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 A B S T R A C T

This study introduces an optimization framework for deploying Mobile Fleet Inventories (MFIs) 
to address operational inefficiencies in on-demand delivery systems. Traditionally, these systems 
rely on stationary facilities to organize operations and manage resources. While stationary 
facilities provide stability and structured coverage, they are inherently rigid and struggle to 
adapt to the spatial and temporal fluctuations characteristic of urban service demand. By 
leveraging urban waterways, MFIs act as dynamic, mobile facilities, enabling real-time resource 
redistribution and offering greater flexibility to meet evolving demand patterns efficiently.

We formulate the problem as a mixed-integer linear programming model to optimize MFI 
deployment, minimizing total system costs. The model incorporates both capital investments 
(e.g., MFI leasing and docking infrastructure) and operational expenses (e.g., rider idle time). 
Key decisions include determining the optimal number, placement of MFIs, and fleet size. To 
validate the approach, we apply it to a meal delivery platform in Amsterdam, demonstrating 
its practicality and scalability. Results show that implementing MFIs reduces overall system 
costs by 17% and decreases rider idle time by 35% compared to stationary facility operations. 
These findings underscore the transformative potential of MFIs to enhance the efficiency, 
sustainability, and adaptability of on-demand delivery systems in urban settings.

1. Introduction

On-demand delivery systems have become an integral part of urban logistics, addressing the growing demand for fast and reliable 
deliveries in densely populated areas (Bahrami et al., 2023). These systems prioritize direct, rapid connections between vendors and 
customers, exemplified by meal delivery platforms that link restaurants with end-users. However, managing resource allocation and 
operational efficiency in these systems poses logistical challenges, particularly in dynamic urban environments.

There are two primary operational models in the meal delivery platform industry. The first is the paid-per-delivery model, where 
companies employ independent riders who use their personal bicycles to complete deliveries (e.g. Uber Eats). The second is the 
paid-per-hour model, in which companies employ riders directly and provide them with shared company-owned bikes (e.g., Just 
Eat Takeaway.com). This research focuses exclusively on the latter model, in which companies maintain ownership and control over 
delivery bikes.
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A critical component of on-demand delivery systems is the micro-facility, which plays a vital role in maintaining operational 
efficiency. These facilities serve three primary functions: (i) housing and managing fleets of micro-delivery vehicles, such as (e)bikes 
and e-mopeds, (ii) redistributing delivery resources to meet the spatial and temporal variations in service demand, and (iii) serving 
as designated pickup and drop-off points for shift-based riders. Despite their importance, stationary facilities often fall short of 
meeting the dynamic and scalable requirements of on-demand services, introducing inefficiencies that limit their adaptability.

Stationary facilities provide structure and predictability in on-demand delivery systems, with each facility serving a designated 
coverage area. However, they struggle to adapt to fluctuating demand patterns. For example, business districts experience surges 
during the day, whereas residential neighborhoods see higher demand in the evening. This mismatch leads to resource imbalances: 
high-demand areas face shortages, while low-demand areas retain idle resources. Platforms often address these inefficiencies with 
truck-based redistribution or additional resources, which increase costs, contribute to congestion, and harm the environment (Du 
et al., 2020; DeMaio, 2009; Schuijbroek et al., 2017). Moreover, stationary facilities also present a trade-off between infrastructure 
investment and operational efficiency. Adding more facilities reduces idle travel, i.e., non-revenue-generating trips riders make 
between facilities and delivery points, but requires significant urban land and infrastructure investment. Fewer facilities lower fixed 
costs but worsen resource imbalances and idle travel, reducing profitability and service quality.

To address the limitations of the fixed stationary facilities, this research explores the use of electric waterborne vessels (EWVs) as 
Mobile Fleet Inventories (MFIs), i.e., movable facilities leveraging urban waterways to overcome the rigidity of stationary facilities. 
MFIs dynamically redistribute bikes to meet real-time demand while alleviating road congestion in densely populated cities. Fig. 
1.1 presents a stylized illustration of the proposed MFI system. In this setup, MFIs navigate the urban canal network and riders 
are instructed by the platform to pick up and return bikes at docking points served by the MFIs. European initiatives, such as the 
canal shuttle on the Zenne (2013), warehouse ships in Paris (2016), and the parcel delivery boat Hollands Glorie in Amsterdam, 
demonstrate the feasibility of EWVs for urban logistics (CCNR, 2022; Parr, 2018). These projects highlight the sustainability and 
efficiency of EWVs, offering reduced energy consumption, increased delivery efficiency, and smaller fleet requirements.

In this paper, we introduce MFIs as a dynamic and sustainable alternative to the fixed inventory facilities in on-demand delivery 
systems. MFIs address key urban logistics challenges through three advantages: (i) freeing urban space by eliminating large stationary 
facilities, (ii) enabling bike rebalancing via underused waterways, incurring less urban noise and road congestion than using (e)trucks 
for rebalancing, and (iii) reducing rider idle time by streamlining bike pickup and return, thereby boosting operational efficiency.

To evaluate the feasibility and performance of MFIs, we develop a mixed-integer linear programming (MILP) model that optimizes 
their deployment. The model captures the trade-offs between capital investments (e.g., MFI leasing, docking location establishment, 
and bike acquisition) and operational costs (e.g., minimizing rider idle time). Key decisions include determining the optimal number 
of MFIs, selecting docking locations, and fleet sizing. This framework provides a systematic approach to designing cost-effective and 
efficient MFI operations.

This research makes several key contributions. First, it establishes the feasibility of the MFI system that makes use of urban 
waterways by demonstrating its potential to optimize overall system costs for on-demand delivery services. Second, it develops and 
compares two mathematical formulations: arc-based and route-based models for these systems. Third, it demonstrates the practicality 
and scalability of the MFI concept by adapting the model to various canal layouts and service demand scenarios. Finally, it validates 
the proposed approach through a case study on a meal delivery platform in Amsterdam. The results reveal that implementing MFIs 
can reduce overall system costs by 17% and lower average rider idle time by 35%, compared to the current usage of stationary 
facilities.

The remainder of this paper is organized as follows: Section 2 reviews the relevant literature, highlighting gaps and motivating 
the research. Section 3 formalizes the problem and defines the scope of the study. Section 4 presents the proposed mathematical 
formulations. Section 5 reports experimental results on generated data to test computational performance and draw managerial 
insights. Then we apply the model to a real-world case study in Amsterdam to showcase its practical implications. Finally, Section 6 
summarizes the findings and discusses potential directions for future research.

2. Literature review

The problem addressed in this study involves decision-makings related to two interdependent components: the planning of MFIs, 
and the sizing of the delivery bike fleet stored within these MFIs. The first component is closely related to the Mobile Facility 
Location Problem (MFLP), which primarily focuses on the optimal placement and movement of facilities to serve clients, typically 
aiming to minimize total distance or cost (see Alarcon-Gerbier and Buscher (2022) and Friggstad and Salavatipour (2011)). MFLPs 
have been studied in a range of applications, such as healthcare (see Büsing et al. (2021) and de Vries et al. (2020)), waste 
collection (Alarcon-Gerbier and Buscher, 2020), and humanitarian relief (Pashapour et al., 2024; Bayraktar et al., 2022; Raghavan 
et al., 2019).

However, conventional MFLPs generally focus on either resource pickup (e.g., waste collection, see Alarcon-Gerbier and Buscher 
(2020)) or resource delivery (e.g., humanitarian relief, see Pashapour et al. (2024)), but not both. Our methodology considers both 
the delivery and pickup of the resources (bikes) and explicitly models inventory fluctuations over time. This constitutes our first 
contribution. From another perspective, the shared delivery bikes resemble an urban bike-sharing system. In typical shared-vehicle 
systems, storage facilities are static, and the minimum fleet size is determined under this assumption (see Çelebi et al. (2018), Hu 
and Liu (2016) and Qu et al. (2021)). However, this overlooks emerging opportunities where parking facilities can be mobile, which 
is an increasing consideration in logistics. Our model explicitly captures this mobility, considering the case where storage facilities 
themselves are movable. We review the relevant literature for these two topics in Sections 2.1 and 2.2, respectively.
2 
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Fig. 1.1. An illustration of MFI system dynamics.

2.1. Mobile Facility Location Problem (MFLPs)

In Facility Location Problem (FLP), decisions are typically the positioning of static facilities among several candidates to serve 
clients through an established transportation network (Farahani and Hekmatfar, 2009). Facilities can include a variety of entities, 
such as transportation hubs, factories, warehouses, and fuel stations. In recent years, advances in modularization and miniaturization 
have led to an increase in the use of modularized mobile facilities, leading to extensive studies on related problems. The Mobile 
Facility Location Problem (MFLP) is first introduced by Demaine et al. (2009), which optimizes the relocation of facilities and the 
allocation of clients to these facilities with the aim of, for example, minimizing total transport time for both the movable facilities and 
the clients. Raghavan et al. (2019) further extend this problem by considering facility capacity constraints. For facilities serving as 
parking or storage places, like the MFI in our study, locating them close to where the resources are demanded reduces transportation 
distance and delivery time and helps organizations maintain low and stable inventory levels (Becker et al., 2019).

Readers are referred to Alarcon-Gerbier and Buscher (2022) for a systematic review of various topics on MFLPs. For exam-
ple, Pashapour et al. (2024) examine the relocation and scheduling of mobile humanitarian facilities that are used to deliver 
aid service bundles to migrating refugees, with an objective to minimize total mobile facility costs. Shehadeh (2023) consider 
the stochastic MFLP and model the optimal sizing, routing, and scheduling of a fleet of mobile facilities. They propose two 
distributionally robust optimization models to study the problem and assume random demand levels in each period with unknown 
probability distributions. Calogiuri et al. (2021) consider the problem of relocating emergency vehicles with an objective to minimize 
the largest service time between assigned customers to vehicles during a multi-period planning horizon. Salman et al. (2021) consider 
the routing of mobile clinics to deliver healthcare to refugees. They model the problem with hierarchical objectives to minimize 
the number of clinics and their travel distance while maximizing refugee coverage. Yücel et al. (2020) investigate the routing of 
mobile medical vehicles and the selection of their stops, considering partial coverage of scored customer locations to maximize the 
total collected score. Alarcon-Gerbier and Buscher (2020) examine the relocation of capacitated recycling units for waste collection 
where the total transport time is minimized. Lei et al. (2014) study the stochastic scheduling of emergency vehicle relocation in 
response to traffic accidents, where uncertainties in both service demand and vehicle unavailability times are considered. Güden and 
Süral (2014) study an MFLP in railway construction management, synchronizing the decisions on the number, type, and schedule 
of capacitated mobile facilities, as well as production allocation.

2.2. Fleet sizing and repositioning in shared on-demand systems

In the context of shared vehicle systems, fleet sizing and repositioning have been extensively studied (see Illgen and Höck 
(2019), Narayanan et al. (2020) and Ataç et al. (2021)). For example,  Mandal et al. (2025) consider the rider fleet sizing and 
scheduling problem in last-mile parcel delivery systems. They investigate the trade-off between fleet sizes and service levels, as 
well as the trade-off between rider shift stability and company profitability. Using extensive numerical study, they demonstrate the 
possibility of providing stable shifts while maintaining profitability. Fan et al. (2023) examine the strategic fleet sizing and service 
level design for shared autonomous vehicle systems, where operational decisions such as vehicle parking and relocation are also 
considered. Benjaafar et al. (2022) study the dimensioning of a shared vehicle system using a closed queueing network, where 
the randomness of both vehicle rental duration and vehicle availability at each location are considered in their model.  Shehadeh 
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et al. (2021) study the regional fleet sizing problem of an on-demand last-mile transportation system, where they consider uncertain 
passenger demand and use stochastic programming and distributionally robust optimization to address both known and unknown 
demand distributions. Monteiro et al. (2021) optimize the fleet size of a car-sharing system aiming to maximize the number of 
customers served. They consider two service types: round-trip (pickup and drop-off locations are the same) and one-way (different 
pickup and drop-off locations) and conclude that round-trip service is better for scaling up.

In emerging on-demand ride-sharing systems, resource redistribution, request matching, and fleet sizing are central topics in the 
literature (see Chakraborty et al. (2021) and Vazifeh et al. (2018)). For instance, Auad-Perez and Van Hentenryck (2022) examine 
a multimodal on-demand transit system integrating bus and rail services with shared shuttle rides for last-mile connectivity. They 
develop a multi-objective model that jointly minimizes user travel cost and time, bus operating costs, and shuttle fleet size. Yang et al. 
(2023) study an electric autonomous mobility-on-demand service that incorporates endogenous congestion effects and coordinates 
vehicle-to-request matching, empty vehicle relocation, and charging scheduling. Using Bayesian optimization, they jointly optimize 
fleet size and charging infrastructure investment. Similarly, Guo et al. (2021) propose a robust optimization model to determine 
the minimum required fleet size in a hybrid system of autonomous and human-driven vehicles under uncertain demand. Narayan 
et al. (2021) analyze a hybrid on-demand service offering both private and pooled trips, where the fleet size is optimized to balance 
service coverage and operation efficiency.

2.3. Summary

To summarize, the challenges of waterborne MFIs are as follows. Urban canals are usually not fully meshed like streets. Most 
ground-based mobile facility models assume a fully connected road graph and use the shortest travel distance between two locations. 
However, canal transit can include one-way locks, narrow passages, and requirements for minimum turning radii, which prevent 
the application of all-pairs shortest distances on the raw canal network for all types of vessels. Moreover, the scheduling and routing 
of waterborne MFIs must operate within a limited number of selected docking points and align precisely with riders’ dynamic shift 
schedules. We formulate the problem using both the arc-based and the route-based models considering these practical issues, and 
demonstrate the value of our approach using a realistic case study.

Our study contributes to the literature in that: (1) While mobile facility location problems (MFLPs) have been extensively studied 
in various applications, they typically consider unidirectional resource flows (either pickup or drop-off) and do not account for 
inventory fluctuations at mobile facilities. Our model departs from this by jointly modeling bike pickup and drop-off (bi-directional) 
operations at MFIs, with inventory levels dynamically evolving over time. (2) Research on fleet sizing in shared-vehicle systems has 
largely assumed static facility locations, whereas our problem considers moving parking facilities and sizes the shared delivery 
bike fleet accordingly. Therefore, the waterborne MFI problem extends and enriches two already challenging areas, i.e., MFLPs and 
shared-vehicle system fleet sizing, with both modeling and practice-relevant innovations.

3. Problem statement

We consider an on-demand delivery platform operating in an urban area connected by canals, such as those in Amsterdam, 
Leiden, or Venice. The platform utilizes two types of tools: bikes that start and end their operations from specific locations within 
the area, as well as electric waterborne vessels that act as MFIs.

We assume the on-demand delivery service operates under a shift-based business model, with bikes owned by the platform. Each 
rider shift is divided into three segments: pre-service, service, and post-service segment. During the pre-service segment, a rider picks 
up a bike at an MFI and rides to the first assigned meal collection station. During the service segment, the rider completes several 
consecutive delivery tasks. We define the duration of the service segment as between the arrival at the first meal collection station 
and the arrival at the last assigned customer of that shift. During the post-service time, the rider travels from the last customer to 
an MFI to return the bike. The combined pre- and post-service time is defined as the rider idle time, during which the rider is not 
actively providing delivery services.

We discretize the service area into a set of equal-sized, regular hexagon-shaped zones 𝑧 ∈ , classifying them into two groups: 
zones with a docking point where MFI can stop temporarily, and zones without any. This zoning system offers several advantages: 
equal cell area for modeling MFI movement in consistent distance units; equal distance to adjacent zones in all six directions; and 
the ability to easily adjust cell size for sensitivity analysis. The itineraries of MFIs include only the zones where they can dock, and 
we assume these zones are connected by canals, defining the operating area of MFIs. The planning horizon is divided into several 
equal-length periods 𝑡 ∈  .

MFIs initiate their tours from a central depot with charging facilities. During their operation, MFIs selectively visit a series of 
docking points to load and unload bikes. Each docking point has a small staging area with limited capacity to hold bikes temporarily. 
MFIs must periodically return to the central depot for recharging. The routes and schedules of the MFIs must be synchronized with 
rider shifts to ensure all their demands for bike pickups and returns are satisfied. The objective is to minimize the total system cost, 
which is achieved by coordinating multiple decisions: the number of MFIs, the number and locations of docking points, the number 
of required bikes, and the allocation of pickup and return demands to MFIs.
4 
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Fig. 3.1. Empirical cumulative probability distribution 𝑃 (𝑋𝑧𝑡 ≤ 𝑑𝑧𝑡) of 𝑋𝑧𝑡 for a selected zone 𝑧 and period 𝑡. 𝑋𝑧𝑡 is the discrete random variable representing 
the number of required riders, and 𝑑𝑧𝑡 is the number of dispatched riders. Each bar shows the probability that the number of dispatched riders 𝑑𝑧𝑡 is larger or 
equal to the number of required riders 𝑋𝑧𝑡 based on historical data. This probability is interpreted as the level of rider availability guarantee.

3.1. Model bike pickup and return demands

Observation 1.  A rider’s shift begins with a bike pickup and proceeds with a sequence of deliveries. If an MFI is located in the 
same zone and period as the rider’s first meal collection, the bike pickup time is the shortest. Accordingly, we define the bike pickup 
demand as occurring in the zone and period of the first meal collection. Similarly, when the MFI is in the same zone and period as 
the last delivery at a customer, the bike return time is the shortest. Thus, we define the bike return demand as taking place in the 
zone and period of the last delivery completion. We assume MFIs are established in an existing operating area where the operator 
has historical information about rider itineraries.

Given the highly dynamic nature of the on-demand environment and the uncertainty of riders’ first meal pickup and last delivery 
locations and times, we use the historical rider itinerary data to model the expected demand of bike pickups and returns as 
deterministic inputs. Specifically, for each zone-period pair (𝑧, 𝑡), we denote the discrete random variable 𝑋𝑧𝑡 as the number of 
riders whose first meal collections occurred in (𝑧, 𝑡). This indicates the actual number of required riders in (𝑧, 𝑡). The value of 𝑋𝑧𝑡
varies across days, its empirical distribution and the cumulative distribution function (CDF) can be estimated from historical data.

On a given planning day, the platform dispatches a predetermined number of riders to zone-period (𝑧, 𝑡), denoted 𝑑𝑧𝑡. Using the 
empirical CDF of 𝑋𝑧𝑡, we evaluate the probability 𝑃 (𝑋𝑧𝑡 ≤ 𝑑𝑧𝑡) that the dispatched riders suffice to meet the required number of 
riders. We refer to this probability as the level of rider availability guarantee, as is shown in Eq.  (1).

Fig.  3.1 presents an example of the CDF of 𝑋𝑧𝑡 for a specific zone-period (𝑧, 𝑡) to illustrate the level of rider availability guarantee. 
If 𝑑𝑧𝑡 = 1, then 𝑃 (𝑋𝑧𝑡 ≤ 1) = 0.4, implying a 40% chance of satisfying the demand, i.e., a low level of rider availability guarantee. 
Conversely, if 𝑑𝑧𝑡 = 5, and 𝑃 (𝑋𝑧𝑡 ≤ 5) = 1.0, the platform achieves full coverage of the anticipated demand. By selecting a target 
guarantee level, such as 80% or 100%, the platform can determine the number of riders to dispatch (𝑑𝑧𝑡). Then 𝑑𝑧𝑡 is interpreted as 
the bike pickup demand for zone 𝑧 and period 𝑡. 

Level of rider availability guarantee = 𝑃 (𝑑𝑧𝑡 ≥ 𝑋𝑧𝑡). (1)

Furthermore, a transition probability 𝑛𝑧′𝑡′𝑧𝑡  can be estimated from historical rider itinerary data, which indicates the probability 
that a rider starting the first meal collection in zone-period (𝑧, 𝑡), and will finish the last delivery in (𝑧′, 𝑡′). Using this transition 
probability, we can calculate the expected number of bike return demands in a given zone 𝑧′ at period 𝑡′, denoted as 𝑟𝑧′𝑡′ . This is 
expressed as: 

𝑟𝑧′𝑡′ =
∑∑

𝑛𝑧
′𝑡′
𝑧𝑡 𝑑𝑧𝑡. (2)
𝑧 𝑡

5 
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3.2. Satisfying bike pickups and returns

Riders can pick up and return bikes at an MFI, a docking point, and by self-fulfillment. Each of the three means is described as 
follows:

(1) Satisfied by MFIs. We use a set of homogeneous electric waterborne vessels 𝑣 ∈  with a fixed capacity of 𝑄𝑀𝐹𝐼  to serve as 
MFIs. An MFI tour is defined as a sequence of docking point visits. The traveling time between two docking points and the duration 
of stay at each point are considered. An MFI can either stay at a docking point to load and unload bikes or bypass it without 
stopping. The MFIs start and end their tours at a central depot and must return to the depot periodically to recharge. The duration 
between two returns back to the depot is defined as the interval. The planning horizon is composed of several intervals, with each 
comprising the same number of periods. We assume the platform has real-time information on the locations of the riders and MFIs. 
Riders who need to pick up or return bikes will be instructed by the platform to reach a docking point to wait for the MFI. After 
arriving at the docking point, an MFI will wait for at least one period for riders to pick up and return bikes.

(2) Satisfied by docking points. The candidate locations for homogeneous docking points are assumed known. The final 
establishment of a docking point depends on whether it will be visited by MFIs. After a docking point is established, riders can 
utilize its small capacity to pick up (if available) and park bikes. We assume the platform has real-time information on the number 
of bikes at an established docking point. The platform can instruct riders to travel to a specific docking point for bike pickups and 
returns.

(3) Self-fulfillment. We assume the platform can direct a rider (referred to as rider A), who has finished the last delivery task, 
to ride to another zone where rider B, who will start the first delivery task, is instructed to wait to take over A’s bike. In this case, 
rider B’s bike pickup and rider A’s return are satisfied simultaneously.

4. Mathematical formulation

In this section, we describe the mathematical model based on the problem description in Section 3. We introduce the graphs 
and sets in Section 4.1. In 4.2 we use an example to explain the satisfaction of bike pickups and returns in the spacetime network. 
In Sections 4.3 and 4.4 we describe the model in its arc-based and route-based formulations. The notation used in the formulations 
are presented in Table  4.1.

4.1. Network representation

We define the problem on a directed physical graph  = (, ), where  = {𝑧} is the set of zones in the service area and  = {𝑒}
contains edges connecting adjacent zones in the physical graph. Each of the hexagonal zones is represented by its center and the 
distance between any zone and its six adjacent zones is the same, defined as a unit distance. The shortest distance between any two 
zones is defined as the minimum number of adjacent zone traversals required. We assume the travel distance of riders and MFIs 
within the same zone is zero.

The physical graph  = (, ) is composed of two subgraphs: 𝑅 = (𝑅, 𝑅) associated with the riders, and 𝑀 = (𝑀 , 𝑀 )
for the MFIs. The set 𝑅 ⊆  comprises the zones where delivery services start and end, and 𝑅 ⊆  is the subset of edges that 
riders can traverse. 𝑀 ⊆  contains the zones where MFIs can be located. Specifically, an MFI located in zone 𝑧 ∈ 𝑀  can travel 
through the canal to its adjacent zones, denoted by 𝑍𝑀 (𝑧). 𝑀 ⊆  represents the set of edges that MFIs can traverse through canal 
connections.

The spacetime nodes (zone-period pairs) are the most fundamental concept in our model. As mentioned in Section 3, we discretize 
the planning horizon into a set of periods  = {𝑡}. We assume equal speed for MFIs and riders, respectively and the time for 
traveling one unit distance is one period. Corresponding to the physical graph , we define a spacetime graph ′ = ( ,), where 
 = {(𝑧, 𝑡)|𝑧 ∈ , 𝑡 ∈  } is the set of spacetime nodes, and  is the set of arcs. The graph ′ is further composed of two subgraphs: 
′𝑅 = (𝑅,𝑅) associated with riders, and ′𝑀 = (𝑀 ,𝑀 ) for the MFIs.

In the rider associated subgraph ′𝑅 = (𝑅,𝑅), set 𝑅 = 𝑅 ×   contains spacetime nodes where riders can locate. 
For each node (𝑧, 𝑡) ∈ 𝑅, we define its successor nodes 𝑁𝑅+

𝑧,𝑡 = {(𝑧′′, 𝑡′′)|𝑧′′ ∈ , 𝑡′′ = 𝑡 + 𝐷𝐼𝑆𝑧𝑧′′} and predecessor nodes 
𝑁𝑅−

𝑧,𝑡 = {(𝑧′′, 𝑡′′)|𝑧′′ ∈ , 𝑡′′ = 𝑡 − 𝐷𝐼𝑆𝑧,𝑧′′}, where 𝐷𝐼𝑆𝑧,𝑧′′  is the distance between 𝑧 and 𝑧′′. 𝑅 is the set of rider arcs and we use 
(𝑧, 𝑡)(𝑧′′, 𝑡′′) to represent rider movement from 𝑧 starting in 𝑡 to 𝑧′′ arriving in 𝑡′′. We define five rider movement types associated 
with the bike pickups and returns satisfaction: PM: pickup at MFIs and ride to first meal collections; RM: return to MFIs from last 
deliveries; PD: pickup at docking points and ride to first meal collections; RD: return to docking points from last deliveries; SF: 
self-fulfillment.

In the MFI associated subgraph ′𝑀 = (𝑀 ,𝑀 ), set 𝑀  contains spacetime nodes where MFIs can situate. For each node 
(𝑧, 𝑡) in 𝑀 = 𝑀 ×  , we define 𝑁𝑀+

𝑧,𝑡 = {(𝑧′, 𝑡′)|𝑧′ ∈ 𝑍+
𝑧 , 𝑡

′ = 𝑡 +𝐷𝐼𝑆𝑧𝑧′} as the successor nodes, and 𝑁𝑀−
𝑧,𝑡 = {(𝑧′, 𝑡′)|𝑧′ ∈ 𝑍+

𝑧 , 𝑡
′ =

𝑡−𝐷𝐼𝑆𝑧𝑧′} as predecessor nodes. Set 𝑀  comprises MFI arcs and we use (𝑧, 𝑡)(𝑧′, 𝑡′) to represent MFI movement from 𝑧 starting in 𝑡
to 𝑧′ arriving in 𝑡′. Fig.  4.1 uses the spacetime node (Zone 4, Period 5) as an example to explain possible arcs associated with riders 
(a) and MFIs (b).
6 



C. Yang et al. Transportation Research Part C 179 (2025) 105264 
Table 4.1
Notation of sets, parameters, and decision variables.
 Sets
  Set of zones, 𝑧 ∈ .  
 𝑅 ⊆  Set of zones where riders start and end delivery services.  
 𝑀 ⊆  Set of zones where MFIs can be located.  
  Set of discretized time periods, 𝑡 ∈  .  
  Set of intervals in the planning horizon, 𝑙 ∈ .  
 𝑇̃ Set of interval-cut periods.  
  =  ×  Set of spacetime nodes, (𝑧, 𝑡) ∈  .  
 𝑅 ⊆  Set of spacetime nodes associated with riders.  
 𝑀 ⊆  Set of spacetime nodes associated with MFIs.  
 𝑁𝑅+

𝑧,𝑡 Set of successor spacetime nodes of (𝑧, 𝑡) associated with riders.  
 𝑁𝑅−

𝑧,𝑡 Set of predecessor spacetime nodes of (𝑧, 𝑡) associated with riders.  
 𝑁𝑀+

𝑧,𝑡 Set of successor spacetime nodes of (𝑧, 𝑡) associated with MFIs.  
 𝑁𝑀−

𝑧,𝑡 Set of predecessor spacetime nodes of (𝑧, 𝑡) associated with MFIs.  
 𝑅 Set of arcs associated with riders.  
 𝑀 Set of arcs associated with MFIs.  
  Set of MFIs, 𝑣 ∈  .  
 𝐿 Set of intervals during the planning horizon, 𝑙 ∈ 𝐿.  
  = {𝐾1 , 𝐾2 ,… , 𝐾

|𝐿|} Set of MFI route segments, 𝑘 ∈ .  
 𝐻 𝑙𝑘 Set of starting nodes of holding arcs on route segment 𝑘 in interval 𝑙.  
 Parameters
 𝑑𝑧𝑡 Number of bike pickup demands in zone 𝑧 period 𝑡 [bike].  
 𝑟𝑧𝑡 Number of bike return demands in zone 𝑧 period 𝑡 [bike].  
 𝑄𝑀𝐹𝐼 Capacity of homogeneous MFIs [bike].  
 𝑄𝐷 Capacity of candidate docking points [bike].  
 𝑐𝑀𝐹𝐼 Daily MFI leasing cost [e/day].  
 𝑐𝐵 Bike price converted to a daily rate [e/day].  
 𝑐𝐷 Cost of establishing a docking point converted to a daily rate [e/day]. 
 𝑐𝑉 𝑜𝑇 Monetary value of a period for riders [e/period].  
 𝑐𝑆𝐹 Cost per unit distance traveled for self-fulfillment [e/unit distance].  
 𝜆𝑙𝑘𝑧 ∈ {0, 1} 1 if route segment k in interval l requires the candidate docking  
 point in zone z to be established.  
 Decision variables
 𝛿𝑣 ∈ {0, 1} 1 if MFI 𝑣 is used.  
 𝑥𝑣(𝑧,𝑡)(𝑧′ ,𝑡′ ) ∈ {0, 1} 1 if MFI 𝑣 travels from spacetime node (𝑧, 𝑡) to (𝑧′ , 𝑡′).  
 𝜁𝑧 ∈ {0, 1} 1 if the candidate docking point in zone 𝑧 is visited by MFIs.  
 𝑦𝑃𝑀,𝑣

(𝑧,𝑡)(𝑧′′ ,𝑡′′ ) ∈ Z≥0 Number of riders picking up bikes at MFI 𝑣 in (𝑧, 𝑡) and riding  
 to start first delivery in (𝑧′′ , 𝑡′′).  
 𝑦𝑅𝑀,𝑣

(𝑧′′ ,𝑡′′ )(𝑧,𝑡) ∈ Z≥0 Number of riders returning bikes to MFI 𝑣 in (𝑧, 𝑡) from  
 last delivery in (𝑧′′ , 𝑡′′).  
 𝑦𝑃𝐷,𝑣

(𝑧,𝑡)(𝑧′′ ,𝑡′′ ) ∈ Z≥0 Number of riders picking up bikes at docking point in (𝑧, 𝑡)  
 and riding to start first delivery in (𝑧′′ , 𝑡′′).  
 𝑦𝑅𝐷,𝑣

(𝑧′′ ,𝑡′′ )(𝑧,𝑡) ∈ Z≥0 Number of riders returning bikes to docking point in (𝑧, 𝑡)  
 from last delivery in (𝑧′′ , 𝑡′′).  
 𝑦𝑆𝐹(𝑧,𝑡)(𝑧′′ ,𝑡′′ ) ∈ Z≥0 Number of riders finishing last deliveries in (𝑧, 𝑡) and  
 riding to (𝑧′′ , 𝑡′′) to hand over bikes.  
 𝐼𝑣

𝑧𝑡 ∈ Z≥0 Number of bikes stored in MFI 𝑣 at (𝑧, 𝑡).  
 𝐼𝐷

𝑧𝑡 ∈ Z≥0 Number of bikes parked in docking point in (𝑧, 𝑡).  
 𝜃𝑙𝑘 ∈ {0, 1} 1 if the route segment 𝑘 in interval 𝑙 is in the final solution.  
 𝑓 𝑙+1,𝑘′

𝑙𝑘 ∈ {0, 1} 1 if the route segment 𝑘 in interval 𝑙 and route segment 𝑘′  
 in interval 𝑙 + 1 is in the same route in the final solution.  

4.2. An illustrative example

In this section, we use an example to explain the satisfaction of bike pickups and returns associated with MFIs, docking points, 
and self-fulfillment. Consider a case where an MFI operates in a service area comprising 7 zones over a planning horizon of 10 
periods, divided into 2 intervals. The canal passes sequentially through Zones 0, 6, and 5, with each zone having one candidate 
docking point. Some riders need to collect their first meals in Zone 4 in Period 4, and other riders will finish their last delivery task 
in Zone 3 in Period 7. Fig.  4.2 presents a possible allocation of these bike pickup and return demands to the MFI, docking points, 
or self-fulfillment. In the first interval, the MFI visits the three zones through the canal in sequence, requiring docking points in the 
three candidate locations to be established. In the second interval, the MFI remains stationary at the depot.

Riders who will collect their first meals in Zone 4 in Period 4 can pick up bikes: (1) at the MFI (namely PM): They pick up bikes 
at the MFI docking in Zone 5 in Period 3, then spend one period traveling to Zone 4 to start the first delivery task. (2) at a docking 
point (namely PD): They pick up bikes from the docking point in Zone 0 in Period 3, then travel to Zone 4. (3) self-fulfillment (SF): 
7 
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Fig. 4.1. An example of arcs associated with riders (a), and with MFIs (b) for spacetime node (Zone 4, Period 5).

Fig. 4.2. An example of satisfying bikes pickup at (Zone 4, Period 4) and bikes return at (Zone 3, Period 7).

They are instructed to wait in Zone 4 for other riders who finish their last deliveries in nearby zones (e.g., Zone 2 in Period 2) to 
ride to their zone and hand over bikes.

Riders who complete their last deliveries in Zone 3 in Period 7 can return their bikes: (1) at the MFI (namely RM): They spend 
one period traveling to Zone 0 to return their bikes to the docked MFI. (2) at a docking point (namely RD): They travel to Zone 
5 to park their bikes at the docking point. (3) self-fulfillment (SF): The platform directs them to zones (e.g., Zone 6 in Period 9) 
where other riders are waiting for their bikes.

4.3. Arc-based formulation

We first present the families of constraints, then describe the objective function.
MFI route constraints. For each MFI 𝑣 ∈  , we define the binary variable 𝛿𝑣 = 1 if 𝑣 is deployed. Binary variable 𝑥𝑣(𝑧,𝑡)(𝑧′ ,𝑡′) = 1 if 

MFI 𝑣 travels from zone 𝑧 to zone 𝑧′ starting in period 𝑡 arriving in period 𝑡′. The planning horizon is divided into a set of intervals 
𝐿 = {1, 2,… , 𝑙,… , |𝐿|}, so that  = {𝑇1, 𝑇2,… , 𝑇𝑙 ,… , 𝑇

|𝐿|}, where |𝐿| = | |

|𝑇1|
. We define 𝑇̃ = {|𝑇1|, 2|𝑇1|,… , 𝑙|𝑇1|,… , (|𝐿|− 1)|𝑇1|} as 

the set of periods at the end of the intervals. Constraints (3) check the usage of MFI 𝑣. Constraints (4) state that a used MFI must 
8 
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present at the depot 𝑧𝑜 at the closure of the planning horizon. Constraints (5) ensure the MFI flow conservation at spacetime nodes. 
Constraints (6) make sure that no more than two MFIs stop at the same docking point in the same period except for at the depot. 
Constraints (7) ensure the MFIs return to the depot at the end of each interval to recharge for at least one period.

𝛿𝑣 =
∑

(𝑧′ ,𝑡′)∈𝑁𝑀+
𝑧𝑜,1

𝑥𝑣(𝑧𝑜 ,1)(𝑧′ ,𝑡′), ∀𝑣 ∈  , (3)

∑

(𝑧′ ,𝑡′)∈𝑁𝑀+
𝑧𝑜,1

𝑥𝑣(𝑧𝑜 ,1)(𝑧′ ,𝑡′) =
∑

(𝑧′ ,𝑡′)∈𝑁𝑀−
𝑧𝑜,| |

𝑥𝑣(𝑧′ ,𝑡′)(𝑧𝑜 ,| |), ∀𝑣 ∈  , (4)

∑

(𝑧′ ,𝑡′)∈𝑁𝑀+
𝑧,𝑡

𝑥𝑣(𝑧,𝑡)(𝑧′ ,𝑡′) =
∑

(𝑧′ ,𝑡′)∈𝑁𝑀−
𝑧,𝑡

𝑥𝑣(𝑧′ ,𝑡′)(𝑧,𝑡), ∀𝑣 ∈  , ∀𝑧 ∈ 𝑀 ⧵ {𝑧𝑜}, ∀𝑡 ∈  , (5)

∑

𝑣∈
𝑥𝑣(𝑧,𝑡)(𝑧,𝑡+1) ≤ 1, ∀𝑧 ∈ 𝑀 ⧵ {𝑧𝑜}, ∀𝑡 ∈  ⧵ | |, (6)

𝑥𝑣(𝑧𝑜 ,𝑡)(𝑧𝑜 ,𝑡+1) = 1, ∀𝑣 ∈  , ∀𝑡 ∈ 𝑇̃ , (7)

𝛿𝑣 ∈ {0, 1}, ∀𝑣 ∈  , (8)

𝑥𝑣(𝑧,𝑡)(𝑧′ ,𝑡′) ∈ {0, 1}, ∀𝑣 ∈  , ∀(𝑧, 𝑡), (𝑧′, 𝑡′) ∈ 𝑀 . (9)

We let the binary variable 𝜁𝑧 = 1 if the candidate docking point in zone 𝑧 is visited by MFIs and thus is established. Constraints 
(10) ensure candidate docking points being visited are established. 𝑀1 is a constant value set as ||(| | − 1).

𝜁𝑧 ≤
∑

𝑣∈

∑

𝑡∈𝑇 ⧵| |

𝑥𝑣(𝑧,𝑡)(𝑧,𝑡+1) ≤ 𝑀1𝜁𝑧, ∀𝑧 ∈ 𝑀 , (10)

𝜁𝑧 ∈ {0, 1}, ∀𝑧 ∈ 𝑀 . (11)

Bikes pickup and return satisfaction. We introduce a non-negative integer variable for each of the five rider movement types 
described in Section 4.1, which represents bike pickups and returns at MFIs, docking point, and by self-fulfillment: 𝑦𝑃𝑀,𝑣

(𝑧,𝑡)(𝑧′′ ,𝑡′′) for 
riders picking up bikes at MFI 𝑣 that is located in 𝑧 in period 𝑡 and ride to start their first delivery tasks in zone 𝑧′′ in period 𝑡′′; 
𝑦𝑅𝑀,𝑣
(𝑧′′ ,𝑡′′),(𝑧,𝑡) for riders returning bikes to MFI 𝑣 in 𝑧 in 𝑡 from their last deliveries in 𝑧′′ in 𝑡′′; 𝑦𝑃𝐷(𝑧,𝑡)(𝑧′′ ,𝑡′′) for riders picking up bikes at 
the docking point in 𝑧 in period 𝑡 and ride to start first delivery tasks in zone 𝑧′′ in period 𝑡′′; 𝑦𝑅𝐷(𝑧′′ ,𝑡′′)(𝑧,𝑡) for riders returning bikes 
to the docking point in 𝑧 in 𝑡 from the last deliveries in 𝑧′′ in 𝑡′′; and 𝑦𝑆𝐹(𝑧,𝑡)(𝑧′′ ,𝑡′′) for riders who finish last deliveries in 𝑧 in 𝑡 and are 
instructed to ride to 𝑧′′ in 𝑡′′ to hand over bikes to other riders. As mentioned in Section 3.1, 𝑑𝑧𝑡 and 𝑟𝑧𝑡 are the inputs that indicate 
the number of the bike pickups and returns in zone 𝑧 in period 𝑡, respectively. Constraints (12) and (13) state that an MFI permits 
bike pickups and returns only when they are not moving. Constraints (14) and (15) ensure that a candidate docking point can allow 
for bike pickups and returns only if they are established. Constraints (16) (17) state that bike pickup and return demands occurring 
in zone 𝑧 in period 𝑡 can be satisfied by MFIs, docking points, and by self-fulfillment.

𝑦𝑃𝑀,𝑣
(𝑧,𝑡)(𝑧′′ ,𝑡′′) ≤ 𝑑𝑧𝑡𝑥

𝑣
(𝑧,𝑡)(𝑧,𝑡+1), ∀𝑣 ∈  , ∀𝑧 ∈ 𝑀 , ∀𝑡 ∈  ⧵ | |, ∀(𝑧′′, 𝑡′′) ∈ 𝑁𝑅+

𝑧,𝑡 , (12)

𝑦𝑅𝑀,𝑣
(𝑧′′ ,𝑡′′),(𝑧,𝑡) ≤ 𝑟𝑧𝑡𝑥

𝑣
(𝑧,𝑡),(𝑧,𝑡+1), ∀𝑣 ∈  , ∀𝑧 ∈ 𝑀 , ∀𝑡 ∈  ⧵ | |, ∀(𝑧′′, 𝑡′′) ∈ 𝑁𝑅−

𝑧,𝑡 , (13)

𝑦𝑃𝐷(𝑧,𝑡)(𝑧′′ ,𝑡′′) ≤ 𝑑𝑧𝑡𝜁𝑧, ∀𝑧 ∈ 𝑀 , ∀𝑡 ∈  , ∀(𝑧′′, 𝑡′′) ∈ 𝑁𝑅+
𝑧,𝑡 , (14)

𝑦𝑅𝐷(𝑧′′ ,𝑡′′),(𝑧,𝑡) ≤ 𝑟𝑧𝑡𝜁𝑧, ∀𝑧 ∈ 𝑀 , ∀𝑡 ∈  , ∀(𝑧′′, 𝑡′′) ∈ 𝑁𝑅−
𝑧,𝑡 , (15)

∑

𝑣∈

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡 ∩𝑀

𝑦𝑃𝑀,𝑣
(𝑧′′ ,𝑡′′)(𝑧,𝑡)

+
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡 ∩𝑀

𝑦𝑃𝐷(𝑧′′ ,𝑡′′)(𝑧,𝑡) +
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡

𝑦𝑆𝐹(𝑧′′ ,𝑡′′)(𝑧,𝑡) = 𝑑𝑧𝑡, ∀(𝑧, 𝑡) ∈ 𝑅, (16)

∑

𝑣∈

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡 ∩𝑀

𝑦𝑅𝑀,𝑣
(𝑧,𝑡)(𝑧′′ ,𝑡′′)

+
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡 ∩𝑀

𝑦𝑅𝐷,𝑣
(𝑧,𝑡)(𝑧′′ ,𝑡′′) +

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡

𝑦𝑆𝐹(𝑧,𝑡)(𝑧′′ ,𝑡′′) = 𝑟𝑧𝑡, ∀(𝑧, 𝑡) ∈ 𝑅, (17)

𝑦𝑃𝑀,𝑣
(𝑧,𝑡)(𝑧′′ ,𝑡′′) ∈ Z≥0, ∀𝑣 ∈  , ∀𝑧 ∈ 𝑀 , ∀𝑡 ∈  ⧵ | |, ∀(𝑧′′, 𝑡′′) ∈ 𝑁𝑅+

𝑧,𝑡 , (18)

𝑦𝑅𝑀,𝑣
(𝑧′′ ,𝑡′′),(𝑧,𝑡) ∈ Z≥0, ∀𝑣 ∈  , ∀𝑧 ∈ 𝑀 , ∀𝑡 ∈  ⧵ | |, ∀(𝑧′′, 𝑡′′) ∈ 𝑁𝑅−

𝑧,𝑡 , (19)

𝑦𝑃𝐷(𝑧,𝑡)(𝑧′′ ,𝑡′′) ∈ Z≥0, ∀𝑧 ∈ 𝑀 , ∀𝑡 ∈  , ∀(𝑧′′, 𝑡′′) ∈ 𝑁𝑅+
𝑧,𝑡 , (20)

𝑦𝑅𝐷(𝑧′′ ,𝑡′′),(𝑧,𝑡) ∈ Z≥0, ∀𝑧 ∈ 𝑀 , ∀𝑡 ∈  , ∀(𝑧′′, 𝑡′′) ∈ 𝑁𝑅−
𝑧,𝑡 , (21)

𝑦𝑆𝐹 ∈ Z , ∀(𝑧, 𝑡)(𝑧′′, 𝑡′′) ∈ 𝑅. (22)
(𝑧,𝑡)(𝑧′′ ,𝑡′′) ≥0

9 
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MFI and docking point inventory tracking. We track the inventory of both the MFIs and docking points to ensure the capacity 
is not exceeded. We first discuss the MFI inventory, let non-negative integer 𝐼𝑣𝑧𝑡 be the number of bikes stored in MFI 𝑣 located in 
zone 𝑧 in period 𝑡. If an arc (𝑧, 𝑡)(𝑧′, 𝑡′) is on the spacetime route of MFI 𝑣, the inventory at the node (𝑧′, 𝑡′) equals the inventory at 
(𝑧, 𝑡) adding the loaded bikes and minus the unloaded ones. This is expressed in Constraints (23). Constraints (24) ensure that no 
inventory is considered for an MFI at a spacetime node if this node is not on the spacetime route of the MFI, and when the node is 
on the route the inventory will not exceed the capacity 𝑄𝑀𝐹𝐼 .

𝑥𝑣(𝑧,𝑡)(𝑧′ ,𝑡′)𝐼
𝑣
𝑧′𝑡′ = 𝑥𝑣(𝑧,𝑡)(𝑧′ ,𝑡′)

⎛

⎜

⎜

⎜

⎝

𝐼𝑣𝑧𝑡 +
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡

𝑦𝑅𝑀,𝑣
(𝑧′′ ,𝑡′′),(𝑧,𝑡) −

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡

𝑦𝑃𝑀,𝑣
(𝑧,𝑡)(𝑧′′ ,𝑡′′)

⎞

⎟

⎟

⎟

⎠

,

∀𝑣 ∈  , ∀(𝑧, 𝑡) ∈ 𝑀 , ∀(𝑧′, 𝑡′) ∈ 𝑁𝑀+
𝑧,𝑡 , (23)

𝐼𝑣𝑧𝑡 ≤
𝑄𝑀𝐹𝐼

2

⎛

⎜

⎜

⎜

⎝

∑

(𝑧′ ,𝑡′)∈𝑁𝑀+
𝑧,𝑡

𝑥𝑣(𝑧,𝑡)(𝑧′ ,𝑡′) +
∑

(𝑧′ ,𝑡′)∈𝑁𝑀−
𝑧,𝑡

𝑥𝑣(𝑧′ ,𝑡′),(𝑧,𝑡)

⎞

⎟

⎟

⎟

⎠

, ∀𝑣 ∈  , ∀(𝑧, 𝑡) ∈ 𝑀 , (24)

𝐼𝑣𝑧𝑡 ∈ Z≥0, ∀𝑣 ∈  , ∀(𝑧, 𝑡) ∈ 𝑀 . (25)

For docking point inventories, we define the non-negative integer variable 𝐼𝐷𝑧𝑡  as the number of bikes parked in the docking 
point in zone 𝑧 in period 𝑡. Similar to MFI inventories, the inventory of the docking point in 𝑧 in period 𝑡 equals the inventory in 
the previous period plus the bikes collected and minus the ones borrowed out, which is stated in Constraints (26). Constraints (27) 
ensure that the docking point inventory will never exceed the fixed capacity 𝑄𝐷.

𝐼𝐷𝑧,𝑡+1 = 𝐼𝐷𝑧𝑡 +
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡

𝑦𝑅𝐷(𝑧′′ ,𝑡′′)(𝑧,𝑡) −
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡

𝑦𝑃𝐷(𝑧,𝑡)(𝑧′′ ,𝑡′′), ∀𝑧 ∈ 𝑀 , ∀𝑡 ∈  ⧵ | |, (26)

𝐼𝐷𝑧𝑡 ≤ 𝜁𝑧𝑄
𝐷, ∀(𝑧, 𝑡) ∈ 𝑀 , (27)

𝐼𝐷𝑧𝑡 ∈ Z≥0, ∀(𝑧, 𝑡) ∈ 𝑀 . (28)

Objective function. The objective is to minimize the overall MFI system cost, which includes the capital investment costs that 
are converted to daily rates according to their usage life (MFIs leasing 𝐽1, bikes purchasing 𝐽2, docking points establishment 𝐽3), 
and the opportunity costs of courier idle time spent on bike pickups and returns at MFIs and docking points 𝐽4 and self-fulfillment 
𝐽5. Let 𝑐𝑀𝐹𝐼  represent the daily MFI leasing cost, 𝑐𝐵 the bike price converted to a daily rate, 𝑐𝐷 the cost of establishing a docking 
point converted to a daily rate, 𝑐𝑉 𝑜𝑇  the value of a period for riders, and 𝑐𝑆𝐹  the cost per unit distance traveled for self-fulfillment. 
The objective function is then written as: 

𝑀𝐼𝑁 𝛷 = 𝐽1 + 𝐽2 + 𝐽3 + 𝐽4 + 𝐽5 (29)

where:

𝐽1 = 𝑐𝑀𝐹𝐼
∑

𝑣∈
𝛿𝑣, (30)

𝐽2 = 𝑐𝐵(
∑

𝑣∈
𝐼𝑣𝑧𝑜 ,1 +

∑

𝑧∈𝑀

𝐼𝐷𝑧,1), (31)

𝐽3 = 𝑐𝐷
∑

𝑧∈𝑀

𝜁𝑧, (32)

𝐽4 = 𝑐𝑉 𝑜𝑇
∑

(𝑧,𝑡)∈𝑀

⎛

⎜

⎜

⎜

⎝

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡

∑

𝑣∈
𝑦𝑅𝑀,𝑣
(𝑧′′ ,𝑡′′)(𝑧,𝑡)𝐷𝐼𝑆𝑧𝑧′′ +

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡

∑

𝑣∈
𝑦𝑃𝑀,𝑣
(𝑧,𝑡)(𝑧′′ ,𝑡′′)𝐷𝐼𝑆𝑧𝑧′′

+
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡

𝑦𝑅𝐷(𝑧′′ ,𝑡′′)(𝑧,𝑡)𝐷𝐼𝑆𝑧𝑧′′ +
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡

𝑦𝑃𝐷(𝑧,𝑡)(𝑧′′ ,𝑡′′)𝐷𝐼𝑆𝑧𝑧′′

⎞

⎟

⎟

⎟

⎠

, (33)

𝐽5 = 𝑐𝑆𝐹
∑

(𝑧,𝑡)(𝑧′′ ,𝑡′′)∈𝑅

𝑦𝑆𝐹(𝑧,𝑡)(𝑧′′ ,𝑡′′)𝐷𝐼𝑆𝑧𝑧′′ . (34)

4.4. Route-based formulation

In the arc-based formulation, each vessel movement is modeled at the arc level, enabling arc-specific constraints such as travel 
costs, transit times, capacity limits, and cumulative tracking (e.g., battery levels). Constraints (3)–(7) demonstrate how routing logic 
is implemented across arcs. This approach supports dynamic, arc-dependent constraints with pseudo-polynomial growth in decision 
variables and constraints, though symmetry among equivalent arc sequences may require resolution.
10 
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The route-based formulation represents each vessel route as a sequence of spacetime nodes forming a cycle over the planning 
horizon. Each feasible route is a single decision variable, allowing for compact modeling when the route set is manageable. Route-
level constraints, e.g., duration or shift structure, are naturally enforced during generation. However, the number of routes may 
grow exponentially without restrictions (e.g., time windows), though practical constraints often mitigate this.

Route selection. As mentioned in Section 4.3, the planning horizon  = {𝑇1, 𝑇2,… , 𝑇𝑙 ,… , 𝑇
|𝐿|} is divided into a set of equal-

length intervals. An MFI route covers the entire planning horizon, starting and ending in the depot 𝑧𝑜. During the operation, each 
MFI must return to depot 𝑧𝑜 at the end of every interval to recharge. This divides a route into several segments, with each segment 
covering one interval. Since multiple MFIs may be used, the solution can have several distinct routes, resulting in multiple route 
segments within an interval.

We define  = {𝐾1, 𝐾2,… , 𝐾𝑙 ,… , 𝐾
|𝐿|} as the set of possible MFI route segments, where 𝐾𝑙 is the set of possible route segments 

in interval 𝑙. We define the binary variable 𝜃𝑙𝑘 = 1 if route segment 𝑘 in interval 𝑙 is in the final solution. Constraints (35) and (36) 
ensure that there should be at least one route segment in each interval and the number of route segments in an interval should 
not exceed the number of available MFIs. Constraints (37) ensure that two consecutive intervals have the same number of route 
segments.

1 ≤
∑

𝑘∈𝐾𝑙

𝜃𝑙𝑘, ∀𝑙 ∈ 𝐿, (35)

∑

𝑘∈𝐾𝑙

𝜃𝑙𝑘 ≤ ||, ∀𝑙 ∈ 𝐿, (36)

∑

𝑘∈𝐾𝑙

𝜃𝑙𝑘 =
∑

𝑘′∈𝐾𝑙+1

𝜃𝑙+1,𝑘′ , 𝑙 ∈ 𝐿 ⧵ |𝐿|, (37)

𝜃𝑙𝑘 ∈ {0, 1}, ∀𝑙 ∈ 𝐿, ∀𝑘 ∈ 𝐾𝑙 . (38)

To decide whether two route segments in two consecutive intervals are in the same route, we define the binary variable 𝑓 𝑙+1,𝑘′
𝑙,𝑘 = 1

if route segment 𝑘 in interval 𝑙 and route segment 𝑘′ in interval 𝑙 + 1 are in the same route in the solution. Constraints (39) and 
(40) ensure a route segment only appears in one route.

𝜃𝑙𝑘 =
∑

𝑘′∈𝐾𝑙+1

𝑓 𝑙+1,𝑘′
𝑙,𝑘 , ∀𝑙 ∈ 𝐿 ⧵ {|𝐿|}, ∀𝑘 ∈ 𝐾𝑙 , (39)

𝜃𝑙𝑘 =
∑

𝑘′∈𝐾𝑙−1

𝑓 𝑙,𝑘
𝑙−1,𝑘′ , ∀𝑙 ∈ 𝐿 ⧵ {1}, ∀𝑘 ∈ 𝐾𝑙 , (40)

𝑓 𝑙+1,𝑘′
𝑙,𝑘 ∈ {0, 1}, ∀𝑙 ∈ 𝐿 ⧵ {|𝐿|}, ∀𝑘 ∈ 𝐾𝑙 , ∀𝑘′ ∈ 𝐾𝑙+1. (41)

We define the index 𝜆𝑙𝑘𝑧 = 1 if route segment 𝑘 in interval 𝑙 requires the candidate docking point in zone 𝑧 to be established. 
Constraints (42) ensure if a route segment is in the solution, the corresponding candidate docking points will be established. 𝑀2 is 
a constant value that is set as |||𝐿|.

𝜁𝑧 ≤
∑

𝑙∈𝐿

∑

𝑘∈𝐾𝑙

𝜆𝑙𝑘𝑧𝜃𝑙𝑘, ∀𝑧 ∈ 𝑀 , (42)

∑

𝑙∈𝐿

∑

𝑘∈𝐾𝑙

𝜆𝑙𝑘𝑧𝜃𝑙𝑘 ≤ 𝑀2𝜁𝑧, ∀𝑧 ∈ 𝑀 . (43)

Bikes pickup and return satisfaction. MFIs can load or unload bikes only when they are stopped at docking points. In the spacetime 
network, this is shown by MFIs being stationed at the start of holding arcs. Let 𝐻 𝑙𝑘 be the set of starting nodes of holding arcs on 
route segment 𝑘 in interval 𝑙. We define the non-negative integer 𝑦𝑃𝑀,𝑙𝑘

(𝑧,𝑡)(𝑧′′ ,𝑡′′) indicating the number of riders who pick up bikes at MFI 
located at (𝑧, 𝑡) on route segment 𝑘 in interval 𝑙 and start first delivery tasks at (𝑧′′, 𝑡′′). Similarly, 𝑦𝑅𝑀,𝑙𝑘

(𝑧′′ ,𝑡′′)(𝑧,𝑡) represents the number 
of riders who return bikes to MFI at (𝑧, 𝑡) on route segment 𝑘 in interval 𝑙 after finishing last deliveries at (𝑧′′, 𝑡′′). Constraints (44) 
and (45) make sure that bikes can only be picked up from or returned to MFIs when they are docked. Similarly, bikes can only 
be picked up from or returned to docking points when these points are set up. This is the same as indicated in Constraints (14) 
and (15) in the arc-based formulation. Constraints (48) and (49) ensure the satisfaction of bike pickups and returns through MFIs, 
docking points, and self-fulfillment.

𝑦𝑃𝑀,𝑙𝑘
(𝑧,𝑡)(𝑧′′ ,𝑡′′) ≤ 𝑑𝑧𝑡𝜃𝑙𝑘, ∀𝑙 ∈ 𝐿, ∀𝑘 ∈ 𝐾𝑙 , ∀(𝑧, 𝑡) ∈ 𝐻 𝑙𝑘, ∀(𝑧′′, 𝑡′′) ∈ 𝑁𝑅+

𝑧,𝑡 , (44)

𝑦𝑅𝑀,𝑙𝑘
(𝑧′′ ,𝑡′′)(𝑧,𝑡) ≤ 𝑟𝑧𝑡𝜃𝑙𝑘, ∀𝑙 ∈ 𝐿, ∀𝑘 ∈ 𝐾𝑙 , ∀(𝑧, 𝑡) ∈ 𝐻 𝑙𝑘, ∀(𝑧′′, 𝑡′′) ∈ 𝑁𝑅−

𝑧,𝑡 , (45)

𝑦𝑃𝑀,𝑙𝑘
(𝑧,𝑡)(𝑧′′ ,𝑡′′) ∈ Z≥0, ∀𝑙 ∈ 𝐿, ∀𝑘 ∈ 𝐾𝑙 , ∀(𝑧, 𝑡) ∈ 𝐻 𝑙𝑘, ∀(𝑧′′, 𝑡′′) ∈ 𝑁𝑅+

𝑧,𝑡 , (46)

𝑦𝑅𝑀,𝑙𝑘
(𝑧′′ ,𝑡′′)(𝑧,𝑡) ∈ Z≥0, ∀𝑙 ∈ 𝐿, ∀𝑘 ∈ 𝐾𝑙 , ∀(𝑧, 𝑡) ∈ 𝐻 𝑙𝑘, ∀(𝑧′′, 𝑡′′) ∈ 𝑁𝑅−

𝑧,𝑡 , (47)
∑

𝑙∈𝐿

∑

𝑘∈𝐾𝑙

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡 ∩𝐻 𝑙𝑘

𝑦𝑃𝑀,𝑙𝑘
(𝑧′′ ,𝑡′′)(𝑧,𝑡) +

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡 ∩𝑀

𝑦𝑃𝐷(𝑧′′ ,𝑡′′)(𝑧,𝑡)

+
∑

′′ ′′ 𝑅−

𝑦𝑆𝐹(𝑧′′ ,𝑡′′)(𝑧,𝑡) = 𝑑𝑧𝑡, ∀(𝑧, 𝑡) ∈ 𝑅, (48)

(𝑧 ,𝑡 )∈𝑁𝑧,𝑡

11 
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∑

𝑙∈𝐿

∑

𝑘∈𝐾𝑙

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡 ∩𝐻 𝑙𝑘

𝑦𝑅𝑀,𝑙𝑘
(𝑧,𝑡)(𝑧′′ ,𝑡′′) +

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡 ∩𝑀

𝑦𝑅𝐷(𝑧,𝑡)(𝑧′′ ,𝑡′′)

+
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡

𝑦𝑆𝐹(𝑧,𝑡)(𝑧′′ ,𝑡′′) = 𝑟𝑧𝑡, ∀(𝑧, 𝑡) ∈ 𝑅. (49)

Inventory management. We define the non-negative integer variable 𝐼 𝑙𝑘𝑧𝑡  indicating the number of bikes stored on the MFI located 
in 𝑧 in 𝑡 on route segment 𝑘 in interval 𝑙. The MFI capacity limit is expressed in Constraints (50).

𝐼 𝑙𝑘𝑧𝑡 ≤ 𝑄𝑀𝐹𝐼𝜃𝑙𝑘, ∀𝑙 ∈ 𝐿, ∀𝑘 ∈ 𝐾𝑙 , ∀(𝑧, 𝑡) ∈ 𝐻 𝑙𝑘, (50)

𝐼 𝑙𝑘𝑧𝑡 ∈ Z≥0, ∀𝑙 ∈ 𝐿, ∀𝑘 ∈ 𝐾𝑙 , ∀(𝑧, 𝑡) ∈ 𝐻 𝑙𝑘. (51)

Let 𝐻 𝑙𝑘(1) and 𝐻 𝑙𝑘(−1) be the first and last nodes in the set 𝐻 𝑙𝑘. For each node (𝑧, 𝑡) in 𝐻 𝑙𝑘, we define 𝐻̄ 𝑙𝑘
𝑧𝑡  as its following node. 

Constraints (52) track the inventory update between two consecutive nodes in 𝐻 𝑙𝑘. Constraints (53) state that if route segment 𝑘
in interval 𝑙 and route segment 𝑘′ in interval 𝑙+1 are on the same route, the number of bikes in the MFI at the first node in 𝐻 𝑙+1,𝑘′

is updated based on the number at the last node in 𝐻 𝑙𝑘. The docking point inventory management is presented in Constraints (26) 
and (27).

𝐼 𝑙𝑘
𝐻̄ 𝑙𝑘

𝑧𝑡
= 𝐼 𝑙𝑘𝑧𝑡 +

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡

𝑦𝑅𝑀,𝑙𝑘
(𝑧′′ ,𝑡′′)(𝑧,𝑡) −

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡

𝑦𝑃𝑀,𝑙𝑘
(𝑧,𝑡)(𝑧′′ ,𝑡′′),

∀𝑙 ∈ 𝐿, ∀𝑘 ∈ 𝐾𝑙 , ∀(𝑧, 𝑡) ∈ 𝐻 𝑙𝑘 ⧵ {𝐻 𝑙𝑘(−1)}, (52)

𝑓 𝑙+1,𝑘′
𝑙,𝑘 𝐼 𝑙+1,𝑘

′

(𝑧′𝑡′) = 𝑓 𝑙+1,𝑘′
𝑙,𝑘

⎛

⎜

⎜

⎜

⎝

𝐼 𝑙,𝑘(𝑧,𝑡) +
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡

𝑦𝑅𝑀,𝑙𝑘
(𝑧′′ ,𝑡′′)(𝑧,𝑡) −

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡

𝑦𝑃𝑀,𝑙𝑘
(𝑧,𝑡)(𝑧′′ ,𝑡′′)

⎞

⎟

⎟

⎟

⎠

,

∀𝑙 ∈ 𝐿 ⧵ {|𝐿|}, ∀𝑘 ∈ 𝐾𝑙 , ∀𝑘′ ∈ 𝐾𝑙+1 (𝑧′, 𝑡′) = 𝐻 𝑙+1,𝑘′ (1), (𝑧, 𝑡) = 𝐻 𝑙𝑘(−1). (53)

Objective function: 
𝑀𝐼𝑁 𝛷′ = 𝐽 ′

1 + 𝐽 ′
2 + 𝐽 ′

3 + 𝐽 ′
4 + 𝐽 ′

5 (54)

where:

𝐽 ′
1 = 𝑐𝑀𝐹𝐼

∑

𝑘∈𝐾1

𝜃1𝑘, (55)

𝐽 ′
2 = 𝑐𝐵

(

∑

𝑘∈𝐾1

𝐼1,𝑘𝑧𝑜 ,1
+

∑

𝑧∈𝑀

𝐼𝑀𝑧,1

)

, (56)

𝐽 ′
3 = 𝑐𝐷

∑

𝑧∈𝑀

𝜁𝑧, (57)

𝐽 ′
4 = 𝑐𝑉 𝑜𝑇

⎛

⎜

⎜

⎜

⎝

∑

𝑙∈𝐿

∑

𝑘∈𝐾𝑙

∑

(𝑧,𝑡)∈𝐻 𝑙𝑘

⎛

⎜

⎜

⎜

⎝

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡

𝑦𝑅𝑀,𝑙𝑘
(𝑧′′ ,𝑡′′),(𝑧,𝑡)𝐷𝐼𝑆𝑧𝑧′′ +

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡

𝑦𝑃𝑀,𝑙𝑘
(𝑧,𝑡)(𝑧′′ ,𝑡′′)𝐷𝐼𝑆𝑧𝑧′′

⎞

⎟

⎟

⎟

⎠

+
∑

(𝑧,𝑡)∈𝑀

⎛

⎜

⎜

⎜

⎝

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡

𝑦𝑅𝐷(𝑧′′ ,𝑡′′)(𝑧,𝑡)𝐷𝐼𝑆𝑧𝑧′′ +
∑
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⎟
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, (58)

𝐽 ′
5 = 𝑐𝑆𝐹

∑

(𝑧,𝑡)(𝑧′′ ,𝑡′′)∈𝑅

𝑦𝑆𝐹(𝑧,𝑡)(𝑧′′ ,𝑡′′)𝐷𝐼𝑆𝑧𝑧′′ . (59)

Some discussions are worth having here. We assume deterministic (expected) travel times for canal arcs in our model, as empirical 
evidence suggests that inland-waterway travel times are generally reliable and predictable. For instance, a recent study by Kruse 
et al. (2022) on the Upper Mississippi River reported coefficients of variation in transit times ranging from 0.2 to 1.3 across 12 
segments, with most links below 0.8, indicating the low variability. Although those data do not directly come from Amsterdam, 
they support the broader observation that waterways tend to exhibit limited relative variability in travel times. Since our model 
focuses on strategic and tactical planning of MFIs, approximating travel times by their expected values is both common practice 
and computationally tractable.

To incorporate travel time variation and congestion, both arc-based and route-based formulations operate on a time-expanded 
network, where travel times between zones are defined per time period, allowing direct incorporation of time-dependent variation, 
i.e. routine peak-hour congestion. For more localized disruptions, such as canal closures or temporary slowdowns, the arc-based 
model enables arc-specific adjustments, while the route-based model can generate alternative routes to reflect changing conditions.

These features offer flexibility to model both predictable temporal patterns and localized network dynamics. Although fu-
ture work may consider robust optimization, the current framework accommodates meaningful variation through deterministic, 
time-varying parameters aligned with strategic and tactical planning horizons.
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Fig. 5.1. Four canal network typologies replicated from Amsterdam, Leiden, Venice, and Fredrikstad.

5. Results

In this section, we first use the generated data to evaluate the computational performance of the model and draw managerial 
insights on a small scale. We then apply our framework to the Amsterdam inland waterway for a real-world case study to 
demonstrate the benefits of deploying MFIs. Section 5.1 details the input generation scheme; Section 5.2 compares the computational 
performance of the arc-based and route-based formulations; Section 5.3 presents sensitivity analyses on infrastructure configurations 
and operating conditions; and Section 5.4 applies the model to the Amsterdam inland waterway, evaluating platform policy effects.

5.1. Instance generation

We identify two service areas: an area of 37 hexagonal zones arranged in 4 circles (denoted Area-4), and an area of 91 hexagonal 
zones arranged in 6 circles (denoted Area-6). The edge of each zone is 200 m and one period represents 10 min. The innermost 
zone is chosen as the MFI depot. We further consider four canal network typologies (Fig.  5.1) that are replicated from real cities: 
Amsterdam (noted as Network-1), Leiden (noted as Network-1), Venice (noted as Network-1), and Fredrikstad (noted as Network-1). 
For each network, we calculate the following indices to indicate the complexity of the network: 𝛼, 𝛽, and 𝛾. The index 𝛼 measures 
the degree of connectivity in a network by comparing the number of actual loops to the maximum number of circuits possible. The 
index 𝛽 compares the number of links to the number of nodes. The index 𝛾 compares the number of actual links in the network to 
the maximum possible number of links between nodes. These indexes are calculated as:

𝛼 = 𝐿 −𝑁 + 1
2𝑁 − 5

, (60)

𝛽 = 𝐿
𝑁

, (61)

𝛾 = 𝐿
3(𝑁 − 2)

. (62)

where 𝐿 is the number of links, and 𝑁 is the number of vertices.
We consider three planning horizons: 36 periods (representing 6 h), 48 periods (representing 8 h), and 72 periods (representing 

12 h). The number of active riders varies from 20 to 60 in steps of 10. Two types of spatial distribution of bike pickup and return 
demands are identified. In the first type (denoted as U), bike pickup and return demands are spatially uniformly distributed in the 
service area. This simulates cities without a pronounced center (e.g. Rotterdam). In the second type (denoted as C), 75% of the 
demands for bike pickup occur in the center of the area and 75% of bike returns occur in the suburbs. This mirrors cities with an 
obvious center like Amsterdam, where restaurants are often central and customers are usually located outside the center. The area 
center is defined as a circle with a radius of 𝑟 zones originating from the innermost zone, where 𝑟 = 2 for Area-4 (as shown in Fig. 
5.1) and 𝑟 = 3 for Area-6. For all test cases, we consider two homogeneous MFIs available, each with a capacity 𝑄𝑀𝐹𝐼  of 50 bikes, 
and the homogeneous candidate mounting points have a capacity 𝑄𝐷𝑃  of 1 bike.

In Table  5.1, we present the characteristics of the instances: (1) area size, (2) canal network typology, (3) length of the planning 
horizon, (4) number of riders, (5) type of spatial distribution of bike pickup and return demands. The instances are named according 
13 
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Table 5.1
Instance characteristics.
 Characteristics Possible choices  
 Area size Area-4, Area-6  
 Network typology Network-1, Network-2, Network-3, Network-4 
 Planning horizon 36 periods, 48 periods, 72 periods  
 Number of riders 20, 30, 40, 50, 60  
 Type of spatial distribution U, C  
 of bike pickups and returns  

to the characteristics. For example, ‘‘A4-N1-P36-S40-U’’ indicates the case of Area-4, Network-1, a planning horizon of 36 periods, 
40 riders, and uniformly spatially distributed bike pickups and returns.

We set the daily cost of an MFI as 810.00 e, which covers fixed costs including the MFI leasing, energy, and maintenance. The 
average bike price in the Netherlands is estimated at 865.00 e. We consider the service life of a new bike to be three years, so the 
daily cost of one bike is set as 865.00/1095.00 = 0.79 e. The Netherlands train operator NS charges about 100 e per year to store 
a bicycle at a train station parking lot. Based on this, we set the cost of a docking point at 100.00 e per year, that is 0.27 e per 
day. We consider the gross hourly salary of a rider to be 14.77 e, therefore the opportunity cost of one period of idle time of the 
rider is 2.46 e.

5.2. Computational performance

In this section, we test and compare the computational performance of the models. We conduct the experiments using Python 
and Gurobi Optimizer version 11.0.0. All experiments are carried out on a computer with a 2.4 GHz CPU, 8 GB of RAM, and an 
8-core processor. Each instance is solved with a time limit of 4 h. In Section 5.2.1, we compare the computational performance of 
the arc-based and the route-based formulations. Section 5.2.2 examines the sensitivity of computation time to network typologies 
and geographical distribution types of bike pickup and return needs.

5.2.1. Comparison between the two models
This section compares the computational performance of the arc-based and route-based formulations. We choose Network-1 

and demand distribution type U as a representative case. We select 18 instances varying in the area size, planning horizon, and 
rider number (40, 60, 80). Two interval lengths are considered: 4 periods and 6 periods. We present in Table  5.2 the results of the 
instances with an interval length of 4 periods, and in Table  5.3 the results for the same instances with an interval length of 6 periods. 
The columns include the number of explored nodes (Nodes), the optimality gap (Gap), and runtime in seconds. The optimality gap 
is calculated as 100× (𝛷̄−𝐿𝐵)∕𝛷̄%, where 𝛷̄ is the best feasible solution and 𝐿𝐵 is the best-known lower bound. The column ‘‘Imp’’ 
shows the improvement in solving time of the route-based model compared to the arc-based model.

It can be seen in the tables, when the numbers of riders are 40 and 60, the solution time of instances of both formulations is 
within one minute. However, when the number of riders reaches 80 and the planning horizon is 48 and 72 periods, neither model 
converges to optimality within the time limit. Table  5.4 summarizes the results from Tables  5.2 and 5.3. The results show that the 
route-based formulation performs better for the selected instances. Its average solution times are 4001.84 s for 4-period intervals 
and 4152.73 s for 6-period intervals. In contrast, the arc-based formulation takes on average 4813.84 s and 5274.22 s for the same 
intervals. The table also indicates that interval length affects solving time. Instances with 6-period intervals take longer to solve and 
have a larger optimality gap when the time limit is reached.

5.2.2. Canal network and rider spatial distribution effect on computation time
In this section, we investigate the impact of canal network typology and geographical distribution of bike pickup and return 

needs on the solution time. We consider the four canal network typologies and the demand spatial distribution types as described in 
Section 5.1. We use Area-4 and planning horizon of 36 periods as a representative case and consider three rider numbers {40, 60, 
80}. The selected instances are named ‘‘A4-P36-S40’’, ‘‘A4-P36-S60’’, and ‘‘A4-P36-S80’’. The interval length is set as 6 periods for 
all tests. Table  5.5 presents the computational results under different combinations of canal network typologies and demand spatial 
distribution types. We further summarize the results in Table  5.5 in Table  5.6. The columns include the canal network typology 
(‘‘Network’’), instance name, optimality gap (Gap), and solving time under demand spatial distribution type U and C.

The tables show that, on average, solving instances under canal Network-2 takes the longest time. This reflects the fact that 
Network-2 is the most complex network among the four networks based on the three complexity indexes described in Section 5.1. 
In terms of the demand spatial distributions, it takes a longer time to solve instances under spatial distribution type C. Specifically, 
solving instances with 80 riders under distribution C could not prove optimality within 4 h.
14 



C. Yang et al. Transportation Research Part C 179 (2025) 105264 
Table 5.2
Computation performance comparison of arc-based and route-based model for instances under case N1-U (Interval of 4 periods).
 Instance Arc-based Route-based Imp.  
 Nodes Gap Run time (s) Nodes Gap Run time (s)  
 A4-P36-S40 348 0 10.63 1 0 0.28 97.37% 
 A4-P36-S60 1 0 8.40 1 0 0.3 96.43% 
 A4-P36-S80 378 0 27.01 1 0 0.73 97.30% 
 A4-P48-S40 4496 0 11.28 1 0 0.97 91.40% 
 A4-P48-S60 481 0 11.97 1 0 0.36 96.99% 
 A4-P48-S80 1687422 1.59% 14400.94 805144 0.28% 14402.56 –  
 A4-P72-S40 11179 0 27.21 1 0 0.68 97.50% 
 A4-P72-S60 5073 0 81.42 354 0 2.18 97.32% 
 A4-P72-S80 1609272 1.98% 14400.11 649713 1.35% 14401.00 –  
 A6-P36-S40 494 0 8.20 1 0 0.45 94.51% 
 A6-P36-S60 1 0 8.01 1 0 0.29 96.38% 
 A6-P36-S80 1145730 0.23% 14400.03 742444 0.28% 14401.00 –  
 A6-P48-S40 249 0 9.75 1 0 0.37 96.21% 
 A6-P48-S60 1 0 16.27 1 0 0.45 97.23% 
 A6-P48-S80 1458483 1.27% 14400.44 1002713 0.40% 14403.21 –  
 A6-P72-S40 5650 0 30.48 41 0 0.94 99.99% 
 A6-P72-S60 4151 0 27.67 1 0 0.46 98.34% 
 A6-P72-S80 594571 1.62% 14400.32 250476 1.58% 14407.73 –  

Table 5.3
Computation performance comparison of arc-based and route-based model for instances under case N1-U (Interval of 6 periods).
 Instance Arc-based Route-based Imp.  
 Nodes Gap Run time (s) Nodes Gap Run time (s)  
 A4-P36-S40 1727 0 25.48 1 0 2.75 89.21%  
 A4-P36-S60 1293 0 33.24 1 0 6.61 80.11%  
 A4-P36-S80 681 0 67.26 1 0 8.05 88.03%  
 A4-P48-S40 10205 0 42.7 115 0 10.75 74.82%  
 A4-P48-S60 7386 0 92.46 207 0 22.53 75.63%  
 A4-P48-S80 242860 1.91% 14400.69 97615 1.69% 14400.83 –  
 A4-P72-S40 148392 0 939.19 9993 0 95.15 89.87%  
 A4-P72-S60 687568 0.89% 14401.15 33942 0 1283.91 91.08%  
 A4-P72-S80 314445 1.97% 14402.54 272029 29.10% 14402.13 –  
 A6-P36-S40 2592 0 20.63 1 0 3.19 84.54%  
 A6-P36-S60 194 0 30.61 1 0 4.78 84.38%  
 A6-P36-S80 227947 0.14% 14403.80 531102 0.14% 14400.29 –  
 A6-P48-S40 1671 0 47.58 1 0 6.08 87.22%  
 A6-P48-S60 2799 0 46.53 450 0 89.29 −91.90% 
 A6-P48-S80 466772 1.33% 14400.36 88538 1.40% 14400.77 –  
 A6-P72-S40 397512 0 4181.69 5694 0 96.51 97.69%  
 A6-P72-S60 238913 0 3007.53 4609 0 1117.97 62.83%  
 A6-P72-S80 103437 26.70% 14401.34 202307 5.52% 14402.94 –  

Table 5.4
The summary of results reported in Tables  5.2 and 5.3.
 Arc-based Route-based

 Ave. gap Ave. run time (s) Ave. gap Ave. run time (s) 
 Interval-4 periods 0.37% 4813.84 0.22% 4001.33  
 Interval-6 periods 1.83% 5274.22 2.10% 4152.73  

5.3. Managerial insights

This section explores managerial insights of the MFI strategy and examines how various system characteristics affect the system 
performance. We use the ‘‘A4-P48-S40’’ instance as a representative case. This represents Area-4, with a 48-period planning horizon 
and 40 riders. The performance of the MFI strategy can be affected by factors both in the infrastructure and operating environment. 
Infrastructure factors can be canal network typologies, spatial distribution of bike pickup and return demands, MFI battery life, and 
the zone size and period length, which are described in Section 5.3.1. The operating environment factors involve the number of 
riders and the cost of self-fulfilling demand, which we present in Section 5.3.2.

5.3.1. Impact of infrastructure configurations
In this section, we identify four important infrastructure factors that can impact the performance of the MFI system: canal network 

typologies, spatial distribution of bike pickup and return demands, MFI battery life, and the zone size and period length.
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Table 5.5
Computation time sensitivity to network typologies and demand spatial distribution types.
 Network Instance U C

 Gap Run time (s) Gap Run time (s) 
 Type-1 A4-P36-S40 0 2.67 0 8.96  
 A4-P36-S60 0 3.72 0 13.62  
 A4-P36-S80 0 2.7 1.54% 14400.13  
 Type-2 A4-P36-S40 0 24.61 0 12.15  
 A4-P36-S60 0 19.52 0 20.76  
 A4-P36-S80 0 29.02 0.62% 14400.44  
 Type-3 A4-P36-S40 0 0.82 0 1.48  
 A4-P36-S60 0 6.57 0 1.7  
 A4-P36-S80 0 1.78 1.44% 14400.08  
 Type-4 A4-P36-S40 0 2.21 0 11.08  
 A4-P36-S60 0 9.79 0 11.22  
 A4-P36-S80 0 14.81 1.44% 14400.10  

Table 5.6
Summary of Table  5.5.
 Network U C

 Ave. gap Ave. run time (s) Ave. gap Ave. run time (s) 
 Type-1 0 3.03 0.51% 4807.47  
 Type-2 0 24.38 0.21% 4811.12  
 Type-3 0 3.06 0.48% 4801.09  
 Type-4 0 8.94 0.48% 4807.47  

Table 5.7
Range of the objective values, numbers of bikes, and average idle time cross C1, C2, and C3 for 
four canal network typologies under case A4-P48-S40.
 Network Obj. (e) Bikes Idle (min)  
 1 [1089.83, 1159.16] [29, 32] [13.00, 16.38] 
 2 [1085.18, 1166.27] [29, 32] [12.75, 16.75] 
 3 [1087.37, 1168.19] [29, 32] [12.88, 16.88] 
 4 [1085.45, 1170.65] [29, 32] [12.75, 17.00] 

Table 5.8
Range of the objective values, numbers of bikes, and average idle time cross U1, U2, and U3
for four canal network typologies under case A4-P48-S40.
 Network Obj. (e) Bikes Idle (min)  
 1 [1149.41, 1224.00] [27, 30] [16.00, 19.75] 
 2 [1150.49, 1211.70] [27, 30] [16.00, 19.72] 
 3 [1162.25, 1245.87] [27, 30] [16.62, 20.88] 
 4 [1154.60, 1224.00] [27, 30] [16.25, 19.75] 

Canal network typology and demand spatial distribution. This analysis is motivated by the fact that the platform may expand its 
business into new cities where the canal network typology and city layout may differ. We consider the four canal network typologies 
and the two types of spatial distribution of bike pickup and return demands (U and C) as described in Section 5.1. For each of the 
two spatial distribution type, we generate three random patterns separately: {U1, U2, U3} and {C1, C2, C3}.

In Table  5.7, each row records the range of key system indicator values across the three random patterns of the C type of spatial 
distribution of bike pickups and returns for each canal network typology. Table  5.8 records the values for the U type for the same 
indicators. The ‘‘Obj. (e)’’ column shows the range of objective values, ‘‘Bikes’’ indicates the range of the numbers of bikes in the 
solution, and ‘‘Idle (min)’’ reports the range of rider idle time in minutes. The optimal solutions for all instances suggest using one 
MFI to serve 40 riders. As shown in the tables, for each of the canal network typology under the same type of spatial distribution 
of demands, three random patterns (C1, C2, C3 for C; and U1, U2, U3 for U) result in only slight variation in the values of the 
key system indicators. When comparing across the networks under the same type of spatial distribution of demands, the values of 
the system indicator are also close to each other. The results show that when the city layout, represented by the type of spatial 
distribution of demand, is fixed, the system performance of the MFI strategy under different canal network typologies and varying 
demand patterns remains largely consistent in terms of overall system costs and rider idle time, demonstrating the stability of the 
MFI strategy.

Table  5.9 compares the average value of various system indicators between the U and C type of spatial distribution of demands 
(Column ‘‘Distrb.’’). For each combination of network typology and type of spatial distribution of demands, each row records the 
average value of the system indicators across the three random patterns of each type of spatial distribution of demands. Under 
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Table 5.9
Comparison between C and U for four canal network typologies under case A4-P48-S40.
 Network Distrb. Idle (min) Obj. (e) Capital investment Operation cost
 Cost (e) Bikes DP Cost (e) Self-FF. (e) Per DP (e) 
 1 C 14.67 1123.69 835.05 30.00 5 288.64 22.96 53.14  
 U 17.75 1183.59 834.27 28.67 6 349.32 18.04 55.21  
 Diff. 21.00% 5.33% −0.09% −4.43% 20.00% 21.02% −21.43% 3.90%  
 2 C 14.71 1124.42 834.96 30.00 4.67 289.46 26.24 60.74  
 U 17.33 1176.02 834.90 28.67 8.33 341.12 13.12 39.36  
 Diff. 17.81% 4.59% −0.01% −4.43% 78.37% 17.85% −50.00% −35.20%  
 3 C 14.92 1128.25 834.69 30.00 3.67 293.56 31.16 71.56  
 U 18.71 1202.54 834.36 28.67 6.33 368.18 17.22 55.41  
 Diff. 25.40% 6.58% −0.04% −4.43% 72.48% 25.42% −44.74% −22.57%  
 4 C 14.88 1127.61 834.87 30.00 4.33 292.74 27.06 61.63  
 U 17.92 1186.96 834.36 28.67 6.33 352.6 14.76 53.34  
 Diff. 20.43% 5.26% −0.06% −4.43% 46.19% 20.45% −45.45% −13.45%  

Fig. 5.2. A heatmap visualizing the percentage differences in the values of system indicators between U and C types of spatial distribution of bike pickup and 
return demands for each canal network typology.

‘‘Capital investment’’, the ‘‘Cost(e)’’ column reports the total capital investment which is the sum of MFI leasing, bike purchasing, 
and docking point establishment discounted to a daily rate. The ‘‘DP’’ column records the number of docking points required to 
establish. Under ‘‘Operation cost’’, the ‘‘Cost(e)’’ column indicates the total operational cost, the ‘‘Self-FF.(e)’’ column shows the 
cost associated with self-fulfillment, and ‘‘Per DP(e)’’ reports the operation cost averaged to per docking point. We calculate the 
percentage differences in values of system indicators between U and C types of spatial distribution of bike pickup and return demands 
for each canal network typology in the row ‘‘Diff.’’, as (𝐔 − 𝐂)∕𝐂. The percentage differences are visualized as a heatmap in Fig. 
5.2.

As shown in Table  5.9 and Fig.  5.2, under type U, a rider on average spends 17.81% to 25.40% more time on bike pickups and 
returns, and the overall system cost is approximately 5% higher. The increase in the overall system cost largely comes from the 
operation cost, indicating that a more spatially dispersed distribution of demands leads to an increase in the rider’s idle time and 
the operating costs. In terms of capital investment, type U requires 20% to 78% more docking points but around 4% fewer bikes, 
resulting in a slightly lower total capital investment than in type C. However, for the operational costs, type U are about 20% higher 
than those of type C. The results suggest that platforms should carefully consider city layout when planning MFIs, as the level of 
demand concentration influences the riders’ bike pickup and return operations and the overall system cost.

MFI battery capacity. The battery lifetime limits the mobility of MFIs. A longer battery lifetime allows for a longer interval 
between two returns of MFI to the depot during daily operation. We investigate the effect of this time interval on the system 
performance. For Area-4, a 0-h interval represents a stationary fleet inventory at the depot, while a 1-h interval limits MFIs to only 
the central zones of the service area. Intervals exceeding 2 h enable MFI to visit to outermost zones.

We use instance A4-N1-P48-S40-U as a representative case, which represents Area-4, Network-1, 48 periods (8 h), 40 riders and
U type of spatial distribution of demands. We consider different intervals as {0, 1, 2, 4, 8} h. Besides the above-mentioned indicators, 
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Table 5.10
Sensitivity to the time interval between two returns of the MFI to the depot under case A4-N1-P48-S40-U, which represents 
Area-4, Network-1, 48 periods (8 h), 40 riders and U type of spatial distribution of demands.
 Interval (h) Idle (min) Obj. (e) Capital Opr. Docking points
 Invest. (e) cost (e)  
 Nr. Max. Min. Ave.  
 0 19.88 1224.32 833.18 391.14 1 366.54 366.54 366.54 
 1 17.88 1185.77 833.99 351.78 4 287.82 4.92 80.56  
 2 17.50 1178.66 834.26 344.40 5 206.64 4.92 64.94  
 4 16.25 1154.33 834.53 319.80 6 91.02 4.92 51.25  
 8 16.00 1149.41 834.53 314.88 6 86.10 4.92 50.43  

Fig. 5.3. Impact of the time interval between two returns of the MFI to the depot on the objective value, the capital investment converted to daily value, the 
daily operating cost, and the average rider idle time under case A4-N1-P48-S40-U, which represents Area-4, Network-1, 48 periods (8 h), 40 riders and U type 
of spatial distribution of demands.

under ‘‘Docking points’’ in Table  5.10, we present the number of visited docking points (‘‘Nr.’’) and the maximum, minimum, and 
average values of the operation cost associated with the visited docking points.

As expected, more docking points are visited (from 1 to 6) as the interval increases from 0 to 8 h. However, the average rider idle 
time decreases from 19.88 to 16.00 min, and the objective value drops from 1224.32 e to 1149.41 e with the interval increasing. 
Longer interval leads to slight growth in the capital investment converted to a daily rate (from 833.18 e to 834.53 e) due to more 
docking points visited, but significantly reduces operation cost (from 391.14 e to 314.88 e) that is the opportunity of rider idle 
time. Further analysis shows that the maximum, minimum, and average values of the operation cost of the visited docking point 
decrease with longer interval. This is because more docking points help relieve the service burdens on each one. Furthermore, the 
0-h interval scenario mimics the current static fleet inventory approach, where the highest objective value and longest average rider 
idle time are recorded. The results demonstrate the benefits of the MFI strategy and a higher level of MFI mobility reduces overall 
costs and improves rider time productivity (see Fig.  5.3).

Zone size and period length. This analysis examines how zone size and period length influence MFI system performance. Under 
the assumption of constant MFI speed, these two parameters are interdependent. The spatial resolution affects the aggregation of 
pickup and return demand (assumed to be located at each zone’s center), the granularity of MFI movement, and model solving time.

Smaller zones increase the number of discrete areas and shorten period lengths, leading to higher model complexity and solving 
time. Demand becomes more spatially dispersed, necessitating more dynamic MFI routing. Conversely, coarser zoning aggregates 
demand and simplifies MFI movement, reducing the computational burden. The zone configuration used in other experiments reflects 
a trade-off between modeling precision and efficiency. We use the instance ‘‘A4-N1-P48-S40-U’’ as a reference, which represents 
Area-4, Network-1, 48 periods (8 h), 40 riders and U type of spatial distribution of demands. Three scenarios are compared: (1) 
Case-Base (reference): 200-m zone edge length, 10 min periods; (2) Case-Small (higher precision): 133-m zone edge length, 6.7 min 
periods; (3) Case-Large (lower precision): 300-m zone edge length, 15 min periods.
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Table 5.11
Comparison of system indicators between cases with different zone-separation precisions. Case-Base uses the instance ‘‘A4-N1-
P48-S40-U’’ as a reference, which represents Area-4, Network-1, 48 periods (8 h), 40 riders and U type of spatial distribution of 
demands. Case-Small considers 1.5 times shorter zone edge length. Case-Large considers 1.5 times longer zone edge length.
 Case Obj. (e) Cap. cost (e) Opr. cost (e) Idle (min) DP Bikes 
 Case-Base 1185.77 833.99 351.78 17.88 4 29  
 Case-Small 1238.22 834.78 403.44 20.60 4 30  
 Case-Large 1186.90 832.66 354.24 18.00 2 28  

Table 5.12
Sensitivity to the number of riders under case A4-N1-P48-U, which represents Area-4, Network-1, 48 periods, and U type of 
spatial distribution of demands.
 Rider Nr. Obj. (e) Cost per rider (e) Bikes Ratio DP Idle (min) 
 20 984.43 49.22 16 0.80 7 16.25  
 30 1135.28 37.84 26 0.87 8 20.50  
 40 1149.41 28.74 29 0.73 6 16.00  
 50 1296.83 25.94 35 0.70 6 18.60  
 60 1403.11 23.39 46 0.77 3 18.83  

Fig. 5.4. Effect of the number of riders on: (a) the objective value and the number of bikes required, and (b) the average cost per rider, under case A4-N1-P48-U
which represents Area-4, Network-1, 48 periods, and U type of spatial distribution of demands.

Table  5.11 reports key results across the three cases, including the objective value (‘‘Obj. (e)’’), capital cost (‘‘Cap. cost (e)’’), 
operational cost (‘‘Opr. cost (e)’’), average idle time for pickups and returns (‘‘Idle (min)’’), number of docking points (‘‘DP’’), and 
number of bikes.

Case-Small yields a higher objective value, driven by increased operational cost due to more dispersed demand representation and 
longer rider idle times (20.60 vs. 17.88 min). In Case-Large, demand and MFI routing are more aggregated. The system becomes more 
static, with docking points reduced from four to two. Yet, objective value, idle time, and fleet size remain nearly unchanged relative 
to Case-Base. The results demonstrate the importance of spatial resolution in system design. The Case-Base configuration offers a 
balanced compromise—capturing essential system dynamics without excessive computational complexity or oversimplification.

5.3.2. Impact of operation environments
In addition to infrastructure configurations, factors related to the operation environment are also expected to impact the planning 

of MFI. We identify two important characteristics: the number of riders and the unit cost of bike pickups and returns self-fulfillment.
Sensitivity to the number of riders served. The required number of riders in the service area highly depends on customer 

order volumes. We evaluate scenarios where different numbers of riders are required. We consider rider numbers as {20, 30, 40, 
50, 60}, using instance A4-N1-P48-U as a representative case, which represents Area-4, Network-1, 48 periods, and U type of spatial 
distribution of demands.

In Table  5.12, the first column indicates the number of riders. In addition to previously discussed system indicators, we further 
introduce: ‘‘Cost per rider’’ for the total cost averaged per rider and ‘‘Ratio’’ for the ratio of required bikes to the number of riders. 
As shown in Table  5.12 and Fig.  5.4(a), as the number of riders increases from 20 to 60, the objective value rises from 984.43 e 
to 1403.11 e and the number of bikes grows from 16 to 46. The number of bikes maintains a ratio between 70% and 87% to the 
number of riders. However, as is shown in Fig.  5.4(b), the average cost per rider decreases from 49.22 e to 23.39 e. The average 
rider idle time fluctuates between 16 and 20.5 min. The key insight from this analysis is that the platform should carefully forecast 
the number of riders required and set the level of rider availability guarantee for delivery services, as it significantly influences the 
number of bikes required, the productivity of rider time, and overall system costs.

Impact of unit cost for self-fulfillment This analysis deals with situations where costs associated with bike pickup and return 
self-fulfillment may change. In our assumptions, the self-fulfillment is realized by considering a free-floating location in each zone 
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Table 5.13
Sensitivity to unit cost of bike pickups and returns self-fulfillment under case A4-N1-P48-U.
 𝑐𝑆𝐹 ∕𝑐𝑣𝑜𝑡 Obj. (e) By MFI (%) By DP (%) By Self-FF. (%) Idle (min) 
 1 1149.41 72 20 7 16.00  
 1.2 1151.87 75 17 7 16.00  
 1.4 1153.84 75 20 5 16.12  
 1.6 1154.82 75 20 5 16.12  
 1.8 1155.81 72 22 5 16.12  
 2 1156.79 75 20 5 16.12  
 No Self-FF. 1159.52 72 28 0 16.5  

Table 5.14
Comparison between the MFI-Base and the benchmark.
 Case Obj. (e) Idle (min) 
 Benchmark 1656.13 37.11  
 MFI-Base 1373.44 24.11  
 Impr. 17.07% 35.03%  

where two riders meet to hand over the bike. In some cities, this may involve additional administration costs. We increase the ratio 
𝑐𝑆𝐹 ∕𝑐𝑣𝑜𝑡 as {1, 1.2, 1.4, 1.6, 1.8, 2} to investigate the effect of 𝑐𝑆𝐹 , which is the cost for one bike covering one unit distance for 
self-fulfillment, and 𝑐𝑣𝑜𝑡 is the value of time of riders. In Table  5.13, the columns ‘‘By MFI (%)’’, ‘‘By DP (%)’’, and ‘‘By Self-FF. 
(%)’’ indicate the proportion of bike pickups and returns satisfied by the MFI, docking points, and self-fulfillment, respectively. The 
results show that the objective value slightly increases from 1149.41 e to 1156.79 e with the growing 𝑐𝑆𝐹 . Bike pickups and returns 
that are satisfied by self-fulfillment decrease from 7% to 5% after 𝑐𝑆𝐹  increases. The average ride idle time also slightly increases, 
from 16.00 min to 16.12 min.

We further introduce the case where self-fulfillment is not allowed in the service area. The values of the corresponding indicators 
are recorded in row ‘‘No Self-FF.’’. We compare the case of no self-fulfillment to the case of 𝑐𝑆𝐹 ∕𝑐𝑣𝑜𝑡 = 1. There is an increase of 
0.88% in the objective value and 3.13% in the average rider idle time after shutting down self-fulfillment. The results indicate the 
benefits of introducing self-fulfillment to the MFI system based on overall costs and rider time productivity.

5.4. Case study on amsterdam inland waterway

In this section, we apply our model to data collected from a local meal delivery platform in Amsterdam, The Netherlands. We 
use rider itinerary recordings in inland waterway between September 13, 2021, and October 10, 2021 as our sample. We manually 
outline the canal course for the gridded service area, which contains 91 zones (Fig.  5.5). The actual canal is seen as in Fig.  5.6 
(right). Each zone has an edge length of 200 m, and the distance between the centers of two adjacent zones is 347 m. We consider 
one available MFI with a capacity of 50 bikes (see Fig.  5.6 left). We assume all zones crossed by canals can establish a docking 
point. Given the curved canals and the busy waterway transport on the canal, we consider a speed of 4 km/h for the MFI. For the 
chosen area, we select the innermost zone as the depot. The MFI is required to return to the depot every 8 h to recharge.

We consider the operation of a typical day from 9:00 to 24:00. The data indicates that the highest density of meal pickups and 
drop-offs occur in the canal area and they are almost spatially uniformly distributed. After averaging the monthly rider schedules 
to one day and removing riders that operate outside the chosen area, we obtained an average of 45 riders in a day for the canal 
area. The lunch peak for rider fleet dispatching is in the hour of 11:00, and the dinner peak is in the hours of 16:00 and 17:00. The 
parameters related to the capital investments and MFI operations are the same as described in Section 5.1.

In Section 5.4.1, we compare the MFI strategy against the static fleet inventory approach that is used in the current practice. 
In Section 5.4.2, we consider the day of the week to show the stability of the MFI strategy. Section 5.4.3 investigates the effects of 
platform policies on the service time and spatial range of the rider shift.

5.4.1. Benchmarking again static fleet inventory
We first define the base case of the MFI strategy that considers the average daily number of riders, which is 45, and name it 

‘‘MFI-Base’’. We further construct a benchmark that mimics the static fleet inventory approach currently used by the platform. We 
solve the model to an optimality gap of 3%.

In Table  5.14, row ‘‘Impr.’’ presents the percentage difference between the indicator values of MFI-Base and the benchmark. The 
solutions suggest both the MFI-Base and benchmark require 31 bikes for the 45 riders to conduct services. As can be seen from the 
table, there is a 17.07% saving in the overall system costs and a 35.03% reduction in the average rider idle time after applying the 
MFI strategy, which demonstrates the benefits of the strategy based on the system cost and rider time productivity.
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Fig. 5.5. Amsterdam inland waterway. MFI depot is located in the center and the radius of the test area is 2 km.

Fig. 5.6. (left) Electric waterborne vessels; (right) Canal of Amsterdam. 
Source: (left) https://hykeelectricferries.com/urban-mobility-solutions; 
(right) taken by the authors.
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Table 5.15
Indicators in the ‘‘Free’’ and ‘‘Base’’ configurations for Weekday and Weekend scenarios.
 Scn. DP Obj. (e) Idle (min)
 Free Base Diff. Free Base Diff. Free Base Diff.  
 Weekday 14 13 50% 1219.75 1234.24 1.19% 23.09 23.97 3.81% 
 Weekend 19 19 26.30% 1524.9 1532.28 0.48% 24.64 24.91 1.10% 

Table 5.16
Sensitivity to rider shift length.
 Shift Len. Obj. (e) Bikes Idle (min)
 (h) MFI Bench. Impr. MFI Bench. Impr. MFI Bench. Impr. 
 2 1280.75 1648.05 22% 23 27 15% 20.22 36.89 45%  
 3 1363.15 1646.29 17% 28 31 10% 23.78 36.67 35%  
 4 1373.44 1656.13 17% 31 31 0% 24.11 37.11 35%  
 5 1400.77 1653.67 15% 31 31 0% 25.33 37.00 32%  
 6 1433.32 1656.83 13% 31 35 11% 26.89 37.00 27%  
 Ave. 1370.29 1652.19 17% 28.8 31 7% 24.07 36.93 35%  

5.4.2. The day of the week
Once set, the strategy configuration (MFI leasing, docking point locations, and the number of bikes) remains fixed for a long 

time. Historical data shows that customer orders vary throughout the week. Weekends typically have higher order volumes, while 
weekdays have lower volumes. This leads to slightly different rider shift patterns.

We define two scenarios: Weekday and Weekend. We consider 75% of the number of riders in the MFI-Base for the Weekday 
scenario and 125% for the Weekend scenario. Based on findings in Section 5.3.2, the required number of bikes is between 70% to 
87% of the number of riders. The two scenarios maintain an identical spatial distribution of bike pickup and return demands to the 
MFI-Base, differing only in the number of demands in each zone. We consider two situations regarding the visitable docking points 
for the MFI in Weekday and Weekend scenarios: (1) ‘‘Base’’, where the MFI can only visit docking points that are selected in the 
MFI-Base; (2) ‘‘Free’’, where the MFI can visit all possible candidate docking points.

Table  5.15 presents the numbers of docking points, objective values, and the average idle time for Weekday and Weekend 
scenarios in the ‘‘Base’’ and ‘‘Free’’ situations. The ‘‘Diff.’’ column under ’’DP’’ shows the percentage of the docking points that are 
different in ‘‘Free’’ compared to ‘‘Base’’. Under ‘‘Obj. (e)’’ and ‘‘Idle (min)’’, the ‘‘Diff.’’ columns show the percentage difference 
between the indicator values in ‘‘Base’’ and ‘‘Free’’, calculated as (𝐵𝑎𝑠𝑒−𝐹𝑟𝑒𝑒)∕𝐹𝑟𝑒𝑒. As can be seen in the table, while the number 
of visited docking points is very close between the ‘‘Base’’ and ‘‘Free’’ situations for both the Weekday and Weekend scenarios, the 
docking point locations change significantly: 50% of the docking points are different for Weekday and 26.3% for Weekend. However, 
there is a very slight increase in the objective values in the ‘‘Base’’ configuration compared to the ‘‘Free’’ for both the Weekday 
(1.19%) and Weekend (0.48%). Rider idle time also only increases very slightly, 3.81% for Weekday and 1.10% for Weekend. The 
results demonstrate the stability of the MFI strategy. We show that MFI-Base configurations, which are based on average daily rider 
numbers, remain effective for slightly changing rider shift patterns on weekdays and weekends.

5.4.3. Platform operation policies
In this section, we investigate the impact of platform policies on the shift length and service range of riders. Changing these two 

factors may impose different pressures on the urgency of a zone requiring bikes or having bikes to return in certain periods. In the 
MFI-Base, the shift length of riders is 4 h and the service spatial range is the whole area.

Sensitivity to rider shift length. In this section, we use MFI-Base as a reference and vary the shift length as {2, 3, 4, 5, 6} h 
while keeping the service spatial range unchanged. Table  5.16 presents the objective value, the number of bikes, and the average 
rider idle time for MFI-Base and the stationary facility case (Column ‘‘Bench.’’) under different shift length. The columns ‘‘Impr’’ 
under each indicator report the percentage improvements after implementing the MFI strategy. The results show that longer service 
lengths lead to larger objective values and more bikes required, and riders spend more time on bike pickups and returns. This trend 
applies to both the MFI strategy and the stationary facility case. When comparing the MFI strategy and stationary facility case for 
the five shift lengths, the MFI strategy always has better system performance. On average, we see a decrease of 17% in the objective 
value, 7% in the required number of bikes, and 35% in the average rider idle time.

Sensitivity of rider service spatial range. In this analysis, we vary the radius of the rider service spatial range as {0, 2, 4, 6, 
8, 10} zones while keeping the shift length as 4 h. A service range of 0 zone represents the case where riders start the first delivery 
and end the last one in the same zone. Table  5.17 shows the objective values and the average rider idle time for both the MFI and 
stationary facility case. The number of required bikes is always 31 for all cases. The results show the effect of changing the rider 
service range is small. When comparing the MFI strategy and the stationary facility case, we observe on average an improvement 
of 15% in the objective value and 32% in the average rider idle time.
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Table 5.17
Sensitivity to rider service range.
 Range Obj. (e) Idle (min)
 (zones) MFI Bench. Impr. MFI Bench. Impr. 
 0 1409.80 1656.40 15% 25.78 37.11 31%  
 2 1388.20 1646.56 16% 24.78 36.67 32%  
 4 1389.31 1617.04 14% 24.89 35.33 30%  
 6 1363.06 1626.88 16% 23.67 35.78 34%  
 8 1385.47 1653.94 16% 24.67 37.00 33%  
 10 1373.44 1656.13 17% 24.11 37.11 35%  
 Ave. 1387.17 1640.16 15% 24.76 36.38 32%  

6. Conclusion

This study investigates the potential of the MFI strategy for on-demand delivery services and proposes a mixed-integer 
optimization model to jointly optimize infrastructure investments and operational costs. The model is tractable for reasonably sized 
real-world instances and solvable within an acceptable time using a commercial solver. A case study in the Amsterdam inland 
waterway demonstrates the superiority and applicability of the MFI approach. Compared to the current stationary fleet inventory 
practice, our model reduces the total system cost by 17.07% and average rider idle time by 35.03%. Importantly, the optimized 
configuration that encompasses MFI leasing, docking point locations, and the number of shared bikes proves robust across typical 
variations in rider shift patterns between weekday and weekend scenarios.

While the results demonstrate the benefits of the MFI system through a case study in Amsterdam inland waterway, several 
avenues remain for future exploration. First, this study focuses on a specific operational area within Amsterdam’s canal network 
as a proof-of-concept. Scaling the MFI system citywide involves operational considerations including local variation in canal 
access, customer demand density, and vessel navigability. For example, some areas are not accessible by water, or may not justify 
deployment due to lower order volume. These factors inform where and how MFIs are most effectively deployed, suggesting a 
modular design strategy that prioritizes high-demand, canal-accessible zones. To extend the framework to more diverse urban 
settings, future work may explore hybrid systems that combine MFIs with land-based alternatives such as electric trucks or cargo 
bikes, particularly in areas lacking sufficient water access. These systems would require additional modeling to address road-based 
uncertainties such as traffic conditions and delivery variability.

A second direction involves managing spatiotemporal fluctuations in delivery demand and rider availability. Although the current 
model operates at a strategic-tactical level with deterministic inputs, it can be extended to support adaptive planning under demand 
variability. This includes weekday–weekend shifts, seasonal changes, and event-driven surges. Robust optimization or scenario-based 
approaches could help maintain efficiency under foreseeable disruptions, without requiring full real-time responsiveness.

Finally, the model assumes an employment-based courier system using shared (e)bikes to reflect a shift toward better labor 
conditions. The framework can accommodate hybrid workforce models, including riders using personal vehicles compensated 
by shift or availability. Coordinating such systems, where centralized infrastructure intersects with decentralized rider behavior, 
presents a compelling direction for future research.
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A.1. Constraints linearization

Constraints (23) in the arc-based formulation are nonlinear, which can be linearized as follows:
𝑄𝑀𝐹𝐼 (1 − 𝑥𝑣(𝑧,𝑡)(𝑧′ ,𝑡′))𝐼

𝑣
𝑧′𝑡′ ≥ 𝐼𝑣𝑧𝑡 +

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡

𝑦𝑅𝑀,𝑣
(𝑧′′ ,𝑡′′)(𝑧,𝑡) −

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡

𝑦𝑃𝑀,𝑣
(𝑧,𝑡)(𝑧′′ ,𝑡′′),

∀𝑣 ∈  , ∀(𝑧, 𝑡) ∈ 𝑀 , ∀(𝑧′, 𝑡′) ∈ 𝑁𝑀+
𝑧,𝑡 , (63)

𝑄𝑀𝐹𝐼 (𝑥𝑣(𝑧,𝑡)(𝑧′ ,𝑡′) − 1)𝐼𝑣𝑧′𝑡′ ≤ 𝐼𝑣𝑧𝑡 +
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡

𝑦𝑅𝑀,𝑣
(𝑧′′ ,𝑡′′)(𝑧,𝑡) −

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡

𝑦𝑃𝑀,𝑣
(𝑧,𝑡)(𝑧′′ ,𝑡′′),

∀𝑣 ∈  , ∀(𝑧, 𝑡) ∈ 𝑀 , ∀(𝑧′, 𝑡′) ∈ 𝑁𝑀+
𝑧,𝑡 . (64)

Constraints (53) in the route-based formulation are non-linear, which can be linearized as:
𝑄𝑀𝐹𝐼 (1 − 𝑓 𝑙+1,𝑘′

𝑙,𝑘 ) + 𝐼 𝑙+1,𝑘
′

(𝑧′ ,𝑡′) ≥ 𝐼 𝑙𝑘(𝑧,𝑡) +
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
(𝑧,𝑡)

𝑦𝑅𝑀,𝑙𝑘
(𝑧′′ ,𝑡′′)(𝑧,𝑡) −

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
(𝑧,𝑡)

𝑦𝑃𝑀,𝑙,𝑘
(𝑧,𝑡),(𝑧′′ ,𝑡′′),

∀𝑙 ∈ 𝐿 ⧵ {|𝐿|}, ∀𝑘 ∈ 𝐾𝑙 , ∀𝑘′ ∈ 𝐾𝑙+1, (𝑧, 𝑡) = 𝐻 𝑙𝑘(−1), (𝑧′, 𝑡′) = 𝐻 𝑙+1,𝑘′ (1), (65)

𝑄𝑀𝐹𝐼 (𝑓 𝑙+1,𝑘′
𝑙,𝑘 − 1) + 𝐼 𝑙+1,𝑘

′

(𝑧′ ,𝑡′) ≤ 𝐼 𝑙𝑘(𝑧,𝑡) +
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
(𝑧,𝑡)

𝑦𝑅𝑀,𝑙𝑘
(𝑧′′ ,𝑡′′)(𝑧,𝑡) −

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
(𝑧,𝑡)

𝑦𝑃𝑀,𝑙,𝑘
(𝑧,𝑡),(𝑧′′ ,𝑡′′),

∀𝑙 ∈ 𝐿 ⧵ {|𝐿|}, ∀𝑘 ∈ 𝐾𝑙 , ∀𝑘′ ∈ 𝐾𝑙+1, (𝑧, 𝑡) = 𝐻 𝑙𝑘(−1), (𝑧′, 𝑡′) = 𝐻 𝑙+1,𝑘′ (1). (66)

A.2. Variable reduction

The upper bounds of all integer variables can be determined beforehand. Based on specific inputs, the demands for bike pickup 
and return occurring at node (𝑧, 𝑡) might be 0. This means that the upper bounds of the variables associated with satisfying these 
bike pickups and returns are 0. These variables can be removed from the model before solving.

The following variables associated with satisfying bike pickups and returns occurring at (𝑧, 𝑡) through MFIs can be reduced if the 
input shows no bike pickups and returns there:

• ∑

𝑣∈
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡 ∩𝑀 𝑦𝑃𝑀,𝑣

(𝑧′′ ,𝑡′′)(𝑧,𝑡) = 0  if 𝑑𝑧𝑡 = 0.

• ∑

𝑙∈𝐿
∑

𝑘∈𝐾𝑙

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡 ∩𝐻 𝑙𝑘 𝑦𝑃𝑀,𝑙𝑘

(𝑧′′ ,𝑡′′)(𝑧,𝑡) = 0  if 𝑑𝑧𝑡 = 0.

• ∑

𝑣∈
∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡 ∩𝑀 𝑦𝑅𝑀,𝑣

(𝑧,𝑡)(𝑧′′ ,𝑡′′) = 0  if 𝑟𝑧𝑡 = 0.

• ∑

𝑙∈𝐿
∑

𝑘∈𝐾𝑙

∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡 ∩𝐻 𝑙𝑘 𝑦𝑅𝑀,𝑙𝑘

(𝑧,𝑡)(𝑧′′ ,𝑡′′) = 0  if 𝑟𝑧𝑡 = 0.

Similarly, variables associated with docking points can be removed if the inputs show there are no bike pickups and returns at 
(𝑧, 𝑡):

• ∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡 ∩𝑀 𝑦𝑃𝐷(𝑧′′ ,𝑡′′)(𝑧,𝑡)  if 𝑑𝑧𝑡 = 0.

• ∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
(𝑧,𝑡)∩

𝑀 𝑦𝑅𝐷(𝑧,𝑡),(𝑧′′ ,𝑡′′) = 0  if 𝑟𝑧𝑡 = 0.

Also, variables related to self-fulfillment when inputs show no bike pickups and returns at (𝑧, 𝑡):

• ∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅−
𝑧,𝑡

𝑦𝑆𝐹(𝑧′′ ,𝑡′′)(𝑧,𝑡) = 0  if 𝑑𝑧𝑡 = 0.

• ∑

(𝑧′′ ,𝑡′′)∈𝑁𝑅+
𝑧,𝑡

𝑦𝑆𝐹(𝑧,𝑡)(𝑧′′ ,𝑡′′) = 0  if 𝑟𝑧𝑡 = 0.
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