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Léo Weissbart1 · Łukasz Chmielewski1,2 · Stjepan Picek3 · Lejla Batina1

Received: 25 May 2020 / Accepted: 15 September 2020
© The Author(s) 2020

Abstract
Profiling attacks, especially those based on machine learning, proved to be very successful techniques in recent years
when considering the side-channel analysis of symmetric-key crypto implementations. At the same time, the results
for implementations of asymmetric-key cryptosystems are very sparse. This paper considers several machine learning
techniques to mount side-channel attacks on two implementations of scalar multiplication on the elliptic curve Curve25519.
The first implementation follows the baseline implementation with complete formulae as used for EdDSA in WolfSSl,
where we exploit power consumption as a side-channel. The second implementation features several countermeasures, and
in this case, we analyze electromagnetic emanations to find side-channel leakage. Most techniques considered in this work
result in potent attacks, and especially the method of choice appears to be convolutional neural networks (CNNs), which can
break the first implementation with only a single measurement in the attack phase. The same convolutional neural network
demonstrated excellent performance for attacking AES cipher implementations. Our results show that some common
grounds can be established when using deep learning for profiling attacks on very different cryptographic algorithms and
their corresponding implementations.

Keywords Side-channel analysis · Machine learning · Deep learning · Public-key cryptography · Curve25519

1 Introduction

Various cyber-physical devices have become integral parts
of our lives. They provide basic services, and as such, also
need to fulfill appropriate security requirements. Designing
such secure devices is not easy due to limited resources
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available for implementations, and the need to provide
resilience against various attacks. In the last decades,
implementation attacks emerged as real threats and the
most potent attacks. In implementation attacks, the attacker
does not aim at the weaknesses of an algorithm, but
the weaknesses in implementations [23]. One powerful
category of implementations attacks is the profiled side-
channel analysis (SCA) where the attacker has access to a
profiling device she uses to learn about the leakage from
the device under attack. Profiled SCA uses a broad set of
methods to conduct the attack.

In the last few years, attacks based on the machine
learning classification task have proved to be very success-
ful when attacking symmetric-key cryptography [20–22,
35, 39]. On the other hand, profiled SCAs on public-
key cryptography implementations are much more scarce
[8, 25, 38].

While the current state-of-the-art results on profiled
SCA and public-key cryptography suggest breaking tar-
gets with relatively small effort, many questions remain
unanswered. For instance, it is not yet clearwhat are the ben-
efits of countermeasures against machine learning–based
attacks. What is more, public-key cryptography has
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different use cases and parameters that also result
in classification problems with a significantly differ-
ent number of classes one commonly encounters when
attacking, e.g., block ciphers. Finally, in profiled SCA
on symmetric ciphers, we are slowly moving away
from scenarios where the only interesting aspect is
the attack performance. Indeed, the SCA community
is now becoming interested in not only questions
like interpretability [24, 32, 45] and explainability [46]
of deep learning attacks, but also building methodolo-
gies [50] and frameworks [33, 34] for objective analy-
sis.

This paper considers profiled side-channel attacks on
two implementations of scalar multiplication on one of
the most popular elliptic curves for applications, i.e.,
Curve25519. The first implementation is the baseline
implementation with the complete formulae as used for
EdDSA in WolfSSl. The second implementation also
includes several countermeasures. To evaluate the security
of those implementations, we consider seven different
profiled methods. Additionally, we investigate the influence
of the dimensionality reduction technique. By doing this,
we aim at filling the knowledge gap and give insights into
the performance of different profiled methods. Finally, we
compare the differences in the attack performance when
considering protected and non-protected implementations.

This paper is based on the work “One Trace Is All It
Takes: Machine Learning-Based Side-Channel Attack on
EdDSA” [48]. The main differences are:

1. We provide results for an additional target, protected
with countermeasures.

2. We provide results for several more profiled methods
and different dimensionality reduction steps.

3. We investigate the applicability of one visualization
technique for deep learning when attacking public-key
implementations.

The rest of this paper is organized as follows. In
Section 2, we give details about EdDSA and scalar
multiplication procedure. Afterwards, we discuss the
profiled methods we use in our experiments. Section 3
provides details about the attacker model, the datasets we
use, hyperparameter tuning, and dimensionality reduction.
In Section 4, we provide experimental results for both
targets. In Section 5, we discuss related works. Finally, in
Section 6, we conclude the paper and offer some potential
future research directions.

2 Background

In this section, we start by introducing the elliptic curve
scalar multiplication operation and the EdDSA algorithm.

After that, we discuss profiling attacks that we use in our
experiments.

2.1 Elliptic Curve Digital Signature Algorithm

In the context of public-key cryptography, one important
feature is the (entity) authentication between two parties.
This feature ensures to party B that party A has sent a
message M and that this message is original and unaltered.
Authentication can be performed by the Digital Signature
Algorithm (DSA). Nowadays, public-key cryptography
for constrained devices typically implies Elliptic Curves
cryptography (ECC) as the successor of RSA because it
achieves a higher security level with smaller key lengths
saving the resources such as memory, power, and energy.
The security of ECC algorithms is based on the difficulty
of Elliptic Curve Discrete Logarithm Problem (ECDLP),
which states that while it is easy and efficient to compute
Q = k · P , it is “difficult” to find k with knowledge of Q

and P .
EdDSA [4] is a variant of the Schnorr digital signature

scheme [42] using Twisted Edward Curves, a subgroup of
elliptic curves that uses unified formulas, enabling speedups
for specific curve parameters. This algorithm proposes a
deterministic generation of the ephemeral key, different for
every message, to prevent flaws from a biased random
number generator. The ephemeral key r is made of the hash
value of the message M and the auxiliary key b, generating
a unique ephemeral public key R for every message.

EdDSA, with the parameters of Curve25519, is referred
to as Ed25519 [3]. EdDSA scheme for signature generation
and verification is described in Algorithm 1, where
the notation (x, . . . , y) denotes the concatenation of the
elements. The hash function H is SHA-512 [29]. The key
length is of size u = 256. We denote the private key with
k, the private scalar a is the first part of the private key’s
hashed value, and the auxiliary key b is the second part. We
denote the ephemeral key with r and M is the message.

After the signature generation, party A sends (M, R, S),
i.e., the message along with the signature pair (R, S) to
B. The verification of the signature is done by B with
steps 10 to 11. If the last equation is verified, it represents
a point on the elliptic curve, and the signature is correct,
ensuring that the message can be trusted as an authentic
message from A.

2.2 Elliptic Curve Scalar Multiplication

We focus on two types of implementations of EC scalar
multiplication. The first implementation is of EdDSA using
Ed25519 as in WolfSSL. This implementation is based on
the work of Bernstein et al. [4] and is a window-based
method with radix-16, making use of a precomputed table
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containing results of the scalar multiplication of 16i |ri | ·
G, where ri ∈ [−8, 7] ∩ Z and G is the base point of
Curve25519. This method is popular because of its trade-
off between memory usage and computation speed, but also
because the implementation is time-constant and does not
feature any branch condition nor array indices and hence is
presumably secure against timing attacks.

Leaking information from the corresponding value
loaded from memory with a function ge select is here
used to recover e and hence can be used to connect to
the ephemeral key r easily. More details are given in the
remainder of this paper. We can attack this implementation
and extract the ephemeral key r from Step 5 in Algorithm 1.

The second implementation we focus on is the Mont-
gomery Ladder scalar multiplication as used in μNaCl [14].
The implementation employs arithmetic-based conditional
swap and is additionally protected with projective coordi-
nate re-randomization and scalar randomization. The traces
used to analyze this implementation are obtained from a
publicly available dataset [11]. All details on this imple-
mentation, including the additional countermeasures, are
described in [27].

2.3 Profiling Attacks

2.3.1 Random Forest (RF)

Random forest is an ensemble learning method that consists
of a number of decision trees [6]. Decision trees consist of

combinations of Boolean decisions on a different random
subset of attributes of input data (called bootstrap sampling).
For each node of each tree, the best split is taken among
these randomly chosen attributes. Random forest is a
stochastic algorithm since it has two sources of randomness:
bootstrap sampling and attribute selection at node splitting.
While the random forest has several hyperparameters to
tune, we investigate the influence of the number of trees in
the forest, where we do not pose any limits on the tree size.

2.3.2 Support Vector Machines (SVM)

Support vector machine is a kernel-based machine learning
family of methods used to classify linearly separable
and linearly inseparable data [47]. The idea for linearly
inseparable data is to transform them into a higher
dimensional space using a kernel function, wherein the data
can usually be classified with higher accuracy. The scikit-
learn implementation we use considers libsvm’s C-SVC
classifier [31] that implements SMO-type algorithm [16].
This implementation of SVM learning is widely used
because it is simpler and faster compared to older methods.
The multi-class support is handled according to a one-vs-
one scheme. We investigate two variations of SVM: with
a linear kernel and with a radial kernel. Linear kernel-
based SVM has the penalty hyperparameter C of the
error term. Radial kernel-based SVM has two significant
hyperparameters to tune: the cost of the margin C and the
kernel γ .

2.3.3 Convolutional Neural Networks (CNNs)

Convolutional neural networks, like other types of neural
networks, have several layers where each layer is made up
of neurons, as depicted in Fig. 1. Every neuron in a layer
computes a weighted combination of an input set by a net
input function (e.g., the sum function in neurons of a fully
connected layer) from which a nonlinear activation function
produces an output. When the output is different from zero,

Fig. 1 Anatomy of a neuron
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we say that the neuron activation feeds the next layer as
its input. Layers with a convolution function as the net
input function are referred to as convolutional layers and
are the core building blocks in a CNN. Pooling layers are
commonly used after a convolution layer to sample down
local regions and create spatial regions of interest. The last
fully connected layers of a CNN behave as a classifier for
the extracted features from the inputs.

In this work, we start from the VGG-16 architecture
introduced in [43] for image recognition. This architecture
was also recently applied for SCA on AES [20] and
EdDSA [48]. This CNN architecture also uses the following
elements:

1. Batch normalization to normalize the input layer by
applying standard scaling on the activations of the
previous layer.

2. Flatten layer to transform input data of rank greater than
two into a one-dimensional feature vector used in the
fully connected layer.

3. Dropout (randomly dropping out units (both hidden and
visible) in a neural network with a certain probability at
each batch) as a regularization technique for reducing
overfitting by preventing complex co-adaptations on the
training data.

The architecture of a CNN depends on a large number
of hyperparameters, so choosing hyperparameters for each
different application is an engineering challenge. The
choices made in this paper are discussed in Section 4.

2.3.4 Gradient Boosting (XGB)

Gradient boosting for classification is an algorithm that
trains several weak learners (i.e., decision trees that
perform poorly considering the classification problem) and
combines their predictions to make one stronger learner.
Gradient boosting differs from the random forest in the
way the decision trees are built. While in random forest
classifier, each tree is trained independently using random
samples of the data, and decision trees in gradient boosting
depend on the previously trained tree’s prediction to
correct its errors. Gradient tree boosting is composed of
a concatenation of several smaller decision trees. We used
the extreme gradient boosting (XGB) implementation of
gradient boosting, designed by Chen and Guestrin [10],
which uses a sparsity-aware algorithm for handling sparse
data and a theoretically justified weighted quantile sketch
for approximate learning.

2.3.5 Naive Bayes (NB)

Gaussian Naive Bayes classifier is one of the classification
algorithms that applies Bayes’s theorem with the “naive”

assumption. The naive assumption describes the conditional
independence between every pair of features in a given class
sample. The Gaussian assumption is assumed as the features
probability distribution. The Naive Bayes method is highly
scalable with the number of features and requires only a
few representative features per class to achieve a satisfying
performance.

2.3.6 Template Attack (TA)

The template attack relies on the Bayes theorem and
considers the features to be dependent. Commonly, template
attack relies on a normal distribution [9] and it assumes that
each P( �X = �x|Y = y) follows a (multivariate) Gaussian
distribution parameterized by its mean and covariance
matrix for each class Y . Choudary and Kuhn proposed
using one pooled covariance matrix averaged over all
classes Y to cope with statistical difficulties and thus lower
efficiency [12]. In our experiments, we use this version of
the attack.

3 Experimental Setup

3.1 Attacker Model

The general recommendation for EdDSA, as well as other
ECDSA implementations, is to select different ephemeral
private keys r for each different signature. When this is
not applied and the same r is used for different messages,
the two resulting signature pairs (R, S) and (R, S′) for
messages M and M ′, respectively, can be used to recover
r as r = (z − z′)(S − S′)−1, where z and z′ represent a
majority of leftmost bits of H(M) and H(M ′) interpreted
as integers.1 Finally, the private scalar a is exposed as a =
R−1(Sr − z) and can be misused by the attacker to forge
new signatures.2

The attacker’s aim is the same as for every ECDSA
attack: recover the secret scalar a. The difference is that
the attacker cannot acquire two signatures with the same
random r , but can still recover the secret scalar in two
different ways. The first method consists of attacking
the hash function’s implementation to recover b from the
computation of ephemeral private key [40]. The second
one attacks the implementation of the scalar multiplication
during the ephemeral public key’s computation to infer it
in a single trace [48]. In this paper, we consider only the
profiled attacks, i.e., those based on the supervised machine

1To be precise: z and z′ correspond to l leftmost bits of H(M) and
H(M ′), respectively, where l denotes the bit length of the group order.
2For details, we refer the reader to the presentation about a real-world
application of this attack:

https://wikileaks.org/sony/docs/05/docs/Hacks/PS3%20timeline.pdf
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Fig. 2 Signal-to-noise ratio for the baseline implementation dataset

learning paradigm, where the task is the classification
(learning how to assign a class label to examples). As side-
channels, we consider the power and electromagnetic (EM)
leakage.

3.2 SCA Datasets

We analyze two publicly available datasets targeting
elliptic curve scalar multiplication on Curve25519 for
microcontrollers. The first dataset consists of power traces
of a baseline implementation, and the second dataset
consists of electromagnetic traces of a more protected
implementation.

3.2.1 Baseline Implementation Dataset

We consider a dataset of scalar multiplication on
Curve25519. The implementation follows the baseline
implementation of the scalar multiplication algorithm as
in [48]. The traces contain power measurements collected
from a Piñata development board1 based on a 32-bit
STM32F4 microcontroller with an ARM-based architec-
ture, running at the clock frequency of 168 MHz. The device
is running the Ed25519 implementation of WolfSSL 3.10.2.
The target is the EC scalar multiplication of the ephemeral
key and the base point of curve Ed25519 (as explained in
Section 3.1). Because of the chosen implementation, it is
possible to profile the full scalar by nibble in a horizontal
fashion. The dataset is thus composed of multiple separate
nibble computations.

The dataset has 6400 labeled traces of 1000 features
each, with associated nibble value. In Fig. 2, we give the
signal-to-noise ratio of this dataset. The SNR is high and
reaches a maximum value of 12.9. Such a high SNR is the
consequence of dealing with power leakages that are less

1Pinata Board: https://www.riscure.com/product/pinata-training-target/

Fig. 3 Signal-to-noise ratio for the protected implementation dataset

noisy than usual EM leakages. The leakage is essentially
located between points 50 and 700, where several features
seem to leak information about the handled nibble.

3.2.2 Protected Implementation Dataset

The traces in the protected dataset are taken from a publicly
available dataset [11]. This set contains electromagnetic
traces coming from 5997 executions of Curve25519 μNaCl
Montgomery Ladder scalar multiplication3 running on
the Piñata target, the same as in Section 3.2.1. The
implementation employs an arithmetic-based conditional
swap and is additionally protected with the projective
coordinate re-randomization and scalar randomization.
Each trace from the dataset represents a single iteration
of the Montgomery Ladder scalar multiplication that is
cut from the whole execution trace; such trace is labeled
with the corresponding cswap condition bit.4 Furthermore,
all these cut traces (5997 × 255 = 1, 529, 235) are
aligned to exploit the leakage efficiently. Details about the
implementation and how the traces are aligned are in [27].

Figure 3 represents the SNR of the dataset for the bit
model. This SNR is relatively flat except for two peaks
where the leakage of the data is stronger. One is located
before feature 3000 and the second after feature 5000. The
noise level is high for an EM dataset but is smaller than the
other dataset based on power traces.

3.3 EvaluationMetrics

To examine the feasibility and performance of our attack, we
use two different metrics. We first compare the performance
using the accuracy metric since it is a standard metric

3http://munacl.cryptojedi.org/curve25519-cortexm0.shtml
4Observe that a full scalar can be trivially recovered from the cswap
condition bits used in the 255 Montgomery Ladder iterations.
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in machine learning. The accuracy metric represents the
fraction of the measurements that are classified correctly.
The second metric we use is the success rate as it is an SCA
metric that gives a more concrete idea on the power of the
attacker [44]. Let us consider the settings where we have
A attack traces. As the result of an attack, we output a key
guessing vector v = [v1, v2, . . . , v|K|] in decreasing order
of probability with |K| being the size of the keyspace. Then,
the success rate is the average empirical probability that v1

is equal to the correct key.

3.4 Dimensionality Reduction

For computational reasons, one may want to analyze only
the most informative features from the dataset’s traces.
Consequently, we explore several different settings where
we use all the features in a trace or conduct dimensionality
reduction. For dimensionality reduction, we use a method
called principal component analysis. Principal component
analysis (PCA) is a linear dimensionality reduction method
that uses Singular Value Decomposition (SVD) of the data
matrix to project it to a lower dimensional space [5].
PCA creates a new set of features (called principal
components) that form a new orthogonal coordinate system
that is linearly uncorrelated. The number of components
is the same as the number of original features. The
components are arranged so that the first component covers
the largest variance by a projection of the original data,
and the following components cover less and less of the
remaining data variance. The projection contains (weighted)
contributions from all the original features. Not all principal
components need to be kept in the transformed dataset.
Since the components are sorted by decreasing covered
variance, the number of kept components, designated by L,
maximizes the original data variance and minimizes the data
transformation’s reconstruction error. While PCA is meant
to select the principal information from data, there is no
guarantee that the reduced data form will give better results
for profiling attacks than its complete form.

3.5 Hyperparameter Tuning

Most machine learning methods are parametric and require
some hyperparameters to be tuned before the training
phase. Depending on this pre-tuning, the trained classifier
will potentially have a different outcome. The different
classification methods we used are trained with a wide set of
hyperparameters as detailed in this section. The exact used
hyperparameters are listed in Tables 1 and 4.

TA We use the Template Attack with a pooled covariance
matrix [12]. This method has no hyperparameters to tune.

Table 1 Best hyperparameters found for the baseline implementation
dataset

Algorithm Number of features Best hyperparameters

SVM linear 1 000 C=1 000

500 C=23.1

100 C=284.8

10 C=1 333

SVM rbf 1 000 C=1 000, γ =1

500 C=12.3, γ =0.65

100 C=81.1, γ =0.65

10 C=1 000, γ =1.23

RF 1 000, 500, 100, 10 n tree=500

XGB 1 000, 500, 100, 10 n tree=300, max depth=3

NB We do not conduct hyperparameter tuning as the
method is non-parametric (i.e., there are no hyperparameters
to tune).

RF We tune the number of decision trees. We consider the
following number of trees: 50, 100, 500.

SVM For the linear kernel, the hyperparameter to optimize
is the penalty parameter C. We search for the best C in
the range [1, 105] in logarithmic space. For the radial basis
function (RBF) kernel, we have two hyperparameters to
tune: the penalty C and the kernel coefficient γ . The search
for best hyperparameters is done within C = [1, 105] and
γ = [−5, 2] in logarithmic spaces.

XGB In the same fashion as the random forest classifier, we
set the hyperparameter exploration for the number of trees to
50, 100, and 300. We impose a maximum depth for each tree
from 1 to 3 nodes, to force each tree to be a weak learner.

CNN The chosen hyperparameters for VGG-16 follow
several rules that have been adapted for SCA in [20] or [39]
and that we describe here:

1. The model is composed of several convolution blocks
and ends with a dropout layer followed by a fully
connected layer and an output layer with the Softmax
activation function.

2. Convolutional and fully connected layers use the ReLU
activation function (max(0, x)).

3. A convolution block is composed of one convolution
layer followed by a pooling layer.

4. An additional batch normalization layer is applied
for every odd-numbered convolution block and is
preceding the pooling layer.

5. The chosen filter size for convolution layers is set to the
size 3.
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6. The number of filters nfilters,i in a convolution block
i increases according to the following rule: nfilters,i =
max(2i · nfilters,1, 512) for every layer i ≥ 0 and we
choose nfilters,1 = 8.

7. The stride of the pooling layers equals two and halves
the input data for each block.

8. Convolution blocks follow each other until the size of
the input data is reduced to 1.

4 Results

In this section, we first present results for the baseline
implementation and the protected implementation after-
ward. We finish the section with results on visualization and
discussion. The best results in Tables 2 and 5 are given in
italics.

4.1 Baseline Implementation

After the conducted training phase of all the different
classifiers with their hyperparameters, we list in Table 1
the best hyperparameter combinations for each machine
learning model.

The resulting CNN architecture for a 1000-feature input
is depicted in Fig. 4. Other architectures will have a different
number of convolutional blocks and a number of weights
depending on the number of features of the input.

In Table 2, we give the accuracy score for different
profiling methods when considering the recovery of a single
nibble of the key. We can see that all profiling techniques
reach excellent performance with accuracy above 95%.
When considering all available features (1000), CNN
performs the best and achieves an accuracy of 100%. Both
SVM (linear and RBF) and RF have the same accuracy.
SVM’s performance is interesting since the same value
for linear and RBF kernel indicates there is no advantage
of using higher dimensional space, which means that the
classes are linearly separable. Finally, NB, XGB, and TA

Table 2 Accuracy results for the baseline implementation dataset

Algorithm 1000

features 500 PCA 100 PCA 10 PCA

TA 0.9977 0.9992 0.9992 0.9830

RF 0.9992 0.9909 0.9921 0.9937

SVM (linear) 0.9992 0.9995 0.9990 0.995

SVM (rbf) 0.9992 0.9996 0.9989 0.995

CNN 1.00 0.9796 0.9968 0.96

XGB 0.9965 0.9794 0.9807 0.9901

NB 0.9837 0.9475 0.9731 0.9823

still perform well, but we conclude they reach the worst
results compared with other methods.

PCA results in lower accuracy scores for most of the
considered techniques. When considering 500 or 100 PCA
components, the TA’s results slightly improve, while RF
and CNN results slightly decrease. SVM with both kernels
can reach minimally higher accuracy when considering 500
PCA components. When considering the scenario with only
the ten most important PCA components, all the results
deteriorate compared with the results with 1000 features,
and SVM performs the best.

To conclude, all techniques exhibit strong performance,
but CNN is the best if no dimensionality reduction is
applied. There, the maximum accuracy is obtained after
only a few epochs (see Figs. 6 and 7). If dimensionality
reduction is applied, CNN shows a progressive performance
deterioration. This behavior should not come as a surprise
since CNNs are usually used with the raw features (i.e., no
pre-processing). Applying such techniques could reduce the
performance due to a loss of information and changes in
the spatial representation of features. Interestingly, TA and
SVM are very stable methods, regardless of the number of
used features (components), and those methods show the
best performance for a reduced number of features settings.

In Fig. 5, we present a success rate with orders up
to 10 for all profiling methods on the dataset without
applying PCA. Recall that a success rate of order o is the
probability that the correct subkey is ranked among the first
o candidates of the guessing vector. While CNN has a 100%
success rate of order 1, other methods achieve the perfect
score only for orders greater than 6.

The results for all methods are similar in the recovery of
a single nibble from the key. To have an idea of how good
these methods perform for the recovery of a full 256-bit key,
we apply classification on the successive 64 nibbles. We
obtain an intuition of the resulting accuracy by considering
the cumulative probability Pc of the probabilities of
recovery of one nibble Ps : Pc = �64Ps (see Table 3).
The cumulative accuracy obtained in such a way can be
interpreted as the predictive first-order success rate of a full
key for the different methods in terms of a security metric.

From these results, the best result is obtained with
CNN when no dimensionality reduction is applied. Other
methods are nonetheless powerful profiling attacks with
up to 95% performance to recover the full key on the
first guess with the best choice of hyperparameters and
dimensionality reduction. When considering the results
after dimensionality reduction, SVM is the best performing
technique when using 500 PCA components.

As can be observed from Figs. 6 and 7, both the sce-
narios without dimensionality reduction and dimensionality
reduction to 100 and 500 components reach the maximal
performance very fast. On the other hand, the scenario with
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Fig. 4 CNN architecture, as
implemented in Keras. This
architecture takes a 1000-feature
input and consists of nine
convolutional layers followed by
max pooling layers. For each
odd convolutional layer, there is
a batch normalization layer
before the pooling layer. At the
end of the network, there is one
fully connected layer

10 PCA components does not reach the maximal perfor-
mance within 100 epochs since the validation accuracy does
not start to decrease. Still, even longer experiments do not
show further improvement in the performance, which indi-
cates that the network simply learned all that is possible and
that there is no more information that can be used to increase
the performance further. Finally, the fast increase in training
and validation accuracy, and the stable behavior of profiling

Fig. 5 Success rate results for the baseline implementation dataset

methods clearly indicate that attacking the implementation
without countermeasures is easy.

4.2 Protected Implementation

We list the selected hyperparameters for the protected
implementation in Table 4. The protected implementation
dataset contains more features per trace than the other
dataset. Therefore, the number of trainable parameters for
machine learning methods greatly increases, increasing the
models’ training load. We experimented with RF, NB, and

Table 3 Cumulative probabilities for the profiling methods

Algorithm 1000

features 500 PCA 100 PCA 10 PCA

TA 0.86 0.95 0.95 0.33

RF 0.95 0.56 0.61 0.67

SVM (linear) 0.95 0.97 0.94 0.73

SVM (rbf) 0.95 0.98 0.93 0.73

CNN 1.00 0.27 0.82 0.04

XGB 0.80 0.27 0.29 0.53

NB 0.35 0.03 0.18 0.32
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Fig. 6 Accuracy of the CNN method over 100 epochs for the baseline
implementation dataset

XGB and left out SVM (both with linear and RBF kernel)
as this method’s training becomes too expensive.

We show the accuracy results for all tested methods on
the protected implementation dataset in Table 5. Notice
that, contrary to the previously considered dataset, not
all profiling techniques have good performance, and most
of them are even close to random guessing. Still, some
profiling methods can reach above 99% accuracy, where the
best results are obtained with CNN. When PCA is applied,
random forest performs poorly with 50.2% accuracy for ten
and 1000 components, which is not better than one could
expect from random guessing. However, this method turns
out to be quite efficient on the raw features and reaches an
accuracy of 93% for one bit recovery.

Naive Bayes and XGB perform poorly regardless of the
hyperparameters explored and if dimensionality reduction is
applied. The accuracy stays around random guessing when
PCA is applied with ten and 1000 components, and does not
go above 60% in the best case. Naive Bayes and XGB are
simple classifiers and, considering their accuracy score on

Fig. 7 Loss of the CNN method over 100 epochs for the baseline
implementation dataset

this dataset, are not powerful enough to defeat a protected
EC scalar multiplication implementation.

The template attack is performing well, where the
more features are taken, the better the results. The best
accuracy score for template attack is obtained when all
features are kept, and it reaches 99% accuracy. When
PCA is applied and 1000 components are selected, the
accuracy falls to 89% (which is, in fact, the best result
for all considered techniques). Finally, when the number of
selected components is reduced to 10, the accuracy falls
to 52%.

Table 4 Best hyperparameters found for the protected implementation
dataset

Algorithm Number of features Best hyperparameters

RF 5 500, 1 000, 10 n tree=500

XGB 5 500, 1 000 n tree=300, max depth=3

10 n tree=300, max depth=2
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Table 5 Accuracy results for the protected implementation dataset

Algorithm 5500

features 1000 PCA 10 PCA

RF 0.9903 0.5022 0.5023

NB 0.6058 0.4971 0.5018

XGB 0.6058 0.4945 0.5019

TA 0.9908 0.8954 0.5238

CNN 0.9999 0.5014 0.5572

CNN is a highly efficient method only when considering
the dataset without applying the PCA method, where it
reaches an accuracy above 99%. As we can see in Figs. 8
and 9, when PCA is applied, while the training loss and
accuracy seems to fit the training set, the model fails to
generalize and converge on the validation set given the
chosen number of traces and epochs.

We can evaluate the accuracy of the different methods
to predict a 256-bit scalar by computing the cumulative

Fig. 8 Accuracy of the CNN method over 100 epochs on the protected
implementation dataset

probability of success of a single bit over 256 attempts. The
cumulative probability pc for a 256-bit key considering a
single bit probability recovery Ps is Pc = ∏

256 Ps . Here,
only the methods with a single accuracy above 99% are
worth considering as the other methods have a cumulative
probability close to 0. For example, the cumulative accuracy
for the random forest with 5500 features is 8%, and CNN
with 5500 features is 98%.

4.3 Visualization of the Integrated Gradient

For CNNs, various visualization techniques have been
developed to help researchers understand what input
features influence the neural network predictions. These
tools are interesting in side-channel analysis to evaluate if a
network bases its prediction on the part of the trace where
the leakage is the strongest. We note that visualization
techniques proved to be a helpful tool when considering
profiled SCA and block ciphers [17, 24]. We use here the
integrated gradient method [30]. In this method, the higher

Fig. 9 Loss of the CNN method over 100 epochs on the protected
implementation dataset

323J Hardw Syst Secur  (2020) 4:314–328



is the gradient value, the more important the feature is for
the model’s prediction.

From Figs. 10 and 11, we can notice that when we
apply principal component analysis, the network tends to
rely more on the first features. After applying PCA, the
features are reorganized and ranked from the most important
to the least important feature. When considering the dataset
without applying PCA, the features’ order is the same
as those sampled with the oscilloscope. We can notice
interesting similarities between the SNR of the unprotected
implementation (Fig. 2) and the integrated gradient of the
CNN. The interpretation of the integrated gradient obtained
for the CNN trained on the protected implementation dataset
is less evident as the high peaks do not correspond to the
leaking features indicated by the SNR (see Fig. 3). When
comparing the visualization results for both datasets, the

Fig. 10 Integrated gradient method applied to CNN trained on the
baseline implementation dataset

similarity between the baseline results for the full number
of features and after dimensionality reduction indicates that
the performance should be similar, which is confirmed by
the accuracy results. On the other hand, we see striking
differences between two visualizations for the protected
implementation, where the one with 1000 features cannot
concentrate on the most important elements, which is again
evident from the accuracy results.

4.4 General Remarks

The obtained results allow us to infer some more general
recommendations one could follow one attacking ECC with
profiled SCAs:

1. When attacking unprotected implementations, most
of the considered methods work well. While CNN

Fig. 11 Integrated gradient method applied to CNN trained on the
protected implementation dataset
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performs the best, computationally simpler methods
represent an interesting alternative.

2. For protected implementation, deep learning performs
significantly better than other considered methods.

3. For the protected implementation, all the methods
perform worse when principal component analysis is
applied to reduce the number of features.

4. Template attack should be an interesting option in cases
when one cannot use all the features.

5. There is not much difference in the attack performance
concerning hyperparameter tuning, which indicates that
coarse-grained tuning should be enough.

6. Visualization techniques offer good indication in the
performance of CNNs, as they show on what features
CNN concentrates. If CNN cannot concentrate on a
smaller number of features, this results in a poor attack
performance.

5 RelatedWork

In 2003, Chari et al. [9] introduced a template attack
(TA) as a powerful SCA method in the information-
theoretic point of view, which became a standard tool for
profiling SCA. As TA’s straightforward implementations
can lead to computationally intensive computation, one
option for more efficient computation is to use only a single
covariance matrix, which is referred to as the so-
called pooled template attack presented by Choudary and
Kuhn [12]. There, the authors were able to template a LOAD
instruction and recover all 8 bits treated with a guessing
entropy equal to 0.

Several works applied machine learning methods to SCA
of block ciphers because they resemble general profiling
techniques. Two methods stand out particularly in profiling
SCA, namely support vector machines [21, 22, 36, 41]
and random forest [18, 35, 41]. Few other works also
experienced SCA with naive Bayes [36] and gradient
boosting methods [37, 49]. With the general evolution
in the field of deep learning, more and more works
deal with neural networks for SCA and often show top
performance. Most of the research concentrated on either
multilayer perceptron or convolutional neural networks
[7, 13, 22, 37].

There is a large portion of works considering profiling
techniques for symmetric-key ciphers, but there is less
for public-key cryptography,5 especially ECC. Template

5We do not consider here the post-quantum schemes because, although
they belong to public-key cryptography, they differ significantly from
ECC or RSA.

attacks on ECC trace back to an attack on ECDSA,
as demonstrated by Medwed and Oswald in 2009 [26].
That work showed TA to be efficient for attacking SPA-
resistant ECDSA with the P192 NIST curve on a 32-bit
microcontroller [25]. Heyszl presented another template
attack on ECC in [19]. That attack exploited register
location-based leakage using a high-resolution inductive
EM probe. Another approach to attack ECC is the so-
called online template attacks [1, 2, 15, 30]. The first
three approaches [1, 2, 15] use correlation to match the
template traces to the whole attacked traces while the
fourth attack [30] employs instead several machine learning
distinguishers.

Lerman et al. considered a template attack and several
machine learning techniques to attack RSA. However,
the targeted implementation was not secure, making the
comparison with non-machine learning techniques less
favorable [21]. Nascimento et al. applied a horizontal attack
on ECC implementation for AVR ATmega microcontroller
targeting the side-channel leakage of cmov operation. Their
approach to side-channel is similar to ours, but they do not
use deep learning in the analysis [28]. Note that approach
was extended to unsupervised settings using clustering [27].
Poussier et al. used horizontal attacks and linear regression
to conduct an attack on ECC implementations, but their
approach cannot be classified as deep learning [38].
Carbone et al. used deep learning to attack a secure
implementation of RSA [8]. The results from that paper
show that deep learning can reach strong performance
against secure implementations of RSA.

6 Conclusions

In this paper, we consider several profiling methods to
attack Curve25519 in both unprotected and protected
settings. The results show that unprotected implementation
is easy to attack with many techniques, where good
results are achieved even after dimensionality reduction. We
observe a significantly different behavior for the protected
dataset, where only CNN can easily break the target
implementation. What is more, most of the other methods
perform on the level of random guessing. For this dataset,
we also see a strong negative influence of dimensionality
reduction. Finally, our results with the integrated gradient
visualization indicate such methods useful in evaluating
CNN’s behavior. Indeed, when there are clear peaks for the
integrated gradient, this maps to a simple classification task
and, consequently, powerful attack performance.

We plan to investigate whether standard machine
learning metrics like accuracy have fewer issues for public-
key cryptography implementations than are reported for
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symmetric-key ciphers. As this gap between machine
learning and side-channel metrics represents one of the most
significant challenges in the SCA community today, insights
about public-key particularities are needed.
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Appendix 1: Cover Letter: Special Issue
on SPACE 2019

This paper is based on the work “One Trace Is All It
Takes: Machine Learning-Based Side-Channel Attack on
EdDSA” [48]. The main differences are:

1. We provide results for an additional target protected
with countermeasures.

2. We provide results for several more profiled methods
and different dimensionality reduction steps.

3. We investigate the applicability of one visualization
technique for deep learning when attacking public-key
implementations.

More specifically, we rewrote Section 1 to give more
emphasis on the relevance for machine learning–based SCA
on ECC. In Section 2, we added information about the
new implementation we consider and some info on added
profiling methods (Sections 2.2, 2.3.4, 2.3.5). In Section 3,
we added information about the new dataset (for protected
implementation), and we briefly discuss the metrics we use.
We additionally discuss the hyperparameter tuning in more
detail and dimensionality reduction, where we do not use
anymore heuristics to select the number of components. The
main changes are in Sections 3.2.2, 3.3, and 3.4.

Section 4 gives results for both implementations (changes
in Section 4.1 and new Section 4.2), with and without PCA,

and for all considered profiling methods. In this section, all
results are new except for the baseline implementation with
1000 features (we also have some additional results for this
scenario). The parts on visualization and general remarks
are new (Sections 4.3 and 4.4).

Section 5 has only minor differences from the previous
version, where we included a few more related works.
Finally, Section 6 now gives a more general outline
for comparison between two implementations and a new
suggestion for future work (since the one from SPACE we
covered in this submission).
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30. Özgen E, Papachristodoulou L, Batina L (2016) Classification
algorithms for template matching. In: IEEE International sympo-
sium on hardware oriented security and trust, HOST 2016, mclean,
VA, USA, 2016 (to appear)

31. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,
Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M,
Duchesnay E (2011) Scikit-learn: Machine learning in Python. J
Mach Learn Res 12:2825–2830

32. Perin G, Ege B, Chmielewski Ł Neural network model assessment
for side-channel analysis. IACR Cryptology ePrint Archive 2019,
722 (2019). https://eprint.iacr.org/2019/722

33. Picek S, Heuser A, Alippi C, Regazzoni F (2018) When theory
meets practice: A framework for robust profiled side-channel
analysis. Cryptology ePrint Archive, Report 2018/1123. https://
eprint.iacr.org/2018/1123

34. Picek S, Heuser A, Guilley S (2019) Profiling side-channel
analysis in the restricted attacker framework. Cryptology ePrint
Archive, Report 2019/168. https://eprint.iacr.org/2019/168

35. Picek S, Heuser A, Jovic A, Bhasin S, Regazzoni F
(2019) The curse of class imbalance and conflicting met-
rics with machine learning for side-channel evaluations.
IACR Trans Cryptogr Hardw Embed Syst 2019(1):209–237.
https://doi.org/10.13154/tches.v2019.i1.209-237

36. Picek S, Heuser A, Jovic A, Ludwig SA, Guilley S, Jakobovic D,
Mentens N (2017) Side-channel analysis and machine learning:
a practical perspective. In: 2017 International joint conference on
neural networks, IJCNN 2017, anchorage, AK, USA, May 14-19,
2017, pp 4095–4102

37. Picek S, Samiotis IP, Kim J, Heuser A, Bhasin S, Legay
AChattopadhyay A, Rebeiro C, Yarom Y (eds) (2018) On the
performance of convolutional neural networks for side-channel
analysis. Springer International Publishing, Cham

38. Poussier R, Zhou Y, Standaert FXFischer W, Homma N (eds)
(2017) A systematic approach to the side-channel analysis of ECC
implementations with worst-case horizontal attacks. Springer
International Publishing, Cham

39. Prouff E, Strullu R, Benadjila R, Cagli E, Dumas C (2018)
Study of deep learning techniques for side-channel analysis
and introduction to ASCAD database. IACR Cryptology ePrint
Archive 2018, 53

40. Samwel N, Batina L, Bertoni G, Daemen J, Susella R (2018)
Breaking ed25519 in wolfSSL. In: Cryptographers’ track at the
RSA conference. Springer, pp 1–20

41. Schindler W, Huss SA (eds) (2012) Constructive side-channel
analysis and secure design - third international workshop,
COSADE 2012, Darmstadt, Germany, May 3-4, 2012. proceed-
ings, LNCS, vol 7275. Springer, Berlin

42. Schnorr CP (1991) Efficient signature generation by smart cards.
J Cryptol 4(3):161–174

43. Simonyan K, Zisserman A (2014) Very deep convolutional
networks for large-scale image recognition. arXiv:1409.1556

44. Standaert FX, Malkin T, Yung M (2009) A unified framework
for the analysis of side-channel key recovery attacks. In:
EUROCRYPT. LNCS, vol 5479. Springer, Cologne, pp 443–
461

45. van der Valk D, Picek S (2019) Bias-variance decomposition in
machine learning-based side-channel analysis. Cryptology ePrint
Archive, Report 2019/570. https://eprint.iacr.org/2019/570

327J Hardw Syst Secur  (2020) 4:314–328

http://dblp.uni-trier.de/db/journals/dcc/dcc77.html#DullHHHPSS15
http://dblp.uni-trier.de/db/journals/dcc/dcc77.html#DullHHHPSS15
http://eprint.iacr.org/2015/1001/
http://dl.acm.org/citation.cfm?id=1046920.1194907
http://dl.acm.org/citation.cfm?id=1046920.1194907
https://doi.org/10.1109/TC.2017.2757921
https://doi.org/10.13154/tches.v2019.i3.148-179
https://tches.iacr.org/index.php/TCHES/article/view/8292
https://tches.iacr.org/index.php/TCHES/article/view/8292
https://doi.org/10.1504/IJACT.2014.062722
http://www.dpabook.org/
http://www.dpabook.org/
https://doi.org/10.1007/978-3-030-16350-1_9
https://eprint.iacr.org/2008/081/
https://eprint.iacr.org/2008/081/
https://eprint.iacr.org/2017/1204
https://eprint.iacr.org/2017/1204
https://eprint.iacr.org/2019/722
https://eprint.iacr.org/2018/1123
https://eprint.iacr.org/2018/1123
https://eprint.iacr.org/2019/168
https://doi.org/10.13154/tches.v2019.i1.209-237
http://arxiv.org/abs/1409.1556
https://eprint.iacr.org/2019/570


46. van der Valk D, Picek S, Bhasin S (2019) Kilroy was here:
The first step towards explainability of neural networks in
profiled side-channel analysis. Cryptology ePrint Archive, Report
2019/1477. https://eprint.iacr.org/2019/1477

47. Vapnik VN (1995) The nature of statistical learning theory.
Springer, New York

48. Weissbart L, Picek S, Batina L (2019) One trace is all it
takes: machine learning-based side-channel attack on edDSA.
In: Bhasin S, Mendelson A, Nandi M (eds) Security, privacy,
and applied cryptography engineering. Springer International
Publishing, Cham, pp 86–105

49. Xu M, Wu L, Zhang X (2018) Power analysis on SM4 with
boosting methods. In: 2018 12th IEEE international conference

on anti-counterfeiting, security, and identification (ASID). IEEE,
pp 188–191

50. Zaid G, Bossuet L, Habrard A, Venelli A (2019) Method-
ology for efficient cnn architectures in profiling attacks.
IACR Trans Cryptogr Hardw Embed Syst 2020(1):1–36.
https://doi.org/10.13154/tches.v2020.i1.1-36. https://tches.iacr.
org/index.php/TCHES/article/view/8391

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

328 J Hardw Syst Secur  (2020) 4:314–328

https://eprint.iacr.org/2019/1477
https://doi.org/10.13154/tches.v2020.i1.1-36
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391

	Systematic Side-Channel Analysis of Curve25519 with Machine Learning
	Abstract
	Introduction
	Background
	Elliptic Curve Digital Signature Algorithm
	Elliptic Curve Scalar Multiplication
	Profiling Attacks
	Random Forest (RF) 
	Support Vector Machines (SVM)
	Convolutional Neural Networks (CNNs)
	Gradient Boosting (XGB)
	Naive Bayes (NB)
	Template Attack (TA)


	Experimental Setup
	Attacker Model
	SCA Datasets
	Baseline Implementation Dataset
	Protected Implementation Dataset

	Evaluation Metrics
	Dimensionality Reduction
	Hyperparameter Tuning
	TA
	NB
	RF
	SVM
	XGB
	CNN



	Results
	Baseline Implementation
	Protected Implementation
	Visualization of the Integrated Gradient
	General Remarks

	Related Work
	Conclusions
	Appendix A  1: Cover Letter: Special Issue on SPACE 2019
	References


