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Abstract

The cap set problem consists of finding the maximum size cap sets, i.e. sets without a 3-term arithmetic
progression in F፧ኽ . In this thesis several known results on the behavior of this number as 𝑛 → ∞ are
presented. In particular we discuss a reformulation by Terence Tao and Will Sawin of a proof found by
Dion Gijswijt and Jordan Ellenberg [5, 9]. It uses the slice rank, a rank that is defined for elements of
tensor products, to give upper bounds on the size of the cap sets. In this report we will explain the slice
rank and how it is related to the size of cap sets. We will also explore whether the slice rank might be
used for bounding the size of arithmetic progression-free sets in F፧፪ for 𝑞 ≠ 3. We show that we can
not use the slice rank to give a non-trivial upper bound on the size of 𝑛-term progression-free sets for
𝑛 ≥ 7. This was already known for 𝑛 ≥ 8.
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1
Introduction

The card game SET is an interesting game to play. The deck consists of 81 cards, each having a color,
shape, fill and number. For all of those properties there are three possible values. All combinations of
values are on exactly one card.

Figure 1.1: Three cards from SET. These three cards all have different color, shape, fill and number. Therefore they form a set.

In the game, twelve cards are lying on the table. Players are searching for so-called SET’s, com-
binations of three cards where for each of the four properties either all values are different or all the
same.

(a) These three cards form a SET (b) These three cards form a SET

(c) This is not a SET because there are two red cards
and one blue card

(d) This is not a SET because there are two cards with
just one sybmol and one card with two symbols

Figure 1.2: Example of two SET’s and two non-SET’s

If no player sees a SET after looking for some time, three more cards are added to the table.
However it could happen that there is still no SET among these cards. It is an interesting question to
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2 1. Introduction

ask how many times this could happen, i.e. how many cards can be on the table without containing a
SET.

1.1. The cap set problem
We can view the problem of finding a maximal combination of cards without a SET mathematically by
associating each card in the deck with a unique vector in Fኾኽ, such that the four properties of a card are
encoded by the four components of 𝑣 ∈ Fኾኽ, where each value for a given property corresponds with a
value in Fኽ[3]. It does not really matter which value in Fኽ is chosen, but an example is given below.

Count Value Color Value Shape Value Fill Value
1 0 Red 0 Diamond 0 Solid 0
2 1 Green 1 Oval 1 Striped 1
3 2 Blue 2 Squiggle 2 None 2

Lemma 1. The three cards corresponding to 𝑎, 𝑏, 𝑐 ∈ Fኾኽ form a SET if and only if 𝑎, 𝑏 and 𝑐 are on the
same line, i.e. 𝑎 − 2𝑏 + 𝑐 = 0.
Proof. Let 𝑎, 𝑏, 𝑐 ∈ Fኾኽ. Observe that we have that they correspond to three cards that form a SET if and
only if in each component the values of 𝑎, 𝑏 and 𝑐 are all different or all the same, i.e. for 𝑖 = 1,… , 4,
we have either 𝑎። = 𝑏። = 𝑐። or 𝑎። ≠ 𝑏። ∧ 𝑎። ≠ 𝑐። ∧ 𝑏። ≠ 𝑐።. This means that if 𝑎, 𝑏 and 𝑐 form a set then
either 𝑎። + 𝑏። + 𝑐። = 0+ 1+ 2 = 0 or 𝑎። + 𝑏። + 𝑐። = 3 ⋅ 𝑎። = 0 ⋅ 𝑎። = 0. So in both cases 𝑎። + 𝑏። + 𝑐። = 0.
This means 𝑎 + 𝑏 + 𝑐 = 0.

Wewill show that 𝑎+𝑏+𝑐 = 0 exactly when the three corresponding cards form aSET: If 𝑎+𝑏+𝑐 = 0,
but 𝑎, 𝑏 and 𝑐 do not form a SET, then for a certain component 𝑖, two of the values of 𝑎።, 𝑏። and 𝑐። have
to be the same and one has to be different. Without loss of generality we can assume that 𝑎። = 𝑏። ≠ 𝑐።.
But then −𝑎። + 𝑐። ≡ 2𝑎። + 𝑐። = 𝑎። + 𝑏። + 𝑐። = 0, so 𝑎። = 𝑏። = 𝑐። contradicting the assumption that 𝑎, 𝑏
and 𝑐 do not form a set. Now because 𝑎 − 2𝑏 + 𝑐 ≡ 𝑎 + 𝑏 + 𝑐 in Fኾኽ, it follows that 𝑎, 𝑏 and 𝑐 form a set
if and only if 𝑎 − 2𝑏 + 𝑐 = 0, i.e. when 𝑎, 𝑏 and 𝑐 are on the same line in Fኾኽ.

We will now introduce the notion of a cap set that corresponds to a collection of cards with no SET.

Definition 1. A cap set is a subset 𝐴 ⊆ F፧ኽ containing no three distinct elements 𝑎, 𝑏, 𝑐 ∈ 𝐴 for which
𝑎 − 2𝑏 + 𝑐 = 0.

Notice that while cards in the game SET correspond to vectors in Fኾኽ, the notion of a cap set is
defined for all F፧ኽ with 𝑛 ∈ N. We can view F፧ኽ as a SET game with 𝑛 properties that each have 3
values. As we stated before, we are particularly interested in how many cards there can be with no
SET in it, or in other words, what the maximum size of a cap set in F፧ኽ is.

Definition 2. Let 𝑎፧ be the maximum size of a cap set 𝐴 ⊆ F፧ኽ .
To find the maximum number of cards without a SET we want to know the value of 𝑎ኾ. We point out

that it is trivial that 𝑎ኺ = 1 and 𝑎ኻ = 2. Using a few smart tricks it can be proven that 𝑎ኼ = 4, 𝑎ኽ = 9
and 𝑎ኾ = 20 [3]. It has been proven that 𝑎኿ = 45 [4] and 𝑎ዀ = 112 [7].

In this report we will not look into the value of 𝑎፧ for specific 𝑛, but instead we will look into what
happens when 𝑛 → ∞. First let us give a quite trivial upper and lower bound:

Lemma 2. 2፧ ≤ 𝑎፧ ≤ 3፧.
Proof. Let 𝐴 ⊆ F፧ኽ a cap set. Then |𝐴| ≤ |F፧ኽ | = 3፧. This implies our upper bound.

For the lower bound let 𝐴 ⊆ F፧ኽ be the subset of all vector with coordinates in {0, 1}. All three
distinct elements in this set will have at most two different values in each coordinate, so it is a cap set.
Therefore 𝑎፧ ≥ |𝐴| = 2፧.

1.2. Generalizing to abelian groups
From the definition we can conclude that a cap set is a subset of F፧ኽ without a 3-term arithmetic pro-
gression. In general we can look for subsets of 𝐺፧ without an 𝑚-term arithmetic progression, for every
abelian group 𝐺 when 𝑚 ≤ |𝐺|.



1.3. Polynomial method and slice rank 3

Definition 3. For 𝐺 an abelian group, 𝑉 ⊆ 𝐺 and 𝑚 ∈ N, let 𝑟፦(𝑉) be the maximum size of subset
𝐴 ⊆ 𝑉 that has no non-constant 𝑚-term arithmetic progression, meaning there are no 𝑎, 𝑏 ∈ 𝐺 with
𝑏 ≠ 0 such that for all 𝑖 ∈ {1, … ,𝑚} it holds that 𝑎 + 𝑖 ⋅ 𝑏 ∈ 𝐴.

Now 𝑎፧ = 𝑟ኽ(F፧ኽ).

Lemma 3. It holds that 𝑟፦(𝑉 ×𝑊) ≥ 𝑟፦(𝑉) ⋅ 𝑟፦(𝑊).

Proof. Let 𝐴 ⊂ 𝑉, 𝐵 ⊂ 𝑊 be 𝑚-term progression-free sets with |𝐴| = 𝑟፦(𝑉) and |𝐵| = 𝑟፦(𝑊). Now
the set 𝐴 × 𝐵 does not contain 𝑚-term arithmetic progressions: Suppose there exists a non-constant
𝑚-term progression (𝑎ኻ, 𝑏ኻ), … , (𝑎፦ , 𝑏፦) in 𝐴 × 𝐵. This implies that 𝑎ኻ, … , 𝑎፦ and 𝑏ኻ, … , 𝑏፦ also must
be arithmetic progressions, but because they are 𝑚-term arithmetic progression-free, they must be
constant progressions. This contradicts our assumption that (𝑎ኻ, 𝑏ኻ), … , (𝑎፦ , 𝑏፦) is a non-constant
progression.

We can also use the values of 𝑟፦(𝑉፧) for individual 𝑛’s to say something about the asymptotic
behavior.

Lemma 4 (Fekete’s lemma). Let (𝑢፧)፧ጿኻ be a nonnegative subadditive sequence of real numbers (i.e.
𝑢፧ዄ፦ ≤ 𝑢፧ + 𝑢፦). Then the ፮ᑟ

፧ converge as 𝑛 → ∞ and

lim
፧→ጼ

𝑢፧
𝑛 = inf

፧ጿኻ
𝑢፧
𝑛

Proof. The proof can be found in [1].

Lemma 5. The value of ᑟ√𝑟፦(𝑉፧) converges as 𝑛 → ∞ and lim፧→ጼ
ᑟ√𝑟፦(𝑉፧) = sup፧ጿኻ

ᑟ√𝑟፦(𝑉፧).

Proof. In Lemma 3 we have seen that the sequence (𝑎፧)፧ጿኻ with 𝑎፧ = − log(𝑟፦(𝑉፧)) is subadditive.
Fekete’s lemma now tells us that lim፧→ጼ

ፚᑟ
፧ exists and that it is equal to inf፧ጿኻ

ፚᑟ
፧ . This implies that

lim
፧→ጼ

ᑟ√𝑟፦(𝑉፧) = sup
፧ጿኻ

ᑟ√𝑟፦(𝑉፧)

With this lemma we can find asymptotic upper bounds for 𝑎፦, using values for individual 𝑚’s. For
example 𝑎ዀ = 112 gives us that 𝑟ኽ(F፧ኽ) = Ω(112፧/ዀ) = Ω(2.1955፧).

1.3. Polynomial method and slice rank
In recent years, mathematicians have successfully used the so-called polynomial method in optimiza-
tion problems. The method works by finding polynomials that vanish on a certain set. This method
has been used to find that 𝑟ኽ((Z/4Z)፧) < 0.926፧ [2]. The argument was modified by Jordan Ellenberg
and Dion Gijswijt to show that if 𝑝 ≥ 3 is a prime then 𝑟ኽ(F፧፩) < 𝑝(ኻዅᎨ)፧ for some small 𝜖 > 0 and in
particular 𝑟ኽ(F፧ኽ) = 𝑜(2.756፧) [5].

This argument was later reformulated in a symmetric way by Terence Tao and Will Sawin [8, 9]. In
this report we will describe their proof and explain some of the concepts they use.

In their proof Tao and Sawin use the notion of the slice rank. The slice rank of a function is something
that is comparable to the matrix rank. It determines how many ‘rank-one’ functions are needed to sum
up to the function. Those ’rank-one’ functions are functions that can be written as the product of a
function of one of the variables and a function that does not depend on this variable. In Chapter 2 we
will define this rank and show how it is related to the problem of determining the size of progression-free
sets. In Chapter 3 we will then introduce ways of finding upper bounds for the slice rank. In Chapter 4
we will also provide a way for finding lower bounds for the slice rank. In Chapter 5 we will apply these
results to our initial problem of finding bounds for 𝑟፦(𝑉፧) as 𝑛 → ∞ again.





2
The slice rank

In the polynomial argument, the space of functions that vanish on a particular set is used. In this
report we will also use them, but we will think of them as subsets of tensor products of smaller vector
spaces. First we will define what we mean by that. Note that we will only define the tensor product of
finite-dimensional vector spaces.

Definition 4 (The tensor product). Let 𝑉ኻ, … , 𝑉፧ be finite-dimensional vector spaces over F. Then

𝑉ኻ⊗⋯⊗𝑉፧

is the vector space Mul(𝑉∗ኻ , … , 𝑉∗፧ ), which is the space of multilinear maps from 𝑉∗ኻ ×⋯ × 𝑉∗፧ to F. We
will call it the tensor product of 𝑉ኻ, … , 𝑉፧.

For all 𝑣ኻ ∈ 𝑉ኻ, … , 𝑣፧ ∈ 𝑉፧ we will write 𝑣ኻ ⊗ ⋯ ⊗ 𝑣፧ to refer to the map in 𝑉ኻ ⊗ ⋯ ⊗ 𝑉፧ with
𝑣∗ኻ, … , 𝑣∗፧ ↦ 𝑣∗ኻ(𝑣ኻ)⋯𝑣∗፧(𝑣፧).

From [6, Proposition 8.4] we see that this definition is consistent with other defintions of the tensor
product. We will use only a few properties of the tensor product that we will list below.

Lemma 6. Let 𝑉ኻ, … , 𝑉፧ be vector spaces over F. Let𝑊 = 𝑉ኻ⊗⋯⊗𝑉፧. Then the following holds:

1. If for each 𝑖 ∈ [𝑛] 𝑣።,ኻ, … , 𝑣።,፤ᑚ is a basis for 𝑉።, then

{𝑣ኻ,፜Ꮃ ⊗⋯⊗𝑣፧,፜ᑟ ∶ 𝑐፣ ∈ [𝑘፣]}

is a basis for𝑊.

2. If the 𝑉። ’s are finite dimensional vector spaces then we can identify 𝑉∗ኻ⊗⋯⊗𝑉∗፧ with (𝑉ኻ⊗⋯⊗𝑉፧)∗.

3. If each 𝑉። is the space of functions from 𝑋። → F with 𝑋። an finite set, then we can view 𝑊 as the
space of functions from 𝑋ኻ ×⋯× 𝑋፧ to F with 𝑣ኻ ∈ 𝑉ኻ, … , 𝑣፧ ∈ 𝑉፧ that

(𝑣ኻ⊗⋯⊗𝑣፧)(𝑥ኻ, … , 𝑥፧) = 𝑣ኻ(𝑥ኻ)⋯𝑣፧(𝑥፧)

4. Taking the tensor product is associative i.e. (𝑉ኻ⊗𝑉ኼ) ⊗ 𝑉ኽ = 𝑉ኻ⊗ (𝑉ኼ⊗𝑉ኽ) which allows us to
omit writing parentheses.

Proof. The proof of (1) and (4) can be found in [6, Proposition 8.4] and (2) follows by the fact that for
finite dimensional spaces 𝑉 is isomorphic to 𝑉∗∗.

Example 1. If we take 𝑉ኻ = R፧ and 𝑉ኼ = R፦. Note that 𝑉∗ኻ = R፧ and 𝑉∗ኼ = R፦. This means 𝑉ኻ⊗𝑉ኼ is
the space of bilinear functions R፧ ×R፦ → R, which we can view as the space of 𝑛 ×𝑚 matrices.

We will write 𝑣⊗፧ for ⨂፧
።዆ኻ 𝑣.

5
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Definition 5. For a𝑊፣ = ⨂ኻጾ።ጾ፧∧።ጽ፣ 𝑉።, 𝑣፣ ∈ 𝑉፣ and 0 ≤ 𝑗 ≤ 𝑛 define⊗፣ ∶ 𝑉፣ ×𝑊፣ → 𝑉ኻ ×⋯× 𝑉፧ with

𝑣፣⊗፣ (𝑣ኻ⊗⋯⊗𝑣፣ዅኻ⊗𝑣፣ዄኻ⊗⋯⊗𝑣፧) = 𝑣ኻ⊗⋯⊗𝑣፧
for the simple elements and extend it linearly. In other words⊗፣ inserts its first argument into the 𝑗’th
position of the tensor product in the second argument.

In Example 1 we showed that we can view spaces of real matrices as tensor products. In linear
algebra the matrix rank is defined for matrices. The slice rank is a similar notion, but is also defined for
elements of a tensor product in general.

Definition 6 (The slice rank). For vector spaces 𝑉ኻ, … , 𝑉፧ we define the rank-one elements to be the
non-zero elements of the form 𝑣 ⊗፣ 𝑤 with 𝑣 ∈ 𝑉። and 𝑤 ∈ ⊗ኺጾ፣ጾ፧∧።ጽ፣𝑉፣.

Now we define the rank of a 𝑤 ∈ 𝑉ኻ⊗⋯⊗𝑉፧ as the minimum number 𝑚 for which it can be written
as the sum of 𝑚 rank-one elements. Note that this implies that all rank-one elements do in fact have a
rank of 1.

Example 2. Let 𝑓 ∶ Fኽኽ → Fኽ with 𝑓(𝑥, 𝑦, 𝑧) = 𝑥𝑦+𝑥𝑧+𝑦𝑥. Then the slice rank of 𝑓 ∈ (FFᎵኽ )⊗ኽ is equal
to 2. The slice rank is smaller or equal to 2 because 𝑓(𝑥, 𝑦, 𝑧) = 𝑥(𝑦 + 𝑧)+ 𝑦𝑥, so the sum of two rank-
one functions. The slice rank of 𝑓 is not equal to zero because 𝑓 is not the zero function. Now suppose
the slice rank of 𝑓 is 1. Then it can be written as the product of a function that depends on one of the
variables and a function that does not depend on this variable. Because of the symmetry it does not
matter which variable we choose, so we can write 𝑓(𝑥, 𝑦, 𝑧) = 𝑔(𝑥)ℎ(𝑦, 𝑧). Because 𝑔(0)ℎ(1, 0) = 0,
but 𝑔(1)ℎ(1, 0) = 1 we see that 𝑔(0) = 0, which contradicts 𝑔(0)ℎ(1, 1) = 1.

Example 3 (The slice rank is an extension of the matrix rank). Let 𝐴 be an 𝑛 ×𝑚 matrix 𝐴 over F. We
can see this matrix as an 𝐴 ∈ Mul(F፧ ,F፦) = (F፧)∗⊗ (F፦)∗ = F፧⊗ F፦. Then the rank 𝑟 of 𝐵 is the
smallest value 𝑟 for which there exist 𝑣። ∈ F፧ , 𝑤። ∈ F፦ with:

𝐴 =
፫

∑
።዆ኻ
𝑣።⊗𝑤።

Because 𝑣።⊗𝑤። = 𝑣።𝑤⊺። we see that 𝑟 is the smallest number for which:

𝐴 =
፫

∑
።዆ኻ
𝑣።𝑤⊺።

This is exactly the definition of the matrix rank, so the matrix rank of a matrix 𝐴 is always equal to the
slice rank of its corresponding bilinear map.

Because for a tensor product of two vector spaces the slice rank is equal to the rank of the corre-
sponding matrix, we will write rk𝑤 for the slice rank of 𝑤.

Lemma 7. For 𝑖 = 1,… , 𝑘 let 𝑉። be a vector space. Let 𝑣 ∈ 𝑉ኻ⊗⋯⊗𝑉፤. Then the following holds:

1. There exist subspaces 𝑈። ⊆ 𝑉። with

𝑣 ∈
፤

⨁
።዆ኻ

𝑉ኻ⊗⋯⊗𝑉።ዅኻ⊗𝑈።⊗𝑉።ዄኻ⊗⋯⊗𝑉፤

and ∑፤።዆ኻ dim𝑈። ≤ rk 𝑣.

2. There exist subspaces 𝑊። ⊆ 𝑉∗። with 𝑤(𝑣) = 0 for all 𝑤 ∈ ⨂፤
።዆ኻ𝑊። and rk 𝑣 + ∑፤።዆ኻ dim𝑊። ≥

∑፤።዆ኻ dim𝑉።.

Proof. We can see that (1) holds for rank-one functions by their definition. A function 𝑓 of rank 𝑟 can
be written as the sum of 𝑟 function of rank one. So we can find each 𝑈። that satisfy our requirements
by taking the span of the corresponding elements for all these rank one functions.
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Now take the 𝑈። ’s as in (1). Let 𝑊። = Annፕ∗ᑚ (𝑈።) = {𝑣 ∈ 𝑉
∗
። ∶ 𝑣(𝑢) = 0∀𝑢 ∈ 𝑈።}. Then ∑

፤
።዆ኻ(dim𝑉። −

dim𝑊።) = ∑
፤
።዆ኻ dim(𝑈።) ≤ rk 𝑣 and for all 𝑤ኻ ∈ 𝑊ኻ, … , 𝑤፤ ∈ 𝑊፤ we have

(𝑤ኻ⊗⋯⊗𝑤፤)(𝑣) ∈
፤

⨁
።዆ኻ

𝑤ኻ(𝑉ኻ) ⊗⋯⊗𝑤።ዅኻ(𝑉።ዅኻ) ⊗ 𝑤።(𝑈።) ⊗ 𝑤።ዄኻ(𝑉።ዄኻ) ⊗⋯⊗𝑤፤(𝑉፤) = {0}.

This implies that 𝑤(𝑣) = 0 for all 𝑤 ∈ ⨂፤
።዆ኻ𝑊።. So this proves (2).

Lemma 8. Let 𝑓 ∶ 𝑆፤ → F where 𝑓(𝑥ኻ, … , 𝑥፤) is non-zero if and only if 𝑥ኻ = ⋯ = 𝑥፤ for all 𝑖. Then
rk 𝑓 = |𝑆|.

Proof. We will show rk 𝑓 = |𝑆|. First we will show that rk 𝑓 ≤ |𝑆| by observing that

𝑓(𝑥ኻ, … , 𝑥፤) =∑
ፚ∈ፒ

𝑐ፚ𝛿ፚ(𝑥ኻ)⋯𝛿ፚ(𝑥፤)

and that because for every 𝑎 the function x ↦ 𝑐ፚ𝛿ፚ(𝑥ኻ)⋯𝛿ፚ(𝑥፤) is a rank-one function this means that
𝑓 is the sum of |𝑆| rank-one functions. In Chapter 4 we will finish the proof by showing that rk 𝑓 ≥ |𝑆|.

2.1. Slice rank as upper bound for the size of progression-free sets
Theorem 1. Let 𝑓 ∶ 𝑉፦ → F such that 𝑓(𝑣ኻ, … , 𝑣፦) ≠ 0 only if 𝑣ኻ, … , 𝑣፦ is an arithmetic progression
and 𝑓(𝑣, … , 𝑣) ≠ 0 for all 𝑣 ∈ 𝑉. Let 𝐴 ⊆ 𝑉 be a set without an 𝑚-term arithmetic progression. Then
|𝐴| ≤ rk 𝑓.

Proof. Let 𝑔 = 𝑓|ፀᑞ . We can still write 𝑔 as the sum of the same rank-one functions as 𝑓 if we
restrict them to 𝐴፦, so rk𝑔 ≤ rk 𝑓. Now observe that 𝑔(𝑥ኻ, … , 𝑥፦) = ∑ፚ∈ፀ 𝑔(𝑎,… , 𝑎)𝛿ፚ(𝑥ኻ)⋯𝛿ፚ(𝑥፦).
Using our result from Lemma 8 we know this means that rk𝑔 = |𝐴|. Now we have our inequality
|𝐴| ≤ rk 𝑓.

We can use the above theorem to give an upper bound on the size of progression-free sets by
finding an 𝑓 that satisfies the conditions of the theorem and has a low slice rank.





3
Upper bounds for the slice rank

We have shown in Theorem 1 that the size of progression-free sets is bounded from above by the slice
rank of certain functions. Because we want to find an upper bound for the size of the cap sets, we need
a way to bound the slice rank for a function 𝑓. In this chapter we will explain techniques that allow us
to give upper bounds for the slice rank.

The following theorem was developed by Terence Tao [9]. We will give a more extensive proof. In
the theorem we will use the word covering. We say that the sets Γኻ, … , Γ፤ are a covering of Γ when
⋃፤።዆ኻ Γ። = Γ.
Theorem 2. Let 𝑉ኻ, … , 𝑉፤ be finite-dimensional vector spaces over a field F and let (𝑣፣,፬)፬∈ፒᑛ be an
independent set in 𝑉፣ for all 1 ≤ 𝑗 ≤ 𝑘, where 𝑆፣ is some finite set. Now let Γ ⊆ 𝑆ኻ × ⋯ × 𝑆፤. Then for
every

𝑣 = ∑
(፬Ꮃ ,…,፬ᑜ)∈ጁ

𝑐(፬Ꮃ ,…,፬ᑜ)𝑣ኻ,፬Ꮃ ⊗⋯⊗𝑣፤,፬ᑜ (3.1)

it holds that

rk 𝑣 ≤ min
ጁ዆ጁᎳ∪…∪ጁᑜ

|𝜋ኻ(Γኻ)| + ⋯ + |𝜋፤(Γ፤)| (3.2)

where 𝜋፣ is the projection map that maps an input to its 𝑗’th coordinate.

Proof. We will show rk 𝑣 ≤ |𝜋ኻ(Γኻ)| + ⋯ + |𝜋፤(Γ፤)| holds for every partition Γኻ, … , Γ፤ of Γ. It is then
trivial that the inequality also holds for all coverings Γኻ, … , Γ፤ of Γ, which implies that Eq. (3.2) holds.

We may assume that each 𝑉፣ is spanned by the 𝑣፣,፬ᑛ , because otherwise we can simply extend them
to a basis.

Let Γኻ, … , Γ፧ be a partition of Γ. Then for all 𝑗 it is true that

∑
(፬Ꮃ ,…,፬ᑜ)∈ጁᑛ

𝑐፬Ꮃ ,…,፬ᑜ𝑣፬Ꮃ ⊗⋯⊗𝑣፬ᑜ = ∑
፬∈᎝ᑛ(ጁᑛ)

𝑣፬⊗𝑤፬

for some 𝑤፬ ∈ ⨂።ጽ፣ 𝑉።. By summing these we get that:

rk 𝜈 ≤ |𝜋ኻ(Γኻ)| + ⋯ + |𝜋ኻ(Γ፤)| (3.3)

3.1. Bounding the rank of function products
We are not just interested in finding 𝑟፦(𝐺፧) (the maximum size of a subset of 𝐺፧ without 𝑚-term arith-
metic progression) for some 𝑛, but we also want to know what happens when 𝑛 → ∞. Therefore we
will now use Theorem 2 to find an asymptotic upper bound for 𝑓⊗፧ as 𝑛 → ∞, using a method shown
in [9].

9
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Definition 7 (Shannon entropy). Let 𝑋 be a discrete random variable that takes values in 𝑉. Then
ℎ(𝑋) ∶= −∑፯∈ፕ P(𝑋 = 𝑣) ln(P(𝑋 = 𝑣)). This is called the Shannon entropy of 𝑋.

When (𝑋, 𝑌) is a discrete random variable that takes values in 𝑉 ×𝑊, we define

ℎ(𝑋|𝑌) ∶= 1
|𝑊| ∑

፰∈ፖ
ℎ(𝑋|𝑌 = 𝑤)P(𝑌 = 𝑤)

where ℎ(𝑋|𝑌 = 𝑤) = −∑፯∈ፕ P(𝑋 = 𝑣|𝑌 = 𝑤) ln(P(𝑋 = 𝑣|𝑌 = 𝑤)).
Definition 8 (Strongly typical sequences). Let 𝑋 be a random variable taking values in Γ. Then x ∈ Γ፧
is called an 𝜀 strongly typical sequence with respect to 𝑋 if and only if:

∑
ፚ∈ጁ

| |{1 ≤ 𝑖 ≤ 𝑛 ∶ 𝑥። = 𝑎}|𝑛 − P(𝑋 = 𝑎)| ≤ 𝜖

The set of all 𝜖 strongly typical sequences with respect to 𝑋 of length 𝑛 in Γ is called 𝑇፧[ፗ]Ꭸ.
We will say that (x,y) ∈ 𝑇፧[ፗ,ፘ]Ꭸ if the sequence (𝑥። , 𝑦።)ኻጾ።ጾ፧ is 𝜖 strongly typical with respect to the

random variable (𝑋, 𝑌).
Lemma 9. If (x,y) ∈ 𝑇፧[ፗ,ፘ]Ꭸ, then x ∈ 𝑇፧[ፗ]Ꭸ and y ∈ 𝑇፧[ፘ]Ꭸ.
Proof. The proof of this lemma can be found in [10, Theorem 6.7]

Lemma 10 (Strong asymptotic equipartition property). Let 𝑋 be a random variable. Let 𝛿 ∶ Rጻኺ → Rጻኺ
with lim፧→ጼ 𝛿(𝑛) = 0. Then we have:

|𝑇፧[ፗ]᎑(፧)| ≤ exp(𝑛(ℎ(𝑋) + 𝑜(1))) as 𝑛 → ∞ (3.4)

There is a function 𝛿ᖣ with lim፧→ጼ 𝛿ᖣ(𝑛) = 0 such that 𝛿 ≥ 𝛿ᖣ implies that:

|𝑇፧[ፗ]᎑(፧)| = exp(𝑛(ℎ(𝑋) + 𝑜(1))) as 𝑛 → ∞ (3.5)

Proof. A proof of this property can be found in [10, Theorem 6.2]. Note that in this proof we can see
that the upper bound (Eq. (3.4)) holds for all 𝛿, while the lower bound only holds if 𝛿 → 0 sufficiently
slowly.

Definition 9 (Conditional strongly typical sequences). We define

𝑇፧[ፗ|ፘ]Ꭸ(y) = {x ∈ 𝑇፧[ፗ]Ꭸ ∶ (x,y) ∈ 𝑇፧[ፗ,ፘ]Ꭸ}.
Lemma 11 (Conditional strong equipartition partition property). Let 𝛿 ∶ Rጻኺ → Rጻኺ with
lim፧→ጼ 𝛿(𝑛) = 0. For all y ∈ 𝑇፧[ፘ]᎑(፧) with |𝑇፧[ፗ|ፘ]᎑(፧)| ≥ 1 we have

|𝑇፧[ፗ|ፘ]᎑(፧)(y)| = exp(𝑛(ℎ(𝑋|𝑌) + 𝑜(1))) as 𝑛 → ∞. (3.6)

Proof. A proof of this theorem can be found in [10, Theorem 6.10].

Lemma 12. Let 𝐵 be the set of all probability distributions on a finite set Γ, represented by a random
variable with this distribution. Now the the function 𝛿 ∶ 𝐵 × 𝐵 → [0, 1] with 𝛿(𝐴, 𝐵) = ∑᎐∈ጁ |P(𝐴 =
𝛾) − P(𝐵 = 𝛾)| defines a metric on 𝐵. Also if (𝑅።)ኻጾ።ጾ፧ is a sequence in Γ and 𝑋 is a random Γ-valued
variable with probabilities equal to the relative frequence in (𝑅።)ኻጾ።ጾ፧ (i.e. P(𝐴 = 𝛾) = |{ኻጾ።ጾ፧∶ፑᑟ዆ፚ}|

፧ ),
then (𝑅።)ኻጾ።ጾ፧ ∈ 𝑇፧[ፘ]Ꭸ if and only if 𝛿(𝑋, 𝑌) ≤ 𝜖.

Proof. We can view each probability distribution as an element of R|ጁ| with the values in the vector
corresponding to the probabilities. Then 𝛿 is equal to the metric induced by the ℓኻ-norm on R|ጁ|. Now
the following inequality gives us that (𝑅።)ኻጾ።ጾ፧ ∈ 𝑇፧[ፘ]Ꭸ if and only if 𝛿(𝑋, 𝑌) ≤ 𝜖:

𝛿(𝑋, 𝑌) =∑
᎐∈ጁ

|P(𝐴 = 𝛾) − P(𝐵 = 𝛾)| ≤∑
᎐∈ጁ

| |{1 ≤ 𝑖 ≤ 𝑛 ∶ 𝑅፧ = 𝑎}|𝑛 − P(𝐵 = 𝛾)|
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Theorem 3. Let 𝑉ኻ, … , 𝑉፤ be finite-dimensional vector spaces over a field F and let (𝑣፣,፬)፬∈ፒᑛ be an
independent set in 𝑉፣ for all 1 ≤ 𝑗 ≤ 𝑘, where 𝑆፣ is some finite set. Now let Γ ⊆ 𝑆ኻ × ⋯ × 𝑆፤. Then for
every

𝑣 = ∑
(፬Ꮃ ,…,፬ᑜ)∈ጁ

𝑐(፬Ꮃ ,…,፬ᑜ)𝑣ኻ,፬Ꮃ ⊗⋯⊗𝑣፤,፬ᑜ (3.7)

it holds that

rk 𝑣⊗፧ ≤ exp((𝐻 + 𝑜(1))𝑛) (3.8)

with

𝐻 = sup
ፗ዆(ፗᎳ ,…,ፗᑜ)

min
፣዆ኻ,…,፤

ℎ(𝑋፣) (3.9)

as 𝑛 → ∞ where the supremum ranges over all random variables with values in Γ.

Proof. We will prove that

min
ጁᑟ዆ጁᎳ∪…∪ጁᑜ

|𝜋ኻ(Γኻ)| + … + |𝜋፤(Γ፤)| ≤ exp((𝐻 + 𝑜(1))𝑛).

Then Eq. (3.8) follows from Theorem 2.
Let 𝜖(𝑛) ∶= ኻ

፧ . Let 𝑁 ≥
|ጁ|
Ꭸ(፧) . Let𝑊 = { ።ፍ ∶ 𝑖 = 0,… ,𝑁}. Now let 𝑃 be the set of all random variables

on Γ with all probability values in 𝑊. Note that |𝑃| ≤ |𝑊||ጁ| = (𝑁 + 1)|ጁ| ≤ exp(𝑜(𝑛)). Now for each
Γ-valued random variable 𝑋 there is an 𝑌 ∈ 𝑃 with 𝛿(𝑋, 𝑌) ≤ ኻ

፧ . So for each 𝛾 ∈ Γ፧ there is an 𝑌 ∈ 𝑃
with 𝛾 ∈ 𝑇፧[ፘ]Ꭸ(፧)

Let Γ። ∶= ⋃ፘ∈ፏ∧፡(ፘᑚ)ጾፇ 𝑇፧[ፘ]Ꭸ(፧). For each 𝑌 ∈ 𝑃 we have |𝑇፧[ፘ]Ꭸ(፧)| ≤ exp(𝑛(ℎ(𝑌) + 𝑜(1))). Note that
for each 𝑌 = (𝑌ኻ, … , 𝑌፤) ∈ 𝑃 we can find a 1 ≤ 𝑖 ≤ 𝑘 with ℎ(𝑌።) ≤ 𝐻, so Γኻ ∪ ⋯ ∪ Γ፤ = Γ፧. Note that by
Lemma 10 we now have for all 𝑖 that

|Γ።| ≤ |𝑃| ⋅ exp(𝑛(𝐻 + 𝑜(1))) ≤ exp(𝑜(𝑛)) ⋅ exp(𝑛(𝐻 + 𝑜(1))) ≤ exp(𝑛(𝐻 + 𝑜(1)))





4
Lower bounds for the slice rank

In the previous chapters we have seen that the slice rank of certain functions is an upper bound for the
size of progression-free sets. We have also shown how to give upper bounds for the slice rank. It is
also interesting to see if we can find lower bounds for the slice rank. We will use them to show that for
certain instances of the problem our method will only provide trivial upper bounds.

Theorem 4. Let 𝑉ኻ, … , 𝑉፤ be finite-dimensional vector spaces over a field F and let (𝑣፣,፬)፬∈ፒᑛ be an
independent set in 𝑉፣ for all 1 ≤ 𝑗 ≤ 𝑘, where 𝑆፣ is some finite set. Now let Γ ⊆ 𝑆ኻ × ⋯ × 𝑆፤. Then for
every

𝑣 = ∑
(፬Ꮃ ,…,፬ᑜ)∈ጁ

𝑐(፬Ꮃ ,…,፬ᑜ)𝑣ኻ,፬Ꮃ ⊗⋯⊗𝑣፤,፬ᑜ (4.1)

where all 𝑐(፬Ꮃ ,…,፬ᑜ) ≠ 0. If each of the 𝑆፣ has a total ordering and Γᖣ is the set of maximal elements in Γ
then

rk 𝑣 ≥ min
ጁᖤ዆ጁᎳ∪…∪ጁᑜ

|𝜋ኻ(Γኻ)| + … + |𝜋፤(Γ፤)| (4.2)

where 𝜋፣ is the projection map that maps an input to its 𝑗’th coordinate. In particular if Γᖣ = Γ, equality
holds in Eq. (4.2)

Proof. Choose the 𝑊። as in Lemma 7. Now for 1 ≤ 𝑗 ≤ 𝑘 we can find a basis 𝑤፣,ኻ, … , 𝑤፣, ᑛ፝ of 𝑊፣ using
Gaussian elimination that is in row-echelon form with respect to the standard dual basis 𝑒∗ኻ, … , 𝑒∗|ፗᑛ| of
F|ፗᑛ|. In other words, there are 𝑠፣,። with 1 ≤ 𝑠፣,ኻ < … < 𝑠፣, ᑛ፝ ≤ |𝑋፣| such that 𝑤፣,፭ is a linear combination
of 𝑒∗፬ᑛ,ᑥ , … , 𝑒∗|ፗᑛ| with the coëfficient for 𝑒∗፬ᑛ,ᑥ being one.

We will show that 𝑃 ∶= ∏፤፣዆ኻ{𝑠፣,፭ ∶ 1 ≤ 𝑡 ≤ 𝑑፣} is disjoint from Γᖣ. Otherwise there would be 𝑡፣ with
1 ≤ 𝑡፣ ≤ 𝑑፣ for all 𝑗 such that

(𝑠ኻ,፭Ꮃ , … , 𝑠፤,፭ᑜ) ∈ Γᖣ.

Because Γᖣ only contains maximal elements of Γ this means that (𝑠ኻ, … , 𝑠፤) ∉ Γ for any tuple (𝑠ኻ, … , 𝑠፤) ∈
∏፤፣዆ኻ{𝑠፣,፭ᑛ , … , |𝑆፣|} except (𝑠ኻ,፭Ꮃ , … , 𝑠፤,፭ᑜ). Because 𝑤፣,፭ᑛ is a linear combination of 𝑒∗፬ᑛ,ᑥ , … , 𝑒∗|ፗᑛ| with the
coëfficient for 𝑒∗፬ᑛ,ᑥ being one, we know that 𝑤ኻ,፭Ꮃ⊗⋯⊗𝑤፤,፭ᑜ is equal to 𝑒∗ኻ,፭Ꮃ⊗⋯⊗𝑒∗፤,፭ᑜ plus a linear
combination of 𝑒∗ኻ,፩Ꮃ ⊗⋯⊗ 𝑒∗፤,፩ᑜ for tuples (𝑝ኻ, … , 𝑝፤) ∉ Γ. Now it follows that

⟨⊗፤
።዆ኻ𝑤።,፭ᑚ , 𝑣⟩ = ⟨⊗፤

።዆ኻ𝑒∗።,፭ᑚ , 𝑣⟩ + ∑
(፬Ꮃ ,…,፬ᑜ)∉ጁ

⟨𝑘፬Ꮃ ,…,፬ᑜ ⊗፤
።዆ኻ 𝑒∗።,፭ᑤᑚ , 𝑣⟩ = 𝑐፬Ꮃ,ᑥᎳ ,…,፜ᑤᑜ,ᑥᑜ

where 𝑐፬Ꮃ,ᑥᎳ ,…,፜ᑤᑜ,ᑥᑜ is as in Eq. (4.1), which is not zero because we assumed that (𝑠ኻ,፭Ꮃ , … , 𝑠፤,፭ᑜ) ∈ Γᖣ.
This is in contradiction with our choice of the 𝑊። which imposes that ⟨⊗፤

።዆ኻ𝑤።,፭ᑚ , 𝑣⟩ = 0, so we can
conclude that 𝑃 is indeed disjoint with from Γᖣ.
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Now for each 1 ≤ 𝑗 ≤ 𝑘 we define Γ፣ to be the set of all tuples (𝑠ኻ, … , 𝑠፤) where 𝑠፣ ∉ {𝑠፣,፭ ∶ 1 ≤ 𝑡 ≤
𝑑፣}. Now 𝜋፣(Γ፣) ≤ |𝑆፣| − 𝑑፣.

By the choice of the𝑊፣ ’s we have that:

rk 𝑣 ≥
፤

∑
።዆ኻ
(|𝑆።| − 𝑑።) ≥

፤

∑
።዆ኻ
|𝜋።(Γ።)|

We also know that ⋃፤፣዆ኻ Γ፣ = Γ. So this proves our inequality.

Now we can use this theorem to finish the proof of Lemma 8.

Continuation of proof of Lemma 8. We will use Theorem 4 to show that for the function 𝑓 with

𝑓 =∑
ፚ∈ፒ

𝑐ፚ𝛿ፚ⊗⋯⊗𝛿ፚ

where all 𝑐ፚ are non-zero we have that rk 𝑓 ≥ |𝑆|. For each 𝑉። = Fፒ we choose the basis (𝑣።,ፚ)ፚ∈ፒ with
𝑣።,ፚ = 𝛿ፚ. Then Γᖣ = {(𝑎,… , 𝑎) ∶ (𝑎, … , 𝑎) ∈ 𝑆፤}. Now by Theorem 4 we have that
rk 𝑓 ≥minጁᖤ዆ጁᎳ∪…∪ጁᑜ |𝜋ኻ(Γኻ)| + … + |𝜋፤(Γ፤)| =minጁᖤ዆ጁᎳ∪…∪ጁᑜ |Γኻ| + … + |Γ፤| = |Γᖣ| = |𝑆|.

Lemma 13. If 𝜋ኻ is the projection on the first coordinate that maps (x,y) ↦ x, then if 𝛿 → 0 slowly
enough as 𝑛 → ∞ it holds that

|𝜋ኻ(𝑇፧[ፗ,ፘ]᎑(፧))| = exp(𝑛(𝐻(𝑋) + 𝑜(1))

for 𝑋 ranging over 𝑆ፗ and 𝑌 ranging over 𝑆ፘ.
Proof. From Lemma 9 it follows that 𝜋ኻ(𝑇፧[ፗ,ፘ]᎑(፧)) ⊆ 𝑇፧[ፗ]᎑(፧). Combining this with Lemma 10 gives that

|𝜋ኻ(𝑇፧[ፗ,ፘ]᎑(፧)ዄ Ꮃᑟ
)| ≤ |𝑇፧[ፗ]᎑(፧)ዄ Ꮃᑟ

| ≤ exp(𝑛(𝐻(𝑋) + 𝑜(1))).

Now we will prove a lower bound for the size of the set. We may assume that 𝛿(𝑛) > ኻ
፧ . We will

show that if 𝛿 → 0 slowly enough then 𝑇፧[ፗ](᎑(፧)ዅ Ꮃᑟ )/|ፒᑐ|
⊆ 𝜋ኻ(𝑇፧[ፗ,ፘ]᎑(፧)).

Let x ∈ 𝑇፧[ፗ]᎑(፧). Let 𝑋ᖣ be the random variable with all probabilities corresponding to the frequencies
of x. Let 𝑌ᖣ be the random variable such that 𝑃(𝑌ᖣ = 𝑦 ∧ 𝑋ᖣ = 𝑥) = 𝑃(𝑌 = 𝑦|𝑋 = 𝑥)𝑃(𝑋ᖣ = 𝑥). We
know that ∑፱∈ፒᑏ |𝑃(𝑋

ᖣ = 𝑥) − 𝑃(𝑋 = 𝑥)| ≤ 𝛿(𝑛). Now we can find a random variable 𝑌ᖥ such that
𝑃(𝑌ᖥ = 𝑦 ∧ 𝑋 = 𝑥) ⋅ 𝑛 ∈ Nጿኺ and |𝑃(𝑌ᖥ = 𝑦 ∧ 𝑋ᖣ = 𝑥) − 𝑃(𝑌ᖣ = 𝑦 ∧ 𝑋ᖣ = 𝑥)| ≤

ኻ
፧ for all 𝑥 and 𝑦. Now

∑
(፱,፲)∈ፒᑏ×ፒᑐ

|𝑃((𝑋ᖣ, 𝑌ᖥ) = (𝑥, 𝑦)) − 𝑃((𝑋, 𝑌) = (𝑥, 𝑦))| ≤ 𝛿(𝑛)

Theorem 5. Let 𝑉ኻ, … , 𝑉፤ be finite-dimensional vector spaces over a field F and let (𝑣፣,፬)፬∈ፒᑛ be an
independent set in 𝑉፣ for all 1 ≤ 𝑗 ≤ 𝑘, where 𝑆፣ is some finite set. Now let Γ ⊆ 𝑆ኻ × … × 𝑆፤. If each of
the 𝑆፣ has a total ordering and Γᖣ is the set of maximal elements in Γ then for every

𝑣 = ∑
(፬Ꮃ ,…,፬ᑜ)∈ጁ

𝑐(፬Ꮃ ,…,፬ᑜ)𝑣ኻ,፬Ꮃ ⊗⋯⊗𝑣፤,፬ᑜ (4.3)

with all 𝑐(፬Ꮃ ,…,፬ᑜ) non-zero it holds that

rk 𝑣⊗፧ ≥ exp((𝐻 + 𝑜(1))𝑛) (4.4)

with

𝐻 = sup
ፗ዆(ፗᎳ ,…,ፗᑜ)

min
፣዆ኻ,…,፤

ℎ(𝑋፣) (4.5)

as 𝑛 → ∞ where the supremum ranges over all random variables with values in Γᖣ
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Proof. We will prove that

min
ጁᖤᑟ዆ጁᖤᎳ∪…∪ጁᖤᑜ

|𝜋ኻ(Γᖣኻ)| + … + |𝜋፤(Γᖣ፤)| ≥ exp((𝐻 + 𝑜(1))𝑛). (4.6)

Then Eq. (4.4) follows from Theorem 4.
Let 𝑋 be a random variable taking values in Γᖣ. Let 𝛿 ∶ Rጻኺ → Rጻኺ with 𝛿(𝑛) → 0 as 𝑛 → ∞ slow

enough such that by Lemma 11

|𝑇፧[ፗ]᎑(፧)| = exp((ℎ(𝑋ኻ, … , 𝑋፤) + 𝑜(1))𝑛) (4.7)

and by Lemma 13

|𝜋፧,፣(𝑇፧[ፗ]᎑(፧))| = exp((ℎ(𝑋፣) + 𝑜(1))𝑛) (4.8)

where 𝜋፧,፣ is the projection projecting sequences in (𝑆ኻ ×⋯× 𝑆፤)፧ to (𝑆፣)፧.
Let Γᖣ፧ = Γᖣኻ ∪ ⋯ ∪ Γᖣ፤ be an arbitrary covering of Γ፧. By the pigeon hole-principle, there is an

𝑗 ∈ {1, … , 𝑘} with

|Γᖣ፣ ∩ 𝑇፧[ፗ]᎑(፧)| ≥
1
𝑘 |𝑇

፧
[ፗ]᎑(፧)| .

By the definition of conditional strongly typical sequences we see that

⋃
ፚ∈᎝ᑟ,ᑛ(ፓᑟ[ᑏ]ᒉ(ᑟ))

𝑇፧[ፗ|ፗᑛ]᎑(፧)(𝑎) = 𝑇
፧
[ፗ]᎑(፧).

This implies that

⋃
ፚ∈᎝ᑟ,ᑛ(ፓᑟ[ᑏ]ᒉ(ᑟ)∩ጁᖤᑛ )

𝑇፧[ፗ|ፗᑛ]᎑(፧)(𝑎) ⊇ 𝑇
፧
[ፗ]᎑(፧) ∩ Γᖣ፣.

Using Lemma 11 and the fact that 𝑇፧[ፗ|ፗᑛ]᎑(፧)(𝑎) is not empty for all 𝑎 ∈ 𝜋፧,፣(𝑇፧[ፗ]᎑(፧)) we see that

∑
ፚ∈᎝ᑟ,ᑛ(ፓᑟ[ᑏ]ᒉ(ᑟ)∩ጁᖤᑛ )

exp((ℎ(𝑋|𝑋፣) + 𝑜(1))𝑛) = ∑
ፚ∈᎝ᑟ,ᑛ(ፓᑟ[ᑏ]ᒉ(ᑟ)∩ጁᖤᑛ )

|𝑇፧[ፗ|ፗᑛ]᎑(፧)(𝑎)| ≥ |𝑇
፧
[ፗ]᎑(፧) ∩ Γᖣ፣|.

This implies

|𝜋፧,፣(𝑇፧[ፗ]᎑(፧) ∩ Γ፧,፣)| exp((ℎ(𝑋|𝑋፣) + 𝑜(1))𝑛) ≥ |𝑇፧[ፗ]᎑(፧) ∩ Γ፧,፣|.

So we also have

|𝜋፧,፣(𝑇፧[ፗ]᎑(፧) ∩ Γ፧,፣)| ≥
|𝑇፧[ፗ]᎑(፧) ∩ Γ፧,፣|

𝑘 exp((ℎ(𝑋|𝑋፣) + 𝑜(1))𝑛)

= 1
𝑘 exp((ℎ(𝑋) − ℎ(𝑋|𝑋፣) + 𝑜(1))𝑛) =

1
𝑘 exp((ℎ(𝑋፣) + 𝑜(1))𝑛).

when we use the property of the entropy that ℎ(𝑋) = ℎ(𝑋, 𝑌) − ℎ(𝑌|𝑋). Now we absorb the factor ኻ፤
into the 𝑜(1) term and we use ℎ(𝑋፣) ≥ 𝐻, resulting in

|𝜋ኻ(Γᖣኻ)| + … + |𝜋፤(Γᖣ፤)| ≥ exp((𝐻 + 𝑜(1))𝑛).

Because this holds for all coverings of Γᖣ፧ we have proven Eq. (4.6).
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4.1. Using lower bounds to show limitations of our method
We will now use this lemma to show that in some cases our method will only provide a trivial upper
bound for 𝑟፦(F፧).
Theorem 6. Let 𝐺 be an finite abelian group. Suppose there exist 𝑘 total orderings on 𝐺 such that
their product order on 𝐺፤ has all constant tuples as maximal elements of the set of 𝑘-term arithmetic
progressions in 𝐺. Let 𝑓 ∶ 𝐺፤ → F be a function with 𝑓(x) = 0 for all x = (𝑥ኻ, … , 𝑥፤) ∈ 𝐺፤ that do not
form an arithmetic progression and 𝑓(y) ≠ 0 for all y = (𝑦,… , 𝑦) ∈ 𝐺፤. Then rk 𝑓 ≥ |𝐺|.
Proof. We apply Theorem 4 with the following basis: for all 𝑖 ∈ {1, … , 𝑘} and all 𝑎 ∈ 𝐺, 𝑣።,ፚ = 𝛿ፚ.
Now Γ is subset of only 𝑘-term arithmetic progressions in 𝐺 and all 𝑘-term constant progressions in
𝐺. We know there is an ordering for each of the coordinates such that all constant terms are maximal
in Γ, and therefore are all in Γᖣ. This means that there exist Γኻ, … , Γ፤ with Γᖣ = Γኻ ∪ ⋯ ∪ Γ፤ such that
rk 𝑓 ≥ |𝜋ኻ(Γኻ)|+⋯+|𝜋፤(Γ፤)|. This number will now be bigger than |𝐺|, which is the number of constant
progressions. So rk 𝑓 ≥ |𝐺|.

It has been proven that there exist orderings per coordinate, such that in the product order the
constant sequences are maximal in the set of arithmetic progressions in 𝐶ዂ፧, where 𝐶፧ is the cyclic
group of order 𝑛. [9]. Note that because every finite abelian group 𝐺 can be written as the product of
cyclic groups, this holds for the arithmetic progressions in 𝐺ዂ. It also holds in 𝐺፧ for 𝑛 > 8, because
we choose an arbitrary order for the remaining coordinates. Then from Theorem 6 it follows that our
method will only yield trivial upper bounds for the asymptotic size of 𝑟፦(𝐺፧) with 𝑚 ≥ 8.

A slight modification of the proof allows us to prove the same for 𝐶዁፧, implying our method will only
yield trivial upper bounds for the asymptotic size of 𝑟፦(𝐺፧) with 𝑚 ≥ 7.
Theorem 7 (Order of 𝐶዁፧ with constant progressions maximal). Let 𝑃 = {(𝑎, 𝑎 + 𝑏, 𝑎 + 2𝑏, 𝑎 + 3𝑏, 𝑎 +
4𝑏, 𝑎+5𝑏, 𝑎+6𝑏) ∶ 𝑎, 𝑏 ∈ 𝐶፧} Define a partial order on 𝐶዁፧ by taking the standard order for the third, fifth,
sixth and seventh coordinate and the reverse order for the first, second and fourth coordinate. Then
the constant tuples (𝑐, 𝑐, 𝑐, 𝑐, 𝑐, 𝑐, 𝑐) are maximal in 𝑃.
Proof. Suppose that (𝑎, 𝑎+𝑏, 𝑎+2𝑏, 𝑎+3𝑏, 𝑎+4𝑏, 𝑎+5𝑏, 𝑎+6𝑏) > (𝑐, 𝑐, 𝑐, 𝑐, 𝑐, 𝑐, 𝑐) for some 𝑎, 𝑏, 𝑐 ∈ 𝐶፧
with. If 𝑏 = 0, then the first coordinate gives us 𝑎 ≤ 𝑐 and the third coordinate gives us 𝑎 ≥ 𝑐, so the
two tuples are the same, so it can not be true that the first is greater than the second.

Suppose now that 𝑏 ≠ 0. We will now choose a representative for 𝑏 in [−፧
ኼ ,
፧
ኼ ] and call this 𝑏.

If 𝑐 ∈ [0, ፧ዅኻኼ −1], choose a representative of 𝑎 in 𝑠ኺ (we can do this because (𝑎 mod 𝑛) ≤ 𝑐). For
𝑚 ∈ Nጿኺ we define 𝑠፦ = [0 − 𝑚𝑛, 𝑐 − 𝑚𝑛] ∪ [0 + 𝑚𝑛, 𝑐 + 𝑚𝑛] and 𝑔፦ = [𝑐 − 𝑛 − 𝑚𝑛,−1 − 𝑚𝑛] ∪ [𝑐 +
𝑚𝑛, 𝑛 − 1 + 𝑚𝑛]. Note that we can say now that if 𝑎 + 𝑘ኻ𝑏 ∈ 𝑠፧Ꮃ and 𝑎 + 𝑘ኼ𝑏 ∈ 𝑔፧Ꮄ for 𝑘ኻ ≥ 0 and
𝑘ኼ ≥ 0 then 𝑛ኻ < 𝑛ኼ if and only if 𝑘ኻ ≤ 𝑘ኼ. The distance between 𝑠፦ and 𝑠፦ᖤ for 𝑚 ≠ 𝑚ᖣ is now at least
𝑛 − 𝑐, so at least ፧ዅኻኼ + 1 > ፧

ኼ ≥ |𝑏|. Because of this 𝑎 + 𝑏 ∈ 𝑠ኺ.
Because (𝑎 +2𝑏 mod 𝑛) ≥ 𝑐 we know for an 𝑚 ∈ ℕጿኺ that 𝑎 +2𝑏 ∈ 𝑔፦. Because this interval has

to be within a distance of |𝑏| ≤ ፧
ኼ of 𝑎 + 𝑏 which is in 𝑠ኺ, we know 𝑎 + 2𝑏 ∈ 𝑔ኺ. We know 𝑎 + 3𝑏 ∈ 𝑠፦

for an 𝑚 > 0, but because it has to be within a distance of ፧ኼ of 𝑎 +2𝑏 ∈ 𝑔ኺ it has to be in 𝑠ኻ. Using the
same argument as before we now know that 𝑎+4𝑏 ∈ 𝑔ኻ. Because 𝑎 ∈ 𝑠ኺ and 𝑎+𝑏 ∈ 𝑠ኺ, we know that
|𝑏| ≤ 𝑐. Because the distance between different 𝑔፦ intervals is at least 𝑐+1, we know that 𝑎+5𝑏 ∈ 𝑔ኻ
and therefore also 𝑎 + 6𝑏 ∈ 𝑔ኻ. So [𝑎 + 4𝑏, 𝑎 + 6𝑏] ⊆ 𝑔ኻ, which means that

|2𝑏| ≤ 𝑛 − 1 − 𝑐 (4.9)

But we also know that 𝑎 + 𝑏 ∈ 𝑠ኺ and 𝑎 + 3𝑏 ∈ 𝑠ኻ. The distance between these intervals is 𝑛 − 𝑐, so
|2𝑏| > 𝑛 − 𝑐. This is in contradiction with 4.9.

Now suppose that 𝑐 ∈ [፧ዅኻኼ , 𝑛−1]. For𝑚 ∈ Nጿኺ we define 𝑠̂፦ = [0−𝑚𝑛, 𝑐−𝑚𝑛]∪[𝑛+𝑚𝑛, 𝑛+𝑐+𝑚𝑛]
and 𝑔̂፦ = [𝑐 −𝑚𝑛, 𝑛 − 1 −𝑚𝑛] ∪ [𝑐 +𝑚𝑛, 𝑛 − 1 +𝑚𝑛]. Choose 𝑎 such that 𝑎 + 6𝑏 ∈ 𝑔̂ኺ. Note that we
can say now that if 𝑎+6𝑏−𝑘ኻ𝑏 ∈ 𝑠̂፧Ꮃ and 𝑎+6𝑏−𝑘ኼ𝑏 ∈ 𝑔̂፧Ꮄ for 𝑘ኻ ≥ 0 and 𝑘ኼ ≥ 0 then 𝑛ኻ < 𝑛ኼ if and
only if 𝑘ኻ ≤ 𝑘ኼ. Because the distance between the intervals 𝑔̂፦ is at least 𝑐 + 1 ≥ ፧ዅኻ

ኼ + 1 > ፧
ኼ > |𝑏|,

we know that 𝑎 + 5𝑏 ∈ 𝑔̂ኺ and therefore also 𝑎 + 4𝑏 ∈ 𝑔̂ኺ. This yields the following:

|2𝑏| ≤ 𝑛 − 1 − 𝑐 ≤ 𝑛 − 1
2 (4.10)
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Because 𝑎+3𝑏 has to be within ፧ዅኻ
ኼ of this interval and (𝑎+3𝑏 mod 𝑛) ≤ 𝑐 we know that 𝑎+3𝑏 ∈ 𝑠̂ኺ.

Now 𝑎 + 2𝑏 has to be within ፧ዅኻ
ኼ of this, so 𝑎 + 2𝑏 ∈ 𝑔̂ኻ, and using the same reasoning 𝑎 + 𝑏 ∈ 𝑠̂ኻ and

𝑎 ∈ 𝑠̂ኻ. This means that |2𝑏| ≥ ፧ዅኻ
ኼ + 1, which is in contradiction with 4.10.

We have now derived a contradiction for all cases where there is an arithmetic progression ’bigger’
than the constant tuple. So this means all constant tuples are maximal elements of 𝑃.

Now that we have shown that our result also holds for 𝑟፦(𝐺፧) with 𝑚 ≥ 7 it would be natural to ask
whether we can do the same for 𝑚 = 6. For some individual 𝐶፧ there is a suitable ordering: For 𝐶዁
the sequence of orderings 𝑠, 𝑠, 𝑟, 𝑠, 𝑟, 𝑟 where 𝑠 is the standard order and 𝑟 the reverse standard order
suffices, implying we won’t find non-trivial upper bounds for 𝑟኿(F፧዁). However, this ordering does not
work for 𝐶ዂ or 𝐶ዃ. It could be interesting to find out for which 𝐶፧ there exist suitable orderings for the
6-term arithmetic progressions.





5
Applications

Now we will apply the techniques that we developed to our initial problem. We use them to give an
asymptotic upper bound for 𝑟ኽ(F፧ኽ). To calculate our upper bound we have to find the supremum in
Eq. (3.9). The following theorem makes finding the supremum easier.

Theorem 8. If 𝑋 = (𝑋ኻ, … , 𝑋፤) is a random variable taking values only in the finite set Γ ⊆ 𝑆፤ for
some set 𝑆. Now 𝜎 ∈ 𝑆፤ be a permutation, such that for each 𝑎 = (𝑎ኻ, … , 𝑎፤) ∈ Γ also 𝜎(𝑎) =
(𝑎᎟(ኻ), … , 𝑎᎟(፤)) ∈ Γ. Then there is a random variable 𝑌 taking values only in Γ such that for all 𝛾 ∈ Γ:
P(𝑌 = 𝛾) = P(𝑌 = 𝜎(𝛾)) and

min
፣዆ኻ,…,፤

ℎ(𝑌፣) = sup
ፗ዆(ፗᎳ ,…,ፗᑜ)

min
፣዆ኻ,…,፤

ℎ(𝑋፣)

where the supremum ranges over all random variables taking values in Γ.
Proof. If we view probability distributions as vectors in [0, 1]|ጁ| for which the sum of all components is
1, then the entropy function is convex, because it is the sum of the convex functions −𝑥 ln 𝑥. Note
that the supremum in Eq. (5.1) is really a maximum because the space of probability distributions is
compact. The maximum exists because the entropy function is bounded. Now we define 𝜎(𝑋) of a
random variable 𝑋 taking values in Γ such that ℙ(𝜎(𝑋) = 𝜎(𝛾)) = ℙ(𝑋 = 𝛾).

We will show that there is an 𝑌 that takes a maximum in Eq. (5.1) with 𝜎(𝑌) = 𝑌. Let 𝑋 be an 𝑋
that takes a maximum in Eq. (5.1) and let 𝑓ፗ be it’s probability distribution. Note that 𝜎(𝑋)። = 𝑋᎟(።).
Because of that

min
፣዆ኻ,…,፤

ℎ(𝑋፣) = min
፣዆ኻ,…,፤

ℎ(𝜎(𝑋)፣)

Let 𝑛 be the order or 𝜎. Now let 𝑌 be a random variable with distribution 𝑓ፘ =
∑ᑟᎽᎳᑚᎾᎲ ᒗ፟ᑚ(ᑏ)

፧ . Note that

ℎ(𝑌፣) ≥
∑ᑟᎽᎳᑚᎾᎲ ፡(᎟ᑚ(ፗ))

፧ , because of the convexity of ℎ. This implies that:

min
፣዆ኻ,…,፤

ℎ(𝑌፣) ≥
∑፧ዅኻ።዆ኺ min፣዆ኻ,…,፤ ℎ(𝜎።(𝑋)፣)

𝑛 = min
፣዆ኻ,…,፤

ℎ(𝑋፣).

So then 𝑌 also takes the maximum in Eq. (5.2) and 𝑌 = 𝜎(𝑌).

Theorem 9. It is true that 𝑟ኽ(F፧ኽ) ≤ exp((𝐻 + 𝑜(1))𝑛) with 𝐻 = 𝑔(𝛽 + 2𝛾) + 𝑔(2𝛽) + 𝑔(𝛾) ≈ 1.013445

for 𝑔(𝑥) = −𝑥 ln 𝑥, 𝛽 = √ኼ
ኽ −

ኼ
ኽ and 𝛾 = 1 − √ኼ

ኽ .

Proof. We define 𝑓፧ ∶ F፧ኽ × F፧ኽ × F፧ኽ → F3 with 𝑓፧(𝑥, 𝑦, 𝑧) = ∏፧።዆ኻ(1 − (𝑥። − 2𝑦። + 𝑧።)ኼ). Note that
𝑓፧(𝑥, 𝑦, 𝑧) = 0 when distinct 𝑥, 𝑦 and 𝑧 do not form a arithmetic progression and 𝑓፧(𝑥, 𝑥, 𝑥) = 1 for all 𝑥.
From Theorem 1 it follows that 𝑟ኽ(F፧ኽ) ≤ rk 𝑓፧.
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Let 𝑔 ∶ Fኽ × Fኽ × Fኽ → F with 𝑔(𝑥, 𝑦, 𝑧) = 1 − (𝑥 − 2𝑦 + 𝑧)ኼ. Then 𝑓፧ = 𝑔⊗፧. We take 𝑣። = 𝑥። for
𝑖 ∈ {0, 1, 2}.

Now 𝑔 is a linear combination of 𝑣፭Ꮃ ⊗𝑣፭Ꮄ ⊗𝑣፭Ꮅ for 𝑡 ∈ Γ, with

Γ = {(0, 0, 0), (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

Now by Theorem 1 and Theorem 3

𝑟ኽ(F፧ኽ) ≤ rk 𝑓⊗፧ ≤ exp((𝐻 + 𝑜(1))𝑛) (5.1)

with

𝐻 = sup
ፗ዆(ፗᎳ ,…,ፗᑜ)

min
፣዆ኻ,…,፤

ℎ(𝑋፣) (5.2)

where 𝑋 takes values in Γ.
Γ is fully symmetric (i.e. for all 𝜎 ∈ 𝑆ኽ, 𝛾 ∈ Γ we have 𝜎(𝛾) ∈ Γ. Theorem 8 implies that there is

an 𝑋 that takes maximum in Eq. (5.2) with the same probability for all 𝛾 ∈ Γ that are permutations of
each other. The probability distribution of such a variable is defined by its values 𝛼 = 𝑓ፗ((0, 0, 0)),
𝛽 = 𝑓ፗ((1, 1, 0)) and 𝛾 = 𝑓ፗ((2, 0, 0)) with the condition that 𝛼, 𝛽, 𝛾 ∈ [0, 1] and 𝛼 + 3𝛽 + 3𝛾 = 1.

Then the entropy of 𝑋። is now given by:

ℎ(𝑋።) = 𝑔(𝑓ፗᑚ(0)) + 𝑔(𝑓ፗᑚ(1)) + 𝑔(𝑓ፗᑚ(2))
= 𝑔(𝛼 + 𝛽 + 2𝛾) + 𝑔(2𝛽) + 𝑔(𝛾)

with 𝑔(𝑥) = −𝑥 ln 𝑥.
Using calculus it is now easy to verify that this function is maximal when

𝛼 = 0

𝛽 = √23 −
2
3

𝛾 = 1 − √23 .

The proof can be found in Appendix A.

When applying the standard order on the set {0, 1, 2} in this proof, we see that Γ ∶= Γ ⧵ {(0, 0, 0)}
is the set of maximal elements in Γ. Then by Theorem 5 we see that for 𝑓 in the proof we also have
rk 𝑓 = exp((𝐻 + 𝑜(1))𝑛). This means that we can not find a better upper bound for 𝑟ኽ(F፧ኽ) using this
function by using another basis.

There are, however, bases that give a worse upper bound. For example using the basis {𝛿ኺ, 𝛿ኻ, 𝛿ኼ}
we can write 𝑓(𝑎, 𝑏, 𝑐) = ∑ኼ።዆ኺ 𝛿።(𝑎)𝛿።(𝑏)𝛿።(𝑐) + ∑᎟∈Sym({ኺ,ኻ,ኼ}) 𝛿᎟(ኺ)(𝑎)𝛿᎟(ኻ)(𝑏)𝛿᎟(ኼ)(𝑐). Then
{(0, 0, 0), (1, 1, 1), (2, 2, 2)} ⊆ Γ. Now we see that the random variable 𝑋 that takes each of these values
with probability ኻ

ኽ we have ℎ(𝑋።) = log(3) for all 𝑖, so this gives the upper bound rk 𝑓 ≤ 3(ኻዄ፨(ኻ))፧,
which is a trivial upper bound.

Although we have shown that this particular function 𝑓 can not provide a better upper bound for
𝑟ኽ(F፧ኽ) it is possible that a better upper bound can be obtained using a different function 𝑓 that is zero
on all arithmetic progressions of size 3 and nonzero when 𝑎 = 𝑏 = 𝑐.

While we have seen that using this method we won’t be able to find non-trivial asymptotic upper
bounds for 𝑟፦(F፧) when 𝑚 ≥ 7, it might be possible when 4 ≤ 𝑚 ≤ 6.

5.1. Extending to F5
We can find an asymptotic upper bound for 𝑟ኽ(F፧኿) using the function 𝑓(𝑥, 𝑦, 𝑧) = ∏፧።዆ኻ(1 − (𝑥። − 2𝑦። +
𝑧።)ኾ). When using the polynomial basis again as in the proof of Theorem 9 we see that the Γ for this
function will now consist of all permutations of the tuples in

{(4, 0, 0), (3, 1, 0), (2, 2, 0), (2, 1, 1), (0, 0, 0)}.
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If we let 𝑥ኻ = P(𝑋 = (4, 0, 0)), … , 𝑥኿ = P(𝑋 = (0, 0, 0)) this reduces to the problem of maximizing

ℎ(𝑋) = 𝑔(𝑥ኻ) + 𝑔(2𝑥ኼ) + 𝑔(2𝑥ኽ + 𝑥ኾ) + 𝑔(2𝑥ኼ + 2𝑥ኾ) + 𝑔(2𝑥ኻ + 2𝑥ኼ + 𝑥ኽ + 𝑥኿)
with 𝑔(𝑥) = −𝑥 log 𝑥

subject to 0 ≤ 𝑥። ∀𝑖 ∈ {1, 2, 3, 4, 5}
1 ≥ 3𝑥ኻ + 6𝑥ኼ + 3𝑥ኽ + 3ኾ + 𝑥኿

We used numerical optimization to approximate the maximum. We see that the maximal value for ℎ(𝑋)
is approximately 1.49550221. This maximum is obtained when
𝑥 ≈ (8.81041304 × 10ዅኼ, 6.23655994 × 10ዅኼ, 5.68842581 × 10ዅኼ, 6.36137460 × 10ዅኼ, 0).

This results in the upper bound 𝑟ኽ(F፧኿) ≤ 4.46158(ኻዄ፨(ኻ))፧.





6
Conclusion

We have seen that 𝑚-term arithmetic progression-free sets are a generalization of cap sets. We also
saw that the slice rank can be used to give an upper bound for the size of these sets. Using this method
we obtained the non-trivial asymptotic upper-bound 𝑟ኽ(F፧ኽ) ≤ 2.755፧(ኻዄ፨(ኻ)) on the size of cap sets. We
did this by using the polynomial basis for the function space from F፧ኽ → Fኽ. We have also shown that it
is not possible to get a better upper bound by only using another basis. However, it might be possible
to get a better upper bound for 𝑟ኽ(F፧ኽ) by using a different function 𝑓.

We also saw some limitations of our method: It only gives trivial upper bounds on the size of sets
without 𝑚-term arithmetic progressions for 𝑚 ≥ 7. For 4 ≤ 𝑚 ≤ 6 we still don’t know whether the
method can provide us with a non-trivial asymptotic upper bound for 𝑟፦(F፧) for certain F. This is an
interesting question for further research.

Overall, it is clear that we don’t know much about the asymptotic behavior of 𝑟፦(𝐺፧) for arbitrary
groups. Although the slice rank has been helpful for some instances of the problem, it might not work for
all instances. Another limitation of the method described in this report is that it only provides asymptotic
upper bounds, not lower bounds. In short, there is still a lot left to discover in this area, that is much
more complex than simply playing a game of SET.
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A
Maximizing ℎ

We want to maximize ℎ(𝛼, 𝛽, 𝛾) = 𝑔(𝛼+𝛽+2𝛾)+𝑔(2𝛽)+𝑔(𝛾) with 𝛼, 𝛽, 𝛾 ∈ [0, 1] and 𝛼+3𝛽+3𝛾 = 1,
where 𝑔(𝑥) = −𝑥 ln 𝑥.

Using that 𝛼 = 1−3𝛽−3𝛾 we see that this is equivalent with maximizing 𝑓(𝛽, 𝛾) = 𝑔(1−2𝛽−𝛾)+
𝑔(2𝛽)+𝑔(𝛾) for 𝑎, 𝑏 ∈ [0, 1] and 3𝛽+3𝛾 ∈ [0, 1]. Because this function is differentiable on this closed,
bounded set, we know that it takes a maximum in either

• a point where 𝑓ᎏ(𝛽, 𝛾) = 𝑓᎐(𝛽, 𝛾) = 0 or

• a point on one of the boundaries (so 𝛽 = 0 or 𝛾 = 0 or 3𝛽 + 3𝛾 = 1).

A.1. When derivatives are zero
We find that

𝑓ᎏ(𝛽, 𝛾) = −2 ln(2𝛽) + 2 ln(−2𝛽 − 𝛾 + 1)
𝑓᎐(𝛽, 𝛾) = − ln(𝛾) + ln(−2𝛽 − 𝛾 + 1).

Now 𝑓ᎎ(𝛼, 𝛽) = 𝑓ᎏ(𝛼, 𝛽) = 0 implies that ln(2𝑏) = ln(𝑐), so 2𝑏 = 𝑐. Also 𝑓ᎏ(𝛼, 𝛽) = 0 gives that
𝛾 = 2𝛽−𝛾+1. Substituting that 2𝛽 = 𝛾 results in 𝛾 = 𝛾−𝛾+1 = 1 and 𝛽 = 𝛾/2 = ኻ

ኼ . Now 3𝛽+3𝛾 > 1,
so this point is outside of our boundaries. So there is no point where 𝑓ᖣ = 0 inside our boundaries.

A.2. Points on the boundary
When 𝛽 = 0, we are left with maximizing 𝜙(𝛾) ∶= 𝑓(0, 𝛾) = 𝑔(1− 𝛾) + 𝑔(𝛾). Now 𝜙ᖣ(𝛽) = 0 if and only
if 𝛽 = ኻ

ኼ , which is outside our domain because then 3𝛽 + 3𝛾 ≥ 1.
When 𝛽 = 𝛾 = 0 we get that 𝑓(𝛼, 𝛽) = − ln 1. When 𝛽 = 0 and 3𝛽 + 3𝛾 = 1 we get that 𝛾 = ኻ

ኽ and
𝑓(0, 𝛾) = 𝑔(ኻኽ) + 𝑔(

ኼ
ኽ) ≈ 0.64.

When 𝛾 = 0, we are left with maximizing 𝜙(𝛽) ∶= 𝑓(𝛽, 0) = 𝑔(1 − 2𝛽) + 𝑔(2𝛽). Now 𝜙ᖣ(𝛽) = 0 if
and only if 𝛽 = ኻ

ኾ , which gives us a value of 𝜙(ኻኾ) ≈ 0.69.
When 𝛾 = 0 and 3𝛽 + 3𝛾 = 1 we get that 𝛽 = ኻ

ኽ and 𝑓(𝛽, 𝛾) = 𝑔(ኻኽ) + 𝑔(
ኼ
ኽ) ≈ 0.64.

When 3𝛽 + 3𝛾 = 1 we get that 𝛽 = ኻ
ኽ − 𝛾. Then we only have to optimize 𝜙(𝛽) = 𝑔(1 − 𝛽 − ኻ

ኽ) +
𝑔(2𝛽) + 𝑔(ኻኽ − 𝛾). Now 𝜙ᎏ(𝛽) = −2 ln(2𝛽) + ln(−𝛽 + 2/3) + ln(−𝑏 + 1/3) which is zero if and only

if 4𝛽ኼ = (ኼኽ − 𝛽) (
ኻ
ኽ − 𝛽), which is exactly when 3𝛽ኼ + 𝛽 − ኼ

ዃ = 0, which implies that 𝛽 = √ኻኻ/ኽዅኻ
ዀ

(because it has to be within the bounds). Then 𝛾 = ኽዅ√ኻኻ/ኽ
ዀ and 𝛼 = 0 and ℎ(𝛼, 𝛽, 𝛾) ≈ 1.01345 which

is the maximum.
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