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Fig. 1. Absolute value of the crosstalk with respect to the number of samples 
(NS) used to estimate the cross cumulants. Each point is the average of 10 
experiments. 

to estimate the cross-cumulants. Each point in Fig. 1 corresponds 
to the average over 10 experiments, in which the mixing matrix is 
randomly chosen: The matrix entries mC3 (i # j )  are random numbers 
in the range [-1, +1]. With 500 samples, a residual crosstalk of 
about -20 dB is obtained. In the case of nonstationary signals, cross- 
cumulant estimation must be done on few samples and has a larger 
variance. Consequently, it can lead to more inaccurate estimation 
of the mixing matrix. We still obtained an interesting performance: 
a residual crosstalk of about -15 to -20 dB, with various signals 
(colored noise, speech) and statistics estimated over 500 samples. 

In this correspondence, we proved that the mixing matrix can be. 
estimated using fourth-ordercross-cumulants, for two mixtures of two 
non-Gaussian sources. Solutions are obtained by rooting a fourth- 
order polynomial equation. Using second-order cross-cumulants al- 
lows us to simplify the method; the solution is then obtained by 
rooting two second-order polynomial equations and gives the result 
if one source is Gaussian. The methods are then quite simple, but its 
roots are very sensitive to the accuracy of the estimated cumulants. 
In fact, this direct solution is less accurate than indirect methods, 
especially adaptive a lgo r ibs .  Moreover, we restricted the study 
to the separation of two sources, and theoretical solutions for three 
sources or more seems not easily tractable. However, in the case of 
two mixtures of two sources, it may give a good starting point with 
a small computation cost for any adaptive algorithm. 
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On the Penaltv Factor for Autoregressive v 

Order Selection in Finite Samples 

P. M. T. Broersen and H. E. Wensink 

Abstract-The order selection criterion that selects models with the 
smallest squared error of prediction is the best. The finite sample theory 
describes equivalents for asymptotic order selection criteria that are bet- 
ter in the h i t e  sample practice. This correction for finite sample statistics 
is the most important. Afterwards, a preference in order selection criteria 
can be obtained by computing an optimal value for the penalty factor 
based on a subjective balance of the risks of overfitting and underfitting. 

I. INTRODUCTION 

Recently, a finite sample theory for the selection of an autoregres- 
sive model order has been presented [l]. It provides a comprehensive 
description of the peculiarities of estimation and order selection in 
finite and small samples of autoregressive time series. A sample is 
called bite if the maximum model order that is interesting is greater 
than abotlt O.lN, where N is the sample size. 

The asymptotical theory describes theoretical statistical expecta- 
tions as multiples of 1/N.  Its validity and accuracy is poor in finite 
data series when the model order p is not very small with respect to 
N.  n e  inclusion of higher order terms in the Taylor expansion fails to 
give the necessary improvements. Another approach, the finite sample 
theory, is based upon the actual observed behavior of the estimates. 
For four autoregressive (AR) estimation methods, a correction is 
provided in replacing 1/N by the finite sample variance coefficients, 
which are empirical formulas for a method-dependent description of 
the actual degrees of freedom in parameter estimation. 

The order selection problems have been discussed in a former 
paper [l]. Finite sample equivalents have been given for the WE 
criterion [2] and for selection criteria with the logarithm of the 
residual variance. They are asymptotically equivalent to the existing 
criteria, but their performance tums out to be better in finite samples. 
The remaining problem is the optimal value of the penalty factor a 
for selecting the best predicting model for a variety of processes, 
which is the subject of this paper. Which model order is best for a 
given process depends on four indicators: sample size N ,  estimation 
method, true model order, and true values of the process parameters. 
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Hence, selection of the true order is not always desirable and we 
need a measure for model quality. 

In this work, we introduce the selection error as a quality criterion 
for selected models. In contrast to the mathematical derivation of 
consistent criteria with fixed parameter values and increasing sample 
size, we define a critical parameter value depending on the sample 
size N and on a. In this way, we find theoretically a preference 
for the penalty a,  which is still based on a subjective choice for 
the balance between overfitting and underfitting. We compare results 
of asymptotical derivations with finite sample simulations to verify 
that they have practical relevance. Finally, we give an asymptotical 
result for the expected decrease in FPE due to overfit, showing 
that expectations of criteria after selection are no.longer equal to 
expectations for fixed orders without selection. 

TABLE I 
ASYMPTOTIC VALUE OF THE SELECTION RISK SR(L - K ,  a )  

FOR OVERFFIT, FOR IC = 0 AND L = 100 

II. AR ESTIMATION 

An autoregressive process of order I< is given by parameters 
1, a ] ,  . . . , arc and zero mean i.i.d. innovations en with variance U,". 

The true order I<- may be infinite. Only stationary processes are 
considered where the roots of the characteristic polynomial lie within 
the unit circle. A model of order p has parameters & ( p ) ,  together 
forming the ( p  + 1) x 1 vector & ( p ) ,  with & ( p )  = 1. A model order 
has to be selected from a number of candidate orders p = 0,1,  . . . , L. 
The residual variance S 2 ( p )  is defined as the mean square fit of the 
model to the data from which the parameters have been estimated, and 
decreases always for higher model orders. The predictive capacity of 
the model is expressed by the prediction error PE(p). Let the matrix 
R describe the exact covariance structure of the true Kth-order AR 
process. PE(p) has been defined with the ( p  + 1) x ( p  + 1) submatrix 
R ( p )  of the true R as follows: 

and has as asymptotical expectation a: (1 + p / N )  for p 2 I< [l], [2]. 
PE(p) is the natural measure for the fit of a model to a given process 
where R is known, for instance in simulations. 

Elements of information theory have been used to derive the order 
selection criterion AIC(p) [3]. Consistent and minimally consistent 
criteria are found by changing the penalty factor 2 of AIC(p) into 
ln(N) [4] and 21n In ( N )  [5], respectively. These criteria can be 
described together as a generalized information criterion, GIC(p, a )  
with a as the penalty factor [l], as follows: 

When a sample is finite, also the estimation method and the parameter 
order i influence the estimates. Therefore, the finite sample variance 
coefficients v ( i ,  .) have been developed based on the actual degrees 
of freedom that play a role in a given estimation method. Four 
AR estimation methods have been treated: the Yule-Walker method 
(YW), the method of Burg (Burg), the least squares method that 
minimizes forward and backward residuals (LSFB), and the least 
squares method that minimizes forward residuals only (LSF). The 
v( i , . )  are given by [l] and [6], as follows: 

N - i  
N(N + 2) 

.(i,YW) = 

v( i ,  Burg) = 

v(i,LSFB) = 

v(i, LSF) = 

1 

N + l - i  
1 

N + 1.5 - 1.5i 
1 

N + 2 - 2 i  i 2 1. (3) 

Apart from this, v(0, .) is defined to be 1/N if the estimated mean of 
the time series is subtracted; otherwise, v(0, .) is defined to be zero. 

As finite sample equivalent of GIC(p, a) ,  the finite sample criterion 
[l] has been introduced, as follows: 

In almost all simulations, the average performance of FIC(p,a) is 
better than that of GIC(p,cu) for each estimation method, sample 
size, and value of a [I]. 

DI. EFFICIENCY OF ORDER SELECTION 
The PE(p) of (1) depends strongly on the sample size. We introduce 

the selection error SE(p)  as a quality criterion for a selected model 
of order p ,  corrected for the sample size and input power, as 

SE(p) = N[PE(p)/U," - 11. (5 )  

For fixed order p ,  E[SE(p)] equals asymptotically p for p 2 I<, 
because the expectation of the scaled PE(p) is then given by 1 + p / N  
[l], [2]. We use the index p to denote a fixed order. In simulations 
with selection, however, the selected order M ( n )  differs from run to 
run. Criteria FIC(p, a ) ,  each with a different value for the penalty 
cy, select their own model order M ( a )  in each run. The averages 
SE{M(a)} over the simulation runs involve different model orders 
M ( a )  because it is highly improbable that a criterion selects the 
same model order in every run. 

The possibilities of selecting a wrong model order can be separated 
into overfitting and underfitting. For a good order selection criterion 
the risks of overfitting and underfitting should together be small. 
However, popular order selection criteria minimize the risks of either 
underfitting or overfitting. In consistent criteria, overfitting is made 
small at the cost of underfitting. In contrast, asymptotic efficient 
criteria with a = 2 minimize the risk of underfitting [7] at the cost of 
overfitting. When orders are actually selected, the expectation of the 
selection error increases with a selection component in comparison to 
expectations in fixed order situations. Shibata [7], [8] determined the 
asymptotic distributions, Prob(M = p )  for orders M 2 I<, selected 
with the FPE(p) or AIC(p) [7]. These depend for one order overfit on 
the probability that the square of a normally distributed zero-mean 
parameter estimate exceeds the significance level of a in the x2 
distribution [7], and similar combinations for higher overfit orders. 
The extra stochastic contribution to E[SE(M)] for M > K is caused 
by selection. The selection error can in the case of overfitting be 
written as E[SE(M)] = E[SE(l i ) ]  + E[SR(L - I<, a)] .  In this way, 
we define SR(L - K, a )  as the selection risk; L - K is the number 
of overfit order candidates. The asymptotical expectation of this risk 
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Fig. 1. Selection risk and modified FPE for cy = 2 

is found with E[SE(IC)] = li and a result of Shibata [SI as 

L-K 

E[SR(L - IC, a ) ]  = Prob(&+2 > a,  m),  M 2 K. 
m = l  

(6) 

Table I gives values for E[SR(L - K,a)]  for L - K = 100. It 
shows that, when a is less than two, the overfitting risk is enormous, 
whereas when a takes values greater than seven the risk becomes 
practically zero. Hence, in consistent order selection criteria, where 
a is made a function of N ,  e.g. In ( N )  or 2 In In ( N ) ,  the selection 
nsk due to overfitting becomes zero when N -+ 00. 

An important side effect of order selection is that expectations for 
selected models of order M are no longer equal to the presampling 
expectations for fixed model orders p .  We will illustrate this for 
FPE(p), which will asymptotically select the same order as AIC(p) .  
Without selection, FPE(p) is an unbiased estimate for the prediction 
error for model orders p 2 K ,  with expectation gz  (1  + p / N )  [2]. 
However, the FPE(M) of a selected model with M > IC has a lower 
value than FPE(K) in the case of overfit; otherwise, no overfitted 
model would be selected. We derive an asymptotical result for a 
scaled FPE(M) in the Appendix as . 

E[N(FPE(M)/a:  - 1}] 
= I<- - E[SR(L - K ,  2)] 

L-K 

+ 2 iProb(M = K + i) li 5 M 5 L. (7) 

Remember that the result above would be M without selection. 
Both the theoretically expected increase (6) of the selection risk 
SR(L - I(, 2) and the decrease with respect to K in FPE(M) of 
(7) are presented in Fig. I,  where the possibility of underfitting is 
neglected. The asymptotical value for SR(L - K ,  2) for L -+ CO is 
about 2.57, which is already achieved for 20 overfit orders. Also, the 
modified FPE(M) of (7) has reached a constant value then, being 
-0.69. This result shows that a function giving an unbiased estimate 
for prediction error prior to selection is biased after selection. 

We have investigated the applicability of (6) and (7) to finite 
samples in many simulations with white noise, which is an ideal 
example for studying the effects of overfitting without interference 
with underfitting problems. Averages over 10 000 simulation runs 
are given for Burg estimates N = 100, K = 0,L  = 15. The 
average SE(M) of the selected models was the same for selection 

t=O 

with GIC(p. 2) and FPE(p), the value was 3.32; the average scaled 
FPE(p) was -0.80. The asymptotical theoretical values are 2.43 and 
-0.67, respectively, for L-  IC = 15. In selection with FIC(p, 2), the 
average SE(M) was 2.96 in the same simulations, showing that the 
finite sample criterion gives a better result with lower SE(M). For 
greater sample sizes, simulation results of GIC(p, 2) and FIC(p, 2) 
are closer and are also nearer to the asymptotical theoretical value. 

We suppose now that a choice has to be made between two orders, 
K - 1 and K .  We define a critical value &IC as the value of a~ that 
equalizes E [ H C ( K  - 1, a)]  and E [ F I C ( K , a ) ] ,  so it depends on the 
value of a. It can easily be derived with the finite sample theory [l], 
[9] and with (4) that 

E[FIC(li,h)] = E[FIC(K - l , a ) ]  
+ I n  (1 - Z & ) ( I -  v ( I i ,  .)) + a w ( ~ ) ,  .). 

(8) 

The critical value for the last parameter follows from this equation as 

For a process with this critical value, FIC(p, a )  will select the orders 
IC - 1 and IC with about the same probability. For more specific 
conclusions, knowledge of the finite sample dlstribution function 
of FIC(p,cr) would be necessary, and that is not available. The 
appearance of the finite sample variance coefficient v ( K ,  .) in (9) 
illustrates the influence of the four indicators for the best model 
order: the true order K ;  the sample size N ;  the estimation method; 
and the value of the last parameter. An asymptotical expression for 
(9) becomes &K = -,/{(a - 1)/N} by substituting l / N  for v ( K ,  .) 
and neglecting higher order terms. 

If the models with orders IC and I<- - 1 have the same expectation 
of the selection criterion in (8), it is interesting to determine the 
difference in the quality of those models as given by the selection 
error. The asymptotical expectation of the prediction error for order 
K is related to E[PE(II - l)] as 

E[PE(K)] = nf ( l+  K / N )  E E[PE(II - l)] 

. [1 - a$][1 + 1/N] (10) 

where the approximation in the second step is allowed because terms 
with N-' and higher are neglected. Substituting the asymptotical 
valueZK, it follows that E[PE(K-l ) ] -E[PE(IC)]  is oZ(a-2) lN 
for that critical value. We define the difference SE( li - 1) - SE( K )  if 
the last parameter of the process has the critical value for that penalty 
factor, as the selection risk for underfitting SR(-1, a) .  This yields, 
with (3, the following expression for the expectation: 

E [SR( - l , a ) ]  = 01 - 2. (11) 

Values of a less than two give a negative underfitting risk; a = 2 
gives no risk. E[SR( -1, In N ) ]  becomes In ( N )  - 2 for order I<* - 1 
in the consistent criterion, so a = In N gives infinite risk for 
N -+ CO. For values larger than the critical ZK, order IC will more 
often be selected, whereas for smaller values this will be IC - 1. The 
asymptotical derivation can be considered as an approximation for 
finite sample sizes where the more complicated expression (9) for 
the critical parameter value should be used and no neglect of higher 
order terms is >allowed. 

A POSSIBLE CHOICE FOR cy 

The penalty factor Q influences the ratio between the two com- 
ponents of the selection risk-the risk of overfitting and the risk of 
underfitting. Obvious artifacts in best values for a are a = 00 for 
white noise, because the zeroth order model is best, and a = 0 for 
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TABLE I1 
OP~IMAL COEFRCIENTS (Y FOR FIC(M, a )  FOR 
rc = 1, L = N / 3 ,  BASED ON SIMULATIONS 

YW I Burg I LSFB I LSF 

2.9 3 .O 3.2 3.3 
2.9 3 .O 3.2  3 .2  

100 2.9 3 .O 3.2  3.1 
I ~ 2 5 0 1  2.9 i 2.9 I 3.1 I 3.1 
I I 

l000([ 2.9 i 2.9 I 3.0 I 3.0 

L = Ii because overfitting is impossible then and underfitting will 
not take place if the penalty is zero. In general, the greatest a without 
getting underfit will be the best choice for a given process, because 
that will give the smallest overfit risk. Table I shows that the selection 
risk due to overfitting is smaller when a increases. However, (11) 
shows that the risk due to underfitting increases with a. 

An optimal value of a for unknown processes will depend on 
the balance between underfit and overfit. Underfit risk will only 
appear in practice if the true parameters have values of about 
the critical magnitude. In contrast, the risk of overfit will always 
apply if the maximum order L is not too restricted. We will try 
to minimize the maximum of selection error in practice by balancing 
both heterogeneous risks. Consider the case where the Ii-th parameter 
of the AR( IC) process has the critical value &K . We define as the 
optimal a for unknown processes that speciJic value for which the 
expected selection risk due to overj+itting is equal to the expected risk 
in unde@tting one order with the critical parameter. 

In asymptotical theory this value is found as that value for which 
E[SR(L - I i , a ) ]  in Table I equals E [ S R ( - l , a ) ]  of (11), which 
yields Q = 2.915. For the finite sample FIC(M, a )  the results are 
roughly the same. Table I1 presents the simulation results of an 
evaluation for an AR(1) process. The value of a is determined with 
w ( 1 ,  .) in (9) by making the underfitting risk E[SE( l )  - SE(O)] equal 
to the overfitting risk as found in simulations. The optimal a values in 
the finite sample FIC(M, a )  are given for different values of N and 
different estimation methods. The best a is shown to depend slightly 
on the estimation method and on the sample size, but is always close 
to 2.915, the asymptotical value that was found for GIC(M, a) .  We 
therefore conclude that a penalty factor a equal to three is a good 
compromise in finite samples. 

The balance between both risks can he established by means of 
Table I and E[SR(-1, a)] = a - 2. The ratio of the underfitting risk 
a - 2 and the overfitting risk is zero for a = 2 , l  for a = 2.915, 
4.9 for a = 4, and 421 for a = 10. Hence, only a small range of a 
values gives a ratio of approximately one. Other sensible definitions 
of the underfit risk would not yield completely different values for a. 
In consistent methods a is a function of the sample size N, resulting 
in a dependence of the balance on this sample size. There might be 
a good reason to take a greater than two, but our analysis gives no 
reason at all to make it dependent on N .  An argument to take very 
high values for a is that the constant selection risk due to overfitting 
is made small, whereas the loss due to underfitting will only occur in 
practice if the true parameters have neat-critical value. An opposite 
argument to be careful with higher values of a is that the loss of 
underfitting becomes much greater than considered if not only the 
last parameter, but also a number of previous true parameters are near 
their critical values. In asymptotical theory, the maximum selection 
risk due to underfitting can become Ii(a - 2) if all true parameters 
have critical values. This illustrates why a = 2 is efficient: For a 

greater than two, the maximum possible increase in the selection risk 
due to underfitting goes to infinity for h’ + 00. 

When everything about the data-generating process is known a 
priori, the largest value of a should be chosen such that the last 
process parameter would be incorporated in the model and no more; 
thus, order h- would be selected. However, in these circumstances no 
selection is required because everything had to be known in advance. 
In the case with an unknown value for the last parameter, LlC(p, 3 )  
is a good compromise. The reason that, in finite samples, consistent 
criteria seem to work well is found in the fact that the penalty is close 
to three for a range of observation lengths. Simulations with a variety 
of true processes and four estimation method always demonstrated a 
good, and usually the best, performance of FIC(p, 3 )  in comparison 
with FIC(p, a )  and GIC(p, a )  for many different values of a. 

V. CONCLUSIONS 
The possibilities of selecting a wrong order can be separated into 

overfitting and underfitting. The risk of overfitting is determined by 
statistics. When an order is selected that is too low, the risk of 
underfitting depends on the true process by the deterministic values 
of the last parameters. An order selection criterion performs well in 
practice if the penalty factor is such that a balance is created between 
both risks. A good predicting model is then found with FIC(p, 3), 
with penalty a = 3. It balances the expected statistical increase of 
prediction accuracy due to overfitting with the deterministic risk of 
underfitting one order. 

APPENDIX 
The selection error SE(M) is related to PE(M) by (5). The 

selection risk SR(L - IC, a )  describes the increase of SE(M) in 
the case of overfit. Hence, the prediction error, corrected for overfit 
above order h’ and properly scaled, is given by 

E[PE(M)] = g:{1+ K / N  + E[SR(L - h’,a)]/N}. (Al) 

For white noise, the expected residual variance that belongs to models 
with this value of PE(M) follows easily because E[PE(M)+S2(M)]  
remains constant 2a2 in the asymptotic theory. Residuals for models 
of order M 2 K are white, so this applies also fo overfitted models 
asymptotically, yielding 

E [ S 2 ( M ) ]  = m z { 1  - I</N - E[SR(L - IT, a ) ] / N } .  (A2) 

As FPE(p) is given by (N+p)/(N-p)*S’(p) ,  which approximately 
equals S2 ( p ) {  1 + 2p/N} ,  it follows that 

E{FPE(M)] = E [ S 2 ( M ) ]  
i Prob(M = i )  

(A31 

assuming only orders Ii and higher are selected. Neglecting terms 
of N-’ and higher, (7) is found. 
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The Optimal Focusing Subspace for 
Coherent Signal Subspace Processing 

S. Valaee and P. Kabal 

Abstract-In this correspondence, we introduce a techniqne to deter- 
mine an optimal focusing frequency for the direction-of-arrival estima- 
tion of wideband signals using the coheredt signal-subspace processing 
method. We minimize the subspace fitting error to select an optimal 
focusing frequency. Direct optimization of this criterion can be computa- 
tionally complex-the complexity increases with the number of frequency 
samples. An alternative technique is introduced that performs nearly 
as well as the optimal method. This suboptimal technique is based on 
minimizing a tight bound to the error. The computational complexity 
of the suboptimal method is independent of the number of frequency 
samples. The simulation results show that the proposed method reduces 
both the bias of estimation and the resolution threshold signal-to-noise 
ratio (SNR). 

I. INTRODUCTION 
Array processing techniques can be used to locate wideband 

signals. A wideband signal has a bandwidth comparable to the center 
frequency. Several methods for the processing of wideband signals 
using an array of sensors have been proposed in the literature 1111, 
[l], [6]. The first step in some of these techniques is to obtain samples 
of the signal in the frequency domain. These samples are found by 
applying a discrete Fourier transformation to the time samples of the 
signal or by using a filter bank. The samples of the spectrum can be 
uniformly or nonunifonnly spaced. 

Many array processing techniques use thi: concept of the signal 
subspace. The signal subspace is the span of the location vectors of 
the array for fixed directions-of-arrival (DOAs). Since each location 
vector is a function of frequency, the signal subspace depends on 
the frequency of the observation. For wideband signals, the signal 
subspaces at different frequencies do not overlap, and as a result, 
the observation vectors at the frequency bins cannot be directly 
added to each other. Wang and Kaveh [ l l ]  propose focusing of 
the observation vectors. Focusing involves transforming the signal 
subspaces at different frequency bins into a predefined subspace 
(called the focusing subspace). They choose an arbitrary frequency, 
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say, the center frequency of the spectrum of the signals, and transform 
the subspace at each frequency bin into the subspace created by the 
span of the location vectors at the focusing frequency. Then, they 
use a high-resolution algorithm such as MUSIC [SI to estimate the 
DOA’s of the sources. They show that focusing reduces the resolution 
threshold signal-to-noise ratio (SNR), which is defined as the SNR 
for a prescribed probability of resolution. They also show that if 
the integral of the signal covariance matrix taken over the frequency 
spectrum is full rank, the method can be applied to coherent signal 
localization. Hung and Kaveh [5] use a unitary variant of the CSM 
algorithm to avoid the focusing loss. They use the center frequency 
for focusing. 

Swingler and Krolik [9] prove that for a single-source scenario, it is 
possible to have an unbiased estimate of the DOA’s if the centroid of 
the source spectrum IS selected as the focusing frequency. In [lo], we 
showed that for multiple sources, the CSM algorithm cannot provide 
unbiased estimates of the DOA’s. In this work, we propose a method 
to select the focusing subspace. The method is based on minimizing 
a subspace fitting error. The subspace fitting error for each frequency 
bin is defined as the distance between the focusing matrix and the 
transformed location matrix. Later, we minimize a tight bound to the 
error. The simulation results show that using the method proposed 
here reduces the resolution threshold SNR and the bias of the DOA’s 
estimates. 

B. THE CSM ALGORITHM 

Consider an array of p sensors exposed to q < p far-field wideband 
sources. The output of the sensors in the frequency domain is 
represented by 

(1) 

where s ( f )  and n(f)  are the Fourier transforms of the signal and 
noise vectors, and A(f, 19) = [a(f, 0,) . . a(f, e,)]  is the full-rank 
p x q matrix of location vectors. It is assumed that the signal and 
noise samples are independent identically-distributed sequences of 
complex Gaussian random vectors with unknown covariance matrices 
S(f) and a21, respectively. With these assumptions, the covariance 
matrix of the observation vector at the frequency f, is given by 

(2) 

where the superscript H represents the Hermitian transposition. 
For simplicity of notation, we suppress the frequency variable and 
represent R(f,) by R,, A(f,,O) by A,, and so on. 

The CSM algorithm 1111 is based on forming new observation 
vectors y, such that 

x ( f )  = A ( f ,  @)a + n(f) 

W,) = A(f , ,@)S( fJ )AH(f , ,@)  + 2 1  

Y, = T,x, (3) 

where the T, ’s are called the focusing matrices. In the unitary variant 
of the CSM algorithm [5], the T,, j = 1,. . . , J are selected from 

min IIAo - T,AL,II, 
T, 

subject to TYT, = I 
(4) 

where 11 . 11 is the Frobenius matrix n o m  [4]. The solution to this 
minimization is given by [4], [SI 

T, = V,Wf (5) 

where V, and W, are the left and the right singular vectors of 
AoAy. In (3, A, and Ao are assumed to be known. In practice, 
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