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Suppressing parametric resonance of a hyperloop vehicle using a parametric force

Jithu Paul ,* Karel N. van Dalen, Andrei B. Fărăgău, Rens J. van Leijden, Mouad Ouggaâli, and Andrei V. Metrikine
Department of Engineering Structures, Faculty of CEG, TU Delft, The Netherlands

(Received 8 November 2024; accepted 14 February 2025; published 17 March 2025)

In this paper, we study the stability of a simple model of a hyperloop vehicle resulting from the interaction
between electromagnetic and aeroelastic forces for both constant and periodically varying coefficients (i.e.,
parametric excitation). For the constant coefficients, through linear stability analysis, we analytically identify
three distinct regions for the physically significant equilibrium point. Further inspection reveals that the system
exhibits limit-cycle vibrations in one of these regions. Using the harmonic balance method, we determine the
properties of the limit cycle, thereby unraveling the frequency and amplitude that characterize the periodic
oscillations of the system’s variables. For the varying coefficients case, the stability is studied using Floquet
analysis and Hill’s determinant method. The part of the stability boundary related to parametric resonance has an
elliptical shape, while the remaining part remains unchanged. One of the major findings is that a linear parametric
force can suppress or amplify the parametric resonance induced by another parametric force depending on the
amplitude of the former. In the context of the hyperloop system, this means that parametric resonance caused
by base excitation—in other words by the linearized parametric electromagnetic force—can be suppressed
by modulating the coefficient of the aeroelastic force in the same frequency. The effectiveness is also highly
dependent on the phase difference between the modulation and the base excitation. The origin of the suppression
is attributed to the stabilizing character of the parametric aeroelastic force as revealed through energy analysis.
We provide analytical expressions for the stability boundaries and for the stability’s dependence on the phase
shift of the modulation. Finally, we emphasize that suppressing parametric resonance through an added, linear
state-dependent force with the coefficient having the same period as the original force can be achieved in other
physical systems too.

DOI: 10.1103/PhysRevE.111.034210

I. INTRODUCTION

The hyperloop is expected to revolutionize transportation,
blending the advantages of aircraft and next-generation rail.
This unique fusion yields a richer engineering landscape,
presenting an open field for research. While the aeroelastic
stability of aircraft and the wave-induced instability (related to
the flexible guideway) of conventional rail have been studied
rather extensively, the combination with magnetic levitation
employed in modern rail systems remains an open area for
exploration. In the context of a hyperloop vehicle travel-
ing within a depressurized tube, levitated electromagnetically
from a flexible beam, the potential for integrating the afore-
mentioned mechanisms (aeroelastic, electromagnetic, and
wave-induced) arises. However, whether these stability mech-
anisms complement or conflict with each other remains to
be seen. Noteworthy literature pertaining to each individual
mechanism is cited below.

It is widely recognized that when a vehicle moves along
a flexible guideway, oscillations can become unstable if its
speed exceeds a specific critical threshold [1]. Metrikine
[2] demonstrated that instability arises due the radiation of
anomalous Doppler waves, which feed back energy into the
vehicle’s vibration, surpassing that of normal Doppler waves.

*Contact author: jithupaulv@gmail.com

Identifying the critical velocity beyond which this may happen
is imperative in the design phase [3]. Paddison etal. [4] studied
the control implications of magnetically suspended vehicles
having relatively soft chassis structures.

The primary aeroelastic effects that could impact a hy-
perloop vehicle include galloping [5], fluttering, and vortex-
induced vibrations [6,7], although they overlap to some extent.
In this paper we mainly focus on galloping, which can be char-
acterized as being a low-frequency instability phenomenon of
aerodynamic nature, and it usually occurs on slender, lightly
damped structures in cross flow [8]. While studies on gallop-
ing and fluttering in railway systems exist, most listed studies
are focused on computational fluid dynamics [9].

Some notable works on Maglev (magnetically levitated)
trains that studied the beam’s reaction force, the electromag-
netic force, and the aeroelastic force, either individually or
in combination, are listed here. Wu et al. [10] studied the
suspension stability of a Maglev vehicle under steady aerody-
namic loading, which consists of lift and pitching moments.
Wang et al. [11] considered time-delay speed feedback effects
on the linear stability and dynamic behavior of the Maglev
system, and Zhang et al. extended the work by measuring
time delays from two sources, namely the gap sensor and the
accelerometer [12]. One of the early works by Cai et al. [13]
showed the stability of Maglev systems based on experimental
data, scoping calculations, and simple mathematical models.
Schneider et al. [14] introduced a model of a detailed rigid
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multibody Maglev vehicle with three sections moving along
an infinite periodically pillared elastic guideway combining
the two-dimensional heave-pitch motion of the vehicle and the
elastic bending of the guideway elements. A notable study in
this area by Yau [15] developed a computational framework
to analyze wind effects on a Maglev vehicle over flexible
guideways, using proportional-integral-derivative (PID) con-
trol and a proposed PID+LQR (linear quadratic regulator)
controller to enhance ride comfort. A detailed review of the
dynamic stability of repulsive-force Maglev systems can be
found in [16]. The combination of the two potentially desta-
bilizing forces—the beam’s reaction force (i.e., wave-induced
instability) and the electromagnetic force—was conducted by
Faragau et al. [17], who determined how stability regions for
control parameters are affected by the vehicle’s velocity. They
also identified limit cycles in a specific region of the control
parameter plane.

The present work conducts a detailed study of the interac-
tion between the electromagnetic and aeroelastic instability
mechanisms in the context of a hyperloop vehicle. One of
the key findings of the present paper is the suppression of
parametric resonance through the use of an (added) linear
parametric force. Several notable studies have explored the
suppression of parametric resonance. Yabuno et al. [18] exam-
ined electromagnetic levitation under base excitation, and they
achieved parametric resonance suppression using a pendulum
with a controller, marking one of the early contributions to this
field. The suppression of parametric resonance was achieved
as the nonlinear action of the pendulum on the main system
counteracting the effect of the resonant parametric excitation.
However, in the current work, suppression is achieved via
a different state-dependent force, with the controller play-
ing an indirect role. Inoue et al. explored the same system
with excitation on the mass, employing linear proportional-
derivative (PD) control [19]. Another well-known approach
for the suppression of parametric resonance is the redirection
of energy introduced into the system to nonlinear energy sinks
(NESs) [20]; a detailed investigation into various applications
of NESs can be found in [21]. Passive nonlinear vibro-impact
attachments can also be employed [22]. Recently, Pumhössel
introduced a novel concept for suppressing parametric reso-
nance through the use of state-dependent impulses [23,24]. In
[25], a nonlinear control law utilizing a two-frequency signal,
which interacts with the parametrically excited mode through
a subcombination resonance, is implemented to suppress the
parametric resonance.

The current paper can be divided into two major sections;
in the first part, the interaction of the electromagnetic and
aeroelastic instability mechanisms is studied for constant co-
efficients, and in the second part, the interaction is studied
for periodically varying coefficients. The paper is structured
as follows. Section I provides an Introduction, followed by
a problem statement in Sec. II. Section III presents the sta-
bility analysis for constant coefficient values, while Sec. IV
explores periodically varying coefficients, highlighting the
phenomenon of parametric resonance and its suppression.
Section V concludes the study.

FIG. 1. Model of electromagnetically suspended mass subject to
air flow. Here, Fe(t ) is the electromagnetic force and Fa (t ) is the
aeroelastic force.

II. PROBLEM STATEMENT

Figure 1 illustrates the considered model, representing a
simplified model of a hyperloop vehicle of mass m suspended
from a fixed support through the electromagnetic force, Fe.
The support may undergo an oscillation A cos(�t ) with am-
plitude A, which renders the (linearized, as shown below)
electromagnetic force a parametric one (i.e., it is proportional
to the response variables and has time-periodic coefficients).
The mass is also subject to the aeroelastic force, Fa, which
represents an additional instability mechanism. The aeroelas-
tic force has a part with a constant coefficient, and a part
with a time-periodic coefficient can be added to it; we refer to
the latter as the parametric aeroelastic force. This modulation
could be achieved using flaps or teeth as used in commercial
aircrafts. For example, it is well established that leading-edge
modifications of an aerofoil structure, such as a drooped lead-
ing edge (using flaps), can significantly alter the aeroelastic
coefficients (see Figs. 14–19 in [26]). That means, controlling
the drooping of the leading edge controls the aeroelastic force.
Another option is the introduction of teeth on the aerofoil
surface, inspired by the denticles that cover shark skin [27].
A drooped leading edge provides greater control over the
magnitude of aerodynamic coefficients; however, frequency
control is limited due to the presence of relatively large iner-
tial structures. In contrast, for the latter case, the profile and
orientation of these small teeth can be easily adjusted to meet
specific frequency requirements. It should be noted, however,
that the specific design to achieve the parametric aeroelastic
force is not a subject of the present paper.

We split the analysis into two parts: the case with constant
coefficients (no parametric excitation) and the case with pe-
riodically varying coefficients (parametric-excitation, due to
oscillations in the support and in the aeroelastic coefficient).
We will discuss the parametric-excitation case in detail in
Sec. IV, for which we need different equations of motion
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(EOMs). For now, we start from the first case, and the follow-
ing EOMs are considered: the first is Newton’s second law,
and the second is the equation for the electric current, which
includes voltage control (i.e., PD control):

mz̈(t ) = −Fe(t ) + mg + Fa(t ) = −C
I2(t )

z2(t )
+ mg + μż(t ),

(1)

μ = −1

2
ρAc

(
∂Cz

∂α

)
α=0

V, (2)

İ (t ) + z(t )

2C

(
R − 2C

ż(t )

z2(t )

)
I

= z(t )

2C
{u0 + Kp[z(t ) − z0] + Kd ż(t )}; R = u0

I0
. (3)

The system operates within the gravitational field, experi-
encing downward acceleration g due to gravity. The desired
fixed gap between the vehicle and support, denoted by z0, cor-
responds to one of the fixed points with respective steady-state
voltage u0 and current I0 (see Sec. III). The electromagnetic
force Fe(t ) between the support and the vehicle depends on
the displacement z(t ) and current I (t ) variables. The voltage
controls the electromagnet (i.e., the current) to maintain the
gap as constant as possible, with control parameters Kp and
Kd. C is a constant determined by electromagnet properties.
The destabilizing term μż in Eq. (1) represents the aeroelastic
force with constant coefficient [10], with μ being the product
of a number of constants. Here, α denotes the relative angle
between horizontal wind velocity (with magnitude V ) and the
vertical component of the vehicle velocity ż, ρ is the air den-
sity, Ac is the vehicle’s cross-sectional area experienced by the
wind, and Cz(α) = CL(α) + CD(α), where CL(α) denotes the
lift coefficient and CD(α) is the drag coefficient. For galloping
[5], a straightforward derivation of the destabilizing term μż
is given in [6]. While μ is not a constant in real cases, the
maximum oscillation amplitude of the vehicle, typically in
the millimeter range, justifies the assumption due to minimal
angle change over time.

III. STABILITY ANALYSIS FOR CONSTANT
COEFFICIENTS (NO PARAMETRIC EXCITATION)

To understand the influence of parametric excitation on the
stability of the equilibrium point (i.e., the shape of the stable
zones), we first analyze the stability of the (relevant) equilib-
rium point without parametric excitation. Thus, we analyze
the stability of the linearized system, and we explore limit
cycles for the case of A = 0 and the aeroelastic force having a
constant coefficient.

A. Linear stability analysis

This section undertakes linear stability analysis. The ap-
proach involves linearizing Eqs. (1) and (3), and deriving
eigenvalues of the Jacobian matrix obtained from the lin-
earized equations set at the desired fixed point. Initially, fixed
points are determined by considering equilibrium or steady
states. The equilibrium states, where all time derivatives are
zero, are described by the following set of algebraic equations

[obtained from Eqs. (1) and (3)]:

C
I2
0

z2
0

= mg,

z

2C

u0

I0
I = z

2C
[u0 + Kp(z − z0)]. (4)

Solving Eq. (4) results in two fixed points:

za
ss = z0; Ia

ss = I0,

zb
ss = −z0(u0 − Kpz0)

u0 + Kpz0
; Ib

ss = I0(u0 − Kpz0)

u0 + Kpz0
. (5)

For the second fixed point, either zb
ss or Ib

ss must be negative,
rendering it a nonphysical equilibrium point, especially for
systems like a hyperloop. Hence, for subsequent analyses,
only the fixed point za

ss = z0; Ia
ss = I0 is considered (unless

mentioned otherwise).
The next step is to derive the linearized equations. Assum-

ing perturbations around the variables as z = z0 + �tr (t ) and
I (t ) = I0 + Itr (t ) (the subscript “tr” denotes transient), and
applying Taylor series expansions up to and including first
order, yields

m�̈tr = −2C
I0

z2
0

Itr + 2C
I2
0

z3
0

ztr + μ�̇tr,

İtr = − z0R

2C
Itr + z0Kp

2C
�tr +

(
Kdz2

0 + 2CI0
)

2z0C
�̇tr. (6)

The Jacobian of Eq. (6) at the fixed point a is defined when
Eq. (6) is written in state-space form:

d

dt

⎛
⎝�tr (t )

�̇tr (t )

Itr (t )

⎞
⎠ =

⎛
⎜⎜⎝

0 1 0
2CI2

0

mz3
0

μ

m − 2CI0

mz2
0

Kpz0

2C
Kdz0
2C + I0

z0
− u0z0

2CI0

⎞
⎟⎟⎠

⎛
⎝�tr (t )

�̇tr (t )
Itr (t )

⎞
⎠. (7)

The characteristic polynomial of the Jacobian given in Eq. (7)
is

λ3 −
(

u0z0

2CI0
− μ

m

)
λ2 −

(
KdI0

mz0
− μu0z0

2CI0m

)
λ

+ I0(u0 − Kpz0)

mz2
0

= 0. (8)

The eigenvalues for each of the fixed points are shown in
Fig. 2 (i.e., also for fixed point b). Stability transitions can
be obtained from the zero crossings of the real parts of the
eigenvalues.

Utilizing the properties of cubic polynomials, the stability
boundaries related to the first equilibrium point can be deter-
mined. The discriminant of the polynomial suggests that the
roots contain one real and two complex conjugates (not shown
here). A stability transition requires at least one eigenvalue’s
real part to be zero (sign change), suggesting two possibilities:
the real part of the complex conjugates is zero, or the real root
is zero.

In the first scenario, for a polynomial λ3 + aλ2 + bλ + c =
0 to have one real root and two purely imaginary roots, the
relation ab = −c is required, resulting in the first stability
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FIG. 2. The eigenvalues for each of the fixed points are shown here. The upper and lower panels represent first and second fixed
points, respectively. The small circles in the lower panels represent singularities. Here, Kd = 10 000 (V s/m),C = 0.05 (N m2/A2), z0 =
0.015 (m), m = 7650 (kg).

transition which is a straight line in the Kp-Kd plane (see
Fig. 3):

Kp = u0

z0
+ 2CI0μ

2u0z3
0 − mμu2

0z4
0

4C2I3
0 mz0

+ 2CI2
0 mu0z2

0 − 4C2I3
0 μz0

4C2I3
0 mz0

Kd. (9)

In the second scenario, the value c will be zero since there will
be only two nonzero roots, leading to the following condition,

FIG. 3. Stability regions for the first fixed point in the Kp-Kd

plane. Here, C = 0.05 (N m2/A2), z0 = 0.015 (m), m = 7650 (kg).

which is a vertical line in Fig. 3:

Kp = u0

z0
. (10)

The requirement for unconditional instability can be deter-
mined when the slope of Eq. (9) approaches infinity and
coincides with the left vertical line in Fig. 3:

μ = mu0z0

2CI0
. (11)

In the limit where there is no influence of aeroelastic force
(μ = 0), the stability boundary [see Eq. (9)] reduces to

Kp = u0

z0
+ u0z0

2CI0
Kd, (12)

and the natural frequency of the system at the right boundary,
obtained from the purely imaginary eigenvalues, is given (for
later use) as

ω0=
√

KdI0

mz0
. (13)

B. Determination of a limit cycle for the case μ = 0

The analysis now shifts its focus to the nonlinear dynamics
aspect. It is evident from the stability analysis provided ear-
lier that when the real part of the complex-conjugate roots
equals zero, the corresponding solution is a harmonic mo-
tion, typically indicating the presence of a limit cycle or
periodic solution in the vicinity. This bears a resemblance to
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the supercritical Hopf bifurcation, albeit typically defined for
single-degree-of-freedom systems. We employ the harmonic
balance method [28] for the determination of the limit cycle.
Notably, the harmonic balance analysis differs between cases
with and without aeroelastic force, hence they are treated
separately in two sections.

Here, we delve into the scenario without aeroelastic force.
Upon careful examination of the EOMs given in Eqs. (1) and
(3) for μ = 0, two key observations emerge. First, the system
is autonomous, allowing us to arbitrarily choose the time
origin as follows: z(0) = 0. Second, there exists no first-order
time derivative for either variable z(t ) or I (t ) in Eq. (1), ensur-
ing a zero phase shift between them. For instance, selecting
z = z0 + a cos(ωt ) and I = I0 + b cos(ωt ) + c sin(ωt ) would
render c as zero [shown in Eq. (32) when μ = 0], as there
would only be one sine term upon substituting these assump-
tions into Eq. (1). However, the scenario changes entirely
when μ �= 0, introducing a slightly more intricate derivation
process, elaborated upon in the subsequent section.

Utilizing harmonic balance, we examine the presence of a
limit cycle, truncating after the first harmonic. Let us assume
that

z = z0 + a cos(ωt ), (14)

I = I0 + b cos(ωt ). (15)

Substituting Eqs. (14) and (15) into (1) and (3) and rearrang-
ing results in one equation of the following form:

M0 + M1 sin (ωt ) + N1 cos (ωt ) = 0. (16)

Equating the coefficients M1 and N1 of each harmonic to zero
gives a system of three algebraic equations in terms of the
unknowns a, b, ω:

8aCI2
0 − 8bCI0z0 + 3a3mω2z0 + 4amω2z3

0 = 0,

3a3I0Kp − 3a2bu0 + 4aI0Kpz2
0 − 4bu0z2

0 = 0,

8aCI0 + a3Kd − 8bCz0 + 4aKdz2
0 = 0. (17)

This gives

a =
2
√

2CI0Kpz0 − 2CI0u0 − Kdu0z2
0√

Kd
√

u0

, (18)

b =
2I0Kp

√
−2CI0u0 + 2CI0Kpz0 − Kdu0z2

0√
Kdu3/2

0

, (19)

ω = I0

√
Kd

√
C(Kpz0 − u0)

√
mz0

√
3CI0Kpz0 − 3CI0u0 − Kdu0z2

0

. (20)

Equations (18)–(20) complete the identification of the limit
cycle for μ = 0.

Results obtained from numerical integration and those
from harmonic balance are compared in Fig. 4. A small dif-
ference can be observed, which could have been anticipated
due to the neglect of the higher harmonics in the analytical
result. For the existence of a limit cycle, a, b, ω � 0 must hold

FIG. 4. Comparison of numerical integration results and har-
monic balance prediction for a limit cycle for μ = 0. Here, Kp =
27 000 (V/m), Kd = 10 000 (V s/m), C = 0.05 (N m2/A2), z0 =
0.015 (m), m = 7650 (kg).

true; based on that condition, exactly the right boundary of the
stable domain [Eq. (12)] is obtained. In other words, the limit
cycle is born the moment that the fixed point becomes unstable
(depicted by the inclined red line in Fig. 3).

From Eq. (18), it is clear that a is dependent on many
parameters and, at the same time, the oscillations are limited
up to a � z0; otherwise, the mass hits the boundary. The
geometrical constraint a = z0 leads to the following line in
the Kp-Kd plane:

Kp = CI2
0 Kdu0 − 3CI0mu0z3

0 − Kdmu0z5
0

CI2
0 Kdz0 − 3CI0mz4

0

. (21)

Beyond this line, the limit cycle can no longer exist. Similarly,
there is a physical constraint on the current oscillation; the
current is assumed to be non-negative (for real systems like
the hyperloop), i.e., b � I0. The limit b = I0 leads to

Kd = 8CI0K2
p (Kpz0 − u0)

u3
0 + 4K2

p u0z2
0

. (22)

Furthermore, it is noteworthy that when b → I0, the numer-
ical integration can exhibit inaccuracies as the current variable
approaches zero at many instances, potentially leading to sub-
stantial asymmetry in z(t ) or I (t ) around the respective mean
position.

While not exploring the second fixed point, it is acknowl-
edged that for the second fixed point, a distinct stable region
emerges (as well as a region with a limit cycle) for negative
Kp and Kd. We refrain from delving into these details as they
are not of immediate physical relevance. The stable region is
evident from the real and imaginary eigenvalue plots provided
in Fig. 2.

C. Simplification of EOMs

When including the aeroelastic force, obtaining an ana-
lytical expression for the limit cycle becomes cumbersome
due to additional terms involved in the calculation (due to
the aeroelastic term in the EOMs), leading to a phase shift.
It is beneficial to simplify the EOMs (without compromising
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accuracy). One of the EOMs provided in Eq. (1) or Eq. (3)
should be linearized, but the crucial question then is, which
EOM should be linearized?

Let us again consider the case μ = 0. From the perspec-
tive of harmonic balance, it becomes evident that linearizing
Eq. (3) is not advisable. The reason is that we require three
equations to solve for the three variables a, b, and ω, and
at least two of these equations must be nonlinear to obtain
nonzero solutions. Equation (1) provides only one algebraic
equation as there are no first-order derivatives for μ = 0, and
it is always homogeneous. Linearizing Eq. (3) would yield
two linear algebraic equations, which are also homogeneous,
resulting in only zero solutions. Thus, the only viable option is
to linearize Eq. (1) while keeping Eq. (3) nonlinear. The sim-
plification thus proceeds as follows. After linearizing Eq. (1),
we obtain

mz̈(t ) + 2CI0I (t )

z2
0

− 2CI2
0 z(t )

z3
0

− μż(t ) = 0. (23)

We can then eliminate I (t ) by solving for I (t ) from Eq. (23)
and substitute it into Eq. (3). The simplified, single-variable
EOM appears as follows:

− 2CI2
0 (u0 − Kpz0)z3(t ) + 2CI0z3

0 ż(t )[μż(t ) − mz̈(t )]

+ z0z2(t )
[
2CI2

0 (u0 − Kpz0)

+ (
2CI2

0 Kd − μu0z2
0

)
ż(t ) + mu0z2

0 z̈(t )
]

+ 2CI0z3
0z(t )[−μz̈(t ) + m˙̇ ˙z (t )] = 0. (24)

It can be verified that the simplified EOM provided in Eq. (24)
yields an accurate prediction of the limit cycle (close to 1%
error) compared to that obtained from the full nonlinear set
of Eqs. (1) and (3). Even though the EOM is related to a 1.5
DOF system, its behavior demonstrates an analogy with the
supercritical Hopf bifurcation in the following manner: Linear
stability analysis indicates that fixed point a transitions from
stable to unstable at the red boundary in Fig. 2 with an increase
in Kp for constant Kd. Harmonic balance analysis reveals the
existence of a limit cycle on the unstable side of the fixed
point, characteristic of a supercritical Hopf bifurcation, now
obtained from a single-variable EOM. The stability of the
limit cycle is confirmed using Floquet analysis numerically
[29].

D. Determination of a limit cycle for the case μ �= 0

In this section, the harmonic balance method is used to
determine the limit cycle for the equilibrium point of the
system that is subject to the aeroelastic force. As mentioned
before, there will be a phase shift between variables. We use
the simplified EOM [Eq. (24)] with an aeroelastic term (the
method is similar to that in Sec. III B). The major advantage
of using the simplified EOM given in Eq. (24) is that, if we as-
sume z = z0 + a cos(ωt ) and I = I0 + b cos(ωt ) + c sin(ωt ),
the simplified EOM allows the calculation of a and ω irre-
spective of b and c since the EOM is independent of I (t );

this gives an elegant solution procedure. Substituting z(t ) =
z0 + a cos(ωt ) into Eq. (24) gives a and ω as follows:

ω =

√√√√ √
Q2

1 − Q2

6CI0m2u0z4
0

+ Q3, (25)

a = 1√
2CI2

0 Kd − μu0z2
0

⎛
⎜⎜⎝

√√√√4
√

Q2
1 − Q2

3mu0z0
+ Q4

⎞
⎟⎟⎠, (26)

where

Q1 = −2C2I3
0 Kdμz2

0 − 6C2I3
0 Kpmz2

0 + 6C2I3
0 mu0z0

− 2CI2
0 Kdmu0z3

0 + CI0μ
2u0z4

0 + mμu2
0z5

0, (27)

Q2 = 12CI0m2u0z4
0

(
4C2I4

0 KdKpz0 − 4C2I4
0 Kdu0

− 2CI2
0 Kpμu0z3

0 + 2CI2
0 μu2

0z2
0

)
, (28)

Q3 = CI2
0 Kdμ

3m2u0z2
0

+CI2
0 Kp

mu0z2
0

− CI2
0

mz3
0

− μu0z0

6CI0m
+ I0Kd

3mz0
− μ2

6m2
,

(29)

Q4 = 8C2I3
0 Kdμz0

3mu0
+ 8C2I3

0 Kpz0

u0
− 8C2I3

0

− 16

3
CI2

0 Kdz2
0 − 4CI0μ

2z3
0

3m
+ 8

3
μu0z4

0. (30)

Now that the variables a and ω are known, an expression
for I (t ) can be derived in a straightforward manner. Ap-
plying harmonic balance to Eq. (23) by substituting I (t ) =
I0 + b cos(ωt ) + c sin(ωt ) as well as the expression for z(t )
gives

b = 2aCI2
0 + amω2z3

0

2CI0z0
, c = −aμωz2

0

2CI0
. (31)

Note that c = 0 when μ = 0, as discussed in Sec. II B.

IV. STABILITY ANALYSIS FOR HARMONICALLY
VARYING COEFFICIENTS

In this section, we introduce parametric excitation through
the periodic variation of the coefficients of both the (lin-
earized) electromagnetic and aeroelastic forces (the former is
a result of the base excitation applied). First, we consider the
simple case in which only the coefficients of the electromag-
netic force are time-dependent (we refer to it as the parametric
electromagnetic force), and then we add a part to the aeroe-
lastic force that has a harmonically varying coefficient (we
refer to the added force as the parametric aeroelastic force).
Linearized EOMs around the time-varying equilibrium/steady
state are used for the stability analysis. For numerical calcula-
tions, we employ the Floquet method [29], while the analytical
approach to find the stability boundary specifically related
to parametric resonance utilizes Hill’s method; for the part
away from the zone of parametric resonance, we also use a
Hill’s-type method. Interestingly, the parametric resonance is
characterized by an elliptical region, and we provide a sim-
ple expression to describe the ellipse. When the parametric
aeroelastic force is added, the expression for the instability
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boundary reveals a complicated and nontrivial dependence
of the size of the ellipse on the phase difference. Energy
analysis uncovers that the parametric aeroelastic force can
play a dual role in determining the severity of the net para-
metric resonance, caused by the interplay of it with the other
state-dependent force, that is, the parametric electromagnetic
force.

Here, we introduce two major additions to the EOMs de-
fined in Eqs. (1)–(3); an excitation is applied to the rigid base,
and an added parametric aeroelastic force is considered:

�ss(t ) = z0 − A cos (�t ); μ(t ) = μ0 + μ1 cos (�t − φ).
(32)

Here, �ss is the new, steady-state air gap, which is time-
varying due to the base excitation, and z0 is chosen to be
the same as for the unforced system. The two cases described
above are considered one by one in the following sections.

A. Parametric resonance for the case μ0 = 0, μ1 = 0

Let us consider the first case, in which the base excitation
is applied but there is no aeroelastic force. We define the
following perturbations to linearize the system:

z(t ) = z0 + �tr (t ),

I (t ) = Iss(t ) + Itr (t ). (33)

After substitution of Eq. (33) into Eqs. (1)–(3), and elimina-
tion of nonlinear terms, the linearized EOMs read as follows:

m
d2�tr

dt2
= −2CI2

ss

�3
ss

(
�ss

Iss
Itr − �tr

)
, (34)

dItr

dt
+ R�2

ss − 2C�̇ss

2C�ss

Itr

=
(

Kp

2C
�ss − �̇ssIss

�2
ss

)
�tr +

(
Kd

2C
+ Iss

�2
ss

)
�ss�̇tr. (35)

In Eqs. (34) and (35), the steady-state current Iss is defined as

Iss(t ) =
√

mg

C
�ss. (36)

It is possible to eliminate Itr from Eqs. (34) and (35) and
obtain a very simplified single EOM:

2

(
CKp

√
gm

C
− gmR

)
�tr + 2CKd

√
gm

C
�̇tr + z0mR�̈tr

+ 2Cm˙̇�̇tr − A cos (�t )mR�̈tr = 0. (37)

Equation (38) is the starting point for the derivation using
Hill’s determinant method, presented below, which aims at
determining the stability boundary, and also for the numerical
validation using Floquet theory [29] (see Figs. 5 and 6). For
the Hill’s determinant method, let us represent the solution by
a complex Fourier series:

�tr =
∞∑

n=−∞
dn exp (inωt ); � = kω; n, k ∈ Z. (38)

Some important observations are given here. First, the
term with n = 0 gives the left, vertical boundary of stability

FIG. 5. The elliptical region for different cases of A, μ0, μ1,C,
and μ1,S is shown. Solid lines show numerical results based on
Floquet theory, and the dashed line shows the analytical results using
Eq. (48). The purple dot at point B represents the condition k1 = 0 or
the optimum situation. Here, C = 0.05 (N m2/A2), z0 = 0.015 (m),
m = 7650 (kg), R = 9.71 (ohm), ω = 40 (rad/s).

region (see Fig. 5); taking �tr = d0 and substituting that into
Eq. (37), we obtain

CKp

√
gm

C
− gmR = 0 ⇒ Kp = u0

z0
. (39)

The result in Eq. (39) is the vertical boundary, as also ex-
pressed in Eq. (10); clearly, the left stability boundary is the
same for the unforced and forced systems.

Second, k = 1 represents the T1 parametric resonance, and
k = 2 represents the T2 parametric resonance. In the following
derivations, we assume a first-harmonic (|n| = 1) approxima-
tion of the Fourier series. For the situation with k > 2, we
can verify that [after substituting Eq. (38) into Eq. (37)] the
term A cos(�t )mR�̈tr does not contribute to the coefficient
of the leading-order harmonic (since similar terms to |n| = 1
can only result from k = 1, 2). In the following derivations,
we only consider T2 parametric resonance (k = 2), which is
the comparatively most commonly encountered one; the T1

boundary is very small. Unless mentioned otherwise, from
here we consider k = 2 or � = 2ω.

Substituting Eq. (38) into Eq. (37), extracting the Hill’s ma-
trix, and equating its determinant to zero gives the following
expression for the stability boundary; the coordinates of the
center are (h1, h2) with k1 as the major axis and k2 is the minor
axis:

(Kp − h1)2

k2
1

+ (Kd − h2)2

k2
2

= 1, (40)

h1 = R(2
√

Cg3m + √
Cgmz0ω

2)

2Cg
,

h2 =
√

Cm

g
ω2,
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k1 = ω2k2,

k2 =
√

A2mR2

16Cg
. (41)

From h2 (i.e., the Kd coordinate of the ellipse), it is possible
to derive [by substituting h2 = Kd and using I0 = z0

√
mg/C

in Eq. (41) to relate ω = �/2 to the natural frequency ω0 of
the unforced system Eq. (13)] the location of the parametric
resonance ellipse on the inclined (right) stability boundary
(see also Fig. 5). The ω0 of the system varies smoothly along
the inclined line [Eq. (13)]. Like for the classical Mathieu
equation, the (first) zone of T2 parametric resonance is found
(i.e., the center of the ellipse) at the point where ω0/� = 1/2;
the (first) T1 parametric resonance zone, although very small,
is found in principle where ω0/� = 1. Note that higher zones
for T1 and T2 are not observed for the current problem.

B. Right stability boundary part unrelated to parametric
resonance for the case μ0 = 0, μ1 = 0

In the previous section, the stability boundary related
to T2 parametric resonance has been determined. However,
this is not the complete stability boundary; the system can
also undergo a stability transition (i.e., become unstable)
away from the elliptical boundary (which is demonstrated in
Fig. 5, for example). In this section, we determine an expres-
sion for the remaining part of the right stability boundary,
and we prove that it is the same as that of the unforced
system.

As mentioned above, for |n| = 1 and for all the cases with
k > 2, the term A cos(�t )mR�̈tr does not contribute to the
coefficient of the leading-order harmonic in Eq. (37). Hence,
the following simple expression is obtained:

Kd = 2iKp
√

Cgm − 2igmR + mω2(−iRz0 + 2Cω)

2
√

Cgmω
. (42)

Equating the imaginary part of Eq. (42) to zero gives an
expression for the oscillation frequency ω that is exactly
the same as the natural frequency ω0 of the system without
excitation [Eq. (13)]. Then, substituting this expression into
Eq. (42), the same straight line as given in Eq. (12) is obtained:

Kp = u0

z0
+ u0z0

2CI0
Kd. (43)

Thus, we find exactly the same inclined stability boundary as
we found for the equilibrium point without excitation. How-
ever, as k is an integer number in the current analysis, and �

therefore is an integer multiple of ω, Eq. (43) only holds for
discrete points along the straight line where ω/� = ω0/� =
1/k. Furthermore, when k > 2, Eq. (43) is not related to a
parametric-resonance type instability; by crossing the straight
line, the control of the electromagnetic force becomes simply
inappropriate, which leads to a loss of stability.

To demonstrate that the result in Eq. (43) is also generally
valid (i.e., it describes the entire straight part of the right
stability boundary), we assume the following solution:

�tr = U (t ) exp (iωt ); U (t ) = U (t + T ), T = 2π/�.

(44)

This solution is directly based on Floquet’s theorem, but it
is evaluated at the stability boundary (hence, it is also a
Hill’s-type solution); the magnitude of the Floquet multiplier,
therefore, should be 1, and hence ω should be real-valued.
Representing the periodic part of the solution as a Fourier
series,

U (t ) =
∞∑

n=−∞
un exp (in�t ), (45)

and incorporating only the constant, Eq. (45) can be written as

�tr = u0 exp (iωt ). (46)

Substituting Eq. (46) into Eq. (37), dividing by exp(iωt )
(which appears in all terms), and projecting the resulting
equation on the constant included in the Fourier series (i.e.,
integrating the equation from 0 to T ), we obtain a homoge-
neous equation for U0. For nontrivial solutions, its coefficient
must be zero. The thus obtained equation depends on ω and
the system parameters, and it appears to be exactly the same
as Eq. (42). The straight line described by Eq. (43) is ob-
tained from it in the way described right above it. However,
now the frequency ω is not limited to integer fractions of
�, and therefore the result is generally valid. Hence, we
conclude that the right stability boundary obtained for the
system without excitation still describes the boundary of the
system with excitation as long as we stay outside the regions
of parametric resonance. We can verify that this remains true
when the aeroelastic force (with and without time-dependent
coefficients) is added.

C. Parametric resonance for the case μ0 �= 0, μ1 �= 0

Now, let us add the aeroelastic force to the system having
a coefficient that oscillates around a nonzero constant. This
force thus has a part with a constant coefficient μ0 and one
with an oscillating coefficient having amplitude μ1 < μ0 (i.e.,
the aeroelastic force). The oscillating part has a phase differ-
ence φ to the base excitation. After adding the total aeroelastic
force to Eq. (34), the following expression is obtained:

m
d2�tr

dt2
= −2CI2

ss

�3
ss

(
�ss

Iss
Itr − �tr

)

+ [μ0 + μ1 cos (�t − φ)]�̇tr

= −2CI2
ss

�3
ss

(
�ss

Iss
Itr − �tr

)

+ [μ0 + μ1,C cos (�t ) + μ1,S sin (�t )]�̇tr. (47)

Now, if we do the same derivations as the ones leading to the
result in Eqs. (40) and (41), the ellipse properties can be found
as follows:

h1 = 2
√

Cg3m3R +
√

Cgm3Rz0ω
2 − 2

√
C3gmμ0ω

2

2Cgm
,

h2 =
√

CgmR(2z0μ0 − Aμ1,C) + 4
√

C3gm3ω2

4Cgm
,

k1 = ωk2, k2 =
√

N1 + N2

16Cgm
,
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N1 = (μ2
1,C + μ2

1,S)
(
R2z2

0 + 4C2ω2)
+ A2R2(μ2

0 + m2ω2),

N2 = 2AR[2Cω(μ0μ1,S + mμ1,Cω)

+ Rz0(μ0μ1,C − mμ1,Sω)]. (48)

Here, note that h1 is independent of μ1,C and μ1,S , and h2 is
independent of μ1,S .

Figure 5 illustrates various scenarios of aeroelastic forcing
and how the ellipse changes in size and position. The solid
lines in Fig. 5 are obtained numerically using Floquet anal-
ysis, while the dashed line represents the analytical results
presented in Eq. (48). The analytical and numerical results
show a perfect match.

The black line in Fig. 5 corresponds to the case without
aeroelastic forcing. Introducing an aeroelastic force with a
constant coefficient shifts the right stability boundary to the
left shown by the red line, indicating that the aeroelastic
force tends to destabilize the system. Then, by adding the
parametric aeroelastic force alongside the component with the
constant coefficient, the ellipse begins to shrink (red line to
green line). As the amplitude of the coefficient of the paramet-
ric force increases, the ellipse completely disappears at some
point (purple dot in Fig. 5). It can be verified that a further
increase in amplitude of the modulation coefficient causes the
ellipse to grow again and reaches back the green line at around
μ1,C = 18 000. Note that the values of μ0 and μ1,C in Fig. 5

have been selected to clearly illustrate the effects. However,
for practical applications in the hyperloop, specific designs
may be required to achieve those.

In Fig. 5, another interesting observation can be made by
comparing three cases: the black, blue, and gray lines. The
black line represents the first individual case, where there
is only the parametric electromagnetic forcing, due to base
excitation, and no aeroelastic force (A = 0.0142, μ0 = 0,
μ1,C = 0, μ1,S = 0). The blue line shows the second indi-
vidual case, where there is only the parametric aeroelastic
force and no parametric electromagnetic force (A = 0, μ0 =
0, μ1,C = 8000, μ1,S = 0). The parametric aeroelastic force
and the parametric electromagnetic force have the same fre-
quency and the same phase. It is clear in Fig. 5 that both
individual forces create parametric resonance, which implies
that they add energy to the system (for specific values of the
control parameters inside the corresponding ellipses). How-
ever, when they are combined (A = 0.0142, μ0 = 0, μ1,C =
8000, μ1,S = 0), the parametric aeroelastic force reverses its
character and extracts energy from the system, resulting in an
ellipse that is much smaller than in either of the individual
cases (the detailed energy analysis given in Sec. IV C 2).

Using Eq. (48), one can easily formulate the condition
k1 = 0, where the ellipse is eliminated and no parametric
resonance occurs at all. We can find combinations of μ1,C

and μ1,S to guarantee k1 = 0. Here, we take μ1,S = 0; the
following specific expression for μ1,C is then found:

μ1,C = μopt =
AR2z0μ0 + 2ACmRω2 −

√
−A2m2R4z0ω2 + 4A2CmR3z0μ0ω2 − 4A2C2R2μ2

0ω
2

R2z2
0 + 4C2ω2

. (49)

At this specific value of μ1,C, as given in Eq. (49), the ellipse
is completely suppressed, as shown as a purple dot in Fig. 5.
The result given in Eq. (49) is complex, which is perhaps
counterintuitive, but the imaginary part can be verified to be
small. The result being complex is deemed to originate from
the first-harmonic approximation of Eq. (38).

The current findings (i.e., the elimination of the ellipse)
demonstrate that we can effectively suppress the parametric
resonance induced by the parametric electromagnetic force,
which arises from the base excitation, by introducing another
parametric force (the parametric aeroelastic force) with the
same frequency as the parametric electromagnetic force. It is
evident that the parametric aeroelastic force can exhibit either
stabilizing or destabilizing behavior, depending on the specific
amplitude of the time-varying aeroelastic coefficient. How-

ever, achieving optimal suppression of parametric resonance
requires a specific combination of μ1 and φ, which will be
explored in the next section.

1. Effect of phase difference

From Eq. (47) we know that μ1,C = μ1 cos φ, μ1,S =
μ1 sin φ, and μ1 =

√
μ2

1,C + μ2
1,S. To explore the optimum

combination of μ1 and φ, we set the following condition:

μ1,S =
√

μ2
opt − μ2

1,C. (50)

Substituting Eqs. (49) and (50) into Eq. (48) (i.e., the expres-
sion for k1) gives a relation between the major axis k1 and the
phase difference through μ1,S:

k1 = 1

4

√
ARω2(M1 + M2 + M3 − M4)

Cgm
,

M1 = AR
(
μ2

0 + m2ω2
)
,

M2 = AR(Rz0μ0 + 2Cmω2 − iω(mRz0 − 2Cμ0))2

R2z2
0 + 4C2ω2

,
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M3 = 2Rz0

⎛
⎝mμ1,Sω − μ0

√√√√−μ2
1,S + A2R2[Rz0μ0 + 2Cmω2 − iω(mRz0 − 2Cμ0)]2(

R2z2
0 + 4C2ω2

)2

⎞
⎠,

M4 = 4Cω

⎛
⎝μ0μ1,S + mω

√√√√−μ2
1,S + A2R2[Rz0μ0 + 2Cmω2 − iω(mRz0 − 2Cμ0)]2(

R2z2
0 + 4C2ω2

)2

⎞
⎠. (51)

Like in Eq. (49), the result given in Eq. (51) is complex,
with a small imaginary part; the result being complex is again
deemed to originate from the first-harmonic approximation of
Eq. (38).

The strong dependence of the effectiveness of the suppres-
sion on the phase shift is shown in Fig. 6. Hence, for the
elimination of the parametric resonance, the phase must be
properly controlled. In Fig. 6, it is also interesting to note that
when φ is slightly negative, the parametric aeroelastic force
is still very effective in suppressing the parametric resonance.
However, when φ is slightly positive, the parametric aeroelas-
tic force rapidly loses the effectiveness. The dashed line in the
inset of Fig. 6 shows the length of the major axis when there
is no parametric aeroelastic force. Clearly, below the dashed
line, the interaction between parametric electromagnetic and
aeroelastic forces causes the ellipse to shrink, expanding the
stable domain. Conversely, above the dashed line, the ellipse
enlarges, reducing the stable domain.

In the next section, the physical reasoning of the elimi-
nation of the parametric resonance is explored using energy
analysis.

FIG. 6. The dependence of the size of the ellipse related to para-
metric resonance on the phase difference is shown. The numerical
results are obtained using Floquet analysis, and the analytical results
are obtained using Eq. (51). In the inset, a larger range of φ is
shown. The dashed line in the inset shows the major axis (k1) when
there is no parametric aeroelastic force. Here, Kp = 27 000 (V/m),
Kd = 10 000 (V s/m), C = 0.05 (N m2/A2), z0 = 0.015 (m), m =
7650 (kg), R = 9.71 (ohm), A = 0.0142 (m), ω = 40 (rad/s), μ0 =
4000 (N s/m).

2. Energy analysis

In this section, an energy analysis for the system repre-
sented by Eq. (47) is conducted. The anomalous behavior of
the parametric aeroelastic force compared to the aeroelastic
force with a constant coefficient is investigated in specific
ranges of μ1,C. To identify the energy contributions present
in Eq. (47), we rewrite Eq. (47) as follows:

m
d2�tr

dt2
= −Fe,tr + Fa,tr. (52)

Here, Fe,tr represents linearized, parametric electromag-
netic force, and Fa,tr represents the aeroelastic force.
Multiplying Eq. (52) by the velocity �̇tr gives

d

dt

1

2
m�̇2

tr = −Fe,tr�̇tr + Fa,tr�̇tr = Pe + Pa,

Pe = −Fe,tr�̇tr,

Pa = Fa,tr�̇tr. (53)

Here, Pe is the power input by the parametric electromagnetic
force, and Pa is the power input by the aeroelastic force. Now,
by integrating the energy variation law over one cycle, i.e.,
from 0 to tend = 2π/�, we obtain the energy balance:∫ tend

0

d

dt

1

2
m�̇2

trdt =
∫ tend

0
Pedt +

∫ tend

0
Padt

⇒ Ekin(tend) − Ekin(0) = We + Wa = Wt.

(54)

In Eq. (54), Ekin is the kinetic energy, and We, Wa, and Wt

are the electromagnetic, aeroelastic, and total work done per
cycle, respectively.

Figure 7 illustrates the energy analysis performed using
Eq. (54) for various aeroelastic forcing scenarios (discussed in
Fig. 5). In panel (a), point 1 (inside black ellipse) from Fig. 5
is considered, with μ1,C = 0, μ1,S = 0, and μ0 is then slightly
increased to study its effect on the work done by the forces
(at point 1). At μ0 = 0 we have Wt > 0, which confirms that
steady-state equilibrium is unstable. As μ0 increases, Wa also
increases, clearly indicating that the aeroelastic force with a
constant coefficient further destabilizes the steady-state equi-
librium. The electromagnetic force, however, transitions from
being destabilizing to stabilizing as μ0 increases, as the con-
troller attempts to nullify the destabilizing effects (although
not successfully, as Wt > 0 for all μ0 considered). Notably,
around μ0 = 0.4, the work done by the electromagnetic force
becomes zero.

In panel (b) of Fig. 7, point 2 (inside red ellipse) in Fig. 5
is considered, with μ0 = 4000, μ1,S = 0. Now, the influence
of increasing μ1,C on the work done by the forces at point 2
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FIG. 7. In (a), μ1,C = 0, μ1,S = 0, Kp = 19 500 (V/m), and the destabilizing character of the aeroelastic force with constant coefficient
is shown. In (b), μ0 = 4000, μ1,S = 0, Kp = 16 000 (V/m), and the interplay between μ0 and μ1,C is shown. In (c), μ0 = 0, μ1,S = 0, Kp =
19 500 (V/m), and the dual character of parametric aeroelastic force, without the influence of aeroelastic force with constant coefficient,
is shown. In (d), μ0 = 0, μ1,C = 0, μ1,S = 0, Kp = 19 000 (V/m), and the influence of A on We, without the influence of aeroelastic force,
is shown. The remaining parameter values are given by Kd = 10 000 (V s/m), C = 0.05 (N m2/A2), z0 = 0.015 (m), m = 7650 (kg), R =
9.71 (ohm), A = 0.0142 (m), ω = 40 (rad/s).

is studied. As μ1,C increases, Wa decreases, suggesting that
the parametric aeroelastic force has a stabilizing character, in
contrast to the destabilizing character of the aeroelastic force
with a constant (μ0) coefficient. Starting from the situation
in which the left vertex of the red ellipse lies at point A (see
Fig. 5), the ellipse shrinks as μ1,C increases, and the left vertex
passes through point 2. Further increase leads to a complete
collapse of the ellipse [when μ1,C reaches μopt = 8000, see
Eq. (49)], and the left vertex (as well as the right one and
the center) ends up at point B. Beyond this point, the natures
of the forces reverse. In contrast to the initial behavior, the
(total) aeroelastic force now exhibits a destabilizing character,
and the parametric electromagnetic force exhibits a stabilizing
one. The ellipse then begins to grow again, ultimately return-
ing to the initial shape with the left vertex at point C (which is
the same as point A, but the value of μ1,C is different).

In panel (c) of Fig. 7, μ0 = 0, μ1,S = 0 are chosen to
investigate the influence of the parametric aeroelastic force
separately, and again point 1 (inside black ellipse) is con-
sidered; μ1,C is increased (to study its effect on the work
done by the forces at point 1). As observed in panel (b),
the parametric aeroelastic force shows a dual character, as it
can again be either stabilizing or destabilizing; however, the
dual character can now be unambiguously attributed to the
parametric aeroelastic force, as the aeroelastic force with a
constant coefficient is simply absent. Throughout the stable

region (and even outside it, to its left), Wa remains negative,
indicating that the parametric aeroelastic force is stabilizing,
ultimately leading to the disappearance of the ellipse [when
μ1,C reaches μopt = 8000; see Eq. (49)]. In contrast, in panel
(b), Wa initially has a positive value even within the stable
region, which is now observed to result from the influence of
μ0.

Finally, in panel (d), a simple case is shown, with μ0 =
0, μ1,C = 0, μ1,S = 0, and we observe point 3 (outside the
black ellipse, to its left) in Fig. 5. Now, the amplitude of the
base excitation, A [see Eq. (32)], is varied to study its effect on
the work done by the forces at point 3. It is observed that We

transitions from negative to positive as the left vertex of the
black ellipse crosses point 3, which shows how the controller
fails to stabilize beyond a particular value of A.

From Figs. 7(a)–7(c), we can draw the following conclu-
sions. Adding the state-dependent aeroelastic force (with a
constant coefficient) alters the energy input by the parametric
electromagnetic force [Fig. 7(a)], which is state-dependent,
too. That aeroelastic force even changes the character of
the parametric electromagnetic force from destabilizing to
stabilizing if μ0 is sufficiently large, although it does not
change the stability of the equilibrium [Fig. 7(a)]. The
parametric aeroelastic force can, however, stabilize the equi-
librium if μ1,C is sufficiently large [Figs. 7(b) and 7(c)];
note that the parametric aeroelastic force can even completely
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eliminate the parametric resonance throughout the Kp-Kd

plane if μ1,C is chosen appropriately, as shown before in
Fig. 5. The parametric aeroelastic force can (like the aeroe-
lastic force with a constant coefficient) change the character
of the parametric electromagnetic force from destabilizing to
stabilizing, depending on μ1,C; however, the overall stability
transition induced by the parametric aeroelastic force (the
aeroelastic force with a constant coefficient cannot do that)
can be verified not to coincide (i.e., it lies at another μ1,C

value) with the transition in the character of the parametric
electromagnetic force [Figs. 7(b) and 7(c)].

V. CONCLUSIONS

This study analyzes the stability of a 1.5-degree-of-
freedom model consisting of an electromagnetically sus-
pended mass that is excited by an oscillating base and the
aeroelastic force. The model is a simplified representation of
a hyperloop vehicle moving through air.

For the case without external excitation (i.e., no oscillating
base), analytical expressions were derived for the stability
boundaries by employing linear stability analysis. The results
indicate that the control parameter space (Kp-Kd) is divided
into three distinct regions, one of which exhibits limit cycle
behavior akin to that beyond the supercritical Hopf bifur-
cation. The presence of the aeroelastic force (with constant
coefficient) leads to a marginal reduction of the size of the
stable region, with no qualitative changes in the stability land-
scape. Harmonic balance analysis identified the region in the
control parameter space where the limit cycle exists as well
as its amplitude and frequency. The present study considers
a PD-controller. However, the same approach can be used

for more complicated controllers such as PID to identify the
stability boundaries.

For the case with base excitation, the stability boundaries
were also determined, both analytically and numerically. The
right boundary now consists of the same inclined line as
obtained for the nonoscillating base scenario as well as an
ellipse related to parametric resonance located on it, indent-
ing the stable domain. The inclined line is influenced by
an aeroelastic force with constant coefficient, while the size
of the elliptical region is affected by the aeroelastic force
with a harmonically varying coefficient (i.e., the parametric
aeroelastic force, which is added on top of the one with
a constant coefficient). The study reveals the possibility of
eliminating parametric resonance induced by one paramet-
ric force by adding another, with the phase shift between
these two parametric forces being crucial and ideally equal
to zero. Energy analysis demonstrates that if the parametric
aeroelastic force has a nonzero but small phase difference
with the base excitation, the interplay between electromag-
netic and aeroelastic parametric forces can still result in the
suppression of parametric resonance. Finally, the results of
this paper are applicable to similar electromagnetic [18] and
other systems for mitigating parametric resonance caused by
one state-dependent force using another.
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