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Abstract
Imaging by inversion of acoustic or electromagnetic wave fields have applications in a wide variety of
areas, such as nondestructive testing, biomedical applications, and geophysical explorations. Unfor
tunately, each modality suffers from its own application specific limitations, typically being difficulties
in distinguishing different materials or tissues from each other in the case of acoustic wave fields and
a low spatial resolution in the case of electromagnetic wave fields. To exploit the advantages of both
imaging modalities, methods to combine them include image fusion, usage of spatial priors and applica
tion of joint or multiphysics inversion methods. The latter can be based on empirical relations between
acoustic and electromagnetic medium properties or on structural similarity. In this work, two joint inver
sion algorithms based on structural similarity are presented. To account for the structural similarity the
errorfunctional of standard Born inversion is extended with an additional penalty term. This additional
term is either based on the L2norm of the crossgradient (CG), i.e. the cross product of the gradients
of the acoustic and electromagnetic contrasts or on the L2norm of the gradient difference (GD), i.e.
the difference between the normalized gradients of both contrasts. To test the proposed methods, two
synthetic models are considered; one with the gradients of the contrasts pointing in the same direction
and one where the gradients point in opposite directions. Results show that the GD constraint signif
icantly improves the resolution for the electromagnetic reconstruction compared to separate BI. The
mean square errors (MSE) of the reconstructed profiles for the separate BI are 0.12 for the acoustic
and 0.51 for the electromagnetic case, and for the joint GD inversion, 0.09 for the acoustic and 0.46 for
the electromagnetic case. The joint GD inversion fails when using the model with the gradients of the
contrasts pointing in opposite directions. The joint CG inversion does not enhance the reconstructed
images, but shows similar performances for the different models. In conclusion, joint inversion based
on structural constraints is shown to improve the electromagnetic resolution, especially using the GD
constraint. Further research needs to be conducted to extend the functionality of the GD constraint to
acoustic and electromagnetic contrasts with opposite contrast gradient directions.
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1
Introduction

Imaging by inverse scattering of acoustic waves is used in a variety of fields, like nondestructive testing
of for example art objects [1], biomedical applications like breast imaging [2], remote sensing [3] and
geophysical explorations [4]. Correspondingly, imaging by inverse scattering of electromagnetic waves
also has wide applications in the same fields [5–9], although both modalities generally suffer from their
own application specific disadvantages. For example, in hydrocarbon explorations, seismic or acoustic
data inversion is unsuccessful in differentiating areas filled with water from hydrocarbons, due to the
low contrast in acoustic velocities between these fluids [10]. On the other hand, electromagnetic data
has the disadvantage of exhibiting a much lower resolution than the acoustic data due to its diffusive
nature [11], as well as the difficulty in distinguishing gasfilled regions from oilfilled regions [10]. Also in
breast cancer imaging the heterogeneous tissue causes low resolution and low localization accuracy,
when using long wavelength electromagnetic waves [12]. In contrast, acoustic imaging provides a high
resolution [2], but shows low contrast in speed of sound between malignant and healthy tissue [13],
where there is a high contrast between these tissues in electromagnetic parameters [6].

In order to exploit the advantages of both imaging modalities, several strategies to combine them
have been proposed in the last decades. Firstly, for combining ultrasound imaging with other imag
ing modalities in biomedical applications, image fusion is commonly applied [14]. Here, images are
collected separately and combined afterwards. One step further is the technique of model fusion, or
the use of spatial priors [12,15–19]. In this approach structural information is derived from ultrasound
images and is incorporated as regularization term in the inversion process of the electromagnetic or
microwave image. Several methods have been proposed to use this information. The first method is
to extract regions from the ultrasound image, and assign a priori electromagnetic parameters, such as
the electric permittivity, to these regions, that are included as an inhomogeneous background during
inversion [12,15]. Another method is to use a regularization in the inversion process that favours simi
larity of the permittivity within the a priori defined regions [16], or favours similarity of the permittivity of
neighbouring pixels that do not lie on an edge [16,17]. A different approach is given in [19], where the
authors use a fuzzy Cmeans clustering to identify the background of the image, which is used as in
put for the electromagnetic image. Lastly, a convolutional neural network can be applied to predict the
permittivity distribution, which can be used as prior information in the microwave inversion process [18].

All these methods include high resolution prior information into the inversion of electromagnetic waves
to improve the resulting reconstruction as compared to separate, sequential inversion. However, the
authors of [17] suggest that a better exploitation of this prior information could be preferable. A method
that combines acoustic and electromagnetic imaging in an even stronger manner by constraining both
imaging modalities with the other is called joint inversion or multiparameter inversion and will be the
subject of this master thesis. The joint inversion algorithms are extended from widely used separate in
version algorithms, which include the Born iterative method (BIM) [20], the distort BIM (DBIM) [21], the
variational BIM (VBIM) [22], Born inversion (BI) [23], contrast source inversion (CSI) [24] and subspace
based optimization method (SOM) [25].

1



2 1. Introduction

In literature, three methods of joint inversion have been investigated; joint inversion based on empirical
relationships between the imaged parameters, based on mutual information and based on structural
similarity [26]. The former method is mostly investigated in geophysics [11,27–31], where petrophysical
links between seismic velocities and electromagnetic resistivity are used. This is for example done by
linking seismic velocities to water saturation and porosity through Archie’s equation [32], and resistivity
to water saturation and porosity through Gassmann’s fluidsubstitution equations [33]. Despite being
a strong constraint, the choice of petrophysical parameters is problem dependent, and the errors in
these parameters will easily propagate into the results [31]. The petrophysical joint inversion approach
is therefore very effective, if there is good a priori knowledge of the problem specific petrophysical re
lationships [29]. In biomedical applications these relationships are less straightforward [34].

The second joint inversion method, joint inversion based on mutual information, is based on theoretical
properties and therefore intuitive. However the technique is highly nonlinear due to the use of the prob
ability density function [34]. In [26], no tests converged as local minima could not be avoided. The last
method, joint inversion based on structural similarity has also been first employed in geophysics [35].
Here, a similarity between the distribution of physical parameters is assumed and is incorporated as a
regularization term in the cost function.

Structural similarity is defined by [26] as the level sets of two functions, the contours or surfaces where
the functions are constant, being parallel to each other. An even stronger definition is that the level sets
should not only be parallel, but should located at the same positions. A measure for structural similarity
is given in [35] as the magnitude of the Laplacian operator and two thresholds. Another approach is the
use of the cross product of the gradients of the two images, or short the cross gradient function. This
method is widely explored in geophysics [10,26,31,36–40], but also in the biomedical context [41–43]
and was first suggested by [36]. The crossgradient function vanishes if the gradients in the acoustic
and electromagnetic image are in the same direction, irrespective of their sign. On top of that, if in
one image there is no structure, the gradient is zero and the structure present in the other image is
not enforced. A slightly different variant of the crossgradient is the normalized crossgradient func
tion [39]. Normalizing the crossgradient function removes the dominance of rapidly varying functions
which normally occur in the subsurface of the earth compared to deeper regions [39]. A problem with
the normalized crossgradient function is that when discretized, very small gradients can result in arbi
trarily large crossgradients. Consequently, the inversion can focus primarily on minimizing these large
crossgradients. Apart from the Laplacian and the crossgradient function, the authors of [34,44] have
used a different method to imply structural similarity, by letting the magnitude of the gradients constrain
each other in interactive regularization terms. In [13], edge preserving regularization is used, where
hidden variables indicate the parameter discontinuities in different directions. These hidden variables
are updated alternatively with the contrasts of both wave fields. Finally, [41] proposes an approach
to use the difference between the gradients of the acoustic and electromagnetic contrasts as the joint
structural constraint, where promising results are found, but no tests on contrasts with opposite gradi
ent signs have been conducted.

In this master thesis, two joint inversion algorithms using acoustic and electromagnetic waves based
on structural similarity are developed in Fortran. They serve as the framework of future research in this
field, in continuation of the work in [41]. Both the crossgradient and the gradient difference constraint
are implemented as regularization to couple both imaging modalities, and the costfunction will be
minimized in an alternating fashion. The inversion is executed using BI and CSI for the separate
case and BI for the joint inversions, from which the results are compared. The underlying theory is
introduced in Chapter 2, next the method is presented in Chapter 3. Chapter 4 includes the inversion
results, followed by a discussion in Chapter 5 and finally, the conclusions are given in Chapter 6.



2
Theory

This chapter provides an overview of the theory used within this thesis. First the theory behind the
acoustic and electromagnetic wave fields are discussed in Section 2.1, followed by a section on solution
methods.

2.1. Wave fields
In joint inversion, data from reflected acoustic and electromagnetic wave fields is used to reconstruct
the physical properties of the imaged structure. The wave equations and properties of both wave fields
are discussed in the following two subsections.

2.1.1. Acoustic wave fields
Acoustic timeharmonic waves can be described by a spatially fluctuating scalar pressure field and a
spatially fluctuating vectorial velocity field of the particles of the medium. The pressure field and the
velocity field are described by Hooke’s law and Newton’s law respectively and are given by

𝜕𝑝(𝑟, 𝑡)
𝜕𝑡 = − 1

𝜅(𝑟)∇ ⋅ �⃗�(𝑟, 𝑡) +
1
𝜅(𝑟)𝑞(𝑟, 𝑡), (2.1)

∇𝑝(𝑟, 𝑡) = −𝜌0
𝜕�⃗�(𝑟, 𝑡)
𝜕𝑡 + 𝑓(𝑟, 𝑡), (2.2)

where, 𝑝(𝑟, 𝑡) is the pressure field, �⃗�(𝑟, 𝑡) the velocity field, 𝜅(𝑟) the compressability of the medium, 𝜌0
the assumed constant mass density of the medium, 𝑞(𝑟, 𝑡) the volume source density of injection rate,
𝑓(𝑟, 𝑡) the volume source density of volume force, 𝑟 the coordinate vector and 𝑡 the time.

Combining equation (2.1) and (2.2) gives the acoustic wave equation for heterogeneous media,

∇2𝑝(𝑟, 𝑡) − 1
𝑐2𝐴,0

𝜕2𝑝(𝑟, 𝑡)
𝜕𝑡2 = −𝑆𝑝𝑟𝐴 (𝑟, 𝑡) + 𝜒𝐴(𝑟)

𝜕2𝑝(𝑟, 𝑡)
𝜕𝑡2 . (2.3)

Transforming (2.3) to the temporal Fourier domain with angular frequency, 𝜔, yields,

∇2�̂�(𝑟) + 𝜔2
𝑐2𝐴,0

�̂�(𝑟) = −�̂�𝑝𝑟𝐴 (𝑟) − 𝜔2𝜒𝐴(𝑟)�̂�(𝑟), (2.4)

where �̂�(𝑟) = ∫∞−∞ 𝑝(𝑟, 𝑡)𝑒𝑖𝜔𝑡𝑑𝑡 is used as the definition for the Fourier transform, �̂�
𝑝𝑟
𝐴 (𝑟) is the primary

source term of the acoustic field given by �̂�𝑝𝑟𝐴 (𝑟) = 𝑖𝜔𝜌0�̂�(𝑟)−∇ ⃗̂𝑓(𝑟), 𝜒𝐴(𝑟) the acoustic contrast of the
medium given by

𝜒𝐴(𝑟) =
1

𝑐2𝐴(𝑟)
− 1
𝑐2𝐴,0

, (2.5)

3



4 2. Theory

with 𝑐𝐴(𝑟) the speed of sound at position 𝑟, and 𝑐𝐴,0 the speed of sound of the homogeneous back
ground medium. These speed of sounds are defined by 𝑐−2𝐴 (𝑟) = 𝜌0𝜅(𝑟) and 𝑐−2𝐴,0 = 𝜌0𝜅0, respectively.
The last term in equation (2.4) can also be regarded as an extra source term, called the acoustic con
trast source, that equals �̂�𝐴(𝑟) = 𝜒𝐴(𝑟)�̂�(𝑟). Note that from equation (2.4) and onward the caret symbol,
^, is used to denote quantities defined in the temporal Fourier domain.

Equation (2.4) can be recasted into an integral equation of the second kind. Within this formulation the
pressure field is written as a superposition of the incident field, �̂�𝑖𝑛𝑐(𝑟) induced by the primary source
term and propagating in the homogeneous backgroundmedium and the scattered field, �̂�𝑠𝑐𝑡(𝑟), induced
by the contrast source term, hence

�̂�(𝑟) = �̂�𝑖𝑛𝑐(𝑟) + �̂�𝑠𝑐𝑡(𝑟). (2.6)

The incident field is obtained by the convolution of the impulse response function of the homogeneous
background medium, the Green’s function �̂�𝐴(𝑟 − 𝑟′), with the primary source, hence

�̂�𝑖𝑛𝑐(𝑟) = ∫
𝑟′∈𝕊

�̂�𝐴(𝑟 − 𝑟′)�̂�𝑝𝑟𝐴 (𝑟′)𝑑𝑉(𝑟′). (2.7)

Similarly, the scattered field can be described by the convolution of theGreen’s function with the contrast
source term,

�̂�𝑠𝑐𝑡(𝑟) = 𝜔2 ∫
𝑟′∈𝔻

�̂�𝐴(𝑟 − 𝑟′)�̂�𝐴(𝑟′)𝑑𝑉(𝑟′) = 𝜔2 ∫
𝑟′∈𝔻

�̂�𝐴(𝑟 − 𝑟′)𝜒𝐴(𝑟′)�̂�(𝑟′)𝑑𝑉(𝑟′). (2.8)

In equations (2.7) and (2.8), 𝕊 represents the spatial domain where the sources and the receivers are
placed, and 𝔻 the domain of interest. In 2D, the volume integrals in equations (2.7) and (2.8) reduce
to surface integrals. The Green’s functions of the 2D and 3D case are respectively,

�̂�2𝐷𝐴 (𝑟 − 𝑟′) = −𝑖
4 𝐻

(2)
0 (𝜔|𝑟 − 𝑟′|/𝑐𝐴,0), (2.9)

�̂�3𝐷𝐴 (𝑟 − 𝑟′) = 𝑒−𝑖𝜔|𝑟−𝑟′|/𝑐𝐴,0
4𝜋|𝑟 − 𝑟′| , (2.10)

where 𝐻(2)0 (𝜔|𝑟 − 𝑟′|/𝑐𝐴,0) is the Hankel function of the second kind. A derivation of these functions
can be found in Appendix A, [45–48].

2.1.2. Electromagnetic wave fields
The wave equation for electromagnetic timeharmonic waves in lossless (conductivity, 𝜎 = 0 S/m),
heterogeneous media can be derived from Maxwell’s equations,

∇ × �⃗�(𝑟, 𝑡) = −𝜇0
𝜕�⃗�(𝑟, 𝑡)
𝜕𝑡 , (2.11)

∇ × �⃗�(𝑟, 𝑡) = 𝜖(𝑟)𝜕�⃗�(𝑟, 𝑡)𝜕𝑡 + 𝐽𝑝𝑟(𝑟, 𝑡), (2.12)

∇ ⋅ [𝜖(𝑟)�⃗�(𝑟, 𝑡)] = 𝜌𝑝𝑟𝑒 (𝑟, 𝑡) = 0, (2.13)

∇ ⋅ [𝜇0�⃗�(𝑟, 𝑡)] = 0, (2.14)

where, �⃗�(𝑟, 𝑡) is the electric field, �⃗�(𝑟, 𝑡) the magnetic field, 𝐽𝑝𝑟(𝑟, 𝑡) the primary electric current den
sity, 𝜌𝑝𝑟𝑒 (𝑟, 𝑡) the primary electric charge density source, 𝜇0 the assumed constant permeability of the
medium and 𝜖(𝑟) the electric permittivity of the medium.

Combining equations (2.11)  (2.14) and using the vector calculus identity ∇× (∇×𝐴) = ∇(∇ ⋅ 𝐴)−∇2𝐴,
yields the wave equation for electromagnetic waves in lossless, heterogeneous media,

∇2�⃗�(𝑟, 𝑡) − 1
𝑐2𝐸,0

𝜕2�⃗�(𝑟, 𝑡)
𝜕𝑡2 = −𝑆𝑝𝑟𝐸 (𝑟, 𝑡) + 𝜒𝐸(𝑟)

𝜕2�⃗�(𝑟, 𝑡)
𝜕𝑡2 + ∇(∇ ⋅ �⃗�(𝑟, 𝑡)) . (2.15)
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In the temporal Fourier domain equation (2.15) can be written as

∇2 ⃗̂𝐸(𝑟) + 𝜔2
𝑐2𝐸,0

⃗̂𝐸(𝑟) = − ⃗̂𝑆𝑝𝑟𝐸 (𝑟) − 𝜔2𝜒𝐸(𝑟) ⃗̂𝐸(𝑟) + ∇ (∇ ⋅ ⃗̂𝐸(𝑟)) , (2.16)

where ⃗̂𝑆𝑝𝑟𝐸 (𝑟) is the primary source term of the electric field given as ⃗̂𝑆𝑝𝑟𝐸 (𝑟) = −𝑖𝜔𝜇0 ⃗̂𝐽𝑝𝑟(𝑟), 𝜒𝐸(𝑟) the

contrast for the electric field given by

𝜒𝐸(𝑟) =
1

𝑐2𝐸(𝑟)
− 1
𝑐2𝐸,0

, (2.17)

with 𝑐𝐸(𝑟) the speed of light at position 𝑟 and 𝑐𝐸,0 the speed of light within the background medium.
These speed of lights are defined by 𝑐−2𝐸 (𝑟) = 𝜇0𝜖(𝑟) and 𝑐−2𝐸,0 = 𝜇0𝜖0. The second term in equation
(2.16) can also be regarded as the electromagnetic contrast source, ⃗̂𝑤𝐸(𝑟) = 𝜒𝐸(𝑟) ⃗̂𝐸(𝑟).

Similar as for acoustic waves, the electric wave field can be described by an integral equation of the
second kind,

⃗̂𝐸(𝑟) = ⃗̂𝐸𝑖𝑛𝑐(𝑟) + ⃗̂𝐸𝑠𝑐𝑡(𝑟), (2.18)

where the incident electric field ⃗̂𝐸𝑖𝑛𝑐(𝑟) and the scattered electric field ⃗̂𝐸𝑠𝑐𝑡(𝑟) are given by

⃗̂𝐸𝑖𝑛𝑐(𝑟) = ∫
𝑟′∈𝕊

�̂�𝐸(𝑟 − 𝑟′) ⃗̂𝑆𝑝𝑟𝐸 (𝑟′)𝑑𝑉(𝑟′) (2.19)

and

⃗̂𝐸𝑠𝑐𝑡(𝑟) = 𝜔2 ∫
𝑟′∈𝔻

�̂�𝐸(𝑟 − 𝑟′) ⃗̂𝑤𝐸(𝑟′)𝑑𝑉(𝑟′) = 𝜔2 ∫
𝑟′∈𝔻

�̂�𝐸(𝑟 − 𝑟′)𝜒𝐸(𝑟′) ⃗̂𝐸(𝑟′)𝑑𝑉(𝑟′), (2.20)

where ̂𝐺𝐸(𝑟 − 𝑟′) is the Green’s function for the electric field. Because the electromagnetic wave fields
are vectorial quantities, a distinction is made between incident transverse electric (TE) waves and
transverse magnetic (TM) waves. The Green’s function for the electric field for the 2D case using TE
and TM waves and for the 3D case, are given by [49]

�̂�2𝐷,𝑇𝐸𝐸 (𝑟 − 𝑟′) = (1 +
𝑐2𝐸,0
𝜔2 ∇∇⋅)

−𝑖
4 𝐻

(1)
0 (𝜔|𝑟 − 𝑟′|/𝑐𝐸,0), (2.21)

�̂�2𝐷,𝑇𝑀𝐸 (𝑟 − 𝑟′) = −𝑖
4 𝐻

(2)
0 (𝜔|𝑟 − 𝑟′|/𝑐𝐸,0), (2.22)

�̂�3𝐷𝐸 (𝑟 − 𝑟′) = (1 +
𝑐2𝐸,0
𝜔2 ∇∇⋅)

𝑒−𝑖𝜔|𝑟−𝑟′|/𝑐𝐸,0
4𝜋|𝑟 − 𝑟′| . (2.23)

A derivation of these functions is given in Appendix A, [45,50,51].

2.2. Separate solution methods
The inverse or imaging problem is the problem where the wave field incident in the embedding and the
measured wave field recorded by the receivers on the surface 𝕊 are known, but where the contrast and
the total field within domain 𝔻 are unknown. In the following subsections solution methods to solve this
highly underdetermined problem are discussed.
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2.2.1. Born inversion
One method to solve the inverse imaging problem is called Born inversion (BI) or linear inversion. Here
the problem is linearized by replacing the total field in the integral equation with the incident field. This
is called the Born approximation, and reduces the equations for the scattered acoustic field (2.8) to

�̂�𝑠𝑐𝑡(𝑟) = 𝜔2 ∫
𝑟′∈𝔻

�̂�𝐴(𝑟 − 𝑟′)𝜒𝐴(𝑟′)�̂�𝑖𝑛𝑐(𝑟′)𝑑𝑉(𝑟′), (2.24)

and the scattered electric field (2.20) to

⃗̂𝐸𝑠𝑐𝑡(𝑟) = ∫
𝑟′∈𝔻

�̂�𝐸(𝑟 − 𝑟′)𝜒𝐸(𝑟) ⃗̂𝐸𝑖𝑛𝑐(𝑟′)𝑑𝑉(𝑟′). (2.25)

This simplification of the problem however results in artifacts that arise due to neglected multiple scat
tering effects and incorrectly included phase shifts, both caused by spatial variations in speed of sound
or speed of light within the media.

The contrast is iteratively estimated using the conjugate gradient scheme on minimizing the L2norm
in the error, which generally reads for both fields:

𝐸𝑟𝑟(𝑛) = || ̂𝑓𝑚𝑒𝑎𝑠 − �̂� ∗ (𝜔2 ̂𝑓𝑖𝑛𝑐𝜒(𝑛))||2𝕊
|| ̂𝑓𝑚𝑒𝑎𝑠||2𝕊

, (2.26)

with 𝐸𝑟𝑟(𝑛) the normalized error in the data equation, 𝜒(𝑛) the contrast, �̂� the Green’s function, ∗ the
spatial convolution operator, ̂𝑓𝑖𝑛𝑐 and ̂𝑓𝑚𝑒𝑎𝑠 incident and the measured scattered field, all for either
the acoustic or electromagnetic field at the 𝑛th iteration, and the subscript 𝕊 denotes the inner product
over 𝜔 and the receiver locations 𝑟𝑟𝑒𝑐 ∈ 𝕊 for each source.

The conjugate gradient scheme has the following general form:

𝑑(𝑛) = L†𝑟(𝑛−1),

𝛼(𝑛) = Re < 𝑟(𝑛−1),L𝑑(𝑛) >
||L𝑑(𝑛)||2 ,

𝜒(𝑛) = 𝜒(𝑛−1) + 𝛼(𝑛)𝑑(𝑛),
𝑟(𝑛) = ̂𝑓𝑚𝑒𝑎𝑠 − L𝜒(𝑛),

where 𝑑(𝑛) and 𝛼(𝑛) are the update direction and amplitude at the 𝑛th iteration, 𝑟(𝑛) is the residual at
the 𝑛th iteration and L is the general operator given by L𝜒(𝑛) = �̂� ∗ (𝜔2 ̂𝑓𝑖𝑛𝑐𝜒(𝑛)), where ∗ denotes a
spatial convolution and �̂� is the general Green’s function.

2.2.2. Contrast source inversion
A solution method that does account for multiple scattering is contrast source inversion (CSI) or full
waveform inversion, as for example described in [52]. This nonlinear inversion method does not op
erate within the Born approximation. Instead it defines contrast sources for the acoustic and electro
magnetic fields, �̂�𝐴(𝑟) and ⃗̂𝑤𝐸(𝑟), respectively, hence

�̂�𝐴(𝑟) = �̂�(𝑟)𝜒𝐴(𝑟), (2.27)

⃗̂𝑤𝐸(𝑟) = ⃗̂𝐸(𝑟)𝜒𝐸(𝑟). (2.28)

Now, the error to be minimized consists of the normalized error in the data equation, 𝐸𝑟𝑟(𝑛)𝑆 , as well as
the normalized error in the object equation, 𝐸𝑟𝑟(𝑛)𝐷 , given by

𝐸𝑟𝑟(𝑛)𝑆 = || ̂𝑓𝑚𝑒𝑎𝑠 − �̂� ∗ (𝜔2�̂�(𝑛)) ||2𝕊
|| ̂𝑓𝑚𝑒𝑎𝑠||2𝕊

, (2.29)

𝐸𝑟𝑟(𝑛)𝐷 = ||�̂�(𝑛) − 𝜒(𝑛) ( ̂𝑓𝑖𝑛𝑐 + �̂� ∗ (𝜔2�̂�(𝑛))) ||2𝔻
||𝜒(𝑛) ̂𝑓𝑖𝑛𝑐||2𝔻

, (2.30)
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Figure 2.1: General flowchart of the joint inversion algorithm, including references to equations of parameters in case of the CG/
GD method.

where �̂�(𝑛) is the contrast source at the 𝑛th iteration, ̂𝑓(𝑛) is the total field at the 𝑛th iteration and
̂𝑓𝑚𝑒𝑎𝑠 is the measured scattered field, all for either the acoustic or the electromagnetic case and the
subscript𝔻 denotes the inner product over 𝜔 and all discretized locations 𝑟 ∈ 𝔻 for each source. When
the contrast source is determined, the total fields can be obtained via equations (2.6) and (2.8) for the
acoustic field and (2.18) and (2.20) for the electric field.The total additive error function to be minimized
is written as

𝐸𝑟𝑟(𝑛) = 𝐸𝑟𝑟(𝑛)𝑆 + 𝐸𝑟𝑟(𝑛)𝐷 . (2.31)

The conjugate gradient scheme for the contrast source inversion, including the PolakRibière coeffi
cient, 𝛾(𝑛), in the general form is written as,

𝑔(𝑛) = L†𝕊 𝑟(𝑛−1)𝑠

|| ̂𝑓𝑚𝑒𝑎𝑠||2𝕊
+ 𝑟

(𝑛−1)
𝑑 − 𝜒(𝑛−1)L†𝔻 𝑟(𝑛−1)𝑑

||𝜒(𝑛−1) ̂𝑓𝑖𝑛𝑐||2𝔻
,

𝛾(𝑛) = | < 𝑔(𝑛), 𝑔(𝑛) − 𝑔(𝑛−1) >𝔻 |
||𝑔(𝑛−1)||2𝔻

,

𝑑(𝑛) = 𝑔(𝑛) + 𝛾(𝑛)𝑑(𝑛−1),

𝛼(𝑛) = Re < 𝑔(𝑛), 𝑑(𝑛) >𝔻
||L𝕊 𝑑(𝑛)||2𝕊/||�̂�𝑚𝑒𝑎𝑠||2𝕊 + ||𝜒(𝑛−1)L𝔻 𝑑(𝑛)||2𝔻/||𝜒(𝑛−1)�̂�𝑖𝑛𝑐||2𝔻

,

�̂�(𝑛) = �̂�(𝑛−1) + 𝛼(𝑛)𝑑(𝑛),
̂𝑓(𝑛) = ̂𝑓𝑖𝑛𝑐 + L𝔻 �̂�(𝑛),

𝜒(𝑛) = Re < ̂𝑓(𝑛), �̂�(𝑛) >𝕊
|| ̂𝑓(𝑛)||2𝕊

,

𝑟(𝑛)𝑠 = ̂𝑓𝑚𝑒𝑎𝑠 − L𝕊 �̂�(𝑛),
𝑟(𝑛)𝑑 = 𝜒(𝑛) ̂𝑓𝑖𝑛𝑐 + 𝜒(𝑛)L𝔻 �̂�(𝑛) − �̂�(𝑛),

where 𝑔(𝑛) is the steepest direction, ̂𝑓(𝑛) the total field, 𝑟(𝑛)𝑠 the state residual, and 𝑟(𝑛)𝑑 the data residual,
all for either the acoustic or the electric case at the 𝑛th iteration and L𝕊 is the data operator given by
L𝕊 𝑥 = �̂� ∗𝕊 (𝜔2𝑥) and L𝕊 is the object operator given by L𝔻 𝑥 = �̂� ∗𝔻 (𝜔2𝑥).
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2.3. Joint solution methods
A possible method to overcome problems associated with separate inversion like low resolution or dif
ficulties in distinguishing materials or tissues, is joint inversion based on structural constraints. The
main idea is to let the acoustic and electromagnetic inversion constrain each other, by assuming that
the material boundaries, and therefore the parameter boundaries are at the same locations. The gen
eral flowchart of a joint inversion algorithm, based on separate BI, is shown in Figure 2.1.

To create such a joint inversion algorithm, an extra error to be minimized must be incorparated in the
error function for BI (2.26) and for CSI (2.31). Having boundaries at the same locations, means that
the level sets of both parameter profiles should be parallel. Consequently, the normals to these levels
sets, which are the gradients of the parameter profiles, must also be parallel. Additionally it is desired
that the error included, converges to zero when the structural constraint is met.

Two types of constraints that meet these criteria, are the crossgradient (CG) and the gradient difference
(GD) constraints. Both constraints update in an alternative matter, using back propagation as a starting
point. Within each iteration, the acoustic contrast is updated first, followed by the electromagnetic
contrast, as shown in Figure 2.1. The reason for starting with the acoustic inversion is that the initial
acoustic resolution is assumed to be better than the electromagnetic resolution. The two types of
constraints are further discussed in the next paragraphs.

2.3.1. Crossgradient constraint
The first constraint that can serve as a structural constraint is the crossproduct of the gradients of the
contrasts, which in short is called the crossgradient (CG), first proposed by [28]. The crossproduct
of two parallel identities goes to zero, and therefore both conditions described above are met. The
normalized form of the CG constraint at the 𝑛th iteration, 𝐸𝑟𝑟(𝑛)𝐴,𝐶𝐺, for the acoustic case and 𝐸𝑟𝑟(𝑛)𝐸,𝐶𝐺,
for the electromagnetic case, are given by

𝐸𝑟𝑟(𝑛)𝐴,𝐶𝐺 =
||∇𝜒(𝑛)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2

||∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2
, (2.32)

𝐸𝑟𝑟(𝑛)𝐸,𝐶𝐺 =
||∇𝜒(𝑛)𝐴 × ∇𝜒(𝑛)𝐸 ||2

||∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2
. (2.33)

The difference in the iteration of the contrasts between the numerators of equations (2.32) and (2.33)
is due to the acoustic contrast being updated first within each iteration. The update direction and am
plitude in the conjugate gradient scheme, have been derived for the additive form of the error functions
for both the acoustic and electromagnetic field as shown in Appendix B.1

2.3.2. Gradient difference constraint
Another method proposed by [41], is the gradient difference (GD) approach. Here the difference in
gradients of the contrasts is used as a constraint, the normalized form of the GD constraint at the 𝑛th
iteration, 𝐸𝑟𝑟(𝑛)𝐴,𝐺𝐷, for the acoustic case, and 𝐸𝑟𝑟(𝑛)𝐸,𝐺𝐷, for the electromagnetic case are given by

𝐸𝑟𝑟(𝑛)𝐴,𝐺𝐷 = ||∇𝜒
(𝑛)
𝐴 − ∇𝜒(𝑛−1)𝐸 ||2, (2.34)

𝐸𝑟𝑟(𝑛)𝐸,𝐺𝐷 = ||∇𝜒
(𝑛)
𝐴 − ∇𝜒(𝑛)𝐸 ||2, (2.35)

where 𝜒(𝑛)𝐴 and 𝜒(𝑛)𝐸 are acoustic and electromagnetic contrast, normalized by the maximum of the
absolute real value. Note that the acoustic contrast is updated first within the same iteration, resulting
in a difference in iterations of the normalized contrasts in equations (2.34) and (2.35). The derivation
of the corresponding update direction and amplitude in the conjugate gradient scheme, is shown in
Appendix B.2, for both the acoustic and the electromagnetic case.



3
Methods

In this chapter the methodology to test the proposed methods is discussed. First a general overview
of the study is given, next the details of the forward and inverse simulations are provided.

As this project serves as a first framework for further research in the field of joint inversion, the verifi
cation of the joint inversion algorithm is completely based on synthetic results. Forward simulation and
inversion are executed for both acoustic and electromagnetic fields, using a synthetic model. Next, two
joint inversion algorithms are tested and compared to the separate inversion data. The details of the
inversions algorithms are discussed in the previous chapter. For all simulations, FORTRAN 90 is used
as the programming language. MATLAB R2020a is used for the subsequent image visualisation.

3.1. Forward problem
The forward wave field propagation and scattering is simulated using the existing code for the acoustic
case by K.W.A. van Dongen, as used in [53], which was extended to the electromagnetic case. Two
numerical models are used as input in the simulations. The speed of sound and speed of light profiles
of model 1 have gradients pointing in the same direction and are shown in Figures 3.1(e) and 3.1(g)
respectively. In model 2 the gradients speed of sound and speed of light point in opposite directions, of
which the profiles are depicted in 3.1(f) and 3.1(h). The background speed of sound for both models is
1500m/s and the background speed of light is 2.25 ⋅108 m/s, corresponding to a relative permittivity,
𝜀𝑟, of 1.78. The parameter settings of the other components of the model are shown in Table 3.1. The
model is discretized in 64x64 pixels, with a pixel length, Δ𝑥, of 1.5mm.

In the forward simulations, 16 sources and 128 receivers are used, positioned in a ring around the con
trast. The source positions are indicated by a black asterisk in figure 3.1(eh). Each source is excited
with a center frequency of 𝑓𝐴,0 = 0.1MHz in the acoustic case and 𝑓𝐸,0 = 1 GHz in the electromagnetic
case. The source pulses are shown in the time and frequency domain in figure 3.1(a) and 3.1(c) for the
acoustic case and in 3.1(b) and 3.1(d) for the electromagnetic case. The timestep, Δ𝑡, is set to 1/15th
of the center frequency, giving Δ𝑡𝐴 = 6.67⋅107 s and Δ𝑡𝐸 = 6.67⋅1011 s. The number of time steps, 𝑁𝑡,
is set for the acoustic case to 𝑁𝑡,𝐴 = 540 and the electromagnetic case to 𝑁𝑡,𝐸 = 72.

Table 3.1: Speed of sound, 𝑐𝐴 in m/s, speed of light, 𝑐𝐸 in m/s and relative permittivity, 𝜀𝑟, of different components in the
models.

Model 1 Model 2
𝑐𝐴 (m/s) 𝑐𝐸 (m/s) 𝜀𝑟 () 𝑐𝐴 (m/s) 𝑐𝐸 (m/s) 𝜀𝑟 ()

Background 1500 2.250 ⋅108 1.780 1500 2.250 ⋅108 1.780
T 1550 2.300 ⋅108 1.700 1550 2.200 ⋅108 1.860
U 1450 2.200 ⋅108 1.860 1450 2.300 ⋅108 1.700
Circle 1525 2.275 ⋅108 1.740 1525 2.225 ⋅108 1.820

9
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Figure 3.1: Overview of modeled input. Acoustic case: source pulse in time domain (a) and frequency domain (c), speed of
sound profiles of model 1 (e) and model 2 (f). Electromagnetic case: source pulse in time domain (b) and frequency domain (d),
speed of light profiles of model 1 (g) and model 2 (f). In (c) and (d) the selected frequencies for inversion are indicated with a
red x. In (e)(h) the source locations are indicated with a black asterisk.

3.2. Inverse problem
To compare the conventional separate inversion to the proposed joint inversion methods based on
structural constraints, both reconstruction methods are applied to the data obtained by solving the
forward problem for all cases and models. The comparison is done by qualitative comparison, as well
as a numerical comparison using the mean square error (MSE), given by

𝑀𝑆𝐸 = ||𝜒𝑡𝑟𝑢𝑒 − 𝜒𝑖𝑛𝑣||2
||𝜒𝑡𝑟𝑢𝑒||2 , (3.1)

where 𝜒𝑡𝑟𝑢𝑒 are the contrast values of the model and 𝜒𝑖𝑛𝑣 are the values of the inverted contrast.

The existing code as used in [53], is used as the separate inversion algorithms for the acoustic case
and is extended to the electromagnetic case, for both BI and CSI.

Two types of constraints are added to the separate BI algorithms. Both the CG constraint and the
GD constraint, of which the details are described in Section 2.3, are implemented and tested. In a
first verification, the two synthetic models of the acoustic parameters are used as the input for the
electromagnetic joint inversion. Subsequently, simultaneous inversion is tested for both types of con
straints, for both models. The extension to a joint CSI algorithm has not yet been realized in this project.

To speed up the inversion processes, a limited number of frequencies is used in both the separate
and joint inversion, which are indicated with a red x in figures 3.1(c) and 3.1(d). The frequencies are
selected out of the range of 0.1 to 1.25 times the center frequency of the Gaussian pulse. Less fre
quencies are selected in the electromagnetic case, due to a relatively higher frequency interval, which
is in turn restricted due to the time step size and speed of light of the background medium. All inversion
algorithms run for 1024 iterations.
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Some modifications to the algorithms described in Chapter 2 are implemented. In case of the joint
inversion with the GD constraint, the contrasts, 𝜒(𝑛)𝐴 and 𝜒(𝑛)𝐸 , and the update directions, 𝑑(𝑛)𝐴 and 𝑑(𝑛)𝐸 ,
were set to zero at the source and receiver locations and one pixel adjacent to it in each direction at
each iteration, to avoid artifacts in the reconstructions at these locations. Next, at each iteration, the
values of the reconstructed contrasts that exceed the maximum value of the synthetic contrast used as
the input, are set to that maximum value. Similarly, the values of the reconstructed contrasts that are
lower than the minimum value of the synthetic contrast values, are set to that minimum value.

Finally, in both of the joint inversion algorithms, a ratio𝜓(𝑛) has been added in the total update directions
as described in equations (B.21, B.40) for the CG constraint, and (B.59, B.71) for the GD constraint,
both for the acoustic and electromagnetic case, respectively. The update directions in case of the CG
constraint equal

𝑑(𝑛)𝐴 = 𝑑(𝑛)𝐴,𝐵𝐼 + 𝜓(𝑛)𝐴,𝐶𝐺𝑑(𝑛)𝐴,𝐶𝐺 = 𝐿†𝐴𝑟(𝑛−1)𝐴 + 𝜓(𝑛)𝐴,𝐶𝐺∇ ⋅ [∇𝜒(𝑛−1)∗𝐸 × (∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 )] , (3.2)

𝑑(𝑛)𝐸 = 𝑑(𝑛)𝐸,𝐵𝐼 + 𝜓(𝑛)𝐸,𝐶𝐺𝑑(𝑛)𝐸,𝐶𝐺 = 𝐿†𝐸𝑟(𝑛−1)𝐸 + 𝜓(𝑛)𝐸,𝐶𝐺∇ ⋅ [∇𝜒(𝑛)∗𝐴 × (∇𝜒(𝑛−1)𝐸 × ∇𝜒(𝑛)𝐴 )] , (3.3)

with the ratio of the update directions of the CG constraint 𝜓(𝑛)𝐴,𝐶𝐺 and 𝜓(𝑛)𝐸,𝐶𝐺 at the 𝑛th iteration being

𝜓(𝑛)𝐴,𝐶𝐺 =
𝑑(𝑛)𝐴,𝐵𝐼,𝑀𝑎𝑥

𝑑(𝑛)𝐴,𝐶𝐺,𝑀𝑎𝑥
, (3.4)

𝜓(𝑛)𝐸,𝐶𝐺 =
𝑑(𝑛)𝐸,𝐵𝐼,𝑀𝑎𝑥

𝑑(𝑛)𝐸,𝐶𝐺,𝑀𝑎𝑥
, (3.5)

where the subscript 𝑀𝑎𝑥 indicates the maximum value of the real part. The update directions in case
of the GD constraint are now written as

𝑑(𝑛)𝐴 = 𝑑(𝑛)𝐴,𝐵𝐼 + 𝜓(𝑛)𝐴,𝐺𝐷𝑑(𝑛)𝐴,𝐺𝐷 = 𝐿†𝐴𝑟(𝑛−1)𝐴 + 𝜓(𝑛)𝐴,𝐺𝐷∇2 (𝜒
(𝑛−1)
𝐴 − 𝜒(𝑛−1)𝐸 )

∗
, (3.6)

𝑑(𝑛)𝐸 = 𝑑(𝑛)𝐸,𝐵𝐼 + 𝜓(𝑛)𝐸,𝐺𝐷𝑑(𝑛)𝐸,𝐺𝐷 = 𝐿†𝐸𝑟(𝑛−1)𝐸 + 𝜓(𝑛)𝐸,𝐺𝐷∇2 (𝜒
(𝑛−1)
𝐸 − 𝜒(𝑛)𝐴 )

∗
, (3.7)

with the ratio of the update directions of the GD constraint, 𝜓(𝑛)𝐴,𝐺𝐷 and 𝜓(𝑛)𝐸,𝐺𝐷, given as

𝜓(𝑛)𝐴,𝐺𝐷 =
𝑑(𝑛)𝐴,𝐵𝐼,𝑀𝑎𝑥

𝑑(𝑛)𝐴,𝐺𝐷,𝑀𝑎𝑥
, (3.8)

𝜓(𝑛)𝐸,𝐺𝐷 =
𝑑(𝑛)𝐸,𝐵𝐼,𝑀𝑎𝑥

𝑑(𝑛)𝐸,𝐺𝐷,𝑀𝑎𝑥
. (3.9)





4
Results

This chapter gives an overview of the results obtained by themethods described in the previous chapter.
First, results of the forward simulation are shown, next a comparison between separate inversion and
joint inversion with the CG constraint is given and lastly, the results of the separate inversion and the
joint inversion with the GD constraint are compared.

4.1. Forward simulations
The wave propagation of the pressure wave field and the electric wave field through both of the models
are shown in Figure 4.1, which are screenshots of the scattered and total wave fields. It is clearly
visible that the electromagnetic wavelength is significantly larger than the acoustic wavelength; the
center wavelengths are 𝜆𝐴,0 = 15mm for the acoustic case and 𝜆𝐸,0 = 225mm for the electromagnetic
case. On top of that, as the acoustic profiles of the two models are the same, the pressure fields are
also equal. The electric fields differ only slightly between the two models, as the shape of the models
and the norm of the gradients are equal; the gradients only differ in sign.

Figure 4.1: Models, screenshots of pressure fields at 𝑡𝐴 = 0.133 ms and screenshots of electric fields at 𝑡𝐸 = 1.27 ns. Speed
profiles (a) & (b), scattered fields (e) & (d) and total fields (f) & (g), of model 1 and 2 respectively. The subfigures indicated with
i are for the acoustic case: speed of sound and pressure fields, and the subfigures indicated with ii are for the electromagnetic
case: speed of light and electric fields.

13
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Table 4.1: 𝑀𝑆𝐸’s of separate, joint with CG constraint and joint with GD constraint inversion results, for model 1 and model 2.

Model 1 Model 2
𝑀𝑆𝐸𝐴 𝑀𝑆𝐸𝐸 𝑀𝑆𝐸𝐴 𝑀𝑆𝐸𝐸

Separate BI 0.115 0.507 0.115 0.523
CSI 0.071 0.596 0.071 0.601

Joint  CG syn in  0.674  0.865
no syn in 0.513 0.917 0.620 0.899

Joint  GD syn in  0.284  1.45
no syn in 0.089 0.460 0.261 0.951

4.2. Inversion results
The inversion results are summarized in Figure 4.2. The corresponding 𝑀𝑆𝐸’s are shown in Table 4.1.
The separate and joint results of the different constraints are discussed subsequently.

Separate inversion
The separate BI results are shown in Figures 4.2(c) and 4.2(d), for model 1 and 2 respectively. In the
acoustic results expected multiple scattering artefacts due to the Born approximation are visible, but
a good resolution and 𝑀𝑆𝐸𝐴 of 0.115 is obtained. The reconstructed speed of light profiles show very
low resolution due to the large wavelength. Consequently, the 𝑀𝑆𝐸𝐸 for model 1 and 2, being 0.507
and 0.523, are significantly larger compared to the acoustic case. The results of CSI, 4.2(e) and 4.2(f)
for model 1 and 2 respectively, show improved results in the acoustic case with an 𝑀𝑆𝐸𝐴 of 0.071,
as multiple scattering effects are no longer neglected. The electromagnetic profiles do not improve
compared to BI, as the resolution of the data is too low to benefit from the more advanced inversion
algorithm. The 𝑀𝑆𝐸𝐸 ’s for CSI of model 1 and 2 are 0.596 and 0.601.

Joint inversion  crossgradient
The speed profiles resulting from the joint inversion with the CG constraint, using the acoustic synthetic
model as an input for the electromagnetic inversion, are shown in Figures 4.2(g)i and 4.2(h)i, for model
1 and 2. No𝑀𝑆𝐸𝐴 is assigned, since the output is the true model for the speed of sound. In the electro
magnetic case, we see a clear profile of the edges of the characters in the speed of light profile of both
models. However the speed of light distribution is not following these boundaries, leading to 𝑀𝑆𝐸𝐸 ’s of
0.674 and 0.865 for model 1 and 2 respectively. The color bar in 4.2(h)ii also indicates that when using
model 2, the inversion has trouble reconstructing the full range of speed of light values, compared to
separate inversion, causing the high 𝑀𝑆𝐸𝐸 in case of model 2.

When inverting both data sets retrieved by the forward simulations, we see the joint inversion destroys
the structure of the acoustic speed of sound profile, as shown in Figures 4.2(i)i and 4.2(j)i, with a
corresponding 𝑀𝑆𝐸𝐴 of 0.513 and 0.620. On top of that, the electromagnetic results, Figures 4.2(i)ii
and 4.2(j)ii, do not benefit from the joint inversion and the characters cannot be recognized, yielding an
𝑀𝑆𝐸𝐸 of 0.917 for model 1 and 0.620 for model 2.

Joint inversion  gradient difference
The reconstructed speed profiles by joint inversion with the GD constraint, show promising results
when using model 1. Both when using the synthetic acoustic model as input for the electromagnetic
inversion, Figure 4.2(k), and when inverting the both the data sets in alternating fashion, Figure 4.2(m),
the electromagnetic results show a clear structure of the characters in the imaged model. Not only
the edges are visible, but also the inner structure is inverted more correctly, yielding improved 𝑀𝑆𝐸𝐸 ’s
of 0.284 and 0.460, for the synthetic acoustic input and the simulated acoustic input respectively. The
acoustic image, Figure 4.2(m)i, is qualitatively comparable to the separate inversions and has a slightly
improved 𝑀𝑆𝐸𝐴 of 0.089 compared to the separate BI.

Nevertheless, when using model 2 with the acoustic and electromagnetic contrast gradients with oppo
site sign, the inversion fails. In the case of using the synthetic model, Figure 4.2(l), we see an imprint
of the characters TU in the speed of light profile, but the values within the contrasts are inverted in
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Figure 4.2: Profiles of tested models 1 (a) & 2 (b). Inversion results of separate BI (c) & (d) and CSI (e) & (f), joint with CG
constraint using acoustic synthetic input (g) & (h) and alternating inversion (i) & (j), joint with GD constraint using acoustic
synthetic input (k) & (l) and alternating inversion (m) & (n), for 1 & 2 respectively. All subfigures indicated with i are acoustic
results and with ii are electromagnetic results. Note that to enhance readability colorbars vary among the subfigures.
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the wrong direction, resulting in an 𝑀𝑆𝐸𝐸 of 1.45. When using both the data sets, Figure 4.2(n), some
structure can still be seen in the electromagnetic case, however the range on inverted values is less
accurate compared to the separate inversion when comparing the color bars, which gives the poor
𝑀𝑆𝐸𝐸 of 0.951. Also the acoustic result now shows less structure compared to separate inversion, and
has an 𝑀𝑆𝐸𝐴 of 0.261.

Finally, in the overview of the 𝑀𝑆𝐸’s of all types of inversions given in Table 4.1, the bold values are
the most accurate values of the type of wave of all types of inversions. We see that only for the GD
constraint in the electromagnetic case of model 1, the joint inversion has an improved 𝑀𝑆𝐸 over the
separate inversions, most significantly visible when using the synthetic acoustic model as input for
the electromagnetic inversion. Nevertheless, the joint inversion with GD constraint inverting both data
sets, gives a slightly improved 𝑀𝑆𝐸 for both the acoustic and the electromagnetic case compared to
BI. The qualitatively improvement in the electromagnetic inversion results is more impressive than the
𝑀𝑆𝐸, as the structure of the contrast is now revealed, where it is completely absent in the separate
inversion. The values in the edges, outside the circle of the source and receiver locations, is off in the
joint GD electromagnetic case, and probably affects the𝑀𝑆𝐸, while being less important for recognizing
structure.



5
Discussion

In this chapter, some final remarks and points of discussions are presented. First, a discussion on
the different implemented constraints, CG and GD, are given, including recommendations for further
research. Next, a view on the translation of the presented research to future applications are given,
especially focusing on the choice of parameters and reflecting on the type of joint inversion most viable
for applications.

5.1. Implemented constraints
The shortcomings and corresponding possible explanations of both the presented constraints are dis
cussed in this section, as well as recommendations on how to overcome these shortcomings.

5.1.1. Crossgradient constraint
From the results it is clear that the reconstructions when using the CG constraint are not satisfactory.
However, the use of the acoustic model as input for the electromagnetic joint CG inversion, has shown
that the algorithm is capable of detecting structures in the electromagnetic contrast profile that were
otherwise hidden. To avoid the error function to only work on the boundaries of the different materials,
one should assure that the error function does not go to zero within the different materials. In other
words, for both modalities, the gradient should not equal zero for the CG error function to do anything
at that point. A way to avoid the error function from going to zero at homogeneous regions within the
inverted data, could be by adding some noise or speckle to the acoustic starting model before using it
as input for the electromagnetic inversion.

On top of that, when using the simulated acoustic data as input for the joint CG inversion, the be
haviour of reconstructing the outline of the contrast is no longer expected. When inverting the acoustic
data, the gradients are usually not absolutely zero, which becomes apparent from the resulting recon
structions. Here, the outline of the boundary is no longer visible. Unfortunately, these results do not
only show no improvement in the electromagnetic reconstruction, but also destroy the structure in the
acoustic reconstruction. A possible explanation for these disappointing results is that the resolution of
the electromagnetic reconstruction dominates the joint inversion process. It can be interesting to redo
the simulations using a higher center frequency for the electromagnetic wave fields of for example 8
GHz, so some initial structure is visible after the first iteration of the electromagnetic data.

5.1.2. Gradient difference constraint
The reconstructions using the GD constraint of model 1 are remarkable, especially when considering
the low resolution of the separate electromagnetic reconstruction. Nevertheless, the algorithm fails
when using a model with the gradients of the speed of sound profile opposite to the gradients of the
speed of light profile. Effectively, this means the gradient difference model so far cannot be used for
any realistic sample to be imaged. It is therefore necessary to investigate how the GD constraint can
be extended such that opposite gradients do not form a problem.

17
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One possible solution for the problem of constructing the wrong update direction in case of gradi
ents with different directions between the modalities, might be using the absolute GD of the contrasts.
Nonetheless, the absolute value is difficult to minimize, which is necessary in order to find the update
parameters. An alternative to the absolute value could be using the square of the GD in stead of the
absolute value. However, introducing a square in the L2norm can cause local minima, causing flaws
in the update parameters. Finally, one can adjust the normalization to overcome the sign problem. A
proposed way is normalizing the gradient of the contrast, in stead of taking the gradient of the normal
ized contrast. Note that the normalization should be using the maximum of the absolute value of the
gradient of the contrast in a near surrounding, but keeping the sign.

Apart from opposite gradient directions between the two different modalities, different gradient ampli
tudes have not yet been tested. It would be interesting to see what happens when there is for example
only a slight difference in speed of sound between two materials, while there is a large difference in
speed of light. It is expected that the GD constraint, will not properly reconstruct these types of mod
els. The normalized difference in gradients will not go to zero for the correct solution of the inversion.
However, if the the difference in amplitude between the normalized gradients of the contrasts is small
enough, no problems are expected. It is therefore necessary to discover in what range amplitude dif
ference the GD constraint will still be useful, and if the chosen parameters 𝜓(𝑛) and 𝛽 can influence the
outcome.

Another issue that needs to be solved in future research is the minus sign in the joint part of the acous
tic update direction in the GD case. When inspecting the update directions in the simulations it was
found this part of the acoustic update direction has the wrong sign. Adding a minus sign in the code
solved the problem, leading to the results as presented in Chapter 4. Despite a thorough search for a
mistake in the derivation in Appendix B.2.1, as well as in the implementation in the code, no mistakes
have been found so far. However, since the idea of the GD method holds conceptually for cases with
gradients in the same direction between the acoustic and electromagnetic contrasts, it is most likely
there is still an error in the implementation, yet to be found.

A next step to improve the algorithm, is to extend the algorithm to CSI, in contrast to the currently used
BI. Especially for cases where strong scatterers are present, and multiple scattering effects play a sig
nificant role, CSI can improve the accuracy of the reconstructions. Nevertheless for the model used in
this research, no large improvements are expected, since we see no large difference in the separate
BI and CSI reconstructions.

Lastly, an interesting approach for the joint inversion constraints, would be to implement a combina
tion of the two algorithms, exploiting the strengths of both constraints. Testing different regularization
parameters, a better understanding of both the constraints and their compatibility could be obtained.

5.2. Translation to applications
In order to make the translation from this computational research, to real life applications, both the
choice of parameters and the type of joint inversion method are of importance to be considered. In this
section both are discussed.

5.2.1. Parameters
In terms of model parameters, it can be fruitful to experiment with several cases to get a better under
standing if and how joint inversion can be used for seismic, medical or other applications. First of all,
it should be noted that the choice of parameters within this research is rather arbitrary, as it serves as
a proof of concept rather than a validation of an implementation. The background speed of sound and
speed of light have been chosen to have the values of water. However, the frequency dependence
in case of the electromagnetic parameters was not taken into account, causing the speed of light and
electric permittivity to not have realistic values for a center frequency of 1 GHz. On top of that, the pa
rameters assigned to the objects embedded in the background are not based on properties of physical
materials. For specific applications the acoustic and electromagnetic parameters should be adjusted
to realistic combinations, as well as the center frequencies.
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In addition to that parameters can be chosen based on real material properties, it is interesting to choose
the parameters such that the initial motivational practical limitations of separate inversion are better
explored. In this thesis, the focus lies completely on improving the resolution of the electromagnetic
inversion results, while the acoustic inversion results can also suffer from indistinguishable materials
or tissues. Simulations when using a model with comparable acoustic parameters for different objects,
while clearly different electromagnetic parameters, are therefore essential to fully test the applicability
of the proposed method in practical situations. Naturally, when all previously described shortcomings
are solved and the suggestions are tested, the next step would be to test the joint inversion algorithms
using experimental data.

5.2.2. Methods of joint inversion
In this research, we focus on implementing joint inversion using structural information in the most chal
lenging sense: alternatively constraining both data sets by the other. However, we see that with the
currently used frequencies, the acoustic reconstructions barely benefit from the joint inversion method.
Therefore one can argue, it would be sensible to use the acoustic inversion results as input for the
electromagnetic inversion, but not the other way around. The separate inversion could be seen as
structural preinformation for the electromagnetic inversion. The advantages over complete joint in
version would be a more accurate structural constraint for the electromagnetic inversion from the first
iterations on and a slightly better acoustic inversion result.





6
Conclusions

In this project, two joint Born inversion algorithms based on structural constraints have been devel
oped and tested on two models, first by using the acoustic model as input, followed by using simulated
data from both modalities. The most significant improvement in reconstruction resolution, compared
to separate inversion, is observed in the electromagnetic joint reconstruction using the gradient differ
ence (GD) approach, on the model with the gradients of the acoustic and electromagnetic parameters
pointing in the same direction. The acoustic joint GD reconstruction does not show advantages over
separate inversion yet. Nonetheless, the joint inversion based on the GD constraint fails when using a
model where the gradients of the acoustic and electromagnetic parameters point in opposite directions.

Additionally, the joint electromagnetic crossgradient (CG) reconstruction shows some improvements
compared to separate inversion by reconstructing an outline of the model, when using the acoustic
synthetic model as input for the inversion. However, no improvements are shown here within different
structural components. Moreover, when using both simulated data sets as input for the joint CG inver
sion, the structure in the acoustic results are destroyed, with no improvement in the electromagnetic
results to compensate. Nonetheless, the CG approach works equally well on both the model with the
gradients pointing in the same direction and the model with gradients pointing in opposite directions for
the acoustic and electromagnetic parameters and therefore has a more general working mechanism
at this point, compared to the GD approach.
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A
Derivation Green’s functions

This appendix shows the derivation of the Green’s functions for the acoustic and electromagnetic wave
fields. The derivation includes both the 2D and 3D case.

A.1. Acoustic field
In this work, the Green’s function is defined as the impulse response of the homogeneous embedding,
or in other words, the field generated by a point source in absence of any contrast. To derive the
acoustic or scalar Green’s function in the temporal Fourier domain, �̂�𝐴(𝑟, 𝑟′), the wave equation for a
homogeneous medium in the temporal Fourier domain with the source term being a point source needs
to be solved, hence

∇2�̂�𝐴(𝑟, 𝑟′) +
𝜔2
𝑐2𝐴,0

�̂�𝐴(𝑟, 𝑟′) = −𝛿(𝑟 − 𝑟′), (A.1)

with position vector, 𝑟, angular frequency 𝜔, the Dirac delta function 𝛿(𝑟 − 𝑟′) and the speed of sound
of the embedding 𝑐𝐴,0, defined by 𝑐−2𝐴,0 = 𝜌0𝜅0, with 𝜌0 the assumed constant mass density of the
medium and 𝜅0 the compressability of the embedding. Note that from (A.1), the caret symbol, ^, is
used to denote quantities in the temporal Fourier domain. The used definition of the Fourier transform
is �̂�(𝑟) = ∫∞−∞ 𝐺(𝑟, 𝑡)𝑒𝑖𝜔𝑡𝑑𝑡. On the infinite domain, and in the special case of 𝑟′ = 0⃗, spherical or circular
symmetry arises for the 3D and 2D case respectively. First the 3D case is discussed, followed by
the 2D case.

A.1.1. Three dimensional case
The solution of the 3D wave equation in (A.1), can be found using an analysis in the real domain [45,46]
or in the complex plane [47]. Both derivations are given for completeness.

Real domain derivation
Due to the spherical symmetry in 3D and considering the case 𝑟 ≠ 0 and 𝑟′ = 0, equation (A.1) reduces
to

1
𝑟2
𝑑
𝑑𝑟 [𝑟

2𝑑�̂�3𝐷𝐴 (𝑟, 0⃗)
𝑑𝑟 ] + 𝜔2

𝑐2𝐴,0
�̂�3𝐷𝐴 (𝑟, 0⃗) = 0. (A.2)

Multiplying equation (A.2) with 𝑟2, using the product rule on the first term and dividing again by 𝑟, yields,

2𝑑�̂�
3𝐷
𝐴 (𝑟, 0⃗)
𝑑𝑟 + 𝑟𝑑

2�̂�3𝐷𝐴 (𝑟, 0⃗)
𝑑𝑟2 + 𝑟 𝜔

2

𝑐2𝐴,0
�̂�3𝐷𝐴 (𝑟, 0⃗) = 0. (A.3)

Noting the second derivative of 𝑟�̂�3𝐷𝐴 (𝑟, 0⃗) can be rewritten as,

𝑑2
𝑑𝑟2 [𝑟�̂�

3𝐷
𝐴 (𝑟, 0⃗)] = 𝑑�̂�3𝐷𝐴 (𝑟, 0⃗)

𝑑𝑟 + 𝑑
𝑑𝑟 [𝑟

𝑑�̂�3𝐷𝐴 (𝑟, 0⃗)
𝑑𝑟 ] = 2𝑑�̂�

3𝐷
𝐴 (𝑟, 0⃗)
𝑑𝑟 + 𝑟𝑑

2�̂�3𝐷𝐴 (𝑟, 0⃗)
𝑑𝑟2 , (A.4)
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equations (A.3) and (A.4) can be combined into

𝑑2
𝑑𝑟2 [𝑟�̂�

3𝐷
𝐴 (𝑟, 0⃗)] + 𝜔2

𝑐2𝐴,0
𝑟�̂�3𝐷𝐴 (𝑟, 0⃗) = 0. (A.5)

Equation (A.5) is a second order ordinary differential equation (ODE), which has the solution

𝑟�̂�3𝐷𝐴 (𝑟, 0⃗) = 𝐶1𝑒−𝑖𝜔𝑟/𝑐𝐴,0 + 𝐶2𝑒+𝑖𝜔𝑟/𝑐𝐴,0 , (A.6)

with 𝐶1 and 𝐶2 constants to be determined. The first term in equation (A.6) represents outward propa
gating waves, while the second term represents inward propagating waves. Since the second term is
unphysical, it is disregarded. The remaining solution can be substituted into equation (A.1), integrated
over a small sphere centered at 𝑟 = 0 of radius 𝜀 → 0, to yield 𝐶1 = (4𝜋)−1. Generalizing the case for
𝑟′ ≠ 0, 𝑟 can be replaced by the distance from 𝑟′ to the observation point 𝑟. This gives the 3D scalar
Green’s function

�̂�3𝐷𝐴 (𝑟 − 𝑟′) = 𝑒−𝑖𝜔|𝑟−𝑟′|/𝑐𝐴,0
4𝜋|𝑟 − 𝑟′| , (A.7)

with which equation (2.10) has been derived.

Complex plane derivation
A method to avoid having to disregard a mathematically valid solution, as necessary using the real
domain derivation, is by evaluating the integral that is the solution of the spatial Fourier transform of
(A.1) in the complex plane. The spatial Fourier transform of (A.1) and its solution are given by

−|�⃗�|2�̃�3𝐷𝐴 − 𝛾2�̃�3𝐷𝐴 = −1, (A.8)

�̃�3𝐷𝐴 = 1
|�⃗�|2 + 𝛾2

, (A.9)

where from now on a tilde, ̃ , above a quantity denotes the a temporal and spatial Fourier domain, �⃗� is
the spatial angular wave number and 𝛾 = 𝑖 𝜔𝑐𝐴,0 + 𝛿, with 𝛿 a small real number, which will be needed
later on in the derivation to create a complex pole. In the final stage the limit will be taken of 𝛿 → 0,
such that lim

𝛿→0
𝛾2 = − 𝜔

2

𝑐2𝐴,0
. To retrieve �̂�3𝐷𝐴 (𝑟 − 𝑟′), the inverse spatial Fourier transform,

�̂�3𝐷𝐴 (𝑟 − 𝑟′) = 1
(2𝜋)3 ∫

𝑉
�̃�3𝐷𝐴 𝑒−𝑖�⃗�⋅(𝑟−𝑟′)𝑑𝑉(�⃗�), (A.10)

is evaluated. Spherical coordinates are introduced, with 𝑑𝑉(�⃗�) = |�⃗�|2 sin(𝜃)𝑑|�⃗�|𝑑𝜃𝑑𝜙 and with limits
0 < |�⃗�| < ∞, 0 < 𝜃 < 𝜋 and 0 < 𝜙 < 2𝜋. Rewriting the inner product as �⃗� ⋅ (𝑟 − 𝑟′) = |�⃗�||𝑟 − 𝑟′| cos𝜃,
the result of the integration over 𝜙 and 𝜃 respectively, is

�̂�3𝐷𝐴 (𝑟 − 𝑟′) = 1
4𝜋2

∞

∫
0

𝜋

∫
0

|�⃗�|2 sin𝜃
|�⃗�|2 + 𝛾2

𝑒−𝑖|�⃗�||𝑟−𝑟′| cos𝜃𝑑|�⃗�|𝑑𝜃 (A.11)

= 1
𝑖4𝜋2|𝑟 − 𝑟′|

∞

∫
0

|�⃗�|
|�⃗�|2 + 𝛾2

(𝑒𝑖|�⃗�||𝑟−𝑟′| − 𝑒−𝑖|�⃗�||𝑟−𝑟′|) 𝑑|�⃗�| (A.12)

= 1
𝑖4𝜋2|𝑟 − 𝑟′|

∞

∫
−∞

|�⃗�|
|�⃗�|2 + 𝛾2

𝑒𝑖|�⃗�||𝑟−𝑟′|𝑑|�⃗�|, (A.13)

where 𝑑
𝑑𝜃

𝑒−𝑖|�⃗�||�⃗�−�⃗�′| cos𝜃
𝑖|�⃗�||𝑟−𝑟′| = sin𝜃𝑒−𝑖|�⃗�||𝑟−𝑟′| cos𝜃 is used to evaluate the integral over 𝜃 by means of an

antiderivative, and to yield (A.13) a change of variables and swapping of integration limits is used on
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the second term of (A.12).

To evaluate (A.13), a contour integration will be performed in the complex plane, using the complex
function 𝑓(𝑧),

∫
𝐶𝑅

𝑓(𝑧)𝑑𝑧 = 1
𝑖4𝜋2|𝑟 − 𝑟′| ∫

𝐶𝑅

𝑧
𝑧2 + 𝛾2 𝑒

𝑖𝑧|𝑟−𝑟′|𝑑𝑧, (A.14)

with 𝐶𝑅 the closed, positively oriented contour, being the union of the line 𝐼𝑅, the line on the real axis
from −𝑅 to 𝑅, and the semicircle in the upper half plane Γ𝑅, parametrized by Γ𝑅 = 𝑅𝑒𝑖𝑡 with 𝑡 ∈ [0, 𝜋],
such that ∫𝐶𝑅 𝑓(𝑧)𝑑𝑧 = ∫𝐼𝑅 𝑓(𝑧)𝑑𝑧 + ∫Γ𝑅 𝑓(𝑧)𝑑𝑧, as depicted in Figure A.1. Note that the integral to be
evaluated in (A.13) is equal to lim

𝑅→∞∫𝐼𝑅 𝑓(𝑧)𝑑𝑧.

The contour integrals over 𝐶𝑅 and Γ𝑅 will be evaluated separately, starting with 𝐶𝑅. Since 𝐶𝑅 is a
positively oriented, closed contour, Cauchy’s residue theorem can be used to evaluate the integral.
The function 𝑓(𝑧) in (A.14) has two simple poles, 𝑧1 = 𝑖𝛾 and 𝑧2 = −𝑖𝛾. Since 𝛾 = 𝑖𝜔/𝑐𝐴,0 + 𝛿 and
𝜔 > 0, 𝑐𝐴,0 > 0 and 𝛿 > 0, 𝑧1 lies in the upper left quadrant of the complex plane and 𝑧2 in the lower
right quadrant of the complex plane, as shown in Figure A.1. As 𝑧1 is the only pole enclosed by 𝐶𝑅, only
the residue of 𝑧1 needs to be evaluated, which is done using the pole theorem. Here 𝑓(𝑧) = 𝑝(𝑧)/𝑞(𝑧)
is used with 𝑝(𝑧) = 𝑧𝑒𝑖𝑧|𝑟−𝑟′| and 𝑞(𝑧) = 𝑖4𝜋2|𝑟 − 𝑟′|(𝑧2 + 𝛾2). Because 𝑝(𝑧1) ≠ 0, 𝑞(𝑧1) = 0 and
𝑞′(𝑧1) ≠ 0, the pole theorem and Cauchy’s residue theorem give

∫
𝐶𝑅

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖Res
𝑧1
𝑓(𝑧) = 2𝜋𝑖 𝑝(𝑧1)𝑞′(𝑧1)

= 𝑒−𝛾|𝑟−𝑟′|
4𝜋|𝑟 − 𝑟′| . (A.15)

To evaluate ∫Γ𝑅 𝑓(𝑧)𝑑𝑧, Jordan’s lemma will be used, as the integral is of the form ∫Γ𝑅 𝑔(𝑧)𝑒
𝑖𝑎𝑧𝑑𝑧, with

𝑔(𝑧) = 𝑧/(𝑖4𝜋|𝑟 − 𝑟′|(𝑧2 + 𝛾2)) and 𝑎 = |𝑟 − 𝑟′|. The requirements of the lemma: 𝑔(𝑧) is analytic in
the upper half complex plane exterior to Γ𝑅, Γ𝑅 is a semicircle parametrized by Γ𝑅 = 𝑅𝑒𝑖𝑡 with 𝑡 ∈ [0, 𝜋],
𝑎 > 0 and for all 𝑧 ∈ Γ𝑅 there is a maximum 𝑀𝑅 > 0, such that |𝑔(𝑧)| ≤ 𝑀𝑅 and lim𝑅→∞𝑀𝑅 = 0, are
met. Here the maximum of |𝑔(𝑧)| on Γ𝑅 is found to be 𝑀𝑅 =

1
4𝜋|𝑟−𝑟′|

1/𝑅
1−|𝛾|2/𝑅2 . Therefore according to

Jordan’s lemma, the integral over Γ𝑅 in the limit of 𝑅 → ∞ goes to zero,

lim
𝑅→∞

∫
Γ𝑅

𝑓(𝑧)𝑑𝑧 = 0. (A.16)

Now subtracting (A.16) from (A.15) in the limit of 𝑅 → ∞, the solution to the original integral in equation
(A.13) is found. Finally taking the limit of 𝛿 → 0 in 𝛾 = 𝑖𝜔/𝑐𝐴,0 + 𝛿, the Green’s function

�̂�3𝐷𝐴 (𝑟 − 𝑟′) = 𝑒−𝑖𝜔|𝑟−𝑟′|/𝑐𝐴,0
4𝜋|𝑟 − 𝑟′| , (A.17)

is obtained and we see the result of the real domain derivation (A.7) is reproduced.

A.1.2. Two dimensional case
For the 2D case, again two different derivations yielding the same result are given, solving the 2D
differential equation (A.1) directly [46] and integrating the 3D result (A.7) over the 𝑧axis to obtain the
2D result [48]. A similar derivation in the complex plane as done for the 3D case is not as simple,
since the resulting integral equation is not of the form where Jordan’s lemma can be applied and will
therefore not be discussed here.

2D differential equation
Firstly, the 2D acoustic Green’s function can be derived by solving (A.1) directly. Due to circular sym
metry and when considering the case 𝑟 ≠ 0⃗ and 𝑟′ = 0⃗ , equation (A.1) reduces to

𝑑2�̂�2𝐷𝐴 (𝑟, 0⃗)
𝑑𝑟2 + 1𝑟

𝑑�̂�2𝐷𝐴 (𝑟, 0⃗)
𝑑𝑟 + 𝜔2

𝑐2𝐴,0
�̂�2𝐷𝐴 (𝑟, 0⃗) = 0. (A.18)
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Figure A.1: Complex plane with contours 𝐶𝑅 (red), 𝐼𝑅 (dashed blue) and Γ𝑅 (dashed green) and the poles 𝑧1 = 𝑖𝛾 and 𝑧2 = −𝑖𝛾.

The solution to this second order ODE is given in terms of the zeroth order Hankel functions of the first
and second kind, 𝐻(1)0 and 𝐻(2)0 , respectively,

�̂�2𝐷𝐴 (𝑟, 0⃗) = 𝐶1𝐻(1)0 (𝜔𝑟/𝑐𝐴,0) + 𝐶2𝐻(2)0 (𝜔𝑟/𝑐𝐴,0), (A.19)

where 𝐶1 and 𝐶2 are constants. Since only outgoing waves are considered, 𝐶1 is set to 0. The constant
𝐶2 can be solved to be 𝐶2 = −𝑖/4 [46]. This gives the 2D scalar Green’s function in terms of the zeroth
order Hankel function of the second kind 𝐻(2)0 = 𝐽0 − 𝑖𝑌0, for the general case where 𝑟′ ≠ 0⃗ ,

�̂�2𝐷𝐴 (𝑟 − 𝑟′) = −𝑖
4 𝐻

(2)
0 (𝜔|𝑟 − 𝑟′|/𝑐𝐴,0), (A.20)

with which equation (2.9) has been derived.

Integration of 3D result
Another method to derive the Green’s function for two dimensions is to convolve the 3D Green’s func
tion with a source that reduces it to two dimensions [48]. This source is located at (𝑥, 𝑦) = (𝑥”, 𝑦”) and
is an infinite line source in the 𝑧direction. The convolution is given by

�̂�2𝐷𝐴 (𝑟 − 𝑟”) = ∫
𝑉′
𝛿(𝑥′ − 𝑥”)𝛿(𝑦′ − 𝑦”)�̂�3𝐷𝐴 (𝑟3𝐷 − 𝑟′3𝐷)𝑑𝑥′𝑑𝑦′𝑑𝑧′, (A.21)

where in this case 𝑟 = (𝑥, 𝑦) is the 2D position vector and 𝑟3𝐷 = (𝑥, 𝑦, 𝑧) is the 3D position vector to
make the distinction. Now plugging in the found formulation for �̂�3𝐷𝐴 (𝑟3𝐷 − 𝑟′3𝐷) (A.7), integrating over
𝑑𝑥′𝑑𝑦′ and letting 𝜁 = 𝑧 − 𝑧′,

�̂�2𝐷𝐴 (𝑟 − 𝑟″) = 1
4𝜋

∞

∫
−∞

𝑒−𝑖𝜔/𝑐𝐴,0√(𝑥−𝑥”)2+(𝑦−𝑦”)2+𝜁2

√(𝑥 − 𝑥”)2 + (𝑦 − 𝑦”)2 + 𝜁2
𝑑𝜁, (A.22)

is obtained. Using the integral definition of the Hankel function of the first kind [54], and using that for
real arguments of the Hankel function 𝐻(1)0 (𝑥) = 𝐻(2)∗0 (𝑥),

𝐻(2)0 (𝑘𝑥) = 𝑖
𝜋

∞

∫
−∞

𝑒𝑖𝑘√𝑥2+𝑡2

√𝑥2 + 𝑡2
𝑑𝑡, (A.23)

can be compared with equation (A.22), to obtain the final result of the 2D Green’s function

�̂�2𝐷𝐴 (𝑟 − 𝑟′) = −𝑖
4 𝐻

(2)
0 (𝜔|𝑟 − 𝑟′|/𝑐𝐴,0), (A.24)

which is the same result as the result in equation (A.20).
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A.2. Electromagnetic field
A.2.1. Three dimensional case
For the derivation of the 3D electromagnetic Green’s function [45], the starting point are the Maxwell
equations, (2.112.14), in the temporal Fourier domain,

∇ × ⃗̂𝐸(𝑟) = −𝑖𝜔𝜇0 ⃗̂𝐻(𝑟), (A.25)

∇ × ⃗̂𝐻(𝑟) = 𝑖𝜔𝜖(𝑟) ⃗̂𝐸(𝑟) + ⃗̂𝐽𝑝𝑟(𝑟), (A.26)

∇ ⋅ [𝜖(𝑟) ⃗̂𝐸(𝑟)] = �̂�𝑝𝑟𝑒 (𝑟) = 0, (A.27)

∇ ⋅ [𝜇0 ⃗̂𝐻(𝑟)] = 0, (A.28)

where ⃗̂𝐸(𝑟) is the electric field, ⃗̂𝐻(𝑟) the magnetic field, ⃗̂𝐽𝑝𝑟(𝑟) the primary electric current density,
�̂�𝑝𝑟𝑒 (𝑟) the primary electric charge density source, all in the temporal Fourier domain, 𝜇0 the permeabil
ity of the medium and 𝜖(𝑟) the electric permittivity of the medium at location 𝑟.

The wave equation for electromagnetic waves in the temporal Fourier domain (2.16) can be obtained
from (A.25  A.28), by taking the curl of both sides of (A.25), plugging in (A.26), using the vector calculus
identity ∇ × (∇ × 𝐴) = ∇(∇ ⋅ 𝐴) − ∇2𝐴 and the electromagnetic contrast in (2.17), to yield

∇2 ⃗̂𝐸(𝑟) + 𝜔2
𝑐2𝐸,0

⃗̂𝐸(𝑟) = 𝑖𝜔𝜇0 ⃗̂𝐽𝑝𝑟𝐸 (𝑟) − 𝜔2𝜒𝐸(𝑟) ⃗̂𝐸(𝑟) + ∇ (∇ ⋅ ⃗̂𝐸(𝑟)) , (A.29)

with the electromagnetic contrast, 𝜒𝐸(𝑟) = 𝑐−2𝐸 (𝑟) − 𝑐−2𝐸,0, the speed of light at position 𝑟, 𝑐𝐸(𝑟), and
the speed of light of the homogeneous background medium, 𝑐𝐸,0. The speed of lights are defined by
𝑐−2𝐸 (𝑟) = 𝜖(𝑟)𝜇0 and 𝑐−2𝐸,0 = 𝜖0𝜇0, with 𝜖0 the electric permittivity of the homogeneous background
medium.

It is important to note that wave equation (A.29) cannot be solved directly using the Green’s function
from the previous sections, since the vector components of the electric field are not independent and
there is a divergence term on the right side. To tackle this, first the wave equation will be split using
the fact that the total field can be split into the incident field and the scattered field (2.18). These split
wave equations are

∇2 ⃗̂𝐸𝑖𝑛𝑐(𝑟) + 𝜔2
𝑐2𝐸,0

⃗̂𝐸𝑖𝑛𝑐(𝑟) = 𝑖𝜔𝜇0 ⃗̂𝐽𝑝𝑟𝐸 (𝑟) + ∇ (∇ ⋅ ⃗̂𝐸𝑖𝑛𝑐(𝑟)) , (A.30)

∇2 ⃗̂𝐸𝑠𝑐𝑡(𝑟) + 𝜔2
𝑐2𝐸,0

⃗̂𝐸𝑠𝑐𝑡(𝑟) = −𝜔2𝜒𝐸(𝑟) ⃗̂𝐸(𝑟) + ∇ (∇ ⋅ ⃗̂𝐸𝑠𝑐𝑡(𝑟)) , (A.31)

with �̂�𝑖𝑛𝑐(𝑟) and ⃗̂𝐸𝑖𝑛𝑐(𝑟) the incident pressure and electric field, respectively, and �̂�𝑠𝑐𝑡(𝑟) and ⃗̂𝐸𝑠𝑐𝑡(𝑟)
the scattered pressure and electric field, respectively. The derivation of the Green’s function will be
treated separately, starting with the equation for the incident field (A.30).

Incident field
To continue, the Maxwell equations (A.25  A.28) need to be determined for the wave equation of the
incident electric field. By splitting the equations or using the reverse argument which was used to obtain
(A.29), the following equations are found for the incident field

∇ × ⃗̂𝐸𝑖𝑛𝑐(𝑟) = −𝑖𝜔𝜇0 ⃗̂𝐻𝑖𝑛𝑐(𝑟), (A.32)

∇ × ⃗̂𝐻𝑖𝑛𝑐(𝑟) = 𝑖𝜔𝜖𝑜 ⃗̂𝐸𝑖𝑛𝑐(𝑟) + ⃗̂𝐽𝑝𝑟(𝑟), (A.33)

∇ ⋅ [𝜖0 ⃗̂𝐸𝑖𝑛𝑐(𝑟)] = �̂�𝑝𝑟𝑒 (𝑟) = 0, (A.34)

∇ ⋅ [𝜇0 ⃗̂𝐻𝑖𝑛𝑐(𝑟)] = 0, (A.35)

with ⃗̂𝐻𝑖𝑛𝑐(𝑟) the incident magnetic field. To keep the analogy with the acoustic waves, an analogous
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vector Helmholtz equation is to be found. To get here, it is required to introduce the vector potential
⃗̂𝐴𝑖𝑛𝑐(𝑟) and the scalar potential �̂�𝑖𝑛𝑐(𝑟). Using the vector calculus identity, ∇ ⋅ (∇×𝐴) = 0, and equation
(A.35), the vector potential can be introduced as

∇ × ⃗̂𝐴𝑖𝑛𝑐(𝑟) = ⃗̂𝐻𝑖𝑛𝑐(𝑟). (A.36)

Now substituting (A.36) into (A.32) yields

∇ × ( ⃗̂𝐸𝑖𝑛𝑐(𝑟) + 𝑖𝜔𝜇0 ⃗̂𝐴𝑖𝑛𝑐(𝑟)) = 0. (A.37)

Next, the scalar potential can be introduced using the vector calculus identity, ∇×(∇𝜙) = 0, and equation
(A.37), such that

⃗̂𝐸𝑖𝑛𝑐(𝑟) + 𝑖𝜔𝜇0 ⃗̂𝐴𝑖𝑛𝑐(𝑟) = −∇�̂�𝑖𝑛𝑐(𝑟). (A.38)

Now to satisfy equation (A.33), equations (A.36) and (A.38) are substituted into it to obtain

∇ × (∇ × ⃗̂𝐴𝑖𝑛𝑐(𝑟)) = −𝑖𝜔𝜖0∇�̂�𝑖𝑛𝑐(𝑟) +
𝜔2
𝑐2𝐸,0

⃗̂𝐴𝑖𝑛𝑐(𝑟) + ⃗̂𝐽𝑝𝑟(𝑟). (A.39)

By rearranging and using the vector calculus identity ∇ × (∇ × 𝐴) = ∇(∇ ⋅ 𝐴) − ∇2𝐴, this is reduced to

∇ (∇ ⋅ ⃗̂𝐴𝑖𝑛𝑐(𝑟)) − ∇2 ⃗̂𝐴𝑖𝑛𝑐(𝑟) = −𝑖𝜔𝜖0∇�̂�𝑖𝑛𝑐(𝑟) +
𝜔2
𝑐2𝐸,0

⃗̂𝐴𝑖𝑛𝑐(𝑟) + ⃗̂𝐽𝑝𝑟(𝑟). (A.40)

Since the divergence of the vector potential has not been set yet, equation (A.40) can be simplified by
using the Lorenz gauge condition,

∇ ⋅ ⃗̂𝐴𝑖𝑛𝑐(𝑟) = −𝑖𝜔𝜖0�̂�𝑖𝑛𝑐(𝑟), (A.41)

such that equation (A.40) reduces to

∇2 ⃗̂𝐴𝑖𝑛𝑐(𝑟) + 𝜔2
𝑐2𝐸,0

⃗̂𝐴𝑖𝑛𝑐(𝑟) = −⃗̂𝐽𝑝𝑟(𝑟), (A.42)

which is the vector Helmholtz equation. This second order partial differential equation is linear, that is
it can be expressed as the linear superposition of the solutions due to point sources, which is the 3D
Green’s function (A.7) as discussed in the previous section. This gives

⃗̂𝐴𝑖𝑛𝑐(𝑟) = ∫
𝑟′∈𝔻

�̂�3𝐷(𝑟 − 𝑟′) ⃗̂𝐽𝑝𝑟(𝑟′)𝑑𝑉(𝑟′). (A.43)

Substituting (A.41) into (A.38), the equation to determine ⃗̂𝐸𝑖𝑛𝑐(𝑟) from ⃗̂𝐴𝑖𝑛𝑐(𝑟) is obtained,

⃗̂𝐸𝑖𝑛𝑐(𝑟) = −𝑖𝜔𝜇0 ⃗̂𝐴𝑖𝑛𝑐(𝑟) +
1
𝑖𝜔𝜖0

∇ (∇ ⋅ ⃗̂𝐴𝑖𝑛𝑐(𝑟)) . (A.44)

Inserting (A.43) into (A.44), the electric incident field integral equation,

⃗̂𝐸𝑖𝑛𝑐(𝑟) = −𝑖𝜔𝜇0 ∫
𝑟′∈𝔻

[1 +
𝑐2𝐸,0
𝜔2 ∇∇⋅] �̂�

3𝐷(𝑟 − 𝑟′) ⃗̂𝐽𝑝𝑟(𝑟′)𝑑𝑉(𝑟′), (A.45)

is obtained. This can be simplified to

⃗̂𝐸𝑖𝑛𝑐(𝑟) = ∫
𝑟′∈𝔻

�̂�3𝐷𝐸 (𝑟 − 𝑟′) ⃗̂𝑆𝑝𝑟𝐸 (𝑟′)𝑑𝑉(𝑟′), (A.46)

with primary source term of the electric field ⃗̂𝑆𝑝𝑟𝐸 (𝑟) = −𝑖𝜔𝜇0 ⃗̂𝐽𝑝𝑟(𝑟), such that (2.19) is reproduced.
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Scattered field
Now a similar procedure will be followed, starting from the wave equation for the scattered field (A.30).
The Maxwell equations leading to this wave equations are

∇ × ⃗̂𝐸𝑠𝑐𝑡(𝑟) = −𝑖𝜔𝜇0 ⃗̂𝐻𝑠𝑐𝑡(𝑟), (A.47)

∇ × ⃗̂𝐻𝑠𝑐𝑡(𝑟) = 𝑖𝜔𝜖0 ⃗̂𝐸𝑠𝑐𝑡(𝑟) + 𝑖𝜔(𝜖(𝑟) − 𝜖0) ⃗̂𝐸(𝑟), (A.48)

∇ ⋅ [𝜖(𝑟) ⃗̂𝐸𝑠𝑐𝑡(𝑟)] = �̂�𝑝𝑟𝑒 (𝑟) = 0, (A.49)

∇ ⋅ [𝜇0 ⃗̂𝐻𝑠𝑐𝑡(𝑟)] = 0, (A.50)

with ⃗̂𝐻𝑠𝑐𝑡(𝑟) the scattered magnetic field. Again a vector potential ⃗̂𝐴𝑠𝑐𝑡(𝑟) and a scalar potential �̂�𝑠𝑐𝑡(𝑟)

will be introduced. As for the vector potential, the vector calculus identity ∇ ⋅ (∇ × 𝐴) = 0, and equation
(A.50) are used to obtain

∇ × ⃗̂𝐴𝑠𝑐𝑡(𝑟) = ⃗̂𝐻𝑠𝑐𝑡(𝑟). (A.51)

Next, (A.51) is substituted into (A.47),

∇ × ( ⃗̂𝐸𝑠𝑐𝑡(𝑟) + 𝑖𝜔𝜇0 ⃗̂𝐴𝑠𝑐𝑡(𝑟)) = 0. (A.52)

Now the scalar potential function for the scattered field can be introduced, by combining equation (A.52)
and the identity ∇ × (∇𝜙) = 0, as

⃗̂𝐸𝑠𝑐𝑡(𝑟) + 𝑖𝜔𝜇0 ⃗̂𝐴𝑠𝑐𝑡(𝑟) = −∇�̂�𝑠𝑐𝑡(𝑟). (A.53)

To satisfy (A.48), equations (A.51) and (A.53) are plugged in to obtain

∇ × (∇ × ⃗̂𝐴𝑠𝑐𝑡) = −𝑖𝜔𝜖0∇�̂�𝑠𝑐𝑡(𝑟) +
𝜔2
𝑐20
⃗̂𝐴𝑠𝑐𝑡(𝑟) + 𝑖𝜔(𝜖(𝑟) − 𝜖0) ⃗̂𝐸(𝑟). (A.54)

Using vector calculus identity ∇ × (∇ × 𝐴) = ∇(∇ ⋅ 𝐴 − ∇2𝐴), (A.54) becomes

∇ (∇ ⋅ ⃗̂𝐴𝑠𝑐𝑡(𝑟)) − ∇2 ⃗̂𝐴𝑠𝑐𝑡(𝑟) = −𝑖𝜔𝜖0∇�̂�𝑠𝑐𝑡(𝑟) +
𝜔2
𝑐20
⃗̂𝐴𝑠𝑐𝑡(𝑟) + 𝑖𝜔(𝜖(𝑟) − 𝜖0) ⃗̂𝐸(𝑟). (A.55)

The divergence of the vector potential is set by the Lorenz gauge,

∇ ⋅ ⃗̂𝐴𝑠𝑐𝑡(𝑟) = −𝑖𝜔𝜖0�̂�𝑠𝑐𝑡(𝑟), (A.56)

which can be substituted into (A.55) to yield the vector Helmholtz equation for the scattered vector
potential

∇2 ⃗̂𝐴𝑠𝑐𝑡(𝑟) + 𝜔
2

𝑐20
⃗̂𝐴𝑠𝑐𝑡(𝑟) = −𝑖𝜔(𝜖(𝑟) − 𝜖0) ⃗̂𝐸(𝑟). (A.57)

The solution to this second order partial differential equation is the convolution of the 3D Green’s
function (A.7) with the term on the right side of (A.57), which is

⃗̂𝐴𝑠𝑐𝑡(𝑟) = 𝑖𝜔 ∫
𝑟′∈𝔻

�̂�3𝐷(𝑟 − 𝑟′) [𝜖(𝑟′) − 𝜖0] ⃗̂𝐸(𝑟′)𝑑𝑉(𝑟′). (A.58)

Substituting (A.56) into (A.53), ⃗̂𝐸𝑠𝑐𝑡(𝑟) can be expressed in terms of ⃗̂𝐴𝑠𝑐𝑡(𝑟)

⃗̂𝐸𝑠𝑐𝑡(𝑟) = −𝑖𝜔𝜇0 ⃗̂𝐴𝑠𝑐𝑡(𝑟) +
1
𝑖𝜔𝜖0

∇ (∇ ⋅ ⃗̂𝐴𝑠𝑐𝑡(𝑟)) . (A.59)
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Figure A.2: Schematic representation of four TM and TE waves propagating into the imaged 2D surface in the (𝑥,𝑦)plane (gray
surface), �⃗�𝑖𝑛𝑐 (blue arrow) the incident electric field and �⃗�𝑖𝑛𝑐 (green arrow) the incident wave vector representing the direction of
propagation. (a) TMwaves, with electric field completely perpendicular tot the surface, (b) TE waves, with electric field completely
parallel to the surface.

Inserting (A.58) into (A.59), the electric scattered field integral equation,

⃗̂𝐸𝑠𝑐𝑡(𝑟) = 𝜔2 ∫
𝑟′∈𝔻

[1 +
𝑐2𝐸,0
𝜔2 ∇∇⋅] �̂�

3𝐷(𝑟 − 𝑟′)𝜒𝐸(𝑟′) ⃗̂𝐸(𝑟′)𝑑𝑉(𝑟′), (A.60)

is obtained. This can be simplified to

⃗̂𝐸𝑠𝑐𝑡(𝑟) = 𝜔2 ∫
𝑟′∈𝔻

�̂�3𝐷𝐸 (𝑟 − 𝑟′)𝜒𝐸(𝑟′) ⃗̂𝐸(𝑟′)𝑑𝑉(𝑟′), (A.61)

such that (2.20) is reproduced.

3D electromagnetic Green’s function
Finally, it can be seen that from both the integral equation of the incident field (A.45) and (A.46) and the
integral equation of the scattered field (A.60) and (A.61) the expression for the 3D Green’s function for
the electric field can be written as

�̂�3𝐷𝐸 (𝑟 − 𝑟′) = (1 +
𝑐2𝐸,0
𝜔2 ∇∇⋅)

𝑒−𝑖𝜔|𝑟−𝑟′|/𝑐𝐸,0
4𝜋|𝑟 − 𝑟′| , (A.62)

which is equal to equation (2.23).

A.2.2. Two dimensional case
For the 2D electromagnetic case, the derivation of the Green’s function is for the largest part equal to
that of the 3D case. In particular, one method to obtain it, is integrating the 3D result over the 𝑧axis,
like has been done for the acoustic 2D Green’s function.

The same result can be obtained when considering the Maxwell equations in two spatial dimensions
[50, 51]. In this case, the vector calculus must change. When an outer product is involved, 𝐴 × �⃗�
will be written in the 2D case as 𝐴⊥ ⋅ �⃗�, with 𝐴⊥ = (𝐴𝑦 , −𝐴𝑥). Accordingly the differential operator
in two dimensions is written as ∇ = (𝜕/𝜕𝑥, 𝜕/𝜕𝑦), the curl will be replaced by ∇⊥ = (𝜕/𝜕𝑦,−𝜕/𝜕𝑥),
the Laplacian by ∇2 = ∇ ⋅ ∇ = ∇⊥ ⋅ ∇⊥ = (𝜕2/𝜕𝑥2, 𝜕2/𝜕𝑦2) and finally the vector calculus identity of
the curl of a curl will be ∇⊥(∇⊥ ⋅ 𝐴) = ∇2𝐴 − ∇(∇ ⋅ 𝐴). Using this vector calculus, the derivation of
the 2D Green’s function of the electromagnetic field is completely analogous to the derivation of the
3D Green’s function. However, in 2D one can distinguish transverse magnetic (TM) and transverse
electric (TE) waves, of which the geometries are shown in Figure A.2. First the derivation of the TM
case is discussed, followed by a discussion of the TE case.
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TM waves
In the case of TM waves, the magnetic field is transverse to the vector that describes the imaged plane,
i.e. the normal [30], [43]. This means, the incident magnetic field is completely parallel to the imaged
plane, and the incident electric field is completely perpendicular to the imaged 2D surface, as shown
in Figure A.2(a). In other words, the electric field no longer has a direction into the 2D surface, as it
points in the 𝑧direction. From (A.32) and (A.36), it can be seen that ⃗̂𝐴𝑖𝑛𝑐(𝑟) is parallel to ⃗̂𝐸𝑖𝑛𝑐(𝑟). The

2D divergence of ⃗̂𝐴𝑖𝑛𝑐(𝑟) is therefore zero. This means, that for the 2D TM case, equation (A.44)
reduces to

⃗̂𝐸𝑖𝑛𝑐(𝑟) = −𝑖𝜔𝜇0 ⃗̂𝐴𝑖𝑛𝑐(𝑟). (A.63)

Note that in (A.63) the electric field and the vector potential are still written in vector notation, but that
the direction in the 2D plane in this case has no definition, not containing a 𝑧direction. Now continuing
with the derivation, (A.43) is inserted into (A.63), yielding

⃗̂𝐸(𝑟) = ∫
𝑟′∈𝔻

�̂�2𝐷(𝑟 − 𝑟′) (−𝑖𝜔𝜇0 ⃗̂𝐽𝑝𝑟(𝑟′)) 𝑑𝐴(𝑟′), (A.64)

where−𝑖𝜔𝜇0 ⃗̂𝐽𝑝𝑟(𝑟) is the source term ⃗̂𝑆𝑝𝑟𝐸 (𝑟), with ⃗̂𝐽𝑝𝑟(𝑟) and therefore ⃗̂𝑆𝑝𝑟𝐸 (𝑟′) pointing in the 𝑧direction

in the 2D TM case, as they are parallel to ⃗̂𝐸(𝑟). Equation (A.64) shows the 2D electromagnetic Green’s
function for the TM case is identical to the 2D acoustic Green’s function and therefore is

�̂�2𝐷,𝑇𝑀𝐸 (𝑟 − 𝑟′) = −𝑖
4 𝐻

(2)
0 (𝜔|𝑟 − 𝑟′|/𝑐𝐸,0). (A.65)

TE waves
The case of TE waves is shown in Figure A.2(b). Here, the incident electric field is transverse to the
normal vector of the imaged plane, or, in other words, parallel to the imaged 2D surface. Now the
electric field only has 𝑥 and 𝑦components. As the divergence term in (A.44) will not be zero, the
derivation of the 2D electromagnetic Green’s function for the TE case remains completely identical to
the 3D electromagnetic case, except for replacing the scalar 3D Green’s function by the scalar 2D
Green’s function, to finally yield

�̂�2𝐷,𝑇𝐸𝐸 (𝑟 − 𝑟′) = (1 +
𝑐2𝐸,0
𝜔2 ∇∇⋅)

−𝑖
4 𝐻

(2)
0 (𝜔|𝑟 − 𝑟′|/𝑐𝐸,0). (A.66)





B
Derivation update direction and

amplitude joint inversion
This appendix holds the derivation of the minimization of the error functions for the joint inversion, to find
the update directions, 𝑑(𝑛)𝐴 and 𝑑(𝑛)𝐸 and the corresponding amplitudes, 𝛼(𝑛)𝐴 and 𝛼(𝑛)𝐸 , of both contrasts
at the 𝑛th iteration, as given by

𝜒(𝑛)𝐴 = 𝜒(𝑛−1)𝐴 + 𝛼(𝑛)𝐴 𝑑(𝑛)𝐴 , (B.1)

𝜒(𝑛)𝐸 = 𝜒(𝑛−1)𝐸 + 𝛼(𝑛)𝐸 𝑑(𝑛)𝐸 , (B.2)

where 𝜒(𝑛)𝐴 is the acoustic contrast at the 𝑛th iteration and 𝜒(𝑛)𝐸 the electromagnetic contrast at the 𝑛th
iteration. The corresponding separate residuals at the 𝑛th iteration, 𝑟(𝑛)𝐴 and 𝑟(𝑛)𝐸 are given by

𝑟(𝑛)𝐴 = �̂�𝑚𝑒𝑎𝑠 − LA𝜒(𝑛)𝐴 , (B.3)

𝑟(𝑛)𝐸 = ⃗̂𝐸𝑚𝑒𝑎𝑠 − LE𝜒(𝑛)𝐸 , (B.4)

with LA the acoustic operator given by LA𝜒(𝑛)𝐴 = �̂�𝐴 ∗ (𝜔2�̂�𝑖𝑛𝑐𝜒(𝑛)𝐴 ) and LE the electromagnetic oper
ator given by LE𝜒(𝑛)𝐸 = �̂�𝐸 ∗ (𝜔2 ⃗̂𝐸𝑖𝑛𝑐𝜒(𝑛)𝐸 ), where 𝜔 is the angular frequency, �̂�𝐴 and �̂�𝐸 the acoustic

and electromagnetic Green’s functions, ∗ the spatial convolution operator and, �̂�𝑚𝑒𝑎𝑠 and ⃗̂𝐸𝑚𝑒𝑎𝑠 the
measured pressure and electric field, respectively. Note that from here and onward, the caret symbol,
^, is used to denote quantities in the temporal Fourier domain, with the used definition of the Fourier
transform �̂�(𝑟) = ∫∞−∞ 𝑝(𝑟, 𝑡)𝑒𝑖𝜔𝑡𝑑𝑡.

First the derivation is given for the crossgradient approach (CG), the acoustic and electromagnetic
case treated subsequently, next, the derivation for the gradient difference (GD) approach is shown.

B.1. Crossgradient approach
Within this section the derivation of the update direction and the update amplitude is shown for the
CG constraint. In the developed algorithm, the acoustic contrast will be updated first, followed by
the electromagnetic contrast. Therefore, the electromagnetic derivation will follow after the acoustic
derivation of the update parameters.

B.1.1. Acoustic field
The additive acoustic error function, 𝐸𝑟𝑟(𝑛)𝐴 , to be minimized at the 𝑛th iteration is

𝐸𝑟𝑟(𝑛)𝐴 = 𝐸𝑟𝑟(𝑛)𝐴, 𝐵𝐼 + 𝐸𝑟𝑟(𝑛)𝐴,𝐶𝐺 =
||�̂�𝑚𝑒𝑎𝑠 − LA𝜒(𝑛)𝐴 ||2

||�̂�𝑚𝑒𝑎𝑠||2 + 𝛽𝐴
||∇𝜒(𝑛)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2

||∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2
, (B.5)

33
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where 𝐸𝑟𝑟(𝑛)𝐴,𝐵𝐼 is the contribution as seen in separate Born inversion, 𝐸𝑟𝑟(𝑛)𝐴,𝐶𝐺 the contribution due to
the joint structural constraint by the CG term, �̂�𝑚𝑒𝑎𝑠 the measured scattered field and 𝛽𝐴 the acoustic
regularization parameter for the joint inversion. The location dependencies of �̂�𝑚𝑒𝑎𝑠, 𝜒𝐴 and 𝜒𝐸 are
left out for simplicity. Note that within the numerator of 𝐸𝑟𝑟(𝑛)𝐴,𝐶𝐺 the electromagnetic contrast for the
(𝑛 − 1)th iteration is used, as the acoustic contrast is updated first.

Update direction
To find the update direction of the acoustic contrast, a Fréchet derivative of error function (B.5) can
be used, finding the steepest negative direction. This will be done for both terms separately. For the
𝐸𝑟𝑟(𝑛)𝐴,𝐵𝐼 we have:

𝜕𝐸𝑟𝑟(𝑛)𝐴,𝐵𝐼

𝜕𝜒(𝑛)𝐴
= 1
||�̂�𝑚𝑒𝑎𝑠||2 lim𝜀→0 [

||�̂�𝑚𝑒𝑎𝑠 − LA (𝜒(𝑛−1)𝐴 + 𝜀𝑑(𝑛)𝐴,𝐵𝐼) ||2 − ||�̂�𝑚𝑒𝑎𝑠 − LA𝜒(𝑛−1)𝐴 ||2

𝜀 ] , (B.6)

where 𝜀 is a small real number and 𝑑(𝑛)𝐴,𝐵𝐼 is the contribution of 𝐸𝑟𝑟(𝑛)𝐴,𝐵𝐼 to the update direction 𝑑(𝑛)𝐴 in
equation (B.1). Equation (B.6) can be reduced by expanding the brackets and square terms, taking the
acoustic operator to the other side of the inner product, using equation (B.3) and finally taking the limit
of 𝜀 → 0 , to yield

𝜕𝐸𝑟𝑟(𝑛)𝐴,𝐵𝐼

𝜕𝜒(𝑛)𝐴
= 1
||�̂�𝑚𝑒𝑎𝑠||2 lim𝜀→0 [

||𝑟(𝑛−1)𝐴 ||2 + 𝜀2||LA𝑑(𝑛)𝐴,𝐵𝐼||2 − 2𝜀Re < 𝑟(𝑛−1)𝐴 ,LA𝑑(𝑛)𝐴,𝐵𝐼 > −||𝑟(𝑛−1)𝐴 ||2
𝜀 ] (B.7)

= 1
||�̂�𝑚𝑒𝑎𝑠||2 lim𝜀→0 [𝜀||LA𝑑

(𝑛)
𝐴,𝐵𝐼||2 − 2Re < L†A𝑟

(𝑛−1)
𝐴 , 𝑑(𝑛)𝐴,𝐵𝐼 >] (B.8)

=
−2Re < L†A𝑟

(𝑛−1)
𝐴 , 𝑑(𝑛)𝐴,𝐵𝐼 >

||�̂�𝑚𝑒𝑎𝑠||2 , (B.9)

In order to minimize equation (B.9), the inner product of L†A𝑟
(𝑛−1)
𝐴 and 𝑑(𝑛)𝐴,𝐵𝐼 is to be maximized. This is

achieved when L†A𝑟
(𝑛−1)
𝐴 and 𝑑(𝑛)𝐴,𝐵𝐼 are parallel. Thus for 𝑑(𝑛)𝐴,𝐵𝐼 the following expression is found,

𝑑(𝑛)𝐴,𝐵𝐼 = L†A𝑟
(𝑛−1)
𝐴 . (B.10)

The Fréchet derivative of the second term in equation (B.5), 𝐸𝑟𝑟(𝑛)𝐴,𝐶𝐺, is given by

𝜕𝐸𝑟𝑟(𝑛)𝐴,𝐶𝐺

𝜕𝜒(𝑛)𝐴
= 𝛽𝐴
||∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2

lim
𝜀→0
[
||∇ (𝜒(𝑛−1)𝐴 +𝜀𝑑(𝑛)𝐴,𝐶𝐺)×∇𝜒(𝑛−1)𝐸 ||2−||∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2

𝜀 ] , (B.11)

where 𝜀 is again a small, real number and 𝑑(𝑛)𝐴,𝐶𝐺 is the contribution of 𝐸𝑟𝑟(𝑛)𝐴,𝐶𝐺 to the update direction
𝑑(𝑛)𝐴 in (B.1). By expanding the brackets, expanding the square terms and taking the limit of 𝜀 → 0,
equation (B.11) is reduced to

𝜕𝐸𝑟𝑟(𝑛)𝐴,𝐶𝐺

𝜕𝜒(𝑛)𝐴
= 𝛽𝐴
||∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2

lim
𝜀→0
[
||∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 +𝜀∇𝑑(𝑛)𝐴,𝐶𝐺×∇𝜒(𝑛−1)𝐸 ||2−||∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2

𝜀 ] (B.12)

= 𝛽𝐴
||∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2

lim
𝜀→0
[𝜀||∇𝑑(𝑛)𝐴,𝐶𝐺×∇𝜒(𝑛−1)𝐸 ||2+2Re<𝑑(𝑛)𝐴,𝐶𝐺×∇𝜒(𝑛−1)𝐸 ,∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 >] (B.13)

=
2𝛽𝐴Re < ∇𝑑(𝑛)𝐴,𝐶𝐺 × ∇𝜒(𝑛−1)𝐸 , ∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 >

||∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2
(B.14)

= 2𝛽𝐴Re < ∇𝑑(𝑛) × 𝑒(𝑛−1), �⃗�(𝑛−1) >
||�⃗�(𝑛−1)||2

, (B.15)
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where in (B.15) 𝑑(𝑛) = 𝑑(𝑛)𝐴,𝐶𝐺, 𝑒(𝑛) = ∇𝜒(𝑛)𝐸 and �⃗�(𝑛) = ∇𝜒(𝑛)𝐴 ×∇𝜒(𝑛)𝐸 to simplify the expressions in the rest
of the derivation. Next, the inner product in equation (B.15) is rewritten to the integral form, and the
vector calculus identity (∇𝜙) × 𝐴 = ∇ × (𝜙𝐴) − 𝜙(∇ × 𝐴) is used to obtain

𝜕𝐸𝑟𝑟(𝑛)𝐴,𝐶𝐺

𝜕𝜒(𝑛)𝐴
= 2𝛽𝐴
||�⃗�(𝑛−1)||2

Re∫
𝑉
(∇ × (𝑑(𝑛)𝑒(𝑛−1))) ⋅ �⃗�(𝑛−1)∗ − 𝑑(𝑛) (∇ × 𝑒(𝑛−1)) ⋅ �⃗�(𝑛−1)∗𝑑𝑉. (B.16)

Next, the vector calculus identity ∇ ⋅ (𝐴 × �⃗�) = (∇ × 𝐴) ⋅ �⃗� − (∇ × �⃗�) ⋅ 𝐴 is used in the first term on the
righthand side of (B.16) and subsequently Gauss’ theorem is applied to yield

𝜕𝐸𝑟𝑟(𝑛)𝐴,𝐶𝐺

𝜕𝜒(𝑛)𝐴
= 2𝛽𝐴
||�⃗�(𝑛−1)||2

Re∫
𝑉
∇⋅((𝑑(𝑛)𝑒(𝑛−1))×�⃗�(𝑛−1)∗)+(∇×�⃗�(𝑛−1)∗)⋅𝑑(𝑛)𝑒(𝑛−1)−𝑑(𝑛) (∇×𝑒(𝑛−1))⋅�⃗�(𝑛−1)∗𝑑𝑉 (B.17)

= 2𝛽𝐴
||�⃗�(𝑛−1)||2

Re[∫
𝜕𝑉
𝑑(𝑛)(𝑒(𝑛−1))×�⃗�(𝑛−1)∗𝑑𝑆+∫

𝑉
𝑑(𝑛)(∇×�⃗�(𝑛−1)∗)⋅𝑒(𝑛−1)−𝑑(𝑛) (∇×𝑒(𝑛−1))⋅�⃗�(𝑛−1)∗𝑑𝑉]. (B.18)

Since all terms in the surface integral consist of contrasts, and the contrasts are assumed to be zero on
the boundary, this term vanishes. On the remaining volume integral the same vector calculus identity
as before, ∇ ⋅ (𝐴 × �⃗�) = (∇ × 𝐴) ⋅ �⃗� − (∇ × �⃗�) ⋅ 𝐴, can be applied to result in

𝜕𝐸𝑟𝑟(𝑛)𝐴,𝐶𝐺

𝜕𝜒(𝑛)𝐴
=
−2𝛽𝐴Re∫𝑉 𝑑(𝑛)∇ ⋅ (𝑒(𝑛−1) × �⃗�(𝑛−1)∗) 𝑑𝑉

||�⃗�(𝑛−1)||2
. (B.19)

To minimize this result, 𝑑(𝑛) should be parallel to ∇ ⋅ (𝑒(𝑛−1)∗ × �⃗�(𝑛−1)), which gives

𝑑(𝑛)𝐴,𝐶𝐺 = ∇ ⋅ [∇𝜒(𝑛−1)∗𝐸 × (∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 )] . (B.20)

Finally, the total update direction of the acoustic contrast is given by

𝑑(𝑛)𝐴 = 𝑑(𝑛)𝐴,𝐵𝐼 + 𝑑(𝑛)𝐴,𝐶𝐺 = L†A𝑟
(𝑛−1)
𝐴 + ∇ ⋅ [∇𝜒(𝑛−1)∗𝐸 × (∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 )] . (B.21)

Update amplitude
To find the update amplitude of the acoustic contrast, 𝛼(𝑛)𝐴 , in equation (B.1), error function (B.5) is
minimized with respect to 𝛼(𝑛)𝐴 . In order to do this, the error function first needs to be rewritten, starting
by plugging in equation (B.1), to obtain

𝐸𝑟𝑟(𝑛)𝐴 =
||�̂�𝑚𝑒𝑎𝑠 − LA (𝜒(𝑛−1)𝐴 + 𝛼(𝑛)𝐴 𝑑(𝑛)𝐴 ) ||2

||�̂�𝑚𝑒𝑎𝑠||2 + 𝛽𝐴
||∇ (𝜒(𝑛−1)𝐴 + 𝛼(𝑛)𝐴 𝑑(𝑛)𝐴 ) × ∇𝜒(𝑛−1)𝐸 ||2

||∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2
. (B.22)

Next, by expanding the brackets and square terms and using the residual in (B.3), equation (B.22)
becomes

𝐸𝑟𝑟(𝑛)𝐴 = ||𝑟(𝑛−1)𝐴 ||2 + 𝛼(𝑛)2𝐴 ||LA𝑑(𝑛)𝐴 ||2 − 2𝛼(𝑛)𝐴 Re < 𝑟(𝑛−1)𝐴 ,LA𝑑(𝑛)𝐴 >
||�̂�𝑚𝑒𝑎𝑠||2 + (B.23)

𝛽𝐴
||∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2+𝛼(𝑛)2𝐴 ||∇𝑑(𝑛)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2+2𝛼(𝑛)𝐴 Re<∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 ,∇𝑑(𝑛)𝐴 ×∇𝜒(𝑛−1)𝐸 >

||∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2
.

Now, the error (B.23) is minimized with respect to 𝛼(𝑛)𝐴 ,

𝜕𝐸𝑟𝑟(𝑛)𝐴

𝜕𝛼(𝑛)𝐴
= 2𝛼(𝑛)𝐴 ||LA𝑑(𝑛)𝐴 ||2 − 2Re < 𝑟(𝑛−1)𝐴 ,LA𝑑(𝑛)𝐴 >

||�̂�𝑚𝑒𝑎𝑠||2 +

𝛽𝐴
2𝛼(𝑛)𝐴 ||∇𝑑(𝑛)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2 + 2Re < ∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 , ∇𝑑(𝑛)𝐴 × ∇𝜒(𝑛−1)𝐸 >

||∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2
= 0. (B.24)



36 B. Derivation update direction and amplitude joint inversion

Reordering the terms, 𝛼(𝑛)𝐴 is found to be

𝛼(𝑛)𝐴 =Re<𝑟
(𝑛−1)
𝐴 ,LA𝑑(𝑛)𝐴 >||∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2−𝛽𝐴Re<∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 ,∇𝑑(𝑛)𝐴 ×∇𝜒(𝑛−1)𝐸 >||�̂�𝑚𝑒𝑎𝑠||2

||LA𝑑(𝑛)𝐴 ||2||∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2+𝛽𝐴||∇𝑑(𝑛)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2||�̂�𝑚𝑒𝑎𝑠||2
. (B.25)

B.1.2. Electromagnetic field
For the electromagnetic case, the additive error function, 𝐸𝑟𝑟(𝑛)𝐸 , to be minimized at the 𝑛th iteration is

𝐸𝑟𝑟(𝑛)𝐸 = 𝐸𝑟𝑟(𝑛)𝐸, 𝐵𝐼 + 𝐸𝑟𝑟(𝑛)𝐸,𝐶𝐺 =
|| ⃗̂𝐸𝑚𝑒𝑎𝑠 − LE𝜒(𝑛)𝐸 ||2

|| ⃗̂𝐸𝑚𝑒𝑎𝑠||2
+ 𝛽𝐸

||∇𝜒(𝑛)𝐴 × ∇𝜒(𝑛)𝐸 ||2

||∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2
, (B.26)

where 𝐸𝑟𝑟(𝑛)𝐸,𝐵𝐼 is the contribution as seen in separate Born inversion, 𝐸𝑟𝑟(𝑛)𝐸,𝐶𝐺 the contribution due to
the joint CG constraint, ⃗̂𝐸𝑚𝑒𝑎𝑠 the measured scattered electric field and 𝛽𝐸 the electromagnetic regu
larization parameter for joint inversion. The location dependencies of ⃗̂𝐸𝑚𝑒𝑎𝑠, 𝜒𝐴 and 𝜒𝐸 are left out for
simplicity. Finally, note that within the numerator of 𝐸𝑟𝑟(𝑛)𝐸,𝐶𝐺, the acoustic contrast or the 𝑛th iteration
is used, as it was updated before the electromagnetic contrast.

Update direction
Similarly as in the acoustic derivation, the update direction of the electromagnetic contrast can be found
using a Fréchet derivative on the error function (B.26), to find the steepest negative direction, for both
terms separately. For the first term, 𝐸𝑟𝑟(𝑛)𝐸,𝐵𝐼 this gives,

𝜕𝐸𝑟𝑟(𝑛)𝐸,𝐵𝐼

𝜕𝜒(𝑛)𝐸
= 1
|| ⃗̂𝐸𝑚𝑒𝑎𝑠||2

lim
𝜀→0

[
|| ⃗̂𝐸𝑚𝑒𝑎𝑠 − LE (𝜒(𝑛−1)𝐸 + 𝜀𝑑(𝑛)𝐸,𝐵𝐼) ||2 − || ⃗̂𝐸𝑚𝑒𝑎𝑠 − LE𝜒(𝑛−1)𝐸 ||2

𝜀 ] , (B.27)

where 𝜀 is a real number, 𝑑(𝑛)𝐸,𝐵𝐼 is the contribution of 𝐸𝑟𝑟(𝑛)𝐸,𝐵𝐼 to the update direction 𝑑(𝑛)𝐸 in (B.2). Fol
lowing the same argument as in Section B.1.1, equation (B.27) reduces to

𝜕𝐸𝑟𝑟(𝑛)𝐸,𝐵𝐼

𝜕𝜒(𝑛)𝐸
=
−2Re < L†E𝑟

(𝑛−1)
𝐸 , 𝑑(𝑛)𝐸,𝐵𝐼 >

|| ⃗̂𝐸𝑚𝑒𝑎𝑠||2
, (B.28)

To minimize equation (B.9), the inner product of L†E𝑟
(𝑛−1)
𝐸 and 𝑑(𝑛)𝐸,𝐵𝐼 is to be maximized. Now, L

†
E𝑟
(𝑛−1)
𝐸

and 𝑑(𝑛)𝐸,𝐵𝐼 are set parallel, to result in
𝑑(𝑛)𝐸,𝐵𝐼 = L†E𝑟

(𝑛−1)
𝐸 . (B.29)

The minimization by means of a Fréchet derivative with respect to the electromagnetic contrast of the
second term in (B.26) is written as,

𝜕𝐸𝑟𝑟(𝑛)𝐶𝐺

𝜕𝜒(𝑛)𝐸
= 𝛽𝐸
||∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2

lim
𝜀→0

[
||∇𝜒(𝑛)𝐴 × ∇(𝜒(𝑛−1)𝐸 + 𝜀𝑑(𝑛)𝐸,𝐶𝐺) ||2 − ||∇𝜒(𝑛)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2

𝜀 ] , (B.30)

where 𝑑(𝑛)𝐸,𝐶𝐺 is the contribution of 𝐸𝑟𝑟(𝑛)𝐸,𝐶𝐺 to the update direction 𝑑(𝑛)𝐸 . By expanding the brackets,
expanding the square terms and taking the limit of 𝜀 → 0, similar to the steps for the acoustic case in
equations (B.12  B.15),

𝜕𝐸𝑟𝑟(𝑛)𝐸,𝐶𝐺

𝜕𝜒(𝑛)𝐸
=
2𝛽𝐸Re < ∇𝜒(𝑛−1)𝐸 × ∇𝑑(𝑛)𝐸,𝐶𝐺 , ∇𝜒(𝑛)𝐴 × ∇𝜒(𝑛−1)𝐸 >

||∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2
(B.31)

= 2𝛽𝐸Re < �⃗�(𝑛) × ∇𝑑(𝑛), �⃗�(𝑛) >
||�⃗�(𝑛−1)||2

, (B.32)
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is obtained. In (B.32) 𝑑(𝑛) = 𝑑(𝑛)𝐸,𝐶𝐺, �⃗�(𝑛) = ∇𝜒(𝑛)𝐴 , �⃗�(𝑛) = ∇𝜒(𝑛)𝐴 × ∇𝜒(𝑛−1)𝐸 and �⃗�(𝑛−1) = ∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸
are used for simplification of the notation. Next, equation (B.32) is written in the integral form, and a
circular shift is applied to the triple product inside of the integral, 𝐴 ⋅ (�⃗� × 𝐶) = �⃗� ⋅ (𝐶 ×𝐴). After that the
vector calculus identity (∇𝜙) × 𝐴 = ∇ × (𝜙𝐴) − 𝜙(∇ × 𝐴) is used to result in,

𝜕𝐸𝑟𝑟(𝑛)𝐸,𝐶𝐺

𝜕𝜒(𝑛)𝐸
= 2𝛽𝐸
||�⃗�(𝑛−1)||2

Re∫
𝑉
(∇𝑑(𝑛) × �⃗�(𝑛)∗) ⋅ �⃗�(𝑛)𝑑𝑉 (B.33)

= 2𝛽𝐸
||�⃗�(𝑛−1)||2

Re∫
𝑉
(∇ × (𝑑(𝑛)�⃗�(𝑛)∗)) ⋅ �⃗�(𝑛) − 𝑑(𝑛) (∇ × �⃗�(𝑛)∗) ⋅ �⃗�(𝑛)𝑑𝑉. (B.34)

Now on the first term in equation (B.34) the vector calculus identity ∇ ⋅ (𝐴× �⃗�) = (∇×𝐴) ⋅ �⃗� − (∇× �⃗�) ⋅ 𝐴
and subsequently Gauss’ theorem is applied to the first term,

𝜕𝐸𝑟𝑟(𝑛)𝐸,𝐶𝐺

𝜕𝜒(𝑛)𝐸
= 2𝛽𝐸
||�⃗�(𝑛−1)||2

Re∫
𝑉
∇⋅(𝑑(𝑛)�⃗�(𝑛)∗×�⃗�(𝑛))+(∇×�⃗�(𝑛))⋅𝑑(𝑛)�⃗�(𝑛)∗−𝑑(𝑛) (∇×�⃗�(𝑛)∗)⋅�⃗�(𝑛)𝑑𝑉 (B.35)

= 2𝛽𝐸
||�⃗�(𝑛−1)||2

Re[∫
𝜕𝑉
𝑑(𝑛)�⃗�(𝑛)∗×�⃗�(𝑛)𝑑𝑆+∫

𝑉
𝑑(𝑛)(∇×�⃗�(𝑛))⋅�⃗�(𝑛)∗−𝑑(𝑛) (∇×�⃗�(𝑛)∗)⋅�⃗�(𝑛)∗𝑑𝑉] . (B.36)

Analogous to the acoustic derivation, all the terms within the surface integral consist of contrasts, which
are assumed to be zero on the boundary. This term therefore vanishes. The remaining part reduces,
using the vector calculus identity ∇ ⋅ (𝐴 × �⃗�) = (∇ × 𝐴) ⋅ �⃗� − (∇ × �⃗�) ⋅ 𝐴, to

𝜕𝐸𝑟𝑟(𝑛)𝐸,𝐶𝐺

𝜕𝜒(𝑛)𝐸
=
−2𝛽𝐸Re∫𝑉 𝑑(𝑛)∇ ⋅ (�⃗�(𝑛)∗ × �⃗�(𝑛)) 𝑑𝑉

||�⃗�(𝑛−1)||2
. (B.37)

To minimize (B.37), 𝑑(𝑛) and ∇ ⋅ (�⃗�(𝑛) × �⃗�(𝑛)∗) are set parallel to obtain,

𝑑(𝑛)𝐸,𝐶𝐺 = ∇ ⋅ [(∇𝜒(𝑛)𝐴 × ∇𝜒(𝑛−1)𝐸 ) × ∇𝜒(𝑛)∗𝐴 ] (B.38)

= ∇ ⋅ [∇𝜒(𝑛)∗𝐴 × (∇𝜒(𝑛−1)𝐸 × ∇𝜒(𝑛)𝐴 )] . (B.39)

So in total, the update direction for the electromagnetic contrast is given by

𝑑(𝑛)𝐸 = 𝑑(𝑛)𝐸,𝐵𝐼 + 𝑑(𝑛)𝐸,𝐶𝐺 = L†E𝑟
(𝑛−1)
𝐸 + ∇ ⋅ [∇𝜒(𝑛)∗𝐴 × (∇𝜒(𝑛−1)𝐸 × ∇𝜒(𝑛)𝐴 )] . (B.40)

Update amplitude
To find the update amplitude of the electromagnetic contrast, 𝛼(𝑛)𝐸 in equation (B.2), a similar deriva
tion as used in the acoustic case is followed. The error function (B.26) is rewritten and subsequently
minimized with respect to 𝛼(𝑛)𝐸 . Firstly, equation (B.2) is plugged into the error function, to obtain

𝐸𝑟𝑟(𝑛)𝐸 =
|| ⃗̂𝐸𝑚𝑒𝑎𝑠 − LE (𝜒(𝑛−1)𝐸 + 𝛼(𝑛)𝐸 𝑑(𝑛)𝐸 ) ||2

|| ⃗̂𝐸𝑚𝑒𝑎𝑠||2
+ 𝛽𝐸

||∇𝜒(𝑛)𝐴 × ∇(𝜒(𝑛−1)𝐸 + 𝛼(𝑛)𝐸 𝑑(𝑛)𝐸 ) ||2

||∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2
. (B.41)

Next, by using the residual in (B.4) and expanding the brackets and square terms equation (B.41)
becomes

𝐸𝑟𝑟(𝑛)𝐸 = ||𝑟(𝑛−1)𝐸 ||2 + 𝛼(𝑛)2𝐸 ||LE𝑑(𝑛)𝐸 ||2 − 2𝛼(𝑛)𝐸 Re < 𝑟(𝑛−1)𝐸 ,LE𝑑(𝑛)𝐸 >
|| ⃗̂𝐸𝑚𝑒𝑎𝑠||2

+ (B.42)

𝛽𝐸
||∇𝜒(𝑛)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2+𝛼(𝑛)2𝐸 ||∇𝜒(𝑛)𝐴 ×∇𝑑(𝑛)𝐸 ||2+2𝛼(𝑛)𝐸 Re<∇𝜒(𝑛)𝐴 ×∇𝜒(𝑛−1)𝐸 ,∇𝜒(𝑛)𝐴 ×∇𝑑(𝑛)𝐸 >

||∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2
.
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Now, the error (B.42) is minimized with respect to 𝛼(𝑛)𝐸 ,

𝜕𝐸𝑟𝑟(𝑛)𝐸

𝜕𝛼(𝑛)𝐸
= 2𝛼(𝑛)𝐸 ||LE𝑑(𝑛)𝐸 ||2 − 2Re < 𝑟(𝑛−1)𝐸 ,LE𝑑(𝑛)𝐸 >

|| ⃗̂𝐸𝑚𝑒𝑎𝑠||2
+

𝛽𝐸
2𝛼(𝑛)𝐸 ||∇𝜒(𝑛)𝐴 × ∇𝑑(𝑛)𝐸 ||2 + 2Re < ∇𝜒(𝑛)𝐴 × ∇𝜒(𝑛−1)𝐸 , ∇𝜒(𝑛)𝐴 × ∇𝑑(𝑛)𝐸 >

||∇𝜒(𝑛−1)𝐴 × ∇𝜒(𝑛−1)𝐸 ||2
= 0. (B.43)

Reordering the terms, 𝛼(𝑛)𝐸 is found to be

𝛼(𝑛)𝐸 =Re<𝑟
(𝑛−1)
𝐸 ,LE𝑑(𝑛)𝐸 >||∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2−𝛽𝐸Re<∇𝜒(𝑛)𝐴 ×∇𝜒(𝑛−1)𝐸 ,∇𝜒(𝑛)𝐴 ×∇𝑑(𝑛)𝐸 >|| ⃗̂𝐸𝑚𝑒𝑎𝑠||2

||LE𝑑(𝑛)𝐸 ||2||∇𝜒(𝑛−1)𝐴 ×∇𝜒(𝑛−1)𝐸 ||2+𝛽𝐸||∇𝜒(𝑛)𝐴 ×∇𝑑(𝑛)𝐸 ||2|| ⃗̂𝐸𝑚𝑒𝑎𝑠||2
. (B.44)

B.2. Gradient difference approach
This section holds the derivation of the update direction and amplitude, when using the GD constraint.
In the developed algorithm, the acoustic contrast will be updated first, followed by the electromagnetic
contrast. Therefore, the electromagnetic derivation will follow after the acoustic derivation of the update
parameters.

B.2.1. Acoustic field
The error function to be minimized when using the difference in normalized contrast gradients as the
structural constraint at the 𝑛th iteration is

𝐸𝑟𝑟(𝑛)𝐴 = 𝐸𝑟𝑟(𝑛)𝐴, 𝐵𝐼 + 𝐸𝑟𝑟(𝑛)𝐴,𝐺𝐷 =
||�̂�𝑚𝑒𝑎𝑠 − LA𝜒(𝑛)𝐴 ||2

||�̂�𝑚𝑒𝑎𝑠||2 + 𝛽𝐴||∇𝜒
(𝑛)
𝐴 − ∇𝜒(𝑛−1)𝐸 ||2, (B.45)

where 𝐸𝑟𝑟(𝑛)𝐴,𝐺𝐷 is the contribution to the total error due to the joint structural constraint by the difference
in contrast gradients. The location dependencies of �̂�𝑚𝑒𝑎𝑠, 𝜒𝐴 and 𝜒𝐸 are left out for simplicity. Note
that in the 𝐸𝑟𝑟(𝑛)𝐴,𝐺𝐷term, the electromagnetic contrast of the (𝑛 −1)th iteration is used, as the acoustic
contrast is updated before the electromagnetic contrast. In (B.45), 𝜒(𝑛)𝐴 and 𝜒(𝑛)𝐸 are the normalized
contrasts of the acoustic and electromagnetic field at the 𝑛th iteration, and are defined as

𝜒(𝑛)𝐴 = 𝜒(𝑛)𝐴
Max|Re(𝜒𝐴)|

= 𝜒(𝑛)𝐴

𝜒(𝑛)𝐴,𝑀𝑎𝑥
, (B.46)

𝜒(𝑛)𝐸 = 𝜒(𝑛)𝐸
Max|Re(𝜒𝐸)|

= 𝜒(𝑛)𝐸

𝜒(𝑛)𝐸,𝑀𝑎𝑥
. (B.47)

Update direction
The steepest negative direction of error function (B.45) is found using a Fréchet derivative. The update
direction for the term 𝐸𝑟𝑟(𝑛)𝐴,𝐵𝐼 is identical to the earlier derivation with the result given in equation (B.10).
The Fréchet derivative of the second term on the righthand side in (B.45) is given by

𝜕𝐸𝑟𝑟(𝑛)𝐺𝐷

𝜕𝜒(𝑛)𝐴
= 𝛽𝐴 lim𝜀→0

1
𝜀 [||∇ (

𝜒(𝑛−1)𝐴 + 𝜀𝑑(𝑛)𝐴,𝐺𝐷

𝜒(𝑛−1)𝐴,𝑀𝑎𝑥
) − ∇𝜒(𝑛−1)𝐸 ||2 − ||∇𝜒(𝑛−1)𝐴 − ∇𝜒(𝑛−1)𝐸 ||2] , (B.48)

where 𝜀 is a small, real number, 𝑑(𝑛)𝐴,𝐺𝐷 is the contribution of 𝐸𝑟𝑟(𝑛)𝐴,𝐺𝐷 to the update direction 𝑑(𝑛)𝐴 in (B.1)
and 𝜒(𝑛−1)𝐴,𝑀𝑎𝑥 is the maximum of the absolute value of the real part of the acoustic contrast at the 𝑛th
iteration. By expanding the brackets, expanding the square terms and taking the limit of 𝜀 → 0, equation
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(B.48) is reduced to

𝜕𝐸𝑟𝑟(𝑛)𝐴,𝐺𝐷

𝜕𝜒(𝑛)𝐴
= 𝛽𝐴 lim𝜀→0

1
𝜀 [||∇𝜒

(𝑛−1)
𝐴 − ∇𝜒(𝑛−1)𝐸 + 𝜀

𝜒(𝑛−1)𝐴,𝑀𝑎𝑥
∇𝑑(𝑛)𝐴,𝐺𝐷||2 − ||∇𝜒

(𝑛−1)
𝐴 − ∇𝜒(𝑛−1)𝐸 ||2] (B.49)

= 𝛽𝐴 lim𝜀→0 [
𝜀

(𝜒(𝑛−1)𝐴,𝑀𝑎𝑥)
2 ||∇𝑑

(𝑛)
𝐴,𝐺𝐷||2 −

2
𝜒(𝑛−1)𝐴,𝑀𝑎𝑥

Re < ∇𝜒(𝑛−1)𝐸 − ∇𝜒(𝑛−1)𝐴 , ∇𝑑(𝑛)𝐴,𝐺𝐷 >] (B.50)

= − 2𝛽𝐴
𝜒(𝑛−1)𝐴,𝑀𝑎𝑥

Re < ∇(𝜒(𝑛−1)𝐸 − 𝜒(𝑛−1)𝐴 ), ∇𝑑(𝑛)𝐴,𝐺𝐷 > . (B.51)

Since the goal is to find 𝑑𝐴,𝐺𝐷, and the gradient of it, the inner product of the discrete gradients requires
some further inspection. The vectors within the inner product in (B.51) have a dimension of 2 x 𝑁𝑥 x 𝑁𝑦
with 𝑁𝑥 and 𝑁𝑦 the number of discrete steps of the domain in the 𝑥 and 𝑦direction respectively. This
inner product can be rewritten into the sum of two (𝑁𝑥,𝑁𝑦)dimensional inner products as follows

< ∇𝑎, ∇𝑑 >=< 𝜕𝑎
𝜕𝑥 ,

𝜕𝑑
𝜕𝑥 > + <

𝜕𝑎
𝜕𝑦 ,

𝜕𝑑
𝜕𝑦 >, (B.52)

where the notation 𝑎 = 𝜒(𝑛−1)𝐸 − 𝜒(𝑛−1)𝐴 and 𝑑 = 𝑑(𝑛)𝐴,𝐺𝐷 is used. In this thesis, the central difference is
used for the discrete differentials. The first term in (B.52) is therefore written in discrete form as

1
2Δ𝑥<𝑎𝑖+1,𝑗−𝑎𝑖−1,𝑗 , 𝑑𝑖+1,𝑗−𝑑𝑖−1,𝑗>=

1
2Δ𝑥[<𝑎𝑖+1,𝑗−𝑎𝑖−1,𝑗 , 𝑑𝑖+1,𝑗> − <𝑎𝑖+1,𝑗−𝑎𝑖−1,𝑗 , 𝑑𝑖−1,𝑗>] , (B.53)

where Δ𝑥 is the spatial spacing of the domain, 𝑖 the index for the 𝑥direction and 𝑗 the index for the
𝑦direction. Now when disregarding the first two and the last two rows the vectors, the two terms on
the righthand side of (B.53) can be recombined to yield

1
2Δ𝑥 [< 2𝑎𝑖,𝑗 − 𝑎𝑖−2,𝑗 − 𝑎𝑖+2,𝑗 , 𝑑𝑖,𝑗 >] . (B.54)

The same procedure can be done for the derivative in the 𝑦direction, to give
1
2Δ𝑥 [< 2𝑎𝑖,𝑗 − 𝑎𝑖,𝑗−2 − 𝑎𝑖,𝑗+2, 𝑑𝑖,𝑗 >] . (B.55)

Summing (B.54) and (B.55), not including the outer two rows and columns of the vectors, the final
discrete inner product is obtained

1
2Δ𝑥 [< 4𝑎𝑖,𝑗 − 𝑎𝑖−2,𝑗 − 𝑎𝑖+2,𝑗 − 𝑎𝑖,𝑗−2 − 𝑎𝑖,𝑗+2, 𝑑𝑖,𝑗 >], (B.56)

where the left side of the inner product can be recognized as the discrete negative Laplacian. Therefore
(B.51) can be rewritten as

𝜕𝐸𝑟𝑟(𝑛)𝐴,𝐺𝐷

𝜕𝜒(𝑛)𝐴
= − 2𝛽𝐴

𝜒(𝑛−1)𝐴,𝑀𝑎𝑥
Re < ∇2 (𝜒(𝑛−1)𝐴 − 𝜒(𝑛−1)𝐸 ) , 𝑑(𝑛)𝐴,𝐺𝐷 > . (B.57)

To minimize this result, ∇2(𝜒(𝑛−1)𝐴 − 𝜒(𝑛−1)𝐸 )∗ should be parallel to 𝑑(𝑛)𝐴,𝐺𝐷, to give1

𝑑(𝑛)𝐴,𝐺𝐷 = ∇2 (𝜒
(𝑛−1)
𝐴 − 𝜒(𝑛−1)𝐸 )

∗
. (B.58)

In total, the update direction for the acoustic contrast when using the difference method is

𝑑(𝑛)𝐴 = 𝑑(𝑛)𝐴,𝐵𝐼 + 𝑑(𝑛)𝐴,𝐺𝐷 = L†A𝑟
(𝑛−1)
𝐴 + ∇2 (𝜒(𝑛−1)𝐴 − 𝜒(𝑛−1)𝐸 )

∗
. (B.59)

1Inspection of the simulated 𝑑(𝑛)𝐴,𝐺𝐷 has shown an extra minus sign is required in front of equation (B.58), for the update direction
to be correct. It is unclear whether there exists a flaw in the derivation, or in the implemented code.
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Update amplitude
To find the update amplitude of the acoustic contrast, 𝛼(𝑛)𝐴 in equation (B.1), error function (B.45) is
minimized with respect to 𝛼(𝑛)𝐴 . In order to do this, the error function first needs to be rewritten, starting
by plugging in equation (B.1), to obtain

𝐸𝑟𝑟(𝑛)𝐴 =
||�̂�𝑚𝑒𝑎𝑠 − LA (𝜒(𝑛−1)𝐴 + 𝛼(𝑛)𝐴 𝑑(𝑛)𝐴 ) ||2

||�̂�𝑚𝑒𝑎𝑠||2 + 𝛽𝐴||∇ (
𝜒(𝑛−1)𝐴 + 𝛼(𝑛)𝐴 𝑑(𝑛)𝐴

𝜒(𝑛−1)𝐴,𝑀𝑎𝑥
) − ∇𝜒(𝑛−1)𝐸 ||2. (B.60)

Next, by expanding the brackets and square terms and using the residual in (B.3), equation (B.60)
becomes

𝐸𝑟𝑟(𝑛)𝐴 = ||𝑟(𝑛−1)𝐴 ||2 + 𝛼(𝑛)2𝐴 ||LA𝑑(𝑛)𝐴 ||2 − 2𝛼(𝑛)𝐴 Re < 𝑟(𝑛−1)𝐴 ,LA𝑑(𝑛)𝐴 >
||�̂�𝑚𝑒𝑎𝑠||2 + (B.61)

𝛽𝐴||∇𝜒
(𝑛−1)
𝐴 −∇𝜒(𝑛−1)𝐸 ||2+ 𝛽𝐴𝛼(𝑛)2𝐴

(𝜒(𝑛−1)𝐴,𝑀𝑎𝑥)
2||∇𝑑

(𝑛)
𝐴 ||2+2𝛽𝐴𝛼

(𝑛)
𝐴

𝜒(𝑛−1)𝐴,𝑀𝑎𝑥
Re<∇𝜒(𝑛−1)𝐴 −∇𝜒(𝑛−1)𝐸 ,∇𝑑(𝑛)𝐴 >.

Now, the error (B.62) is minimized with respect to 𝛼(𝑛)𝐴 ,

𝜕𝐸𝑟𝑟(𝑛)𝐴

𝜕𝛼(𝑛)𝐴
= 2𝛼(𝑛)𝐴 ||LA𝑑(𝑛)𝐴 ||2 − 2Re < 𝑟(𝑛−1)𝐴 ,LA𝑑(𝑛)𝐴 >

||�̂�𝑚𝑒𝑎𝑠||2 +

2𝛽𝐴𝛼(𝑛)𝐴

(𝜒(𝑛−1)𝐴,𝑀𝑎𝑥)
2 ||∇𝑑

(𝑛)
𝐴 ||2 + 2𝛽𝐴

𝜒(𝑛−1)𝐴,𝑀𝑎𝑥
Re < ∇𝜒(𝑛−1)𝐴 − ∇𝜒(𝑛−1)𝐸 , ∇𝑑(𝑛)𝐴 >= 0. (B.62)

Reordering the terms, 𝛼(𝑛)𝐴 is found to be

𝛼(𝑛)𝐴 =
Re < 𝑟(𝑛−1)𝐴 ,LA𝑑(𝑛)𝐴 > − 𝛽𝐴

𝜒(𝑛−1)𝐴,𝑀𝑎𝑥
Re < ∇𝜒(𝑛−1)𝐴 − ∇𝜒(𝑛−1)𝐸 , ∇𝑑(𝑛)𝐴 > ||�̂�𝑚𝑒𝑎𝑠||2

||LA𝑑(𝑛)𝐴 ||2 + 𝛽𝐴
(𝜒(𝑛−1)𝐴,𝑀𝑎𝑥)

2 ||∇𝑑(𝑛)𝐴 ||2||�̂�𝑚𝑒𝑎𝑠||2
. (B.63)

B.2.2. Electromagnetic field
The error function for the electromagnetic contrast to be minimized when using the difference in con
trasts as the structural constraint at the 𝑛th iteration is

𝐸𝑟𝑟(𝑛)𝐸 = 𝐸𝑟𝑟(𝑛)𝐸, 𝐵𝐼 + 𝐸𝑟𝑟(𝑛)𝐸,𝐺𝐷 =
|| ⃗̂𝐸 𝑚𝑒𝑎𝑠 − LE𝜒(𝑛)𝐸 ||2

|| ⃗̂𝐸 𝑚𝑒𝑎𝑠||2
+ 𝛽𝐸||∇𝜒

(𝑛)
𝐴 − ∇𝜒(𝑛)𝐸 ||2, (B.64)

where 𝐸𝑟𝑟(𝑛)𝐸,𝐺𝐷 is the contribution to the total error due to the GD constraint for the electromagnetic
case and the location dependencies of ⃗̂𝐸 𝑚𝑒𝑎𝑠, 𝜒𝐴 and 𝜒𝐸 are left out for simplicity. Note that in the
electromagnetic case, within the 𝐸𝑟𝑟(𝑛)𝐸,𝐺𝐷term, the acoustic contrast of the 𝑛th iteration is used, since
it was updated before the electromagnetic contrast within the same iteration.

Update direction
The update direction for term 𝐸𝑟𝑟(𝑛)𝐸,𝐵𝐼 is identical to the earlier derivation with the result given in equation
(B.29). The Fréchet derivative of the second term in error function (B.64) can be written as

𝜕𝐸𝑟𝑟(𝑛)𝐸,𝐺𝐷

𝜕𝜒(𝑛)𝐸
= 𝛽𝐸 lim𝜀→0

1
𝜀 [||∇𝜒

(𝑛)
𝐴 − ∇(

𝜒(𝑛−1)𝐸 + 𝜀𝑑(𝑛)𝐸,𝐺𝐷

𝜒(𝑛−1)𝐸,𝑀𝑎𝑥
) ||2 − ||∇𝜒(𝑛)𝐴 − ∇𝜒(𝑛−1)𝐸 ||2] , (B.65)

where 𝜀 is a small, real number and 𝑑(𝑛)𝐸,𝐺𝐷 is the contribution of 𝐸𝑟𝑟(𝑛)𝐸,𝐺𝐷 to the update direction 𝑑(𝑛)𝐸 in
(B.2), and 𝜒(𝑛)𝐸,𝑀𝑎𝑥 is the maximum value of the absolute value of the real part of the electromagnetic
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contrast at the 𝑛the iteration. By expanding the brackets, expanding the square terms and taking the
limit of 𝜀 → 0, equation (B.30) is reduced to

𝜕𝐸𝑟𝑟(𝑛)𝐸,𝐺𝐷

𝜕𝜒(𝑛)𝐸
= 𝛽𝐸 lim𝜀→0

1
𝜀 [||∇𝜒

(𝑛)
𝐴 − ∇𝜒(𝑛−1)𝐸 − 𝜀

𝜒(𝑛−1)𝐸,𝑀𝑎𝑥
∇𝑑(𝑛)𝐸,𝐺𝐷||2 − ||∇𝜒

(𝑛)
𝐴 − ∇𝜒(𝑛−1)𝐸 ||2] (B.66)

= 𝛽𝐸 lim𝜀→0 [
𝜀

(𝜒(𝑛−1)𝐸,𝑀𝑎𝑥)
2 ||∇𝑑

(𝑛)
𝐸,𝐺𝐷||2 −

2
𝜒(𝑛−1)𝐸,𝑀𝑎𝑥

Re < ∇𝜒(𝑛)𝐴 − ∇𝜒(𝑛−1)𝐸 , ∇𝑑(𝑛)𝐸,𝐺𝐷 >] (B.67)

= − 2𝛽𝐸
𝜒(𝑛−1)𝐸,𝑀𝑎𝑥

Re < ∇(𝜒(𝑛)𝐴 − 𝜒(𝑛−1)𝐸 ) , ∇𝑑(𝑛)𝐸,𝐺𝐷 > . (B.68)

Following the same steps as in the acoustic case in equations (B.52  B.56), again the inner product in
equation (B.68), can be rewritten as

𝜕𝐸𝑟𝑟(𝑛)𝐸,𝐺𝐷

𝜕𝜒(𝑛)𝐸
= − 2𝛽𝐸

𝜒(𝑛−1)𝐸,𝑀𝑎𝑥
Re < −∇2 (𝜒(𝑛)𝐴 − 𝜒(𝑛−1)𝐸 ) , 𝑑(𝑛)𝐸,𝐺𝐷 > . (B.69)

To minimize this result, ∇2 (𝜒(𝑛)𝐴 − 𝜒(𝑛−1)𝐸 )
∗
should be parallel to ∇𝑑(𝑛)𝐸,𝐺𝐷, to give

𝑑(𝑛)𝐸,𝐺𝐷 = ∇2 (𝜒
(𝑛−1)
𝐸 − 𝜒(𝑛)𝐴 )

∗
. (B.70)

In total, the update direction for the acoustic contrast when using the difference method is

𝑑(𝑛)𝐸 = 𝑑(𝑛)𝐸,𝐵𝐼 + 𝑑(𝑛)𝐸,𝐺𝐷 = L†E𝑟
(𝑛−1)
𝐸 + ∇2 (𝜒(𝑛−1)𝐸 − 𝜒(𝑛)𝐴 )

∗
. (B.71)

Update amplitude
To find the update amplitude of the electromagnetic contrast, 𝛼(𝑛)𝐸 in equation (B.2), once again error
function (B.45) is minimized with respect to 𝛼(𝑛)𝐸 . To start, the error function first is rewritten by plugging
in equation (B.2), to obtain

𝐸𝑟𝑟(𝑛)𝐸 =
|| ⃗̂𝐸 𝑚𝑒𝑎𝑠 − LE (𝜒(𝑛−1)𝐸 + 𝛼(𝑛)𝐸 𝑑(𝑛)𝐸 ) ||2

|| ⃗̂𝐸 𝑚𝑒𝑎𝑠||2
+ 𝛽𝐸||∇𝜒(𝑛)𝐴 − (∇(𝜒

(𝑛−1)
𝐸 + 𝛼(𝑛)𝐸 𝑑(𝑛)𝐸 )
𝜒(𝑛−1)𝐸,𝑀𝑎𝑥

) ||2. (B.72)

Next, by expanding the brackets and square terms and using the residual in (B.4), equation (B.72)
becomes

𝐸𝑟𝑟(𝑛)𝐸 = ||𝑟(𝑛−1)𝐸 ||2 + 𝛼(𝑛)2𝐸 ||LE𝑑(𝑛)𝐸 ||2 − 2𝛼(𝑛)𝐸 Re < 𝑟(𝑛−1)𝐸 ,LE𝑑(𝑛)𝐸 >
|| ⃗̂𝐸 𝑚𝑒𝑎𝑠||2

+ (B.73)

𝛽𝐸||∇𝜒
(𝑛)
𝐴 − ∇𝜒(𝑛−1)𝐸 ||2 + 𝛽𝐸𝛼(𝑛)2𝐸

(𝜒(𝑛−1)𝐸,𝑀𝑎𝑥)
2 ||∇𝑑

(𝑛)
𝐸 ||2 − 2𝛽𝐸𝛼

(𝑛)
𝐸

𝜒(𝑛−1)𝐸,𝑀𝑎𝑥
Re < ∇𝜒(𝑛)𝐴 − ∇𝜒(𝑛−1)𝐸 , ∇𝑑(𝑛)𝐸 > .

Now, the error (B.74) is minimized with respect to 𝛼(𝑛)𝐸 ,

𝜕𝐸𝑟𝑟(𝑛)𝐸

𝜕𝛼(𝑛)𝐸
= 2𝛼(𝑛)𝐸 ||LE𝑑(𝑛)𝐸 ||2 − 2Re < 𝑟(𝑛−1)𝐸 ,LE𝑑(𝑛)𝐸 >

|| ⃗̂𝐸 𝑚𝑒𝑎𝑠||2
+

2𝛽𝐸𝛼(𝑛)𝐸

(𝜒(𝑛−1)𝐸,𝑀𝑎𝑥)
2 ||∇𝑑

(𝑛)
𝐸 ||2 − 2𝛽𝐸

𝜒(𝑛−1)𝐸,𝑀𝑎𝑥
Re < ∇𝜒(𝑛)𝐴 − ∇𝜒(𝑛−1)𝐸 , ∇𝑑(𝑛)𝐸 >= 0. (B.74)

Reordering the terms, 𝛼(𝑛)𝐸 is found to be

𝛼(𝑛)𝐸 =
Re < 𝑟(𝑛−1)𝐸 ,LE𝑑(𝑛)𝐸 > + 𝛽𝐸

𝜒(𝑛−1)𝐸,𝑀𝑎𝑥
Re < ∇𝜒(𝑛)𝐴 − ∇𝜒(𝑛−1)𝐸 , ∇𝑑(𝑛)𝐸 > || ⃗̂𝐸 𝑚𝑒𝑎𝑠||2

||LE𝑑(𝑛)𝐸 ||2 + 𝛽𝐸
(𝜒(𝑛−1)𝐸,𝑀𝑎𝑥)

2 ||∇𝑑(𝑛)𝐸 ||2|| ⃗̂𝐸 𝑚𝑒𝑎𝑠||2
. (B.75)
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