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Abstract—Human-robot interaction is a growing field that
aims to research and develop communication channels between
humans and robots to enhance comfort, safety, and productivity
in healthcare, the household, and the industry. Researchers have
considered ergonomy-related metrics to compose these channels
for physical human-robot collaborative scenarios. We refer to
these communication channels as arbitration methods. Several
of these metrics, such as human arm manipulability and muscle
fatigue, have taken their turns in the literature to set the base
for arbitration methods reaching promising results. Human arm
force manipulability represents the transmission between joint
torques in the joint space and end-point force in the task space
depending on the configuration of the joint angles. Muscle fatigue
keeps track of the muscle activation and builds up depending on
the muscle activation level and previous fatigue value. The first
one has predictive value. The other has a reactive value.

Nevertheless, no work in the literature explores the power of
combining both metrics into an arbitration method. Here we
develop a multi-metric arbitration method that combines human
arm force manipulability and muscle fatigue as input for a finite
state machine (FSM) that translates the human multi-metric
state to robot control level over a collaborative task. Although
some modifications may be worth trying and evaluating to reach
generalizability in physical human-robot collaborative tasks, the
system reached satisfactory results. Moreover, as future steps, we
should conduct human-factors research to compare the effect of
the system on task performance.

Index Terms—IEEE, IEEEtran, journal, LATEX, paper, tem-
plate.

I. INTRODUCTION

OVER the last decades, the concept of robots and their
relationship with humans has been evolving, aiming to

tackle increasingly complex applications to enhance productiv-
ity and safety in most facets or our lives, including the industry,
our households, and healthcare. To achieve such productive
and safe application of robotics, designing for proper human-
robot interaction is essential. Human-robot interaction aims to
investigate intuitive means of interaction and communication
between a robot and a human and maximize their performance,
efficiency, and applicability as a coupled team [1]. Physi-
cal human-robot interaction concerns the interaction through
physical contact.

In collaborative scenarios, the human and the robot work
contribute to a common task, depending on their skillset
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Fig. 1. Representation of the task: the human and robot collaboratively exert
a constant force against a horizontal surface. To the right we can see a graph
representing the desired force level of the task (pink), the robot’s end-point
force (orange), and the combined exerted force (red)

[2]. Typically, humans are good at adapting to unknown
and changing environments and task requirements, and have
manual dexterity lacking in robots. Robots, on the other hand,
are able to perform tasks with higher precision, while not
being impacted by fatigue. Agravante et al. [3], for example,
developed a framework for combining the strengths of a
human and robot in for a collaborative tasks. In their task,
the human and robot had to work together to keep a ball on a
flat horizontal board. The human can choose where the board
has to go or how to get there. The robot follows the human
motion, calculating a trajectory that minimizes the required
energy for the motion and, therefore, helps keeping the ball
on the board.

Arbitration is defined as the mechanism that assigns the
control of the (part of the) task to either the human or the
robot [1]. Arbitration determines the interaction strategies
between human and robot, such as teacher-student, supervisor-
subordinate, or leader-follower to fit the task and skills of the
human and robot [4, 1]. In the board game example, the human
is the primary leader and the robot the follower, yet the robot
can increase its assistance to keep the ball on the board when
needed. In such a case, the task is divided into sub-tasks, and
the arbitration mechanism will interpret the sensed information
from the human and robot, estimate the human’s intention, and
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choose the robot’s action and timing. i.e., Now it is time to
help in this way and to this grade. Pehlivan et al. [5] developed
a method for rehabilitation that also fits as an example for this
kind of arbitration. Utilizing the interaction forces between
the human and the rehabilitation robot when performing a
predefined motion, they derived the user’s capability at each
time step. The user’s capability is then used to arbitrate the
amount of force the robot exerts to perform the motion. In
other words, their method uses the user’s capability estimation
to adjust the level of assistance the robot provides.

How roles and tasks are arbitrated between human and robot
can be based on many sets of metrics representing different
kinds of information. The type of information often depends
on the task. Of particular interest for industrial human-robot
collaboration are ergonomy metrics in collaborative scenarios,
such as human arm manipulability and muscle fatigue [6].
The velocity and force manipulability ellipsoids, introduced
by Yokishawa [7] in robotics, represent a quantitative metric
of the velocity and force, respectively, with which the end
effector of an arm can move in every direction depending on
the joint space configuration. Jacquier-Bret et al. [8] borrowed
manipulability from the robotics field and applied it for human
arm movement evaluation. Gopinathan et al. [9] introduced the
concept in a physical human-robot interaction scenario. They
studied the effects caused by the variation of task parameters
calculating manipulability on different simplified human arm
models.

Peternel et al. [10] made the step towards introducing
manipulability in robot control. They developed a control
method for a physical human-robot co-manipulation and han-
dover scenario using a human body model for ergonomic
optimization with human arm manipulability properties as a
constraint. They set the manipulability limits so the algorithm
would find positions that keep isometric manipulability while
optimizing for minimum joint torques. i.e., the positions for
which the manipulability ellipsoid has equal main axes and
minimum joint torques. This way, the robot ensures to handle
or deliver the manipulated object within a range of positions
the human can optimally manipulate the object in whatever his
intended direction is. Petrič et al. [11] used human arm force
manipulability directly as a supervisor-subordinate arbitration
metric for a human arm exoskeleton for power augmentation.
They made the robot compensate for the minor ellipsoid axes,
turning manipulability into isometric manipulability in a wide
range of arm positions. [12] discovered that arm muscles
recruitment and activation is strongly related to human arm
manipulability, and so is muscle fatigue induction. [13, 14, 15]
concluded that a fatigued muscle is more likely to get injured.
Therefore, using human arm manipulability for arbitration is
an approach to prevent the muscles from getting fatigued and
risk injury.

Muscle fatigue represents an interesting metric with a sig-
nificant presence in the literature, with varying computational
models of fatigue. Some models use the externally applied
force (e.g., on an object by the human) as input to calculate a
fatigue-related measure [15]. Others developed a fatigue model
that infers the force generated by human muscles based on
physiological muscle motor unit behavior [16]. Maurice et al.

[17] used fatigue for ergonomy evaluation in a human-robot
collaboration scenario, exploring the utility of such a metric in
the field of focus for this research. They developed a dynamic
human model consisting of a rigid-body model that asses for
postural risk, physical effort, and consumed energy. With this,
they simulated the subjects performing the evaluated tasks
and computed the joint-torque derived fatigue for every joint
through the estimated torques. Peternel et al. [18, 19] used it
as a supervisor-subordinate arbitration metric and computed it
through muscle activity measured through electromyography
(EMG) signals captured online, [18] for a system in which the
robot would take over the task whenever the human fatigue
reaches a predetermined threshold. In [19], the robot modifies
and adapts the working configuration to the fatigue of the
involved muscles. The EMG-based fatigue models proved
to be advantageous over the force or torque-based models
in many aspects. While both present similar dynamics, the
EMG-based fatigue models allow for accurate muscle-specific
fatigue estimation without the need for complex biomechanical
models and dimensional reduction methods. Another advan-
tage is that they do not require expensive force sensors.

In all the aforementioned studies (all but [16]), the fatigue
model constitutes a first-order differential equation system,
behaving like a (leaky) integrator of either force measurements
or physiological signals (EMG) as input. Moreover, they are
generally used for a reactive approach. The robot assists
once one of the considered muscles gets to a predetermined
level of fatigue, providing time to rest or guide towards a
posture change. Therefore, the robot acts to reduce fatigue
once fatigue occurs, in opposition to the manipulability-based
existing approaches.

Nevertheless, both preventive and reactive approaches
present significant limitations. Preventive approaches often fail
to succeed since they do not explicitly consider and measure
the event they are preventing. If we think about fatigue as the
event to prevent, our preventive method will be based on the
assumption that fatigue happens under certain conditions and
our actions prevent it. On the other hand, reactive approaches
can often be too late. As we mentioned above, fatigue is
directly related to the probability of injury. The existing fatigue
models used for physical human-robot collaboration constitute
a practical tool, yet they still approximate the actual fatigue
level and depend on the previous calibration process.

Given that muscle activation and recruitment are highly
related to the manipulability ellipsoid, a combination of both
approaches would be preferable. Thus, assisting in preventing
fatigue, keeping track, and assisting when fatigue cannot be
prevented from happening. Nevertheless, an approach with
these features is missing in the literature. The problem is that
combining these two metrics requires a method that can suc-
cessfully arbitrate both while resulting in stable behavior. The
arbitration method should behave sensibly to the considered
metrics. However, it should not provide too variable assistance
increasing the task difficulty from the user’s perspective.

To address this gap, we propose a multi-metric arbitra-
tion method based on human arm force manipulability and
muscle fatigue. The proposed method constitutes a finite
state machine model with four states and assistance levels
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that provide smooth transitions between states. We prove
the concept with an abstract, simplified task: collaboratively
exerting a constant force a horizontal surface and perform
four experiments modifying the manipulability and fatigue
conditions around the task. With this research, we set the
first step towards developing a simple physical human-robot
collaboration method suitable for the industry that exploits the
advantages of preventive and reactive assistance.

We describe the arbitration algorithm, the manipulability
model and its data acquisition, the fatigue model, and data
acquisition in the Methods section. The Experiments section
describes the designed functionalities of the system and the
experiment data to prove them. It explains the variations of the
main task that we introduce in the experiments and presents
the achieved results. Finally, the discussion section develops
the relationship between the results and the experiments, the
conclusions, and the suggested future work.

II. METHODS

The proposed method uses a collaborative task that involve
exerting a constant force for an extended period, but which
still requires the human-robot team to change the position of
the applied force. For example, a real-world task would be
a polishing task. The human and the robot would provide a
percentage of the total desired force throughout the task execu-
tion, based on how the force production sharing is arbitrated
(e.g. more by the human, or more by the robot). The force
production arbitration is assigned online depending on the
human’s muscle fatigue and human arm force manipulability
in the direction of the desired force.
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Fig. 2. Schematic representation of the developed network. The system con-
sists of three main components, which communicate through UDP. (Yellow)
The arbitration module. It incorporates the arbitration method, based on a
finite state machine that translates the fatigue and manipulability values into a
percentage of the total force exerted by the robot. (Green) The fatigue module.
It incorporates the EMG data acquisition and processing and translates the
signal into a fatigue value. (Blue) The Manipulability module. It integrates
the joints’ position and orientation data acquisition, and It calculates the
manipulability value in the direction of the exerted force.

Muscle fatigue indicates the accumulated fatigue level of
the selected muscle during the task execution. The human arm
force manipulability indicates the transmission level from joint
torques to the end-point force of the human arm, depending
on the arm pose. As a result, the method will result in a
human-robot arbitration in which the robot will reactively
assist the human depending on the human fatigue, allowing
the human to rest when needed, while still sharing the task
when possible (minimal intervention of the robot). Assistance
that depends on force manipulability constitutes a preventive
approach; the robot assists when the human is in a posture that
involves more effort and is less comfortable to prevent fatigue
in the long-term. We combine these two metrics to exploit the
advantages of preventive (manipulability based) and reactive
(fatigue based) approaches. Thus, the robot keeps track of the
fatigue level even though its assisting to prevent it, and assists
based on fatigue when it cannot be prevented from happening.

An example of an eligible task would be collaboratively
polishing a surface. Here, the robot’s end-effector and the
human would hold the polisher against the surface. Then, the
human would swipe the polisher through the surface while
exerting a percentage of the force. Depending on the arm pose
the arm takes along the target surface and the fatigue level of
the involved muscles, the robot would adapt, exerting different
force percentages. The human can see through visual feedback
the desired force level, and the combined exerted force. This
way, the human adapts to the robot’s levels of assistance. For
this method, we performed an abstraction of this task. The
selected task is collaboratively exerting a constant force level
on a horizontal surface, see Fig 1.

This method consists of three main modules: (1) the multi-
metric arbitration module, (2) the manipulability estimation
module, and (3) the fatigue estimation module. The multi-
metric arbitration module is based on a finite state machine.
Depending on a normalized value of human arm force manip-
ulability and muscle fatigue, the finite state machine smoothly
converges towards an arbitration value a 2 [0; 1] that repre-
sents the robot’s fraction of its required force production. The
normalized human arm force manipulability value emerges
from an estimate of the force manipulability ellipsoid, which
is measured through human arm pose estimation. Selecting the
direction of the applied force, we extract a single manipula-
bility norm that we normalize based on a comparison with
known manipulability poses and values. Finally, the fatigue
estimate module computes a fatigue level based on EMG
measurements of the muscle. The fatigue module distinguishes
between two modes: fatigue mode, slowly converging to 1,
and recovery mode, slowly converging to 0. We can see an
schematic representation of the built system in figure 2.

In figure 2, we can see a scheme of the implemented
network. The Kinect V2 and the Delsys Trigno System acquire
and send the data to a PC (Lenovo Legion with USB 3.0
connection and Intel Core i7 9th generation, windows 10)
through the blue, green channels. The algorithm performs the
estimations, coordinates the results, and sends them to the
desktop computer through the red channel. The arbitration
algorithm and robot control interpret and translate the metrics
and communicate with Kuka iiwaa 7 R800 through the yellow
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channel. The Kuka iiwaa 7 R800’s control loop operates at
200Hz.

A. Arbitration Method

Manipulability and fatigue need to be translated into an
arbitration variable a. The arbitration variable a is afterward
integrated into an impedance control scheme that translates
into the torques for the control system of Kuka iiwaa 7 R800.

The arbitration algorithm is a finite state machine (FSM)
composed of five states, see Fig. 3: four states for multi-
metric arbitration and a fifth that substitutes the two middle
states for single-metric arbitration. The initial state is a = 0,
when manipulability m = 0 and fatigue f = 0. The five
other states that depend on which interval contains m and f :
[0; 0:3), [0:3; 0:7) or [0:7; 1]. When m is in the low interval
or f is in the high interval a = 0:9 meaning the robot exerts
0.9 times the desired force providing maximum assistance.
When m and f are in the middle interval a = 0:6 providing
a robot-dominated intermediate assistance. When m is in the
high interval and f in the middle interval, or f is low and m
is in the middle interval a = 0:3 providing a man-dominated
intermediate assistance. When m is high and f is low, or
for single-metric arbitration, when f is low or m is high,
a = 0:1 providing minimum assistance. Finally, for single-
metric arbitration, is one of the metrics is 0 and the other is in
the middle interval, a = 0:5 providing intermediate assistance.

The algorithm contemplates two scenarios: only one input is
relevant, or both of them are. If the system is going to be used
for a single quick task such as drilling several holes in places
that are not reachable in a confortable position, then setting the
EMG sensors might be inconvenient, and manipulability-based
assistance would be helpful. Three states contemplate the first
scenario, leading a to converge to 0.1, 0.5 and 0.9. On the other
hand, in an scenario were the considered time is worth setting
up the sensors, combining preventive and reactive assistance is
preferable. For the second scenario, the algorithm disregards
the previous middle state, and two others are considered in its
place: 0.3 and 0.6. In figure 3, we can see an scheme with
the conditional logic expressions that lead towards each state,
with the green color referring to f and the red color referring
to m.

a(t+ dt) =

8>><>>:
at + (a0 � at) �

�
1� 1

1+eE(t)

�
if a(t) > at

a0 + (at � a0) �
�

1� 1
1+eE(t)

�
if a(t) < at

a(t) if a(t) = at

(1)
where:

E(t) = �
a0+at

2 � (a(t) + at�a0

1000 )

0:02
(2)

State transitions are smoothed using a sigmoid function
(Eq. 1) between the current (a0) and the target state (at). In
equation 2 we can see the expanded exponential for equation
1. Here, a0 represents the initial arbitration, meaning the
arbitration of the previous state, and at represents the target
arbitration, meaning the arbitration to which the current state
converges. The minimum time in each state after a transition is

a = 0

a = 0.5

a = 0.9

a = 0.6a = 0.3

a = 0.1

m = 0 & f =0

Low x<0,3
Mid 0,3 <= x < 0,7
High x >= 0.7

s1

s0

s2

s3

s4
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Fig. 3. Schematic representation of the arbitration finite state machine. On the
top right corner we can see a legend explaining the intervals for the variables:
manipulability m and fatigue f. By the arrows pointing out the top state, we
can see the conditionals that lead to each of the states. In red we can see
the values or intervals referring to manipulability m. In green we can see the
values or intervals referring to fatigue f .

set to 5 seconds to avoid fast state transitions and to allow the
human to adapt to the new state. The denominator at 0.02 was
set to have the sigmoid function fit a 5s transition. Similarly,
the denominator 1000 was set so the transition takes 5 seconds
in total, since the frequency at which the robot runs is 200Hz.
We can see the sigmoid transitions in Fig. 6.

B. Robot Control

The robot uses an impedance controller. In equation 3, we
can see the expression of our impedance controller, where K
is the stiffness matrix of the robot, xref (t) is the reference
end-point state, x(t) is the current end-point position, D is the
damping matrix of the robot, v(t) is the end-point velocity and
Fend is the end-point force. The control algorithm transforms
Fend to joint torques for the torque control of the robot.

Fend(t) = K � (xref (t)� x(t)) + D � v(t) (3)

Finally, in equation 4 we can see how the control algorithm
integrates the arbitration variable a(t) (result of the current
state of the FSM) into the impedance controller, adjusting Fend

accordingly. The control algorithm modifies the z coordinate
of the end-point reference position to a maximum of 20
centimeters. Depending on the robot stiffness we select, that
modification translates to a determined force when the robot
is in contact with a horizontal surface.

xref(t) =
�
0 �0:5657 0:0590� 0:2 � a(t) 0 0 0

�T
(4)

C. Human Arm Manipulability

The end-point motion of an arm in the task space is the
result of joint angle variations. The arm’s endpoint manipula-
bility ellipsoid represents this kinematic relationship, capturing




