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Abstract

In the context of kernel machines, polynomial
and Fourier features are commonly used to
provide a nonlinear extension to linear models
by mapping the data to a higher-dimensional
space. Unless one considers the dual formu-
lation of the learning problem, which renders
exact large-scale learning unfeasible, the ex-
ponential increase of model parameters in the
dimensionality of the data caused by their
tensor-product structure prohibits to tackle
high-dimensional problems. One of the pos-
sible approaches to circumvent this exponen-
tial scaling is to exploit the tensor structure
present in the features by constraining the
model weights to be an underparametrized
tensor network. In this paper we quantize,
i.e. further tensorize, polynomial and Fourier
features. Based on this feature quantization
we propose to quantize the associated model
weights, yielding quantized models. We show
that, for the same number of model param-
eters, the resulting quantized models have
a higher bound on the VC-dimension as op-
posed to their non-quantized counterparts, at
no additional computational cost while learn-
ing from identical features. We verify exper-
imentally how this additional tensorization
regularizes the learning problem by prioritiz-
ing the most salient features in the data and
how it provides models with increased general-
ization capabilities. We finally benchmark our
approach on large regression task, achieving
state-of-the-art results on a laptop computer.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

1 INTRODUCTION

In the context of supervised learning, the goal is to
estimate a function f (·) : X → Y given N input-output
pairs {xn, yn}Nn=1, where x ∈ X and y ∈ Y. Kernel
machines accomplish this by lifting the input data into
a high-dimensional feature space by means of a feature
map z (·) : X → H and seeking a linear relationship
therein:

f (x) = ⟨z (x) ,w⟩ . (1)

Training such a model involves the minimization of the
regularized empirical risk given a convex measure of
loss ℓ (·, ·) : H× Y → R+

Rempirical (w) =
1

N

N∑
n=1

ℓ (⟨z (xn) ,w⟩ , yn) + λ ||w||2 .

(2)
Different choices of loss yield the primal formulation
of different kernel machines. For example, squared
loss results in kernel ridge regression (KRR) (Suykens
et al., 2002), hinge loss in support vector machines
(SVMs) (Cortes and Vapnik, 1995), and logistic loss
yields logistic regression. Different choices of the feature
map z allow for modeling different nonlinear behaviors
in the data. In this article we consider tensor-product
features

z (x) =

D⊗
d=1

v(d) (xd) , (3)

where v(d)(·) : C → CMd is a feature map acting on
each element of the d-th component xd of x ∈ CD.
Here ⊗ denotes the left Kronecker product (Cichocki
et al., 2016). This tensor-product structure arises when
considering product kernels (Shawe-Taylor and Cris-
tianini, 2004; Hensman et al., 2017; Solin and Särkkä,
2020), Fourier features (Wahls et al., 2014), when con-
sidering B-splines (Karagoz and Batselier, 2020) and
polynomials (Shawe-Taylor and Cristianini, 2004).

Due to the tensor-product structure in equation (3), z(·)
maps an input sample x ∈ CD into an exponentially
large feature vector z(x) ∈ CM1M2···MD . As a result,
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the model is also described by an exponential number
of weights w. This exponential scaling in the number
of features limits the use of tensor-product features
to low-dimensional data or to mappings of very low
degree.

Both these computational limitations can be
sidestepped entirely by considering the dual formu-
lation of the learning problem in equation (2), requir-
ing to compute the pairwise similarity of all data re-
spectively by means of a kernel function k(x,x′) =
⟨z(x), z(x′)⟩. However, the dual formulation requires
to instantiate the kernel matrix at a cost of O(N2)
and to estimate N Lagrange multipliers by solving a
(convex) quadratic problem at a cost of at least O(N2),
prohibiting to tackle large-scale data (large N). To
lift these limitations, a multitude of research has fo-
cused on finding low-rank approximations of kernels
by considering random methods such as polynomial
sketching (Pham and Pagh, 2013; Woodruff, 2014; Meis-
ter et al., 2019) and random features (Williams and
Seeger, 2001; Rahimi and Recht, 2007; Le et al., 2013),
which approximate the feature space with probabilistic
approximation guarantees.

One way to take advantage of the existing tensor-
product structure in equation (3) is by imposing a
tensor network (Kolda and Bader, 2009; Sidiropoulos
et al., 2017) constraint on the weights w. For exam-
ple, using a polyadic rank-R constraint reduces the
storage complexity of the weights from O(MD) down
to O(DMR) and enables the development of efficient
learning algorithms with a computational complexity
of O(DMR) per gradient descent iteration. This idea
has been explored for polynomial (Favier and Bouilloc,
2009; Rendle, 2010; Blondel et al., 2016, 2017; Batselier
et al., 2017) pure-power-1 polynomials (Novikov et al.,
2018), pure-power polynomials of higher degree (Chen
et al., 2018), B-splines (Karagoz and Batselier, 2020),
and Fourier features (Wahls et al., 2014; Stoudenmire
and Schwab, 2016; Efthymiou et al., 2019; Kargas and
Sidiropoulos, 2021; Cheng et al., 2021; Wesel and Bat-
selier, 2021).

In this article, we improve on this entire line of research
by deriving an exact quantized representation (Khorom-
skij, 2011) of pure-power polynomials and Fourier fea-
tures, exploiting their inherent Vandermonde structure.
It is worth noting that in this paper quantized means
further tensorized, and should not be confused with
the practice of working with lower precision floating
point numbers. By virtue of the derived quantized
features, we are able to quantize the model weights.
We show that compared to their non-quantized coun-
terparts, quantized models can be trained with no
additional computational cost, while learning from the
same exact features. Most importantly, for the same

number of model parameters the ensuing quantized
models are characterized by higher upper bounds on
the VC-dimension, which indicates a potential higher
expressiveness. While these bounds are in practice not
necessarily met, we verify experimentally that:

1. Quantized models are indeed characterized by
higher expressiveness. This is demonstrated in
section 5.1, where we show that in the under-
parameterized regime quantized models achiever
lower test errors than the non-quantized models
with identical features and identical total number
of model parameters.

2. This additional structure regularizes the problem
by prioritizing the learning of the peaks in the
frequency spectrum of the signal (in the case of
Fourier features) (section 5.2). In other words, the
quantized structure is learning the most salient
features in the data first with its limited amount
of available model parameters.

3. Quantized tensor network models can provide
state-of-the-art performance on large-scale real-
life problems. This is demonstrated in section 5.3,
where we compare the proposed quantized model
to both its non-quantized counterpart and other
state-of-the-art methods, demonstrating superior
generalization performance on a laptop computer.

2 BACKGROUND

We denote scalars in both capital and non-capital ital-
ics w,W , vectors in non-capital bold w, matrices in
capital bold W and tensors, also known as higher-
order arrays, in capital italic bold font W. Sets are
denoted with calligraphic capital letters, e.g. S. The
m-th entry of a vector w ∈ CM is indicated as wm and
the m1m2 . . .mD-th entry of a D-dimensional tensor
W ∈ CM1×M2×···×MD as wm1m2...mD

. We denote the
complex-conjugate with superscript ∗ and ⊗ denotes
the left Kronecker product (Cichocki et al., 2016). We
employ zero-based indexing for all tensors. The Frobe-
nius inner product between two D-dimensional tensors
V ,W ∈ CM1×M2×···×MD is defined as

⟨V ,W⟩ :=
M1−1∑
m1=0

M2−1∑
m2=0

· · ·
MD−1∑
mD=0

v∗m1m2...mD
wm1m2...mD

.

(4)

We define the vectorization operator as vec (·) :
CM1×M2×···×MD → CM1M2···MD such that

vec (W)m = wm1m2...mD
,

with m = m1 +
∑D

d=2 md

∏d−1
k=1 Mk. Like-

wise, its inverse, the tensorization opera-
tor ten (·,M1,M2, . . . ,MD) : CM1M2···MD →
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CM1×M2×...MD is defined such that

ten (w,M1,M2, . . . ,MD)m1m2···mD
= wm.

2.1 Tensor Networks

Tensor networks (TNs) (Kolda and Bader, 2009; Ci-
chocki, 2014; Cichocki et al., 2016, 2017) express a
D-dimensional tensor ten (w,M1,M2, . . . ,MD) =: W
as a multi-linear function of C core tensors, see defini-
tion A.1 for a rigorous definition. Two commonly used
TNs are the canonical polyadic decomposition (CPD)
and tensor train (TT).
Definition 2.1 (Canonical polyadic decomposition
(Hitchcock, 1927; Kolda and Bader, 2009)). A D-
dimensional tensor W ∈ CM1×M2×···×MD has a rank-R
CPD if

wm1m2...mD
=

R−1∑
r=0

D∏
d=1

w(d)
mdr.

The cores of this particular network are C = D ma-
trices W (d) ∈ CMd×R. The storage complexity P =
R
∑D

d=1 Md of a rank-R CPD is therefore O(DMR),
where M = max(M1,M2, . . . ,MD).
Definition 2.2 (Tensor train (Oseledets, 2011)). A
D-dimensional tensor W ∈ CM1×M2×···×MD admits a
rank-(R1 := 1, R2, . . . , RD, RD+1 := R1) tensor train if

wm1m2...mD
=

R1−1∑
r1=0

R2−1∑
r2=0

· · ·
Rd−1∑
rD=0

D∏
d=1

w(d)
rdmdrd+1

.

The cores of a tensor train are the C = D 3-dimensional
tensors W(d) ∈ CRd×M×Rd+1 . The case R1 > 1 is also
called a tensor ring (TR) (Zhao et al., 2016). Through-
out the rest of this article we will simply refer to the
tensor train rank as R = max(R2, · · · , RD). The stor-
age complexity P =

∑D
d=1 MdRdRd+1 of a tensor train

is then O(DMR2). A TN is underparametrized if
P ≪

∏D
d=1 Md, i.e. it can represent a tensor with

fewer parameters than the number of entries of the
tensor.

Other TNs are the Tucker decomposition (Tucker, 1963,
1966), hierarchical hierarchical Tucker (Hackbusch
and Kühn, 2009; Grasedyck, 2010) decomposition,
block-term decompositions (De Lathauwer, 2008a,b),
PEPS (Verstraete and Cirac, 2004) and MERA (Even-
bly and Vidal, 2009).

2.2 Tensorized Kernel Machines

The tensor-product structure of features in equation (3)
can be exploited by imposing a tensor network structure
onto the tensorized model weights

ten (w,M1,M2, . . . ,MD) .

Although generally speaking the tensorized model
weights are not full rank, modeling them as an un-
derparametrized tensor network allows to compute fast
model responses when the feature map z (·) is of the
form of equation (3).

Theorem 2.3 (Tensorized kernel machine (TKM)).
Suppose ten (w,M1,M2, . . . ,MD) is a tensor in CPD,
TT or TR form. Then model responses and associated
gradients

f (x) = ⟨
D⊗

d=1

v(d) (xd) ,w⟩,

can be computed in O(P ) instead of O(
∏D

d=1 Md),
where P = DMR in case of CPD, and P = DMR2 in
case of TT or TR.

Proof. See appendix B.1.

Results for more general TNs can be found in ap-
pendix B.1. This idea has been explored for a plethora
of different combinations of tensor-product features
and tensor networks (Wahls et al., 2014; Stoudenmire
and Schwab, 2016; Novikov et al., 2018; Chen et al.,
2018; Cheng et al., 2021; Khavari and Rabusseau, 2021;
Wesel and Batselier, 2021). A graphical depiction of
a TKM can be found in figure 1a: a full line denotes
a summation along the corresponding index, while a
dotted line denotes a Kronecker product. Training a
kernel machine under such constraint yields the follow-
ing nonconvex optimization problem:

min
w

1

N

N∑
n=1

ℓ(⟨
D⊗

d=1

v(d) (xd) ,w⟩, yn) + λ ||w||2 , (5)

s.t. ten (w,M1,M2, . . . ,MD) is a tensor network.

Common choices of tensor network-specific optimiz-
ers are the alternating linear scheme (ALS) (Comon
et al., 2009; Kolda and Bader, 2009; Uschmajew, 2012;
Holtz et al., 2012), the density matrix renormalization
Group (DMRG) (White, 1992) and Riemannian opti-
mization (Novikov et al., 2018, 2021). Generic first or
second order gradient-based optimization method can
also be employed.

3 QUANTIZING POLYNOMIAL
AND FOURIER FEATURES

Before presenting the main contribution of this article,
we first provide the definition of a pure-power polyno-
mial feature map.

Definition 3.1 (Pure-power polynomial feature
map (Chen et al., 2018)). For an input sample x ∈ CD,
the pure-power polynomial features z(·) : CD →
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M1 M2 M3

R2 R3

v(1) v(2) v(3)

W(1) W(2) W(3)

(a) TKM with TT-constrained weights.

Q Q Q Q Q Q

R2 R3 R4 R5 R6

s(1,1) s(1,2) s(1,3) s(2,1) s(3,1) s(3,2)

W(1,1) W(1,2) W(1,3) W(2,1) W(3,1) W(3,2)

(b) Corresponding QTKM with Q-quantized TT-constrained weights.

Figure 1: TKM (figure 1a), and QTKM (figure 1b) with TT-constrained model weights. In these diagrams, each
circle represent a vector which constitutes the pure-power feature map of definition 3.1, and each square represents
a tensor train core (definition 2.2). The color coding relates the d-th feature with its quantized representation. A
full connecting line denotes a summation along the corresponding index, while a dotted line denotes a Kronecker
product, see Cichocki et al. (2016) for a more in-depth explanation. Figure 1b depicts the case where K1 = Q3,
K2 = Q and K3 = Q2. Notice how quantization allows to model correlations within each particular mode of the
model weights, in this case explicitly by means of the tensor train ranks (1, R2, . . . , R6, 1).

CM1M2···MD of degree (M1 − 1,M2 − 1, . . . ,MD − 1)
are defined as

z (x) =

D⊗
d=1

v(d) (xd) ,

with v(d) (·) : C → CMd the Vandermonde vector

v(d) (xd) =
[
1, xd, x

2
d, . . . , x

Md−1
d

]
.

The md-th element of the feature map vector v(d)(xd)
is

v(d)(xd)md
= (xd)

md , md = 0, 1, . . . ,Md − 1.

The definition of the feature map is given for degree
(M1 − 1,M2 − 1, . . . ,MD − 1) such that the feature
map vector z(x) has a length M1M2 · · ·MD. The
Kronecker product in definition 3.1 ensures that all
possible combinations of products of monomial ba-
sis functions are computed, up to a total degree of∑D

d=1(Md − 1). Compared to the more common affine
polynomials, which are basis functions of the poly-
nomial kernel k(x,x′) = (b + ⟨x,x′⟩)M , pure-power
polynomial features contain more higher-order terms.
Similarly, their use is justified by the Stone-Weierstrass
theorem (De Branges, 1959), which guarantees that
any continuous function on a locally compact domain
can be approximated arbitrarily well by polynomials
of increasing degree. Fourier features can be similarly
defined by replacing the monomials with complex ex-
ponentials.
Definition 3.2. (Fourier Features) For an input
sample x ∈ CD, the Fourier feature map φ(·) :
CD → CM1M2···MD with Md basis frequencies
−Md/2, . . . ,Md/2 − 1 per dimension is defined as

φ (x) =

D⊗
d=1

(
cd v

(d)
(
e−

2π j xd
L

))
,

where j is the imaginary unit, cd = e2π j xd
2+Md

2L ∈ C,
L ∈ R is the periodicity of the function class and v(d) (·)
are the Vandermonde vectors of definition 3.1.

Fourier features are ubiquitous in the field of kernel
machines as they are eigenfunctions of D-dimensional
stationary product kernels with respect to the Lebesgue
measure, see (Rasmussen and Williams, 2006, Chapter
4.3) or (Hensman et al., 2017; Solin and Särkkä, 2020).
As such they are often used for the uniform approx-
imation of such kernels in the limit of L → ∞ and
M1,M2, . . . ,MD → ∞ (Wahls et al., 2014, Proposition
1).

We now present the first contribution of this article,
which is an exact quantized, i.e. further tensorized,
representation of pure-power polynomials and Fourier
features. These quantized features allows for the quan-
tization of the model weights, which enables to impose
additional tensor network structure between features,
yielding more expressive models for the same number
of model parameters.

3.1 Quantized Features

In order to quantize pure-power polynomial features
we assume for ease of notation that Md can be written
as some power Md = QKd , where both Q,Kd ∈ N.
The more general case involves considering the (prime)
factorization of Md and follows the same derivation
steps albeit with more intricate notation.
Definition 3.3 (Quantized Vandermonde vector). For
Q, k ∈ N, we define the quantized Vandermonde vector
s(d,k)(·) : C → CQ as

s(d,k) (xd) :=
[
1, xQk−1

d , . . . , x
(Q−1)Qk−1

d

]
.

The q-th element of s(d,k)(xd) is therefore

s(d,k)(xd)q = (xd)
qQk−1

, q = 0, 1, . . . , Q− 1.
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Theorem 3.4 (Quantized pure-power-(Md−1) polyno-
mial feature map). Each Vandermonde vector v(d)(xd)
can be expressed as a Kronecker product of Kd factors

v(d)(xd) =

Kd⊗
k=1

s(d,k) (xd) ,

where Md = QKd .

Proof. From definition 3.1 we have that

v(d)(xd)md
= (xd)

md .

Assume that Md = QKd . We proceed by tensoriz-
ing v(d)(xd) along Kd dimensions, each having size Q.
Then

v(d)(xd)md
= ten

(
v(d), Q,Q, . . . , Q

)
q1q2...qKd

= (xd)
∑Kd

k=1 qkQ
k−1

=

Kd∏
k=1

(xd)
qk Qk−1

=

Kd∏
k=1

s(d,k)(xd)qk .

The last equality follows directly from definition 3.3.
Hence by the definition of Kronecker product, we have
that

v(d)(xd) =

Kd⊗
k=1

s(d,k) (xd) .

Note once more that in principle it is possible to ten-
sorize with respect to Kd indices such that Md =
Q1Q2 · · ·QKd

, but we restrain from doing so not to
needlessly complicate notation. Theorem 3.4 allows
then to quantize pure-power and Fourier features.

Corollary 3.5 (Quantized pure-power polynomials).
For an input sample x ∈ CD, the pure-power polyno-
mial feature map can be expressed as

z (x) =

D⊗
d=1

Kd⊗
k=1

s(d,k) (xd) .

Corollary 3.6 (Quantized Fourier feature map). For
an input sample x ∈ CD, the Fourier feature map can
be expressed as

φ(x) =

D⊗
d=1

Kd⊗
k=1

c
1

Kd

d s(d,k)
(
e−

2πjxd
L

)
,

where cd = e2π j xd
2+Md

2L .

Note that when quantized, both pure-power and
Fourier features admit an efficient storage complexity
of O(DK) = O(D logM) instead of O(DM), where
K = max(K1, . . . ,KD).
Example 3.7. Consider D = 2, M1 = 8 = 23 M2 = 4 =
22, then the Vandermonde vector of monomials up to
total degree 10 is constructed from

z(x) = [1, x1]⊗
[
1, x2

1

]
⊗

[
1, x4

1

]
⊗ [1, x2]⊗

[
1, x2

2

]
.

We now present the second contribution of this article,
which is the quantization of the model weights associ-
ated with quantized polynomial and Fourier features.
As we will see, these quantized models are more expres-
sive given the number of model parameters and same
exact features.

4 QUANTIZED TENSOR
NETWORK KERNEL MACHINES

When not considering quantization, model weights al-
low for tensorial indexing along the D dimensions of the
inputs, i.e. ten (w,M1,M2, . . . ,MD). Corollary 3.5
and corollary 3.6 allow to exploit the Kronecker prod-
uct structure of pure-power polynomial and Fourier
features by further tensorizing the model weights of the
tensor network-constrained kernel machines of equa-
tion (5)

ten(w, Q,Q, . . . , Q︸ ︷︷ ︸∑D
d=1 Kd times

).

These further factorized model weights can then be
constrained to be a tensor network, and learned by
minimizing the empirical risk in the framework of equa-
tion (5). Training a kernel machine under this con-
straint results in the following nonlinear optimization
problem:

min
w

1

N

N∑
n=1

ℓ(⟨
D⊗

d=1

Kd⊗
k=1

s(d,k) (xd) ,w⟩, yn) + λ ||w||2 ,

(6)

s.t. ten (w, Q,Q, . . . , Q) is a tensor network.

4.1 Computational Complexity

In case of CPD, TT or TR-constrained and quantized
model weights, model responses and associated gradi-
ents can be computed at the same cost as with non-
quantized models:

Theorem 4.1 (Quantized tensorized kernel machine
(QTKM)). Consider pure-power and Fourier feature
maps factorized as in corollary 3.5 and corollary 3.6
and suppose ten (w, Q,Q, . . . , Q) is a tensor in CPD,



Quantized Fourier and Polynomial Features for more Expressive Tensor Network Models

TT or TR form. Then by theorem 2.3, model responses
and associated gradients

fquantized (x) = ⟨
D⊗

d=1

Kd⊗
k=1

s(d,k) (xd) ,w⟩,

can be computed in O(P ) instead of O(
∏D

d=1 Md),
where P = KDQR in case of CPD, and P = KDQR2

in case of TT or TR.

Proof. See appendix B.2.

Results for more general TNs can be found in ap-
pendix B.2. A graphical depiction of a QTKM can
be found in figure 1b. Furthermore, when considering
tensor network-specific optimization algorithms, the
time complexity per iteration of training when optimiz-
ing equation (6) is lower compared to equation (5), as
these methods typically optimize over a subset (typi-
cally one core) of model parameters, see appendix C.

4.2 Increased Model Expressiveness

Constraining a tensor to be a tensor network allows
to distill the most salient characteristics of the data
in terms of an limited number of effective parameters
without destroying its multi-modal nature. This is
also known as the blessing of dimensionality (Cichocki,
2014) and is the general underlying concept behind
tensor network-based methods. In the more specific
context of supervised kernel machines, these well-known
empirical considerations are also captured in the rigor-
ous framework of VC-theory (Vapnik, 1998). Khavari
and Rabusseau (2021, theorem 2) have recently shown
that the VC-dimension and pseudo-dimension of tensor
network-constrained models of the form of equation (6)
satisfies the following upper bound irrespectively of the
choice of tensor network :

VC(f) ≤ 2P log(12|V |),

where |V | is the number of vertices in the TN (see
definition A.1). Since quantization of the model weights
increases the number of vertices in their tensor network
representation, quantized models are characterized by
higher upper bounds on the VC-dimension and pseudo-
dimension for the same number of model parameters.
For example, in the non-quantized case, parametrizing
the TN as a CPD, TT or TR yields

VC(f) ≤ 2P log(12D),

while for the quantized case

VC(fquantized) ≤ 2P log(12D logM).

Hence, in case of CPD, TT and TR this additional
possible model expressiveness comes at no additional
computational costs per iteration when training with
gradient descent (theorem 2.3 and 4.1). Setting Q = 2
provides then in this sense an optimal choice for this
additional hyperparameter, as it maximizes the upper
bound. In the more general case where Md is not a
power of 2, this choice corresponds with the prime
factorization of Md. It should be noted that a higher
VC-dimension does not imply better performance on
unseen data. However as we will see in sections 5.1
and 5.2 quantized models tend to outperform their
counterparts in the underparameterized regime where
TKMs are typically employed, as the gained expres-
siveness is put fully to good use and does not result in
overfitting.

5 NUMERICAL EXPERIMENTS

In all experiments we consider a squared loss
ℓ(f(x), y) = |f(x)− y|2, scale our inputs to lie in the
unit box, and consider Fourier features (definition 3.2)
as they notably suffer less from ill-conditioning than
polynomials. In all experiments we model the weight
tensor as a CPD of rank R. We do not consider other
TNs in the numerical experiments for three reasons:
first, it has been shown that tensor trains are more
suited to model time-varying functions such as dy-
namical systems and time series, as opposed to CPD
(Khrulkov et al., 2018). Second, CPD adds only one
hyperparameter to our model as opposed to D hyperpa-
rameters for the tensor train or tensor ring. Choosing
these hyperparameters (tensor train ranks) is not trivial
and can yield models with very different performance
for the same total number of model parameters. Third,
CPD-based models are invariant to reordering of the
features as opposed to tensor train. We believe that
this invariance is very much desired in the context of
kernel machines. We solve the ensuing optimization
problem using ALS (Uschmajew, 2012). The source
code and data to reproduce all experiments is available
at https://github.com/fwesel/QFF.

5.1 Improved Generalization Capabilities

In this experiment we verify the expected quantiza-
tion to positively affect the generalization capabilities
of quantized models. We compare QTKM (our ap-
proach) with TKM (Wahls et al., 2014; Stoudenmire
and Schwab, 2016; Kargas and Sidiropoulos, 2021; We-
sel and Batselier, 2021), random Fourier features (RFF)
(Rahimi and Recht, 2007), and with the full, uncon-
strained model (kernel ridge regression (KRR) which is
our baseline, as we are dealing in all cases with squared
loss). For our comparison we select eight small UCI

https://github.com/fwesel/QFF
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Figure 2: Plots of the test mean squared error as a function of the number of model parameters P , for different
real-life datasets. In blue, random Fourier features (Rahimi and Recht, 2007), in red tensorized kernel machines
with Fourier features (Wahls et al., 2014; Stoudenmire and Schwab, 2016; Kargas and Sidiropoulos, 2021; Wesel
and Batselier, 2021), in yellow quantized kernel machines with Fourier features, with quantization Q = 2. The gray
horizontal full line is the full unconstrained optimization problem, which corresponds to kernel ridge regression
(KRR). The grey vertical dotted line is set at P = N . It can be seen that for P < N case, quantization allows to
achieve better generalization performance with respect to the non-quantized case.

datasets (Dua and Graff, 2017). This choice allows us
to train KRR by solving its dual optimization problem
and thus to implicitly consider

∏D
d=1 Md features. For

each dataset, we select uniformly at random 80% of
the data for training, and keep the rest for test. We set
Q = 2 and select the remaining hyperparameters (λ
and L) by 3-fold cross validating KRR. We set the num-
ber of basis functions Md = 16 uniformly for all d for
all models, so that they learn from the same represen-
tation (except for RFF, which is intrinsically random).
We then vary the rank R of the non-quantized ten-
sorized model from R = 1, 2, . . . , 6 and train all other
models such that their number of model parameters
P is at most equal to the ones of the non-quantized
model. This means that for TKM P = R

∑D
d=1 Md, for

QTKM P = 2R
∑D

d=1 log2 Md and for RFF P equals
the number of random frequencies. To make sure that
TKM and QTKM converge, we run ALS for a very large
number of iterations (5000). We repeat the procedure
10 times, and plot the mean and standard deviation of
the test mean squared error (MSE) in figure 2.

In figure 2 one can observe that on all datasets, for
the same number of model parameters P and identical
features, the generalization performance of QTKM is
equivalent or better in term of test MSE. An intuitive
explanation for these results is that for equal P , quan-
tization allows to explicitly model correlations within
each of the D modes of the feature map, yielding mod-
els with increased learning capacity. We notice that
while on most datasets the tensor-based approaches
recover the performance of KRR, in one case, namely
on the yacht dataset, the performance is better than
baseline, pointing out at the regularizing effect of the
quantized CPD model. Furthermore, on all datasets
examined in figure 2 it can be observed that QTKM
switches from underfitting to overfitting regime (first
local optimum of the learning curve) before TKM, in-
dicating that indeed its capacity is saturated with less
model parameters. At that sweet spot, TKM is still un-
derfitting and underperforming with respect to QTKM.
For a further increase in model parameters both models
exhibit double descent, as can be observed on the qsar,
qsar_fish and airfoil datasets. Note that QTKM out-
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Figure 3: Sound dataset. In red, plot of the magnitude of the quantized Fourier coefficients for different values
of R and total number of model parameters P . The magnitude of the full unconstrained Fourier coefficients is
shown in black. It can be observed that increasing the CPD rank R recovers the peaks of frequencies with the
highest magnitude.

performs TKM in a similar fashion on the training set
(figure 4 in the appendix), corroborating the presented
analysis. In figure 2 it can also be seen that except on
the examined 2-dimensional dataset, both tensor net-
work are consistently outperforming RFF. As we will
see in section 5.2, these tensor network-based methods
are able to find in a data-dependent way a parsimo-
nious model representation given an exponentially large
feature space. This is in contrast to random methods
such as RFF, which perform feature selection prior to
training and are in this sense oblivious to training data.

5.2 Regularizing Effect of Quantization

We would like to gain insight in the regularizing effect
caused by modeling the quantized weights as an under-
parametrized tensor network. For this reason we inves-
tigate how the Fourier coefficients are approximated
as a function of the CPD rank in a one-dimensional
dataset. In order to remove other sources of regular-
ization, we set λ = 0. The sound dataset (Wilson and
Nickisch, 2015) is a one-dimensional time series regres-
sion task which comprises 60 000 sampled points of a
sound wave. The training set consists of N = 59 309
points, of which the remainder is kept for test. Based on
the Nyquist–Shannon sampling theorem, we consider
M = 213 = 8192 Fourier features, which we quantize
with Q = 2. We model the signal as a having unit
period, hence set L = 1. The Fourier coefficients are
modeled as a CPD tensor, with rank R = 10, 25, 50, 100
in order to yield underparametrized models (P ≪ M).
We plot the magnitude of the Fourier coefficients, which
we obtain by minimizing equation (6) under squared
loss.

We compare the magnitude of the quantized weights
with the magnitude of the unconstrained model re-
sponse, obtained by solving equation (2), in figure 3.
From figure 3 we can see that for low values of R the
quantized kernel machine does not recover the coef-
ficients associated with the lowest frequencies, as a
data-independent approach would. Instead, we observe
that the coefficients which are recovered for lower ranks,
e.g. in case of R = 10, are the peaks with the highest
magnitude. This is explained by the fact that the ad-
ditional modes introduced by Q = 2-quantization force
the underparametrized tensor network to model the
nonlinear relation between different basis which under
squared-loss maximize the energy of the signal. As the
rank increases, the increased model flexibility allows
to model more independent nonlinearities. We can
see that already for R = 100 the two spectra become
almost indistinguishable. We report the relative ap-
proximation error of the weights and the standardized
mean absolute error on the test set in appendix D.2.

5.3 Large-Scale Regression

In order to showcase and compare out approach with
existing literature in the realm of kernel machines, we
consider the airline dataset (Hensman et al., 2013), an
8-dimensional dataset which consists of N = 5929 413
recordings of commercial airplane flight delays that
occurred in 2008 in the USA. As is standard on this
dataset (Samo and Roberts, 2016), we consider a uni-
form random draw of 2/3N for training and keep the
remainder for the evaluation of the MSE on the test set
and repeat the procedure ten times. In order to capture
the complicated nonlinear relation between input and
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Table 1: MSE for different kernel machines on the airline dataset with one standard deviation. We report the
number of basis functions M per dimensions (in case of random approaches we simply report the total number
of basis) and model parameters P . Notice that QTKM is able to parsimoniously predict airline delay with a
restricted number of model parameters, achieving state-of-the art performance on this dataset.

Method M P ↓ MSE

VFF (Hensman et al., 2017) 40 320 0.827±0.004
Hilbert-GP (Solin and Särkkä, 2020) 40 320 0.827±0.005
VISH (Dutordoir et al., 2020) 660 660 0.834±0.055
SVIGP (Hensman et al., 2013) 1000 1000 0.791±0.005
Falkon (Meanti et al., 2020) 10 000 10 000 0.758±0.005

TKM (R = 4) 64 2048 0.789±0.005
TKM (R = 6 64 3072 0.773±0.006
TKM (R = 8) 64 4096 0.765±0.007

QTKM (R = 20) 64 1920 0.764±0.005
QTKM (R = 30) 64 2880 0.754±0.005
QTKM (R = 40) 64 3840 0.748± 0.005

output, we resort to consider Md = 64 Fourier features
per dimension, which we quantize with Q = 2. For this
experiment, we set L = 10, λ = 1× 10−10 and run the
ALS optimizer for 25 epochs. We train three different
QTKMs with R = 20, 30, 40.

We present the results in table 1, where we can see that
QTKM (our approach) is best at predicting airline de-
lay in term of MSE. Other grid-based approaches, such
as VFE (Hensman et al., 2017) or Hilbert-GP (Solin
and Särkkä, 2020), are forced to resort to additive
kernel modeling and thus disregard higher-order inter-
actions between Fourier features pertaining to different
dimension. In contrast, QTKM is able to construct R
data-driven explanatory variables based on an expo-
nentially large set of Fourier features. When compared
with its non-quantized counterpart TKM, we can see
that our quantized approach outperforms it with ap-
proximately half of its model parameters. Training
QTKM on the Intel Core i7-10610U CPU of a Dell
Inc. Latitude 7410 laptop with 16GB of RAM took
(6613± 40) s for R = 20 and took (13 039± 114) s for
R = 40 .

6 CONCLUSION

We proposed to quantize Fourier and pure-power poly-
nomial features, which allowed us to quantize the model
weights in the context of tensor network-constrained
kernel machines. We verified experimentally the the-
oretically expected increase in model flexibility which
allows us to construct more expressive models with the
same number of model parameters which learn from
the same exact features at the same computational cost
per iteration.

Our approach can be readily incorporated in other
tensor network-based learning methods which make
use of pure-power polynomials or Fourier features.

Acknowledgments

We would like to thank the anonymous reviewers and
Albert Saiapin for their numerous suggestions and im-
provements which have greatly improved the quality
of this paper. Frederiek Wesel, and thereby this work,
is supported by the Delft University of Technology
AI Labs program. The authors declare no competing
interests.

References

Batselier, K., Chen, Z., and Wong, N. (2017). Ten-
sor Network alternating linear scheme for MIMO
Volterra system identification. Automatica, 84:26–35.
[2]

Blondel, M., Fujino, A., Ueda, N., and Ishihata, M.
(2016). Higher-Order Factorization Machines. In
Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc. [2]

Blondel, M., Niculae, V., Otsuka, T., and Ueda, N.
(2017). Multi-output Polynomial Networks and Fac-
torization Machines. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Asso-
ciates, Inc. [2]

Chen, Z., Batselier, K., Suykens, J. A. K., and Wong,
N. (2018). Parallelized Tensor Train Learning of
Polynomial Classifiers. IEEE Transactions on Neural
Networks and Learning Systems, 29(10):4621–4632.
[2, 3, 15]

Cheng, S., Wang, L., and Zhang, P. (2021). Super-



Quantized Fourier and Polynomial Features for more Expressive Tensor Network Models

vised learning with projected entangled pair states.
Physical Review B, 103(12):125117. [2, 3]

Cichocki, A. (2014). Era of Big Data Processing: A
New Approach via Tensor Networks and Tensor De-
compositions. arXiv:1403.2048 [cs]. [3, 6]

Cichocki, A., Lee, N., Oseledets, I., Phan, A.-H., Zhao,
Q., and Mandic, D. P. (2016). Tensor Networks
for Dimensionality Reduction and Large-Scale Opti-
mization: Part 1 Low-Rank Tensor Decompositions.
Foundations and Trends® in Machine Learning, 9(4-
5):249–429. [1, 2, 3, 4]

Cichocki, A., Phan, A.-H., Zhao, Q., Lee, N., Oseledets,
I. V., Sugiyama, M., and Mandic, D. (2017). Tensor
Networks for Dimensionality Reduction and Large-
Scale Optimizations. Part 2 Applications and Future
Perspectives. Foundations and Trends® in Machine
Learning, 9(6):249–429. [3]

Comon, P., Luciani, X., and de Almeida, A. L. F.
(2009). Tensor decompositions, alternating least
squares and other tales. Journal of Chemometrics,
23(7-8):393–405. [3, 15]

Cortes, C. and Vapnik, V. (1995). Support-vector
networks. Machine Learning, 20(3):273–297. [1]

De Branges, L. (1959). The Stone-Weierstrass Theorem.
Proceedings of the American Mathematical Society,
10(5):822–824. [4]

De Lathauwer, L. (2008a). Decompositions of a Higher-
Order Tensor in Block Terms—Part I: Lemmas for
Partitioned Matrices. SIAM Journal on Matrix Anal-
ysis and Applications, 30(3):1022–1032. [3]

De Lathauwer, L. (2008b). Decompositions of a Higher-
Order Tensor in Block Terms—Part II: Definitions
and Uniqueness. SIAM Journal on Matrix Analysis
and Applications, 30(3):1033–1066. [3]

Dua, D. and Graff, C. (2017). UCI Machine Learning
Repository. [7]

Dutordoir, V., Durrande, N., and Hensman, J. (2020).
Sparse Gaussian Processes with Spherical Harmonic
Features. In International Conference on Machine
Learning, pages 2793–2802. PMLR. [9]

Efthymiou, S., Hidary, J., and Leichenauer, S.
(2019). TensorNetwork for Machine Learning.
arXiv:1906.06329 [cond-mat, physics:physics, stat].
[2]

Evenbly, G. and Vidal, G. (2009). Algorithms for
entanglement renormalization. Physical Review B,
79(14):144108. [3]

Favier, G. and Bouilloc, T. (2009). Parametric com-
plexity reduction of Volterra models using tensor
decompositions. In 2009 17th European Signal Pro-
cessing Conference, pages 2288–2292. [2]

Grasedyck, L. (2010). Hierarchical Singular Value De-
composition of Tensors. SIAM Journal on Matrix
Analysis and Applications, 31(4):2029–2054. [3]

Hackbusch, W. and Kühn, S. (2009). A New Scheme
for the Tensor Representation. Journal of Fourier
Analysis and Applications, 15(5):706–722. [3]

Hensman, J., Durrande, N., and Solin, A. (2017). Vari-
ational Fourier features for Gaussian processes. The
Journal of Machine Learning Research, 18(1):5537–
5588. [1, 4, 9]

Hensman, J., Fusi, N., and Lawrence, N. D. (2013).
Gaussian processes for Big data. In Proceedings
of the Twenty-Ninth Conference on Uncertainty in
Artificial Intelligence, UAI’13, pages 282–290. AUAI
Press. [8, 9]

Hitchcock, F. L. (1927). The Expression of a Tensor
or a Polyadic as a Sum of Products. Journal of
Mathematics and Physics, 6(1-4):164–189. [3]

Holtz, S., Rohwedder, T., and Schneider, R. (2012).
The Alternating Linear Scheme for Tensor Optimiza-
tion in the Tensor Train Format. SIAM Journal on
Scientific Computing, 34(2):A683–A713. [3, 15]

Karagoz, R. and Batselier, K. (2020). Nonlinear system
identification with regularized Tensor Network B-
splines. Automatica, 122:109300. [1, 2]

Kargas, N. and Sidiropoulos, N. D. (2021). Super-
vised Learning and Canonical Decomposition of Mul-
tivariate Functions. IEEE Transactions on Signal
Processing, pages 1–1. [2, 6, 7, 16]

Khavari, B. and Rabusseau, G. (2021). Lower and
Upper Bounds on the Pseudo-Dimension of Tensor
Network Models. In Advances in Neural Information
Processing Systems. [3, 6, 13]

Khoromskij, B. N. (2011). O(DlogN)-Quantics Ap-
proximation of N-d Tensors in High-Dimensional
Numerical Modeling. Constructive Approximation,
34(2):257–280. [2]

Khrulkov, V., Novikov, A., and Oseledets, I. (2018).
Expressive power of recurrent neural networks. In In-
ternational Conference on Learning Representations.
[6]

Kolda, T. G. and Bader, B. W. (2009). Tensor Decom-
positions and Applications. SIAM Review, 51(3):455–
500. [2, 3, 15]

Le, Q., Sarlos, T., and Smola, A. (2013). Fastfood -
Computing Hilbert Space Expansions in loglinear
time. In Proceedings of the 30th International Con-
ference on Machine Learning, pages 244–252. PMLR.
[2]

Meanti, G., Carratino, L., Rosasco, L., and Rudi, A.
(2020). Kernel methods through the roof: Handling



Frederiek Wesel, Kim Batselier

billions of points efficiently. In Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M. F., and Lin, H.,
editors, Advances in Neural Information Process-
ing Systems, volume 33, pages 14410–14422. Curran
Associates, Inc. [9]

Meister, M., Sarlos, T., and Woodruff, D. (2019). Tight
Dimensionality Reduction for Sketching Low Degree
Polynomial Kernels. In Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Asso-
ciates, Inc. [2]

Novikov, A., Oseledets, I., and Trofimov, M. (2018). Ex-
ponential machines. Bulletin of the Polish Academy
of Sciences: Technical Sciences; 2018; 66; No 6 (Spe-
cial Section on Deep Learning: Theory and Practice);
789-797. [2, 3, 15]

Novikov, A., Rakhuba, M., and Oseledets, I. (2021).
Automatic differentiation for Riemannian optimiza-
tion on low-rank matrix and tensor-train manifolds.
arXiv:2103.14974 [cs, math]. [3, 15]

Oseledets, I. V. (2011). Tensor-Train Decomposition.
SIAM Journal on Scientific Computing, 33(5):2295–
2317. [3]

Pham, N. and Pagh, R. (2013). Fast and scalable
polynomial kernels via explicit feature maps. In Pro-
ceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, KDD ’13, pages 239–247. Association for Com-
puting Machinery. [2]

Rahimi, A. and Recht, B. (2007). Random features
for large-scale kernel machines. In Proceedings of the
20th International Conference on Neural Informa-
tion Processing Systems, pages 1177–1184. Curran
Associates Inc. [2, 6, 7, 16]

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaus-
sian Processes for Machine Learning. Adaptive Com-
putation and Machine Learning. MIT Press, Cam-
bridge, Mass. [4]

Rendle, S. (2010). Factorization Machines. In 2010
IEEE International Conference on Data Mining,
pages 995–1000. [2]

Samo, Y.-L. K. and Roberts, S. J. (2016). String and
Membrane Gaussian Processes. Journal of Machine
Learning Research, 17(131):1–87. [8]

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel
Methods for Pattern Analysis. Cambridge University
Press. [1]

Sidiropoulos, N. D., De Lathauwer, L., Fu, X., Huang,
K., Papalexakis, E. E., and Faloutsos, C. (2017). Ten-
sor Decomposition for Signal Processing and Machine
Learning. IEEE Transactions on Signal Processing,
65(13):3551–3582. [2]

Solin, A. and Särkkä, S. (2020). Hilbert space meth-
ods for reduced-rank Gaussian process regression.
Statistics and Computing, 30(2):419–446. [1, 4, 9]

Stoudenmire, E. M. and Schwab, D. J. (2016). Super-
vised learning with tensor networks. In Proceedings
of the 30th International Conference on Neural Infor-
mation Processing Systems, pages 4806–4814. Curran
Associates Inc. [2, 3, 6, 7, 16]

Suykens, J. A. K., Van Gestel, T., De Brabanter, J.,
De Moor, B., and Vandewalle, J. (2002). Least
Squares Support Vector Machines. World Scientific.
[1]

Tucker, L. R. (1963). Implications of factor analysis
of three-way matrices for measurement of change.
Problems in measuring change, 15(122-137):3. [3]

Tucker, L. R. (1966). Some mathematical notes
on three-mode factor analysis. Psychometrika,
31(3):279–311. [3]

Uschmajew, A. (2012). Local Convergence of the Alter-
nating Least Squares Algorithm for Canonical Tensor
Approximation. SIAM Journal on Matrix Analysis
and Applications, 33(2):639–652. [3, 6, 15]

Vapnik, V. N. (1998). The Nature of Statistical Learn-
ing Theory. Springer New York. [6]

Verstraete, F. and Cirac, J. I. (2004). Renormalization
algorithms for Quantum-Many Body Systems in two
and higher dimensions. [3]

Wahls, S., Koivunen, V., Poor, H. V., and Verhaegen,
M. (2014). Learning multidimensional Fourier series
with tensor trains. In 2014 IEEE Global Conference
on Signal and Information Processing (GlobalSIP),
pages 394–398. [1, 2, 3, 4, 6, 7, 15, 16]

Wesel, F. and Batselier, K. (2021). Large-Scale Learn-
ing with Fourier Features and Tensor Decomposi-
tions. In Advances in Neural Information Processing
Systems. [2, 3, 6, 7, 15, 16]

White, S. R. (1992). Density matrix formulation for
quantum renormalization groups. Physical Review
Letters, 69(19):2863–2866. [3, 15]

Williams, C. and Seeger, M. (2001). Using the Nyström
Method to Speed Up Kernel Machines. In Advances
in Neural Information Processing Systems 13, pages
682–688. MIT Press. [2]

Wilson, A. and Nickisch, H. (2015). Kernel Interpo-
lation for Scalable Structured Gaussian Processes
(KISS-GP). In Proceedings of the 32nd International
Conference on Machine Learning, pages 1775–1784.
PMLR. [8]

Woodruff, D. P. (2014). Sketching as a Tool for Nu-
merical Linear Algebra. Foundations and Trends®
in Theoretical Computer Science, 10(1–2):1–157. [2]



Quantized Fourier and Polynomial Features for more Expressive Tensor Network Models

Zhao, Q., Zhou, G., Xie, S., Zhang, L., and Ci-
chocki, A. (2016). Tensor Ring Decomposition.
arXiv:1606.05535 [cs]. [3]

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes.

(b) Complete proofs of all theoretical results. Yes.
(c) Clear explanations of any assumptions. Yes.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
Yes.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. Yes.

(b) The license information of the assets, if appli-
cable. Yes.

(c) New assets either in the supplemental material
or as a URL, if applicable. Yes. All necessary
assets can be found in the anonymized URL.

(d) Information about consent from data
providers/curators. Not Applicable (UCI
data).

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not applicable. All data is
anonymous and open source.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. No/Not Applicable.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. Not Applicable.



Frederiek Wesel, Kim Batselier

A DEFINITIONS

Definition A.1 (Tensor network (Khavari and Rabusseau, 2021)). Given a graph G = (V,E,dim) where V is a
set of vertices, E is a set of edges and dim : E → N assigns a dimension to each edge, a tensor network assigns a
core tensor Cv to each vertex of the graph, such that Cv ∈ ⊗e∈EvCdim(e). Here Ev = {e ∈ E|v ∈ e} is the set of
edges connected to vertex v. The resulting tensor is a tensor in ⊗e∈E∩V Cdim(e). The number of parameters of
the tensor network is then P =

∑
v∈V

∏
e∈Ev

dim(e).

B PROOFS

B.1 Tensor Network Kernel Machine

Theorem B.1. Suppose ten(w,M,M, . . . ,M︸ ︷︷ ︸
D times

) is a tensor network. Then the dependency on M of the computa-

tional complexity for the model responses

f (x) = ⟨
D⊗

d=1

v(d) (xd) ,w⟩,

is O(M t), where t is the maximum number of singleton edges per core.

Proof. Let t be the maximum number of singleton edges per core. Since taking the Frobenius inner product
(equation (4)) involves summing over all singleton edges M,M, . . . ,M︸ ︷︷ ︸

D times

, the required number of FLOPS will be

O(M t).

Corollary B.2. Suppose ten(w,M,M, . . . ,M︸ ︷︷ ︸
D times

) is a tensor network with t = 1 maximum number of singleton

edges per core. Then the dependency on M of the computational complexity for the model responses

f (x) = ⟨
D⊗

d=1

v(d) (xd) ,w⟩,

is of O(M).

Note that most used tensor networks such as CPD, Tucker, TT/TR, MERA, PEPS have t = 1. An example of a
tensor network where t can be t ≥ 2 or higher is hierarchical Tucker. In what follows we derive the computational
complexity of the model responses of CPD and TT networks.

Theorem 2.3 (Tensorized kernel machine (TKM)). Suppose ten (w,M1,M2, . . . ,MD) is a tensor in CPD, TT
or TR form. Then model responses and associated gradients

f (x) = ⟨
D⊗

d=1

v(d) (xd) ,w⟩,

can be computed in O(P ) instead of O(
∏D

d=1 Md), where P = DMR in case of CPD, and P = DMR2 in case of
TT or TR.
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Proof. Let ten (w,M1,M2, . . . ,MD) be a tensor in CPD form. Then

f (x) = ⟨
D⊗

d=1

v(d) (xd) ,w⟩

=

M1−1∑
m1=0

· · ·
MD−1∑
mD=0

D∏
d=1

v(d)md

R−1∑
r=0

D∏
d=1

w(d)
mdr

=

R−1∑
r=0

M1−1∑
m1=0

· · ·
MD−1∑
mD=0

D∏
d=1

v(d)md
w(d)

mdr

=

R−1∑
r=0

D∏
d=1

Md−1∑
md=0

v(d)md
w(d)

mdr
.

Gradients can be computed efficiently by caching
∏D

d=1

∑Md−1
md=0 v

(d)
mdw

(d)
rd−1mdrd , r = 1, . . . , R. Hence the

computational complexity of the model responses and associated gradients is of O(DMR). Now let
ten (w,M1,M2, . . . ,MD) be a tensor in TT/TR form. Then

f (x) = ⟨
D⊗

d=1

v(d) (xd) ,w⟩

=

M1−1∑
m1=0

· · ·
MD−1∑
mD=0

D∏
d=1

v(d)md

R1−1∑
r1=0

· · ·
RD−1∑
rD=0

D∏
d=1

w(d)
rd−1mdrd

=

R1−1∑
r1=0

· · ·
RD−1∑
rD=0

M1−1∑
m1=0

· · ·
MD−1∑
md=0

D∏
d=1

v(d)md
w(d)

rd−1mdrd

=

R1−1∑
r1=0

· · ·
RD−1∑
rD=0

D∏
d=1

Md−1∑
md=0

v(d)md
w(d)

rd−1mdrd
,

which is a sequence of matrix-matrix multiplications. Gradients can be computed efficiently by caching∑Md−1
md=0 v

(d)
mdw

(d)
rd−1mdrd , rd = 1, . . . , Rd, d = 1, . . . , D. Hence the computational complexity of the model re-

sponses and associated gradients is of O(DMR2), where M = max(M1,M2, . . . ,MD) i.e. O(P ) for both CPD
and TT/TR.

B.2 Quantized Tensor Network Kernel Machine

Theorem B.3. Suppose ten(w, Q,Q, . . . , Q︸ ︷︷ ︸
DK times

) is a tensor network. Then the dependency on M on the computa-

tional complexity of model responses

f (x) = ⟨
D⊗

d=1

K⊗
k=1

s(d,k) (xd) ,w⟩,

is of O(M
t

logQ logM), where t is the maximum number of singleton edges per core.

Proof. Let Q be chosen such that K = logQ M . Let t be the maximum number of singleton edges per core.
Taking the Frobenius inner product (equation (4)) involves summing over all singleton edges Q,Q, . . . , Q︸ ︷︷ ︸

D logQ M times

. Since

Q = 1
logQ M , the required number of FLOPS will be O(Qt logQ M) = O(M

s
logQ logM).
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Corollary B.4. Suppose ten(w, Q,Q, . . . , Q︸ ︷︷ ︸
DK times

) is a tensor network with t = 1 maximum number of singleton edges

per core. Then the dependency on M on the computational complexity of model responses

f (x) = ⟨
D⊗

d=1

Kd⊗
k=1

s(d,k) (xd) ,w⟩,

is of O(logM).

Theorem 4.1 (Quantized tensorized kernel machine (QTKM)). Consider pure-power and Fourier feature maps
factorized as in corollary 3.5 and corollary 3.6 and suppose ten (w, Q,Q, . . . , Q) is a tensor in CPD, TT or TR
form. Then by theorem 2.3, model responses and associated gradients

fquantized (x) = ⟨
D⊗

d=1

Kd⊗
k=1

s(d,k) (xd) ,w⟩,

can be computed in O(P ) instead of O(
∏D

d=1 Md), where P = KDQR in case of CPD, and P = KDQR2 in case
of TT or TR.

Proof. The proof follows from the proof of theorem 2.3. Since instead of summing R times over M1,M2, . . . ,MD

we are summing R times over Q,Q, . . . , Q︸ ︷︷ ︸
DK times

, a model response can be evaluated in QKDR FLOPS for CPD and

QKDR2 FLOPS for TT. Since Q is a constant which does not dependent on M and K = logQ M , we have that
the computational complexities are respectively O(logMDR) and O(logMDR2) for CPD and TT/TR, where
K = logM = max(logM1, logM2, . . . , logMD), i.e. O(P ) for both CPD and TT/TR.

C FASTER MULTI-CONVEX OPTIMIZATION ALGORITHMS

Quantized features allow to speedup equation (6) for a large class of multi-convex solvers such as alternating
least-squares (Comon et al., 2009; Kolda and Bader, 2009; Uschmajew, 2012; Holtz et al., 2012), the density
matrix renormalization group (DMRG) (White, 1992) and Riemannian optimization (Novikov et al., 2018, 2021).
These solvers exploit the multi-linearity of tensor networks in order to express the empirical risk as a function
of only one core of the weight tensor in tensor network form per iteration, also known as sub-problem. After
solving the ensuing optimization sub-problem, this procedure is repeated for for the remaining cores, defining one
epoch. The whole procedure is then repeated until convergence. When a convex quadratic loss function is used,
computational benefits associated with quantization arise as it enables to solve a series of quadratic problems
exactly. This is common practice in literature, see for instance Wahls et al. (2014); Chen et al. (2018); Novikov
et al. (2018); Wesel and Batselier (2021).

In the exemplifying case of CPD, TT and tensor ring, for a fixed number of model parameters P , quantization allows
to solve each sub-problem at a reduced computational cost of O(P

2
/D2) compared to a cost of O(P

2
/D2(logM)2).

This yields a sub-problem complexity which is independent of M . A similar reduction follows for other one-layered
networks. Quantifying the computational gains for other structures of tensor networks is less straightforward.

D NUMERICAL EXPERIMENTS

D.1 Improved Generalization Capabilities

We report in figure 4 the training error on the examined datasets in section 5.1. As one can observe, QTKM
outperforms TKM in terms of training error (figure 4) and test error (figure 2).

D.2 Regularizing Effect of Quantization

In table 2 we repeat the number of model parameters P = 2 log2 MR, the compression ratio of the quantized
model weights M/P , as well as the relative approximation error of the weights ||w−wCPD||/||w|| and the standardized
mean absolute error (SMAE) of the reconstruction error on the test set as a function of the CPD rank.
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Figure 4: Plots of the train mean squared error as a function of the number of model parameters P , for different
real-life datasets. In blue, random Fourier features (Rahimi and Recht, 2007), in red tensorized kernel machines
with Fourier features (Wahls et al., 2014; Stoudenmire and Schwab, 2016; Kargas and Sidiropoulos, 2021; Wesel
and Batselier, 2021), in yellow quantized kernel machines with Fourier features, with quantization Q = 2. The gray
horizontal full line is the full unconstrained optimization problem, which corresponds to kernel ridge regression
(KRR). The grey vertical dotted line is set at P = N . It can be seen that for P < N case, quantization allows to
achieve better performance with respect to the non-quantized case on the training set (this figure) and on the
test set (figure 2).

Table 2: Model parameters, compression ratio and relative approximation error of the weights, and standardized
mean absolute error on the test data as a function of the CPD rank.

R P M/P ||w−wCPD||/||w|| SMAE

10 260 31.5 0.841 0.579
25 650 12.6 0.712 0.571
50 1300 6.3 0.528 0.451
100 2600 3.1 0.310 0.182
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