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Abstract

Over the past 20 years road usage has increased by over 50%. Although the road network
is being expanded, it is a costly and short-term solution for the issue of traffic congestion.
Related to this are the environmental issues partially caused by the large amount of road traf-
fic. The societal demand for smart solutions to these problems, has accelerated the research
and development of vehicle platooning solutions. By allowing vehicles to drive closer to one
another road capacity can be used more efficiently, and fuel consumption will also be reduced.
Moreover, it reduces the mental load on the drivers in the trailing vehicles. Driving safely
at close intervehicular distances, however, requires automation of the lateral and longitudinal
motion of the vehicle.
The automation of longitudinal motion for vehicle platooning is a well researched problem
and experimentally verified solutions exist. Lateral platooning has received considerably
less attention. One of the main motivations of this work is to develop a lateral control
strategy, designed for easy and robust deployment in real-world platooning applications. Most
lateral platooning solutions nowadays rely on path information. In platooning applications
path reconstruction is often inaccurate, mostly due to the low visibility for the camera’s
when vehicles are driving close to each other. Alternative approaches whereby the path is
reconstructed heavily rely on the availability of signals with high signal to noise ratio to have
accurate reconstruction of the path. Because sensors in road vehicles are often of average
quality, this can not be guaranteed. The main alternative is the direct vehicle following
approach. Although much simpler to implement than path following, it suffers from the fact
that in transient and steady state cornering each of the vehicles in platoon will undercut
the path of the preceding vehicle, something which is deemed undesirable as it could lead to
dangerous situations. The main motivation for the work in this thesis, is to find a vehicle
following method that has the accessibility of direct vehicle following, but the accuracy of
path following.
In this thesis work a new vehicle following strategy is proposed that combines the strengths of
the direct vehicle following approach and the path following approach. In this work, a novel
approach to calculate the road induced error is proposed, allowing a trailing vehicle to use
direct vehicle following in order to deduce a combined measurement of the actual road error
states. This measurement can be used in combination with an observer to asymptotically
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reconstruct the individual road error states. For the controller and observer a linear vehicle
model is used, in which the error dynamics with respect to a path are included as function of
the vehicle dynamics.

An H∞ controller optimization is used to developed a feedforward-feedback control structure.
The choice forH∞ is motivated by the requirement for having string stability as string stability
for linear systems is defined using an H∞ norm. In this work it is shown that given the error
definitions of the system, the string stability complementary sensitivity function is identical to
the complementary sensitivity function for a feedback system. Using Bode’s integral theorem
it is proven that string stability for a system with only a feedback controller is impossible to
achieve. In the case of a feedforward feedback structure it can be shown that string stability
requires infeasible high gain on the feedback controllers to achieve string stability. Given that
such a control solution can only be used in noiseless situations that solution is regarded as
a theoretical solution. From this analysis it is concluded that for the feedback case string
stability is impossible to achieve, and in the case of feedback-feedforward deemed infeasible.

The control algorithm, in combination with the observer, has been implemented and tested
in a simulation environment. A typical highway lane changing or overtaking manoeuvre was
chosen for testing, as well as a simulation to show how the state evolution when the system
is subjected to initial condition errors. The latter is chosen to highlight the functionality
of the observer. The simulation results show that using the new measurement approach in
combination with an observer works equally well to a system that has direct access to the
road error states. The initial condition error simulation also shows that the individual error
states can be successfully reconstructed.

Although the work in this thesis showcases a new method, and proves it to work within a sim-
ulation environment, a few open questions remained at the end of the thesis. Achieving string
stability proved to be impossible with the chosen controller architecture. Research showed
that this could be put down to fundamental limits on the string stability complementary
sensitivity function. Nevertheless, a conclusive proof is not yet given and it is recommended
that this is researched before attempting any further control design. Although string stability
was not achieved, the new vehicle following method did achieve the desired requirements, and
it shows that it is possible to combine the two vehicle following methods using the road-error
and observer.
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Chapter 1

Introduction

1-1 Platooning

Since the 1990’s road usage in the Netherlands has increased by over 50% [1]. The main
cause for this rise in road usage comes from an increase in road freight and passenger car
traffic. In the same time the road capacity has increased, but not by nearly as much as the
amount of traffic. As a result the amount and also average length of traffic jams has steadily
increased [2]. A simple way to negate the increased pressure on the road network would
be to simply increase the size of the road network by either expanding existing highways or
constructing new ones. This, however, is often a costly short-term solution [3]. Furthermore,
the increase in road traffic is also an issue with respect to environmental concerns and the
desire to increase road safety.

An alternative solution is to increase road usage efficiency. In the Netherlands, a general rule
of thumb is to have a spacing of 2 seconds between vehicles. At normal highway velocities
of 100 km/h, it gives an average spacing of 56 metres between two vehicles. This is enough
space for roughly ten average sized vehicles (Based on a VW Golf, the most common car in
the Netherlands [4]). Unfortunately, tighter spacing than this can not be met if the vehicles
are human operated as the "human controller" is simply not accurate or fast enough to react
to changes when the spacing time is significantly lower than 2 seconds [5]. This has led
to a desire to automate the task of driving and has led to the emergence of the Intelligent
Transport System, or ITS for short.

1-1-1 Vehicle Platooning

One of the applications of the ITS is vehicle platooning. At its core a platoon of vehicles is a
group of vehicles driving closely together with a hardware or software implementation allowing
them to drive closely together while maintaining safety. An illustration of such a platoon can
be seen in Figure 1-1. Such a platoon of vehicles can be led by a human operated vehicle or a
host vehicle travelling along a predetermined path. An important aspect of vehicle platooning
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2 Introduction

𝑖 + 1

Wireless 

Communication

Figure 1-1: Illustration of a (lateral) vehicle platoon

is the ability for the vehicles to communicate with one another. This communication can be
used to transmit vehicles states, and has shown to improve platooning safety [6]. It should,
however, also be possible to platoon without any form of communication. For longitudinal
platooning the challenge is to have vehicles driving closely together in a safe manner whilst
keeping inter-vehicular velocities and accelerations at the same rate. For a human-operated
platoon, if following distances are short, the acceleration of the first vehicle will be amplified
by the human controller due to the long reaction time and/or a poor lack of judgement of
the intended acceleration of the preceding vehicle [5]. The propagation of this amplification
throughout the string of vehicles is similar to the effect of a shock wave travelling through
the string of vehicles. It is this shock wave that is often the cause of a traffic jam [7]. The
shock wave effect that causes traffic jams also exists in a similar form for the lateral case.
For lateral platooning the challenge is to follow the preceding vehicle on a curved path while
guaranteeing safety. In this case, safety is defined as the ability to stay within the road-lane
boundaries. For a large number of vehicles in a platoon this practically means that deviation
in lateral direction from the original path may not be amplified through the string of vehicles.
To illustrate this, consider a homogeneous platoon of vehicles, where homogeneous means
that each of the vehicles has identical dynamics and controllers. Say that the lead vehicle
undertakes a lane change because it wants to, for example , overtake a different platoon of
vehicles. If the first following vehicle overshoots the lateral movement of the host vehicle, the
second following vehicle will overshoot the overshoot of that vehicle. At one point the lateral
overshoot will cause one of the vehicles in the platoon to venture into an undesirable location.
For this reason string stability in lateral direction is required.
Several control solutions that guarantee string stability for the longitudinal platooning prob-
lem already exist, and can be found in [6, 8, 9]. In the cited research lateral control is often
also implemented, but in such a way that it is not interactive with other vehicles, i.e., each

D.G. van den Berg Master of Science Thesis



1-2 Lateral Control for Cooperative Driving 3

Figure 1-2: Two vehicle following solutions illustrated. On the left, point or direct vehicle
following is shown and on the right, path following.

participant determines and follows its own path (e.g., the lane center). Here the goal is to
keep the vehicles driving along the centre-line of the lane. Research on lateral control in
platooning applications is not extensively researched, or is restricted to two-vehicle platoons.
A few examples of existing solutions can be found in the following literature [8, 9, 10, 11,
12, 13]. However, all of the solutions presented use path following and not direct vehicle
following. The main goal of this thesis is to find a vehicle following method that unifies both
methods, using the strengths of both whilst counteracting the downsides of both. What these
strengths and downsides are will now be explained in the following section.

1-2 Lateral Control for Cooperative Driving

In literature a wide variety of control solutions can be found with respect to lateral control
of a vehicle. In most cases lateral control is implemented using path following, where the
path is derived from lane markings [14, 15, 16]. In lane keeping the vehicle generates control
action based on a deviation from a path. This path can either be predetermined, or recon-
structed using sensory data. Sensors commonly used for this are radar and cameras. Using
information from road markings the vehicle is able to deduce its location with respect to the
lane. LiDARs or radar are commonly employed to measure the position with respect to other
objects (vehicles)[17]. The two commonly used methods for vehicle following will now be
elaborated, see Figure 1-2.

Master of Science Thesis D.G. van den Berg



4 Introduction

1-2-1 Path Following in Platooning

In the context of platooning path following can also be employed, but rather than following
the middle of the lane or following a predetermined path, the path is reconstructed based on
sensory data in combination with data received from the preceding vehicle. Based on this
information the trailing vehicle is then able to deduce both its heading error and lateral offset
error with respect to the path. Each error can be controlled using two independent controllers.
Path following in a vehicle platoon is often more challenging than lane following for a single
vehicle. Due to the close following distances desired when the vehicles are driving in a platoon,
lane markings are often obstructed, and path reconstruction is unreliable. This can partly be
solved using information transmitted by the preceding vehicle, but this is subjected to delays,
packet losses and noise. [18].

1-2-2 Point Following Solutions

An alternative solution to the vehicle following problem, is the direct vehicle following ap-
proach. In the direct vehicle following approach the trailing vehicle tries to minimize the
offset distance between its heading and a point it has to follow. Control action generated
on this measured distance then steers the vehicle back to the desired heading. For the pla-
tooning application this point is often on the back of the preceding vehicle in the platoon.
Although it is a relatively simple solution, it suffers a well known drawback of corner cutting
[10]. If, in Figure 1-2 in the left situation, the trailing vehicle orients itself along the solid
line it will undercut the path driven by the preceding vehicle. This behaviour is undesired as
each further trailing vehicle in the platoon will undercut a path that already undercuts the
original path. Nevertheless, in certain situations corner cutting is accepted in the end result,
or it can be mitigated, and direct vehicle following is used as solution to the vehicle following
problem [13, 10, 12, 19].

1-3 Problem Statement

The aim of this research is to develop a controller and vehicle following method that is
suitable for lateral control platooning in highway applications. The lateral control solution
should be based on the errors defined as in the path-following approach to vehicle following
such that it does not have the issue of corner cutting. Furthermore, the lateral behaviour
should be string stable. It will be shown in Chapter 3 that the latter requirement is, in
some cases fundamentally, impossible to achieve with the path following approach. Because
of this the string stability requirement was relaxed, and the goal was set to minimize the
lateral overshoot. This minimization requirement calls for an optimization-based control
solution. Finally the controllers should be implementable on actual vehicles for practical
experimentation. This requires the chosen control solution to also account for practical aspects
such as the presence of noise, actuator limits, vehicle limits etc.

Vehicle platooning limits itself to regular or normal driving conditions, i.e., the vehicles are
operated well within the linear regime. By assuming constant forward velocity the longitudinal
and lateral vehicle dynamics can be decoupled. In this work the focus lies solely on the
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1-4 Research Approach and Requirements 5

development of a lateral control solution, and assume that the longitudinal behaviour of the
platoon is controlled through a proven CACC solution as can be found in [20].

1-4 Research Approach and Requirements

This section describes the steps to be taken to solve the problems posed in the previous
section. Firstly, a model describing the lateral vehicle dynamics is required. Secondly the
dynamics of the errors will be based on previous solutions developed at TNO [11, 13, 21]. In
this literature the relative position and heading error are described as function of the vehicle
dynamics of the trailing vehicle, and as function of the preceding vehicle dynamics. These two
errors need to be driven back to zero by the control design. A novel approach to deducing the
road errors will also be developed, such that the strengths of both the direct vehicle following
and path following approaches.

Finally, because string stability seems infeasible to achieve in practical conditions, the control
design should be such that the amount of overshoot that can occur is minimized. This calls
for an optimization-based control solution. On a road vehicle the tyres dampen out a large
part of the response of the vehicle, especially when the excitation of the system is of high
frequency. This damping is not captured in the linear model due to the way how the tyres
are modelled. However, this knowledge that there exists a frequency range in which the
vehicle will not respond to steering inputs can be used when designing the controllers. By
designing the controllers such that they show string stable behaviour in the frequency range
of interest, it might be possible to have the overshoot in a frequency range where the vehicle
is not expected to be excited. Because string stability requirements can easily be formulated
using system norms, an H∞ based control solution is proposed for the development of the
controller. An added benefit of this method is that it allows penalization of the control action,
which is desired from a practical perspective.

Throughout the thesis it is assumed that each vehicle is able to communicate with the vehicles
directly neighbouring it, and that there are no delays present in the communication. This has
no effect on the string stability analysis of the system [21]. Next to the problem statement,
the following requirements are added to the problem statement. The requirements are listed
below:

• The vehicle must track the path of the preceding vehicle without steady-state error.

• Following distance shorter than achieved with human-controlled string. (Achieved with
a headway time of ≈ 1 second with V2V).

• Platoon must be as close as possible to being laterally string stable.

• Rejection of initial condition errors.

• Controller must be real world implementable, as in, it must be robust against noise and
disturbances.

• Controller is designed for highway driving situations. This means velocities in the region
of 80 to 100 km/h.
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6 Introduction

Each of the requirements will now be discussed to explain, where necessary, why they are
included.

No Steady-State Error
It is desired that each of the vehicles eventually ends up on the same path as the preceding
vehicle. During transients the trailing vehicle is allowed to veer off the path. In steady state
cornering or straight line driving the vehicle should converge to the path of the preceding
vehicle.

Headway time of approximately 1 second
The following distance is defined by the velocity multiplied by the headway time between two
vehicles. The target is chosen such that the average distance between vehicles is half of what
is the minimal requirement in the Netherlands. This target is based on practical results from
CACC experiments found in [6].

Lateral String Stability Requirement
The string stability requirement will be formulated to allow as many vehicles as possible to
drive in a single platoon without the effect of the string instability becoming too large.

Initial Condition Error Rejection
It is possible to design controllers that achieve the goal of path tracking, but any initial
condition error (or steady state offset) will not be solved. This is undesired and hence the
controllers should also be capable of acting on initial condition errors.

Real World Application
The controller will be designed such that they are not sensitive to high frequency noise and
external disturbances. Originally other aspects such as computation time were going to be
taken into account, but the lack of testing due to the COVID-19 outbreak prevented that.

Highway Driving Situations
There are two reasons why the driving environment is chosen to represent highway driving.
Firstly manoeuvres during regular highway driving are lower frequency. This keeps the vehicle
well within the linear dynamics regime, allowing for a linear dynamic model. Secondly, the
chosen CACC solution was also developed for highway use. The absence of traffic lights and/or
pedestrians, combined with predictable vehicle flow also makes it an easier environment to
develop for, as one has to take less safety-related disturbances into account.

1-5 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 covers the equations of motion
describing the lateral vehicle dynamics as well as the derivation of the vehicle-road errors.
Finally, the platoon dynamics are also given. These are required for string stability analysis.
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1-5 Thesis Outline 7

Chapter 3 will give a mathematical background on the string stability requirement. It will
also cover the string stability requirement for the platoon dynamics from Chapter 2. It will
also include the proof and analysis on the string stability properties of the system. Chapter 4
will cover the control design, given these limitations. Chapter 5 will show simulation results
with a comparison of the proposed controller to the one implemented currently. Chapters
6 and 7 will form respectively the discussion and conclusion. In the discussion a potential
solution to the string stability issue is proposed. There are also two appendices added to
this thesis. Appendix A goes into detail on signal and system norms, and how they can be
computed. Appendix B gives the derivation of Bode’s Integral, a well known integral relation
in feedback control design.
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Chapter 2

Vehicle Theory

In this chapter, the equations of motion for a vehicle will be derived. The derivation is based
on a vehicle representation called the bicycle model and is based on the work found in [22].
Section 2-1 will derive the lateral, longitudinal and yaw dynamics as function of steering and
longitudinal force input. These dynamics will then be used to derive the road error dynamics,
which is done in section 2-2. In section 2-1, the dynamics of the power steering system will
also be covered and incorporated into the model. Section 2-3 will cover how a platoon of
interconnected vehicles can be modelled and their dynamics can be linked. Finally, section
2-4 will cover a way of deriving the error induced by the curvature of the road.

2-1 Lateral Vehicle Dynamics Modelling

The dynamics of a vehicle can be modelled with a varying degree of complexity. The type of
model is mainly dependant on the complexity of the tyre model as well as the chosen amount
of degrees of freedom. Based on requirements the designer has for the design, an appropriate
model can be chosen. For this thesis the primary goal is to follow the path of a preceding
vehicle. In turn, this requires us to be able to influence the motions and rotations of each of
vehicles in the platoon. A further simplification of the dynamics comes from only considering
the motion of the vehicle in the x − y plane and its rotation among the z-axis. Figure 2-1
shows the SAE J670 standard axis system for a vehicle. Any displacement in the z-direction
as well as rotations around the x (roll) and y (pitch) axis are disregarded in the analysis.
This can be done because the expected lateral accelerations during highway driving are low
enough such that load transfer plays no major role in the dynamics of the vehicle.

2-1-1 The Bicycle Model

The bicycle model is a model that describes the longitudinal, lateral and the yaw motion of
the vehicle, and can easily be adapted to a linear model. In this model the tyre on the front
and rear axle are grouped together to one tyre attached to the centre line of the vehicle. The
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10 Vehicle Theory

Figure 2-1: SAE vehicle axis definitions [23]

front tyre can be steered. Figure 2-2 shows a free body diagram in which all relevant vectors,
angles and distances required for the derivation are labelled.
In Figure 2-2, the motion of the vehicle can be described by the coordinates X1,Y1 and ψ
in the global reference frame, with origin Og. Coordinates X1 and Y1 are global location
coordinates of the centre of gravity of the vehicle. The angle ψ is the rotation of the vehicle
with respect to this inertial frame. It is assumed that only the front wheel has a rotational
degree of freedom, and its angle with respect to the vehicle longitudinal axis is denoted by
δ. The vehicle has wheelbase L = a+ b, where a is the distance from the front wheel to the
centre of gravity and b is the distance from the rear wheel to the centre of gravity. Each of
the tyres is capable of producing both lateral and longitudinal forces, denoted as vectors in
the vehicle axis system. The lateral forces are denoted by Fy,f and Fy,r for the front and rear
tyres, and likewise for the longitudinal forces Fx,f and Fx,r for the front and rear tyres. The
vector ~V denotes the magnitude and direction of the velocity of the vehicle.
The vehicle itself also has a local coordinate system of which the origin, denoted by Oi, lies
on the centre of gravity. The unit vector ~eix is aligned parallel to the centreline of the vehicle
and the unit vector ~eiy, perpendicular to the vehicle centreline. The velocity vector, ~V , can
be constructed from the local velocities, denoted by ~vy and ~vx, see Figure 2-2. In the vehicle
coordinate frame, the tyres also have their own local velocities, denoted by ~vf and ~vr for front
and rear respectively. The angle between these velocity vectors and the centreline of the tyres
is called the slip angle, αf and αr for front and rear, respectively, and plays an important
part in the force generation of a tyre. The angle of the velocity vector ~V with respect to the
vehicle centre-line is called the body slip angle, denoted by β. Finally, when the vehicle is
cornering, it is rotating around its own centre of gravity. This rotational velocity is commonly
referred to as the yaw rate of the vehicle, and is denoted by ψ̇. In other literature the yaw
rate of the vehicle is also often denoted by r. However to keep uniformity throughout the
thesis the notation of the yaw rate was chosen to be ψ̇.

2-1-2 Bicycle Model Equations of Motion

In this section the equations of motion for the bicycle model, using the definitions in Figure
2-2, will be derived. The derivation given in this thesis is based on [22]. Alternate ways
of arriving at the same set of equations exist, but the author found this the most insightful
method.

D.G. van den Berg Master of Science Thesis



2-1 Lateral Vehicle Dynamics Modelling 11

𝐹𝑦,𝑟 𝐹𝑥,𝑟

𝐹𝑦,𝑓

𝐹𝑥,𝑓

𝐹𝑦

𝐹𝑥

𝛼𝑓

−𝛼𝑟

𝛽

𝛿

𝑎

𝑏

ሶ𝜓Ο𝑖

റ𝑒𝑦
𝑖

റ𝑒𝑥
𝑖

𝑉

റ𝑣𝑥റ𝑣𝑦

റ𝑣𝑟

റ𝑣𝑓

Ο𝑔 𝑋

𝑌

𝑌1

𝑋1

𝜓
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12 Vehicle Theory

The method uses Lagranges theorem for mechanics to derive the equations of motion. For a
system with n degrees of freedom, n generalised coordinates qi are selected. These coordinates
completely describe the motion of the vehicle whilst kinematic constraints are satisfied. In
general the system possesses kinetic energy T , potential energy U and is subjected to external
generalized forces, Qi, which act on the system. The Lagrange equations for generalized
coordinate qi reads

d

dt

∂T

∂q̇i
− ∂T

∂qi
+ ∂U

∂qi
= Qi. (2-1)

The generalized coordinates for the bicycle model in Figure 2-2 are given by qi =
[
X1 Y1 ψ

]
.

When the vehicle is driving under normal conditions it has no potential energy and only kinetic
energy. The total kinetic energy of the vehicle is given by

T = 1
2m

(
Ẋ2

1 + Ẏ 2
1

)
+ 1

2Izψ̇
2, (2-2)

where Ẋ1 and Ẏ1 are the velocities in the global coordinate system and ψ̇ the rotation in the
same coordinate system. Substituting Equation 2-2 for each of the generalized coordinates,
qi, in the Lagrange Equation 2-1 yields

d

dt

∂T

Ẋ1
= mẌ1 = QX , (2-3a)

d

dt

∂T

Ẏ1
= mŸ1 = QY , (2-3b)

d

dt

∂T

ψ̇
= Izψ̈ = Qψ. (2-3c)

Because it is desired to describe the motion of the vehicle in its own local velocities rather
than global velocities, the Lagrangian equations of Equation 2-3 need to be translated from
global to local coordinates. By using rotation matrix R(ψ) it possible to write Ẋ1 and Ẏ1 in
local vehicle velocities vx and vy, and vice versa. This relation is given by[

Ẋ1
Ẏ1

]
=
[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
vx
vy

]
. (2-4)

Writing out Ẍ1 and Ÿ1 using the definitions in Equation 2-4 yields[
Ẍ1
Ÿ1

]
= ψ̇

[
0 −1
1 0

] [
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
vx
vy

]
+
[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
v̇x
v̇y

]
. (2-5)

Under the assumption that angle ψ is small, such that cos(·) ≈ 1 and sin(·) ≈ 0, Equation
2-5 can be written as

Ẍ1 = v̇x − ψ̇vy, (2-6a)
Ÿ1 = v̇y + ψ̇vx. (2-6b)

Replacing Ẍ1 and Ÿ1 in Equation 2-3 with the definitions of Equations 2-6, a set of equations
from which it is possible to describe the motion of the vehicle in its local coordinates is
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2-1 Lateral Vehicle Dynamics Modelling 13

derived. These equations are given by:

mẌ1 = m
(
v̇x − vyψ̇

)
= QX , (2-7a)

mŸ1 = m
(
v̇y + vxψ̇

)
= QY , (2-7b)

Izψ̈ = Qψ, (2-7c)

or, solving for the accelerations of vx, vy and ψ̇

v̇x = QX
m

+ vyψ̇

m
, (2-8a)

v̇y = QY
m
− vxψ̇

m
, (2-8b)

ψ̈ = Qψ
Iz
. (2-8c)

Generalised Forces

Having derived a set of dynamics equations for the motion of the vehicle in both global and
local coordinates, the generalized forces QX , QY and Qψ as function of these local coordinates
needs to be found. This can be done by assuming the vehicle undergoes a movement in the
direction of generalized coordinates qi. Then the generalised forces can be found from the
virtual work they exert on the vehicle. These are given by

∂W =
3∑
i=1

Qi∂qi, (2-9)

where the total work done is the force multiplied by the direction it is pointing in, defined by
the generalized coordinates qi. Let us now assume that the vehicle in Figure 2-2 undergoes
a virtual displacement in the ∂x, ∂y and ∂ψ direction, where x and y are local vehicle
coordinates in the Oi frame, then the virtual work is given by

∂W =
3∑
i=1

Qi∂qi =
∑

Fx∂x+
∑

Fy∂y +
∑

Mz∂ψ. (2-10)

From Equation 2-10 the generalized forces QX , QY and Qψ can be derived as

QX =
∑

Fx = Fx,f cos(δ) + Fy,f sin(δ) + Fx,r, (2-11a)

QY =
∑

Fy = Fx,f sin(δ) + Fy,f cos(δ) + Fy,r, (2-11b)

Qψ =
∑

Mz = aFx,f sin(δ) + aFy,f cos(δ)− bFy,r, (2-11c)

which becomes, after a small angle approximation,

QX =
∑

Fx = Fx,f + Fx,r, (2-12a)

QY =
∑

Fy = Fy,f + Fy,r, (2-12b)

Qψ =
∑

Mz = aFy,f − bFy,r. (2-12c)
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14 Vehicle Theory

The set of equations in (2-12), combined with Equation 2-7, give us a set of equations for
describing the lateral, longitudinal and yaw motion of a vehicle. Writing out the equations
yields

mẌ1 = m
(
v̇x − vyψ̇

)
= Fx,f + Fx,r, (2-13a)

mŸ1 = m
(
v̇y + vxψ̇

)
= Fy,f + Fy,r, (2-13b)

Izψ̈ = aFy,f − bFy,r. (2-13c)
Writing out the equations in 2-13 for each of the generalized accelerations yields

v̇x = Fx,f + Fx,r
m

+ vyψ̇ (2-14a)

v̇y = Fy,f + Fy,r
m

− vxψ̇ (2-14b)

ψ̈ = aFy,f − bFy,r
Iz

(2-14c)

Inclusion of Lateral Tyre Dynamics

The forces Fx,i and Fy,i are produced by the tyres. As the goal is to arrive at a lateral vehicle
model, only the lateral tyre dynamics will be explored in detail. Further on in the derivation,
the longitudinal forces Fx,i will also be removed from the equations. In the literature [22]
various ways of mathematically describing how a tyre produces a force are presented. As
the model being developed in this thesis aims to arrive at a linear description of the vehicle
dynamics, a linear tyre model will be used to model the forces they generate. In the linear
tyre model the amount of force a tyre generates is linearly dependant on the amount of slip
angle the tyre has. The forces for the front and rear tyres are given by

Fy,f = Cαfαf ,

Fy,r = Cαrαr.
(2-15)

where Cαf is the front tyre cornering stiffness and Cαr the rear tyre cornering stiffness. The
cornering stiffness of a tyre is a measure of how much lateral force a tyre produces per radian
of rotation. In turn it is possible to write the slip angles as function of vehicle states. Using
the angles as defined in Figure 2-2, αf and αr can be written as

αf = δ − vy + aψ̇

vx
,

αr = −vy − bψ̇
vx

,

(2-16)

Combining Equations 2-13, 2-15 and 2-16 results in a non linear description of the vehicle
motion in longitudinal, lateral and yaw direction.

v̇x = Fx,f + Fx,r
m

+ vyψ̇ (2-17a)

v̇y =
Cαf
m

(
δ − vy + aψ̇

vx

)
− Cαr

m

(
vy − bψ̇
vx

)
− vxψ̇, (2-17b)

ψ̈ =
aCαf
Iz

(
δ − vy + aψ̇

vx

)
+ bCαr

Iz

(
vy − bψ̇
vx

)
. (2-17c)
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2-1 Lateral Vehicle Dynamics Modelling 15

Lateral Vehicle Dynamics

The model in Equation 2-17 completely describes the longitudinal, lateral and yaw dynamics
of the vehicle. However, in this form the model is still non-linear, where a linear description
is required. It turns out that including the longitudinal dynamics and, as such longitudinal
velocity vx in the description, complicates matters as it appears in non-linear fashion in the
tyre slip angle. This can be circumvented by assuming that the vehicle drives at a constant
forward velocity. In turn this means that v̇x = 0. As such it is possible to arrive at a linear
description of the lateral vehicle dynamics for vy and ψ̇. By assuming v̇x = 0, Equation 2-17
reduces to

v̇y =
Cαf
m

(
δ − vy + aψ̇

vx

)
− Cαr

m

(
vy − bψ̇
vx

)
− vxψ̇,

ψ̈ =
aCαf
Iz

(
δ − vy + aψ̇

vx

)
+ bCαr

Iz

(
vy − bψ̇
vx

)
.

(2-18)

The assumption that the forward velocity, vx, is constant holds for all other derivations in
this thesis. As such, vx is no longer a state but a parameter of the system.

2-1-3 State-Space Model Description

By setting v̇x = 0, it is possible to put the Equations of 2-18 into a linear state-space descrip-
tion. By taking vy and ψ̇ as vehicle states, (2-18) can also be written as

v̇y =
(
−
Cαf + Cαr

mvx

)
vy +

(
−vx +

−aCαf + bCαr
mvx

)
ψ̇ +

Cαf
m

δ, (2-19)

for the state vy and for ψ̇ we can write

ψ̈ =
(−aCαf + bCαr

Izvx

)
vy +

(
a2Cαf − b2Cαr

Izvx

)
ψ̇ +

aCαf
Iz

δ. (2-20)

Using equations 2-19 and 2-20 a state space description of the form ẋ = Ax+Bu, with output
y = Cx+Du is given in (2-21) and (2-22). This description is given by:v̇y

ψ̈

 =


(
−
Cαf+Cαr
mvx

) (
−vx +

−aCαf+bCαr
mvx

)
(
−aCαf+bCαr

Izvx

) (
a2Cαf−b

2Cαr
Izvx

)

vy
ψ̇

+

 Cαf
m

bCαr
Iz

 δ. (2-21)

Typical outputs of the system are given in Equation 2-22
v̇y

ψ̇

β

 =


(
−
Cαf+Cαr
mvx

) (
−aCαf+bCαr

Izvx

)
0 1
− 1
vx

0


vy
ψ̇

+


Cαf
m

0

0

 δ, (2-22)

where v̇y is also the lateral acceleration of the vehicle and β is the body slip angle of the
vehicle under a small angle approximation.
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16 Vehicle Theory

2-1-4 Steering Dynamics

The system in Equation 2-21 uses the tyre steering angle as system input. However, since
the steering wheel of the vehicle will be actuated using the power steering it is beneficial to
include the the dynamics in the state space. The steering system is described by a second
order system of the form [24]

δ̈ = −2ζωnδ̇ + ω2
n (δref − δ) (2-23)

In Equation 2-23 ζ is the damping of the power steering, ωn its natural frequency and δref
the desired steering wheel angle. Expanding the state space description of the vehicle given
in Equation 2-21 yields

v̇y

ψ̈

δ̇

δ̈

 =



(
−
Cαf+Cαr
mvx

) (
−vx +

−aCαf+bCαr
mvx

)
Cαf
m 0(

−aCαf+bCαr
Izvx

) (
a2Cαf−b

2Cαr
Izvx

)
bCαr
Iz

0
0 0 0 1
0 0 −ω2

n −2ζωn




vy

ψ̇

δ

δ̇

+


0

0

0

ω2
n

 δref . (2-24)

2-2 Error Dynamics

Having established the vehicle dynamics, the error dynamics of a vehicle i in the platoon
with respect to a reference path will be derived. Figure 2-3 will be used as reference for this
derivation. Note that since the errors are vehicle specific, the subscript i has been added to
states of vehicle i. If this subscript is lacking it means that that state is independant of vehicle
i. In Figure 2-3 the reference path is denoted as a curve, C. Furthermore, three different
frames of reference are denoted, namely, Og as origin for the global coordinate system, Or as
origin for an axis system located on curve C and Oi as origin for the frame of reference for
vehicle i. The axis system with origin Or is an orthogonal projection of Oi on the curve C.
The origins Og and Oi are defined in Figure 2-2.

The frame of reference with origin Or has unit vector ~erx, which is tangential to the curve
C. This unit vector has angle θs with respect to the global X-axis. Vector ~ye,i connects the
origins Or and Oi, and is the shortest distance between the centre of the vehicle and the
curve C. It is calculated by the inner product of the vector ~ye,i, and unit vector ~ery,

ye,i =~ye,i ·~ery (2-25)

The angle ψi is the angle between the vector~eix and the global X-axis. Angle βi is the angle
between the vector~eix, and the velocity vector ~Vi, as defined in Figure 2-2. This angle can be
calculated using the local velocities vy,i and vx,i as

βi = arctan
(
vy,i
vx,i

)
, (2-26)

or approximated by
βi = vy,i

vx,i
, (2-27)
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Figure 2-3: Error model with all variables defined.

when using a small angle approximation. Finally the heading error ψe,i is considered. The
heading error is defined as the difference in angle between the vector~erx, tangent to the curve
C and the velocity vector Vi

ψe,i = βi + ψi − θs. (2-28)

In literature the heading error is often also defined as the error between the tangent ~erx and
the vehicle centreline, or ~eix [13]. When the error as defined in Equation 2-28 is brought to
zero, it will align the velocity vector of the vehicle with the tangent of the curve, and the
vehicle will be moving along the tangent. The alternate definition does not necessarily force
this upon the vehicle.

Having defined the errors, their time derivatives are required to describe their dynamics. First
the dynamics for ψe,i will be derived in section 2-2-1, after which the dynamics for ye,i are
derived in section 2-2-2 Finally, in section 2-3 the error definitions will be included in the
state space description of Equation 2-24.

2-2-1 Error Dynamics for ψ̇e,i

Let us now derive the error dynamics ψ̇e,i. Taking the time derivative of Equation 2-28 yields

ψ̇e,i = β̇i + ψ̇i − θ̇s. (2-29)

Master of Science Thesis D.G. van den Berg



18 Vehicle Theory

Using the approximation for the body slip angle as given in Equation 2-27, writing out the
time derivative yields

ψ̇e,i = v̇y,ivx,i − vy,iv̇x,i
vx,i2

+ ψ̇i − θ̇s = v̇y,i
vx,i
− vy,iv̇x,i

vx,i2
+ ψ̇i − θ̇s. (2-30)

One of the requirements for arriving at a linear vehicle model was that v̇x,i = 0, therefore
there is no inclusion of longitudinal dynamics into the vehicle model. Applying this to the
error definition of (2-30) results in

ψ̇e,i = v̇y,i
vx,i

+ ψ̇i − θ̇s. (2-31)

In Equation 2-31 ψ̇i is the yaw rate of vehicle i, θ̇s is the rotation of the curvature of the road
and v̇y,i

vx,i
is the change in body slip angle due to change in lateral velocity. Using the definition

in (2-19), and substituting it in (2-31) gives

ψ̇e,i =
(
−
Cαf + Cαr
mv2

x,i

)
vy,i +

(
−1 +

−aCαf + bCαr
mv2

x,i

)
ψ̇i + 1

vx,i

Cαf
m

δi + ψ̇i − θ̇s

=
(
−
Cαf + Cαr
mv2

x,i

)
vy,i +

(
−aCαf + bCαr

mv2
x,i

)
ψ̇i + 1

vx,i

Cαf
m

δi − θ̇s.
(2-32)

For sake of brevity (2-32) is written as

ψ̇e,i = p1vy,i + p2ψ̇i + p3δi − θ̇s, (2-33)

with

p1 =
(
−
Cαf + Cαr
mv2

x,i

)
(2-34a)

p2 =
(
−aCαf + bCαr

mv2
x,i

)
(2-34b)

p3 = 1
vx,i

Cαf
m

(2-34c)

2-2-2 Error Dynamics for ẏe,i

Having derived the dynamics for ψe,i as a function of vehicle states for vehicle i and road
curvature C, the error dynamics for ye,i will be derived. Using (2-25), its time derivative can
be written as

ẏe,i = ~̇ye,i ·~ery + ~̇e ry ·~ye,i. (2-35)

As the frame of reference spanned by vectors ~erx and ~ery is defined as being tangential to the
curve, it is moving purely in the ~erx direction, hence ~̇e ry = 0. Thus

ẏe,i = ~̇ye,i ·~ery. (2-36)

The time derivative of vector ~ye,i can also be written as

~̇ye,i = ~̇rg,i − ~̇rg,r, (2-37)
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2-2 Error Dynamics 19

with vectors ~rg,i and ~rg,r as in Figure 2-3. Using the local vehicle velocities vx,i and vy,i, ~̇rg,i
can be written as

~̇rg,i =
[
vx,i vy,i

] [~eix
~eiy

]
(2-38)

Using the fact that the frame Or is an orthogonal projection of the frame Oi, and using
rotation matrix R(ψi − θs), defined as

R(ψi − θs) =
[
cos (ψi − θs) − sin (ψi − θs)
sin (ψi − θs) cos (ψi − θs)

]
(2-39)

Equation 2-38 can be written as

~̇rg,i =
[
vx,i vy,i

]
R(ψi − θs)T

[
~erx
~ery

]
, (2-40)

which equals

~̇rg,i =
[
vx,i cos (ψi − θs)− vy,i sin (ψi − θs) vx,i sin (ψi − θs) + vy,i cos (ψi − θs)

] [~erx
~ery

]
.

(2-41)
Furthermore, as Or can only move in the direction tangent to the curve C, then with slight
abuse of notation

~̇rg,r = ~̇rrg,r ·~erx, (2-42)

where ~̇rrg,r is the velocity of the vector ~rg,r system among the curve C. Combining Equations
2-41 and 2-42 into Equation 2-37 it then yields

~̇ye,i =
[
vx,i cos (ψi − θs)− vy,i sin (ψi − θs)− Ȯr vx,i sin (ψi − θs) + vy,i cos (ψi − θs)

] [~erx
~ery

]
.

(2-43)
With ẏe,i = ~̇ye,i ·~ery (2-43) becomes

ẏe,i = vx,i sin (ψi − θs) + vy,i cos (ψi − θs) (2-44)

Using Equation 2-28 it is possible to write ψi− θs = ψe,i−βi, such that (2-44) can be written
as

ẏe,i = vx,i sin (ψe,i − βi) + vy,i cos (ψe,i − βi) . (2-45)

Using the small angle approximation in Equation 2-27 for βi, Equation 2-45 can be rewritten
to

ẏe,i = vx,i

(
ψe,i −

vy,i
vx,i

)
+ vy,i,

= vx,iψe,i

(2-46)
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2-3 Full State-Space Model Description and Platoon Model

Having derived the dynamic equations for the road errors in (2-33) and (2-46) as a function of
vehicle states and an external input θ̇s the following linear state space system can be defined:

v̇y,i

ψ̈i

ẏe,i

ψ̇e,i

δ̇i

δ̈i


=



−
(
Cαf+Cαr
mvx,i

) (
− vx,i +

bCαr−aCαf
mvx,i

)
0 0

Cαf
m 0(

bCαr−aCαf
Izvx,i

) (
−

a2Cαf+b2Cαr
Izvx,i

)
0 0

aCαf
Iz

0

0 0 0 vx,i 0 0

−
(
Cαf+Cαr
mv2

x,i

) (
bCαr−aCαf

mv2
x,i

)
0 0

Cαf
mv2

x,i
0

0 0 0 0 0 1
0 0 0 0 −ω2

n −2ζωn





vy,i

ψ̇i

ye,i

ψe,i

δi

δ̇i



+



0
0
0
0
0
ω2
n


δi,ref +



0
0
0
−1
0
0


θ̇s.

(2-47)

In shorthand notation this system is written as

ẋi = Axi +Bδi,ref + Eθ̇s, (2-48)
yi = Cxi, (2-49)

where C is an output matrix of choice. The state space description given in Equation 2-47
fully describes how a change in road curvature leads to accumulation of heading error ψe,i, and
when left untreated leads to lateral offset error ye,i. Heading error ye,i is wholly dependant
on heading error ψe,i, which in turn is affected by a disturbance input θ̇s and vehicle steering
angle δi. The control input δi,ref will be generated by a controller as function of the heading
and lateral offset error. Correction of any accumulated heading error leads to correction of
lateral offset error.
From the model in (2-47) it is not yet apparent how the dynamics of the preceding vehicle
can be connected to that of the trailing vehicle. To arrive at this consider a homogeneous
platoon of vehicles of n vehicles long. The path vehicle i now has to drive is defined by the
path driven by its preceding vehicle, vehicle i− 1. The rate of change of the path, θ̇s, sensed
by vehicle i is induced by vehicle i− 1. This rate of change θ̇s can be written as function of
the states of vehicle i− 1. Define ∆t as the time it takes vehicle i to travel following distance
di, then

θ̇s,i−1 = ψ̇i−1 (t−∆t) + β̇i−1 (t−∆t) (2-50)
Using the definitions for ψ̇i and β̇i as developed earlier in this chapter, Equation 2-50 can
then be written as

θ̇s,i−1 =
(
−
Cαf + Cαr
mv2

x,i−1

)
vy,i−1 (t−∆t) +

(
−aCαf + bCαr

mv2
x,i−1

)
ψ̇i−1 (t−∆t)

+ 1
vx,i−1

Cαf
m

δi−1 (t−∆t) ,
(2-51)

D.G. van den Berg Master of Science Thesis



2-4 The Road Error 21

Rewriting Eθ̇s to

0
0
0
−1
0
0


θ̇s =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−
(
Cαf+Cαr
mv2

x,i

) (
bCαr−aCαf

mv2
x,i

)
0 0

Cαf
mv2

x,i
0

0 0 0 0 0 0
0 0 0 0 0 0





vy,i−1 (t−∆t)
ψ̇i−1 (t−∆t)
ye,i−1 (t−∆t)
ψe,i−1 (t−∆t)
δi−1 (t−∆t)
δ̇i−1 (t−∆t)


, (2-52)

which, when substituted in (2-47), leads to

v̇y,i

ψ̈i

ẏe,i

ψ̇e,i

δ̇i

δ̈i


=



−
(
Cαf+Cαr
mvx,i

) (
− vx,i +

bCαr−aCαf
mvx,i

)
0 0

Cαf
m 0(

bCαr−aCαf
Izvx,i

) (
−

a2Cαf+b2Cαr
Izvx,i

)
0 0

aCαf
Iz

0

0 0 0 vx,i 0 0

−
(
Cαf+Cαr
mv2

x,i

) (
bCαr−aCαf

mv2
x,i

)
0 0

Cαf
mv2

x,i
0

0 0 0 0 0 1
0 0 0 0 −ω2

n −2ζωn





vy,i

ψ̇i

ye,i

ψe,i

δi

δ̇i



+



0
0
0
0
0
ω2
n


δi,ref +



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−
(
Cαf+Cαr
mv2

x,i

) (
bCαr−aCαf

mv2
x,i

)
0 0

Cαf
mv2

x,i
0

0 0 0 0 0 0
0 0 0 0 0 0





vy,i−1 (t−∆t)
ψ̇i−1 (t−∆t)
ye,i−1 (t−∆t)
ψe,i−1 (t−∆t)
δi−1 (t−∆t)
δ̇i−1 (t−∆t)


.

(2-53)

or in shorthand notation

ẋi = Aixi +Bδi,ref +Ai−1xi−1 (t−∆t) . (2-54)

This interconnection between two vehicles in the platoon will be used when analyzing the
string stability properties of the platoon. This analysis can be found in Chapter 3.

2-4 The Road Error

In section 2-2 the road error definitions were defined. This was done through projecting the
vehicle axis system, rotated such that it is tangential with the path and defining a heading
and offset error around the global axis system, and two local axis systems. Figure 2-4 shows
a similar scenario to that posed in Figure 2-3, here; however, the vehicle measures a total
distance off-set ytot,i. This distance is measured by using images captured with a camera.
In this image there will be two points, one is defined as the tracking point and the other is
the location where the vehicle will end if it travels a certain distance with this heading. The
tracking point is normally located on the back of the preceding vehicle, whereas the heading
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point is defined by the look-ahead distance di. The distance error between the two points
is the measurement ytot,i This error comprises the two errors seen in section 2-2, but also a
distance denoted by εi,

ytot,i = ye,i + diψe,i + εi. (2-55)
When vehicle following based on direct vehicle following is used, the control action is gen-
erated on the measurement of ytot,i. From 2-4 it is clear that this measurement contains a
superposition of both the road errors, and a distance εi from the fact that the vehicle in front
has moved away. When this distance εi is left unaccounted for, the vehicle will undercut the
path of the preceding vehicle; namely, making ytot,i zero does not imply making ye,i + diψe,i
zero.

𝑑𝑖𝜓𝑒𝑖

𝜀𝑖

𝑦𝑒𝑖

𝜓𝑒𝑖

𝑦𝑡𝑜𝑡,𝑖

𝑅𝑖−1 = 𝜌𝑖−1
−1

Ο𝑔

റ𝑒𝑦
𝑔

റ𝑒𝑥
𝑔

Figure 2-4: Platoon with lateral errors defined.

This distance εi can be calculated by vehicle i−1. Taking the situation as depicted in Figure
2-4 where the platoon drives perpendicular to the x-axis with Y = 0 then when vehicle i− 1
starts following the path from point A to point B, εi is calculated as

εi =
∫ t

t−tla
Ẏ dt =

∫ t

t−tla
vx sin (ψi−1(t)) + vy,i−1(t) cos (ψi−1(t)) dt, (2-56)

where tla is the time it takes for vehicle i − 1 to drive following distance di. This time is
almost equal to the time it takes vehicle i − 1 to drive from point A to B. Using the small
angle approximation for the integral in (2-56) yields

εi ≈
∫ t

t−tla
vx,i−1 (ψi−1(t)) + vy,i−1(t)dt. (2-57)
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2-4 The Road Error 23

Taking the time derivative of Equation 2-57 yields a formulation for εi that can be used by a
vehicle to approximate εi. The time derivative is given by

ε̇i = vx,i−1 (ψi−1(t)− ψi−1(t− tla)) + vy,i−1(t)− vy,i−1(t− tla). (2-58)

As highway manoeuvring is considered, it holds that when vx,i−1 >> vy,i−1 in all cases
considered, Equation 2-58 can be approximated as

ε̇i ≈ vx,i−1 (ψi−1(t)− ψi−1(t− tla)) . (2-59)

Using this approximation vehicle i − 1 can use its own velocity measurement and yaw rate
measurement to give an approximation for the error distance induced by the road curvature
that is measured when using a direct vehicle following method. Adding this measurement to
the communication between the two vehicles, allows the trailing vehicle to deduce the error

ei = ye,i + diψe,i. (2-60)

This measurement of the superposition of the two individual errors described in section 2-2
opens up the possibility to reconstruct the individual error states. This is done by using an
observer designed for the state space system in (2-47). For this system, if the output matrix
is taken as

C =
[
0 0 1 di 0 0

]
, (2-61)

it turns out that the system’s observability matrix is full rank. This means that the system
is observable. The error measurement in (2-60) as described in this section open up the
possibility of having vehicles use the direct vehicle following method, and also be able to
follow the path without corner cutting. Furthermore, it opens up the possibility to develop
individual feedback controllers for the error states. The biggest advantage however comes from
the fact that direct vehicle following is relatively easy to implement, and that if communication
fails, the control strategy remains the same, only with the downside that corner cutting will
now occur, as εi is unknown in that case.
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Chapter 3

String Stability Analysis

A platoon of vehicles can be interpreted as a set of interconnected systems. The performance
of the platoon of vehicles can be assessed by their string stability property. As for any other
system, connected or not, the notion of internal stability is also important. Such conventional
stability for a closed-loop feedback system considers the evolution of system states over time.

In contrast, string stability concerns itself with the propagation of a state over the platoon
as a function of vehicle index. Recall the examples given in the introduction, where string
instability was described by either an amplification of longitudinal or lateral acceleration,
depending on the manoeuvre. The human operator for a car in vehicle following scenarios
can be described as a stable system as seen in [25]. Obviously, there are exceptions where this
is not necessarily true (drunk driving for example). However, the occurrence of, for example,
a ghost traffic jam is a practical indication that the system is not string stable.

In [26] string stability, or lack thereof, is described for the development of a longitudinal
vehicle following controller. In this paper the authors describe a so-called slinky effect of the
platoon. In [27] Swaroop and Hendrick formally define string stability as uniform boundedness
in all states. In their paper they go on to show that string stability is the critical requirement
for vehicle platooning.

The first formal definition of string stability can be found in the the work of Swaroop and
Hedrick [27]. In [20] a mathematical framework is developed with which string stability is
defined using linear system analysis. This makes it well suited for interconnected systems
analysis. The mathematical framework of [20] is based on the development of controllers for
longitudinal platooning. It will be covered in section 3-1. In section 3-2 the analysis used in
[20] will be used with slight adaptation for the connected vehicle model as developed in section
2-3. At the end of section 2-3 a definition for lateral string stability will be given. Finally,
section 3-4 will give a proof, showing that given the system model as in section 2-3, string
stability can never be achieved with only feedback control, and is infeasible with feedback
and feedforward control. Implications of this will be briefly covered here and will be more
extensively explained in Chapter 6.

Master of Science Thesis D.G. van den Berg



26 String Stability Analysis

3-1 Linear System String Stability

In [20, 28] Jeroen Ploeg presents a definition for string stability based on linear system
analysis. This mathematical definition finds its basis in L2 and Lp string stability conditions.
A string of systems can be represented by the following cascaded system

ẋ0 = fr(xr, ur), (3-1a)
ẋi = f(xi, xi−1), i ∈ Sm (3-1b)
yi = h(xi). i ∈ Sm (3-1c)

Here the set Sm = {i ∈ N|1 ≤ i ≤ m} is the set containing all m vehicles in the platoon.
Furthermore, ur ∈ Rq is the external input for the host vehicle, xi ∈ Rn, i ∈ Sm, is the
vector containing all the states and finally yi ∈ Rl, i ∈ Sm is the chosen output of the
system. For the system in equation 3-1 it is said to be Lp string stable if there exists a class
K functions ν and σ such that

||yi(t)− h(x̄0)||Lp ≤ ν(||ur(t)||Lp) + σ(||x(0)− x̄||) (3-2)

for any initial state x(0) and external control input ur. Class K functions are functions that
are continuous in a domain [0, a)→ [0,∞) and the function is strictly increasing and zero at
zero. A simple example of a class K function is f(x) = x2.

This definition is better suited than Swaroops as it also includes the external disturbance ur
as well as initial condition perturbations. The definition in equation 3-2 is generalized for
linear and non linear systems. For purely linear system analysis, where it is assumed that
the system is homogeneous, meaning that each agent shares the same dynamics, equation 3-1
can be written as 

ẋ0
ẋ1
...
ẋm

 =


Ar O
A1 A0

. . . . . .
O A1 A0



x0
x1
...
xm

+


Br
0
...
0

ur. (3-3)

The matrices Ar, A1, A0 denote the dynamics of the host vehicle and following vehicles respec-
tively. The matrix Br is the input matrix for the host vehicle. Because of the homogeneity as-
sumption the states can be lumped together into a single state vector as x =

[
xT0 xT1 . . . xTm

]T
and in extension the system can be written as

ẋ = Ax+Bur. (3-4)

Additionally taking the output also as a linear equation, then

yi = Cix. (3-5)

Using this description it is then possible to also write the model of (3-4) and (3-5) in the
Laplace domain as follows

yi(s) = Pi(s)ur(s) +Oi(s)x(0), (3-6)

where Pi(s) = Ci (sI −A)−1B, the transfer function from external input to chosen output,
and Oi = Ci (sI −A)−1 the transfer function from any initial condition error to chosen
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output. From equation 3-6 it follows that the input output relation for yi(s), when assuming
that x(0) = 0, can be written as

yi(s) = Γi(s)yi−1(s), (3-7)

with Γi(s) the so-called string stability complementary sensitivity function defined as

Γi(s) = Pi(s)P−1
i−1(s). (3-8)

From [29] we can then define L2 string stability in H∞ sense. It states that a platoon is
considered strictly L2 string stable with respect to its input ui if and only if

||P1(s)||H∞ <∞ (3-9)
||Γi(s)||H∞ ≤ 1 ∀i ∈ N \ {1}, (3-10)

where P1(s) in equation (3-9) is the transfer function of the system in (3-4) with output
matrix C1 chosen such that the unstable and marginally stable modes of the system are
unobservable [29, 28]. This framework can also be used concerning lateral string stability.

3-2 Lateral String Stability

In this section the model of (2-53) will be used to find the string stability complementary
sensitivity function, as given in equation 3-10, for a lateral platoon of vehicles. Consider now
a platoon with a leader vehicle. The dynamics for this lead vehicle is given by

v̇y,0

ψ̈0

ẏe,0

ψ̇e,0

δ̇0

δ̈0


=



−
(
Cαf+Cαr
mvx,0

) (
− vx,0 +

bCαr−aCαf
mvx,1

)
0 0

Cαf
m 0(

bCαr−aCαf
Izvx,0

) (
−

a2Cαf+b2Cαr
Izvx,0

)
0 0

aCαf
Iz

0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −ω2

n −2ζωn





vy,0

ψ̇0

ye,0

ψe,0

δ0

δ̇0



+



0
0
0
0
0
ω2
n


δ0,ref ,

(3-11)

which is written in short hand notation as

ẋ0 = Arx0 +Brδ0,ref . (3-12)

Control input δ0,ref comes from a pre-programmed steering command on the vehicle. Steering
of the lead vehicle can also be done by a human operator. This however, would require a
different model description as the steering model includes actuator dynamics. Although
the error states are still included, they have no dynamics. The lead vehicle is completely
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28 String Stability Analysis

independent of the rest of the platoon. From (2-53), the closed loop dynamics of any of the
trailing vehicles can be written as

ẋi = Aixi +Ai−1xi−1 (t−∆t) . (3-13)

As the control action directly depends on the preceding vehicles states, in closed loop, The
dynamics of vehicle i depend on its own dynamics and that of the preceding vehicle. In spirit
of equation 3-1, the cascade of the lateral system is then written as

ẋ0 = Arx0 +Brδ0,ref , (3-14a)
ẋi = Aixi +Ai−1xi−1 (t−∆t) , i ∈ Sm (3-14b)
yi = Cixi. i ∈ Sm (3-14c)

A difference between (3-14) and (3-1) is the time delay ∆t. In longitudinal platooning control
action is applied immediate upon change in acceleration. This can not be done for lateral
platooning, as the trailing vehicle first needs to arrive at the correct location before starting
to steer. If this is not the case, then the vehicles would drive completely different paths. In
[21] it is shown that this delay does not influence the string stability analysis of the system,
and the same transfer functions can be used as those derived in [20] and section 3-1.

3-3 Platoon Block Scheme

Figure 3-1 shows the block scheme of the interconnected vehicle platoon as given in (2-53).

Figure 3-1: Block Scheme of a vehicle in the platoon.

In figure 3-1, the block Kf (s) denotes a feed forward controller, to be designed on the signal
θ̇s,i−1. The block K(s) contains the controller structure, which will be elaborated in section
3-4. Finally the block Gt(s) is the transfer function from control input δi,ref to output θ̇s,i.
Neither Kf (s), K(s) nor Gt(s) carry index i as homogeneity is assumed for the platoon,
meaning the dynamics and in extend the controllers will all be the same. To arrive at transfer
function Gt(s) the output matrix Ci is taken as

Ci =
[
−
(
Cαf+Cαr
mv2

x,i

) (
bCαr−aCαf

mv2
x,i

)
0 0

Cαf
mv2

x,i
0
]
, (3-15)
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3-4 Analysis of String Stability Properties 29

Figure 3-2: Control block scheme internal structure.

for the state space system in (2-47). Further analysis of the state space system in (2-47)
shows that both heading and lateral offset error follows in the Laplace domain:

ψe,i = 1
s
ψ̇e,i = 1

s

(
θ̇s,i − θ̇s,i−1

)
, (3-16a)

ye,i = vx,i
s2 ψ̇e,i = vx,i

s2

(
θ̇s,i − θ̇s,i−1

)
. (3-16b)

The vehicle interconnection becomes apparent by the fact that the θ̇s,i−1 signal from the
preceding vehicle can be interpreted as a reference signal for the trailing vehicle. The error
between the reference and the vehicle output is then the error defined as ψ̇e,i. Note that the
block scheme in figure 3-1 excludes any form of delay, one of the assumptions in this thesis.
The block K(s) can be further expanded, using the error definitions as in equation 3-16, into
the block scheme in Figure 3-2. Although ultimately the system will also have an observer
included in the closed loop, control design is done with the idea that both error states ye,i
and ψe,i are accessible. Because the system is observable this is the case. Therefore, there is
no reference to the observer in the following analysis.

The blocks Ky,e(s) and Kψ,e denote the individual feedback controllers to be developed. The
structure is based on the definitions given in (3-16). From the block scheme in Figure 3-1 the
string stability complementary sensitivity function can be deduced. It is given by (where the
(s) notation is dropped for convenience)

Γi = GtKf +GtK

1 +GtK
= GtKf

1 +GtK
+ GtK

1 +GtK
. (3-17)

In equation 3-17 two classical closed loop transfer functions can be found. Equation 3-17 can
also be written as

Γi = GtKf +GtK

1 +GtK
= GtKfS + T (3-18)

where S = 1
1+L is the sensitivity function for a typical feedback system, and T = L

1+L the
complementary sensitivity function. In both these functions L is the loop-gain of the open-
loop, defined as L = KGt. Using well established properties for these transfer functions,
limitations on the string stability of the system will be explored.

3-4 Analysis of String Stability Properties

Given the string stability equation for the interconnected vehicle system depicted in figure
3-1, we now show that string stability cannot be achieved for this system when using only
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30 String Stability Analysis

feedback control. Before giving the proof, first Bode’s integral theorem will be introduced in
this section 3-5-1. It forms the basis on which the proof is given. Section 3-5-2 will evaluate
the system given in figure 3-1 in terms of excess poles in the system to determine which
form of the Bode integral has to be used. Section 3-5-3 will show infeasibility for a system
with only feedback controllers. Section 3-5-4 will show that with a feedforward - feedback
structure it might be possible to achieve string stability for this system, but that the gain
of the individual feedback controllers has to be so large, that in practice it is an infeasible
solution. From this analysis it is concluded that, although theoretically possible, practically
speaking the system cannot be made string stable.

3-4-1 Bode’s Integral Theorem

Bode’s integral theorem developed for feedback design can be stated as [30]∫ ∞
0

ln |S(jω)| dω =
∫ ∞

0
ln
∣∣∣∣ 1
1 + L(jω)

∣∣∣∣ dω = π
∑

Re(pk), (3-19)

where S(jω) is the sensitivity function, and L(jω) = C(jω)G(jω) is the loop gain. Appendix
B goes into greater detail and gives the derivation for Bode’s Integral. In Equation 3-19 pk
denotes any of the unstable poles in the loop gain, L(jω). For a system with only stable poles,
the integral will be equal to zero. The integral defines a conservation law and it quantifies
the waterbed effect. The waterbed effect is a term that is used to describe that attenuation
in one frequency range results in amplification in another frequency range. In similar fashion
we can write a Bode integral for the complementary sensitivity function as [31]

∫ ∞
0

1
ω2 ln |T (jω)| dω =

∫ ∞
0

1
ω2 ln

∣∣∣∣ L(jω)
1 + L(jω)

∣∣∣∣ dω = π
nuz∑
i=1

1
zi

+ πτ

2 . (3-20)

In Equation 3-20 nuz is the total number of unstable zeros in the complenetary sensitivity
function, zi is the ith unstable zero and τ is the time delay. Recall that in this work time delay
is assumed to be zero. Like Bode’s integral, the integral over the complementary sensitivity
function is conservative if there are no unstable zeros in the loop gain and time delay is not
present in the model,∫ ∞

0

1
ω2 ln |T (jω)| dω =

∫ ∞
0

1
ω2 ln

∣∣∣∣ L(jω)
1 + L(jω)

∣∣∣∣ dω = 0. (3-21)

The integrals in Equation 3-20 and 3-21 are conservative integrals. They form the basis of
one of the fundamental trade-offs that has to be made in classical feedback control design.

3-4-2 Bode’s Integral Theorem Applied for String Stability Analysis

We will now analyse the transfer function in equation 3-17 using Bode’s Integral applied to the
complementary sensitivity function. First the pole excess of the loop gain L(s) = Gt(s)K(s)
is analysed. The transfer function Gt(s) is given by

Gt(s) = Ci (sI −A)−1B +D (3-22)
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3-4 Analysis of String Stability Properties 31

with the matrices as defined in equation 2-47 and output matrix Ci as in equation 3-15.
Transfer function Gt has two free integrators in its transfer function, and D = 0. Controller
K(s) can be written as

δi,ref =
(
ui
s2Kye,i(s) + 1

s
Kψe,i(s)

)
ψ̇e,i =

(
vx,iKye,i(s) + sKψe,i(s)

s2

)
ψ̇e,i. (3-23)

Both controllers in K(s), Kye,i(s) and Kψe,i(s), are proper transfer functions. This means
that they will have at least an equal amount of poles and zeros in their transfer function, or
more poles than zeros. Because the transfer function K(s) already has two free integrators,
regardless of controllers Kye,i(s) and Kψe,i(s), the overall loop gain L(s) will have 4 + x
free integrators. Another two free integrators are added by Gt(s) and x is the number of
integrators the controller uiKye,i(s) + sKψe,i(s) adds. Hence equation 3-20 can be used to
analyse the system.

3-4-3 System with Only Feedback

Consider now the closed loop system in figure 3-1 without any feedforward control, i.e. Kf =
0, then the string stability complementary sensitivity function reduces to

Γi = GtK

1 +GtK
= L

1 + L
. (3-24)

From the analysis in section 3-4-1, and the integral given in equation 3-20 we know that for
this system this integral has to be equal to zero, as it has at least two free integrators, and
thus the following integral∫ ∞

0
ln |Γi| dω =

∫ ∞
0

ln
∣∣∣∣ GtK

1 +GtK

∣∣∣∣ dω =
∫ ∞

0
ln
∣∣∣∣ L

1 + L

∣∣∣∣ dω = 0. (3-25)

From the requirements we desire good tracking performance. Good tracking performance
requires |S(jω)| to be small for low frequencies. From linear system theory we know that
|S(jω) + T (jω)| = 1, so if |S(jω)| is small at low frequencies, then |T (jω)| = 1, such that the
equality holds. From equation 3-19 we deduced that the area under |S(jω)| is equal to zero,
the integral is conservative. At high frequencies it is desired that |T (jω)| << 1, for noise
suppression. This inherently means that |S(jω)| ≈ 1. Becauase both the Bode integral over
|S(jω)| and |T (jω)| are conservative integrals, their negative area in low and high frequency
domain, respectively, needs to be counter by positive area. It means that at some frequency
both |S(jω)| > 1 and |T (jω)| > 1 for the integral to hold.
The string stability complementary sensitivity function is the frequency response function
from the disturbance input θ̇s,i−1 to θ̇s,i. If this transfer function has no high frequency roll-
off, any small disturbance, or noise, in signal θ̇s,i−1 will be present in the signal of θ̇s,i. To
counteract this it is also desired to have high frequency roll-off in the string stability com-
plementary senstivity function. The complementary sensitivity function and string stability
complementary sensitivity function are the same when using only feedback controllers. Since
for both functions it is desired to have high frequency roll-off, i.e., |T (jω)| << 1, it must mean
that |T (jω)| has to be larger than 1 at some frequency. This contradicts our requirement on
string stability. From this it is concluded that when using the vehicle-road error model from
chapter 2 with only a feedback controller, no matter what the system will never be string
stable.
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32 String Stability Analysis

3-4-4 System with Feedback and Feedforward

Before starting this section, the author feels the need for a disclaimer. A large part of this
thesis was spent investigating the properties of the string stability properties of the same
system, but with both a feedback and feedforward controller. Several thought experiments
can be used to to explain why it might be also impossible to achieve string stability when a
feedforward controller is present in the system. The author acknowledges that this, however,
is not a formal proof. Finally it was decided to make the argument based on the analysis in
given in this section. Appendix B gives an alternative derivation based on Bode’s integral, by
which it can also be proven that string stability is not achievable using both feedforward and
feedback controllers. It could well be that one of the, or both arguments, can be disproven.
They are nevertheless included in the thesis to serve as starting point for anyone else doing
research in this area.
Starting now with the actual derivation, in Chapter 4 the use of an H∞ synthesis is motivated.
In H∞ synthesis the goal is to minimize the norm of a transfer function that can be found
by doing the lower fractional expansion for the optimization set-up. The full details can be
found in Chapter 4. For now it serves to give the lower fractional expansion as function of
the earlier introduced transfer functions Gt, Kf , kye,i and Kψe,i . Doing this gives insight
in potential controller solutions that make the system string stable. For this optimization
process the lower fractional expansion is given by

N =


s2
(
Gt(s)Kf (s)− 1

)
−s2 +Gt(s)Kψe,i(s)s+Gt(s)Kye,i(s)

 . (3-26)

The goal of anH∞ optimized controller is to minimize the infinity norm of (3-26) as a function
of the controllers. Given that weight WT = 1, the optimization can be written as

min
K
||N ||∞ = min

K
max
s

∣∣∣∣∣∣∣∣∣
s2
(
Gt(s)Kf (s)− 1

)
−s2 +Gt(s)Kψe,i(s)s+Gt(s)Kye,i(s)

∣∣∣∣∣∣∣∣∣ ≤ 1

= min
K

sup
ω

∣∣∣∣∣∣∣∣∣
−ω2

(
Gt(jω)Kf (jω)− 1

)
ω2 +Gt(jω)Kψe,i(jω)jω +Gt(jω)Kye,i(jω)

∣∣∣∣∣∣∣∣∣
= min

K
sup
ω

∣∣∣∣−ω2
(
Gt(jω)Kf (jω)− 1

)∣∣∣∣∣∣∣∣(ω2 +Gt(jω)Kψe,i(jω)jω +Gt(jω)Kye,i(jω)
)∣∣∣∣

= min
K

sup
ω

ω2
∣∣∣∣(Gt(jω)Kf (jω)− 1

)∣∣∣∣∣∣∣∣(ω2 +Gt(jω)Kψe,i(jω)jω +Gt(jω)Kye,i(jω)
)∣∣∣∣ ≤ 1

(3-27)

Writing out the absolute values in (3-27) allows us to gain insight in the magnitude of con-
troller gains required to make the system string stable. Using the triangle inequality it is
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possible to find an upper bound the maximum absolute value of the denominator of (3-27)
can attain. The triangle inequality states that |a + b| ≤ |a| + |b|. Dropping the jω notation
for clarity, we can obtain∣∣∣∣(ω2 +GtKψe,ijω +GtKye,i

)∣∣∣∣ = ω2 + |Gt|
∣∣∣Kψe,ijω +Kye,i

∣∣∣
= ω2 + |Gt|

√(
Kψe,ijω +Kye,i

) (
Kψe,ijω +Kye,i

)∗
,

(3-28)

where the ∗ denotes the complex conjugate. Continuing the equality yields that∣∣∣∣(ω2 +GtKψe,ijω +GtKye,i

)∣∣∣∣ = ω2 + |Gt|
√(

Kψe,ijω +Kye,i

) (
Kψe,ijω +Kye,i

)∗
= ω2 + |Gt|

√
ω2
∣∣∣Kψe,i

∣∣∣2 +
∣∣∣Kye,i

∣∣∣2 −Kye,iK
∗
ψe,i

jω +K∗ye,iKψe,ijω

= ω2 + |Gt|
√
ω2
∣∣∣Kψe,i

∣∣∣2 +
∣∣∣Kye,i

∣∣∣2 + jω
(
−Kye,iK

∗
ψe,i

+K∗ye,iKψe,i

)
.

(3-29)
Evaluating the square root at the end of equation 3-29√

ω2
∣∣∣Kψe,i

∣∣∣2 +
∣∣∣Kye,i

∣∣∣2 + jω
(
−Kye,iK

∗
ψe,i

+K∗ye,iKψe,i

)
, (3-30)

it can be written as√
ω2
∣∣∣Kψe,i

∣∣∣2 +
∣∣∣Kye,i

∣∣∣2 + jω
(
−Kye,iK

∗
ψe,i

+
(
Kye,iK

∗
ψe,i

)∗)
. (3-31)

For any ω the multiplication Kye,iK
∗
ψe,i

will yield a number of the form a + bj, where either
a or b can be, but not necessarily are, equal to 0. Then(

−Kye,iK
∗
ψe,i +

(
Kye,iK

∗
ψe,i

)∗)
= − (a+ bj) + (a+ bj)∗ = −2bj. (3-32)

Inserting it into the equation gives√
ω2
∣∣∣Kψe,i

∣∣∣2 +
∣∣∣Kye,i

∣∣∣2 + 2bω, (3-33)

thus∣∣∣∣(ω2 +GtKψe,ijω +GtKye,i

)∣∣∣∣ = ω2 + |Gt|
√(

Kψe,ijω +Kye,i

) (
Kψe,ijω +Kye,i

)∗
= ω2 + |Gt|

√
ω2
∣∣∣Kψe,i

∣∣∣2 +
∣∣∣Kye,i

∣∣∣2 −Kye,iK
∗
ψe,i

jω +K∗ye,iKψe,ijω

= ω2 + |Gt|
√
ω2
∣∣∣Kψe,i

∣∣∣2 +
∣∣∣Kye,i

∣∣∣2 + 2bω.
(3-34)

Having found an expression for the maximum of the denominator of (3-27) let us consider
the numerator of (3-27). The absolute value of in the numerator of (3-27) can be written as

ω2
∣∣∣∣(GtKf − 1

)∣∣∣∣ = ω2
√

(GtKf − 1) (GtKf − 1)∗

= ω2
√
|Gt|2|Kf |2 − (GtKf )− (GtKf )∗ + 1

. (3-35)
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Saying again, that for a frequency ωm, Gt(jωm)Kf (jωm) = c + dj, where again c and/or d
can be, but are not necessarily, equal to 0. Then the absolute value is given by

ω2
∣∣∣∣(GtKf − 1

)∣∣∣∣ = ω2
√
|Gt|2|Kf |2 − 2c+ 1. (3-36)

Because |Gt(jω)|, and Gt(jω) approach zero as frequency increases the absolute value con-
verges to 1 (the value c will also vanish because it is dependant on Gt(jω)).

Writing out the supremum that needs to be minimized for a general feedforward controller
Kf (jω) gives that

ω2 + |Gt|
√
ω2
∣∣∣Kψe,i

∣∣∣2 +
∣∣∣Kye,i

∣∣∣2 + 2bω ≥ ω2
√
|Gt|2|Kf |2 − 2c+ 1, (3-37)

has to hold for ||N ||∞ ≤ 1.The norm on the right hand side will go towards infinity as fre-

quency increases. To make sure the inequality holds, the square root |Gt|
√
ω2
∣∣∣Kψe,i

∣∣∣2 +
∣∣∣Kye,i

∣∣∣2 + 2bω
has to go to infinity faster than the right hand side of (3-37). However, |Gt| goes to zero as
frequency increases. To have the inequality hold, controller gains of Kψe,i and/or Kye,i then
have to go to infinity. This is an infeasible result, and in stark contrast to the desire to have
real world implementable controllers. It is from this result that it is concluded that string
stability is very difficult or impossible to achieve.

3-5 Short Discussion

In this chapter string stability was introduced. Based on the analysis for a longitudinal
platoon, a mathematical definition for lateral string stability can be found. Based on the
analysis of how the errors are defined in Chapter 2 it is shown that there are limitations when
it comes to achieving string stability. When employing only feedback controllers it turn out
to be a fundamental limitation, based on the conservation properties of Bode’s integral. The
argument for the feedforward-feedback structure is a bit weaker. The inequality in (3-37)
can be met for low frequencies. It becomes difficult, however, when the value of |Gt| starts
becoming smaller, something that happens when frequencies increases. To keep the inequality
intact the gains of the controllersKψe,i and/orKye,i have to rise, something which is undesired
from an actuation and noise sensitivity limitation. High frequency roll-off is still expected

in the system. In the square root
√
ω2
∣∣∣Kψe,i

∣∣∣2 +
∣∣∣Kye,i

∣∣∣2 + 2bω, ω2 + 2bω will continue to

grow as frequency increases. At a certain frequency, ω2 + |Gt|
√
ω2
∣∣∣Kψe,i

∣∣∣2 +
∣∣∣Kye,i

∣∣∣2 + 2bω

is expected to overtake ω2
√
|Gt|2|Kf |2 − 2c+ 1 again. It is in the area where ω is still too

small to have this happen, that high controller gains are needed to have the inequality hold.
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Chapter 4

Control Design

Controllers designed for lateral control in autonomous driving aim to generate a steering such
that a reference path or preceding vehicle can be followed. In this chapter a control design
method will be proposed such that string instability can be minimized whilst also assuring
that the tracking requirements are met. In Chapter 3 several notions of string stability were
explored, where one was based on an infinity norm, as seen in equation 3-10. This motivates
the development of an H∞ based controller. This is further motivated by the desire to
minimize the lateral overshoot caused by the string instability. Using the platoon framework
developed in Chapter 3, a generalized plant can be formulated to be used in H∞ control
optimization.
Section 4-1 will further explore the control targets set for the controllers. Section 4-2 explains
the theory behind H∞ control optimization. Building upon that, section 4-3 covers how the
platoon model from section 3-3 can be adapted for the controller optimization. It will further
explain how the weights can be designed to meet the control requirements. Finally the results
from the optimization will be evaluated in section 4-4.

4-1 Control Targets

The goal for the controller is to minimize the positional errors of the vehicle with respect
to a certain path. A two degree of freedom controller will be designed, comprising of a
feedforward and feedback controller. The feedback controller will consist of two individual
feedback controllers, one for each road error state. The vehicles will be indirectly steered
through a reference steering command. The controllers need to be able to

• Follow a path asymptotically, the path errors need to go to zero as time goes to infinity
and external input is constant, or

lim
t→∞

ye,i(t) = 0 ∀θ̈s,i−1 = 0, (4-1a)

lim
t→∞

ψe,i(t) = 0 ∀θ̈s,i−1 = 0, (4-1b)
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• The controllers should generate a reference command such that a vehicle is physically
capable of following it, i.e, the controllers are constrained by the hardware available on
the vehicles.

• Minimize overshoot caused by string instability.

Based on these three requirements one can formulate weights for the H∞ control design.
Before analysing how the H∞ optimization is implemented for the platoon controller, first
H∞ optimization is briefly introduced.

4-2 H∞ Control Optimization

Any classical feedback control loop, as for example the one in Figure 3-1 can also be repre-
sented in a generalized plant structure, as in Figure 4-1.

Figure 4-1: General Feedback/Forward control configuration [32].

In figure 4-1 the block P represents the plant. The plant contains all the dynamics, and where
applied weights used in the optimization. The plant has two inputs, namely w, a so-called
exogenous input and the control input u. The input w can, but doesn’t necessarily have to,
comprise of the reference, input disturbance and output disturbance signals. Two outputs can
also be defined, z the exogenous outputs and v the sensed outputs. The output z contains
signals that are weighted and to be used in the optimization process. The output v contains
all measurements used for the controller.
The plant P represents then the collection of transfer functions from the two inputs to the
two outputs and in general is comprised of the following four blocks:[

z
v

]
=
[
P11 P12
P21 P22

] [
w
u

]
. (4-2)

The size of the blocks Pi,j i, j ∈ [1, 2] is dependant on the size of their respective inputs and
outputs. The goal of an H∞ optimized controller K is to minimize the H∞ norm of the
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transfer function from w to z as a function of controller(s) K and with weights W . Without
going into too much detail, from [33] this closed-loop transfer function reads

N = P11 + P12K (I − P22K)−1 P21, (4-3)

where N can be found by performing the lower fractional expansion of the Equation 4-2.
The controllers are then designed solving the following minimization problem:

min
K
||N ||∞ . (4-4)

The optimization can be reformulated through the use of weights. These can be scalar values,
or transfer functions that are to be designed. The next section will explain the use of weights
in H∞ optimization.

4-2-1 Transfer Function Weights

The generalized plant in Figure 4-1 can also be depicted as in Figure 4-2

𝐺𝑡(𝑠)

𝐾(𝑠)

𝑊𝑢(𝑠)

𝑊𝑒(𝑠)

𝑊𝑇(𝑠)

+
+

𝑤

𝑢 𝑣

𝑧1

𝑧2

𝑧3

𝑃

Figure 4-2: Generalized plant with weights.

Here it is assumed that there are no disturbances present in the system and hence only the
reference signal is an exogenous input. Included in the generalized plant, P , are now three
weights. More (or less) weights can be implemented, as many as the designer desires, but
typically three weights are chosen. Weight Wu weights the control action and can be used
to limit controller action. Weight WT weights the complementary sensitivity function, and
can be used to weight the system performance and finally weight We weights the error signal
and can be used to regulate the amount of steady state error the system will have. The next
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section shows how the platoon model can be adapted to this framework and what weights
will be used.

The generalized plant P , for the system in Figure 4-2 is given by

P =


We WeGt
0 WTGt
0 Wu

I G

 =
[
P11 P12
P21 P22

]
. (4-5)

Taking the LFT of (4-5) gives for the following N that has to be minimized

N =

 WeS
WTT
WuKS

 , (4-6)

where S and T are again the complementary sensitivity functions as defined in Chapter 3.
When ||N ||∞ = γ, with γ > 0, then

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 S
T
KS


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

≤ γ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
W

−1
e
1
WT1
Wu


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

. (4-7)

The following minimization

min
K

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 WeS
WTT
WuKS


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

. (4-8)

searches for an optimal controller K such that,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 S
T
KS


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

≤ γ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
W

−1
e
1
WT1
Wu


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

, (4-9)

and thus the weights can be used to shape the transfer functions. In this way performance
can be tuned much the same way it is done using manual loop shaping. The form of these
weights is then up to the user to decide and is based on performance requirements.

4-3 H∞ Control Optimization for Platoon Model

The platoon model for a single vehicle in the platoon, as shown in Figure 3-1, can also be
adapted to be suited for use in H∞ optimization. To that end the model is adapted, such
that a generalized plant can be found. This can be seen in Figure 4-3
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Figure 4-3: Generalized plant with implemented weights for the platoon model. Adapted from
Figure 3-1.

The dashed line indicates everything contained in the generalized plant. The plant has 4
inputs, the exogenous input being the rotation of the curvature of the road caused by the
preceding vehicle, θ̇s,i−1, and three control inputs uf , uψ and uy, each for the individual
controllers. As with the example in the preceding section it was opted to go with three
weights. Their use and design will be explained. These weights are responsible for 3 of the 6
outputs, namely the three performance outputs, zi, i ∈ [1, 2, 3]. The other three signals ef ,
eψ and ey are the errors signals for which each of the individual controllers will be designed.
The generalized plant is given by

z1
z2
z3
ef
eψ
ey


=



WeE −GtWeE −GtWeE −GtWeE
0 WTGt WTGt WTGt
0 Wu Wu Wu

1 0 0 0
1
s

−Gt
s

−Gt
s

−Gt
s

vx,i
s2

−vx,i
s2 Gt

−vx,i
s2 Gt

−vx,i
s2 Gt





θ̇s,i−1

uf

uψ

uy


. (4-10)

In (4-10) the matrix E is a diagonal matrix given by

E =
[
ψe,i 0
0 ye,i,

]
(4-11)

and its accompanying weight is given by

We =
[
We1,1 0

0 We2,2 ,

]
. (4-12)
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To better understand how to design the weights, each output zi can be written as a function
of exogenous input θ̇s,i−1. Starting with output z1, it can be written as

z1 = We (I −GtKfb)−1 (I −GtKf ) θ̇s,i−1, (4-13)

and z2 as
z2 = WTΓiθ̇s,i−1, (4-14)

with Γi as in equation 3-17. Finally, performance signal z3 can be written as

z3 = WuS (Kf +Kfb) . (4-15)

In Equations 4-13 and 4-15, Kfb, denotes the feedback controllers. This is done to distinguish
them from the feedforward controller. Of the three performance signals, z2 is deemed most
interesting, as it can be seen that the weight WT directly weights the string stability comple-
mentary sensitivity function. Hence with weight WT it is possible to force the optimization
to find a solution that meets string stability requirements. Further of interest is the signal
z1. Given a certain boundary on rate of change of the curvature of the road θ̇s,i−1, it is pos-
sible to translate how much steady state error in both ψe,i and ye,i can occur (if any at all).
Having defined the generalized plant with weights, and their according performance signals,
the weights have to be designed. The following three subsections will deal with each of the
weights.

4-3-1 Weight WT (s)

It is desired that, up to a certain frequency, the path driven by each of the vehicles is the
same. Effectively this means that for Γi(s) a DC gain of 1 up to a said frequency is desired.
This desired frequency can be taken from a typical highway steering manoeuvre. The steering
behaviour for a highway lane change can be approximated as a sinusoidal input on the steering
wheel. Typical frequencies for such an input are around 0.1 Hz [34].

From this it is possible to determine the weight on throughput from θ̇s,i−1 to θ̇s,i, weighted
by WT . This relation has to be as close as possible to 1 for up to a bandwidth of 0.1 Hz as
it means vehicle following is achieved with minimal corner cutting. Any component of higher
frequency is regarded as noise or external input that is not relevant for the vehicle following
task and should be ignored. The weight on Γi(s) is then taken as

Wt(s) = 6π
s+ 6π . (4-16)

The filter frequency is set at 3 Hz such that the -3 dB point is not too close to the desired
tracking frequency. The driving factor behind the choice of this weight, comes from the
analysis in Chapter 3, section 3-4. If there exists a conservation law for the string stability
complementary sensitivity function with both feedforward and feedback controller the system
can not be string stable, and have noise rejection. By choosing weight WT as in (4-16) we
open up the frequency area after 3 Hz for this overshoot to occur.
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4-3-2 Design of Wu(s)

For the weight on the control action the inverse of the steering dynamics is used given in (2-23).
The steering dynamics attenuates high-frequency signals. For this reason it is desired that
the steering reference is generated in such a manner that it does not contain high-frequency
components. The weight is given by

Wu(s) = s2 + ζωns+ ω2
n

ω2
n · (s+ 200π) · (s+ 201π) , (4-17)

where the two poles are required to make the transfer function proper.

4-3-3 Design of We(s)

The design of the error weights is based on the allowable steady state error of the error states.
The average turn radius on a Dutch highway is around 750 metres. If this is navigated at
a velocity of 80 km/h, then the vehicle has a yaw rate of approximately 0.03 rad/s. From
Equation 4-15 the relation between the incoming curvature/yaw-rate and the outgoing error
signals is deduced. Using this upper limits for the DC gain of the weights can be designed.
As it was seen that lateral offset error was solely dependant on heading error, having zero
steady state error in heading error translates to no further accumulation of lateral offset error.
It was found during controller design that using the other weights as is this occurred naturally
and that the weight on ψei was not a limiting factor. Furthermore, making the weight less
restrictive improved overall controller performance without hampering the steady state error
of ψei . The weight is given by

We(2, 2) = 3 + 0.01 · s
2 + s

(4-18)

A similar approach is taken to determine the weight on yei . A maximum desired steady state
offset is set at 30 cm, approximately a tyres width. Since the maximum expected yaw rate is
taken at 0.03 rad/s, it can be calculated what the DC-gain of this transfer function needs to
be. This translates to a DC-gain on the yaw rate of maximum 20 dB. Here it was also found
that the transfer function of (4-13) is not a limiting factor in the control synthesis. Lowering
the weight’s DC gain resulted in an equal decrease of DC gain for the transfer function of
θ̇s,i−1 to yei . Hence the weight given has a DC gain higher than originally designed, but it
yields the desired results. It is given by

We(1, 1) = 0.0075 · s+ 0.3
60 · s+ π

. (4-19)

The complete weight matrix is given by

We(s) =
[

0.0075·s+0.3
60·s+π 0

0 3+0.01·s
2+s

]
. (4-20)

4-4 H∞ Controller Results

For the actual synthesis the following table shows the vehicle parameters used for the vehicle
model of (3-11). This model will be used in the controller synthesis. As the system in (3-11)
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Table 4-1: Values for vehicle parameters used in optimization.

Parameter Value Description
a 1.1 m Distance front axle to CoG.
b 1.6 m Distance rear axle to CoG.
Cαf 117000 Nrad−1 Front tyre Cornering Stiffness.
Cαr 143000 Nrad−1 Rear tyre Cornering Stiffness.
m 1650 kg Vehicle mass
Iz 2900 kg m2 Vehicle Inertia
vx,i 80 km/h Design Velocity
ωn 17.5 rad s−1 Natural frequency steering system
ζ 0.7 [-] Damping ratio steering system

is of order 6, and the weights are all of order 2, an 8th-order state space controller will be the
result from the optimization. Although higher order controllers are generally not preferred
because of their complexity, or difficulty for implementation, given the way Wu is designed
it ensures that the controllers won’t contain any fast modes. Figure 4-4 shows the Bode
diagrams of each of the individual controllers, given in black. The horizontal blue lines are
the gains of the controllers currently implemented for vehicle following. They are static gains
based on steady state vehicle dynamics. More information can be found in [13].
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Figure 4-4: Bode diagrams of the synthesized controllers. From left to right |Kf (s)|, |Kye,i
|

and |Kψe,i |.

The optimized controllers in Figure 4-4 have similar steady state gains as those based on
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the linear vehicle dynamics. This is to be expected as synthesis is done for a linear model,
and at low frequencies the steady state gains provide an accurate description for the relation
between steering and vehicle rotation. At higher frequencies differentiator action is desired,
after which there is high frequency roll-off, a consequence of the design of weight Wu. Figure
4-5 shows the transfer functions given in (4-13), (4-14) and (4-15) and compares them to their
appropriate weight.
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Figure 4-5: Bode diagrams of the transfer functions z1, z2 and z3. Top left shows the comparison
between z2 and its weight WT . Top right shows the comparison between z3 and its weight Wu.
The bottom left and right shows the comparison for the weight We on ye,i and ψe,i respectively.

As desired the steady state errors on both error states is within bounds, where ψe,i will have
zero steady state error. From Figure 4-5 it can be further seen that both the string stability
and control action requirement are the limiting factor. The reason for this was explained
in section 3-4. Closer inspection of the string stability complementary sensitivity function
in relation to its weights, as seen in Figure 4-6 shows that system is not fully string stable,
although the maximum overshoot is around ≈ 1.05.
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Figure 4-6: Reducing the y-axis scale reveals that with these optimized controllers the system is
not string stable, as ||Γi||∞ > 1. It is thought that with this system description the system can
never be string stable.

The big downside of this result is that amplification occurs across the frequency range of
interest. Nevertheless, this amplification is small. Depending on the amount of vehicles in the
platoon, and the type of manoeuvre the total amplification can be limited. A way to analyse
this is given in Chapter 6, section 6-2. Unconstraining the weights on the control action does
reduce the overshoot, but the optimization will not be able to find feasible controllers that
render the system string stable. The analysis in Chapter 3 has shown this in much greater
detail. Nevertheless the overshoot was deemed small enough to proceed with simulation.

4-5 Observer Design

Using the fact that the combined error ye,i+diψe,i is available for measurement when the road
error, εi, is included in the transmission an observer can be designed to allow access to the
individual road error states. In the previous section it was assumed that ye,i and ψe,i are both
accessible. Without access to the states the proposed controllers can not be implemented.
For this the observer is requirement. Consider the state space system of (2-47) but with the
output matrix chosen as

Cobs =
[
0 0 1 di 0 0

]
, (4-21)
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The observability matrix 
Cobs
CobsA
CobsA

2

...
CobsA

n−1

 (4-22)

has full column rank, thus the system is observable with this output. For this thesis it was
chosen to use a Luenberger type observer, using pole placement. Although the output as
in Equation 4-21 is sufficient, i.e., the system is observeable with this output matrix, it was
chosen to also include the vehicles yaw rate in the output. As the yaw rate is easily accessible
during driving, it can be used to improve convergence speed and accuracy of the estimated
states x̂. The actual output matrix then is

Cobs =
[
0 0 1 di 0 0
0 1 0 0 0 0

]
, (4-23)

for which the system is also observable. Given the output in (4-23) the goal is to then find a
output injection gain F , such that the matrix

Aobs = A− FCobs, (4-24)

results in a Hurwitz matrix. For this matrix Aobs it is required that the dynamics are faster
than that of the controlled system. The last requirement is important such that the estimated
states x̂ converge to the actual states x. As it is difficult to predict where the H∞ optimized
controllers places the poles, choosing a pole location for Aobs often was a matter of manual
tuning. Although workable results were found, it remained a rather cumbersome process, and
far from optimal. It also turned out that taking the output matrix as in (4-23), the gains of
the output injection gain would be so large that the system would turn unstable. Restricting
the output matrix to (4-21) solved this issue. In Chapter 6, section 6-3 a solution to better
integrate this observer into the design will be suggested.
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Chapter 5

Simulation Results

This chapter will cover the results of the synthesized controller when a platoon of vehicles
performs a lane change. The synthesized controllers will be tested in a situation where it
is assumed both path errors are available and one where the observer is employed. The
synthesized controllers will also be compared, in both cases, to the currently implemented
controllers, considered to be state of the art. Originally it was also intended to implement the
controllers on an actual platoon of vehicles, i.e., real world experiments. Unfortunately the
outbreak of the COVID-19 virus prevented this from happening, hence the results are limited
to simulation case studies only.

Section 5-1 will show the manoeuvre to be used in simulation. It is based on an overtaking
manoeuvre one would normally execute on a highway. Section 5-2 will detail the simulation
set-up, and explain how the direct vehicle following measurement is implemented. Section
5-3 covers the simulation results, and shows a comparison with the current state of the art
controller.

5-1 Simulation Manoeuvre

Figure 5-1 shows the lane change manoeuvre executed by a single vehicle. For every simulation
the velocity is 80 km/h, the same as the used for the controller synthesis. The distance between
the vehicles is calculated as in [29], di = ri + hivx,i, where ri is the stand still distance, set
to be 5 metres. This distance is mainly based on [29], and has little influence on the final
results. The headway time , hi, is the time gap between vehicles, which is set to 1 second.
Given this stand still-distance, velocity and headway time, the following distance becomes
di = 27.2 metres. A platoon of 4 vehicles, where vehicle 1 is the leader and independent, is
considered, where each vehicle is initialized a distance ndi, n ∈ {2, 3, 4}, behind the preceding
vehicle. As the focus of this thesis lies on the development of a lateral controller there is no
CACC controller implemented (the model also doesn’t include longitudinal dynamics for that
matter) and thus the velocity is kept at 80 km/h using constant number generator.
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Figure 5-1: Lane change manoeuvre on a two-lane Dutch highway used for simulation.

The top figure in figure 5-1 shows the path of the vehicle in the global coordinates. The
host vehicle is initialized at location (X1, Y1) = (0, 0). The solid greyed out lines denote the
edges of the highway, the dotted grey line denotes the boundary between two lanes, and is
the location where in the real world the white road markings would be applied [35]. After two
seconds a single sinusoid as steering input makes the vehicle change lanes. This sinusoid has
a frequency of 0.125 Hz and an amplitude of 3 degrees. Using this input it takes the vehicle
8 seconds to complete the lane change. The corresponding yaw rate can be seen in the lower
graph, in figure 5-1. On the steering signal a first-order filter of the form

F (s) = π

s+ π
, (5-1)

is used to smooth out the abrupt start and end of the sinusoid. This way the input represents
human-like dynamics. This prevents excitation of a large range of frequencies in the system,
which might cause undesired effects in the simulation.

5-2 Simulation Set-up

Unfortunately it is not possible to directly 1-on-1 reconstruct the camera measurements and
other data the vehicle receives when driving in the real world. Therefore, this section will cover
how the direct vehicle following measurement can be mimicked in simulation environment as
well as go into detail as to how the distance εi is calculated. The calculation for εi represents
the most accurate way to determine this value, as it uses the global coordinates. It represents
a method where, in real life, the vehicles would use GPS coordinates to calculate this value.
Vehicle states, accessible using on board sensors, can also be used, but given noise when using
internal measurements it is likely a less accurate method to determine εi.
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5-2-1 Direct Vehicle Following Measurement

The ytot,i measurement used in direct vehicle following has to be calculated using the current
vehicle locations with respect to the global axis system. Consider for this the situation in
figure 5-2.
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Figure 5-2: Vectors required to calculate the distance ytot,i.

Figure 5-2 shows two vehicles in a platoon, and 5 vectors needed to calculate the distance
as measured using direct vehicle following. Vectors ~X1, ~X2 and ~X3 are vectors that connect
the origin of the global axis system to the centre of the lead vehicle, centre of the trailing
vehicle and point P respectively. Point P denotes the end of the look-ahead distance. Vector
~di connects the centre of trailing vehicle to point P , and can be interpreted as the look-ahead
distance vector. Vector ~ytot,i, is the vector of interest. The length of vector ~ytot,i is equivalent
to the direct vehicle following measurement. It is given by

|~ytot,i| =
∣∣∣ ~X1 − ~X3

∣∣∣ , (5-2)

where ~X3 can be written as
~X3 = ~X2 + ~di. (5-3)

Vector ~di lies in the centre line of the trailing vehicle. As the vehicle rotates, it will also
be rotated. In order to calculate (5-3) this rotation needs to be taken into account. This
can be done by rotating vector ~dTi with a rotation matrix R(ψi(t)). This rotation matrix is
dependant on the yaw angle ψi of vehicle i at any given time t. The coordinates of ~di are
given by [

di,x(t)
di,y(t)

]
=
[
cos(ψi(t)) − sin(ψi(t))
sin(ψi(t)) cos(ψi(t))

] [
di,x(0)
di,y(0)

]
. (5-4)
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As each of the vehicles will be initialized driving behind another, travelling purely in the X
direction, ~di at time t = 0 equals ~di(0)T =

[
di 0

]T
. It must be noted that due to the fact

that CACC is not implemented, the following distance will vary ever so slightly, and the point
P will not be directly in line with the CoG of the preceding vehicle. The variation in distance
is minimal, hence, it can be neglected.

5-2-2 Road Error εi

In section 2-4 a method of calculating the distance measured induced by the rotation of
the path was introduced. Using this extra calculation, and including it in the transmission
between two vehicles, allowed the trailing vehicle to deduce the individual road errors through
use of the observer. This distance, denoted by εi, can be calculated using a vehicle’s current
position and its position at time tla ago. As in section 2-4, time tla is the time it takes a
vehicle to drive following distance di, with velocity vx,i. Figure 5-3 shows all the angles and
vectors required for calculating the distance εi.
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Figure 5-3: Vectors and angles required to calculate the distance εi.

From figure 5-3 it can easily be seen that distance εi is calculated as

εi = sin(β)| ~D|, (5-5)

where angle β is the angle between the centre line of the position of the vehicle at time tla ago,
and | ~D| is the length of the vector connecting the two vehicles. Vector ~D can be calculated
using the current and preceding position of the vehicle and is defined as

~DT =
[
Xt −Xt−tla
Yt − Yt−tla

]
=
[
∆X
∆Y

]
. (5-6)
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Angle β is the difference between angles α and ψt−tla . Angle α is the angle between vector
∆ ~X and vector ~D. It is calculated as

α = cos−1
(

∆ ~X · ~D
||∆ ~X|||| ~D||

)
, (5-7)

where the || · || notation denotes the vector norm. Angle ψt−tla is the rotation of the vehicle
with respect to the global X-axis. In the simulation it is implemented by integrating the yaw
rate of the vehicle. Combining this leads to an expression for angle β as

β = cos−1
(

∆ ~X · ~D
||∆ ~X|||| ~D||

)
− ψt−tla , (5-8)

and in extension for εi

εi = sin
(

cos−1
(

∆ ~X · ~D
||∆ ~X|||| ~D||

)
− ψt−tla

)
| ~D|. (5-9)

5-3 Simulation Results

This section will cover the simulation results. First the simulation with full state measurement
will be discussed, after which the simulation using the observer will be used to compare.
In the case of full state information, the errors ye,i and ψe,i are generated using an exact
representation of (3-11). Figure 5-4 shows the results of the four vehicle platoon, where the
trailing 3 vehicles are equipped with the proposed controller from chapter 4.

Figure 5-4: Four vehicle platoon executing line change, whilst having access to all state infor-
mation.

Master of Science Thesis D.G. van den Berg



52 Simulation Results

0 5 10 15 20 25
Time [s]

-0.06

-0.04

-0.02

0

0.02

0.04
A

cc
um

ul
at

iv
e 

E
rr

or
 [m

]

Follower 1
Follower 2
Follower 3

Figure 5-5: Cumulative error ye,i + diψe,i for each of the trailing vehicles. Notice how the small
growth of the distance at the peak indicates string instability.

From the results in figure 5-4 the lack of string stability is barely noticeable, although when
observing the paths travelled the small overshoot when settling back to driving straight ahead
in the other lane indicates there is some form of string instability (it must be noted that
when having string stability, having no overshoot is not guaranteed.). Figure 5-5 shows
the cumulative error ye,i + diψe,i for each of the trailing vehicles From Figure 5-5 the small
increase in the peak error measurement is a result of the string instability of the system. An
alternative way to see this, is depicted in Figure 5-6. It shows exactly the same manoeuvre,
but the bottom graph is zoomed in on the peak yaw rates. From figure 5-6 it becomes clearer
that there is amplification present in the yaw rate of each of the vehicles. This is in line
with the results from section 4-4. Furthermore, the maximum amplification is expected to
be around 1 Hz, as can be seen in figure 4-6. The steering input is restricted to 0.125 Hz, so
the frequency content won’t excite all frequencies where the gain is higher than 0 dB. If this
were to be the case, then the overshoot would be worse.

Figure 5-7 shows the same lane change manoeuvre, but then with the observer providing the
states. As explained in section 4-5 the pole locations were chosen manually, with only the
measurement ye,i + diψe,i used in the output. The poles are placed at

pobs =
[
−14.5 −14.6 −14.2 −14.25 −14.3 −14.4

]
. (5-10)

This leads to an observer gain

F =
[
−8.3494 −2.6215 −354.1313 14.7266 1.1775 −10.9761

]
. (5-11)
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Figure 5-6: Four vehicle platoon executing line change, whilst having access to all state infor-
mation. The peak yaw rate of each of the vehicles is enhanced to show the minor overshoot due
to string instability.

Figure 5-7: Four vehicle platoon executing line change, whilst using reconstructed states.
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Figure 5-8: Reconstructed states for the lane change.

One of the issues with this observer design is the high gain on the error state ye,i. This is
also the reason why the yaw rate ψ̇i was excluded from the observer output, as it drove the
feedback gain even higher. One of the reasons thought to cause this is the large difference in
magnitude of the various states. For example, ye,i is expected to be in the region of ≈ 1e−1,
where as yaw rate is expected in the region of ≈ 1e−3. Nevertheless, because the yaw rate of
the preceding vehicle is assumed to be available in the transmission the state reconstruction
will be near perfect, as all inputs in (2-47) are available, see Figure 5-8.

Furthermore, when the measurement of ytot,i flips in sign from positive to negative, or negative
to positive, it causes a small step in the simulation. This is inherent in how Simulink simulates
certain functions required in calculation. It is believed it lies in the fact that one of the
trigonometric functions switches domain. A shift in domain would mean a loss of directionality
in the error, i.e. the error would always be positive or negative. This is also undesired.

This small step is similar to a step input on the system, exciting all frequencies. This causes a
small oscillation in the system that slowly gets amplified over the vehicle platoon. This is best
seen in the yaw rate of the third vehicle when driving in a straight line after the lane change
has happened. A small oscillation persists as the measurement jumps between positive and
negative.
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5-3-1 Comparison to Benchmark Controllers

Having shown that the proposed controllers work in simulation, they are now compared
to a set of benchmark controllers. These controllers are currently used in vehicle or lane
following applications and explained in detail in [13]. When forward velocity vx is constant
the controllers consist of two static feedback gains, one for each road error state and a static
feed forward gain. The proposed controllers will further be compared to the controllers from
[21]. In that work the same problem is also solved using H∞ synthesis, however due to the
choice of weights in that work, the control action isn’t limited. This makes the control solution
converge to taking the feedforward controller as Kf = G−1

t , with two poles at high frequency
to make the system proper. Without any noise in the system, that solution outperforms the
proposed solution. However, when noise is introduced in the system the performance severely
deteriorates, as will be shown after the comparison with the currently implemented controller.

Current Path Following solution.

The feedforward gain is based on steady state vehicle dynamics analysis that links how a
steering input can be translated to a yaw rate in steady state. From [36], this gain is given
by

Gψ = ψ̇i
δi

= vx,i

L+ Kusv2
x,i

g

, (5-12)

where L = a+b, g is the gravitational acceleration and Kus is the understeer coefficient given
by

Kus = mg

L

(
b

Cαf
− a

Cαr

)
. (5-13)

Given the fact that the yaw rate of the preceding vehicle is included in the transmission
between two vehicles, the feedforward gain is then given by kf = 1/Gψ. The feedback gain
on ye,i is given by

kye,i =
2
(
L+Kusv

2
x,i

)
d2
i

, (5-14)

and for ψe,i it is given by

kψe,i = kye,i · vx,itla. (5-15)

The steering command is given by

δi,ref = kye,iye,i + kψe,iψe,i + kf ψ̇i−1. (5-16)

Figure 5-9 shows the same lane change, but now with two platoons of three vehicles. The
amount of vehicles is reduced by one to keep the figure clear.
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Figure 5-9: Comparison between benchmark controllers and the proposed controllers. Both
controllers are using the reconstructed states using an observer. The difference in string instability
is clearly visible.

The results shown in figure 5-9 show that the new proposed controller outperform the currently
used solution by a good margin. Although the benchmark controllers do end up on the
correct path, they do so with severe amplification of the yaw rate, which in extend also causes
deviation from the path. Even though the proposed controllers are not string stable, their
performance is better than that of those currently used. More importantly, although the
proposed controllers do overshoot the yaw-rate, it has such a minor knock-on effect on the
position of the vehicles, that the trailing vehicles remain far from the bounds of the highway,
something that cannot be said for the benchmark controllers.

Comparison to Controllers from [21]

In [21] a similar method of control design is proposed as used in this thesis. The main differ-
ences between this work and [21] can be found in the weighting design, and the new method
proposed for vehicle following. In the literature reference it is assumed path information is
available. The main difference in weighting design in this thesis compared to [21], is that
there is heavy focus on real world applicability. To show case this, the lane change is again
simulated, both times with direct state access to prevent the observer from having any in-
fluence, as the work in [21] doesn’t use an observer. The difference is that on the yaw rate
signal, required to construct the road error states, noise is added. Figure 5-10 shows the noise
added to the signal.
The noise in figure 5-10 is not necessarily representative of the noise expected in real world
applications. However, it was chosen as such to better showcase the differences between the
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control solutions. In [21] it can be read that when trying experimental testing the original
controllers had to be tuned down significantly such that they didn’t amplify the noise too
much. The results for lane change simulation with the controllers from [21] can be seen in
5-11.
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Figure 5-10: Comparison of noised and original used in comparison.
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Figure 5-11: Results for lane change with controllers from [21].
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Although the first vehicle is able to converge to the correct path, the second and third vehicle
are thrown off the path due to the noise in the system. Eventually they will converge to
the correct path, but this behaviour is highly undesired. Any string stability property is also
breached because of the noise sensitivity. Comparing these results with the results when using
the proposed controller, figure 5-12, it becomes clear that the proposed controllers are much
less sensitive to noise. Furthermore, the vehicles still drive on the correct path, as desired.

Figure 5-12: Results for lane change with proposed controllers.

The primary reason for this is put down to the fact that when the optimization is left un-
constrained on the control action it converges to a solution with an inverse plant as feed
forward controller. This can lead to large noise amplification if the original plant has high
frequency roll-off. Because in this work the control action is weighted in accordance with
what the steering system can achieve, the controllers designed such that their roll-off starts
much earlier. This greatly reduces their sensitivity to noise. It is important to note that
no other form of filtering besides that off the controllers or the plant is implemented in the
system, so the results in figure 5-12 can still be further improved.

5-3-2 Initial Condition Errors

As was stated, when the yaw rate of the preceding vehicle is available as a measurement, then
the reconstruction of the states is trivial. Under the assumption that all vehicle operations
are well within the boundaries that guarantee high accuracy of the linear model, one can
perfectly reconstruct the states. Obviously in real world applications this is not the case,
and solely relying on the preceding vehicle yaw rate measurement would compound to steady
state errors.

Such a system would best be comparable to a yaw rate controller. The vehicle might be able
to match the yaw rate of the preceding vehicle, but there is no guarantee that it will also end
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Figure 5-13: Simulation where the three trailing vehicles are initialized with initial conditions
errors.

up on the correct path. For this reason path information is required. When using the direct
vehicle following method, however, it is impossible to know if a measured error is caused by
ψe,i, ye,i or a combination of both. This is where the observer is required. Further use of the
observer is whenever the vehicle experiences an disturbance from the outside. An example
could be a gust of side wind displacing one of the vehicles. In such a situation the observer
is also required to correctly reconstruct the states and steer the vehicle back to the correct
path.

To showcase this the platoon of 4 vehicles is initialized with initial condition errors. These
are given by

y0,0 = 0 (5-17a)
y0,1 = 0.2 (5-17b)
y0,2 = 0.4 (5-17c)
y0,3 = 0.3 (5-17d)

(5-17e)

Figure 5-13 shows the results of the initial condition error simulation. Each of the vehicles
converges to the correct location. The behaviour of the vehicles is after initialization is
not achievable in practice. The way the initial condition error is implemented is similar to
applying an impulse input to the steering system, which will cause large variations in yaw
rate, due to the assumption of linear tyres. This behaviour happens a few times during the
simulation. It is put down to the high gains in the observer gain (5-11). In the real world,
steering inputs like this can never produce this kind of output due to how the tyres will either
saturate or dampen out the response which can be put down to a phenomenon called tyre
relaxation length [22]. The positional errors used as initial condition in this simulation are
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also exaggerated. This is mainly done to better show the influence the observer has on the
system. The reconstructed state evolution is shown in Figure 5-14.
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Figure 5-14: Individual graphs for each of the error states of the first vehicle, showing how
the reconstructed states converge to their actual states. At around 0.5 second they are close to
converging

From Figure 5-14 it can be seen the states converge to their correct values, but before doing
that they both diverge away from the value they are supposed to have. As was discussed
for the yaw rate response, this large spike is put down to the high gain of the observer gain.
Although both reconstructed states first diverge, it does cause the vehicle to converge to the
correct path. This means that the sum of the steering input is still correct. Once the vehicle
starts steering the states also start converging towards their actual states. This showcases
the added value of the observer, being able to accurately reconstruct the states ye,i and ψe,i
whilst not relying on often difficult and inaccurate path reconstruction techniques.

Another aspect where the observer can be of value is when the internal vehicle model does
not match the actual dynamics of the vehicle. These can differ due to many reasons, but chief
among them are a change in velocity and the tyre cornering stiffness. The observer will still
be able to reconstruct the states. Even though it might not be the true actual states, it will
make the vehicle converge to the right path. This makes the observer useful even when the
model doesn’t match the actual situation. Section 6-3 in Chapter 6 will discuss the observer
further.
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Chapter 6

Discussion

The work in this thesis presents a novel solution to vehicle following and using simulation
shown to work. Nevertheless, the primary goal of string stability was not achieved. Rather, a
proof that string stability is impossible to achieve was given for a system with only feedback
control. For a system where feedback and feedforward control is implemented, it turned
out to require infeasibly high gain on the feedback controllers to achieve string stability,
something that contradicts the real world application requirement. In this chapter we discuss
the implications of these results by comparing them to the solution used in longitudinal
platooning. It must also be said, that as a formal mathematical proof still lacks for guaranteed
string instability, it is highly advised to look deeper into this problem before attempting any
form of control design.

6-1 Discussion on the String Stability Results

In [37] a conclusive proof is given that, for any system using only relative position mea-
surements, string stability is impossible to achieve. In that article, no linearity assumptions
are made with regards to controllers, and the controller structure is completely left open.
Furthermore, it is generalized for any form of interconnected system.
Interestingly, the same problem originally existed for the longitudinal platooning case, as is
explained in [38]. The argument made for string instability is identical between lateral and
longitudinal platooning, although in [38] analysis where feedforward is included is lacking.
The basis, nonetheless, finds itself in the fact that the system has two free integrators coming
from the error definition based on position. As shown in this thesis this results in at least two
free integrators in the loop gain. Using Bode’s integral relation it is shown that the string
stability cannot be achieved when noise suppression is desired. The fact that the system
could not be made string stable is in line with work presented in [11, 21], where the same
model is used. The difference between the work presented in this thesis and [21] is that in this
work the control action is constrained. When left unconstrained, the optimization will move
towards the solution as presented in section 3-4, where high gain controllers are necessary to
achieve string stability, which is prevented by the weight on control action.
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Figure 6-1: Block scheme for a single vehicle in the platoon.

6-1-1 Study of Longitudinal Platoon Solution

The analysis in this thesis, supported by several sources, shows that string stability cannot,
or is very difficult to, be achieved with this model. This calls for an alternate approach
to the entire lateral vehicle following problem, such that a different model can be found
where this issue is not present. A potential solution can be found by a closer study the
longitudinal control problem and the solutions used in that to make the system string stable.
The solution used in longitudinal platooning is to adaptively change the reference, based on
absolute velocity. The error is now not only dependant on a relative position, but also on an
absolute measurement from the vehicle itself. The adaptive positional error for longitudinal
platooning is defined as

ei(t) = di(t)− dr,i(t), (6-1)

where di(t) is the measured distance between two vehicles, and dr,i(t) the reference difference,
also time dependant. This distance reference is in turn given by

dr,i(t) = ri + hvi(t), (6-2)

where ri is the stand still distance, and h is the headway time. The error as defined in equation
6-1 is actively altered by the velocity of the trailing vehicle. The velocity of the trailing vehicle
is also the first time derivative of the measured inter-vehicular distance di, which is a state
of the longitudinal vehicle model. In a very similar fashion to the block scheme of a vehicle
in a lateral platoon (Figure 3-1), the block scheme for a vehicle in a CACC platoon is given
in figure 6-1. It is assumed there are no communication delays present in the system. In
[6] it is shown that communication delay only worsens the string stability properties of the
platoon, hence assuming no delay presents an ideal scenario. In figure 6-1 the block Gt denotes
the transfer function from acceleration input ui to a change in inter vehicular distance di.
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The block K has the feedback controllers and finally H(s) is the transfer function from the
constant time headway policy. H(s) is given by H(s) = hs, where h is the headway time.
The string stability complementary sensitivity function is given by

Γi = GtK

1 +GtK −GtKH
. (6-3)

For the function in (6-3) we recognize the complementary sensitivity function, but an extra
term has appeared due to the inclusion of H(s). The loop gain for the longitudinal problem
also has two free integrators, and thus with H(s) = 0, the system will be string unstable.
Because H(s) is a pure differentiator, the number of free integrators in 1+GtK−GtKH is no
longer guaranteed to be two or more. Because of this, Bode’s integral does not necessarily have
to equal 0, and thus this mathematical constraint is removed. This opens up the possibility
to design controllers such that the system is string stable.

The implication of altering the reference distance is that during an acceleration change the
distance between vehicles is not preserved. In the longitudinal case this is far less an issue
than for lateral platooning as the vehicles are driving on the same path, and the stand still
distance prevents them from hitting one-another.

6-1-2 Proposal for Lateral Platooning

Let us now consider applying a similar solution for the lateral platooning case. Recall that
the error for the lateral vehicle following case is given by

ψ̇e,i = θ̇s,i − θ̇s,i−1. (6-4)

The rate of change for the heading angle is the difference between the rate of change of the
curvature of the path of the preceding and following vehicle. The lateral off-set error plays no
part in the initial error definition and is only dependant on the accumulation of the heading
error. Unlike the case for longitudinal platooning, there is no reference distance which is
velocity dependant. Let us assume that there would exist a reference yaw rate, ψ̇r,i, then the
error would be defined as

ψ̇e,i = θ̇s,i − θ̇s,i−1 + ψ̇r,i. (6-5)

When ψ̇r,i = 0, we arrive at the original error definition. However if we take ψ̇r,i such that it

ψ̇r,i 6= 0, (6-6)

it would imply that when both ψe,i = 0 and ye,i = 0, then

ψ̇e,i = ψ̇r,i. (6-7)

This implies the trailing vehicle will still measure an error, even though it has no actual road
errors. As it generates control action based on this error it will then creates both positional
as well as heading error. In turn this will be counteracted again by the controller and the
system will swing back and forth between having actual error and the reference induced error.
It might be possible to find a control solution that negates this, but it will mean that the
vehicle will be driving with both ψe,i 6= 0 and ye,i 6= 0. This can be interpreted as the vehicle
having steady state error with respect to the path that it should be travelling on. Remember
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that this is identical to the longitudinal case, the trailing vehicles are not driving on the same
path as their respective preceding vehicle, but because the path is 1-dimensional, this is much
less of a problem.
It seems that a solution whereby the path of the preceding vehicle is followed during both
transient and steady state is not feasible. This was not a requirement in the first place, but
the way the errors are defined in combination with the string stability requirement does push
the closed loop system to converge to this. Figure 6-2 shows an alternative error definition,
that could possibly yield a system that is string stable. In [12] it is shown that when the
vehicle platoon is modelled as an off-hook trailer system, where the connection point is in
the middle of the two vehicles the platoon will be string stable. In Figure 6-2 this set-up
is depicted. The off-hook set-up is constructed by dividing the following distance di in two
equal sized parts.
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Figure 6-2: Alternate error definition .

Triangle ((Xi, Yi)P (Xi−1, Yi−1)) is an equilateral triangle, thus

2α+ β = 180◦, (6-8)

and also
ψ + β = 180◦. (6-9)

In steady state, α can then be calculated as

α = ψ

2 =
sin−1

(
2ytot,i
di

)
2 . (6-10)

During highway driving the radii of the corners is large, which in turn means that ytot,i is
small and di >> ytot,i. Angle α can be approximated using a small angle approximation as

αref ≈
ytot,i
di

. (6-11)
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We call (6-11) αref , as it serves as a reference angle. Triangle ((Xi, Yi)P (Xi−1, Yi−1)) is only
an equilateral triangle when both vehicles are driving on the same radius (see [12]). The
definition for α given in (6-11) can be seen as an angle reference the trailing vehicle has to
aim for. It can do this by measuring both ytot,i as well as li, a distance defined between the
front of the trailing vehicle to the measurement point for ytot,i. Then the error is defined as

eα = αref − α = ytot,i
di
− ytot,i

li
. (6-12)

From [12] it is known that this method does corner cut in transients, but in steady state
has no steady state error. Furthermore, it is also shown that for a two vehicle platoon the
system is string stable. The proposed solution poses an interesting trade-off, not present in
longitudinal platooning. The work in this thesis shows that string stability is possible, but the
solution does not corner cut, rather it overshoots the path. As the system is string unstable
this overshoot will steadily increase over the platoon which was deemed unsafe. Alternatively,
if a solution is found where the vehicles undercuts the path, each of the following vehicles will
undercut their respective preceding vehicle. It can be argued that this is also unsafe. Finding
the right trade-off depends on what the designer deems preferable.

6-2 Discussion on Control Design

The optimized controllers are, as expected, capable of reducing the H∞ norm of the string
stability complementary sensitivity function. However, the goal of string stability was never
achieved, regardless of weighting design. The main limitation comes from the weight on the
control action. Entirely removing the weight improves the result, but the system remains
string unstable, the overshoot being negligible however. The overshoot, given the synthesized
controllers, is around 5% in terms of yaw rate per vehicle.

As an alternative to the definition given in (3-10), a practical definition for string stability
can be taken. This practical definition will then allow for overshoot to occur, but limits the
yaw rate of the i′th vehicle to a certain bound. Say that the system is designed for a platoon
of ten vehicles. At the peak amplification of the yaw rate, the vehicle is furthest away from
the path it has to travel in terms of position. This means that ye,i at that point is maximum.
Recall that the transfer function

Γe = (I −GtKfb)−1 (I −GtKf ) ψ̇i−1, (6-13)

relates the road errors to the rate of change of the curvature. The transfer function for ψ̇i−1
to ye,i will have a maximum at a certain frequency, which relates the maximum ye,i the vehicle
will have given a certain input. In the bottom left figure of figure 4-5, this peak can also be
clearly seen. It is this transfer function that then translates the curvature of the road in rad/s
to a potential maximum lateral error ye,i. It is a potential maximum, as it highly depends on
the frequency content and value of ψ̇i−1.

In the same way that we restrict the frequency of the steering input of the host vehicle, we can
also restrict the maximum steering angle the vehicle can attain. The maximum steering angle
is highly dependant on the type of vehicles in the platoon. However, with this value known,
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from this maximum steering angle, a peak yaw rate of the host vehicle can be determined.
The total lateral offset of the 10th vehicle is then given by

∣∣∣∣∣∣Γye,i ∣∣∣∣∣∣10

∞
= sup

 ||ye,10||2∣∣∣∣∣∣ψ̇0
∣∣∣∣∣∣

2

: ψ̇0 6= 0

 , (6-14)

where with a slight abuse of notation Γye,i is used to denote the transfer function. If the
designer has a certain design case, for which the maxima for ye,10 and ψ̇0 can easily be defined,
then a bound, γ, on

∣∣∣∣∣∣Γye,i ∣∣∣∣∣∣10

∞
can be set. The system can then be said to be ’practically string

stable’ when ∣∣∣∣∣∣Γye,i ∣∣∣∣∣∣10

∞
≤ γ. (6-15)

The definition in equation 6-15 is much weaker than that of (3-10), as it is heavily dependant
on what requirements the designer has for the system. Nevertheless, if overshoot is indeed
an inherent part of the system, and the system will always be string unstable regardless of
controller choice, then a definition such as (6-15) at least ensures safety for a certain length
of platoon.

6-2-1 Proposal for Observer Design

The observer forms an integral part of the control design as its pole locations are dependant
on where the closed loop poles are of the actual system. In this thesis the pole locations
of the observer are found by manual tuning because there is no influence on where the H∞
optimization places the poles. In [39] a novel way of using an H∞ optimization is proposed. In
this work but then the pole locations can be also used as an input. It can be further extended
by also including an observer in the optimization. This way two feedback gains for the both
the controller and observer can be found, subject to the same constraints. An alternative
approach also using state feedback with integral action is presented in [40]. It is expected
that the performance of the entire system will be improved if either of these approaches,
where possible, is adapted for the platooning system.

6-3 Discussion on Simulation Results

The simulations show that the proposed method for vehicle following in combination with
the observer works as well as a system that has direct access to the road error states. This
is mainly due to the fact that the dynamics of the system are slow, given the low frequency
content of the lead vehicle manoeuvre. It is expected that if one of the vehicles somehow
displays behaviour with high frequency content, the observer will lag behind a system with
direct state access. Nevertheless, either system displays the expected string instability in each
of the vehicles respective yaw rates.

A difference between the system with observer and the system with direct access to vehicle
states is that due to the way the ytot,i measurement is implemented in Simulink it tends to
oscillate around the the preceding vehicle when driving in a straight line behind it. This
problem is purely down to the Simulink implementation and is not expected to occur in the
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real world. The use of the observer when all the signals are available without any noise is
limited. It is useful in situations if a vehicle, or multiple vehicles, have an initial condition
error. The observer can then asymptotically reconstruct the road errors. The convergence
of the states does take a significant time compared to the settling time. Nevertheless the
vehicles converges to the correct path without first driving away from it.

One of the big drawbacks with the way the observer is implemented in this thesis is that the
feedback and feedforward control design is without taking the observer into regard. Having
no real control on where the poles will be located by the controller synthesis makes it difficult
to determine where the poles of observer have to be located. This leads to high feedback
gains, especially on the observer gain for ye,i. This makes it difficult to have an observer that
has fast convergence as well as be stable. This can clearly be seen in the initial condition
error simulation.
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Chapter 7

Conclusion

The increase in road usage over the past 20 years has called for smart solutions for driving.
Platooning is one such solution. Platooning has both the potential to safely allow for a
reduction in inter-vehicular distance as well increase overall road safety. The first allows
for more efficient use of the existing road network, the latter is a welcome extra benefit.
Furthermore, platooning has also shown to decrease fuel usage and thus decrease emissions as
well. An important, or arguably the most important, property for a platoon of vehicles was
argued to be string stability. Without it, platoons would inherently be able to reach an unsafe
state of operation. One of the challenges with lateral vehicle platooning, besides achieving
string stability, is having accurate path information, especially in close vehicle following. In
Chapter 1 two methods of vehicle following were introduced, each having their own strengths
and weaknesses.

The main contribution of this thesis is that it proposes a method which combines the strengths
of two vehicle following methods. By using the positional information of the preceding vehicle,
the road induced error can be calculated. Alternatively the vehicle could use its onboard
sensors to approximate this distance. Including this road error in the communication between
two vehicles allows the trailing vehicle to deduce a compound distance error consisting of both
positional as well as heading error. Using an observer it is further possible to reconstruct
the individual road error states using the linear vehicle-road error model. The theoretical
background for this is shown in Chapter 2.

Chapter 3 shows that using this vehicle-road error model makes achieving string stability
infeasible. Nevertheless, the overshoot caused by the lack of string stability can be minimized
using some form of optimal control, where optimality is defined as a minimization of the
overshoot. The mathematical definition for string stability developed in Chapter 3 based on
an infinity norm pairs well with an optimal H∞ type controller. Using weights as form of
soft constraints the controllers can be pushed towards minimizing string instability over a
frequency range of interest.

As seen in Chapter 4 the platoon model can easily be adapted for use in an H∞ controller
synthesis. Besides directly weighting the complementary sensitivity function, both errors can
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also be weighted, allowing for freedom in the permissible amount of steady state error. It is
shown that allowing steady state error on the lateral offset increased overall controller per-
formance. Because the controllers were designed with the goal to be real-time implementable
another weight was added to limit control action within what the power steering of the vehicle
is capable of. The results from the optimization indicate that both the string stability weight
and controller weight are the limiting factor when it comes to the controller synthesis.

The simulations in Chapter 5 show that the system in combination with the observer can
perform a typical lane change without any issues. The string instability also becomes clear
in the form of a small amplification of the yaw rate of each of the vehicles in the platoon.
This in turn leads to a small overshoot, of several centimetres per vehicle. As was discussed
in Chapter 6, it could be argued that this can be deemed safe. Nevertheless, the platoon is
string unstable. The use of the observer when it comes to dealing with initial condition errors
is also shown.

For future research re-evaluating the string stability properties for this system is highly rec-
ommended. It is not definitively proven, but there are a lot of indications that it is very
difficult to achieve. An alternative vehicle-following model is proposed in Chapter 6. Fur-
thermore, an alternative for the observer design to better integrate it into the control design
is proposed. The manual tuning used in this thesis work gives for a non-ideal observer gain,
with high gains as a result. By better aligning the pole locations of the H∞ synthesis and
the observer, the necessity for high observer gains to have state converge can be relaxed.
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Appendix A

On Signal and System Norms

A-1 The L2 Norm

For a scalar signal x(t) defined for t ≥ 0, the L2 norm is defined as

||x||2 =
(∫ ∞

0
x(t)2dt

)1/2
. (A-1)

The Laplace transform of signal x(t) is given by

x̂(s) =
∫ ∞

0
x(t)e−stdt, (A-2)

where s is the Laplace variable defined as s = jω. In accordance with equation A-1, the L2
norm for the signal x̂(s) is given by

||x̂||2 =
( 1

2π

∫ ∞
−∞
|x̂(s)|2dω

)1/2
, (A-3)

where the factor 1/2π is introduced for convenience. By Parseval’s theorem the induced 2
norm of in both the time and frequency domain are equal

||x||2 = ||x̂||2 . (A-4)

A-2 The H2 Norm

For any stable SISO linear system with transfer function G(s), the H2 norm is defined as

||G||2 =
( 1

2π

∫ ∞
−∞
|G(jω)|2dω

)1/2
. (A-5)
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The H2 norm can also be calculated from the state space representation of G(s). Take a state
space system of the form

ẋ(t) = Ax(t) +Bu(t), (A-6a)
y(t) = Cx(t), (A-6b)

so that
G(s) = C (sI −A)−1B. (A-7)

For a given input u(t), the output y(t) can be written as

y(t) = CeAtx(0) +
∫ t

0

[
CeA(t−τ)B

]
u(τ)dτ, (A-8)

where eAt is the matrix exponential, and x(0) represents the initial conditions of the system.
To gather information about the system we can subject it to either a step signal or an impulse,
when the system has zero initial condition. The impulse response function is given by

H(t) =
{
CeAtB, if t ≥ 0
0, if t < 0.

(A-9)

Furthermore, the transfer function G(s) is simply the Laplace transform of the impulse re-
sponse function H(t),

G(s) =
∫ ∞

0
H(t)e−stdt = C

∫ ∞
0

e(A−sI)tdtB = C (sI −A)−1B
[
e(A−sI)t

]∞
0

= C (sI −A)−1B,

(A-10)
because A is Hurwitz and its matrix exponential converges to zero as t → ∞. Applying
Parseval’s theorem again to the time signal H(t) and its Laplace transform G(s), it follows
that

||G||2 = ||H||2 . (A-11)
For a continuous time system we can write ||H||2 as [41]

||H||2 =
(∫ ∞

0
H(t)TH(t)dt

)1/2
=
(∫ ∞

0
CeAtBBT eA

T tCTdt

)1/2
= ||G||2 . (A-12)

Taking the square yields that

||H||22 = ||G||22 =
∫ ∞

0
CeAtBBT eA

T tCTdt. (A-13)

A-3 The H∞ Norm

The H∞ norm for a stable SISO linear system with transfer function G(s) is given by

||G||∞ = sup
ω
|G(jω)|. (A-14)

The H∞ norm is a measure of the largest amplification of any sinusoid introduced to the
system G(s). The H∞ norm can also be interpreted as the effect G(s) has on the space of
inputs with bounded L2 norms. For the transfer function in equation A-7 we can write that

ŷ(s) = G(s)û(s). (A-15)
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The L2 norm of G(s)û(s) is given by

||Gû||2 =
( 1

2π

∫ ∞
−∞
|G(jω)û(jω)|2dω

)1/2

=
( 1

2π

∫ ∞
−∞
|G(jω)|2|û(jω)|2dω

)1/2

≤ sup
ω
|G(jω)|

( 1
2π

∫ ∞
−∞
|û(jω)|2dω

)1/2

= ||G||∞ ||û||2 .

(A-16)

Hence
||G||∞ ≥

||Gû||2
||û||2

, ∀ û 6= 0. (A-17)

Taking û(s) = 1, the Laplace transform of the impulse input, and the square on either side
yields

||G||2∞ ≥ ||G||
2
2 . (A-18)

The result in equation A-18 can be interpreted in the following way. The H∞ norm acts as
an upperbound on the 2-norm of a system. If that signal is the impulse input, which excites
all frequencies equally, then the infinity norm is an upperbound of the maximum amount of
energy that gets added to the outgoing signal by the system G.

A-3-1 State-Space computation of the H∞ Norm

The H∞ norm can also be calculated using state space methods. Let the transfer function
G(s) again have a state space representation of the following form

ẋ(t) = Ax(t) +Bu(t), (A-19a)
y(t) = Cx(t). (A-19b)

It follows from equation A-17, the H∞ norm can also be characterized as

||G||∞ = sup
{
||y||2
||u||2

: u 6= 0
}

(A-20)

Let us introduce scalar value γ. For any γ > 0, ||G||∞ < γ if and only if

J∞ (G, γ) ≡ max
u

[
||y||22 − γ

2 ||u||22
]

= max
u

∫ ∞
0

[
yT (t)y(t)− γ2uT (t)u(t)

]
dt

<∞

(A-21)

The maximization problem in equation A-21 can be solved using LQR techniques. If the
following ARE

ATP∞ + P∞A+ 1
γ2P∞BB

TP∞ + CTC = 0, (A-22)
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has a bounded positive semidefinite solution P∞, then ||G||∞ < γ. If the ARE in (A-22) has
no solution, then ||G||∞ > γ. Checking whether the ARE has a solution can be done using
its associated Hamiltonian matrix

H∞ =
[
A −1

γ2 BB
T

CTC −AT

]
. (A-23)

Equation A-22 has a solution when (A-23) has no eigenvalues of the imaginary axis. Alterna-
tively (A-22) has a stabilizing solution if and only if (A,B) is stabilizable and (AT , CTC) has
no uncontrollable modes on the imaginary axis. In practice one often just verifies whether
the pair (AT , CTC), or (AT , CT ) is stabilizable.
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Appendix B

Bode’s Integral

This appendix will go into the details behind the derivation that led to the well known
results from Bode’s work into feedback systems. The proof that system with two or more
free integrators having both a feedback and feedforward controller can not be string stable
has remained rather elusive. In the actual thesis the argument is made by logical induction
on the lower fractional expansion used by the controller optimization. At a later stage it was
found that evaluating Bode’s derivation that arrives at the well known integral∫ ∞

0
log |S(jω)| dω =

∫ ∞
0

log
∣∣∣∣ 1
1 + L(jω)

∣∣∣∣ dω = π
∑

Re(pk), (B-1)

and applying the same mathematical steps to the string stability complementary sensitivity
function,

Γi = GtKf +GtK

1 +GtK
= GtKf

1 +GtK
+ GtK

1 +GtK
, (B-2)

it is possible to formulate an integral constrain similar to the one in (B-1), but then for Γi(s).
All of the work in this document is based off from the book [42] chapters 2 and 3.

B-1 Bode’s Integral Derivation

Bode’s integral theorem is developed from a relation between the real and imaginary compo-
nents of analytic functions. It provides an expression of how the imaginary part of a function
behaves at high frequency, in terms of the integral of the real part, for a function H that
satisfies the following conditions

1. H(jω) = P (ω) + jQ(ω) = H(−jω), with P and Q real valued functions of ω

2. H(s) is analytic at s = ∞ and in the closed right half plane except for possible singu-
larities s0 = jω0 on the finite imaginary axis which satisfy lims→s0(s− s0)H(s) = 0

In his original work Bode called P the attenuation part and Q the phase part. Hence the
integral relation is often called Bode’s Attenuation Integral Theorem.
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Theorem 1 (Bode’s Attenuation Integral Theorem). Let H be a function satisfying con-
ditions 1 and 2. Then for H(jω) = P (ω) + jQ(ω),∫ ∞

0
[P (ω)− P (∞)] dω = −π2 Res

s=∞
H(s) (B-3)

where Res
s=∞

H(s) is the residual of transfer function H(s) at s =∞.

Proof. Since H is analytic at infinity, there exists a so-called Laurent series expansion of H
as

H(s) = . . .+ c−k
sk

+ . . .+ c−1
s

+ c0 (B-4)

which is convergent. From assumption 1 it follows that the coefficients ck are real, and that
c0 = P (∞). To see that H can be written as this series expansion consider the following
example.

Say that a function f is analytic at x = ∞. Then the function g(y) = f(1/y) is analytic at
y = 0. Any analytic function has a Taylor series expansion of the form

g(y) =
∞∑
k=0

aky
k (B-5)

that converges in |y| ≤ b for some b > 0. Ergo, the function f is represented in |x| ≥ 1/b by
the series expansion

f(x) =
0∑

k=−∞
cks

k (B-6)

where c−k = ak. Consider we now do a contour integration over the contour given in figure
B-1.

Figure B-1: Nyquist Contour
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where the small semicircles on the imaginary axis denote possible singularities of H on the
imaginary axis. According to Cauchy’s integral theorem this integral is given by∮

C

(H(s)− P (∞)) ds = 0 (B-7)

The contribution of the integral on the semicircles on the imaginary axis can be shown to go
to zero. The integral over the large semicircle of the terms in sk, k ≤ −2 tends to zero as the
radius becomes infinite. Taking the limit, as depicted in figure B-1, as R→∞ (B-7) reduces
to ∫ ∞

−∞
[P (ω) + jQ(ω)− P (∞)] jdω + lim

R→∞

∫
CR

c−1
s
ds = 0. (B-8)

Using the symmetric properties of P and Q, from assumption 1, this reduces to

2j
∫ ∞

0
[P (ω)− P (∞)] dω − jπc−1 = 0, (B-9)

or ∫ ∞
0

[P (ω)− P (∞)] dω = π

2 c−1 (B-10)

From this we see that Res
s=∞

H(s) = −c−1. The Laurent series expansion in (B-4) can be written
as, using the fact that Q(ω) = ImH(jω) = −c−1

ω + −c−3
ω3 + . . .. From this equation B-10 can

be written as ∫ ∞
0

[P (ω)− P (∞)] dω = −π2 lim
w→∞

ωQ(ω) = −π2 Res
s=∞

H(s) (B-11)

This concludes the proof.

Theorem 2 (Bode’s Attenuation Integral Theorem at zero Frequency). A formula equiv-
alent to (B-11) at zero frequency can also easily be obtained. Let H be a function such that
H(1/λ) also satisfies conditions 1 and 2. Then

∫ ∞
0

[P (ω)− P (0)]
ω2 dω = π

2 lim
s→0

dH(s)
ds

(B-12)

Proof. Since H is chosen such that it is analytic at zero, it has a Taylor series expansion of
the form

H(s) = a0 + a1s+ . . .+ aks
k + . . . (B-13)

which is convergent for some |s| ≤ r for some r > 0. Consider the function H(1/λ) which has
Laurent series expansion as in (B-4), where the coefficients c−k = ak. Using (B-3) we arrive
at ∫ ∞

0
[P (1/λ)− P (0)] dλ = π

2 lim
s→0

dH(s)
ds

(B-14)

The proof is completed by taking the change of variables of integration as ω = 1/λ.
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B-1-1 Bode’s Integral for the Sensitivity Function

Let us now evaluate (B-11) for the sensitivity function. Take H(s) = logS(jω), and that S is
a proper rational transfer function without poles or zeros in the ORHP. This transfer function
satisfies the assumptions 1 and 2. Thus we can apply (B-11), where log |S(jω)| equals the
real part of S(jω), to obtain∫ ∞

0
[log |S(jω)| − log |S(j∞)|] dω = −π2 Res

s=∞
logS(jω). (B-15)

If S(s) is a transfer function with relative degree two or higher, the Laurent expansion is
given by

S(s) = c−2
s2 + c−3

s3 + . . . , (B-16)

from which we see that c−1 = 0. The residual Res
s=∞

logS(jω) = 0. Likewise S(j∞) = 1, as
L(j∞) = 0. Equation B-15 then reduces to∫ ∞

0
[log |S(jω)| − log |1|] dω =

∫ ∞
0

log |S(jω)| dω = 0, (B-17)

which is the well known bode integral as presented in (3-19).

B-1-2 Bode’s Integral for Γi

Let us now take H(s) = log Γi(jω), with Γi as in equation B-2. For this analysis it is easier
to use the definition of Bode’s integral given in (B-14). This becomes∫ ∞

0
[log |Γi(ω)| − log |Γi(0)|] 1

ω2dω = π

2 lim
s→0

d log Γi(s)
ds

(B-18)

The derivative of log Γi(s) with respect to s when s→ 0 is zero. Because the system has two
free integrators, it will have zero steady state error, giving for a ’flat’ line at zero frequency.
In turn this means that the integral also has to equal zero,∫ ∞

0
[log |Γi(ω)| − log |Γi(0)|] 1

ω2dω = 0. (B-19)

As Γi(0) = 1 by design and requirement the integral can be further reduced to∫ ∞
0

log |Γi(ω)| 1
ω2dω = 0. (B-20)

This result is identical to the result for the Bode integral over the complementary sensitivity
function. It can be interpreted as a conversation of energy integral. It implies that for
this form of string stability complementary sensitivity function, with two free integrators in
the system, the waterbed effect also exists. This concludes the proof that string stability is
impossible to achieve.
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