)

where x~k =(s~k , t~k),
~k = 0, 1, 2, . . . is defined in Equation

(21). As introduced in Section 3.3, the interpolation opera-

tion is independent of states beyond the time instant when

the operation is invoked; therefore, the measurement

model can be modified to the following:

mo
k;p(mo

k jsk�1:k) ð26Þ

where sk�1:k = fs~k jx~k =(s~k , t~k) \ (k � 1)DT 4 t~k 4 kDTg
[fŝkg, and ŝk is computed based on Equation (24)

(̂sk = ŝ(kDT)).

3.5 Estimating truck arrivals using particle filters

Having formalized the system model (Section 3.2) and the

measurement model (Section 3.4), in this section, we

implement (on the algorithmic level) the particle filtering

framework (Section 2) in the (discrete event) gold mine

simulation to illustrate the working of the framework by

estimating the truck arrivals at the bottom of the vertical

shaft.

3.5.1 Particle filtering for truck arrivals estimation. Algorithm

2 describes in detail how the generic particle filter shown

in Algorithm 1 is applied in the specific gold mine case to

fulfill the truck arrival estimation task. Since the interpola-

tion operation at any time instant t is independent of states

beyond that time, the formalization of Algorithm 2 is

Algorithm 2. The particle filter for truck arrival estimation.

1. % initialization of particles at k= 0
2. for i= 1 : Np do
3. generate the i-th sample xi

0 = (si
0,ti0) where ti0 = 0

4. set weight wi
0 = 1=Np

5. end
6. % the sampling step for any time kø1
7. for i= 1 : Np do
8. run the gold mine simulation to time t= k�T with initial state ŝi

k�1, where ŝi
k�1 is obtained based on Equation (24)

(t= (k� 1)�T); the newly generated partial state trajectory is
si
k�1:k = fsi

~k
jxi

~k
= (si

~k
,ti~k),(k� 1)�T ≤ ti~k ≤ k�Tg∪ f̂si

kg; the full state trajectory is thus updated to si
0:k = (si

0:k�1,si
k�1:k)

9. compute weight: wi
k = p(mo

kjsi
k�1:k)×wi

k�1
10. end

11. normalize the weights, denote them as fsi
0:k,wi

kg
Np

i= 1
12. % the resampling step

13. resample fsi
0:k,wi

kg
Np

i= 1 using the standard resampling method, which samples particles in proportion to their weights; the

resampled results are again denoted as fsi
0:k,wi

kg
Np

i= 1
14. for i= 1 : Np do
15. wi

k = 1=Np

16. end
17. % record data for estimation
18. for i= 1 : Np do
19. scan si

k�1:k, and record the time instants when event Truck_Arrived_ElevatorBottom occurs
20. end

Xie and Verbraeck 15

focused on system states s~k , where x~k =(s~k , t~k). The main

steps of the proposed algorithm are summarized as below.

� Initialization. In the initialization step (line 2–5 in

Algorithm 1), the i-th sample xi
0 is actually a guess

of possible initial states (i.e., si
0) of the gold mine

model. The process of generating initial particles is

detailed in Section 3.5.2.
� Sampling. In this case, we adopt the system transi-

tion density (a reformulation of GoldMineSim(�) in
Equation (21)) as the importance density.

Therefore, generating state points is done by run-

ning the gold mine simulation (line 8 in Algorithm

2). Since the interpolation operation at a time

instant t is independent of state points beyond that

time (see the explanation in Section 3.3), we just

stop the simulation at time t= kDT , and then

update its weight based on newly available data mo
k

(line 9 in Algorithm 2); detailed computation of the

weight is presented in Section 3.5.3.
� Resampling. To solve the degeneracy problem, we

resample the particles using the standard resam-

pling scheme, which samples particles in propor-

tion to their weights.
� Estimation. We scan the state trajectory si

k�1:k

and record the time instants when event Truck_

Arrived_ElevatorBottom occurs. Each particle

gives an estimation of the truck arrival, and estima-

tions from all particles will form a distribution of truck

arrival. These (raw) estimations will be processed to

give more informative results in Section 5.

3.5.2 Generating initial particles. In this case study, initial

particles are generated based on the procedure introduced

in Section 2.4.2. For illustration purpose, we only enumer-

ate two feasible combinations of phases, which are listed

in Table 2, although there are many more feasible choices.

We assume P(p10)=P(p20)= 0:5. Note that we assume the

maximum speed of the elevator is 200/3 m/min; we gener-

ate values of pos (the position) and v (the speed) for the

elevator by sampling Uniform distributions, and the time

advance can thus be computed as (100+ pos)=v min (see

the last row in Table 2). For other atomic components in

the gold mine model, that is, TruckQueueShaftEnd,

TruckQueueElevatorBottom, Conveyor, Observer, we

initialize them as passive (i.e., time advance is+‘).

3.5.3 Weight computation. In this section, we detail how

the weight is computed, that is, we utilize wi
k =

p(mo
k jsi

k�1:k)3 wi
k�1. The measurement at time k is mo

k =

fEk ,PXkg, where Ek is the observed event sequence dur-

ing time interval ½(k � 1)DT , kDT � and PXk =

f(phase j(tj), pos j(tj))j j 2 fElevator, Truck 0, Truck 1g,
tj 2 ½(k � 1)DT , kDT �g represents phase and position

observations from the elevator and the trucks. Since the

two types of observations are conditionally independent

given si
k�1:k , we have p(mo

k jsi
k�1:k)= p(Ek jsi

k�1:k)p

(PXk jsi
k�1:k).

3.5.3.1 Event sequences. Given state points si
k�1:k , it is

very easy to retrieve an event sequence that only contains

the four types of events shown in Figure 5 (i.e., types of

observed events). We denote such event sequences

Table 2. Initial states of the gold mine simulation model.

Elements in FS Component
name

Phase Parameters Value Time advance
(min)

p10 Miner TRANSIENT_PHASE serving_truck NULL 0
Truck_0 TRANSIENT_PHASE pos 0 m 0

v 0 m/min
Truck_1 TRANSIENT_PHASE pos 0 m 0

v 0 m/min
Elevator IDLE_AT_TOP pos 0 m +∞

v 0 m/min
serving_truck NULL
hasUnprocessedRequest NULL

p20 Miner TRANSIENT_PHASE serving_truck NULL 0
Truck_0 TRANSIENT_PHASE pos 0 m 0

v 0 m/min
Truck_1 TRANSIENT_PHASE pos 0 m 0

v 0 m/min
Elevator GO_DOWN_EMPTY pos pos∼U(� 100,0) m (100+ pos)=v

v v ∼U(0,200=3) m=min
serving_truck NULL
hasUnprocessedRequest NULL

16 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

retrieved from the i-th particle as Ei
k , then

p(Ek jsi
k�1:k)= p(Ek jEi

k). Subsequently, we first define a

distance measure between two event sequences, and based

on the distance measure, we then define p(Ek jEi
k).

An event can be modeled as a two-tuple (t, e), where e

is the event type and t is the occurrence time. An event

sequence S is an ordered sequence of events:

S = f(t1, e1), (t2, e2), . . . , (tn, en)g, t1 4 t2 4 . . . 4 tn

We adopt the edit distance28 to define the ‘‘distance’’

between two event sequences. The edit distance is defined

as ‘‘the amount of work that has to be done to convert one

sequence to another,’’ and the amount of work is quanti-

fied by a set of transformation operations and their associ-

ated costs (more details can be found in Mannila and

Ronkainen28). Suppose O= fo1, o2, . . . , ong is an opera-

tion sequence that transforms S to T, and the cost of O is

defined as follows:

c(O)=
Xn

i= 1

c(oi)

then the edit distance between event sequence S and event

sequence T is defined as the minimum cost that is needed

to transform S to T, that is:

d(S, T)=minfc(Oj)jOjg

where Oj is an arbitrary operation sequence that transforms

S to T.

Once the distance between two event sequences can be

computed, we can now define p(Ek jEi
k) as follows:

p(Ek jsi
k�1:k)= p(Ek jEi

k)= e�
d(Ek ,Ei

k
)

dm ð27Þ

where dm = d(Ek ,[).

3.5.3.2 Phases and positions. Given state points si
k�1:k ,

we can straightforwardly obtain the phase (name) and

position of any component at any time based on interpola-

tion explained in Section 3.3. We denote such phase and

position pairs for entities in Dc = {Elevator, Truck_0,

Truck_1} as PX i
k , then p(PXk jsi

k�1:k)= p(PXk jPX i
k).

For phase and position data, we need to consider them

as a whole. For example, we assume that the observation

from the elevator is fGO DOWN EMPTY, � 10g; in

the first particle, we have fGO DOWN EMPTY, �10g,
while in the second particle, we have fGO UP
WITH ORE, � 10:0g. Obviously, the first particle should

be assigned a larger weight than the second one, given the

observation. However, if we do not consider the phase dif-

ference, we cannot differentiate the two particles.

Therefore, we propose a phase match method to define a

distance measure for phases.

The phase match method works as follows. Suppose the

phase is represented as fpi, uig, where pi is the name of

the phase and ui is the corresponding parameters. The dis-

tance between phases is defined based on the phase transi-

tion graph shown in Figure 9. The phase transition graph is

actually a simplified version of the model of the corre-

sponding component. For convenience, we assume that the

index of one phase in the two phases that we want to com-

pare is 0, while the index of the other is n, and their dis-

tance is defined as follows:

d(0, n)=minf
Xn�1
i= 0

d(i, i+ 1),
XN�1
i= n

d(i, i+ 1)+ d(N , 0)g

where d(i, j) is the distance between phase i and phase j.

The distance function can be defined in many ways, for

example, we can define d(i, i+ 1) as the time that the sys-

tem stays in phase i before it makes a transition to phase

i+ 1. In our case, we choose a simple distance function as

d(i, i+ 1)= 1.

In our case, the parameter is the position with Gaussian

noise, and therefore we define p(PXk jPX i
k) as follows:

p(PXk jsi
k�1:k)= p(PXk jPX i

k)

=
Y
j2Dc

p(fphase j, pos jgjfphasei, j, posi, jg) ð28Þ

where Dc = {Elevator, Truck_0, Truck_1}; p(fphase j,
pos jgjfphasei, j, posi, jg) is defined as follows:

Figure 9. The phase transition graph.

Xie and Verbraeck 17

p(fphase j, pos jgjfphasei, j, posi, jg)= maxfpmin,
1ffiffiffiffiffiffiffiffi
2ps2

j

p e
�(posi, j�pos j)

2

2s2
j g if phasei, j = phase j

pmin

d(phasei, j, phase j)+ 1
if phasei, j 6¼ phase j

8><
>:

We argue that the weight of a particle in which the

phase is the same as the observed phase (i.e.,

phasei, j = phase j) should be absolutely larger than that of

a particle that has a different phase to the observed phase

(i.e., phasei, j 6¼ phase j). Therefore, we define a threshold

value pmin to guarantee this.

4 Case study of the gold mine system –
qualitative analysis

In this section, a qualitative analysis is conducted to com-

pare the estimation results without and with assimilating

noisy observations; the objective of this comparison is to

prove the necessity to assimilate observations into discrete

event simulations in order to get better estimation results.

If we do not assimilate noisy observations, we can run

the simulation multiple times with different random seeds

to generate data for estimation. Therefore, we run the gold

mine simulation 2000 times with different random seeds

and record the time instants when trucks arrive at the bot-

tom of the vertical shaft. The estimation results are shown

in Figure 10(a). The results show that if there is no real-

time data from the real system assimilated, the discre-

pancy between the simulation and the real system will

become larger and larger as time advances. Consequently,

the simulation without data assimilation will gradually

lose its prediction ability. Based on our example, from

t = 150 min onwards, the gold mine simulation can no

longer provide any useful information for truck arrivals at

the bottom of the vertical shaft.

In contrast, we use the same simulation model to assim-

ilate the noisy dataset (se = 3:0,st = 3:0) every DT = 30

min with 2000 particles to estimate truck arrival times.

The estimation results are depicted in Figure 10(b). The

results show that if we assimilate noisy observations into

the same simulation model using similar effort (i.e., 2000

particles versus 2000 runs), the simulation can provide rea-

sonable estimations for truck arrivals during the whole

simulation period (480 min). Therefore, it is necessary to

assimilate data if there are any into the discrete event simu-

lation in order to obtain better estimation results of the

variable of interest.

We present the estimation results of truck arrival times

at the bottom of the vertical shaft in one time step (i.e.,

½(k � 1)DT , kDT �) in Figure 11. Since the minimal drilling

time is 15 min, there are at most two arrivals during one

time step of duration DT = 30 min. Notice that the estima-

tion results actually give a distribution of truck arrival

times. In order to know how accurate the estimation results

are and also to explore the influences of factors, such as

data errors, model errors, and the number of particles

employed, in Section 5.2 we define a set of performance

indicators and conduct quantitative analysis accordingly.

5 Case study of the gold mine system –
quantitative analysis

The particle filtering method shown in Algorithm 2 gives

us raw estimation results of truck arrivals, which are

depicted in Figure 10(b). In this section, we show how

these raw data are processed in order to conduct a more

informative analysis; based on the processed data, a set of

performance indicators is proposed to quantify how accu-

rate the estimation results are; finally, the results computed

based on these performance indicators are presented and

analyzed.

5.1 Data processing for estimating truck arrival
times

As shown in Figure 11(b), the estimated truck arrival times

obviously belong to two groups, each of which approxi-

mates the distribution of a truck arrival. Therefore, we

cluster the estimated arrival times into groups (for exam-

ple, using the k-means clustering algorithm29), and each

group estimates one truck arrival. Suppose that there are m

such clusters: fCcjCc = ftc
1, t

c
2, . . . , tc

nc
ggm

c= 1; based on

the data in each cluster, we can fit a probability distribu-

tion of truck arrival times by whatever means. In our case,

we fit a kernel distribution using the Normal kernel to the

data in each cluster; for example, in Figure 12, we show

the obtained kernel distribution fitted to the data belonging

to the cluster on the right-hand side in Figure 11(b).

If we denote the fitted probability distribution from

data in cluster Cc as fc(t) and the cumulative distribution

function as Fc(t), the probability that a truck arriving at

the bottom of the vertical shaft during a very small interval

½t � e, t + e� can be computed as follows:

Prob(arriving during ½t � e, t + e�)=Fc(t+ e)� Fc(t � e)

and for convenience, we denote this probability as Pc(t, e).
Pc(t, e) thus represents the probability of a truck arriving

at the bottom of the vertical shaft during ½t � e, t + e�; the
subscript c indicates that the probability is computed from

the probability distribution fitted to the data in cluster Cc.

18 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

Figure 10. A general view of the estimation results of truck arrivals at the bottom of the vertical shaft with and without
assimilating noisy data (each red triangle represents a truck arrival in ground truth; color online only).

Xie and Verbraeck 19

5.2 Evaluation criteria

Assume that the ground-truth value of truck arrivals is

A= ft1, t2, . . . , tng. After data processing, we obtain m

clusters fCcjCc = ftc
1, t

c
2, . . . , tc

nc
ggm

c= 1; from each cluster,

we have a fitted probability density function. The format

of the ground-truth data and the estimated data can thus be

shown in Figure 13. The performance indicators are

defined as follows.

For each arrival ti 2 A, if there exists a cluster Cci
such

that:

Pci
(ti, e)

maxfPci
(t, e)g . d ð29Þ

we consider that the arrival ti is successfully estimated by

Cci
. Pci

(t, e) should get its maximum value (i.e.,

maxfPci
(t, e)g) around the time instant when the probabil-

ity density function fci
(t) reaches its peak; d 2 ½0, 1) is a

threshold value we can arbitrarily set, that is, if the prob-

ability Pci
(ti, e) is larger than a certain percent (i.e., d) of

the maximum probability, we regard that the arrival ti is

successfully estimated by Cci
. For any ti 2 A, there is at

most one cluster in fCcjCc = ftc
1, t

c
2, . . . , tc

nc
ggm

c= 1 that

can successfully estimate ti.

Obviously, the more arrivals in A being successfully

estimated, the better performance of the estimation. Thus,

we define the success rate as follows:

SR=
nm

n
3 100% ð30Þ

where nm is the number of arrivals in A being successfully

estimated. The best value of SR is 100%, which means that

all arrivals are successfully estimated.

If a cluster Cc cannot estimate any ti 2 A, we regard Cc

as wasted. Obviously, the lower the number of wasted

clusters, the better performance of the estimation.

Therefore, we define the waste rate as follows:

WR=
jm� nmj

m
3 100% ð31Þ

The best value of WR is 0%, which means that all clus-

tered groups can be used to estimate a truck arrival.

Suppose that ti 2 A is estimated by the cluster Cci
; as

shown in Figure 13, we certainly want ti to be as close as

Single arrival during Two arrivals

Figure 11. Histogram of estimated truck arrival times at the bottom of the vertical shaft during one step ½(k� 1)�T,k�T�, where
�T = 30 min (each red triangle represents a truck arrival in ground truth; color online only).

Figure 12. Fitting a kernel probability distribution using the
Normal kernel to truck arrival times in one cluster (this group
of data belongs to the cluster on the right-hand side in Figure
11(b); the red triangle represents a truck arrival in ground truth;
color online only).

20 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

possible to the time instant when the probability distribu-

tion is peaked. Therefore, we define two measures to quan-

tify such closeness.

� Average distance to the time instant when the prob-

ability density function is peaked:

�d =
1

nm

Xinm

j= i1

jtj � t�cj
j ð32Þ

where t�cj
is the time instant when fcj

(t) is peaked.

� Average percentage that Pcj
(tj, e) accounts for

Pcj
(t�cj

, e):

�P= 100%3
1

nm

Xinm

j= i1

Pcj
(tj, e)

maxfPcj
(t, e)g

= 100%3
1

nm

Xinm

j= i1

Pcj
(tj, e)

Pcj
(t�cj

, e)

ð33Þ

5.3 Results

In this section, we present the estimation results of assimi-

lating the noisy dataset (se = 3:0,st = 3:0) with

Np = 2000 particles. The model into which we assimilate

the noisy data is the same as that we used to generate the

simulated data, which means that we use a perfect model

of the gold mine system; when retrieving the simulation

state at any time t, we use linear interpolation, which was

introduced in Section 3.3, to obtain the updated state value.

5.3.1 The estimated truck arrival times. The raw estimation

results shown in Figure 10(b) are clustered using the k-

means clustering algorithm,29 and the results are shown in

Table 3. The k-means clustering algorithm outputs 20 clus-

ters, that is, fCcg20c= 1, as shown in the first column of the

table; the second column gives the time instant (t�c) where
the fitted probability distribution is peaked; the third

column computes the probability (Pc(t
�
c , e)) that a truck

arrives at the bottom of the vertical shaft during

½t�c � e, t�c + e�. In this dataset, there are 20 arrivals during

the simulation period, that is, A= ft1, t2, . . . , t20g. The

probability Pc(ti, e), c= 1, 2, . . . , 20; i= 1, 2, . . . , 20 is

computed and presented from the fourth column to the

23rd column. The results show that all arrivals lie in a cer-

tain cluster, that is, 8ti 2 A, 9Cci
2 fCcg20c= 1, s:t:

ti 2 ½minfCci
g,maxfCci

g�.
We compute the match criterion (see Equation (29)) for

each truck arrival in A, and the results are depicted in

Figure 14. With threshold value d= 50%, there are 19

truck arrivals in A= ft1, t2, . . . , t20g being successfully

estimated by clusters fCcg20c= 1. Therefore, we have the

following:

� success rate SR= nm

n
3 100%= 19

20
3 100%

= 95:00%;
� waste rate WR= m�nm

m
3 100%= 20�19

20
3 100%

= 5:00%;
� average distance �d = 1

nm

Pinm

j= i1
jtj � t�cj

j=
0:53 min;

� average percentage �P= 100%3 1
nm

Pinm

j= i1

Pcj
(tj, e)

Pcj
(t�cj

, e)
= 92:66%.

In the current operation of the gold mine system, the

elevator only comes down when it receives a request from

the miner, and therefore it will always arrive at the bottom

of the vertical shaft at least 1.8 min (the difference between

the time of the truck traveling full of ore and the time

of the elevator going down empty) later than the trucks do.

In other words, the truck will always wait at least 1.8 min

until it can be served. However, using data assimilation,

we can estimate 95% of all truck arrivals with an average

error of 0.53 min (which is much smaller than 1.8 min). If

these estimation results can be combined in the operation

of the gold mine system (especially in the operation of the

elevator), the overall performance of the gold mine system

should be improved.

Figure 13. Format of the ground-truth data and estimated data. (Color online only.)

Xie and Verbraeck 21

T
a
b
le

3
.
T
h
e
d
at
a
as
si
m
ila
ti
o
n
re
su
lt
s
(σ

e
=
3
:0

,σ
t
=
3
:0

;N
p
=
2
0
0
0
;ε

=
0
:0
5
m
in
).

D
at
a
p
ro
ce
ss
in
g
re
su
lt
s

Tr
u
ck

ar
ri
va
ls
gr
o
u
n
d
tr
u
th

C
lu
st
er

C
c

t c
*

P c
(t

c
*
,
ε
)

t 1
t 2

t 3
t 4

t 5
t 6

t 7
t 8

t 9
t 1
0

t 1
1

t 1
2

t 1
3

t 1
4

t 1
5

t 1
6

t 1
7

t 1
8

t 1
9

t 2
0

2
6
.8
9
1
8

5
2
.0
7
8
4

7
1
.6
3
0
0

9
6
.5
0
6
0

1
1
4
.2
4
9
4

1
3
6
.1
2
2
5

1
5
4
.6
0
2
4

1
7
7
.2
4
7
2

1
9
8
.4
6
0
8

2
1
9
.3
7
3
5

2
4
6
.4
8
0
5

2
7
3
.5
3
3
1

2
9
6
.9
5
0
5

3
2
0
.6
3
9
9

3
4
6
.2
5
1
5

3
7
3
.8
7
7
4

3
9
3
.4
6
4
7

4
2
1
.3
5
3
6

4
3
9
.5
8
5
8

4
5
9
.0
0
8
6

C
1

2
6
.9
0
8
6

0
.0
8
1
9

0
.0
8
1
6

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

C
2

5
2
.0
8
8
0

0
.0
2
2
8

–
0
.0
2
2
8

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

C
3

7
1
.6
3
7
8

0
.0
3
0
8

–
–

0
.0
3
0
8

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

C
4

9
6
.2
4
7
9

0
.0
3
2
4

–
–

–
0
.0
2
9
6

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

C
5

1
1
5
.9
6
0
3

0
.0
2
8
7

–
–

–
–

0
.0
2
8
4

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

C
6

1
3
6
.0
0
2
3

0
.0
2
2
6

–
–

–
–

–
0
.0
2
2
4

–
–

–
–

–
–

–
–

–
–

–
–

–
–

C
7

1
5
4
.6
6
8
0

0
.0
2
8
3

–
–

–
–

–
–

0
.0
2
8
0

–
–

–
–

–
–

–
–

–
–

–
–

–

C
8

1
7
8
.2
6
1
1

0
.0
2
3
9

–
–

–
–

–
–

–
0
.0
1
8
6

–
–

–
–

–
–

–
–

–
–

–
–

C
9

1
9
8
.7
1
8
3

0
.0
2
1
4

–
–

–
–

–
–

–
–

0
.0
2
0
7

–
–

–
–

–
–

–
–

–
–

–

C
1
0

2
2
1
.2
5
7
4

0
.0
2
3
5

–
–

–
–

–
–

–
–

–
0
.0
2
2
6

–
–

–
–

–
–

–
–

–
–

C
1
1

2
4
6
.4
5
3
4

0
.0
2
3
3

–
–

–
–

–
–

–
–

–
–

0
.0
2
3
3

–
–

–
–

–
–

–
–

–

C
1
2

2
7
3
.3
7
5
9

0
.0
2
8
9

–
–

–
–

–
–

–
–

–
–

–
0
.0
2
8
0

–
–

–
–

–
–

–
–

C
1
3

2
9
7
.0
0
3
1

0
.0
2
5
3

–
–

–
–

–
–

–
–

–
–

–
–

0
.0
2
5
2

–
–

–
–

–
–

–

C
1
4

3
2
0
.7
2
1
8

0
.0
2
8
9

–
–

–
–

–
–

–
–

–
–

–
–

–
0
.0
2
8
6

–
–

–
–

–
–

C
1
5

3
4
6
.1
5
6
3

0
.0
3
8
4

–
–

–
–

–
–

–
–

–
–

–
–

–
–

0
.0
3
7
5

–
–

–
–

–

C
1
6

3
7
2
.1
8
6
9

0
.0
3
0
9

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
0
.0
1
9
1

–
–

–
–

C
1
7

3
9
3
.3
9
0
3

0
.0
3
0
7

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

0
.0
3
0
4

–
–

–

C
1
8

4
2
0
.1
8
9
5

0
.0
7
3
3

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
0
.0
1
2
0

–
–

C
1
9

4
4
1
.2
2
1
0

0
.0
1
9
6

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

0
.0
1
3
9

–

C
2
0

4
5
9
.8
9
5
4

0
.0
1
0
5

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
0
.0
0
9
4

22 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

5.3.2 The effect of the interpolation operation. In this section,

we explore the influence of interpolation on the estimation

results. To this end, we run the data assimilation experi-

ment 10 times with different random seeds, and draw box

plots of the four error measures (i.e., SR in Equation (30),

WR in Equation (31), �d in Equation (32), and �P in

Equation (33)) in Figure 15. The results show that

although the estimation results obtained from data assimi-

lation without interpolation are already accurate, they can

be improved significantly (in the statistic sense) if the

interpolation operation is used. Although it is not accurate

enough to retrieve the model state without interpolation,

the retrieved state still reflects reality to a certain degree;

therefore, the estimation results are much better than those

without data assimilation. With interpolation, the time

elapsed since the last state transition is considered, and

therefore the real-time evolution, which is not captured in

the discrete event simulation model but does happen in

reality, will be reflected through the measurement model.

Consequently, the estimation results obtained from data

assimilation with interpolation are more accurate than

those obtained without interpolation.

5.4 Sensitivity analysis

In this section, we explore the influence of several key fac-

tors on the data assimilation results based on the simple

gold mine case. These factors include data quality, model-

ing errors, and the number of particles used. For each set

Figure 14. The match criterion 100%× Pci
(ti,ε)=Pci

(t*ci
,ε) (each red triangle represents a truck arrival in ground truth; color online

only).

Figure 15. The influence of interpolation on the data assimilation results (noisy dataset (σe = 3:0,σt = 3:0); Np = 2000; 10
independent runs; color online only).

Xie and Verbraeck 23

of parameters, we run the experiment 10 times with differ-

ent random seeds.

We should note that many factors can influence the

quality of the data assimilation results. Besides the factors

mentioned above, other factors may include the sensor

deployment information, such as the number of sensors

and data collection frequency. In this simple gold mine

case, we do not consider these extra factors. For a more

comprehensive analysis of the particle filter-based data

assimilation methods, please refer to Gu and Hu.30

5.4.1 Effect of the data quality. In the gold mine case, only

position data of entities (Elevator and Truck) are noisy,

and the quality of the noisy position data is characterized

by the standard deviation of the zero mean Gaussian noise,

that is, se (for Elevator) and st (for Truck). We vary se

and st from 3.0 to 20.0; when retrieving the model state,

we retrieve states through interpolation; for all experi-

ments, we set Np = 2000. The results are shown in Table

4. The results are in line with our expectations that the per-

formance improves as the data becomes more accurate.

We can conclude that the proposed method is quite robust

to data errors. Even with a 20-m standard deviation on

entity positions, the performance does not degenerate too

much. Specifically, the performance indicators of

estimating the truck arrivals are 85.00% (success rate),

15.00% (waste rate), 0.83 min (average distance), and

85.82% (average percentage).

5.4.2 Effect of the model errors. In the experiment in

Section 5, the model we used to carry out data assimilation

is the same as that we used to generate the ground-truth

data, which implies that we have a perfect model of the

reality. This is a very strong assumption. In this section,

we investigate the data assimilation results in the case that

the model has errors. We build an imperfect model by

simply changing the distribution of the drilling time of the

miner from Triangular distribution with varying modes

(i.e., perfect model) to a standard Triangular distribution

with lower bound 15 min, upper bound 30 min, and mode

20 min (acting as the imperfect model). For all experi-

ments, we set se = 3:0,st = 3:0, and Np = 2000; states

are retrieved through interpolation. The results are shown

in Table 5.

The results in Table 5 reveal that the proposed method

is robust with respect to model errors, although with the

case involved, we cannot claim to have tested this exhaus-

tively. In the case that we model one component incor-

rectly (i.e., with a different distribution), the overall

performance is not significantly different with that we use

Table 4. The influence of data quality, that is, σe,σt, on the data assimilation results (states are retrieved through interpolation;
Np = 2000). In each table cell the median error over the 10 simulations is shown along with (in brackets underneath) the 25th and
75th percentiles.

σe,σt Success rate Waste rate Average distance Average percentage
SR(%) WR(%) �d(min) �P(%)

σe = 3:0,σt = 3:0 90.00 10.00 0.54 89.00
(90.00, 95.00) (5.00, 10.00) (0.52, 0.61) (87.56, 91.77)

σe = 5:0,σt = 5:0 90.00 10.00 0.62 88.53
(90.00, 90.00) (10.00, 10.00) (0.59, 0.75) (86.91, 90.48)

σe = 10:0,σt = 10:0 90.00 10.00 0.73 86.40
(90.00, 95.00) (5.00, 10.00) (0.70, 0.85) (85.31, 88.60)

σe = 15:0,σt = 15:0 85.00 15.00 0.79 86.50
(85.00, 90.00) (10.00, 15.00) (0.77, 0.93) (83.77, 87.98)

σe = 20:0,σt = 20:0 85.00 15.00 0.83 85.82
(85.00, 90.00) (10.00, 15.00) (0.76, 0.93) (83.61, 87.04)

Table 5. The influence of model quality on the data assimilation results (states are retrieved through interpolation;
σe = 3:0,σt = 3:0; Np = 2000). In each table cell the median error over the 10 simulations is shown along with (in brackets
underneath) the 25th and 75th percentiles.

Model Success rate Waste rate Average distance Average percentage
SR(%) WR(%) �d(min) �P(%)

Perfect model (drilling time: 90.00 10.00 0.54 89.00
Triangular distribution with varying mode) (90.00, 95.00) (5.00, 10.00) (0.52, 0.61) (87.56, 91.77)
Imperfect model (drilling time: 90.00 12.14 0.63 88.83
standard Triangular distribution) (85.00, 90.00) (10.00, 15.00) (0.57, 0.69) (86.65, 90.95)

24 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

a perfect model. Clearly, the accuracy of the data assimila-

tion results largely depends on the validity of the simula-

tion models used. In our case, this validity is evident,

since the ground-truth data is produced by a similar

model.

5.4.3 Effect of the number of particles. The influence of the

number of particles (Np) used on the data assimilation

results is summarized in Table 6. As expected, the overall

performance has an upward tendency as the number of

particles increases. With more particles, components can

explore more possibilities on their time advance values,

and this results in different event sequences and entity

positions/phases, which will lead to a better coverage of

the system state space.

Figure 16 depicts the error measures relative to those at

Np = 2000 (the ensemble size chosen in the gold mine

case). The plot shows that the upward tendency in perfor-

mance by increasing the number of particles is not propor-

tional. A reduction in ensemble size from Np = 2000 to

Np = 100 (i.e., 2000%) leads to an increase in error

metrics ranging from around 7% (average percentage �P)
to around 200% (waste rate WR); it seems that we could

have safely decreased the number of particles in the gold

mine case from Np = 2000 to Np = 1000 without a signif-

icant loss of accuracy in terms of all error measures.

6 Conclusions

In this paper, we presented a particle filter-based data

assimilation framework for discrete event simulations (of

closed systems), in which we assume that the measure-

ments fed at time step k 2 f1, 2, . . .g are distributed over

the last measurement interval ½(k � 1)DT , kDT �, implying

that the measurements are dependent on the state transi-

tions during that interval. The data assimilation framework

was formally defined based on the DEVS formalism. In

this framework, two key problems (i.e., the state retrieval

problem and the variable dimension problem) that hinder

the application of particle filtering in discrete event simu-

lations were addressed. The state retrieval problem was

solved by introducing an interpolation operation, which

takes the elapsed time (i.e., the time elapsed since the last

state transition) into account when retrieving the state of a

discrete event simulation model in order to obtain updated

state values. The variable dimension problem was

addressed based on the results of Godsill et al.,19 which

imply that in practice we can safely apply the standard

sequential importance sampling algorithm to update the

Figure 16. The influence of Np on the data assimilation results
(states are retrieved through interpolation; σe = 3:0,σt = 3:0);
the performance indicators are relative to those at Np = 2000.

Table 6. The influence of the number of particles on the data assimilation results (states are retrieved through interpolation;
σe = 3:0,σt = 3:0). In each table cell the median error over the 10 simulations is shown along with (in brackets underneath) the 25th
and 75th percentiles.

Np Success rate Waste rate Average distance Average percentage
SR(%) WR(%) �d(min) �P(%)

100 70.00 30.00 0.81 82.29
(60.00, 70.00) (30.00, 40.00) (0.75, 1.08) (80.76, 83.64)

400 80.00 20.00 0.58 85.96
(75.00, 80.00) (20.00, 25.00) (0.50, 0.74) (82.52, 89.62)

700 82.50 17.50 0.62 87.62
(80.00, 90.00) (10.00, 20.00) (0.47, 0.76) (86.82, 88.65)

1000 87.50 12.50 0.67 88.33
(85.00, 90.00) (10.00, 15.00) (0.58, 0.80) (87.99, 89.38)

1500 87.50 12.50 0.64 88.17
(85.00, 90.00) (10.00, 15.00) (0.56, 0.75) (87.36, 89.93)

2000 90.00 10.00 0.54 89.00
(90.00, 95.00) (5.00, 10.00) (0.52, 0.61) (87.56, 91.77)

Xie and Verbraeck 25

posterior distribution p(s0:k jm1:k), where s0:k (see the defi-

nition in Equation (17)) has a variable dimension.

To illustrate the working of the proposed data assimila-

tion framework, a case was studied in a gold mine system,

in which noisy data (partial event sequences, entity posi-

tions with Gaussian errors) was assimilated into a discrete

event gold mine simulation model to estimate truck arrival

times at the bottom of the vertical shaft. The experiment

results show that the proposed data assimilation frame-

work is able to provide accurate estimation results in dis-

crete event simulations. Assimilating (with interpolation)

the noisy dataset with Gaussian error N (0, 32) added on

entity positions, the performance indicators of estimating

the truck arrivals are 95.00% (success rate), 5.00% (waste

rate), 0.53 min (average distance), and 92.66% (average

percentage) (see Section 5.3.1). In contrast, the simulation

without data assimilation totally lost its prediction ability

from t= 150 min onwards. The experiment results also

prove that a proper interpolation operation can signifi-

cantly improve the estimation results compared to those

obtained without interpolation. With a linear interpolation

to obtain entity positions in the gold mine case, all perfor-

mance indicators improved in the statistic sense compared

with those obtained without interpolation (see section

5.3.2), since the interpolation operation can capture the

real-time state evolution, which is not described in the dis-

crete event model but does happen in reality.

Sensitivity analysis reveals that the proposed data

assimilation framework is robust to error assumptions. In

the gold mine case, even with a 20-m standard deviation

on entity positions, the performance does not degenerate

too much. Specifically, the performance indicators of esti-

mating the truck arrivals are 85.00% (success rate),

15.00% (waste rate), 0.83 min (average distance), and

85.82% (average percentage) (see Section 5.4.1).

Similarly, the framework is robust to model errors (i.e.,

differences between the model generating the ground-truth

data and the model used in the case study), although we

cannot claim to have tested this exhaustively. The result

shows that using a model with errors does not significantly

affect the estimation results (see Section 5.4.2). This result

does, however, emphasize an important underlying point.

Clearly, unless we have actual evidence (data), the accu-

racy of the estimation results depends on the validity of

the simulation models used in the framework for the spe-

cific case at hand. In our case, this validity is evident,

since the ground-truth data is produced by a similar model.

In real life, when the predictions given by the simulation

model diverge too much from the real behavior of the sys-

tem, it stands to reason that the estimation results will be

farther away from the ground truth.

The results of sensitivity analysis also imply several

possible future research directions in order to improve the

quality of the estimation results, such as developing simu-

lation models that can make more valid predictions of the

real system behavior, developing more advanced sensor

technologies that can provide more accurate measurement

data of the real systems, and developing a parallel and dis-

tributed version of the proposed data assimilation frame-

work in order to deal with more complex scenarios.

Funding

This research was supported by the China Scholarship Council

(Grant no. 201306110027) and the National Natural Science

Foundations of China (Grant no. 61374185 and 61403402).

References

1. Bouttier F and Courtier P. Data assimilation concepts and

methods. Meteorological Training Course Lecture Series.

Reading: ECMWF (European Centre for Medium-Range

Weather Forecasts), 1999.

2. Atzori L, Iera A and Morabito G. The Internet of Things: a

survey. Comput Network 2010; 54: 2787–2805.

3. Lee J, Lapira E, Bagheri B, et al. Recent advances and trends

in predictive manufacturing systems in big data environment.

Manuf Lett 2013; 1: 38–41.

4. Wu X and Liu HX. Using high-resolution event-based data

for traffic modeling and control: an overview. Transp Res C

Emerg Technol 2014; 42: 28–43.

5. Ho Y-C. Introduction to special issue on dynamics of dis-

crete event systems. Proc IEEE 1989; 77: 3–6.

6. Nance RE. The time and state relationships in simulation

modeling. Commun ACM 1981; 24: 173–179.

7. Schriber TJ, Brunner DT and Smith JS. How discrete-event

simulation software works and why it matters. In: Laroque

C, Himmelspach J, Pasupathy R, Rose O and Uhrmacher

AM (Eds.) Proceedings of the 2012 winter simulation con-

ference, Berlin, Germany, 9–12 December 2012, pp.1–15.

Piscataway, NJ: IEEE.

8. Zeigler BP, Praehofer H and Kim TG. Theory of modeling

and simulation: integrating discrete event and continuous

complex dynamic systems. 2nd ed. New York: Academic

Press, 2000.

9. Nichols NL. Data assimilation: aims and basic concepts.

Dordrecht: Springer Netherlands, 2003, pp.9–20.

10. Arulampalam MS, Maskell S, Gordon N, et al. A tutorial on

particle filters for online nonlinear/non-Gaussian Bayesian

tracking. IEEE Trans Signal Proc 2002; 50: 174–188.

11. Gillijns S, Mendoza O, Chandrasekar J, et al. What is the

ensemble Kalman filter and how well does it work? In:

Proceedings of the 2006 American control conference,

Minneapolis, MN, USA, 14–16 June 2006, pp.4448–4453.

Piscataway, NJ: IEEE.

12. Evensen G. The ensemble Kalman filter: theoretical formula-

tion and practical implementation. Ocean Dynam 2003; 53:

343–367.

13. Yuan Y. Lagrangian multi-class traffic state estimation. PhD

Thesis, Delft University of Technology, 2013.

14. Djurić PM, Kotecha JH, Zhang J, et al. Particle filtering.

IEEE Signal Proc Mag 2003; 20: 19–38.

15. Gu F and Hu X. Towards applications of particle filters in

wildfire spread simulation. In: Mason SJ, Hill RR, Mönch L,

26 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

Rose O, Jefferson T and Fowler JW (Eds.) Proceedings of

the 2008 winter simulation conference, Miami, FL, USA, 7–

10 December 2008, pp.2852–2860. Piscataway, NJ: IEEE.

16. Xue H, Gu F and Hu X. Data assimilation using sequential

Monte Carlo methods in wildfire spread simulation. ACM

Trans Model Comput Simulat 2012; 22: 23:1–23:25.

17. Wang M and Hu X. Data assimilation in agent based simula-

tion of smart environments using particle filters. Simulat

Model Pract Theor 2015; 56: 36–54.

18. Godsill S and Vermaak J. Variable rate particle filters for

tracking applications. In: IEEE/SP 13th workshop on statisti-

cal signal processing, Bordeaux, France, 17–20 July 2005,

pp.1280–1285. Piscataway, NJ: IEEE.

19. Godsill S, Vermaak J, Ng W, et al. Models and algorithms

for tracking of maneuvering objects using variable rate parti-

cle filters. Proc IEEE 2007; 95: 925–952.

20. Long Y. Data assimilation for spatial temporal simulations

using localized particle filtering. PhD Thesis, Georgia State

University, 2016.

21. Wu P. Sequential Monte Carlo based data assimilation

framework and toolkit for dynamic system simulations. PhD

Thesis, Georgia State University, 2017.

22. Ntaimo L, Hu X and Sun Y. DEVS-FIRE: Towards an inte-

grated simulation environment for surface wildfire spread

and containment. Simulation 2008; 84: 137–155.

23. Hu X, Sun Y and Ntaimo L. DEVS-FIRE: design and appli-

cation of formal discrete event wildfire spread and suppres-

sion models. Simulation 2012; 88: 259–279.

24. Vangheluwe HL. The Discrete EVent System specification

(DEVS) formalism. Technical report, McGill University,

School of Computer Science, Montreal, Quebec, Canada,

2001.

25. Douc R, Cappé O and Moulines E. Comparison of resam-

pling schemes for particle filtering. In: Proceedings of the

4th international symposium on image and signal processing

and analysis, Zagreb, Croatia, 15–17 September 2005,

pp.64–69. Piscataway, NJ: IEEE.

26. Honig HJ and Seck MD. f DEVS: phase based discrete

event modeling. In: Proceedings of the 2012 symposium on

theory of modeling and simulation, Orlando, FL, USA, 26–

30 March 2012, pp.39:1–39:8. Orlando, FL: ACM.

27. Giambiasi N and Carmona JC. Generalized discrete event

abstraction of continuous systems: GDEVS formalism.

Simulat Model Pract Theor 2006; 14: 47–70.

28. Mannila H and Ronkainen P. Similarity of event sequences.

In: fourth international workshop on temporal representation

and reasoning, Daytona Beach, FL, USA, 10–11 May 1997,

pp.136–139. Piscataway, NJ: IEEE.

29. Kanungo T, Mount DM, Netanyahu NS, et al. An efficient

k-means clustering algorithm: analysis and implementation.

IEEE Trans Pattern Anal Mach Intell 2002; 24: 881–892.

30. Gu F and Hu X. Analysis and quantification of data assimi-

lation based on sequential Monte Carlo methods for wildfire

spread simulation. Int J Model Simulat Sci Comput 2010; 1:

445–468.

Author biographies

Xu Xie was a PhD student at the Department of Multi

Actor Systems, Faculty of Technology, Policy and

Management, Delft University of Technology, the

Netherlands. He is now working as an assistant professor

at the Department of Modeling and Simulation, College of

System Engineering, National University of Defense

Technology, Changsha, China.

Alexander Verbraeck is a professor at the Department

of Multi Actor Systems, Faculty of Technology, Policy

and Management, Delft University of Technology, the

Netherlands.

Xie and Verbraeck 27

