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Abstract 

Acceleration of the energy transition requires increased mining of materials. An important material for the 

energy transition is nickel, used in the stainless steel required for all energy infrastructure and an 

important component for both stationary batteries and batteries used in electric vehicles. Previous 

research has been done on the global nickel requirements for the energy transition at a high level of 

aggregation. In this thesis, exploratory system dynamics modelling and analysis was used to assess the 

resilience of the nickel supply chain and its nexus with the energy system at the level of individual mines.  

 

The development of the global nickel supply chain, and its energy requirements and greenhouse gas 

emissions, was modelled and explored between 2015 and 2060 under different disruption scenarios, 

sustainability policies and uncertainties. A nickel demand of 6 - 18 million tonnes per year is projected by 

2060 for the BAU scenario, with projections up to 38 million tonnes per year in the scenarios that aim to 

limit global temperature increase to 1.5 °C. The main contributors to this large demand are electric vehicle 

batteries. The nickel system is conditionally resilient to the energy transition, given sufficient exploration 

and annual capacity increase. To increase the resilience of the nickel system, policies that support 

innovation in battery material composition and lifetime and good end of life waste management of 

batteries can play an important role.  

 

Modelling the nickel supply chain at mine level leads to different behaviour compared to previous 

research where mines were aggregated. Insights obtained from the detailed modelling in this thesis 

include a higher demand than previously projected; the possibility of the average ore grade increasing 

over time as mines with lower ore grades are decommissioned; average final energy requirements that 

can decrease, increase or increase rapidly depending on a varying average ore grade, a varying 

composition of processing methods and a varying composition of by-products; average energy costs that 

differ depending on the projected electricity mix in the countries containing deposits; and a reduction in 

end of life nickel recycling rate for most scenarios due to an increasing share of batteries.  

 

The most important contribution of this thesis is not in the data and assumptions, but in the model itself, 

which can be adapted and refined in further research, where more stakeholder input is included, to make 

the outcomes more robust and useful for decision making. Other important avenues for further research 

include determining how much exploration is possible and how quickly mining capacity can be increased. 
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1. Introduction 

To prevent irreversible environmental damage, one of the most important challenges of this century is the 

mitigation of climate change. To limit global temperature increase to 1.5 °C above pre-industrial levels, 

annual CO2 emissions should be reduced to zero by 2050 (Rogelj et al., 2015). This can be realised 

through acceleration of the energy transition (ET); a transition from conventional energy sources, mainly 

fossil fuels, to a low-carbon system. However, the ET requires radical changes that can have far reaching 

impacts due to the interconnectivity of the energy system with other systems.  

One aspect of the ET that is often underestimated is the interconnection between the energy system and 

the material sector, the so-called energy-material nexus (Watari et al., 2019). The material sector is very 

energy-intensive, but at the same time many (scarce) materials are required for (renewable) energy 

infrastructure. It is important to consider whether supply can meet demand, especially in a fast-paced ET. 

This can be understood in the context of supply chain resilience, which is defined as ‘the capacity to 

supply enough of a given material to satisfy the demands of society, and to provide suitable alternatives if 

insufficient supply is available’ (Sprecher et al., 2015, p.2). The ET is a disruption that can potentially 

impact the resilience of material supply chains, thereby negatively impacting society. In addition, mining 

and processing of materials can lead to undesired externalities in the form of social and environmental 

impacts. These impacts should be considered and minimised for the ET to be as sustainable as possible. 

Recently, an increasing number of authors have assessed material requirements of the ET, covering 

different locations, time scales, materials, system components and energy scenarios. 29 of these papers, 

with a global scope covering multiple materials and components, are summarised in appendix A. Most 

papers provide an estimate of future material demand based on expected energy demand and changes in 

energy mix outlined in various scenarios. The general conclusion of the papers is that the ET can be 

hampered by material availability and that it is important to increase recycling to meet growing demand. 

 

There is also research that focuses on specific materials needed for the ET. This includes research on 

copper (Auping, 2011; Auping et al., 2012; Harmsen, 2013), lithium (Grosjean et al., 2012; Kushnir & 

Sandén, 2012), platinum (Elshkaki, 2013), dysprosium (Hoenderdaal et al., 2013), neodymium (Gloeser-

Chahoud et al., 2016), tellurium (Houari et al., 2014; Bustamante & Gaustad, 2016), indium (Stamp et al., 

2014; Choi et al., 2016) and cobalt (Van der Linden, 2020). A benefit of focusing on a single (or a limited 

number of) material(s) is that more in-depth research can be done, leading to a more detailed 

representation of market behaviour. A drawback of such a narrow focus is that certain system information 

can be lost. To reduce information loss, it is important to consider by-products and potential substitutes. 

 

A material for which not much in-depth research was found is nickel, even though it is important for the 

energy system. It is used in the stainless steel required for all energy infrastructure and it forms a large 

share of many battery types, both stationary and in Electric Vehicles (EVs) (Nickel Institute, n.d.; BNEF, 

2019). Nickel was also identified as a potential bottleneck for the ET by multiple papers in appendix A.  

 

Past research on nickel stocks and flows includes the following: Schmidt et al. (2016) conducted a static 

Material Flow Analysis (MFA) of nickel and cobalt in lithium-ion batteries; Elshkaki et al. (2017) developed 

scenarios for future global nickel supply and demand and the associated energy and water use, but did 

not focus specifically on demand for the energy system; Amit & Venugopal (2018) and Golroudbary et al. 

(2019) used System Dynamics (SD) modelling to assess lithium-ion batteries; and Van der Linden (2020) 

included nickel in her SD model on cobalt in which she focused on EVs and battery storage.  



12 

However, previous dynamic models assessed global nickel stocks and flows at a high level of 

aggregation, in which a single ‘global mine’ was included. In this thesis, the nickel supply chain is 

modelled at a more detailed level in which regions, countries and individual mines and their 

characteristics are considered. A new database on nickel resources (Mudd, 2020) that includes i.a. 

location, principal processing method, ore grade and by-product composition of (potential) projects, 

makes it possible to create a detailed nickel model that is geographically and technologically specific. 

 

There is a large heterogeneity across mines, which can lead to situations where the aggregated system 

behaves differently than the disaggregated system. These dynamics are interesting to capture, to obtain a 

better picture of potential future developments of nickel demand and supply, related sustainability impacts 

and the overall resilience of the system, as well as the implications for the ET. Furthermore, although 

impacts are visible at a global level, decisions are generally made at a regional level or lower. A clearer 

picture of regional differences can therefore better facilitate decision making, increasing the usefulness of 

the model for stakeholders. 

 

The goal of this thesis is to explore the development of the nickel supply chain and its externalities (in 

terms of energy use, greenhouse gas (GHG) emissions and by-product production), as well as its 

resilience under various disruption scenarios, including the ET, between 2015 and 2060. The impacts of 

certain sustainability policies and other key uncertainties, are also considered. The nickel supply chain is 

explored with the following research question and sub questions: 

 

How may the global nickel supply chain and its externalities develop between 2015 and 2060 under 

different disruption scenarios, sustainability policies and key uncertainties?  

 

● What is the range of possible nickel demand between 2015 and 2060 based on various energy 

system scenarios for electricity generation, road transport and electricity storage? 

● How resilient is the nickel system to changes in demand due to the ET and substitution and 

changes in supply due to resource depletion and disruptions in dominant supplying countries? 

● What are the impacts of end of life (EoL) waste management strategies and policies to reduce 

forward supply chain losses and increase EV battery lifetime? 

● What are other key uncertainties influencing the development and resilience of the nickel system?  

● How do the results compare to historic developments and other model results in literature?  

 

The outcomes of the model and findings of this thesis are the results of a first attempt of SD modelling of 

global material flows at mine level and a contribution to the growing literature on material impacts of the 

ET with a focus on resilience. The model and the findings can be useful for governments and companies 

interested in accelerating the ET in a sustainable way, as well as for actors in the mining industry, 

especially the nickel industry. 

 

In the following chapters, first, the research methods are described, including the theoretical framework, 

the type of modelling, the model structure and data sources, verification and validation, and the 

experimental set-up. Then, the results are presented, structured according to the research questions. 

Next, the research questions are answered in a conclusion and the findings are discussed, including the 

societal and academic relevance and limitations and avenues for future research.  
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2. Methods 

In this chapter, first some theoretical background information is provided on the resilience framework 

used in this thesis. Then, the main method, Exploratory System Dynamics Modelling and Analysis 

(ESDMA), with elements from Agent Based Modelling (ABM), is described. This is followed by a 

description of the model structure and data sources and a section on model verification and validation. 

Finally, the experimental set-up is described.  

 

2.1 Resilience framework 

For assessing supply chain resilience, a framework by Sprecher et al. (2015) was used. As stated in the 

introduction, resilience refers to the capacity of a supply chain to meet the demand for a certain material. 

A system with high resilience undergoes minimal disturbance or is able to recover from large changes in 

demand or potential supply disruptions in a reasonable time frame.  

 

Sprecher et al. (2015) describe different types of disturbances, distinguishing between supply 

disturbances and demand disturbances that can be either slow or fast. They also discuss three important 

aspects of resilience; resistance, rapidity and flexibility, as well as mechanisms that can increase 

resilience. These are shown in figure 2.1. 

 

 
Figure 2.1: Types of system disturbances, important aspects of resilience and mechanisms that can increase 

resilience, both near the start of the supply chain (purple) and near the end of the supply chain (blue). Created with 

information from Sprecher et al. (2015).  

 

On the left-hand side of figure 2.1, possible disturbances are categorised based on speed of impact 

(whether it occurs in the long term or in the short term) and the part of the supply chain where the impact 

takes place (supply or demand). On the supply side, slow disturbances include the gradual depletion of 

high-grade ores and protective policies, such as taxes and export quotas. Fast disturbances include 

natural or anthropogenic disasters, such as floods or explosions, and (geo)political issues, such as armed 

conflicts, miner strikes or export bans (Sprecher et al., 2015). 
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On the demand side, fast disturbances include disruptive changes such as the introduction of a new 

popular product or a novel way of making a certain product. An economic crisis and/or a pandemic, such 

as the recent Corona crisis, can also lead to relatively fast changes in demand. Slow disturbances are 

often the result of long-term socio-technical trends, such as the ET (Sprecher et al., 2015). 

 

The ET is a gradual process; however, the pace of this transition determines the level of disturbance in 

material supply chains and in turn, the resilience of the supply chains determines how well supply can 

keep up with the increasing demand and to what degree the speed of the transition may be hampered. An 

important issue is whether mining activities, which usually have long time horizons, and recycling 

activities, can be scaled up fast enough to match increasing demand (Vesborg & Jaramillo, 2012). This 

makes material aspects one of the key risks for the pace of the ET.  

 

The middle of figure 2.1 shows the three important aspects of resilience and the right-hand side shows 

the mechanisms that can increase resilience. Diversity of supply and stockpiling are supply side 

mechanisms and they are explained in more detail in section 2.3.2. Feedback loops through the price 

mechanism, material substitution and changing product properties occur later on in the supply chain, and 

they are described further in section 2.3.1.  

 

Often the supply chains of bulk materials, like nickel, are more resilient than those of minor metals. This is 

because minor metals are often mined as a by-product and thus their supply is driven less by demand 

dynamics (Sprecher et al., 2017). However, the sheer size of the ET means there may also be a risk for 

bulk materials (Kleijn & van der Voet, 2010).  

2.2 Exploratory System Dynamics Modelling and Analysis 

The main method used in this thesis is ESDMA, with the addition of ABM elements. ESDMA combines 

SD and Exploratory Modelling and Analysis (EMA). SD is a modelling approach used to describe and 

simulate complex systems over time. SD models consist of variables connected by differential and 

integral equations, and often include multiple positive or negative feedback loops and delay structures, 

allowing the simulation of complex behaviour (Forrester, 1958; Forrester, 1961; Forrester, 1995; Pruyt, 

2013). 

 

Other papers that used SD to model material stocks and flows include Auping (2011), Auping et al. 

(2012), Houari et al. (2014), Choi et al. (2016), Gloeser-Chahoud et al. (2016) and van der Linden (2020). 

However, these papers all used SD in its traditional sense, where the system is approached mostly in a 

highly aggregated, top-down, continuous manner (Borshchev & Filippov, 2004).  

 

In this thesis, material stocks and flows were assessed at the level of individual mines, thereby using SD 

in a more hybrid form, by including aspects from Agent-Based Modelling (ABM). ABM is a methodology 

where complex systems are approached in a disaggregated, bottom-up, more discrete manner, where 

global behaviour emerges from the different behaviour of individual entities (Borshchev & Filippov, 2004). 

 

The choice was made to add ABM elements to SD instead of only using ABM, because creating a pure 

ABM would make it more difficult to model supply chains and to incorporate the feedback loops that 

characterise both the development of the energy system and the development of resource flows. In the 

hybrid model used in this thesis, both individual mines and other detailed elements were included, as well 

as more aggregated system processes. 

 



15 

Adding very discrete elements to an SD model can be seen as a limitation, but it can also lead to new 

insights by generating behaviour that could not be generated from a model with a high level of 

aggregation. Other limitations of the approach are inherent to modelling exercises: it includes many 

assumptions, leading to uncertain results.  

 

EMA is an approach that works with the uncertain nature of models. No single model is correct and to get 

a better picture of possible futures, inherent uncertainties should be explored. This can be done using the 

XLRM framework, in which X represents exogenous uncertainties that cannot be easily controlled, L 

refers to policy levers that can be controlled, R represents relationships within the system and M refers to 

performance metrics (Bankes, 1993; Lempert et al., 2003; van der Linden, 2020). This framework is 

shown in figure 2.2.  

 

With EMA, many different model runs are done, all with varying structures, levers and uncertainties. Each 

run leads to different values for the performance metrics over time, creating a vast output space that 

shows the deep uncertainty of the model (Auping, 2018; Van der Linden, 2020). 

 

Adding EMA to SD allows explicit inclusion of deep uncertainty, leading to more realistic results (Auping, 

2018). Many assumptions will still have to be made and the results will not lead to any predictions of the 

future, but they will allow for exploration of multiple possible futures, and especially system behaviours, 

which could lead to useful insights for stakeholders.  

 

 
Figure 2.2: the XLRM framework applied to the nickel system (adapted from van der Linden, 2020). For a more 

elaborate version of this framework applied to the nickel system, see figure B1 (appendix B). 

 

2.3 Model structure and data sources 

The models on copper by Auping (2011) and cobalt by van der Linden (2020) were used as a basis for 

the model in this thesis. Their models were adapted to include demand sectors in the energy system that 

are especially relevant for nickel, a geographically and technologically specific supply structure at mine 

level, and a more detailed price structure suitable for determining the economics of multiple mines. 

 

Two important parts of the nickel system are the demand and the supply system. These sub-systems are 

connected through price dynamics and together this leads to certain sustainability impacts. Figure 2.3 

shows the complex relationships between energy, materials and the economy through multiple feedback 

loops in a Causal Loop Diagram (CLD). These are the main relationships included in the nickel model. 

 

In figure 2.3, the impact of more renewables in the energy mix on the energy price is shown with a 

dashed line and a question mark because it is highly uncertain and the sign can change over time. In the 

model various scenarios are assumed. This is described in more detail in section 2.3.3. A carbon tax is 

included because this is part of the ET scenarios included in this thesis. 
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Figure 2.3. CLD of the energy-material nexus. Not all feedback loops are included in this representation. Those that 

are, are elaborated on below. B = balancing = negative feedback. R = reinforcing = positive feedback.  

 

● B1: Material supply balancing loop: Material scarcity leads to a higher price for that material, which leads 

to a higher profit for mining companies and the possibility to extract more expensive resources, which leads 

to more supply and less scarcity. 

● R1: Energy-material nexus reinforcing loop A higher material price leads to a higher profit for mining 

companies and the possibility to extract more expensive resources. However, this requires more energy, 

which requires more materials and leads to more material scarcity, further driving up the material price. 

● B2: Energy transition balancing loop: More GHG emissions leads to increased efforts to accelerate the 

ET which leads to an increased share of renewables and EV’s, which leads to less GHG emissions. 

● R2: Anthropogenic footprint reinforcing loop. More GHG emissions lead to increased efforts to 

accelerate the ET which leads to an increased share of renewables and EV’s. This then leads to more 

installed energy and battery capacity, which leads to further increased GHG emissions (although at a lower 

rate than if energy had been obtained from fossil fuels and Internal Combustion Engines (ICE)). This does 

not apply to Bio Energy with Carbon Capture and Storage (BECCS), because this can lead to net negative 

emissions (Pehl et al., 2017). 

● B3: Material demand balancing loop: For the ET, more renewables and EVs are required, which leads to 

higher material demands and potential material scarcity. This in turn can hamper the ET. 

● R3: Energy transition reinforcing loop: For the ET, more renewables and EVs are required, which leads 

to higher material demands and potential material scarcity, driving up the material price. This leads to a 

higher profit for mining companies and the possibility to extract more expensive resources. However, this 

leads to more GHG emissions, which can lead to increased efforts to accelerate the ET. 

● B4: Carbon tax balancing loop: More material extraction leads to more GHG emissions, which leads to 

more carbon tax and therefore higher costs. This in turn leads to a lower profit and less material extraction. 

● R4: Carbon tax reinforcing loop: This is the same loop as B4, except that higher material costs also lead 

to a higher material price, which leads to a higher profit and more material extraction. In the end it is the net 

effect of B4 and R4 that counts. 
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In the model, demand dynamics, supply dynamics, price dynamics and impacts are split into four sub-

models. The structure of these sub-models and data sources are described below and summarised in 

figure 2.4. The complete structures of each sub-model are shown in appendix B. 

 

 
Figure 2.4: overall model structure and data sources. Demand, supply, price and impacts are each a sub-model of 

the total model. RoE = Rest of the Economy. Further details are shown in figures 2.5, 2.13 and 2.20. Note: not all 

data sources are shown in this figure, only the largest contributing sources. Other sources are described in the text. 

2.3.1 Demand sub-model 

Nickel is an important metal for society. It is used in stainless steel (70%), various other alloys (16%), 

plating (8%) and batteries (5%) (Nickel Institute, n.d.). Nickel is used in many different end-use sectors, 

including the energy system which is expected to undergo significant change in the ET.  

 

Material demand can be modelled in two ways: top-down and bottom-up. Top-down models are based on 

general GDP developments. Bottom-up models are based on specific end-use sector developments 

(Auping, 2011; Van der Linden, 2020). In this thesis, the focus is on nickel demand for the ET, so various 

parts of the energy system (specifically, electricity generation, storage and vehicles) were modelled in a 

bottom-up way and the RoE was modelled in a top-down way. 

  

The exact bottom-up demand components included in the model are shown in figure 2.5, as well as the 

scenarios used to determine their input data. Only components in the power sector, storage and road 

transport were considered, because of data availability and because these are the sectors that are 

expected to change most in the ET through increased electrification of the energy system (Blok & 

Nieuwlaar, 2021). The selected components, including data on nickel intensity and lifetime and the 

position of components and their relationships in the energy system, are described in appendix C. Input 

values for the demand sub-model are described in appendix F. 
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Figure 2.5: components considered in the bottom-up modelling of the energy system and the scenarios used to 

determine their input data. For the components in the purple boxes, only nickel in stainless steel was assessed. For 

the components in the orange boxes, only nickel in batteries was assessed. For the RoE, nickel in stainless steel and 

an ‘other’ category were assessed. PV = photovoltaics, CCS = Carbon Capture and Storage, PHS = pumped hydro 

storage, CSP (TES) = Concentrated Solar Power (Thermal Energy Storage), V2G = Vehicle to Grid, VRE = Variable 

Renewable Energy, NCA = Nickel Cobalt Aluminium battery, NMC = Nickel Manganese Cobalt battery (the numbers 

indicate the relative shares of the three components), HEV = Hybrid Electric Vehicle, PHEV = Plug-in Hybrid Electric 

Vehicle, BEV = Battery Electric Vehicle, FCV = Fuel Cell Vehicle, GDP = Gross Domestic Product. 
 *Hydrogen is only considered in relation to its use in road transportation.  

 

The main data source for the demand scenarios is the database for Shared Socioeconomic Pathways 

(SSPs). SSPs were created by the climate change research community for use in Integrated Assessment 

Models (IAMs) to analyse the impacts of climate change. The different SSPs describe alternative future 

socio-economic developments up to 2100, including changes in population, GDP and energy demand 

(Riahi et al., 2017; IIASA, 2018). In this thesis, three SSP pathways that conform to the 1.5 °C 

temperature increase target (SSP1-19, SSP2-19 and SSP5-19) were selected, as well as a Business as 

Usual (BAU) pathway (SSP2-baseline). These scenarios are described in appendix D1.  

 

The SSPs were used to model changes in electricity generation and generation capacity for each of the 

components in figure 2.5. CCS was also included for fossil fuel and biomass-based generation. The 

structure for determining generation capacity is shown in figure 2.6.  

 

 
Figure 2.6: structure for determining electricity generation capacity. Blue = constant, orange = switch, green = output.  
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To model changes in storage and vehicles, additional scenarios were used. Storage requirements were 

based on the share of VRE derived from the SSPs and the relationship between VRE share and storage 

as a fraction of energy demand adapted from Zerrahn et al. (2018). The amount of storage required also 

depends on the implementation of other flexibility measures, such as grid expansion, demand response, 

flexible dispatch and curtailment (Brown et al., 2018), so three flexibility scenarios were created. These 

scenarios and further details on storage are described in appendix D2.  

 

The types of storage included in the model are PHS, CSP TES, V2G storage, where EVs are used for 

storage, and stationary battery storage (SBS). It is assumed that most storage requirements are covered 

by PHS, CSP TES and V2G (IRENA, 2017) and that the remaining requirements are covered by SBS. 

Additional SBS demand from behind the meter applications is also included. Some of the SBS is 

assumed to come from the production of new batteries and some is assumed to come from the 

repurposing of old EV batteries. Battery market shares were based on BNEF (2019). The structure for 

determining energy storage is shown in figure 2.7.  

 

 
Figure 2.7: structure for determining storage. Blue = constant, purple = lookup, orange = switch, green = output. 

 

For vehicles, two scenarios were created, an electrification scenario, considering a transition to 

predominantly BEVs, based on BNEF (2019) and Van der Linden (2020), and a hydrogen scenario, 

considering a transition where a significant number of FCVs are also created, based on HC (2017). These 

are quite ambitious scenarios, so for the BAU pathway, vehicle shares were based on the Reference 

Technology Scenario (RTS) from the IEA (2017a) and the number of FCVs was reduced based on IRENA 

(2018). The scenarios are described in appendix D3. The structure for determining vehicle battery 

demand is shown in figure 2.8.  
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Figure 2.8: structure for determining vehicles. Blue = constant, purple = lookup, orange = switch, green = output. In 

addition to the transport scenario switch, an improved battery lifetime switch is included (see section 2.5) 

 

Nickel demand for each of the sectors was determined by multiplying the required generation capacity, 

storage and vehicles by their respective nickel intensities. The nickel intensity was assumed to change 

over time in the opportunity cost paradigm (OCP; described below) due to material efficiency changes. 

The structure for determining nickel demand is shown in figure 2.9 for the energy system and in figure 

2.10 for the RoE.  

 

 
Figure 2.9: structure for determining nickel intensity and demand of components. Blue = constant, green = output. 



21 

 

 

 
Figure 2.10: structure for determining nickel demand for the RoE (top down) and total nickel demand before the 

influence of price effects. Green = output. 

 

Adding the nickel requirements for electricity generation, storage, vehicles and the RoE together leads to 

the total functional nickel demand. However, this is not the final demand because price dynamics can still 

influence it. Two different paradigms are included in the model, the Fixed Stock Paradigm (FSP), in which 

no exploration occurs and nickel demand is not influenced by price dynamics and the OCP, where 

exploration does occur and nickel demand is influenced by price dynamics. These paradigms are 

described in more detail in appendix E1. 

 

The following three price effects were included in the model: price elasticity, substitution and intensity 

changes. These three effects are similar but there are also some distinct differences. Price elasticity leads 

to the discontinuation of a certain portion of demand, whereas substitution leads to the replacement of a 

certain option and intensity reduction reflects savings within a certain option. What all price effects have in 

common is the balancing effect they have on the system, thereby increasing resilience. This is illustrated 

in the CLD in figure 2.11. The structure for the price effects is shown in figure 2.12. More details on these 

price effects are described in appendix E. 

 

 
Figure 2.11: CLD of price related mechanisms with a balancing effect on the system, thereby increasing resilience. 

B1 = nickel intensity improvement balancing loop; B2 = price elasticity of demand balancing loop; B3 = substitution 

balancing loop. 
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Figure 2.12: price effect structure. Blue = constant, orange box = switch, orange = key uncertainty, green = output. In 

addition to the paradigm switch, a radical innovation switch is included (see section 2.5). 

2.3.2 Supply sub-model 

Current measured, indicated and inferred nickel resources are estimated to be about 334 million tonnes 

(Mudd, 2020). For the definitions of the different types of resources, see CRIRSCO (2019). Deposits and 

operating mines are located in 45 different countries and there are also deep-sea deposits in international 

waters (Mudd, 2020). Figure G1 in appendix G shows the global distribution of nickel resources and 

reserves, as well as the ore type. Nickel is a major metal that functions primarily as host metal. This 

means it is usually the main product of a certain mine, with only ~5% produced as a by-product from 

platinum mining, a figure that has remained quite stable over the years (Nassar et al., 2015).  

 

There are two main ore types from which nickel can be extracted, sulfides and laterites. Sulfides require 

less energy to process and have therefore been preferred historically, but they are less abundant, leading 

to a relative increase of laterite mining over time. Laterites are mainly found in tropical regions and mined 

from Open Cut (OC) mines, while sulfides are mainly found in colder areas and mined from Underground 

(UG) mines (Mudd, 2010; Crundwell et al., 2011). 
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The main data source for the supply system is a database created by Mudd (2020), which gives a 

detailed description of global nickel resources and reserves and mentions various attributes of different 

deposits, including ore type, location, mine type, operating status and principal processing method. The 

supply components included in the model are shown in figure 2.13. Input values for the supply sub-model 

are described in appendix H. 

 

 
Figure 2.13: supply components considered in the model. Based on Mudd (2020). DSM = Deep Sea Mining, C&M = 

Care & Maintenance, HM = Hydrometallurgical, PM = Pyrometallurgical, HPAL = High Pressure Acid Leaching, HL = 

Heap Leaching, ATL= Atmospheric Leaching, DNI = Direct Nickel, RKEF = Rotary Kiln Electric arc Furnace, BF = 

Blast Furnace, DSO = Direct Shipping Ore.  

 

Important parts of the supply model include the resources, the production capacity and the supply chain, 

including different processing methods. If the OCP is used, exploration occurs. In the model, exploration 

is based on a historic element, a price-based element and an element based on expectations of the ET. 

Once resources have been discovered, they can be turned into probable or proved reserves when they 

become economically extractable. The structures for exploration and the conversion of resources to 

reserves are shown in figure 2.14 and 2.15 respectively and they are described in further detail in 

appendix G1.1 and appendix G1.2 respectively.  

 

 

 
 

Figure 2.14: structure for exploration. See appendix G1.1 for the formula. Orange = key uncertainty 
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Figure 2.15: structure for resource to reserve conversion. The reason for this extended structure with resources and 

reserves split into classes is explained in appendix G1.2. Blue = constant, orange box = switch, orange = key 

uncertainty. The forward supply chain loss reduction switch is explained in section 2.5. 

 

Based on the reserves, a certain mining capacity is built. If this is in a new area, it is referred to as 

greenfield capacity. If it is an addition to an existing mine, it is referred to as brownfield capacity. After a 

certain development or upgrading time, a mine becomes operational if it is still profitable. Production 

capacity increase is described in further detail in appendix G2.2 and its structure is shown in figure 2.16. 

 

 
Figure 2.16: structure for creating new brownfield or greenfield capacity. Blue = constant, orange = key uncertainty. 

The global maximum capacity increase percentage limits total annual capacity increase and leads to selection of 

projects with the highest investment attractiveness.  
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If a certain mine is no longer profitable it is mothballed, which means it goes into C&M where operation is 

ceased, until it becomes profitable again or is decommissioned. A mine doesn’t go in and out of C&M 

immediately when profitability changes. This depends on the degree and length of time of the 

(un)profitability. The mechanism for mothballing is described in further detail in appendix G2.1 and its 

structure is shown in figure 2.17. 

 

 
Figure 2.17: structure for operating and mothballed capacity. Three key uncertainties relevant for mothballing are not 

visible in this representation. These are the average maximum profit deficit as percentage of investment, average 

minimum profit surplus as percentage of investment and average maximum mothball time (See appendix H for a 

description of these variables). 

 

Operating capacity is used to mine nickel. The structure for mining and the rest of the forward nickel 

supply chain is shown in figure 2.18. A switch was included in the model with the option to mine 

resources in the period when a mine is unprofitable but not mothballed yet. Once nickel has been mined, 

it is processed using different processing methods. 

 

 
Figure 2.18: structure for the forward nickel supply chain. This includes mining and processing of reserves, as well as 

the mining of resources when the option to mine resources switch is turned on. Blue = constant, orange = switch. In 

addition to the option to mine resources switch, a supply disruption switch is included (see section 2.5). 
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Processing capacity differs from mining capacity, but this is not included in the model. For further details, 

see appendix G2. The selection of a suitable processing method is based i.a. on deposit characteristics, 

such as ore type (Kyle, 2010). Figure 2.19 shows different processing routes for different ore types, which 

leads to different products, including class I products (> 99% nickel) required for batteries and class II 

products (<99% nickel) used mostly in stainless steel (Schmidt et al., 2016). The processing methods are 

described in more detail in appendix G3.1. 

 

 
Figure 2.19: nickel sources (purple), important primary production routes (orange), products (grey) and the 

applications of these products (blue). Nickel content of the products is added in brackets. Adapted from Schmidt et al. 

(2016) with additional information from SMM (n.d.), Eckelman (2010) and Nickel Institute (2020). EAF = Electric Arc 

Furnace. 

 

After processing, nickel ends up in the finished nickel stock. Here nickel can be stockpiled, however, this 

was not included in the current version of the model. Stockpiling can improve resistance by acting as a 

buffer for sudden price and/or supply changes (Sprecher et al., 2015).  

 

When it comes out of stock, the nickel is used to manufacture final products, where some of the nickel is 

lost, some becomes primary scrap and the rest ends up in final products in use. Once a product’s lifetime 

has been reached, it is discarded and the nickel is lost or becomes secondary scrap. Nickel scrap can be 

recycled back to the refined stock in a circular process. More details on losses and recycling are 

described in appendix G3.2. 

 

Recycling increases the diversity of supply and thereby the resilience of the system. Diversity of supply 

also increases with a larger number of mines in different countries and alternative ways of mining, such 

as DSM and illegal mining operations (Sprecher et al., 2015). If supply comes from multiple sources, the 

impact of one source being disrupted is less. The structure for the reverse nickel supply chain is shown in 

figure 2.20.  
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Figure 2.20: structure for the reverse nickel supply chain. Blue = constant, orange = switch, green = output. EoL RR = 

End of Life Recycle Rate, EoL CR = End of Life Collection Rate, EoL PR = End of Life Processing Rate. The EoL 

management of batteries switch is explained in section 2.5. 

 

 

2.3.3 Price sub-model 

The price system consists of the economics around nickel, including costs, price and profit. The different 

types of costs and the factors that influence them and the methods for determining price and profit are 

summarised in figure 2.21 and described below and in appendix I. Input values for the price sub-model 

are described in appendix J. 

 

The cost structure is shown in figure 2.22. Marginal costs were determined based on energy costs for 

mining, energy costs for processing and refining, royalties, reagents and other costs, carbon costs and 

by-product credits. Capital costs were based on capacity and fixed costs were based on capital costs. 

This is explained in more detail in appendix I1.1. 

 

As part of the energy-nickel nexus, attention is specifically paid to the energy requirements for nickel 

production, which influences both energy costs and carbon costs. The main source used to determine 

energy requirements for mining, processing, refining and transportation was Eckelman (2010), who 

included electricity and fuel use for mining, milling and beneficiation per tonne of ore and electricity and 

fuel use for primary extraction and refining for different processing methods. 
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Figure 2.21: Economics included in the nickel model. Created with information from Bleiwas (1984), Eckelman 

(2010), Dry (2013) and STRADE (2016). 

 

 
Figure 2.22: cost structure for nickel. Blue = constant, orange box = switch, orange = key uncertainty, green = output. 

The switch for price scenario and the switch for processing energy allocation method are described below. 
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A variable that has an important influence on energy use is ore grade. Data on average ore grades was 

provided by Mudd (2020) for current known resources. For future resources, ore grade was assumed to 

decay exponentially based on van der Linden (2020). This is explained in more detail in appendix I1.1. 

The structure for determining ore grade is shown in figure 2.22. 

 

 
Figure 2.23: structure for nickel and by-product ore grades. Blue = constant, orange = key uncertainty 

 

Energy use for processing was determined based on the principal processing method of a certain mine. 

Two methods for processing energy allocation, one based on mass and one on full allocation to nickel, 

were used to determine energy use for class II nickel products. For more details, see appendix I1.3. 

 

In addition to energy use, an energy price is needed to determine energy costs. In the model, a distinction 

was made between fuel and electricity price. The fuel price is highly uncertain and is estimated based on 

three different fuel price scenarios, one with an increasing price, one with a decreasing price and one that 

fluctuates between the others. These scenarios are shown in figure I4 in appendix I1.4. 

 

The electricity price was based on the fuel price and the renewable share of the energy mix in the region 

where a specific mine is located. It was assumed that as the renewable share increased, the margin 

between electricity price and fuel price would become increasingly smaller, with the electricity price 

becoming cheaper at high penetrations of renewables. For more details, see appendix I1.4. 

 

Many nickel mines can also produce by-products. If a by-product leads to a higher potential additional 

revenue than it leads to potential additional costs, it is recovered from the deposit and increases the 

profitability of a certain mine. The mining costs are then allocated between nickel and the by-products 

based on one of three allocation methods: mass-based allocation, price-based allocation or allocation 

based on Exergy Replacement Costs (ERC).  
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Details on the by-products, how they are included in the model and the allocation methods are described 

in appendix I2. Because there is a lot of uncertainty surrounding the inclusion of by-products, an 

additional switch was included in the model with the choice to exclude by-products. The structure for by-

product allocation is shown in figure 2.24. 

 

 
Figure 2.24: structure for by-product allocation. Blue = constant, orange = switch, green = output. 

 

Once the marginal costs for a certain deposit are determined, the average marginal costs of all existing 

mines (operating and mothballed) are used together with the degree of nickel scarcity to determine price. 

Two price calculation methods were included in the model, one based on days of demand in stock and 

one based on availability and consumption. These price calculation methods are described in more detail 

in appendix I3.2. The structure for determining price is shown in figure 2.25. 

 

 
Figure 2.25: structure for determining price. Blue = constant, orange = switch, green = output. 
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A distinction was made between three different types of profit; current profit, current potential profit and 

future potential profit, to determine different processes in the model. Current profit is based on actual 

mining based on operating capacity and reserves, the marginal cost of a certain deposit and the average 

periodic nickel price at a certain time step. It is used to determine profit deficit, which determines whether 

a certain project should be put into C&M.  

 

Current potential profit is based on potential mining, based on existing capacity (which includes operating 

capacity and mothballed capacity) and reserves, the marginal cost of a certain deposit and the average 

periodic nickel price at a certain time step. It is used to determine profit surplus, which determines 

whether a certain project should come out of C&M. It is also used to determine whether certain reserves 

should be turned back into resources. The structure for current profit and current potential profit is shown 

in figure 2.26.  

 

 
Figure 2.26: structure for calculating current and current potential profit. Blue = constant, green = output. 

 

Future potential profit is based on future potential new capacity, which is based on measured and 

indicated resources and the average mine operation plan (the time a mine wishes to operate at a certain 

capacity), the forecasted marginal cost of a certain deposit and an investment price premise. It is used to 

determine future potential profitability of different resource segments (see appendix G1.2), which will 

change into reserves if the profit is higher than the minimum profit over investment. It is also used to 

determine profit over investment ranking, which plays a role in determining which projects are invested in 

first to create new brownfield or greenfield capacity.  

 

Finally, it is used to determine normalised future potential profit, which is used to increase exploration 

efforts in a certain area where money is expected to be made. The structure for future potential profit is 

shown in figure 2.27 and the structure for exploration increase, which also includes the impact of the 

expectations of the ET, is shown in figure 2.28. Further details on profit are described in appendix I3.3.  
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Figure 2.27: structure for calculating future potential profit. Blue = constant, green = output, orange = key uncertainty. 

 

 

 
Figure 2.28: structure for exploration increase. Blue = constant, green = output. 

 

Profit over investment ranking is not the only factor that plays a role in determining which projects are 

invested in first to create new brownfield or greenfield capacity. Investment attractiveness due to non-

profit based factors is also important. Investment attractiveness is based on many different economic, 

social and environmental factors. An investment attractiveness index was published by the Fraser 

Institute (2020). However, many countries in the database by Mudd (2020) were not included in this 

publication.  

 

Therefore, corruption index (Transparency International, 2020), which has a decent correlation with 

investment attractiveness (see appendix I4) was used as a proxy for investment attractiveness. This was 

combined with profit over investment to come to a final investment attractiveness ranking of projects. The 

structure for investment attractiveness is shown in figure 2.29. 
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Figure 2.29: structure for investment attractiveness. Blue = constant, green = output. 

2.3.4 Impacts sub-model 

Mining has many sustainability impacts, including economic impacts, social impacts and different types of 

environmental impacts. However, due to time and data constraints, the only impact that was considered 

in this thesis was Global Warming Potential (GWP), which represents life cycle GHG emissions in tonne 

CO2eq.  

 

GWP was made dynamic by including an assumed constant component excluding electricity, based on 

various Life Cycle Assessments (LCAs) on nickel, and a component exclusively including electricity, 

which is based on the regional electricity mix as projected by the SSPs. More details on determining the 

dynamic GWP are described in appendix K. The structure for determining GWP is shown in figure 2.30. 

 

 

 
Figure 2.30:  structure for determining GHG emissions. Blue = constant, green = output.  

 

2.4 Model verification and validation 

Model verification and validation are forms of model testing where errors are uncovered and models are 

improved to increase the confidence in their usefulness. Verification consists of testing whether the model 

is coded or simulated correctly. Validation consists of testing whether the model is fit for purpose. This is 

often done in collaboration with the model clients or audience (Pruyt, 2013). Various tests were done 

iteratively throughout the construction of the model. These tests are described below. 

 



34 

For verification, various forms of debugging were applied, both based on errors indicated by the modelling 

software and based on checking the model for additional errors. This includes changing the signs in 

certain equations when the model behaviour did not correspond with what logically should happen, 

adding stocks to prevent simultaneous equations in feedback loops, preventing floating point overflows by 

adding ZIDZ (zero if divided by zero), XIDZ (x if divided by zero), MAX (maximum) and MIN (minimum) 

structures, adjusting formulas in certain flows to prevent stocks from becoming negative, checking to see 

whether fractions add up to 1 and checking the unit consistency of the variables. 

 

Some parts of the model include rather discrete implementations, which strictly speaking should be 

replaced by more continuous alternatives (Pruyt, 2013). However, when working at mine level, the 

implementation of certain discrete elements could not be avoided. Some discrete elements that could 

potentially have been avoided with extra effort, such as the calculation of new generation capacity, were 

also left unchanged because of the relatively minor impact they had on the overall results. However, in 

future adaptations of the model it is beneficial to take another look at all the discrete elements and see 

where these could be improved.  

 

For validation, multiple tests are possible. One form of validation is structural validation, where tests are 

done to see if the model structure and boundaries are appropriate (Pruyt, 2013). The structure is mainly 

based on literature, but some discussion was also done with experts in the mining field, which led i.a. to 

the inclusion of the mothballing dynamics shown in appendix G2.1. 

 

Most of the feedback loops in figure 2.3 were endogenously included in the model, with the exception of 

the impact of material scarcity, GHG emissions and a carbon tax on the ET. The impact nickel scarcity 

may have on the ET is an outcome of the model and GHG emissions, a carbon tax and the ET are major 

global developments that exceed the boundaries of the nickel system in reality too. 

 

Sensitivity analysis and uncertainty analysis were included as part of the EMA methodology. First, 

parameters, functions, structures and boundaries with large impacts on the results were identified by 

changing certain variables and combinations of variables in initial runs of the model. The highly sensitive 

variables were then selected for further analysis and were included as switches and uncertainty ranges in 

the experimental set-up. Extreme conditions tests were also done on the model in the form of disruption 

scenarios. More information on the experimental set-up is given in section 2.5. 

 

Another form of validation is replicative validation, where investigation is done to see if the results of the 

model correspond with historic data or the results of other models. One way of doing this is checking 

whether a certain model can reproduce past real data. However, for the purpose of EMA, models that 

produce a good fit with past data are not necessarily more useful (Pruyt, 2013).  

 

In the case of the present model, the years between 2015 and 2020 could be compared with past 

developments. However, most of the initial values that were used in the model do not correspond exactly 

with the base year 2015 because such accurate past data was not available, especially not at the level of 

detail that was used in the model. Therefore, other forms of validation were deemed more useful here. 

 

The behaviour produced by the model was compared with past behaviour to see if the overall dynamics 

were similar. However, it is important to keep in mind that past data does not guarantee a good fit with 

developments in the future (Pruyt, 2013), especially when transitions, such as the ET occur. The model 

outcomes were also compared with other models in literature. The results of the validation tests are 

discussed in sections 3.4 (structural validation) and 3.5 (replicative validation). 
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2.5 Experimental set-up 

The software used to create the model is Vensim, specifically built for SD modelling (Ventana System, 

2010). The temporal scope of the research is 2015 - 2060. 2015 is used as the base year because it is 

near the centre of the range of years used in the database by Mudd (2020) and most data was available 

for that year. 2060 was used as the final year because beyond that results were deemed too uncertain to 

lead to useful insights. The model is therefore simulated for 45 years. The selected numerical integration 

method is Euler, because of the discrete elements in the model (Pruyt, 2013) and a time step of 0.0625 

was selected because it was the smallest time step that did not lead to computational difficulties. All 

economic data included in the model is in US$2005 unless otherwise specified. 

 

The software used to run the model is Python, using the EMA Workbench package (Kwakkel, 2017). This 

allowed multiple runs with different input values to be done and plotted. Based on the computational 

limitations, 1000 runs were deemed good enough to give a decent picture of the different behaviour that 

can be generated by the model. First 1000 runs were done using the OCP and the electrification transport 

scenario. Most of the results in this thesis are based on these runs. Then an additional 1000 runs were 

done to obtain data for the FSP and another 1000 runs to obtain data for the hydrogen transport scenario. 

Finally, another 1000 runs were done with lower values for global maximum capacity increase.  

 

Different types of uncertainties were included in the model. These uncertainties can be categorized as 

either structural or parametric. Structural uncertainties apply to system boundaries, the conceptual model 

or the computer model structure (Van der Linden, 2020). This includes the underlying paradigm, methods 

for allocation, methods for calculating price, the choice to include by-products and the choice to mine 

resources for a certain period before potentially being mothballed. Parametric uncertainties apply to 

scenarios or parameters in the model. Figure 2.31 shows the different types of uncertainties and the 

methodological choices included in the simulations. 

 

 

 
 

Figure 2.31: uncertainties included in the model. Switches are shown in boxes. *Euler is the numerical integration 

method. 0.0625 is the chosen time step. **These are the parametric uncertainties that are not included as switches in 

the model, but as an uncertainty range. 
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The scenarios in the model were designed to fit into the resilience framework by Sprecher et al. (2015). 

One type of disruption was selected for each of the four quadrants in figure 2.1. These disruptions are 

elaborated on in table 2.1. To be able to assess the impacts of certain disruptions, they were compared to 

a BAU situation which is considered to consist of the OCP, SSP2-baseline, a BAU electrification transport 

scenario and the supply disruption and radical innovation switches turned off. 

 

Table 2.1: Disruption scenarios included in the model. 

Type Disruption Elaboration 

Demand 

Slow Energy 
transition 

The ET is a demand disruption that gradually takes place over time. To represent this 
transition, four different sets of scenarios were included: the SSP scenarios, transport 
scenarios, flexibility scenarios and energy price scenarios. 

Fast Radical 
battery 
innovation 

A radical battery innovation is a demand disruption that can occur relatively quickly when a 
new battery is discovered. In this disruption, a new battery enters the market that doesn’t 
require nickel. This disruption was set to occur twice, once in 2035 and once in 2050, both 
times halving the substitution threshold. 

Supply 

Slow Resource 
depletion 

Resource depletion is a gradual process where resources run out. This can be seen in 
physical terms or in terms of economic extractability. Resource depletion occurs in the FSP 
once current known resources according to Mudd (2020) run out. This is compared to what 
happens in the OCP once an amount equal to current known resources has been mined. 

Fast Disruption in 
key supplying 
countries 

As fast disruption on the supply side, a disruption in key supplying countries was included. 
This disruption was set to occur in 2030 and 2045, impacting the country with the largest 
share of supply at those times, which would then be compromised and stop mining 
activities for a year. 

 

Structural uncertainties and scenarios were included in the model as switches. In the EMA workbench, 

these are referred to as categorical parameters because they consist of a limited number of options. A list 

of the switches included in the model is shown in table M1 in appendix M. Parameters included in the 

EMA workbench are referred to as real parameters as they consist of a range of possible real numbers 

between a minimum and a maximum value. Due to computational limitations, not all parameters in the 

model were given such uncertainty ranges. A selection was made based on the impact of changing a 

variable in initial test runs. This selection is shown in figure 2.30 and in table M2 in appendix M. 

 

In addition to the disruption scenarios, three sustainability policies were included as switches. This 

includes an increase in vehicle battery lifetime, where the lifetime of batteries in EVs is doubled, a supply 

chain loss reduction, where losses along the forward supply chain are halved, and four EoL waste 

management strategies focusing on battery recycling.  

 

In the first three strategies, EoL RR of nickel in batteries is either worse, equal to or better than the 

recycling of other class I products. In the fourth strategy, EoL RR is further improved by annual 

improvements in the EoL CR of batteries. The runs were evaluated based on various performance 

metrics. These are described in table M3 in appendix M.  
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3 Results 
In this chapter, the results are described by assessing the effects of different model runs on performance 

metrics. This is done in the order of the research sub questions. First, demand projections are described. 

Second, the impacts of demand and supply disruption scenarios are covered, starting with the ET and 

followed by radical battery innovation, resource depletion and disruption in key supplying countries. Third, 

the impacts of sustainability policies are described.  

 

The fourth and fifth sub questions are covered in sections on structural validation and on replicative 

validation respectively. In the structural validation, key structural and parametric uncertainties were 

assessed. In the replicative validation, the results were compared to historic developments and other 

model results in literature. New insights are also highlighted in this section. A final section is included at 

the end of this chapter, where the overall impacts on resilience are discussed. 

 

All figures in this chapter only include runs for the electrification transport scenario because of the highly 

uncertain data for the nickel intensity of hydrogen tanks. Figure N1 in appendix N shows some results for 

the hydrogen transport scenario. All figures also only include OCP runs, unless indicated otherwise. 

3.1 Demand projections 

The demand projections for all model runs are shown in figure 3.1, divided over the different SSPs 

assessed in this thesis. This figure shows that an ET to limit global temperature increase to 1.5 °C 

generally leads to much higher nickel requirements than a BAU situation (SSP2-baseline). The density 

plot (right side of the figure) shows the density and range of the runs per scenario in 2060.  

 

 
Figure 3.1: final nickel demand and cumulative final demand per assessed SSP. SSP2-baseline = BAU, the others 

are ET scenarios. 

 

The final demand shown in figure 3.1 includes price effects and excludes postponed demand. Figure 3.2 

shows total functional nickel demand and total substitution, which mostly consists of battery substitution. 

Battery substitution is shown together with demand change due to price elasticity in figure N2 in appendix 

N. The impacts of substitution and price elasticity on demand can be seen by comparing final demand 

with total functional demand, which excludes these price effects. The effect of postponed demand is 

shown in figure N3 in appendix N.  



38 

 
Figure 3.2: total functional nickel demand and total substitution per assessed SSP. 

 

Figure 3.2 shows that substitution increases the higher the total functional demand becomes. The same 

goes for changes due to price elasticity. Substitution starts occurring around 2030 for the ET scenarios 

and around 2040 for the BAU scenario, which also has less substitution. Most substitution is due to the 

substitution of batteries because it was assumed that batteries have the lowest substitution threshold 

compared to other uses of nickel and in some runs radical battery innovation occurs. The forks in the total 

functional nickel demand are caused by battery lifetime assumptions (see section 3.3.3). 

 

There are multiple reasons for the higher nickel demand in the ET scenarios. First, on average renewable 

energy generation technologies and power plants using CCS have a higher nickel intensity than fossil 

fuel-based power plants without CCS (see appendix C1.1). In addition, more installed capacity is required 

for the same electricity output because of the on average lower capacity factors (CF) of renewable energy 

technologies (EIA, 2019a, b). Second, SSP1 and SSP5 both project a higher GDP and a higher GDP per 

capita than SSP2. This means more nickel is projected for the RoE and a larger number of vehicles is 

projected. Finally, the EV share is lower in the BAU scenario. 

 

Figure 3.3 shows the relative impact of the two most important contributors to nickel demand, EV battery 

storage and the RoE. Batteries take over as the largest demand category around 2035 - 2040 for the ET 

scenarios. Nickel demand for electricity generation reaches about 1 million tonnes/year by 2060 for the 

ET scenarios and about 200 thousand tonnes/year for BAU. Nickel demand for SBS is minimal for most 

combinations of SSP, flexibility scenario and EV battery lifetime, and the choice of flexibility scenario has 

a negligible impact on final nickel demand (see figures N4 and N5 in appendix N).  

 

 
Figure 3.3: Nickel demand for vehicle batteries and the RoE. 
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3.2 Disruption scenarios 

In this section, the impacts of the different disruption scenarios on the nickel dynamics are described. 

However, before doing so, the BAU situation without disruptions is covered. This is followed by 

disruptions due to the ET, radical battery innovation, resource depletion and supply disruptions in 

dominant supplying countries. 

3.2.1 Business as usual 

The BAU situation consists of the OCP, SSP2-baseline, an EV share based on the IEA RTS and the 

supply disruption and radical innovation switches turned off. The demand in the BAU situation has 

already been shown in section 3.1 and other performance metrics for BAU are shown in the following 

sections when it is compared with the disruption scenarios. In this section, single run results are shown to 

give a clearer picture of certain dynamics occurring without disruption.  

 

Figure 3.4 shows the results of a single BAU run for price change vs production change. The dynamics 

represent hog cycles. These are cycles where supply surplus and deficit follow each other, leading to 

periods with higher prices and periods with lower prices (Futrell et al., 2019). Such periods can also be 

observed in the historic nickel price (see appendix I3.1).  

 

Figure 3.4 shows a single run and the pattern is different for every run, so no conclusions regarding the 

timing or the severity of high and low prices can be made from this figure, it simply represents the 

behaviour. This shows there already is a certain degree of variability in prices without any disruptions. 

 

 
Figure 3.4: price change vs production change for a single BAU run with base settings.  

 

Other single run results, for the share of processing per technology, the share of operating capacity per 

country, the number of mines producing a certain by-product, and the average periodic nickel price as an 

indicator for resilience for all four assessed SSPs, are shown in appendix N2. These figures are just for 

illustrative purposes to show the type of behaviour the model can produce. 
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3.2.2 Energy transition 

The results in section 3.1 showed that nickel demand increases significantly due to the ET. In this section, 

the impact of the ET on some other key performance metrics is assessed. As the ET is the main 

disruption scenario of interest in this thesis, more performance metrics are assessed here than for the 

other disruption scenarios. This includes the analysis of supply, price, the constituents of price (average 

marginal costs and scarcity), the constituents of marginal costs, and sustainability indicators and 

externalities, such as average ore grade, average final energy use, cumulative GHG emissions and 

cobalt and palladium production.  

 

Higher demand due to the ET also means higher supply is required and this can be seen in figure 3.5, 

which shows nickel mining and cumulative mined nickel. For nickel mining, the hog cycles are visible, 

although it is more difficult to see than in a single run. In some runs, it is rather extreme due to the 

discrete implementation of the model, but when looking at the cumulative mined nickel, it smoothes out.  

 

 
Figure 3.5: nickel mining and cumulative mined nickel per SSP.  

 

Figure 3.6 shows the cumulative mined cobalt and palladium. Overall, the by-products were modelled in a 

highly uncertain way because no supply (other than from nickel deposits) and demand dynamics were 

included to determine their scarcity. Therefore, not much can be said about specific by-products. Possible 

exceptions are cobalt and palladium because 50% of these metals currently depend on nickel mining 

(Nassar et al., 2015), so these metals are more connected to nickel scarcity. 

 

 
Figure 3.6: cumulative cobalt and palladium production from nickel mines per SSP. 
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Primary nickel processing, which shows similar behaviour to nickel mining, with slightly lower values due 

to losses, determines final nickel availability, together with recycling and nickel in stock. Consumption 

forecast, the forecasted (delayed) demand request (final nickel demand + postponed demand), over final 

nickel availability, determines nickel scarcity in the model. Together with average marginal costs, this 

determines nickel price when using the price method based on availability and consumption (see 

appendix I3.2). Nickel price and its two constituents are shown in figure 3.7. 

 

The average price is higher in the ET scenarios and is initially highest for SSP1-19 and eventually for 

SSP5-19. Over the years, and for the different runs, the price ranges between 500 - 90000, 1500 - 

175000, 500 - 140000 and 1500 - 300000 2005$/tonne for SSP2-baseline, SSP1-19, SSP2-19 and 

SSP5-19 respectively. For most runs, the prices cycle around 30000 2005$/tonne for the ET scenarios 

and around 15000 2005$/tonne for the BAU scenario. 

 

Figure 3.7 shows that not only the average scarcity is higher in the ET scenarios, which is an indication 

that supply cannot always keep up with demand, but the average marginal costs are also higher. The 

reason for this becomes more apparent by looking at important constituents of marginal cost: energy 

costs (figure 3.8) and carbon costs (figure 3.11). Royalties, reagents and others and by-product credits 

are shown in appendix N3 in figures N10 and N11. 

 

 

 
Figure 3.7: average periodic nickel price, degree of nickel scarcity and average marginal costs. Price goes up to 

300000 2005$/tonne for one run, but the graph is cut off at 250000 2005$/tonne for better clarity. 
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Figure 3.8 shows the average final energy use and the average energy costs for mining, processing and 

refining combined. For separate depictions of mining and processing, see figures N12 and N13 in 

appendix N3. Energy costs increase first in the ET scenarios, after which they gradually decrease in most 

runs, but increase rapidly in some runs. In the BAU scenario, final energy use and thereby energy costs 

are mostly decreasing. There are multiple distinct pathways depending on the fuel price scenario (see 

appendix I1.4) and the processing energy allocation method (see section 3.4.1). 

  

 
Figure 3.8: average final energy use and average energy costs.  

 

As can be seen in figure 3.8, the average final energy use for mining and processing ranges between 

about 200 and 350 GJ/tonne for most runs, with a minimum of 180 GJ/tonne and a maximum of 1200 

GJ/tonne by 2060. Annual total final energy use of all mines combined is shown in figure N14 in appendix 

N3. Most values for total final energy use in 2060 range between 0.5 and 5 EJ/year. To put this into 

perspective, global Total Primary Energy Supply (TPES) in 2018 was 598 EJ, Total Final Consumption 

(TFC) was 416 EJ and TFC for industry was 119 EJ (IEA, 2020a). Table 3.1 shows the energy-nickel 

nexus in numbers. 

 

Table 3.1: The energy-nickel nexus in numbers. Ranges are shown, with an estimated average in brackets. ET 

includes all SSPs with a Representative Concentration Pathway (RCP) of 1.9. BAU includes SSP2-baseline. 

Scenario Energy for nickel in 
2060 (EJ/year)* 

Percentage of total final 
consumption in 2018 (%) 

Nickel for energy in 
2060 (tonne/year)** 

Percentage of total nickel 
demand in 2060 (%) 

BAU 0.5 - 3.5 (1.6) 0.1 - 0.8 (0.4) 0 - 1.2E7 (4E6) 0 - 67 (40) 

ET 1 - 5 (2.5) 0.2 - 1.2 (0.6) 0 - 3.1E7 (1E7) 0 - 82 (59) 

*Energy refers to final energy use. Data on energy products for non-energy use is not included. Due to the large annual variability, 

the range with the highest density is shown. For the full range, see figure N14 (appendix N3) 

**This is the total final nickel demand minus the demand for the RoE. The ranges start at 0, because in some runs, substitution has 

replaced the need for primary nickel demand. This is likely because nickel prices became too high in these runs. 

 

The average energy costs are the product of the average final energy use and the energy price. Important 

factors that influence energy use are mine type, ore type, ore grade and energy efficiency improvements. 

Efficiency improvements gradually decrease energy requirements. For most runs, the laterite share 

increases over time. Because most laterite mines are OC, this leads to lower energy requirements for 

mining. However, because laterites are more energy intensive to process, this leads to higher energy 

requirements for processing. The fraction of OC mines and the fraction of laterite mines over time are 

shown in figure N15 in appendix N3. 
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Figure 3.9 shows that average ore grade decreases over time and this occurs faster in the ET scenarios 

because more is mined. One aspect is that the average ore grade for specific mines decreases faster. 

Another aspect is that, with a higher price, more mines with a lower initial ore grade become profitable, 

thereby decreasing average ore grade. The opposite is true for a lower price. Existing mines with an ore 

grade that has become sufficiently low become unprofitable and may even be decommissioned, thereby 

leading to a higher overall average ore grade that may even exceed the initial average ore grade. A lower 

ore grade leads to increased energy demand for mining, which can be seen in some runs in figure 3.8.  

 

 
Figure 3.9: overall average nickel ore grade of existing mines and of all deposits in the database by Mudd (2020). 

 

As stated in section 2.3.3, energy price was split into electricity price and fuel price and three scenarios 

were created for fuel price (see appendix I1.3). Electricity price depends on fuel price, regional renewable 

energy share and the carbon costs for electricity generation if a carbon price is included, which is the 

case in the ET scenarios.  

 

Figure 3.10 shows electricity price for the three fuel price scenarios and per SSP. As a carbon price is 

introduced in the three ET scenarios, with the highest carbon price in 2030 for SSP1-19, the electricity 

price increases. Then, as the percentage of renewable energy in electricity generation increases, it 

decreases again, partially because emissions are reduced and partially because, for the same fuel price, 

the electricity price is assumed to be lower when there is a higher share of renewables, because more 

fuels are starting to be made with electricity instead of the other way around. For an increasing fuel price, 

electricity price ends up close to its initial price in 2060 and for a decreasing and fluctuating fuel price, 

electricity price ends up lower than its initial price.  

 

 
Figure 3.10: average electricity price per fuel price scenario and per SSP.  
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Figure 3.11 shows the cumulative GHG emissions from nickel mining and the average carbon costs due 

to the implementation of a carbon price. A carbon price is included for all of the ET scenarios, but 

excluded for the BAU scenario. It can be seen that the inclusion of a carbon price has a large impact on 

the marginal costs of a project. It influences marginal costs for nickel directly by taxing on-site GHG 

emissions, and as shown in figure 3.10, it also influences marginal costs indirectly by increasing the 

electricity price in the model.  

 

 
Figure 3.11: cumulative GHG emissions over time and average carbon costs per tonne of nickel. 

 

Cumulative GHG emissions from nickel mining may be higher due to the ET, but they also may be lower 

in some cases for SSP1-19 and SSP2-19. The reason for this is that more nickel is required and ore 

grade decreases faster leading to higher energy requirements. However, at the same time, the electricity 

mix, which is also used for mining, is becoming increasingly less GHG intensive due to increasing shares 

of renewable energy. This effect may be even more pronounced if fuel use for mining also becomes more 

renewable, something that was not considered in the current analysis.  

 

As can be seen in figure 3.11, cumulative GHG emissions due to nickel production range between about 

1.3E9 and 1E10 tonne CO2eq. Annual total GHG emissions due to nickel production are shown in figure 

N14 in appendix N3. In 2060, most values range between 2E7 and 3E8 tonne CO2eq/year. To put this 

into perspective, the global total GHG emissions in 2015 were about 50E9 tonne CO2eq/year (Ritchie & 

Roser, 2016). Table 3.2 shows the GHG emissions due to nickel production for BAU and the ET. Where 

the emissions in the ET initially start larger than those in BAU, average emissions are slightly lower in the 

ET by 2060 due to the increased share of renewable energy. 

 

Table 3.2: GHG emissions due to nickel production. Ranges are shown, with an estimated average in brackets. ET 

includes all SSPs with an RCP of 1.9. BAU includes SSP2-baseline. 

Scenario Nickel GHG emissions in 2060 (tonne CO2eq/year) Percentage of total GHG emissions in 2015 (%) 

BAU 2E7 - 3E8 (1.3E8) 0.04 - 0.6 (0.3) 

ET 2E7 - 3E8 (1.2E8) 0.04 - 0.6 (0.2) 

 

The figures above show that there are many factors that influence marginal nickel costs and thereby 

price. Some factors, including energy efficiency improvements, more OC mining and an increasing share 

of renewables in the electricity mix, reduce costs, whereas other factors, such as a decreasing ore grade 

and more energy intensive processing methods due to the increased share of laterites, increase costs. 
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3.2.3 Radical innovation 

The effects of the radical innovation of battery technology are shown in figure 3.12, where the results for 

some key performance metrics are categorized based on whether this disruption occurred or not. This 

figure shows that more substitution of batteries occurs in scenarios with the disruption (the lines for the 

years where the disruption started, 2035 and 2050 are also slightly thicker), and that final nickel demand 

is on average lower than the final demand in scenarios without the disruption. This also leads to lower 

supply, lower average prices, a higher average ore grade and lower cumulative GHG emissions. 

 

 
Figure 3.12: results for the impact of radical innovation that halves battery substitution threshold in 2035 and in 2050. 

See figure N16 in appendix N4 for more results.  

 

It is important to keep in mind that although the GHG emissions due to nickel are less, these will occur 

due to the substitute material instead and without further details about the characteristics of the substitute 

material, it is unknown whether that will lead to more or less GHG emissions compared to nickel mining. 

 

3.2.4 Resource depletion 

For this disruption scenario, resource depletion was assumed when all the initial resources in the 

database by Mudd (2020) ran out. Essentially, this is what is assumed in the FSP. Therefore, first, some 

FSP results are shown in figure 3.13 (additional FSP results are shown in figure N17 in appendix N4). 

Then, resource depletion is shown for both the OCP and the FSP in figure 3.14. 

 

In the FSP, the degree of nickel scarcity (demand/supply) and thereby nickel price become very high as 

of about 2045 for the ET scenarios. The reason for this sharp increase is because supply is not able to 

meet demand due to resource depletion from this point onward. This is further exacerbated by a positive 

feedback loop between price and royalties, where a higher price leads to higher royalties and vice versa. 

For BAU, the average periodic nickel price also becomes higher than in the OCP. The FSP runs seem 

like unrealistic futures, but they do illustrate what can happen when a resource becomes scarcer. 
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Figure 3.13: scarcity and nickel price in the FSP. Values for price go up to unrealistically high levels but they were cut 

off at 500000 2005$/tonne for clarity. 

 

Figure 3.14 shows the depletion of original resources based on Mudd (2020) in both paradigms. In the 

OCP, an amount of resources, equal to the original resources, are depleted between 2050 and 2060 for 

most ET runs. No depletion occurs for BAU. In the FSP, original resources are not depleted completely, 

because some deposits in the database have resources lower than the minimum capacity times the 

mining operation plan, so they are never activated in the model. This is discussed further in section 4.4.2. 

 

 
Figure 3.14: depletion of original resources for the FSP and the OCP. Note: the depletion of original resources 

includes losses, whereas cumulative mined nickel does not. The curve in the FSP becomes an asymptote and, based 

on the way it was modelled, it will never reach 0. 

 

3.2.5 Supply disruption 

Figure 3.15 shows the impact of a 1-year supply disruption in 2030 and 2045, where mining stopped in 

the country with the largest share of supply at those times, on some key performance metrics. A dip can 

be spotted in nickel processing in 2030 and in 2045, where on average the runs including the supply 

disruption produce less nickel. These dips are also visible in the degree of nickel scarcity in figure 3.7 and 

in the average periodic nickel price, but then as peaks.   

 

This disruption can also be seen as an extreme conditions test. The behaviour that can be seen is 

expected. Supply disruption should lead to an increased price as scarcity increases, but the price should 

stabilize again once new production capacity has been added or once the disruption is over (Van der 

Linden, 2020). Additional results for the supply disruption are shown in figure N18 in appendix N4. 
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Figure 3.15: results for the influence of a 1-year supply disruption in 2030 and 2045, where mining stopped in the 

country with the largest share of supply at those times.  

3.3 Sustainability policies 

In this section, the effects of increased sustainability are assessed. First, the effects of EoL waste 

management of batteries are covered, followed by the effects of supply chain loss reduction and the 

effects of increased battery lifetime. These are all quite broad sustainability categories that are not the 

responsibility of a single actor but can come about through the efforts of multiple actors in different fields. 

 

A policy that is included in the model, but is not covered in this section in much detail, is the carbon price. 

A carbon price was included in all ET scenarios as part of the SSPs. The carbon price is required to 

achieve the target of 1.5 °C temperature increase in these SSPs. Figures 3.10 and 3.11 show that the 

carbon price has quite a large impact on average marginal costs and thereby on average periodic nickel 

price. This is discussed further in section 4.4.4.  

3.3.2 EoL waste management 

Figure 3.16 shows the EoL RR for battery waste management for the four waste management strategies 

described in section 2.5, and EoL RR per SSP. In all scenarios, EoL RR first decreases due to the higher 

share of batteries in final demand and the lower share of stainless steel. EoL RR is impacted by the EoL 

waste management strategy and by the overall average nickel ore grade. As ore grade decreases, the 

attractiveness of recycling increases.  

 

 
Figure 3.16: EoL RR for the four waste management strategies and per SSP. Note: no changes to stainless steel 

recycling were included. The main focus is on batteries, because this is projected to be the largest demand category. 
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This effect is especially visible when looking at the different SSPs. The BAU scenario ends up with lower 

EoL RRs than the ET scenarios when the waste management strategy for batteries is the same or better 

than for other class I applications and when waste management is improved even further, because it has 

higher overall average ore grades. When the waste management strategy for batteries is worse than for 

other class I applications, the ET scenarios lead to a lower EoL RR, because of the higher share of 

batteries. Only for the strategy where waste management is improved even further by improving the EoL 

CR, does the final EoL RR in 2060 eventually end up being higher than the initial EoL RR. 

 

Figure 3.17 shows the impact of waste management strategy choice on cumulative mined nickel and 

average periodic nickel price. This shows that in the runs with improved waste management, cumulative 

mined nickel is lower, because more demand is covered by recycling. The average periodic nickel price is 

also slightly lower. However, it is important to note here that energy use and GHG emissions were not 

taken into account for recycling, thereby leading to a larger difference in costs compared to primary nickel 

processing than would occur in reality. This is discussed further in section 4.4.4. Additional results for EoL 

waste management are shown in figures N19 and N20 in appendix N5. 

 

 
Figure 3.17: cumulative mined nickel and average periodic nickel price based on EoL waste management strategy.  

 

3.3.2 Supply chain loss reduction 

The impacts of halving forward supply chain losses are shown in figure 3.18. When the loss reduction 

policy is included, slightly less nickel is mined and there are less GHG emissions. It is important to note 

here that a lower percentage of mining losses leads to more mined nickel, while at the same time a lower 

percentage of processing losses means less mined nickel is required. This is probably why the values in 

figure 3.18 do not differ much. There is also no large impact on price or other performance metrics. 

 

 
Figure 3.18: cumulative mined nickel and cumulative GHG emissions based on the inclusion of loss reduction. 
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3.3.3 EV battery lifetime increase 

The impacts of doubling the EV battery lifetime from 8 years to 16 years (the assumed lifetime of the 

vehicles) on some key performance metrics are shown in figure 3.19. This measure significantly reduces 

nickel demand and thereby cumulative mined nickel and GHG emissions. 

  

 
Figure 3.19: the impact of EV battery lifetime increase on various key performance metrics.  

 

Less cumulative mined nickel also leads to a higher average ore grade, and because the percentage of 

batteries in scrap is highest for a lower EV battery lifetime, some runs for these scenarios also have the 

lowest EoL RR. The average price is slightly lower for the EV battery lifetime of 16 years. Additional 

results for EV battery lifetime increase are shown in figure N21 in appendix N. 

 

3.4 Structural validation 

As explained in section 2.4, the results of the uncertainty analysis are described in this section as part of 

the structural validation. First, structural uncertainties are explored and then parametric uncertainties. 

Only the most relevant results are included in the section. Others can be found in appendices N6 - N8. 

3.4.1 Structural uncertainties 

As shown in figure 2.31, six switches were included in the experimental set-up to explore structural 

uncertainties. Only the uncertainties with a large impact on the results are shown here. These are the 

processing energy allocation method and the inclusion of by-products. Switches with an intermediate 

impact (the option to mine resources) and switches with a minor impact (the mining energy allocation 

method and the price calculation method) on the results are shown in appendix N6. The impact of the 

paradigm switch was already shown in section 3.2.4.  
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Processing energy allocation method 

Figure 3.20 shows the impact of the choice of processing energy allocation to different nickel product 

inputs, based on either mass or full allocation to nickel, on some of the performance metrics. This shows 

that if more processing energy costs and GHG emissions are allocated to nickel, average marginal costs 

and nickel price are higher. This allocation has a much larger impact than the mining energy allocation. 

 

 
Figure 3.20: some key performance metrics categorized based on processing energy allocation method. Additional 

results are shown in figure N22 in appendix N6. 

 

 

Inclusion or exclusion of by-products 

Figure 3.21 shows the impact on some performance metrics of including or excluding by-products. In the 

model, by-products are only recovered if this leads to additional profit. Recovery then leads to lower costs 

attributed to nickel because some of the mining costs are allocated to the by-products. Therefore, it 

makes sense that the costs, and thereby the price, can become higher by excluding by-products. 

 

Inclusion of by-products also makes a difference for which specific deposits become most profitable first. 

By including by-products, deposits with many recoverable by-products are favoured over deposits with 

less recoverable by-products that may be more profitable if by-products are not considered.  

 

Figure 3.21 shows that a larger fraction of laterite mines exists when by-products are excluded. This also 

means the fraction of OC mines is higher and therefore average mining energy costs are lower. However, 

average processing energy costs and cumulative GHG emissions attributed to nickel are higher due to 

the more energy and carbon intensive laterite processing methods. This also means carbon costs are 

higher when a carbon price is included, further increasing average marginal costs and price. 
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Figure 3.21: some performance metrics categorized based on the inclusion of by-products. Additional results are 

shown in figure N23 in appendix N6. 

 

Average ore grade of existing mines is higher when by-products are excluded, yet average ore grade of 

known deposits ends up being lower. This is probably because nickel ore grade is more important for the 

relative profitability of mines when by-products are not considered and mines with higher ore grades are 

favoured over those with lower ore grades. Then as the ore grade in existing mines decreases, new 

deposits with higher initial ore grades become more profitable and the existing mines with the lower ore 

grades are decommissioned in favour of these new deposits. 

3.4.2 Parametric uncertainties 

Parametric uncertainties were explored by including uncertainty ranges for certain sensitive parameters. 

First, the parameters and switches with the largest impact on certain performance metrics at different 

points in time were identified (this is visualised in appendix N7). Then, influential parameters were 

assessed in further detail. Many results could be obtained from this. However, in this section, only the 

results that were deemed most relevant are included. This includes the parameters with a large impact on 

average final energy use and the parameters with a large impact on average periodic nickel price. 
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Average final energy use 

Regarding average final energy use, the parameter with the largest impact is the power for ore grades 

(see figure N28 in appendix N7). Results for this parameter are shown in figure 3.22. Other parameters 

with a large impact are average maximum mothball time, power for price-based exploration and average 

mine operation plan. Results for these parameters are shown in figure N35 in appendix N8. 

 

 
Figure 3.22: average final energy use and average ore grade of existing mines for lower values for power for ore 

grade (<= 0.3) and higher values (> 0.3).  

 

A higher power for ore grade leads to a faster decline in ore grade once the original resources in the 

database by Mudd (2020) are depleted, thereby leading to higher average final energy use. As is shown 

in figure N35 in appendix N8, the runs where final energy use shoots up in later years also have some 

other things in common. Most of these runs include by-products, a short average mine operation plan and 

a low power for price-based exploration. 

 

Inclusion of by-products can lead to larger profitability of a deposit even if the nickel ore grade is lower 

than the ore grade of other deposits, which is why mines can continue to be profitable even if their energy 

use goes up. A shorter average mine operation plan means a larger capacity and faster depletion of the 

resources in a certain deposit, thereby reducing ore grade at a faster rate. A lower power for price-based 

exploration means more exploration and therefore more reserves for profitable mines, for which the ore 

grade continues to decrease, even to a point where energy use and the associated costs become much 

higher. If there is less exploration, these mines don’t have enough resources left at a certain point and 

other mines that have higher ore grades, but may be less profitable in other areas, take over. 

 

Average periodic nickel price 

Regarding average periodic nickel price, parameters with a large impact include administration of 

postponed demand and power for price-based exploration (see figure N27 in appendix N7). Results for 

these parameters are shown below. Other parameters with a large impact are average maximum profit 

deficit as percentage of investment, average maximum mothball time, average mine operation time and 

minimum profit over investment. Results for these parameters are shown in figure N36 in appendix N8.  

 

Figure 3.23 shows the impact of the administration of postponed demand. Higher values mean it takes 

longer for postponed demand to be registered. This leads to less variability in postponed demand and 

thereby also less variability in the demand request, final nickel availability and nickel price. However, it 

also means perceived scarcity is lower than actual scarcity. This means less nickel is mined and the 

difference between cumulative demand and consumption becomes larger, indicating lower resilience (see 

figure N37 in appendix N8). In this case, price may not be the best indicator for resilience, as price is 

based on perceived scarcity (which doesn’t consider all postponed demand) and not on actual scarcity. 
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Figure 3.23: average periodic nickel price and cumulative mined nickel for lower values for administration of 

postponed demand (<= 1 year) and higher values (> 1 year).  

 

In single runs, increasing the administration of postponed demand leads to less extreme hog cycles, but 

at a certain point it doesn’t lead to any cycles as final nickel availability consistently stays below demand. 

However, values where this occurs are generally higher than those included in the uncertainty range.  

 

Administration of postponed demand is not the only variable that influences the extremity of the hog 

cycles. This is also impacted by exploration. Figure 3.24 shows the impact of the power for price-based 

exploration. Because the power is a fraction, a higher power leads to less price-based exploration, which 

leads to less variability in final nickel availability, but also to less cumulative mined nickel, increased nickel 

scarcity, higher average periodic nickel prices and reduced resilience. 

 

 
Figure 3.24: average periodic nickel price, cumulative mined nickel, degree of nickel scarcity and exploration for lower 

values for power for price-based exploration (<= 0.7) and higher values (> 0.7). Additional results for exploration are 

shown in figure N38 in appendix N8. 
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Additional attention was also paid to the global maximum capacity increase percentage. In the 

experimental set-up, values between 10% and 50% annual increase were included. Varying between 

these values did not have a large impact on the overall results, indicating that a 10% global maximum 

annual capacity increase is generally high enough for sufficient nickel to be produced. However, an 

additional set of runs was done where the values were varied between 1% and 30% annual increase and, 

for these runs, a different global maximum capacity increase percentage did have a large impact (see 

figure N39 in appendix N9). The average periodic nickel price can become much higher much earlier for 

low global maximum capacity increase percentages, as can be seen in figure 3.25. Some other results for 

the additional runs are shown in figure N40 in appendix N9. 

 

 
Figure 3.25: average periodic nickel price for a global maximum capacity increase percentage between 1% and 30% 

per SSP and for high (>0.10) and low (<= 0.10) values for global maximum capacity increase percentage. Price goes 

up to 350000 2005$/tonne, but the graphs were cut off at 250000 2005$/tonne for better clarity. 

 

 

3.5 Replicative validation 

In this section, the replicative validation is covered, starting with a comparison with historic developments 

and then a comparison with literature. A section on new insights is also included, where the results that 

differ from previous research due to the more detailed modelling are highlighted. 

 

3.5.1 Comparison with historic developments 

The results were compared with two historic developments: the historic annual nickel price and the 

historic annual change in production. The historic nickel price for the past 25 years is shown in appendix 

I3.1. When adjusted for inflation, the price ranges between about 5000 and 47000 2005$/tonne. Figure 

3.26 shows the inflation adjusted historic price combined with the model results for a single SSP2-

baseline run and a single SSP5-19 run.  

 

As stated in section 3.2.2, the model results show a price range between 500 and 300000 2005$/tonne 

for the ET scenarios and between 500 and 90000 2005$/tonne for the BAU scenario. For most runs, the 

prices cycle around 30000 2005$/tonne for the ET scenarios and around 15000 2005$/tonne for the BAU 

scenario.  

 

These average prices are plausible considering historic developments and so is the cyclical behaviour. 

However, the extremes are much larger or smaller than what has historically occurred. The price goes 

down lower than in history, because there are more extreme heights in final nickel availability in the 

model. This then leads to the mothballing of many mines, after which the price shoots up again, leading to 

much higher variability. 
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Figure 3.26: historic nickel price adjusted for inflation based on Trading Economics (2020) and model results for 

nickel price for runs for SSP2-baseline (BAU) and SSP5-19 (the most extreme ET scenario) with base settings. 

Because the raw data could not be obtained, crude annual values were copied to create this figure. Keep in mind that 

the results shown here are single run results and that different behaviour occurs in each run. 

 

The average price for the BAU scenarios fits quite well with the historic prices, whereas the price peaks in 

the SSP5-19 scenario increase over time. This can mostly be explained by the introduction of a carbon 

price in this scenario (see figure 3.11). As stated in section 2.4, the model price between 2015 and 2020 

does not match exactly with the historic price for this period because of the uncertainty regarding the 

exact timing of the initial values in the model. 

 

Figure 3.27 shows the historic annual change in mining vs the annual change in the runs for SSP2-

baseline and SSP5-19 with base settings. This figure shows that mining fluctuates more in the model, 

with larger extremes than what has historically been observed. This shows that the results of the model 

are likely to be more extreme than what can occur in reality. In fact, in other runs, even larger extremes 

occur. This is discussed further in section 4.4.2. 

 

 
Figure 3.27: historic annual change in mining vs values for SSP2-baseline and SSP5-19 with base settings. Keep in 

mind that the results shown here are single run results and that different behaviour occurs in each run. 
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3.5.2 Comparison with literature 

In this section, the results are compared with literature. The focus is on demand projections because 

most literature has mainly assessed this. As stated in the introduction, literature that assessed the 

impacts of the ET on nickel demand includes Elshkaki et al. (2017), Van der Linden (2020) and many of 

the papers in table A1, some of which provide data in tonnes/year. Wood Mackenzie (n.d.) also created a 

demand projection. The different projections are compared in figure 3.28.  

 

 
Figure 3.28: nickel demand projections in literature. Most projections go from 2015 (or earlier) to 2050. De Koning et 

al. (2018) only provided values for 2050. The ET scenarios in the current study have higher values, going up to 2.7E7 

tonne/year in 2050 for SSP5-19, and are not included in the figure. For the abbreviations used in previous research, 

see that respective research. The references with a * only provided annual data for the energy system and not for the 

RoE, so the RoE projections by Rietveld et al. (2019) were added for better comparison. However, it is important to 

keep in mind that this therefore does not completely represent these studies and figure 3.29 shows that the RoE 

projections by Watari et al. (2018) are likely to be higher than what is implied here.   
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Figure 3.28 shows that the nickel demand projections for the BAU scenario in the current study range 

between the middle and the high end compared to projections in previous studies. Even though the same 

data was used for SSP2-baseline in the current study and by Van der Linden (2020), projected 

uncertainty ranges differ significantly (see the dotted lines in figure 3.28). For the ET scenarios, the 

demand projections are also much higher than what has been projected before. This is due to differing 

assumptions. Especially the assumptions regarding EV batteries are important, because these form the 

largest share of total demand. 

 

To determine the nickel demand for EV batteries, important factors include the projected number of 

vehicles, the projected share of EVs in the production of new vehicles, the type of battery used, the 

battery capacity and lifetime assumptions. For each of these factors, the values used in the current study 

and in other studies are compared in appendix O. Important differences are summarized below.  

 

First, three of the studies in figure 3.28 did not consider (or barely considered) nickel demand for EV 

batteries (Elshkaki et al., 2017; De Koning et al., 2018; Rietveld et al., 2019). Second, the current study 

projects between 2.1 billion and 2.8 billion motor vehicles (passenger vehicles, trucks and buses) by 

2050. This matches reasonably well with projections by WEC (2011), IEA (2017a), IEA (2017b) and EIA 

(2019a). However, Valero et al. (2018a) and Van der Linden (2020) projected considerably less vehicles. 

Third, the current study projects a larger share of NCA+ batteries (which have the highest nickel intensity) 

compared to other studies, including Manberger & Stenqvist (2018) and Van der Linden (2020). Finally, 

the current study considers the lifetime of the battery in the vehicles, whereas the other studies only 

consider the lifetime of the vehicles themselves. As shown in section 3.3.3, this makes a large difference. 

 

The above illustrates the high sensitivity of projected nickel demand to assumptions on the number of 

EVs, their nickel intensity and the lifetime of the batteries. By including the assumption that vehicle 

batteries have to be replaced once during the lifetime of an EV, combined with a large share of EVs, the 

current study projects a much higher nickel demand than previously anticipated. This also highlights the 

importance of technological developments to improve the lifetime of vehicle batteries. 

 

Figure 3.28 showed annual demand. A comparison of cumulative demand for the current study and 

previous research is shown in figure O1 in appendix O and this will be covered further in section 3.5.3. A 

cumulative demand of 3.1E8 - 4.3E8 between 2016 and 2060 projected by Watari et al. (2018) comes 

closest to the demand projections of the current research. 

 

3.5.3 Summary of new insights 

Some results of the current work differ from previous research due to the higher level of detail included in 

the current model. The insights gained from this are summarised in this section. Four specific details that 

led to new insights are the following: 

 

● Separate inclusion of vehicles and vehicles batteries 

● Separate inclusion of individual mines and their characteristics 

● Separate inclusion of a fuel and electricity price 

● Separate inclusion of class I and class II nickel in scrap 

 

The impacts of these details compared to the aggregated approach used in previous research on certain 

performance metrics are shown in table 3.3 and covered in further detail below. Most of the differences 

focus on the research by Van der Linden (2020) because a similar modelling approach was used, and her 

model and code could be accessed to make a clear comparison for different performance metrics. 
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Table 3.3: summary of the differences in input and behaviour between previous research and this thesis. Combined, 

the differences in average final energy use and average energy costs, as well as some additional differences 

influencing marginal costs, such as royalties that differ per country and a further impact due to a different by-product 

composition per mine, also leads to different behaviour regarding average periodic nickel price, such as increased 

variability in the shapes and sizes of the hog cycles. 

Performance metric Previous research This research 

Batteries Aggregated with the vehicle Separate from the vehicle 

Cumulative nickel 
demand 

Battery lifetime was equal to 
the lifetime of EVs. 

Battery lifetime was half the lifetime of the vehicle in the base 
scenario, leading to higher final nickel demand projections 

Mines Aggregated mines Separate mines 

Average ore grade 
of existing mines 

Average ore grade always 
decreases over time. 

Average ore grade of existing mines varies over time and can 
increase at certain points in time as mines with low ore grade 
are decommissioned when they are unprofitable for too long. 

Average final 
energy use 

Final energy use increases 
over time as ore grade 
decreases. Innovation can 
reduce the rate of increase and 
potentially reverse it, although 
the latter does not occur in the 
model by Van der Linden 
(2020) 

Final energy use is impacted by multiple factors, including a 
varying average ore grade, a varying composition of ore type, 
mine type and processing methods and a varying composition 
of by-products that all impact the relative profitability of a 
mine. Then, as unprofitable mines are decommissioned, the 
above factors, combined with innovation, influence the 
average final energy use, making it decrease over time, 
increase over time, or even drastically increase over time. 

Energy price Aggregated price Separate fuel and electricity prices 

Average energy 
costs 

In the model by van der Linden 
(2020) three energy price 
scenarios were included, 
similar to the ones in figure I4 
in appendix I1.4. 

Electricity price differs from fuel price based on electricity mix. 
This mix impacts potential carbon costs and the difference 
between fuel and electricity price. This allows inclusion of the 
feedback of the ET on the energy price, thereby leading to 
different behaviour for the nickel costs. 

Nickel scrap Aggregated scrap Separate class 1 and class 2 scrap 

EoL RR EoL RR always increases over 
time as ore grade decreases. 
In fact, in the model by Van der 
Linden (2020), it increases 
further due to the increasing 
share of batteries because of 
the focus on cobalt. 

Total EoL RR decreases as the percentage of class I nickel 
(mostly batteries) increases and the percentage of class II 
nickel (stainless steel) decreases, due to the much higher 
EoL RR of stainless steel. It can then increase again if ore 
grade decreases and/or if the EoL CR of batteries increases 
due to improved EoL management of batteries. 

 

Separate inclusion of vehicles and vehicle batteries 

As stated in section 3.5.2, the current research projects a nickel demand for ET scenarios that is higher 

than what has previously been projected. An important reason for this is the separate inclusion of vehicle 

batteries instead of assuming the same lifetime as the vehicle. For better comparison with previous 

research, and as a sustainability policy (also see section 3.3.3), batteries with the same lifetime as the 

vehicle were also included in the current research.  

 

The difference in cumulative final nickel demand between a short and long lifetime of EV batteries is 

shown in figure 3.29, as well the cumulative nickel demand reported in previous research (Watari et al., 

2018; Van der Linden, 2020). The cumulative demand projected by Watari et al. (2018) comes closest to 

the cumulative demand projected in the current research. They even project a higher cumulative demand 

for their BAU scenario. However, other work projects a lower cumulative nickel demand (also see figure 

O1 in appendix O), and taking into account a shorter battery lifetime adds to the demand considerably.  
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Figure 3.29: cumulative nickel demand between 2015 and 2050 projected by Van der Linden (2020; top left) and 

cumulative nickel demand between 2016 and 2060 projected by Watari et al. (2018; bottom left) compared to 

cumulative nickel demand between 2015 and 2060 for the current research with a distinction between the SSPs (top 

right) and a distinction between vehicle batteries that last half the lifetime of the vehicle (8 years) and vehicle batteries 

that last as long as the vehicle (16 years; bottom right). Van der Linden (2020) looked at all five SSPs and used a 

baseline RCP for each. Watari et al. (2018) used scenarios from the IEA (2017a), in line with certain temperature 

targets. B2DS = Beyond 2 °C Scenario; 2DS = 2 °C Scenario. The data for the nickel projections by Van der Linden 

(2020) was not obtained from her report directly, as she mainly reported on cobalt. Instead, it was obtained by adding 

a variable for cumulative demand to her model, subtracting the years before 2015 and running her model using the 

code she provided. The data for the nickel projections by Watari et al. (2018) was adapted from one of their figures.   

 

Separate inclusion of individual mines and their characteristics 

Because of the inclusion of individual mines, the behaviour for certain performance metrics differs 

compared to previous research, such as the work by Van der Linden (2020), where mines were 

aggregated. Specific attention is paid to nickel ore grade and final energy use. 

 

Figure 3.30 shows the difference between the average nickel ore grade in the model by Van der Linden 

(2020) and the average ore grade in the current model. In the former, average ore grade always 

decreases over time as known resources are depleted. In the latter, the average ore grade varies more 

over time and can also increase at certain points as mines with low ore grades become too unprofitable 

and are decommissioned after a certain period of time. 
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Figure 3.30: Average nickel ore grade in the model by Van der Linden (2020) compared to the average nickel ore 

grade of existing mines in the current model. The data for the nickel projections by Van der Linden (2020) was not 

obtained from her report directly. Instead, it was obtained by running her model using the code she provided. 

 

It is important to consider that this refers to the average ore grade of existing mines. The average ore 

grade of known deposits generally does decrease in the current model, as can be seen in figure 3.9 (an 

exception is when the resources of certain deposits have a higher ore grade than the reserves, because 

other factors play a more important role for profitability, but this has a minor impact). However, this too 

would have the potential to increase if new deposits with higher ore grades are discovered. This was not 

included in the model. 

 

The general trend is a decrease in all models. However, in the model by Van der Linden (2020), the 

decrease is relatively linear, whereas in the current model, there is an acceleration in the decrease in the 

ET scenarios. This is both due to the larger amount of mining and due to the switch in the way ore grade 

is determined once the original resources in the database by Mudd (2020) have run out.  

 

For each individual mine, the ore grade first decreases or increases in discrete chunks based on current 

knowledge of the average ore grade for the different types of reserves and resources. Then, when the 

original resources have run out, the ore grade decays exponentially. This happens at different times for 

each mine and, in addition to the different times at which mines become operational, are mothballed and 

are decommissioned, this leads to the behaviour shown in the right-hand graph of figure 3.30. Extra 

attention is paid to ore grade in appendix N10, where the behaviour in both the OCP and the FSP is 

analysed in more detail. 

 

Figure 3.31 shows the difference between average final energy use in the model by Van der Linden 

(2020) and average final energy use in the current model. In the former, energy use always increases 

over time as known ore grade decreases. In the latter, energy use decreases in many runs due to energy 

efficiency improvements, while also increasing slightly in some cases due to a decreasing ore grade. A 

varying composition of ore types, mine types and processing methods further complicates the behaviour.  

 

By-products also play an important role, especially in the runs where energy use shoots up quite rapidly. 

In these runs, ore grades for certain prominent mines have decreased to a point where energy use 

significantly increases. However, because these deposits contain valuable by-products, they still remain 

profitable despite the high energy use. In reality, these mines would perhaps drop nickel as host metal 

and focus on the other metals instead. However, a change in host metal was not considered in the model. 
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Figure 3.31: Average final energy use in the model by Van der Linden (2020) compared to average final energy use 

in the current model. The data for the nickel projections by Van der Linden (2020) was not obtained from her report 

directly. Instead, it was obtained by adding together energy use for mining and energy use for smelting and refining 

and running her model using the code she provided. In the right-hand figure, values go up to 1200 GJ/tonne. 

 

Separate inclusion of electricity and fuel price 

By including electricity and fuel price separately, instead of a single energy price, more complex 

feedbacks between the ET and the energy price (see figure 2.3) could be included based on modelled 

changes in electricity mix. In the model, electricity mix influences the electricity price directly, as well as 

indirectly through a potential carbon price. It also influences the relationship between the electricity and 

fuel price. 

 

Figure 3.32 shows the difference between average energy costs in the model by Van der Linden (2020) 

and average energy costs in the current model. First, it is noticeable that the costs are much higher in the 

model by Van der Linden (2020). This has to do with different assumptions regarding initial fuel price. The 

details of these differences are described in figure O2 in appendix O. Total marginal costs differ less 

between the two models because, even though Van der Linden (2020) included transport costs 

separately and not as part of the energy costs, she also did not include any costs for reagents. 

 

 
Figure 3.32: Average energy costs in the model by Van der Linden (2020) compared to average energy costs in the 

current model. The data for the nickel projections by Van der Linden (2020) was not obtained from her report directly. 

Instead, it was obtained by converting her cost data from 2000$ to 2005$ for better comparison and running her 

model using the code she provided. In the right-hand figure, values go up to 14000 2005$/tonne. 
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Other differences include the impact of the different values for average final energy use and the impact of 

including a separate electricity price, which is mostly visible in the increased costs for SSP1-19 around 

2030 due to an initial electricity mix with carbon intensive technologies combined with a high carbon price. 

As the electricity mix becomes more renewable, the average energy costs decrease in most runs even 

when fuel price increases. This is because of the large decrease in electricity price due to decreasing 

carbon costs, and because electricity price becomes cheaper than fuel price once more fuels start being 

produced with electricity than the other way around.  

 

Separate inclusion of class I and class II nickel in scrap 

Figure 3.33 shows the difference between EoL RR in the model by Van der Linden (2020) and the EoL 

RR in the current model. First, it is noticeable that the EoL RR starts much higher in the current model. 

The initial EoL RR of 68% in the current model is based on Nickel Institute (2016). The initial EoL RR for 

Van der Linden (2020) was calculated by multiplying her EoL PR (based on the nickel content in scrap 

and the average ore grade) with her EoL CR (a general range of 40 - 80% for copper, cobalt and nickel).  

 

Another noticeable difference is the behaviour of the EoL RR. In the model by Van der Linden (2020), this 

increases over time as ore grade decreases and increases even further as the percentage of batteries in 

scrap increases. The assumption for this behaviour was that, as the percentage of batteries in cobalt 

scrap increases, the EoL RR for cobalt improves because cobalt is easier to extract from batteries than 

from other cobalt products for which the collection is not as well organised. However, this was also 

generalised to nickel without considering that the EoL RR for nickel is already quite high due to the well 

organised recycling of stainless steel. 

 

Therefore, a distinction was made between class I (a mixture of products; over time mostly batteries) and 

class II (stainless steel) nickel in scrap in the current research. The EoL RR for class II was assumed to 

remain relatively constant at 90% (EuRIC, 2020) and the EoL RR for class I nickel was assumed to vary 

based on an increasing share of batteries. This initially leads to a decreasing EoL RR, as the share of 

batteries and thereby the share of class I nickel increases. The lower lifetime of batteries than stainless 

steel structures also plays a role here. Later, the EoL RR stabilizes and in many cases increases again as 

the ore grade decreases, with the rate of increase depending on the EoL waste management strategy. 

 

 
Figure 3.33: EoL RR for nickel in the model by Van der Linden (2020) compared to EoL RR for nickel in the current 

model. For an explanation for the differences between SSPs and EoL waste management strategies, see section 

3.3.2. The data for the nickel projections by Van der Linden (2020) was not obtained from her report directly. Instead, 

it was obtained by multiplying her EoL CR (referred to as collection rate metal products) with her EoL PR (referred to 

as recycling efficiency score) to obtain EoL RR, and running her model using the code she provided. 
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3.6 The resilience of the nickel supply chain 

In the previous sections, results were provided per sub research question. In this section, a summary is 

given of what these results mean for resilience. As described in section 2.1, a resilient system is one with 

a high resistance and/or rapidity and/or flexibility to ensure that supply can continue to meet demand.   

 

The main indicator for resilience is considered to be the average periodic nickel price. It is normal for price 

to fluctuate slightly and for hog cycles to occur due to demand and supply dynamics (see section 3.2.1). 

However, if price fluctuates too much, it can be an indication of low resilience. When price shoots up 

suddenly, this is often an indication of insufficient supply to satisfy demand. If this peak in price is short 

lived, there is high rapidity, indicating resilience. If there is no (extreme) peak, there is high resistance, 

also indicating resilience. Flexibility can help by reducing demand and bringing it closer to supply. 

 

In section 3.2, the impacts on the nickel system of the ET, radical battery innovation, resource depletion 

and disruption in key supplying countries, were shown. These disruptions all impact average periodic 

nickel price to a certain extent, but some have a larger effect than others. In addition to the disruption 

scenarios, other factors, such as the sustainability policies and important systemic and parametric 

uncertainties also impact the average periodic nickel price. Especially the combination of certain values 

sometimes leads to unresilient behaviour. 

 

Energy transition 

The ET has a large impact on the nickel system. Demand increases at a much higher rate than in the 

BAU scenario. However, in most runs, supply is able to keep up, as is indicated by the degree of nickel 

scarcity in figure 3.7, which does increase at points (especially at the start), but also comes back down 

again. However, average scarcity is higher than 1, which would be expected for a perfect match between 

demand and supply. This is discussed in section 4.4.3. 

 

Figure 3.7 shows that the price for most BAU runs fluctuates around 15000 2005$/tonne and the price for 

most ET runs fluctuates around 30000 2005$/tonne. The higher price for the ET is mainly due to the 

carbon price in these scenarios (see figure 3.11). This does not indicate a lack of resilience, but more a 

shift in state, where all carbon intensive activities are more expensive due to a carbon price, including the 

production of potential substitutes. This also means that the higher price does not necessarily indicate 

higher profits for mining companies, as the costs also increase. 

 

In most runs, the nickel system is resilient, however, when certain factors are combined, a lack of 

resilience can be observed. This manifests itself in a sharp increase in price that lasts for many years. 

The runs where price shoots up and stays up for a relatively long period have several things in common:  

 

● Most include an ET scenario (although price in some runs with the BAU scenario also shoots up, 

especially between 2040 and 2050, however the peaks are lower due to lower marginal costs) 

● Most do not include the radical battery innovation disruption 

● In later years, many have worse EoL waste management strategies 

● Many include an EV battery lifetime of 8 years 

● Many have their processing energy allocated fully to nickel 

● Most do not consider by-products 

● Most include a high power for exploration (= low exploration) 

● In runs where global maximum capacity increase percentage varies between 1 and 30%, most 

runs have a low global maximum capacity increase percentage. 
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Based on this, the nickel system can be considered conditionally resilient to the ET. Supply is able to 

keep up with demand if there is sufficient exploration and sufficient capacity increase. Further research is 

required to determine how much exploration and capacity increase is realistic and whether this is enough 

to prevent scarcity from becoming too high. If scarcity becomes too high, choices have to be made which 

part of nickel demand will be reduced and this can impact the pace of the ET. 

 

Radical battery innovation 

As shown in figure 2.1, factors that contribute to the resilience of the system include feedback loops 

through the price mechanism, such as price elasticity of demand (see figure N2), changing product 

properties, such as increasing the EV battery lifetime, and substitution which adds to the flexibility of the 

system. 

 

Substitution increases the resilience of the system, but it can also be a disruption if it is too extreme. 

However, the radical innovation of battery technologies included in this thesis is not extreme enough to 

truly disrupt the nickel system, or in other words, the nickel system is resilient enough to be able to deal 

with this disruption, at least in the way it was modelled. 

 

For the ET scenarios this is because it is happening at the same time as the ET, so in a way the two 

disruptions cancel each other out, or the radical innovation disruption at least dampens the effects of the 

ET by slightly reducing the average periodic nickel price again. In this sense, the radical innovation can 

be seen as a mechanism that improves flexibility, and thereby resilience, instead of a disruption. 

 

For the BAU scenario, the radical battery innovation has a smaller impact because it is a disruption in 

battery technologies and in the BAU scenario a lower share of the demand is due to batteries. In addition, 

the average periodic nickel price is lower in the BAU scenario, so even though the substitution threshold 

has been reduced, the price of the potential substitute may still be higher than, equal to, or only slightly 

lower than the nickel price, which leads to less substitution. 

 

Resource depletion 

Resource depletion based on the FSP has a large impact on the nickel system. Because there is no 

exploration, the resources start becoming scarce as the easy to mine deposits are depleted and the price 

shoots up. This indicates lack of resilience. However, history has shown that it is unlikely that this will 

occur, because exploration has consistently led to more resources (see appendix G1.2). In addition, if 

substitution and other price effects were included in the FSP, these would kick in as soon as the price got 

too high. This is something that could be explored by adding a hybrid paradigm to the model. 

 

In the OCP, initial resources based on the database by Mudd (2020) are depleted between 2050 and 

2060 for the ET scenarios. However, because of exploration and price effects, the nickel system was 

resilient and able to continue functioning past this point. 

 

Supply disruption 

Regarding the disruption in key supplying countries, the overall impact is minimal. When the country with 

the largest share of production is compromised in 2030 and 2045, the average periodic nickel price 

increases. This is clearly visible in figure 3.15, but the increase is not necessarily more than the variability 

that occurs due to the hog cycle dynamics. This is because of the relatively high diversity of supply in the 

nickel system, with multiple supplying countries and a high EoL RR. Substitution also occurs as the price 

increases, which leads to additional balancing of the disruption. 
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Table 3.4 summarizes the resilience of the nickel system to the different disruptions based on the 

framework by Sprecher et al. (2015). In this table, the system is considered to be either resilient (green), 

not resilient (red) or conditionally resilient (yellow) based on the identified key uncertainties. 

 

Table 3.4: resilience of the nickel system in the model to the disruptions assessed in this thesis. Green = resilient, red 

= not resilient, yellow = conditionally resilient based on key uncertainties. 

Aspects of 
resilience 

Energy  
transition 

Radical innovation Resource depletion Supply 
disruption 

ET BAU FSP OCP 

Resistance If there is enough 
innovation (e.g. an 
increase in battery 
lifetime), the effects 
of the ET can be 
dampened. Carbon 
costs do lead to a 
new state. 

The system is 
not disturbed 
because the 
ET cancels 
out the effects 
of innovation. 

The system 
remains 
functional at 
this degree 
of 
innovation. 

Without 
exploration to 
replenish 
supply, price 
becomes 
unrealistically 
high. 

With sufficient 
exploration, supply 
can be replenished 
before the 
difference between 
demand and supply 
becomes too high. 

There is 
enough 
diversity of 
supply for 
the price 
increase to 
not be too 
large. 

Rapidity The speed with 
which the nickel 
system can 
respond to the ET 
depends on the 
rate of new capacity 
creation. 

The system is 
not disturbed 
because the 
ET cancels 
out the effects 
of innovation. 

The system 
remains 
functional at 
this degree 
of 
innovation. 

As resources 
become too 
scarce, the 
system does 
not return to 
its previous 
state. 

If exploration is too 
little, the system 
has trouble getting 
back to a lower 
scarcity, because 
supply cannot keep 
up with increasing 
demand. 

As soon as 
the 
disruption is 
over, the 
system 
returns to its 
previous 
behaviour. 

Flexibility As price goes up, 
substitution and 
price elasticity help 
prevent it from 
increasing even 
more. Discovering 
more substitutes 
would further 
increase flexibility. 

Radical 
innovation 
leads to more 
substitution; 
increasing 
flexibility and 
dampening 
the impacts of 
the ET. 

Sensitivity to 
substitution 
increases 
However, 
substitution 
only occurs 
if the price is 
too high. 

Substitution 
and price 
elasticity are 
not included in 
the FSP. 

Substitution and 
price elasticity help 
reduce demand, 
thereby requiring 
less resources. 
Discovering more 
substitutes would 
further increase 
flexibility. 

Substitution 
and demand 
reduction 
due to price 
elasticity 
increase as 
the price 
goes up. 

 

As stated in section 3.5.1, there is higher variability in average periodic nickel price in the model than 

what has been historically observed. However, it is important to take into account that the way the system 

was modelled plays a large role in this variability. This makes it difficult to determine which part of the 

variability is due to the actual nickel system and which part is due to the shortcomings of the modelling 

approach (these are discussed in section 4.4).   

 

The model is too uncertain to clearly state anything about the actual nickel system, but it does give an 

indication of the factors that can have an important impact on the resilience of the nickel supply chain. 

Overall, the nickel system based on the OCP can be quite resilient to disturbances. However, this is 

under the conditions that there is sufficient exploration and capacity increase. 
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4 Conclusion and discussion 
In this chapter, the research questions are answered in the conclusion, the societal and academic 

relevance is discussed, a critical reflection is given on the methods and assumptions, and 

recommendations for further research are provided.  

4.1 General conclusion 

In this thesis, the development of the global nickel supply chain, and some of its externalities, was 

modelled and explored between 2015 and 2060 under different disruption scenarios, sustainability 

policies and uncertainties. A nickel demand of 6 - 38 million tonnes per year is projected by 2060 (6 - 27 

million by 2050). This is more than what has previously been projected. The highest demand occurs for 

SSP5-19, which has a target to limit global temperature increase to 1.5 °C alongside rapid economic 

growth. The main contributors to this large demand are EV batteries. 

 

Based on the model and assumptions, the nickel system is resilient (meaning there is sufficient supply to 

meet demand) to partial substitution and to a one-year supply disruption compromising the top supplying 

country. The nickel system is conditionally resilient to ore depletion and the ET, given sufficient 

exploration and annual capacity increase.  

 

To increase the resilience of the nickel system, policies that support innovation in battery material 

composition and lifetime, and good EoL waste management of batteries can play an important role. EoL 

RR first decreases in all scenarios due to a larger share of batteries and a lower share of stainless steel 

in scrap. However, with good EoL waste management, the EoL RR eventually surpasses the initial EoL 

RR again. Policies that reduce forward supply chain losses have less impact on resilience, but do reduce 

the cumulative GHG emissions due to the nickel industry. 

 

Key structural uncertainties influencing the development and resilience of the nickel system include the 

processing energy allocation method, with full allocation to nickel leading to higher energy use, 

emissions, costs and nickel price; and the inclusion of by-products, where the consideration of by-

products leads to prioritization of different mines and thereby different behaviour. 

 

Key parametric uncertainties include the administration of postponed demand, which determines how 

quickly postponed demand is registered, and the power for price-based exploration, which determines the 

degree of exploration in the model. A global maximum capacity increase percentage only starts making a 

large difference at values lower than 10% per year. For ore grade and energy use, the power for ore 

grade also has a large impact. 

 

The findings of this thesis are based on a first attempt at SD modelling of global material flows at mine 

level. With the used data and assumptions, the model generally leads to plausible behaviour. However, in 

many runs, the changes in price and production and the resulting hog cycles become quite extreme. 

Compared to previous research, in which mines were aggregated, some different and interesting 

behaviour was identified, which was made possible due to the detailed modelling and the inclusion of 

individual nickel mines.  
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This includes the potential for average ore grade to increase over time, as mines with lower ore grades 

are decommissioned; average final energy requirements that can decrease, increase, or increase rapidly, 

depending on a varying average ore grade, a varying composition of processing methods and a varying 

composition of by-products; and average energy costs that differ depending on the projected electricity 

mix in the countries containing deposits. For a more detailed description of new insights, see table 3.3. 

 

 

4.2 Societal relevance 

This research was not done for a single problem owner. Instead, the results can be useful for a multitude 

of stakeholders, including governments, companies interested in accelerating the ET and actors in the 

nickel industry and the mining industry in general. All these actors benefit from a nickel system that is as 

resilient as possible and can also help contribute to this resilience. Of further societal relevance are the 

externalities of nickel production. In the following sections, the implications for the ET are discussed, 

followed by the usefulness of the results for the mining industry, and the externalities. 

4.2.1 Implications for the energy transition 

On one side of the energy-nickel nexus, nickel is required to produce energy. The results indicate that 

there can be enough nickel for the ET, given sufficient exploration and rate of capacity increase. 

However, until more research has been done on how much exploration and capacity increase is realistic, 

no concrete conclusions can be drawn about the impact of nickel on the pace of the ET. 

 

For stakeholders on the demand side, such as governments interested in accelerating the ET, renewable 

energy companies and EV companies, as well as other nickel consumers, it is useful to consider the large 

nickel demand that can occur due to the ET, which may lead to some problems with supply, thereby 

hampering the ET. In general, the faster the demand increases and the higher it becomes, the lower the 

resilience of the system, and the higher the chance that the demand cannot be fulfilled, as can be seen in 

the ET scenarios. Therefore, limiting nickel demand through innovation, is an important area these actors 

can focus on.  

 

The results show that increased substitution through radical battery innovation can increase resilience. 

Continuing to research new battery technologies is important to realise this. The results also show that 

battery lifetime makes a large difference, so innovations that increase battery lifetime are also important. 

Of further importance is the recyclability of batteries, as an increase in EoL RR reduces primary nickel 

demand. This recyclability can be facilitated throughout the battery supply chain, from the design to the 

collection strategy, as both an improved EoL PR and EoL CR contribute to increasing the EoL RR in the 

future. 

 

An important aspect of the SSPs with a target of 1.5 °C temperature increase is that they all include a 

carbon price. This tax is an important mechanism that governments can implement to reach the 

temperature increase target, and it is intended to discourage the use of fossil fuels and encourage the 

use of renewables. However, the model shows that it inadvertently also impacts the ET, by impacting the 

price of materials required for renewable energy and other low carbon intensive technologies such as 

EVs. The net effect of a carbon price may still be beneficial for the ET, but this feedback (also illustrated 

in figure 2.3) is something that should be taken into account. 
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4.2.2 Usefulness for the mining industry 

For stakeholders on the supply side, such as investors and mining companies, the large nickel demand in 

the ET scenarios can be seen as an incentive to invest in nickel, to explore more and to build more 

mines. The resilience of the system is also relevant because a less resilient system contains more risks 

for individual mining companies. However, in the model, the cycles in many runs are more extreme than 

what would occur in reality. This is likely because, although the model is very detailed, many factors that 

can influence the variability in reality were not considered. 

 

The model presented in this thesis can be seen as a basis for future research on the development of the 

nickel supply chain. It contains some fundamentally demonstrable and important connections between 

system aspects. However, the model is based mostly on literature and theory, and in some cases highly 

uncertain assumptions. To take this into account, uncertainty was included in the model. However, 

uncertainty ranges could not be included for all variables due to computational limitations. In addition, the 

uncertainty ranges did not prevent the large extremes in the model. 

 

To increase the usefulness for stakeholders, the model structure and data inputs could therefore benefit 

from a larger degree of collaboration and expert and stakeholder input. The model is adaptable and in 

future adaptations, the assumptions and data inputs could be refined and improved by those who have a 

higher level of expertise and/or access to data. This could then lead to more valid and robust results that 

can be used to aid decision making.  

 

The results shown in section 3 are all global results. However, due to the level of detail included in the 

model, it is also able to produce data on a regional or country level. Examples are shown in figure N43 in 

appendix N11. This could be of further interest for stakeholders in the mining industry, as well as for the 

governments of the countries in question. Once regional results become more robust, they could be 

useful for national policy making. For example, by tweaking the investment climate in certain countries, it 

becomes more likely for more mines in those countries to be favoured. 

 

Obtaining results at mine level is also possible, but the model is not detailed enough for this to be useful. 

All mines are based on existing deposits, but due to the many crude assumptions that were made, the 

deposits were named based on the country they are located in, followed by a number, and the model 

should currently not be used to obtain data for specific projects. 

4.2.3 Externalities of nickel production 

In this thesis, final energy use and GHG emissions were modelled as sustainability impacts of nickel 

mining. Cobalt and palladium mining were also projected. Strictly speaking, these are not externalities, 

but they are included here as the by-products most dependent on nickel mining. Final energy use, GHG 

emissions and cobalt and palladium production are discussed below. Other externalities were not 

included, but could be added to the model in future research. This is discussed further in section 4.4.4. 

 

As one side of the energy-nickel nexus, nickel required for energy infrastructure was discussed in section 

4.2.1. On the other side of the energy-nickel nexus, energy is required to produce nickel. Table 3.1 in 

section 3.2.2 shows numbers for both sides. It shows that the final energy required for nickel production in 

2060 is, on average, about 0.4% of the TFC in 2018 for BAU and about 0.6% of TFC in the ET scenarios.  
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It is important to note that the values for final energy required for nickel do not include data on energy 

products for non-energy use, which means the percentages of TFC may be slightly higher. Primary 

Energy Demand (PED) was also not calculated in this research. This could be done in future adaptations 

of the model by including data for non-energy use, as well as (dynamic) conversion efficiencies for the 

different electricity generation technologies. This is discussed further in section 4.4.4. 

 

Nickel production also leads to GHG emissions, both directly on-site through fuel use and process 

emissions and indirectly through electricity use. Table 3.2 in section 3.2.2 shows numbers for the GHG 

emissions projected in the model. The values in 2060 are, on average, about 0.3% of the total GHG 

emissions in 2015 for BAU and about 0.2% for the ET scenarios. This is because of the higher share of 

renewables in the ET scenarios in 2060. However, cumulatively, the ET leads to more GHG emissions 

from nickel production, as can be seen in figure 3.11  

 

Regarding cobalt, Manberger & Stenqvist (2018) project a cumulative cobalt demand between 2015 and 

2060 of about 2E6 - 7.5E7 tonnes. The projections of other literature also fall between this range, albeit 

for slightly different time frames (Valero et al., 2018a; Watari et al., 2018; Giurco et al., 2019; Moreau et 

al., 2019; Van der Linden, 2020; also see figure O3 in appendix O). In the current model, the cumulative 

mined cobalt is between 4E6 and 2E7 tonnes (see figure 3.6). Not considering losses, and matching the 

lower and upper bounds with each other, this is about 27 - 200% of the demand.  

 

This is quite a decent share of the demand, considering only 50% of cobalt currently comes from nickel 

mining (Nassar et al., 2015). This may change in the future, but this means more cobalt can also be 

obtained elsewhere. In addition, the cobalt scarcity in the model is based on nickel scarcity, but if actual 

cobalt dynamics were included, cobalt recovery could potentially be higher. More cobalt is mined for the 

ET scenarios, which matches well with a higher cobalt demand for batteries in the ET. 

 

Regarding palladium, Moreau et al. (2019) project a cumulative palladium demand between 2010 and 

2050 of about 6 - 41 tonnes, and Valero et al. (2018a) project a cumulative palladium demand between 

2016 and 2050 of about 7800 tonnes. In the current model, the cumulative mined palladium between 

2015 and 2050 is about 8000 - 39000 tonnes (see figure 3.6). Currently, 50% of palladium comes from 

nickel mining (Nassar et al., 2015), so, even when considering losses, this should be more than enough 

to cover the demand up to 2050. However, due to the large difference between the values found in the 

literature, it could be beneficial to reassess palladium demand in future research. 

 

 

4.3 Academic relevance 

This thesis was written for the Master’s programme Industrial Ecology (IE). IE is an interdisciplinary field 

where technical, social and environmental aspects are integrated to study complex sustainability issues. 

This thesis fits well within the field of IE because it focuses on two important societal developments with a 

clear connection to sustainability: the ET and material depletion. To model these developments, different 

parts of the socio-technical system of the nickel supply chain and the natural environment were 

integrated, and circularity was covered in both energy (renewables) and material (recycling) sense. 

 

In addition to contributing to IE, this research has led to some new insights relevant for multiple academic 

fields. These fields include the energy-material nexus, supply chain resilience and SD modelling, and they 

are each addressed in turn below. 
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4.3.1 Energy-material nexus 

This thesis contributes to research on the energy-material nexus by, on one side, providing insights into 

the energy requirements and energy costs for the nickel industry for different deposit characteristics, 

processing methods and regional energy mixes, and on the other side, providing insights into the nickel 

requirements for the ET. 

 

Table A1 in appendix A summarizes previous research in this area. The current research adds new 

insights by suggesting that nickel demand for the ET may be larger than previously anticipated if a large 

fleet of EVs is to be produced. This large demand can compromise the resilience of the nickel supply 

chain under certain circumstances, which does not only have consequences for the nickel system itself, 

but also for the pace of the ET.  

4.3.2 Supply chain resilience 

This thesis also contributes to research on supply chain resilience. An existing framework for supply chain 

resilience (Sprecher et al., 2015) was applied to the model and the resilience of the nickel supply chain to 

four different disruption scenarios and other uncertainties was assessed. The results show the type of 

behaviour that is caused by different disruptions and the circumstances under which there is a higher and 

a lower resilience.  

 

Under some circumstances, an ET, with a target to limit temperature increase to 1.5 °C, leads to lower 

resilience of the nickel supply chain, for example when there is no battery innovation, there is bad EoL 

waste management of batteries, there is limited exploration and there is a slow rate of capacity increase. 

Under other circumstances, the ET poses less problems for the nickel supply chain. In future research it 

could be useful to further investigate these circumstances, to gain more useful insights for stakeholders. 

4.3.3 System dynamics research 

A third area of contribution of this thesis is to the field of SD modelling. In this thesis, traditional 

aggregated, continuous SD modelling was adapted to include disaggregated, more discrete ABM 

elements, specifically the inclusion of individual mines instead of considering only one ‘global mine’. As 

far as the author is aware, this approach is a new way of modelling material supply chains.  

 

In reality, mines are highly heterogeneous and the disaggregated system can behave differently and 

more dynamically than the aggregated system. This behaviour is captured in the current model, leading to 

various new insights, such as the potential for average ore grade of existing mines to increase under 

certain circumstances. These insights were summarized in table 3.3.  

 

This research can be considered as an experiment. It shows that it is possible to add ABM elements in 

Vensim and that this leads to different behaviour than the behaviour of traditional SD models. A model at 

mine level is a lot more complex and detailed and also adds discrete elements to a traditionally 

continuous form of modelling. The discrete elements make the model less elegant and perhaps also 

contribute to the large fluctuations in the model.  

 

However, a working model was created, with which the research questions of this thesis could be 

answered. As stated in section 4.2.2, further adaptation of the model is needed to increase its usefulness 

for stakeholders and to be able to give any concrete policy recommendations.  
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Whether the hybrid form of modelling attempted in this thesis is useful for further applications, or whether 

a pure form of ABM may perhaps be more suitable, remains to be seen. Further research can be done to 

determine the applicability of the hybrid method for other materials. It is also relevant to look more at the 

regional data in further research, as this can lead to more concrete policy recommendations. 

 

 

4.4 Limitations and recommendations for future research 
 

The global energy and mining systems are very complex and difficult to model, especially at the detailed 

level that was attempted in this thesis. The created model is a good start for exploring the global nickel 

system and its nexus with the energy system at mine level, but there are many aspects that can be 

improved, regarding both the structure of the model and the data inputs.  

 

In this section, the limitations of the model and the research are discussed and recommendations are 

given for future research. Some recommendations were already given in previous sections, so these are 

not repeated here. Many specific limitations were discussed in the detailed description of the model in the 

appendix, so these are also omitted here in favour of a more general discussion of the limitations. This is 

done per sub-model below, but first some general points are discussed. 

 

A lot of information can be gathered from the model, but not all of it was included in the experimental set-

up and/or results of this thesis. A few additional structural uncertainties are included in the model in the 

form of switches, including an option for stockpiling, different energy calculation methods and a different 

method for calculating vehicle demand. These structural uncertainties can be explored in future research.  

 

In addition, different variables could be given an uncertainty range in future runs of the model, to see what 

impact this has on the results, and different performance metrics, including country and process specific 

performance metrics, could be chosen to assess. In future research it could also be interesting to 

combine certain values for variables that lead to extreme behaviour in scenarios to further understand 

which values lead to the lowest resilience of the system. 

4.4.1 Demand system 

For the demand dynamics, the focus was on the energy system, specifically electricity generation, 

electricity storage and road transport. These were the sectors that were expected to grow the most, but in 

future research it could also be interesting to take into account other parts of the energy system. 

 

On the other hand, section 3.1 showed that the most important contributor to nickel demand is EV 

batteries. In future research it could therefore be interesting to simplify the rest of the energy system and 

focus mainly on EVs and the uncertainties involved with EVs, such as nickel intensity, lifetime, share of 

vehicle stock and vehicle stock projections. 

 

SBS requirements were calculated in a relatively complex way and multiple uncertain values were used to 

determine what essentially is a balancing factor. Due to the uncertainties involved this led to rather erratic 

behaviour in figures N4 and N5 in appendix N1.  

 

Because the numbers for SBS are relatively small compared to the other demand categories, this does 

not matter much for the overall results. However, a simpler method could have been used to obtain 

smoother results with the same amount of uncertainty. Something that can be concluded from the 

calculations for SBS is that if enough EVs participate in V2G, hardly any SBS is required. 
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Repurposing of EV batteries was included in the current analysis, but this was done in a rather crude 

way. Even though SBS demand is not much, an interesting avenue for further research could be to look 

more into vehicle battery repurposing, which could also be linked to EoL battery management and 

innovation in increasing battery lifetime, which are all factors that can help reduce demand for primary 

nickel. 

 

Regarding hydrogen, only the hydrogen requirements of the fuel cells in the vehicles and of hydrogen 

tanks (assumed to be for storage outside of the vehicles) based on uncertain values from Tokimatsu et al. 

(2018) were taken into account. However, these results were deemed too uncertain to present in the main 

text. To gain more confidence regarding hydrogen requirements, additional research should be consulted.  

 

In addition, certain hydrogen infrastructure was not taken into account in the current analysis. For 

example, Meylan et al. (2016) estimate that 6.12 mg nickel is required per kg of hydrogen for 

electrolysers, and Kleijn & van der Voet (2010) calculated that about 2200 kg nickel is required per km of 

stainless-steel pipe for transporting hydrogen. However, this requires additional calculation of the amount 

of hydrogen required, which was not done in this analysis.  

 

There is data on hydrogen in the SSP database (IIASA, 2018), including data on electricity produced from 

hydrogen. However, due to time constraints this was not added to the model. This is something that could 

be added in the future to create a more detailed picture of the nickel requirements for hydrogen, also 

outside of the road transport sector. Overall, hydrogen was not looked at that extensively or meticulously 

in this analysis, so this is something that would be interesting to do in future research.  

 

In the current analysis, ambitious ET scenarios were chosen with the goal to limit global temperature 

increase to 1.5 °C. These scenarios will probably lead to the highest nickel requirements, but it could also 

be interesting to assess some other SSPs. The SSPs allow for regional distinction regarding energy mix, 

which impacts nickel supply, but it could also be interesting to include a regional distinction for nickel 

demand. This could be something as simple as a distinction between developed and developing 

countries, and could add some additional dynamics to the model. 

 

Regarding the price effects included in the model, more in-depth research can be done on potential 

intensity changes and more in-depth research can be done regarding potential nickel substitutes and the 

likelihood that these could take over a certain portion of nickel demand. A large amount of substitution 

occurs in the current model, especially after 2050 (see figure 3.2). In future research, it could be 

interesting to see what happens if the possibility for such substitution is reduced.  

 

On the other hand, the possibility for more, and different types of substitution, could also be explored. 

This can include material substitution, but also forms of technological substitution (see appendix E3), 

such as increased public transport, or vehicle sharing, or even reduced transport requirements due to 

increased working from home.  

 

In the model, desubstitution can occur when the nickel price becomes more attractive than the 

substitute’s price again. This happens immediately, as soon as the price is lower. However, once an 

alternative has been found, it may have established a firm foothold in the market and a threshold may 

need to be crossed before the demand switches back to nickel again. This is something that could be 

added to the model in future adaptations. 
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4.4.2 Supply system 

The supply sub-model was adapted from Van der Linden (2020) to include individual mines and new 

structures were created to be able to convert resources to reserves and increase capacity for each 

individual mine. The structure for converting resources to reserves is rather crude, but it is the best that 

could be conceived at present. In future research it would be beneficial to explore alternative methods for 

converting resources to reserves. 

 

For increasing capacity, a maximum global capacity increase percentage was included to prevent too 

many new mines from being created simultaneously. However, because of the different developing times 

of the mines, sometimes the percentage of new mines that started operations becomes larger than the 

maximum global capacity increase percentage. In future research it may be relevant to take into account 

the total developing capacity at a certain time, because in reality, actors in the mining industry can be 

aware that certain capacity is already being built elsewhere and this could impact the investing strategy.  

 

The structure for increasing capacity was also implemented too discretely. In reality, new capacity isn’t 

built exactly at the start of each year. This could also cause problems in the model, and it is beneficial to 

find a way to implement such a structure in a more continuous way in future adaptations of the model. 

Furthermore, the replicative validation of capacity increase could be increased by obtaining data on 

historic capacity changes. 

 

Surprisingly, global maximum capacity increase percentage did not impact key performance metrics 

much. Anything between 10% and 50% did not lead to significant differences. However, when the values 

were varied between 1% and 30%, global maximum capacity increase percentage did have a large 

impact. In future research more attention can be paid to the exact point where global maximum capacity 

increase percentage starts to become a problem for the resilience of the nickel supply chain. 

 

A relevant factor that may play a role in the small differences between 10% and 50% capacity increase, is 

that after a while there is already so much existing capacity, both operating and mothballed, that capacity 

coming back from C&M is enough to cover an increase in demand, and in the model, mines enter and exit 

C&M at a much faster rate than the development of new mines. 

 

The structure for mothballing could be improved. Despite adding a maximum profit deficit and a minimum 

profit surplus to prevent mines from going in and out of C&M too quickly, this is still happening rather 

frequently, leading to large variability in final nickel availability. The model leads to much larger extremes 

than have been observed in history. An important avenue for future research is therefore to uncover the 

reason for these large extremes, which could be explained by the frequent mothballing, so the model can 

be adjusted accordingly and the extremes can be smoothed out more. 

 

Because of the large extremes that occur in certain runs of the model, it can also occur that operating 

capacity, and thereby mining, is 0 at a certain point in time. Because of this, all the averages in the model 

were based on existing mines (operating + mothballed) instead of only on operating mines. In future 

adaptations of the model, the possibility of basing the averages on operating capacity could be explored. 

 

As can be seen in the FSP runs, some of the deposits in the database by Mudd (2020) were never 

activated in the model, because their initial resources were too low. This includes deposits with the initial 

status of tailings. Because these deposits are never activated, there is also no exploration in their area, 

because exploration depends on profitability in the model.  
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However, in reality, exploration does not only occur in the same area that a certain mining company is 

located in, and mining companies can be in charge of multiple deposits. Therefore, it could be interesting 

in future research to adapt the model in such a way that exploration does occur in the deposits that are 

never activated in the current model. Avenues for including additional potential deposits in the model 

could also be explored. This could increase resilience through increased diversity of supply.  

 

No data was found on historic exploration efforts for further validation of the model. However, more 

research should be done on how realistic the amount of exploration in the different runs is (see figure 

3.24). Exploration is an important factor determining the resilience of the nickel supply chain and if it turns 

out that the amount of exploration is excessively high, the actual resilience could be less than what has 

been indicated by this research. There are also costs involved in exploration, costs that were not directly 

included in the model. This is also something that could be improved in future adaptations of the model. 

 

Currently, the model only contains mining capacity and not refining capacity. This could potentially be 

added in future adaptations to better incorporate global transportation and geopolitical aspects. In this 

sense, a dynamic version could be created of the Sankey diagram in figure G3 in appendix G2. As 

indicated by Sprecher et al. (2015), geopolitical factors can be an important source of disruption, 

impacting resilience. 

 

The nickel system appears to be quite resilient to the supply disruptions included in the current study. 

However, these disruptions only lasted one year. In future research, longer supply disruptions could be 

tested. Other types of disruptions described in section 2.1 could also be tested. 

 

The inclusion of stockpiling also has not been tested properly, although a switch for stockpiling was 

included in the model. This is still quite a crude switch though, and further research should be done to 

improve it. Preliminary results show that turning on the stockpiling switch slightly dampens the extreme 

cycles in the results. 

 

In the model, the nickel price applies to both class I and class II nickel, so even though over time there is 

more demand for class I nickel, this is not reflected in the supply and in many runs a shortage of class I 

occurs alongside oversupply of class II. This class II nickel would then have to undergo further processing 

to be suitable for use in batteries, which would lead to additional costs that were not considered in the 

model (see appendix N12 for the amount of nickel this applies to in the model).  

 

According to Gordon (2020), the division of class I and class II should not matter for investors, who 

should instead look at the market holistically. Based on this, it may not matter much that the model is 

structured the way it is. However, it could still be interesting in future research to see if there is a way to 

get supply and demand to match better with each other for each individual class. 

 

Because supply and demand of class I and class II don’t always match with each other, the percentage of 

a certain class in scrap can be misrepresented in the model. For primary nickel scrap, these percentages 

were based on supply. However, for secondary nickel scrap they were based on delayed demand. 

 

If further processing occurs (which would also lead to more primary scrap than currently included), the 

fractions in scrap may fit better with supply, but in all runs with a lack of resilience, the percentages in 

scrap may remain misrepresented. This is therefore worth looking into in future research. In addition, 

more research on recycling of the different demand categories of nickel, especially battery recycling, 

could help further improve the way recycling was modelled in this thesis.  
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4.4.3 Price system 

The cost calculations in the model are quite simplified and many more factors than those included play a 

role. The same goes for the determination of investment attractiveness. An important limitation is that no 

distinction was made between the capital costs, the reagent costs, the development times and the by-

product recovery rates of the different processing technologies. These are all factors that differ per 

processing method in reality. This could be included in future adaptations of the model.  

 

As stated earlier in this section, an energy calculation method switch was included in the model, but it 

was not used in the experimental set-up. This switch allows the use of two alternative methods for 

determining final energy use, based on formulas by Valero et al. (2013) and Elshkaki et al. (2017).  

 

Important differences between the method used in the experimental set-up on one hand and the two 

alternative methods on the other hand, are that for the former there is no impact of ore grade on 

processing, and for the latter there is less distinction between the different processing methods. Test runs 

indicate that changing between these methods does not have a large impact on the average periodic 

nickel price and on the cumulative mined nickel, but it could be interesting to assess this further in future 

research. 

 

Averages in the model, such as average final energy use, were calculated based on the number of 

existing mines. However, relative volumes were not considered in these calculations. This is an important 

shortcoming that should be rectified in future adaptations of the model. 

 

Ore grade was modelled in two steps. First, the average ore grade for the reserves and resources 

mentioned in the database by Mudd (2020) was used and once these original resources ran out, ore 

grade declined based on cumulative mined nickel and a power for ore grades (see appendix I1.1 for a 

more detailed explanation). In future research, it could be interesting to adapt this in such a way that the 

change in ore grade based on the database becomes more continuous, instead of jumping discretely 

from average to average. 

 

Not much attention was paid to the DSM of manganese nodules in this thesis, even though it is 8% of 

current resources (see appendix G1). Further research could look into this more, especially the costs, 

because now a highly uncertain assumption is used of twice the energy costs of land-based mining and 2 

- 20 times the capital costs. Currently, DSM is not activated in the model, probably because it is deemed 

too expensive. In future research it is interesting to determine a more accurate relation between DSM and 

land-based mining. 

 

There are multiple limitations to the way by-products were included in the model. The main limitation is 

the determination of by-product scarcity. This was based on nickel scarcity and for by-products with a 

larger share coming from other deposit types, the scarcity was made to be more out of sync with the 

nickel scarcity. In future research other options for including by-product scarcity could be explored. 

 

Nickel dynamics drive the model because, in most cases, nickel is the host metal of a certain deposit. 

However, nickel dynamics also drive platinum mining in the model, even though in some deposits 

platinum is the host metal. In these deposits, the platinum is always recovered, so in a way platinum does 

have a larger impact on the profitability of the deposit than the by-products. However, in future 

adaptations of the model, platinum could be given a more important role. 
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Nickel remains the host metal of all deposits throughout the model. However (especially in the runs where 

final energy use shoots up; see figure 3.8), it could be beneficial to include the possibility of a change in 

host metal to the model. This would mean that a certain by-product would take over as a host metal and 

nickel would become a by-product, with the potential to not be recovered, if that is economically more 

attractive when mining the new host metal. 

 

The by-products were modelled in a cruder way than nickel, which makes sense because they are not the 

main interest of this research. However, palladium and cobalt were highlighted more in this research and 

it is important to note that in the case of palladium a very uncertain formula was used (see table I9 in 

appendix I2.1). In future research, it would be beneficial to find more accurate data for palladium. 

 

The collection of most of the data used in the model was done with utmost care. However, due to time 

constraints, the search for some data, specifically the royalties, was done in a more superficial way. In 

future research, better data could be collected for the royalties. In addition, the potential for making the 

royalties more dynamic could be explored. 

 

In the model, many economic processes that exist in reality were not included, which may have 

contributed to the large extremes. For example, the price in the model does not react to knowledge of the 

development of new mines and capacity. It only reacts once mining actually starts for a new project. In 

reality, price may already react when there is knowledge of increased supply in the future. This could be 

added in future adaptations of the model. Long-term contracts were also not included in the model. By 

adding such contracts in future adaptations, the variability could perhaps be dampened further. 

 

There is a discrepancy between what is profitable in the model in initial years and what is profitable in 

reality based on where certain operating capacity is located. This indicates, that although many factors 

were considered, there are likely many more factors that play a role in the profitability and the relative 

attractiveness of certain projects. Research can be done to determine more of these factors that could 

then be included in the model. 

 

Price was used as an indicator for resilience in this thesis. However, as stated in section 3.4.2, price is 

based on perceived scarcity and not on actual scarcity, because of the delay in the administration of 

postponed demand. This slightly reduces the usefulness of price as an indicator for resilience in some 

cases. 

 

On the other hand, the inclusion of postponed demand in the model, may be the reason that scarcity 

fluctuates around 2 instead of around 1 in figure 3.7. Postponed demand is a difficult to model variable 

with a large impact on the model. In future research, more attention could be paid to the best way in 

which postponed demand can be included in the model.  

 

4.4.4 Sustainability impacts 

The number of assessed sustainability impacts was limited in this analysis. The focus was on final energy 

use and GHG emissions. In future research, it would be interesting to also assess other environmental 

impact categories. Once more detailed nickel LCA’s become available for different processing methods, 

these can be incorporated in the model. In addition, more aspects than only the electricity mix could be 

made dynamic. Furthermore, more attention could be given to the social and economic aspects of 

sustainability. 
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The choice was made to look at final energy demand, excluding energy products for non-energy use, in 

this research instead of PED because this was easier to include for a dynamic energy mix. However, in 

future research it could also be interesting to determine PED, as this is an indicator that is more 

frequently used and that gives a better indication of lifecycle energy requirements. To do this, (dynamic) 

conversion efficiencies would have to be added to the model for the different electricity generation 

technologies. Data for non-energy should then also be included. 

 

Impacts (and costs) were only included up to refining, not for other steps of the supply chain. Energy use 

and GHG emissions were also not included for recycling. This favours recycling more than would be 

realistic, which is why no comparison could be made for energy requirements and GHG emissions as a 

result of the different EoL waste management strategies. This could be included in future adaptations of 

the model.  

 

Regarding the sustainability policies included in the model, carbon price was automatically included in the 

1.5 °C ET scenarios. However, because carbon price turned out to have quite a large impact on the 

marginal costs and thereby the price, in future research it could be interesting to assess the impact of 

these scenarios without the carbon price. This may, however, mean that they would then no longer be in 

line with the 1.5 °C target. 

 

Especially in SSP5-19, the carbon costs become quite high. This is mainly because renewable energy 

technologies were only included in the model for electricity generation, not for direct fuel use. It was 

assumed that, in the mining industry, fossil fuels would continue to be used for transport and heating 

purposes. However, especially in the ET scenarios, the share of EVs increases rapidly, so such vehicles 

could also potentially be used in the mining industry. Biofuels, hydrogen and other synthetic fuels could 

also be used in the future. In fact, the way the electricity price was calculated actually counts on such 

changes. This could be considered in future adaptations of the model and it would lead to lower GHG 

emissions and thereby lower carbon costs in the ET scenarios. 

 

The carbon tax was the only type of environmental cost included in the model. Other costs for 

environmental impacts could potentially be included in future adaptations in combination with other impact 

categories.  

 

In future research, it could also be interesting to look at additional sustainability policies, including energy 

efficiency improvements, material efficiency improvements and carbon intensity improvements in addition 

to the autonomous developments. This is something that was done by Manberger & Stenqvist (2018), 

who included scenarios with 2 - 5% material intensity improvement. 

 

Overall, the current research has led to the generation of a large amount of data, with numerous 

opportunities for future research. The most important contribution of this thesis is not in the data and 

assumptions, but in the model itself, which can be adapted and refined in further research, where more 

stakeholder input is included, to make the outcomes more robust and useful for decision making. 
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Appendix A: Literature on materials for the energy transition  

Table A1: research done on the material requirements of the ET. Nickel is highlighted in bold. Bottleneck materials 

can create constraints for the production of e.g. renewable energy infrastructure based on certain deployment targets. 

There is a risk of supply shortages for these materials (Valero et al., 2018a). The literature review to obtain these 

articles was done at the end of 2019. Articles published later on are not included. Abbreviations are described below. 

Topic Scope Components Materials Scenarios Bottleneck Source 

‘Requirements for 
Minerals and Metals for 
100% Renewable 
Scenarios’ 

Global, 
2015 - 
2050 

Solar PV, wind, 
EVs, batteries 

Li, Co, Ag 1.5 °C, 100% 
renewable, 5 
supply 
scenarios 

Cumulative total 
demand for Li 
and Co exceeds 
reserves. 

Giurco et 
al. (2019) 

‘Dynamic Energy 
Return on Energy 
Investment (EROI) and 
material requirements’ 
for the global energy 
transition 

Global, 
1995 - 
2060 

Solar PV, CSP, 
wind, EV 
batteries, T&DI 

Mg, V, Al, Cr, Zn, 
Ni, Mo, Cd, In, 
Cu, Pb, Te, Mn, 
Ga, Ag, Sn 

Green growth 
scenario. 
Bottom-up 
assessment 

Risk for Te, In, 
Ga, Ag, Sn 
based on 
reserves. Risk 
for Te, In based 
on resources 

Capellan-
Perez et 
al. (2019) 

‘Enough Metals? 
Resource Constraints 
to Supply a Fully 
Renewable Energy 
System’ 

Global 
2010 - 
2050 

Solar PV, CSP, 
wind, hydro, 
ocean and 
various battery 
technologies 

Al, Br, Cd, Cr, Co, 
Cu, Ga, Au, In, 
Zr, Fe, La, Pb, Li, 
Zn, Mg, Mn, Mo, 
Nd, Ni, Pd, Pt, 
Re, Ti, Sn, Rh, 
Ag, Ta, Te 

IPCC, IEA, 
WWF/Ecofys, 
and IRENA 
scenarios 

Risk for Cd, Co, 
Au, Pb, Ni, Ag, 
Sn, Zn based 
on current 
reserves.  

Moreau et 
al. (2019) 

‘Environmental 
Implications of Future 
Demand Scenarios for 
Metals’ 

Global, 
2010 - 
2050 

Focus on the 
electricity 
system, with 
different mixes. 

Fe, Al, Cu, Zn, 
Pb, Ni, Mn 

Adapted 
versions of the 
UN’s GEO-4 
scenarios 

Not mentioned; 
focus is on 
environmental 
implications 

Van der 
Voet et al. 
(2019) 

Global Energy 
Transition and Metal 
Demand - An 
Introduction and 
Circular Economy 
Perspectives 

Global, 
2011 - 
2050 

Focus on the 
electricity 
system  

Ag, Al, Au, B, Cd, 
Ce, La, Co, Cr, 
Cu, Dy, Fe, Ga, 
Gd, Sm, Tb, In, 
Li, Mg, Mn, Mo, 
Nd, Ni, Pb, Pr, Pt, 
Pd, Se, Si, Sn, 
Ta, Te, Ti, V, Zn 

Include an IO 
model. Use 
the B2D 
scenario by 
the IEA 

Production 
needs speeding 
up for: Au, B, 
Cd, Ce, La, Cu, 
Dy, Ga, Gd, 
Sm, Tb, Li, Nd, 
Pb, Pr, Pt, Pd, 
Sn, Te, Ti, V 

Rietveld et 
al. (2019) 

‘Total material 
requirement for the 
global energy transition 
to 2050: A focus on 
transport and 
electricity’ 

Global, 
2015 - 
2050 

Fossil, ICE, EV, 
CSP, PV, hydro, 
wind, nuclear, 
ocean, bio, 
CCS, 
geothermal 

Te, Ag, Ni, Mo, 
Cu, Al, Fe, Pt, Co, 
Li 

Scenarios in 
ETP 2017 by 
the IEA. 
Stock-flow 
dynamics and 
TMR 

Not mentioned Watari et 
al. (2019) 

‘Critical Metal 
Resource Constraints 
in the International 
Energy Agency’s Long-
Term Low-Carbon 
Energy Scenarios’ 

Global, 
2015 - 
2060 

Solar power, 
wind power, 
EVs 

In, Ga, Se, Te, 
Cd, Ag, Dy, Nd, 
Li, Co, Ni, Pt, Fe, 
Al, Cu  

Scenarios in 
ETP 2017 by 
the IEA. Use a 
top-down, 
bottom-up and 
integrated 
model 

Risk for solar 
and EVs. Risk 
for In, Te, Ag, 
Li, Ni, Pt, Se. 
Recycling leads 
to 20-70% less 
demand. 

Watari et 
al. (2018) 

‘Scenarios for Demand 
Growth of Metals in 
Electricity Generation 
Technologies, Cars, 
and Electronic 
Appliances’ 

Global, 
2000 - 
2050 

PV, CSP, wind, 
hydro, biomass, 
other RE, 
nuclear, coal, 
oil, gas, CCS, 
CHP, ICE, EVs 

Cu, Co, Nd, Ta, Li SSPs as 
implemented 
by the IMAGE 
IAM. 

Demand for Co 
and Li expected 
to increase by a 
factor 10 - 20+ 
due to future EV 
demand 

Deetman 
et al. 
(2018) 
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‘Material bottlenecks in 
the future development 
of green technologies’ 

Global 
2016 - 
2050 

Wind, solar PV, 
CSP, EVs 

Ag, Al, Cd, Ce, 
Co, Cr, Cu, Dy, 
Fe, Ga, Gd, Ge, 
In, La, Li, Mg, V, 
Mn, Mo, Nb, Nd, 
Ni, Pd, Pr, Pt, Si, 
Sn, Ta, Te, Ti, Zn 

Use a BAU 
scenario. Use 
both a bottom-
up and a top-
down 
approach 

Risk for solar 
PV, wind, CSP, 
EVs. Risk for 
Ag, Cd, Co, Cr, 
Cu, Ga, In, Li, 
Mn, Ni, Sn, Te, 
Zn. 

Valero et 
al. (2018a) 

‘Global material 
requirements for the 
energy transition. An 
exergy flow analysis of 
decarbonisation 
pathways’ 

Global, 
2025 - 
2050 

Wind, solar PV, 
solar thermal, 
CSP, 
geothermal, 
gas, nuclear, 
hydro, ICE, EVs 

Ag, Al, As, V, Cd, 
Ce, Co, Cr, Cu, 
Dy, Fe, Ga, Gd, 
Ge, In, K, La, Li, 
Mg, Mn, Mo, Nb, 
Nd, Ni, P, Pb, Pd, 
Pr, Pt, Si, Sn, Ta, 
Te, Ti, Zn 

IEA and 
Greenpeace 
scenarios 

Demand for Co, 
Li, Mg, Ti and 
Zn will increase 
by at least six-
fold in terms of 
ERC. 

Valero et 
al. (2018b) 

‘Modelling the material 
and energy costs of the 
transition to low-carbon 
energy’ 

Global, 
2000 - 
2050 

Wind solar PV, 
CSP, hydro, 
coal, gas, oil, 
nuclear 

Cu, Al, Fe  Garcia- 
Olivares et al. 
(2012), 
Ecofys/ 
WWF and IEA 

Not mentioned Vidal et al. 
(2018) 

‘Metal supply 
constraints for a low-
carbon economy?’ 

Global, 
2000 - 
2050 

PV, wind, hydro, 
Nuclear, gas, 
coal, CCS, 
CHP, ICE, EVs 

Fe, Al, Cu, Ni, Cr, 
In, Nd, Dy, Li, Pb, 
Zn 

Own 
scenarios. 
Include an IO 
model and 
LCA data. 

Risk for Solar 
PV and EVs. 
Risk for Dy, In, 
Li, Nd 

De Koning 
et al. 
(2018) 

Global metal flows in 
the energy transition: 
Exploring effects of 
substitutes, technology 
mix and development 

Global, 
2015 - 
2060 

Solar PV, CSP, 
wind, EVs, 
batteries, fuel 
cells 

Co, Cu, Dy, Ga, 
In, Li, Nd, Ni, Pt, 
Se, Ag, Te 

Scenarios in 
ETP 2017 by 
the IEA. 

Risk for EVs. 
Risk for Co, Li 

Manberger 
& 
Stenqvist 
(2018) 

‘Exploring metal 
requirements and the 
well-below 2 °C target 
with 100 percent 
renewable energy’ 

Global, 
2010 - 
2100 

PV, wind, EVs, 
nuclear, coal, 
oil, gas, CCS, 
hydro, H2, 
biomass, T&DI, 
geothermal 

Si, Ag, In, Ga, Cd, 
Se, Te, Cu, Fe, 
W, Nd, Dy, Li, Co, 
Ni, Mn, Hf, Mo, V, 
Y, Nb, Zr, Pd, Pt, 
Al, Ti, La, Mg, Cr,  

Own; 100% 
renewable; 
gas & 
renewables; 
coal & nuclear 

Risk for solar 
PV, wind, FCV. 
Risk for In, Se, 
Te, Dy, Zr, Ni, 
Pt, Y, V, Li, La  

Tokimatsu 
et al. 
(2018) 

Energy modeling 
approach to the global 
energy-mineral nexus: 
a first look at metal 
requirements and the 
2°C target 

Global, 
2010 - 
2100 

PV, wind, EVs, 
nuclear, coal, 
oil, gas, CCS, 
hydro, H2, 
biomass, T&DI, 
geothermal 

Si, Ag, In, Ga, Cd, 
Se, Te, Cu, Fe, 
Nd, Dy, Li, Co, Ni, 
Mn, Hf, Mo, V, Nb 

Coal & 
nuclear, BAU 
and net 
ZERO; gas & 
renewables, 
BAU and net 
ZERO 

Risk for solar 
PV, nuclear, 
EVs. Risk for In, 
Se, Te, Li, Co, 
Ni, Mn 

Tokimatsu 
et al. 
(2017) 

Material constraints for 
100 % global 
renewable energy 

Global, 
to 2050 

Solar, wind and 
potentially 
others 

28 metals (could 
not access past 
the abstract) 

IPCC, WWF 
and IEA 
scenarios 

Could not 
access 

Emdadi et 
al. (2017) 

‘Critical minerals and 
energy–Impacts and 
limitations of’ the 
energy transition 

Global, 
2010 - 
2050 

Solar PV, Wind, 
fuel cells 

Co, Cu, Ga, In, Li, 
Mg, Ni, Pt, Pd, Ir, 
Se, Te, Zn, Nd, 
Dy, Y, Ru, Rh, Os 

Scenarios 
based on the 
IEA 

Risk for solar 
PV and wind. 
Risk for In, Se, 
Te, Dy, Nd  

McLellan 
et al. 
(2016) 

‘Role of critical metals 
in the future markets of 
clean energy 
technologies’ 

Global, 
2010 - 
2050 

Solar, wind, EV, 
batteries, fuel 
cells, hydrogen 
storage, LED, 
electrolysis 

Ru, Pt, Ag, Nd, 
Pr, Dy, Tb, Ga, 
Pd, Au, Ge, In, 
Ce, La, Co, Y, Eu, 
Te 

Based on 
IPCC 
scenarios, 
TIMES model 

Risk for solar, 
wind, EVs, fuel 
cells. Risk for 
Ag, Co, Dy, In, 
La, Pt, Ru, Te 
 

Grandell et 
al. (2016) 



15 
 

‘Metal Demand to Meet 
SDG Energy-related 
Goals’ 

Global, 
2010 - 
2100 

Solar PV, T&DI Cu, In WEC Jazz 
scenario as 
BAU scenario  

Risk for both Cu 
and In 

Murakami 
et al. 
(2015) 

‘Raw Materials for 
Renewable Energy 
Technologies’ 

Global, 
2012 - 
2030 

Solar PV, wind, 
EVs 

Fe, Al, Cu, Nd, 
Dy, Li, Co, Mn, 
Ni, Ag 

Based on a 
Greenpeace 
scenario 

Risk for Dy, Co, 
Li, Nd, Ag 

Mocker et 
al. (2015) 

Integrated life-cycle 
assessment of 
electricity-supply 
scenarios’ 

Global, 
2010 - 
2050 

Solar PV, CSP, 
wind, hydro, 
coal, natural 
gas 

Fe, Al, Cu Apply LCA. 
Use IEA 
BLUE Map 
and Baseline 
scenarios  

Supply may be 
a concern for 
Cu 

Hertwich 
et al. 
(2015) 

‘Global Flows of 
Critical Metals 
Necessary for Low-
Carbon Technologies: 
The Case of 
Neodymium, Cobalt, 
and Platinum’ 

Global, 
2005 

Motor magnets, 
battery 
electrodes, fuel 
cell electrolytes 

Nd, Co, Pt Global MFA, 
including 231 
countries and 
regions, using 
trade data 

Not mentioned Nansai et 
al. (2014) 

‘Exploring rare earths 
supply constraints for 
the emerging clean 
energy technologies 
and the role of 
recycling’ 

Global, 
2000 - 
2050 
(and 
2100) 

Wind turbines, 
EVs 

Nd, Dy Own supply 
and demand 
scenarios 

China is likely to 
play a dominant 
role regarding 
dy. 

Habib & 

Wenzel 

(2014) 

‘Dynamic analysis of 
the global metals flows 
and stocks in electricity 
generation 
technologies’ 

Global, 
2010 - 
2050 
 

Oil, coal, gas, 
nuclear, CSP, 
PV, biomass, 
wind, hydro, 
geothermal 

Ag, Al, Cd, Cr, 
Cu, Fe, Ga, Ge, 
In, Mo, Ni, Pb, 
Se, Te, Zn, Nd, 
Dy, Mg, Mn 

GEO-3 
scenarios. 
Dynamic MFA 

Risk for Solar 
PV. Risk for Ag, 
Ge, In, Te 

Elshkaki & 

Graedel 

(2013) 

‘A global renewable 
mix with proven 
technologies and 
common materials’ 

Global Generation, 
power system 
and transport 

Cu, Al, Nd, Li, Ni, 
Zn, Pt 

Propose an 
alternative 
energy mix to 
fossil fuels 

Risk for 
vehicles. Risk 
for Li, Ni, Pt 

Garcia-
Olivares et 
al. (2012) 

‘Evaluating Rare Earth 
Element Availability: A 
Case with 
Revolutionary Demand 
from Clean 
Technologies’ 

Global, 
2010 - 
2035 

Wind, EVs Ce, Dy, Eu, Gd, 
La, Nd, Pr, Sm, 
Tb, Y 

Own 
scenarios 

Risk for wind, 
EVs. Risk for 
Nd, Dy 

Alonso et 
al. (2012) 

‘Metal requirements of 
low-carbon power 
generation’ 

Global, 
2007, 
mixes 
up to 
2050  

Coal, natural 
gas, oil, CCS, 
nuclear, wind, 
hydro, solar, 
biomass, CHP 

U, Ag, Mo, Sn, 
Zn, Cu, Al, Ni, Fe 

Own 
scenarios and 
the IEA Blue 
Map scenario 

Significant 
upscaling of 
mining is 
required. 

Kleijn et al. 
(2011) 

‘Resource constraints 
in a hydrogen economy 
based on renewable 
energy sources: An 
exploration’ 

Global, 
2050 

Solar PV, wind, 
T&DI, hydrogen 
system, fuel 
cells, motors 

Cd, Te, Se, Ga, 
In, Ge, Ru, Fe, 
Ag, Cu, Pb, Nd, 
Ni, Cr, Pt 

Market first 
scenario. 
Assumed 
hydrogen 
economy 

Bulk materials 
are also at risk 
due to the sheer 
size of the ET. 

Kleijn & 
van der 
Voet 
(2010) 

Abbreviations: CSP = Concentrated Solar Power; T&DI = Transmission and distribution infrastructure; IPCC = Intergovernmental 

Panel on Climate Change; WWF = World Wildlife Fund; WEC = World Energy Council; IEA = International Energy Agency; IRENA = 

International Renewable Energy Agency; UN = United Nations; LCA = Life Cycle Assessment; IO = Input-Output; MFA = Material 

Flow Analysis; TMR = Total Material Requirements; RE = renewable energy; PV = Photovoltaics; CHP = Combined Heat and 

Power; BAU = Business as Usual; ICE = Internal Combustion Engine; EV = Electric Vehicle; FCV = Fuel Cell Vehicle; CCS = 

Carbon Capture & Storage; ERC = Exergy Replacement Costs; SSP = Shared Socioeconomic Pathway; IAM = Integrated 

Assessment Model. For the abbreviations of specific scenarios used in certain publications, see those publications.
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Appendix B: Detailed model structure 

This appendix contains a more elaborate version of the XLRM (Exogenous uncertainties, levers, relationships and metrics) framework (figure B1) 

applied to nickel and the complete structures of the four sub models (figures B2 - B5).  

 

 

 
Figure B1: more detailed version of the XLRM framework applied to the nickel model. *Only the main performance metrics are included.
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Figure B2: complete demand sub-model. The legend is included in the figure.
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Figure B3: complete supply sub-model. For the legend, see figure B2. 
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Figure B4: complete price sub-model. For the legend, see figure B2. 
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Figure B5: complete impacts sub-model. For the legend, see figure B2.
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Appendix C: Background, assumptions & data: energy system 

This appendix contains background information that can be consulted to provide some more context for 

the concepts related to the energy system discussed in the main text. Assumptions are also explained 

and values used in the model for nickel intensity and component lifetime are shown.  

 

Physical components of the energy system are shown in figure C1. These components can be divided 

into energy carriers (fuels, heat and electricity) and supply chain categories (supply, T&DI, storage and 

use). Many of these components contain nickel, but most data is available on the power sector, storage 

and the road transport sector. These are also the sectors which are expected to change most in the 

Energy Transition (ET) through increased electrification of the energy system (Blok & Nieuwlaar, 2021) 

and are thus the focus of this thesis. In future research, the other components could also be assessed. 

 

 
 

Figure C1: physical components of the energy system. ATES = Aquifer Thermal Energy Storage, HVAC = Heating, 

Ventilation and Air Conditioning. Created with information from Hadjipaschalis et al. (2009); Blok & Nieuwlaar (2021); 

and Brown et al. (2018). 

Appendix C1: Electricity generation 

Nickel is used in virtually all electricity generation technologies, including fossil fuel-based generation, 

nuclear, bio-energy, wind, solar (PV and CSP), geothermal, hydropower and ocean energy. It is also used 

for CCS and in hydrogen infrastructure and fuel cells. Nickel used in electricity generation technologies is 

mainly in the form of stainless steel (Nickel Institute, n.d.).  
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Appendix C1.1: Nickel intensities of electricity generation technologies 

Table C1: nickel intensities of electricity generation technologies (tonne/GW). n = number of sources on which the 

values were based. More details regarding this table are discussed below. CCS was included in the model by 

multiplying intensities for bio, oil, coal and natural gas by 1.1, 2.3, 2.1 and 1.8 respectively, based on the difference 

between the values with and without CCS. C-Si = Crystalline silicon. 

Component Min. intensity Avg. intensity Max. intensity n Sources 

Solar PV (C-Si) 1 30 88 3 Kleijn et al. (2011); Elshkaki & 
Graedel (2013); Fizaine & Court 
(2015) Solar PV (thin film) 16 16 16 1 

Average solar PV 1 30 86 - Based on 97% market share c-Si (IEA 
PVPS, 2019) 

CSP (parabolic) 940 940 940 1 Pihl et al. (2012) 

CSP (tower) 1800 1800 1800 1 

Average CSP 1069 1069 1069 - Based on 85% market share 
parabolic (GVR, 2019) 

Wind 111 523 920 6 Kleijn et al. (2011); Elshkaki & 
Graedel (2013); Moss et al. (2013b); 
Fizaine & Court (2015); World Bank 
(2017); Rietveld et al. (2019) 

Geothermal 240 60198 120155 2 Moss et al. (2013a); Valero et al. 
(2018b) 

Hydro power 31 57 79 2 Kleijn et al. (2011); Moss et al. 
(2013a) 

Ocean Energy 0.2 0.2 0.2 1 Moss et al. (2013a) 

Nuclear 256 398 638 3 Kleijn et al. (2011); Moss et al. 
(2011); Fizaine & Court (2015) 

Bio-energy 20 753 1486 2 Kleijn et al. (2011); Ashby (2013) 

Bio-energy + CCS 69 802 1535 - The difference between oil + CCS 
and oil was added to the bio-energy 
values 

Oil 37 37 37 1 Kleijn et al. (2011) 

Oil + CCS 86 86 86 1 

Coal 176 179 182 2 Kleijn et al. (2011); De Koning et al. 
(2018) 

Coal + CCS 352 370 387 2 

Natural gas 77 89 100 2 

Natural gas + CCS 154 160 166 2 

 

In the model, current market shares of PV technologies are used. This may change in the future, but as 

the intensity of thin film is within the range of intensities of C-si, and the numbers are already very 

uncertain, it is assumed to remain constant. CSP shares are also assumed to remain constant. 

 

Kleijn et al. (2011) reported two types of biofuel (rapeseed and wood CHP). An average of these two 

types was taken when considering their data. The value for rapeseed was relatively high, because of the 

substantial inputs required per unit biomass along the life cycle (Kleijn et al., 2011). The rapeseed oil was 

used in an oil-fired power plant, so for bio-energy + CCS, the difference between oil + CCS and oil was 

added to the bio-energy values.  
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Data for electricity generation was reported in t/GWh by Kleijn et al. (2011) and De Koning et al. (2018). 

Capacity Factors (CFs) reported by the EIA (2019b,c) for the year 2010 (the closest year available to the 

base year of 2000 used by De Koning et al. (2018)) were used to convert the values in t/GWh to t/GW. It 

is not ideal to be using CFs because they differ per year and per country by a few percentage points. 

However, given the large uncertainty already surrounding the numbers, the values for the USA for 2010 

were assumed to be representative enough. 

 

The nickel intensities reported by Moss et al. (2013a) were used by Rietveld et al. (2019) and Watari et al. 

(2019) and they were also used for some of the technologies in this thesis. However, there are some 

concerns about the magnitude of the intensities. Especially the nickel intensity for geothermal is very 

large, at 120155 t/GW. This is about 500 times more than the value reported by Valero et al. (2018b).  

 

It is unclear how Valero et al. (2018b) obtained their value, but Moss et al. (2013a) based their value on 

an LCA by Sullivan et al. (2010), who report steel requirements for geothermal that are about 16 times as 

much as the steel requirements they report for coal. This is mainly due to the large steel requirement of 

the well, but the steel requirements for the plant are still 4 times as much as the steel requirements for the 

coal plant. The capital costs for a geothermal plant and well are comparable to the capital costs for 

various fossil fuel powered plants (EIA, 2020a), so it seems strange that a geothermal plant can have so 

much more steel. This should be looked into in further research. 

 

The high temperatures in large parts of the geothermal plant and well mean that there is probably a 

higher percentage of nickel in the steel than in plants that deal with lower temperatures. However, the 

value provided by Moss et al. (2013a) still seems disproportionately high. On the other hand, Moss et al. 

(2013a) report a very low value for ocean energy of 0.22 t/GW. This is about half a million times less than 

the value reported for geothermal energy and it is also a lot less than values reported for other 

technologies. However, this was the only value that could be found for ocean energy and because ocean 

energy does not play a large role in the SSP scenarios, it will not have a large impact on the final results. 

 

Appendix C1.2: Lifetimes of electricity generation technologies 

Table C2: lifetimes of electricity generation technologies (years). n = number of sources on which the values were 

based. None of the literature distinguished between power plants with or without CCS, so the same value was 

assumed. Sources: Tidball et al. (2010); Turconi et al. (2013); Raugei & Leccisi (2016); Valero et al. (2018a); 

Manberger & Stenqvist (2018); Tokimatsu et al (2018); Kis et al. (2018) Watari et al. (2019)  

Component Min. lifetime Avg. lifetime Max. lifetime n 

Solar PV 15 27 40 8 

CSP  20 28 30 5 

Wind 15 24 30 8 

Geothermal 20 37 60 4 

Hydro power 30 57 100 4 

Ocean Energy 30 30 30 1 

Nuclear 40 49 60 6 

Bio-energy (+CCS) 15 34 45 5 

Oil (+CCS) 20 32 40 4 

Coal (+CCS) 30 41 60 5 

Natural gas (+CCS) 20 33 45 5 
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Appendix C2: Storage technologies 

Nickel is also used in most storage technologies. Moss et al. (2013a) provided an indication of the nickel 

or stainless steel required for various technologies, including flywheels, Compressed Air Energy Storage 

(CAES; pneumatic storage), Thermal Energy Storage (TES) and Pumped Hydro Storage (PHS), but they 

did not provide concrete nickel intensities for each technology.  

 

Storage can be divided into short-term storage (often measured in hours), such as PHS and battery 

storage and long-term storage (often measured in weeks or months), such as long-term TES and 

hydrogen storage (Blok & Nieuwlaar, 2021). In this thesis only short-term storage was considered 

explicitly. It is assumed that most short-term storage technologies, except PHS (97% of storage capacity 

in 2017), TES at CSP sites (which can have a significant contribution in the future) and batteries (whose 

share is growing rapidly), make up a sufficiently small share of the total storage capacity to be neglected 

in this analysis (IRENA, 2017). 

 

Regarding batteries, different types are used for various mobile and stationary storage applications. 

These types include lead acid batteries, nickel-based batteries, such as Nickel-Iron (NiFe), Nickel-

Cadmium (NiCd) and Nickel-Metal Hydride (NMH), and lithium-ion batteries. Many lithium-ion batteries, 

which have high energy densities and are therefore most suitable for EVs and stationary storage, also 

contain a large nickel fraction. This type of batteries includes Nickel Cobalt Aluminium (NCA) batteries 

and various Nickel Manganese Cobalt (NMC) batteries. The advantage of using nickel in batteries is 

increased storage capacity and energy density at a lower cost (Nickel Institute, 2018).  

Appendix C2.1: Nickel intensities of storage technologies 

The main focus of this thesis is on battery storage. Nickel required for PHS and CSP TES was assumed 

to already be accounted for in the infrastructure required for hydropower and CSP respectively. Moss et 

al. (2013a) provide a value of 60 tonne/GW for PHS, which is included in the range for hydropower (table 

C1). Nickel required for hydrogen storage is considered only in relation to FCVs.  

 

According to Tokimatsu et al. (2018), the nickel intensity in the stainless steel of hydrogen storage tanks 

is between 93 and 132 kg/vehicle, with an average of 112 kg/vehicle. When referring to hydrogen storage 

tanks, Tokimatsu et al. (2018) presumably refer to the infrastructure and not to the tank in the vehicle. 

However, the value still seems rather high and it is not clear how they obtained it. The value should be 

treated with care, but if it is a decent approximation, it would mean that FCVs have a higher total intensity 

(including infrastructure) than Battery Electric Vehicles (BEVs). 

 

Different types of lithium-ion battery chemistries and their energy density, nickel intensity, market share 

and applications are shown in table C3. In 2018, the market share of nickel containing lithium-ion 

batteries was 53%, but this share is expected to grow to 85% by 2030 (BNEF, 2019). The nickel ratio of 

NMC batteries has also increased over the years, leading to higher energy densities. However, the 

decreased cobalt content makes the batteries more prone to explosions (van der Linden, 2020). 

 

Energy densities were obtained from Wentker et al. (2019). Nickel Institute (2018) also provided values 

for energy density, but these are slightly more outdated and lower. However, because Wentker et al. 

(2019) did not include values for Lithium Manganese Oxide (LMO) and Lithium Cobalt Oxide (LCO) 

batteries, these values were taken from Nickel Institute (2018) and increased based on the average 

difference between the other values of the two sources. 
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Table C3: lithium-ion battery chemistries (BNEF, 2019), energy densities (Wentker et al., 2019; Nickel Institute, 

2018), nickel intensities (calculated), market share and applications for 2018 (BNEF, 2019). EV = passenger electric 

vehicles, ETr = E-trucks, EB = E-buses, CE = consumer electronics, SBS = stationary battery storage. The energy 

density applies to the mass of the whole battery, the nickel intensity applies to the mass of the nickel. It was assumed 

that the cathode is 30% of the total weight of the battery (Dunn et al., 2012). More details are discussed below. 

Battery Components (and cathode composition (%)) Energy 
density 
(kWh/kg) 

Nickel 
intensity 
(kg/kWh) 

Market 
share 

Current 
applications 

Not containing nickel    47%  

LFP Lithium (7%), iron (60%), phosphate (33%) 0.21 0 19% CE, EV, ETr, 
EB, SBS 

LMO Lithium (6%) manganese (94%), oxide 0.22 0 2% CE, EV 

LCO Lithium (11%), cobalt (89%), oxide 0.26 0 26% CE 

Containing nickel  53%  

NMC 111 Lithium (11%), nickel (30%), manganese (29%), cobalt 
(30%) 

0.25 0.36 14% CE, EV, ETr, 
EB, SBS 

NMC 442 Lithium (11%), nickel (37%), manganese (34%), cobalt 
(18%) 

0.26 0.43  
14% 

SBS 

NMC 532 Lithium (11%), nickel (45%), manganese (26%), cobalt 
(18%) 

0.26 0.52 EV 

NMC 622 Lithium (11%), nickel (54%), manganese (17%), cobalt 
(18%) 

0.27 0.60 15% CE, EV, ETr 

NMC 811 Lithium (11%), nickel (72%), manganese (8%), cobalt (9%) 0.28 0.77 3% CE 

NCA Lithium (11%), nickel (73%), cobalt (14%), aluminium (2%) 0.28 0.78 
7% 

EV, ETr 

NCA+ Lithium (11%), nickel (82%), cobalt (5%), aluminium (2%) 0.29 0.85 EV 

 

Since 2010, energy density has changed quite a lot and it will continue to increase in the future (BNEF, 

2019). Ilika (2019) expects energy density to reach 0.5 kWh/kg by 2030. This is not explicitly included in 

the model, but is (at least partially) reflected in the model through intensity changes, storage mix changes 

and substitution. This is discussed in more detail in appendix E4. 

 

Van der Linden (2020) obtained nickel intensity data for different battery chemistries from Olivetti et al. 

(2017). However, Olivetti et al. (2017) do not include data for NMC 422, NMC 532 and NCA+. In this 

thesis, nickel intensity was determined by combining energy density, the nickel fraction per cathode and 

the cathode fraction per battery, as described by BNEF (2019), who also calculated intensities but did not 

report them. BNEF (2019) also included production losses in their calculations, but that is not done in this 

thesis, because the production losses are already included in the model. According to Dunn et al. (2012), 

the cathode fraction of the total battery weight is about 30% for LMO batteries. Assuming this also applies 

to NCA and NMC batteries, leads to values that are very similar to the values by Olivetti et al. (2017). 

 

Appendix C2.2: Lifetimes of storage technologies 

The lifetimes for PHS and CSP TES were assumed to be equal to the lifetimes of hydro power and CSP 

respectively. The lifetimes of battery technologies are shown in table C4. As indicated by IRENA (2017), 

lifetime can increase over time. This is not taken into account in the nickel model. Instead, both the 

lifetime ranges IRENA (2017) provides for 2016 and 2031 were used to determine an average lifetime. 

Potential future lifetime prolongation may be (partially) taken into account in the intensity reduction. 



26 
 

Table C4: Lifetimes of battery technologies (years). n = number of sources on which the values were based. The 

other category consists mostly of LFP, so data for LFP was used. Source: IRENA (2017). The average lifetime here is 

16 years, but 18 years is used in the model to match the data on repurposing of EV batteries (see appendix C3.2). 

Component Min. lifetime Avg. lifetime Max. lifetime n 

NCA+ 5 16 31 1 

NCA 5 16 31 1 

NMC811 5 16 31 1 

NMC622 5 16 31 1 

NMC532 5 16 31 1 

NMC422 5 16 31 1 

NMC111 5 16 31 1 

Other (LFP) 5 16 31 1 

 

Appendix C3: Transport technologies 

In the transport sector, nickel is used in trains, aircrafts, and various land-based vehicles, for example in 

the form of coatings. Nickel is especially required in EV batteries, which can be used in passenger 

vehicles, trucks and buses (Nickel Institute, n.d.; BNEF, 2019). Battery demand is expected to grow most 

and is thus assessed in most detail. Coatings and other applications are included as part of the Rest of 

the Economy (RoE). 

 

Passenger vehicles can be divided into different types based on the type of powertrain. The most 

common types include the ICEs, Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles 

(PHEVs), BEVs and FCVs. ICE vehicles run solely on a certain fuel (not considering the small start-up 

and auxiliary electrical systems battery), whereas the other four contain a larger, often lithium-ion, battery. 

 

In addition to a battery, FCVs, which run on hydrogen, also have a nickel containing fuel cell. Moreover, 

hydrogen infrastructure has to be built to supply the FCVs, including nickel-containing storage tanks. As 

stated in appendix C2.1, Tokimatsu et al. (2018) provide values on the nickel intensity of fuel cells and 

storage infrastructure in kg per vehicle. The storage tanks are also relevant for hydrogen storage for other 

purposes, including long- term storage of grid electricity. However, in this thesis hydrogen is only 

considered in relation to FCVs. 

Appendix C3.1: Battery capacities of vehicle technologies 

Table C5 shows the battery capacity of different vehicle types. According to Speirs et al. (2014), the 

capacities of PHEV and BEV batteries are about 10 - 20 times larger than the capacities of HEV and FCV 

batteries. Values provided by FCH (2010), though outdated, corroborate this. Based on this, and the 

values provided by Van der Linden (2020) and InsideEVs (2020) for PHEV and BEV capacities, the 

battery capacities of HEV and FCV were determined. In a similar manner, Fuel Cell Bus and Truck (FC-

Bus and FC-Truck) values were derived from electric bus and truck (E-Bus and E-Truck) values. 

 

Based on the market share of the battery types in 2018 (BNEF, 2019), a static average nickel intensity of 

0.56 kg/kWh was calculated. Multiplying this by the battery capacity of the different vehicles led to a static 

nickel intensity per vehicle type. These calculated intensities were quite similar to values that could be 

found in the literature (USDOE, 2011; Tokimatsu et al., 2018; Valero et al., 2018a; Watari et al., 2019).  
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Table C5: Battery capacity of vehicles (GWh/vehicle). n = number of sources on which the values are based. Also 

see Manberger & Stenqvist (2018) for similar values and a more detailed division of vehicle types. 

Component Min. capacity Avg. capacity Max. capacity n Sources 

ICE 0 0 0 -  

HEV 1E-06 4E-06 6E-06 - Calculated based on Speirs 
et al. (2014) and FCH (2010) 

PHEV 9E-06 1.8E-05 4.2E-05 2 Van der Linden (2020); 
InsideEVs (2020) 

BEV 2E-05 7.1E-05 1.2E-04 2 

FCV 1E-06 4E-06 6E-06 - Calculated based on Speirs 
et al. (2014) and FCH (2010) 

E-Bus 1.5E-04 1.85E-04 2.20E-04 1 Van der Linden (2020) 

E-Truck 7E-05 1.1E-04 1.5E-04 1 

FC-Bus 8E-06 9E-06 1.1E-05 - Calculated based on Speirs 
et al. (2014) 

FC-Truck 4E-06 6E-06 8E-06 - 

 

For FCVs, an average calculated intensity of 2 kg/vehicle is similar to the values reported by Tokimatsu et 

al. (2019), who only considered the fuel cell and not the battery. On the other hand, Watari et al. (2019) 

reported 1 kg/vehicle for the whole vehicle. Based on this, and the fact that all these factors are already 

uncertain, it is assumed that the calculated value based on the battery capacity is enough to encompass 

both battery and fuel cell, so no additional variables were added to the model to account for the fuel cell.  

 

In the model, the battery capacities are used instead of the static average intensities. This is because the 

market share of the different batteries changes significantly over time for the different storage functions 

(stationary, passenger vehicles, buses and trucks) and these changes are reflected in the model using 

battery scenarios provided by BNEF (2019). This is discussed in more detail in appendix D2.5. 

 

The values for BEV and PHEV differ significantly per vehicle model (InsideEVs, 2020) and battery 

capacities also change over time. To increase range, it is assumed that over time, as energy density 

increases, battery capacity will also increase, unless size is reduced to reduce weight. Batteries that have 

already been made, degrade over time and their capacity reduces. This is mostly not considered in the 

model, however, a capacity reduction of 75% is considered for the repurposing of batteries (Walker et al., 

2015; Assuncao et al., 2016; De Rousseau et al., 2017 White et al., 2020). 
 

Appendix C3.2: Lifetimes of vehicle technologies 

Table C6: Lifetimes of vehicle technologies (years). n = number of sources on which the values were based. Sources: 

Ercan et al. (2016); Zhou et al. (2017); Deetman et al. (2018); Manberger & Stenqvist (2018); Watari et al. (2019); 

Nordelof et al. (2019); ACEA (2020); Statista (2020). The average lifetime here is 13 years, but 16 years is used in 

the model (see below). 

Component Min. lifetime Avg. lifetime Max. lifetime n 

Passenger vehicle 10 13 15 4 

Bus 12 13 16 3 

Truck 9 13 17 3 
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According to ACEA (2020) and Statista (2020), the lifetimes of different vehicles have been increasing 

over time. To take this into account, a lifetime of 16 years was selected for all vehicle functions. This also 

makes it exactly twice the lifetime of an EV battery inside a vehicle, reported as 8 years (Walker et al., 

2015; Assuncao et al., 2016; De Rousseau et al., 2017 White et al., 2020). With a second-life of 10 years 

for repurposed batteries (at 70 - 80% of initial capacity), the total lifetime would be 18 years. This value is 

also used for the storage technologies instead of 16, so it matches (see table C4).  

 

Van der Linden (2020) used values for passenger vehicles, buses and trucks of 20, 30 and 18 years 

respectively. However, the 18 years refers to the infrastructure for trucks, not the trucks themselves and 

no sources could be found for the 20 and 30 years, so these values were not considered. They would, 

however bring the range closer to an average lifetime of 16 years, further supporting this choice. 

 

Appendix C4: Relationships between the sectors 

The nickel containing components included explicitly in this thesis are shown in figure C2. The three 

sectors discussed above are interconnected in multiple ways. To smooth the increased variability when 

integrating renewables in electricity systems, various flexibility measures are required. Storage options 

are one form, but there are also other measures, including grid expansion, flexible dispatch, active 

demand response and various other forms of sector coupling, which is the increased interaction between 

supply sectors and end users. An example is using excess electricity to create other energy carriers, like 

hydrogen and synthetic fuels. Curtailment, which is simply the reduction or restriction of the output of a 

generator, is also an option (Brown et al., 2018; Zerrahn et al.,2018).  

 

 
Figure C2: Nickel containing components considered in this thesis and their relationships. The solid lines indicate 

relationships included in the nickel model. The dotted lines indicate relationships that are not explicitly included in the 

model. The black lines are energy flows, the orange line is a material flow. The black components are just for 

illustrative purposes. Any nickel used in these components is not considered. 
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Increased flexibility means less SBS is required. A form of flexibility applied explicitly in the model is the 

use of EVs for storage. This is a form of demand response, also known as Vehicle to Grid (V2G) storage, 

where EVs can be charged when supply is high and discharged to the grid when supply is low and the 

vehicles are not in use. This can significantly reduce the need for SBS (IRENA, 2017; Brown et al., 2018).  

 

FCVs can also be used for V2G. In this case, the fuel cell in the vehicle is used as a ‘power plant’, with 

hydrogen as fuel. The available energy from FCVs doesn’t depend on the battery capacity as for BEVs 

and PHEVs, but on the hydrogen storage capacity and the fuel cell capacity. It is assumed that each FCV 

has a capacity of 10 KW that can be used for 6 hours per day, based on Oldenbroek et al. (2017). 

 

SBS can consist of new batteries, with a lifetime of about 18 years, but also of repurposed EV batteries. 

Vehicles have a lifetime of about 16 years, but EV batteries can be used in vehicles for only about 8 years 

before they have degraded too much to be suitable for vehicles and need to be replaced. However, at this 

point they still have 70 - 80% of their initial capacity and can still be used for 10 more years as stationary 

storage (Walker et al., 2015; Assuncao et al., 2016; De Rousseau et al., 2017 White et al., 2020).  
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Appendix D: Background, assumptions & data: energy scenarios 

This appendix contains background information that can be consulted to provide some more context for 

the scenarios used as input in the model. Assumptions are also explained and values used in the model 

for the different scenarios are shown.  

 

Large changes are expected in the energy system in the coming decades, but there are many ways in 

which these developments can occur. Multiple organisations, including the IPCC, IEA, IRENA, WEC, 

Shell, British Petroleum (BP), the European Commission (EC) and Greenpeace, have created scenarios 

(Dagnachew et al., 2019). In this thesis some of the more ambitious ones were selected to explore the 

nickel requirements. These are pathways that conform to the 1.5 °C temperature increase target. Below, 

first electricity generation scenarios are described, followed by storage scenarios and transport scenarios. 

Appendix D1: Electricity generation scenarios 

The selected scenarios for electricity generation are the results of IAMs that combine SSPs with 

Representative Concentration Pathway (RCP) 1.9. SSPs are five narratives that vary based on socio-

economic developments, such as Gross Domestic Product (GDP) and population (figure D1a). The SSPs 

have been used by multiple IAMs, so there are multiple scenarios per SSP. However, for each SSP a 

certain IAM is known as the marker model that produces a set of marker scenarios per RCP. The marker 

scenarios can be considered as the representatives of a certain SSP, while the results of other IAMs can 

be used to indicate uncertainty (IIASA, 2018). 

 

RCPs are pathways that vary based on the level of radiative forcing. Radiative forcing is the difference 

between radiation arriving at and leaving Earth and its atmosphere. When the incoming radiation is larger 

than the outgoing radiation, caused by the increase of Greenhouse Gases (GHGs), the temperature will 

rise. RCP 1.9 indicates a radiative forcing of 1.9 W/m2. This is the level of radiative forcing likely to limit 

temperature increase to 1.5°C (Hausfather, 2018). The different levels of radiative forcing, and the 

associated temperature increase, used in the RCPs are shown in figure D1b.   

 

 
Figure D1: a. SSPs (O’Neill et al., 2017) b. RCPs (Hausfather, 2018)  
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Of the marker scenarios, only three of the five SSPs are compatible with RCP 1.9; SSP1-19, SSP2-19 

and SSP5-19. These are used in the nickel model, together with the baseline scenario for SSP2, which is 

used as a BAU scenario. However, the model is made in such a way that other scenarios can also be 

added. The four selected scenarios are explained in more detail in table D1. 

 

Table D1: the four selected scenarios consisting of marker scenarios compatible with RCP 1.9 and a BAU scenario. 

The values for these scenarios are shown in appendix D1.1 (Riahi et al., 2017; IIASA, 2018). 

Scenario Model Elaboration 

1 Sustainability, 
SSP1-19 

IMAGE Gradual shift to a more sustainable world with increased equality and respect for 
environmental boundaries. Emphasis on economic growth shifts to emphasis on 
well-being. Lower resource and energy intensity. Developments are compatible 
with limiting global temperature increase to 1.5 °C  

2 Middle of the 
road, SSP2-19 

MESSAGE
-GlOBIOM 

Continuation of historical trends with slow progress toward achieving sustainability 
goals. Inequality only improves slowly. Environmental degradation with some 
improvements, including lower resource and energy intensity. Developments are 
compatible with limiting global temperature increase to 1.5 °C  

3 Fossil-fueled 
development, 
SSP5-19 

REMIND-
MAGPIE 

Focus on competitive markets and technological, social and economic 
development to achieve sustainability. Rapid economic growth through exploitation 
of fossil fuels and resource and energy intensive lifestyles. Developments are 
compatible with limiting global temperature increase to 1.5 °C  

4 BAU, SSP2-
Baseline  

MESSAGE
-GLOBIOM 

Same as SSP-19. The main difference is that the developments are BAU and not 

compatible with limiting global temperature increase to 1.5 °C, instead leading to 
an increase of about 3.8 °C. 

 

Appendix D1.1: SSP data 

The tables below show SSP scenario estimates for various variables used in the model between 2005 

and 2100. Exact data for all variables in the base year 2015 could not be found, so it is assumed to be 

between the 2010 and 2020 values estimated in the SSP scenarios. Because these values are estimates 

and the values for 2015 are a further extrapolation, they may deviate from reality. However, they were 

deemed good enough for a starting value estimate. 

 
Table D2: data for the SSP1-19 scenario (IIASA, 2018). Some values based on additional assumptions (see below). 

 
 

 

 

SSP1 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Population (million) 6531 6922 7576 8062 8389 8531 8492 8299 7967 7510 6958

GDP (PPP) (billion US$2005/yr) 57408 68462 101815 155855 223196 291301 356291 419291 475419 524876 565390

Carbon price (US$2005/t CO2) 0 0 0 304 546 651 708 652 520 335 239

Secondary energy (electricity) (GWh/yr) 1.82E+07 2.13E+07 2.41E+07 2.26E+07 2.75E+07 3.53E+07 4.25E+07 4.87E+07 5.23E+07 5.26E+07 5.03E+07

Variable renewable energy share 0.01 0.02 0.07 0.11 0.45 0.67 0.69 0.64 0.66 0.72 0.72

PV capacity (GW) 4 39 279 386 2357 3018 2479 1121 1247 1519 1674

CSP capacity (GW) 0 1 8 19 577 1979 3691 5179 5960 6357 6204

Wind capacity (GW) 59 196 490 527 1490 2887 2990 2299 2386 2821 2567

Assumed geothermal capacity (GW) 10 11 17 27 88 136 181 226 271 317 360

Total biomass capacity (GW) 67 81 185 224 315 430 577 665 711 742 824

Hydro capacity (GW) 871 1028 1314 1431 1730 1820 1877 1936 1991 2050 2078

Nuclear capacity (GW) 403 423 452 452 373 214 184 185 236 305 306

Total oil capacity (GW) 405 435 325 249 31 9 8 8 7 6 5

Total coal capacity (GW) 967 1139 1089 872 254 210 268 346 336 283 193

Total gas capacity (GW) 1011 1171 1616 1469 1072 1552 2139 2639 2657 2253 1886

Assumed ocean capacity (GW) 0 0 0 0 0 0 0 0 0 0 0

Fraction of bio + CCS 0.00 0.00 0.00 0.30 0.96 0.98 1.00 1.00 1.00 1.00 1.00

Fraction of coal + CCS 0.00 0.00 0.00 0.01 0.55 0.91 1.00 1.00 1.00 1.00 1.00

Fraction of gas + CCS 0.00 0.00 0.01 0.07 0.56 0.92 0.99 0.98 0.96 0.95 0.87

Fraction of oil + CCS 0.00 0.00 0.01 0.13 0.69 0.94 0.99 0.99 0.99 0.98 0.96
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Table D3: data for the SSP2-19 scenario (IIASA, 2018). Some values based on additional assumptions (see below). 

 
 

Table D4: data for the SSP5-19 scenario (IIASA, 2018). Some values based on additional assumptions (see below). 

 
 

Table D5: data for the SSP2-baseline scenario (IIASA, 2018). Some values based on assumptions (see below). 

 
 

 

SSP2 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Population (million) 6503 6867 7611 8262 8787 9169 9385 9457 9407 9254 9032

GDP (PPP) (billion US$2005/yr) 56533 67506 100897 141177 180978 223260 268958 321282 378016 438379 504585

Carbon price (US$2005/t CO2) 0 0 32 95 268 436 710 1156 1884 3068 4998

Secondary energy (electricity) (GWh/yr) 1.81E+07 2.10E+07 2.63E+07 3.16E+07 4.46E+07 6.24E+07 8.30E+07 1.01E+08 1.14E+08 1.25E+08 1.38E+08

Variable renewable energy share 0.01 0.03 0.09 0.28 0.42 0.46 0.47 0.52 0.58 0.65 0.75

PV capacity (GW) 3 38 257 1227 2489 4654 6952 9976 11665 14006 17851

CSP capacity (GW) 0 2 2 12 56 154 341 659 1120 1760 2706

Wind capacity (GW) 55 255 654 2183 4718 6720 8592 11241 14350 17454 21263

Geothermal capacity (GW) 10 16 15 36 112 168 219 270 278 287 296

Total biomass capacity (GW) 28 40 64 57 34 29 60 136 208 210 176

Hydro capacity (GW) 855 1128 1225 1634 2124 2342 2555 2681 2749 2795 2826

Nuclear capacity (GW) 406 415 511 763 1248 2244 3659 4459 4605 4151 3286

Total oil capacity (GW) 408 233 88 45 19 11 10 1 0 0 0

Total coal capacity (GW) 1208 1554 1613 1175 478 103 39 16 5 1 0

Total gas capacity (GW) 891 1065 1774 2134 2605 2539 2271 1574 1480 1503 1793

Assumed ocean capacity (GW) 0 0 0 341 1523 2633 3667 5283 7093 8899 11415

Fraction of bio + CCS 0.00 0.00 0.00 0.09 0.59 0.85 0.85 0.91 0.97 0.97 0.97

Fraction of coal + CCS 0.00 0.00 0.00 0.32 1.00 0.99 1.00 1.00 1.00 1.00 1.00

Fraction of gas + CCS 0.00 0.00 0.00 0.16 0.71 0.90 0.87 0.87 0.87 1.00 1.00

Fraction of oil + CCS 0.00 0.00 0.00 0.19 0.77 0.91 0.91 0.92 0.94 0.99 0.99

SSP5 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Population (million) 6505 6894 7552 8054 8403 8579 8589 8457 8200 7831 7375

GDP (PPP) (billion US$2005/yr) 56690 67570 101900 162800 246600 338400 440600 560000 686500 819000 960100

Carbon price (US$2005/t CO2) 0 0 7 96 349 629 1204 1724 2904 4681 7464

Secondary energy (electricity) (GWh/yr) 1.84E+07 2.15E+07 2.92E+07 3.33E+07 4.46E+07 6.99E+07 9.70E+07 1.21E+08 1.42E+08 1.62E+08 1.78E+08

Variable renewable energy share 0.01 0.03 0.06 0.12 0.28 0.45 0.57 0.65 0.70 0.74 0.77

PV capacity (GW) 1 39 265 360 1108 3444 8102 14540 22640 30590 36790

CSP capacity (GW) 0 1 4 66 685 3009 6551 9700 12420 15000 17940

Wind capacity (GW) 40 180 515 1262 3688 7680 11770 15430 19070 22960 24560

Geothermal capacity (GW) 8 12 14 33 43 43 42 40 39 39 39

Total biomass capacity (GW) 24 35 46 78 310 458 536 626 721 760 756

Hydro capacity (GW) 702 743 702 891 2105 3539 4102 4326 4515 4683 4798

Nuclear capacity (GW) 401 404 482 831 1627 2295 2659 2854 2809 2662 2485

Assumed total oil capacity (GW) 322 317 229 110 0 0 0 0 0 0 0

Total coal capacity (GW) 1134 1299 1297 650 134 1 0 0 0 0 0

Total gas capacity (GW) 925 1147 2241 2761 1752 1165 731 384 150 85 45

Assumed ocean capacity (GW) 0 0 0 0 0 0 0 0 0 0 0

Fraction of bio + CCS 0.00 0.00 0.00 0.66 0.96 0.99 1.00 1.00 1.00 1.00 1.00

Fraction of coal + CCS 0.00 0.00 0.00 0.00 0.00 0.08 0.19 0.53 0.53 0.53 0.53

Fraction of gas + CCS 0.00 0.00 0.00 0.02 0.20 0.46 0.76 0.84 0.81 0.70 0.26

Fraction of oil + CCS 0.00 0.00 0.00 0.23 0.39 0.51 0.65 0.79 0.78 0.75 0.60

SSP2 Baseline 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Population (million) 6503 6867 7611 8262 8787 9169 9385 9457 9407 9254 9032

GDP (PPP) (billion US$2005/yr) 56533 67529 101245 143070 185955 231300 280515 336849 398498 465847 539332

Carbon price (US$2005/t CO2) 0 0 0 0 0 0 0 0 0 0 0

Secondary energy (electricity) (GWh/yr) 1.81E+07 2.10E+07 2.63E+07 3.27E+07 3.90E+07 4.73E+07 5.89E+07 7.18E+07 8.24E+07 9.32E+07 1.05E+08

Variable renewable energy share 0.01 0.03 0.07 0.10 0.13 0.15 0.18 0.21 0.22 0.24 0.28

PV capacity (GW) 3 38 257 256 238 160 382 899 1336 2097 3375

CSP capacity (GW) 0 2 2 2 0 0 0 0 0 0 0

Wind capacity (GW) 56 255 541 932 1419 2122 3134 4362 5091 6253 7950

Geothermal capacity (GW) 10 16 15 7 0 0 0 0 0 0 0

Total biomass capacity (GW) 28 41 65 51 32 61 59 69 124 168 220

Hydro capacity (GW) 855 1127 1219 1300 1449 1496 1560 1661 1771 1831 1848

Nuclear capacity (GW) 406 415 511 437 281 165 217 379 670 1172 1765

Total oil capacity (GW) 408 233 88 45 19 11 10 1 0 0 0

Total coal capacity (GW) 1209 1551 1634 1400 1246 1402 1794 2189 2619 2696 2397

Total gas capacity (GW) 887 1065 1777 2939 4651 6273 8174 10346 11574 12596 14292

Assumed ocean capacity (GW) 0 0 0 0 8 33 50 81 188 547 865

Fraction of bio + CCS 0 0 0 0 0 0 0 0 0 0 0

Fraction of coal + CCS 0 0 0 0 0 0 0 0 0 0 0

Fraction of gas + CCS 0 0 0 0 0 0 0 0 0 0 0

Fraction of oil + CCS 0 0 0 0 0 0 0 0 0 0 0
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There was some missing data in the SSP database. None of the scenarios reported any data for ocean 

energy. For SSP1-19, data for geothermal was also missing, and for SSP5-19 there was no data for oil. In 

addition, there was a discrepancy between the sum of the reported values for technologies and the 

reported total. This may be partially due to rounding errors, however, for some scenarios the difference is 

quite large. Instead of ignoring this difference it was attributed to the technologies for which data was 

missing.  

 

For SSP2-19 and SSP2-baseline, the difference was attributed to ocean energy. For SSP2-19 this 

becomes quite a large number by 2100 and for SSP2-baseline it is also relatively large compared to other 

minor renewables. However, because the nickel intensity used for ocean energy is very small, it is not 

assumed to affect the model results much. 

 

For SSP1-19, the difference was attributed to geothermal energy instead of ocean energy because it was 

assumed that it is more likely for ocean energy to have a lower capacity than geothermal, because 

geothermal is a more mature technology. However, this does not explain why ocean energy becomes 

more in SSP2-19 and SSP2-baseline. This is an important point of uncertainty that should be considered. 

For SSP5-19, the difference was attributed to oil, because, especially in the earlier years, this fits better 

with the other scenarios and it fits with the fossil-fueled development narrative of SSP5. After 2040, the 

difference becomes slightly negative for most years and it is assumed oil becomes 0 for all these years. 

 

In the SSP database, the values for installed capacity did not distinguish between power plants with or 

without CCS, but the values for electricity generation did. However, the electricity generation shares for 

plants with and without CCS cannot simply be converted to capacity shares. It was assumed that the CF 

remains similar when adding CCS, however there is an energy penalty that needs to be taken into 

account. This means that for the same net energy output, a larger capacity is required for power plants 

with CCS, because some of the produced energy is used for the CCS (Blok & Nieuwlaar, 2021). 

 

The energy penalty for implementing CCS depends on many factors, including power plant type and CCS 

type. In the literature ranges have been reported of between 15 and 28% for pulverised coal, 5 - 20% for 

Integrated Gasification Combined Cycle (IGCC) and 15 - 16% for natural gas combined cycle (Budinis et 

al., 2018). In this thesis a value of 15% is used for all technologies.  

 

In the SSP database, no distinction is made between oil-fired power plants with or without CCS. It is 

assumed that the share with CCS is similar to the shares for bio, coal and natural gas and therefore an 

average of those shares was used. The share of oil in total electricity generation is relatively small, so 

regardless of what is assumed, it will not make much difference. 

 

 

Appendix D2: Storage scenarios 

Modelling storage is very complex and includes many considerations and assumptions. The required 

storage is determined by the amount of electricity generated by Variable Renewable Energy (VRE) 

sources (wind and solar), as well as by the application of other flexibility measures. Zerrahn et al. (2018) 

reviewed the literature on storage requirements for various VRE shares and they concluded that the 

amount of storage required as a percentage of total annual electricity demand decreases significantly 

when other flexibility measures and curtailment are taken into account. 
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Appendix D2.1: Flexibility scenarios 

Zerrahn et al. (2018) created three profiles of required storage capacity as a percentage of electricity 

demand per VRE share, that can be seen as scenarios. Their analysis was for Germany, but they also 

assessed other research from different countries with similar results. In the first scenario, all renewable 

surplus energy is integrated. Zerrahn et al. (2018) argue that this is a highly unlikely scenario, because it 

does not make economic sense to have that much storage capacity. In the second scenario, curtailment 

is allowed, greatly reducing the required storage capacity, and in the third scenario, additional flexibility is 

added, reducing the required storage capacity even further, while also decreasing curtailment. 

 

Several adjustments were made to the profiles described by Zerrahn et al. (2018) to obtain three flexibility 

scenarios used in the model: a high, medium and low flexibility scenario. First, as argued by Zerrahn et al. 

(2018), the scenario in which all renewable surplus energy is integrated (adapted from Sinn, 2017), was 

discarded based on its high unlikelihood. Second, the scenario with additional flexibility was also 

discarded. Zerrahn et al. (2018) based this on V2G storage, which is already explicitly included in the 

model. The scenario could also be achieved through flexible electric heaters or the production of 

hydrogen, which is not considered explicitly in the model. However, it was assumed that such flexibility 

could also be used instead of curtailment in the second scenario derived from Zerrahn et al. (2018).  

 

Furthermore, the research assessed by Zerrahn et al. (2018) only applied to developed countries with 

well-established electricity grids. This allows for a lot more flexibility than what is possible in smaller off-

grid systems or less reliable grids in developing countries (IRENA, 2017). Therefore, the second scenario 

by Zerrahn (2018) was used in this thesis as the high flexibility scenario in a global setting. To account 

more for the, on average lower flexibility in a global setting, medium and low flexibility scenarios were 

created that shifted the data by Zerrahn (2018) a respective 10% and 20% to the left on the VRE share 

scale.  

 

In their profiles, Zerrahn et al. (2018) do not include base storage as a fraction of electricity demand that 

is required regardless of VRE share. This storage was assumed to be equivalent to the storage capacity 

in the base year (2015) as VRE share was still relatively low then. The storage capacity in the base year 

was determined as follows: first the PHS capacity in 2017 of 4530 GWh was determined by multiplying 

the reported total storage capacity of 4670 GWh by the reported share of PHS of 97% (IRENA, 2017). 

This capacity was then divided by the capacity in GW reported by IHA (2018) to obtain an E/P 

(Energy/Power) ratio of 30 hours of storage. Based on IRENA (2017), it was further calculated that EV 

batteries were 2.7% of the total storage capacity. 

 

It was assumed that the E/P ratio, the 97% and the 2.7% remained relatively stable between 2015 and 

2017. Based on this and the PHS of 144 GW in 2015 (IHA, 2016), the total storage capacity in 2015 in 

GWh was calculated. The EV battery share was then removed from the total storage capacity, because 

not all EV batteries are actually used for V2G, with the exception of a share equivalent to the VRE share 

in 2015 (IRENA, 2017). VRE share is also used to determine the percentage of EVs being used for V2G 

in the model.  

 

The remaining storage capacity of 4280 GWh was then divided by the total electricity demand in 2015 

(IRENA, 2017) to obtain a fraction of 0.00017. The same procedure was followed to determine storage as 

a fraction of electricity demand for the IRENA (2017) REmap scenario. The three scenarios used in this 

thesis are summarised in table D6 and the data used is shown in table D7 and figure D2. 
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Table D6: the three flexibility scenarios used in the nickel model. 

Scenario Elaboration 

1 Low 
flex 

Base storage as a fraction of electricity demand plus the second profile proposed by Zerrahn et al. 
(2018) shifted 20% to the left on the VRE share scale. In addition, it is assumed ⅓ of the vehicles 
participating in V2G are available at the right time. 

2 Mediu
m flex 

Base storage as a fraction of electricity demand plus the second profile proposed by Zerrahn et al. 
(2018) shifted 10% to the left on the VRE share scale. In addition, it is assumed ½ of the vehicles 
participating in V2G are available at the right time. 

3 High 
flex 

Base storage as a fraction of electricity demand plus the second profile proposed by Zerrahn et al. 
(2018) including the option for curtailment. It is argued in this thesis that the curtailment could also be 
replaced by other flexibility measures. In addition, it is assumed ⅔ of the vehicles participating in V2G 
are available at the right time. 

 

Table D7: values for storage as fraction of electricity demand used in the flexibility scenarios (orange) and additional 

values in profiles by Zerrahn (2018) and Sinn (2017). Values closer to 90% for the shifted scenarios are assumptions 

made to fit the curve ending at 0.00215 at 90% based on Zerrahn (2018). 

 
 

 
Figure D2: profiles of the storage capacity scenarios discussed by Zerrahn et al. (2018; grey) and those used in the 

model (solid lines). Data for this figure is shown in table D7. The ‘no flex’ scenario goes up to a fraction of 0.033 at 

90% (Sinn, 2017). The other scenarios converge at 90% based on Zerrahn et al. (2018). A base storage fraction of 

0.00017 was added to the scenarios based on IHA (2016), IHA (2018) and IRENA (2017). 

 

VRE share 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90%

Zerrahn (2018) 

increased flex 0 0 0 0 0 0 0 0.000006 0.000024 0.00004 0.000056 0.000084 0.000206 0.00048 0.000998 0.002154

Zerrahn (2018) 0 0 0 0 0 0.000016 0.000036 0.00007 0.000108 0.000216 0.000352 0.00046 0.000628 0.000924 0.001386 0.002154

Zerrahn (2018) 

shifted 10% 0 0 0 0.000016 0.000036 0.00007 0.000108 0.000162 0.000216 0.000318 0.000406 0.000502 0.000628 0.000924 0.001386 0.002154

Zerrahn (2018) 

shifted 20% 0 0.000016 0.000036 0.00007 0.000108 0.000162 0.000216 0.000284 0.000352 0.000406 0.00046 0.000544 0.000628 0.000924 0.001386 0.002154

Zerrahn (2018); 

Sinn (2017)     no 

flex 0 0.00002 0.00004 0.0001 0.0003 0.0008 0.0024 0.00426 0.0062 0.0083 0.0102 0.0124 0.015 0.0184 0.0254 0.033

Increased flex 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.00017 0.000176 0.000194 0.00021 0.000226 0.000254 0.000376 0.00065 0.001168 0.002324

High flex 0.00017 0.00017 0.00017 0.00017 0.00017 0.000186 0.000206 0.00024 0.000278 0.000386 0.000522 0.00063 0.000798 0.001094 0.001556 0.002324

Mid flex 0.00017 0.00017 0.00017 0.000186 0.000206 0.00024 0.000278 0.000332 0.000386 0.000488 0.000576 0.000672 0.000798 0.001094 0.001556 0.002324

Low flex 0.00017 0.000186 0.000206 0.00024 0.000278 0.000332 0.000386 0.000454 0.000522 0.000576 0.00063 0.000714 0.000798 0.001094 0.001556 0.002324

No flex 0.00017 0.00019 0.00021 0.00027 0.00047 0.00097 0.00257 0.00443 0.00637 0.00847 0.01037 0.01257 0.01517 0.01857 0.02557 0.03317
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The shift of 10% and 20% may seem arbitrary, however, the 20% shifted profile actually fits better with 

the more market-based forecast made by IRENA (2017). IRENA (2017) modelled the potential storage 

capacity growth from 2017 to 2030. Here they included potential storage additions for PHS, CSP TES, EV 

storage (split into passenger vehicles, commercial vehicles, buses and 2 & 3 wheelers), SBS (split into 

rooftop PV, retrofit rooftop PV and utility scale) and a small ‘other’ category including CAES, flywheels 

and other TES. 

 

At a 34% VRE share in 2030 in IRENAs (2017) REmap scenario, the calculated storage as a fraction of 

total electricity demand is between 0.00028 and 0.00037. This corresponds with the 0.00028 at 35% in 

the low flexibility scenario and is a lot more than what is expected based on Zerrahn et al. (2018). 

 

It is important to note that the calculated values for the REmap scenario only include a fraction (based on 

VRE share) of EV storage, as the primary function of EVs is providing a transportation service. Therefore, 

the number of batteries goes up regardless of grid storage requirements. This also applies to stationary 

storage, due to behind-the-meter storage opportunities for small scale PV systems to increase self-

sufficiency (IRENA, 2017). This is discussed further in appendix D2.4. 

 

It is very uncertain how flexibility will develop in the future and this is also a dynamic factor that will 

probably increase over time with increased sector coupling and innovation. The research done by Zerrahn 

(2018) described a static situation with different possible VRE shares and this is also used in this thesis. 

However, it is important to keep in mind that in reality it is more likely that the values are closer to the low 

flex scenario in earlier years and closer to the high flex scenario in later years.  

 

In theory, curtailment is always possible, but this would require more electricity generation capacity, and 

thus more nickel. It is unclear how curtailment is taken into account in the SSP scenarios. Some other 

flexibility measures could also require more nickel, but this is not taken into account in this thesis, 

because the assessment of what this flexibility could be is beyond the scope of this research. 

Appendix D2.2: PHS, CSP TES and V2G shares 

Once other flexibility has been accounted for, the remaining storage requirements can be fulfilled by the 

available storage options. The four storage options included in this thesis are PHS, CSP TES, SBS and 

EV battery storage (V2G).  

 

Over the past five years, the percentage of hydropower capacity that functioned as PHS was consistently 

12% (IHA 2016-2020). According to Achkari & El Fadar (2020), 45% of CSP capacity is currently 

equipped with TES. However, because it is cost-effective, it is assumed this will increase over the years. 

This increase is based on the increase in VRE share to fit with the SSP narratives (see table D1).  

 

The hours of storage or E/P ratio was assumed to be 30 hours for PHS, based on reported energy and 

power by IRENA (2017) and IHA (2018) for 2017. The E/P ratio for CSP TES was assumed to be 

between 5 and 9 hours (IRENA, 2017). These values are used in the model in combination with data on 

hydropower and CSP capacity respectively to determine the amount of storage that can be covered by 

PHS and CSP TES in different scenarios.  

 

V2G requires willingness to participate by the vehicle owners. In this thesis, the availability of vehicles for 

V2G is linked to the share of VRE. It is assumed that the willingness of vehicle owners to participate 

depends on the incentives they receive and that these incentives depend on the amount of storage that is 

needed, which increases as the share of VRE increases.  
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Appendix D2.3: Battery repurposing 

All storage not covered by EVs, PHS and CSP TES is assumed to be covered by SBS. For stationary 

storage, it is generally cheaper to repurpose batteries than to purchase new ones (Walker et al., 2015; 

BNEF, 2016). However, the quality is lower and some studies have come to more negative conclusions 

regarding the economics (De Rousseau et al., 2017). In addition, there may be warranty issues and not 

all EV companies want to be involved with repurposing (BNEF, 2016). According to BNEF (2016) about a 

third of the EV batteries will be given a second life as stationary storage by 2025. It is assumed that over 

time this will increase as VRE share increases and more storage is required. 

Appendix D2.4: Behind the meter storage 

According to IRENA (2017), up to 40% of annual small-scale PV installations included battery storage in 

Germany in recent years, with an assumed capacity of 1.2 - 2 kWh/kW small-scale PV. However, this 

percentage was probably lower in other countries and also lower for the existing stock. To match with an 

initial installed stationary battery capacity of 11 GWh, of which about 3 - 4 GWh was assumed to be 

small-scale (IRENA, 2017; Olson & Bakken, 2019), it is assumed that the percentage of small-scale PV 

installations including battery storage was equal to the modelled VRE share in 2015. It is also assumed 

that this percentage will increase over time as the price for battery storage decreases. Based on this, the 

percentage of small-scale PV installations with battery storage is assumed to increase as VRE share 

increases. The different types of storage considered in the model are shown in figure D3. 

 

 

  
 

Figure D3: types of grid electricity storage considered in this thesis and types of SBS. The dotted line indicates that 

not all EVs are used for V2G. Strictly speaking, CSP with TES may not be grid storage, but it does reduce the 

requirements for grid storage and is therefore included. The same goes for V2G. 
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Regarding the percentage of total PV that will be small-scale over the years, there has been a general 

trend of increasing utility-scale share (Radoia, 2019) and this is expected to continue in the future, from 

about 50% in 2016 to about 67% in 2050. An additional 18% in 2016 and 15% in 2050 is commercial and 

industrial capacity and the remaining 32% and 18% respectively consists of off-grid, microgrid and 

residential applications (Olson & Bakken, 2019). It is assumed that the latter category will have its own 

battery storage. This is included in the model with the assumption that the 2015 values are the same as 

the 2016 values and the 2050 values will not change further.  

 

Due to the many assumptions involved, the way storage is modelled in this thesis is very uncertain. 

However, a general conclusion that can be drawn, also found by Zerrahn et al. (2018), is that not much 

SBS is needed for the grid in the future if EVs can indeed cover a large part of the storage requirements. 

Appendix D2.5: Battery market shares 

The market share and the current applications of different battery types are included in table C3 for 2018. 

However, this is expected to change significantly in the future. BNEF (2019) expects the nickel-containing 

share to rise to 85% by 2030, especially due to an increased share of NMC 811. These changes are 

included in the model by creating a lookup based on the expectations of BNEF (2019) until 2030 with 

further extrapolation to 2100. This is shown in table D8. 

 

Table D8: data for the battery market shares (BNEF, 2019). Some values are based on assumptions (see text). 

 
 

 

 

Battery scenario 2015 2018 2020 2022 2024 2026 2028 2030 2040 2050 2060 2070 2080 2090 2100

NCA+ share 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NCA share 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NMC 811 share 0 0 0 0.05 0.12 0.16 0.2 0.24 0.355 0.47 0.585 0.7 0.815 1 1

NMC 622 share 0 0.15 0.29 0.4 0.4 0.34 0.29 0.24 0.16 0.08 0 0 0 0 0

NMC 532 share 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NMC 422 share 0.04 0.19 0.15 0.14 0.12 0.17 0.17 0.17 0.135 0.1 0.065 0 0 0 0

NMC 111 share 0.73 0.35 0.26 0.05 0 0 0 0 0 0 0 0 0 0 0

Other 0.23 0.31 0.3 0.36 0.36 0.33 0.34 0.35 0.35 0.35 0.35 0.3 0.185 0 0

NCA+ share 0.18 0.19 0.21 0.25 0.24 0.27 0.31 0.35 0.39 0.43 0.47 0.51 0.55 0.59 0.63

NCA share 0 0.02 0.04 0.04 0.03 0.03 0.03 0 0 0 0 0 0 0 0

NMC 811 share 0 0.01 0.08 0.3 0.47 0.57 0.61 0.65 0.61 0.57 0.53 0.49 0.45 0.41 0.37

NMC 622 share 0.28 0.5 0.5 0.34 0.23 0.11 0.03 0 0 0 0 0 0 0 0

NMC 532 share 0.36 0.15 0.08 0.03 0 0 0 0 0 0 0 0 0 0 0

NMC 422 share 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NMC 111 share 0.07 0.04 0.01 0 0 0 0 0 0 0 0 0 0 0 0

Other 0.11 0.09 0.08 0.04 0.03 0.02 0.02 0 0 0 0 0 0 0 0

NCA+ share 0 0.02 0.04 0.05 0.05 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

NCA share 0.23 0.18 0.17 0.14 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22

NMC 811 share 0 0 0.05 0.13 0.2 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36

NMC 622 share 0.08 0.2 0.27 0.2 0.13 0.07 0.05 0.03 0 0 0 0 0 0 0

NMC 532 share 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NMC 422 share 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NMC 111 share 0.23 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0

Other 0.46 0.49 0.47 0.48 0.5 0.5 0.49 0.48 0.48 0.45 0.42 0.39 0.36 0.33 0.3

NCA+ share 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NCA share 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NMC 811 share 0 0 0 0 0.01 0.08 0.17 0.26 0.3 0.34 0.38 0.42 0.46 0.5 0.54

NMC 622 share 0 0.03 0.04 0.06 0.09 0.08 0.06 0.04 0 0 0 0 0 0 0

NMC 532 share 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NMC 422 share 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NMC 111 share 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Other 0.98 0.97 0.96 0.94 0.9 0.84 0.77 0.7 0.7 0.66 0.62 0.58 0.54 0.5 0.46

Stationary

Passenger vehicles

Trucks

Buses
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The BNEF (2019) values were placed two years (3 years for 2015) before the forecast by BNEF (2019) to 

account for manufacturing time. The extrapolations from 2030 onward were partially based on Van der 

Linden (2020). In this thesis, it is assumed that after 2030 the changes are relatively slow over a 10-year 

period, but of course the uncertainty of all changes after 2030 is very high.  

 

Van der Linden (2020) increased the share of NMC811 and decreased the share of NCA+ over time. 

However, in this thesis, this is switched around to reflect the relative difficulty of obtaining cobalt. In 

addition, it is likely that higher energy density is preferred in the future and even if NMC gets a higher 

energy density than NCA+, this is likely due to an increased nickel content, which is also reflected by 

increasing the NCA share. This is an assumption without accounting for substitution. If nickel becomes 

scarce, substitution will occur in the model, which includes switching to batteries containing less nickel. 

 

In the thesis by Van der Linden (2020), the values for trucks stagnate, however, in this thesis, the NCA 

and NMC 811 shares keep growing and LFP is reduced to create a scenario where more nickel is 

required. If substitution occurs in the model, it follows that a switch is made back to increasing LFP or 

another technology that does not contain (as much) nickel. 

 

 

Appendix D3 Transport scenarios 

The transport scenarios were designed to stay close to the narratives of the different SSPs by relating the 

number of vehicles to GDP and population. Our World in Data (2014) created a chart in which they 

compared the number of motor vehicles per 1000 inhabitants to Purchasing Power Parity (PPP) adjusted 

GDP per capita. Their definition of motor vehicles includes passenger vehicles, trucks and buses. This 

chart was used to estimate the number of required vehicles based on GDP growth after first converting 

2014 US$ to 2005 US$ to match the SSP data. This value was adjusted based on the initial number of 

vehicles in 2015, which was about 1.28 billion according to Statista (2018a). 

 

Based on Van der Linden (2020), the passenger vehicle share of total motor vehicles for all SSPs was 

consistently around 75% in 2015, flattening off at about 80% by 2050. The truck share was roughly 24% 

in 2015, flattening off at about 19% by 2050. The bus share is the remainder. These figures are all rough 

estimates, but they do indicate the relatively large share of passenger vehicles and small share of buses.  

 

An important category that was not included is the 2 & 3 wheelers. According to IRENA (2017), a 

relatively large share of batteries was used in 2 & 3 wheelers in 2017, about 105 GWh, which was 65% of 

non-PHS storage. However, in the future this share is expected to decrease to about 7% in 2030 in the 

IRENA (2017) REmap scenario. Due to lack of data, this category was excluded. 

 

In total, four transport scenarios were constructed, based on two important uncertainties: BAU vs ET and 

electrification vs hydrogen. The distinction between BAU vs ET is determined by the SSPs, where the 

SSPs with a target of 1.5 °C temperature increase (SSP1-19, SSP2-19 and SSP5-19) are considered as 

ET scenarios and SSP2-baseline is considered as the BAU scenario. The four transport scenarios and 

their data sources are shown in figure D4 and described further in sections D3.1 and D3.2. 
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Figure D4: the four transport scenarios included in this thesis. 

Appendix D3.1: Electrification scenarios 

The ET electrification scenario is based on Van der Linden (2020), who considered ICEs, PHEVs and 

BEVs for passenger vehicles, and ICEs and a general category of EVs for buses and trucks. The values 

up to 2050 were based on Van der Linden (2020) and thereafter the values were linearly extrapolated. In 

the shares reported by Van der Linden (2020), HEV and FCV were not included. It was assumed that the 

HEV share is a fraction of the ICE share that increases over time. This fraction was assumed to be equal 

to the combined BEV and PHEV share. It was further assumed that the FCV remains zero in this 

scenario. The ICE shares in this scenario are similar to those in the Beyond 2 Degrees Scenario (B2DS) 

by the IEA (2017a). 

 

The BAU electrification scenario was based on the Reference Technology Scenario (RTS) by the IEA 

(2017a), as was done by Watari et al. (2018). For buses and trucks, the ET values were shifted by 10 

years. Vehicle shares for the ET and BAU electrification scenarios are shown in table D9 and D10 

respectively and in figure D5. The numbers in the tables may not exactly match the figures of the sources 

they are based on, partially due to additional assumptions and partially due to the fact that many were 

estimated based on graphs in the publications. 

 

Table D9: vehicle market shares for the ET electrification scenario. Based on BNEF (2019) & Van der Linden (2020) 

 

Electrification ET 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

ICE 1 0.990 0.872 0.487 0.184 0.01 0 0 0 0 0

HEV 0 0.005 0.062 0.211 0.245 0.09 0 0 0 0 0

PHEV 0 0.005 0.016 0.069 0.075 0.16 0.1 0 0 0 0

BEV 0 0 0.05 0.233 0.496 0.74 0.9 1 1 1 1

FCEV 0 0 0 0 0 0 0 0 0 0 0

ICE 1 0.9 0.48 0.28 0.19 0.095 0 0 0 0 0

BEV 0 0.1 0.52 0.72 0.81 0.905 1 1 1 1 1

FCEV 0 0 0 0 0 0 0 0 0 0 0

ICE 1 1 0.99 0.92 0.81 0.69 0.57 0.45 0.33 0.21 0.09

BEV 0 0 0.01 0.08 0.19 0.31 0.43 0.55 0.67 0.79 0.91

FCEV 0 0 0 0 0 0 0 0 0 0 0

Passenger vehicle shares

Bus shares

Truck shares
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Table D10: vehicle market shares for the BAU electrification scenario. Based on IEA (2017a) 

 
 

 
Figure D5: vehicle market shares for the ET (left) and BAU (right) electrification scenarios. 

Appendix D3.2: Hydrogen scenarios 

In the hydrogen scenarios, BEVs and PHEVs are complemented by FCVs, which were expected to 

replace some of the BEVs and PHEVs (and in the case of trucks, ICEs) in the electrification scenario.  

Multiple organizations have created hydrogen outlooks, including IEA and IRENA. In this thesis, the 

Hydrogen Council (HC) roadmap (HC, 2017) was used to include a relatively extreme ET hydrogen 

scenario, in which about 25% of the world’s passenger vehicles, 30% of trucks and 25% of buses are 

running on hydrogen by 2050.  

 

Based on HC (2017), the percentage of FCV sales was expected to be 0 in 2015 for all transport 

functions, 3% for passenger vehicles, 2.5% for trucks and 10% for buses in 2030 and 35% for passenger 

vehicles, 45% for trucks and 50% for buses in 2050 for the ET hydrogen scenario. The values for the 

intermediate years were based on linear extrapolation.  

 

IRENA (2018, p.31), who estimated the economic potential of hydrogen produced from renewable 

electricity, state the following about the HC roadmap: ‘While the Hydrogen Council roadmap is industry’s 

consensus vision of hydrogen’s potential in the economy under the right circumstances (e.g. alignment of 

policies, regulations, codes and standards), it is just one vision of numerous potential outcomes’. IRENA 

(2018) estimates a substantially lower amount of hydrogen by 2050 (about 10x less). However, the HC 

(2017) roadmap was selected to show the potential impact an ET with such a large amount of FCVs could 

have. 

Electrification BAU 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

ICE 1 0.990 0.990 0.78 0.69 0.49 0.23 0 0 0 0

HEV 0 0.005 0.005 0.12 0.19 0.28 0.40 0.47 0.31 0.15 0.00

PHEV 0 0.005 0.005 0.05 0.07 0.14 0.22 0.30 0.38 0.46 0.53

BEV 0 0 0 0.05 0.05 0.09 0.15 0.23 0.31 0.39 0.47

FCEV 0 0 0 0 0 0 0 0 0 0 0

ICE 1 0.9 0.9 0.48 0.28 0.19 0.10 0 0 0 0

BEV 0 0.1 0.1 0.52 0.72 0.81 0.91 1 1 1 1

FCEV 0 0 0 0 0 0 0 0 0 0 0

ICE 1 1 1 0.99 0.92 0.81 0.69 0.57 0.45 0.33 0.21

BEV 0 0 0 0.01 0.08 0.19 0.31 0.43 0.55 0.67 0.79

FCEV 0 0 0 0 0 0 0 0 0 0 0

Truck shares

Bus shares

Passenger vehicle shares



42 
 

The BAU hydrogen scenario is more in line with the projections by IRENA (2018), as the ET hydrogen 

scenario values were divided by 10 for this scenario. Vehicle shares for the ET and BAU hydrogen 

scenarios are shown in table D11 and D12 respectively and in figure D6.  

 

Table D11: vehicle market shares for the ET hydrogen scenario 

 
 

Table D12: vehicle market shares for the BAU hydrogen scenario 

 
 

 
Figure D6: vehicle market shares for the ET (left) and BAU (right) hydrogen scenarios. 

 

 

Hydrogen ET 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

ICE 1 0.990 0.872 0.487 0.184 0.01 0 0 0 0 0

HEV 0 0.005 0.062 0.211 0.245 0.09 0 0 0 0 0

PHEV 0 0.005 0.016 0.062 0.050 0.098 0.109 0.109 0.109 0.109 0.109

BEV 0 0 0.05 0.210 0.331 0.452 0.502 0.502 0.502 0.502 0.502

FCEV 0 0 0 0.03 0.19 0.35 0.389 0.389 0.389 0.389 0.389

ICE 1 0.9 0.48 0.28 0.19 0.095 0 0 0 0 0

BEV 0 0.1 0.47 0.62 0.51 0.405 0.448 0.448 0.448 0.448 0.448

FCEV 0 0 0.05 0.1 0.3 0.5 0.552 0.552 0.552 0.552 0.552

ICE 1 1 0.99 0.897 0.618 0.380 0.141 0 0 0 0

BEV 0 0 0.01 0.078 0.145 0.171 0.196 0.222 0.247 0.273 0.299

FCEV 0 0 0 0.025 0.238 0.45 0.663 0.778 0.753 0.727 0.701

Passenger vehicle shares

Bus shares

Truck shares

Hydrogen BAU 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

ICE 1 0.99 0.99 0.78 0.69 0.49 0.23 0 0 0 0

HEV 0 0.005 0.005 0.12 0.19 0.28 0.40 0.47 0.31 0.15 0

PHEV 0 0.005 0.005 0.05 0.06 0.12 0.19 0.27 0.36 0.44 0.52

BEV 0 0 0 0.05 0.05 0.08 0.12 0.18 0.23 0.28 0.33

FCEV 0 0 0 0.003 0.01 0.035 0.06 0.08 0.11 0.13 0.15

ICE 1 0.9 0.9 0.48 0.28 0.19 0.10 0 0 0 0

BEV 0 0.1 0.095 0.51 0.69 0.76 0.84 1 1 1 1

FCEV 0 0 0.005 0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15

ICE 1 1 1 0.99 0.92 0.81 0.69 0.57 0.45 0.33 0.21

BEV 0 0 0 0.01 0.06 0.15 0.24 0.34 0.44 0.54 0.64

FCEV 0 0 0 0.003 0.02 0.05 0.07 0.09 0.11 0.13 0.15

Passenger vehicle shares

Bus shares

Truck shares
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Appendix D4 VRE share 

In the model, many variables depend on VRE share. With lack of other data to back up the reasoning, this 

was done to stay close to the SSP narratives. The main assumption here is that a favourable environment 

for VRE would also be a favourable environment for these variables. The variables depending on VRE 

share, including the reasoning per variable, are summarised in table D13. In future research other ways of 

representing these variables could be explored. 

 

Table D13: assumptions for basing variable changes on VRE share 

Variable Formula Reasoning for dependence on VRE share Additional reasoning for the formula 

Storage capacity 
as fraction of 
electricity 
demand 

Complex, 
see figure 
D2 

The larger the VRE share, the larger the 
variability in the electricity network and the 
more storage required. 

Storage demand grows 
exponentially as VRE share 
increases. 

Percentage small 
scale PV with 
battery storage 

y = x It is assumed the price for battery storage 
decreases over time. This is linked to the 
VRE share to fit with a narrative where more 
storage is required and thus more innovation 
occurs in that area. 

No additional values in the formula, 
because the initial VRE percentage 
matches the initial percentage of 
small-scale PV with battery storage 

Participation in 
V2G 

y = x It is assumed incentives to participate in V2G 
are larger in a society with more VRE 
because more storage is required. 

No additional values in the formula 

Maximum 
percentage of 
repurposed 
batteries 

y = 0.22 + x 
(Max = 1) 

It is assumed that as the requirement for 
storage increases, due to increasing VRE 
share, the amount of repurposing also 
increases. However, this is a maximum value. 
If the storage requirements are less, 
repurposing will also be less. 

According to BNEF (2016), 33% of 
EV batteries can be repurposed by 
2025. Based on the modelled 
values, it is assumed that VRE 
share is about 11% by 2025, so 
22% is used as base value. 

Percentage CSP 
equipped with 
TES 

y = 0.38 + x 
(Max = 1) 

It is assumed the price for TES decreases 
over time. This is linked to the VRE share to 
fit with a narrative where more storage is 
required and thus more innovation occurs in 
that area. 

According to Achkari & El Fadar 
(2020), 45% of CSP was equipped 
with TES in 2020. Modelled VRE 
share is about 7% in 2020*, so 38% 
is used as a base value. 

* This differs per SSP and is slightly different than the actual value in 2020, because the SSP scenarios are outdated. 
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Appendix E: Background, assumptions & data: price effects 

This appendix contains background information that can be consulted to provide some more context for 

the paradigms used in the model; the Opportunity Cost Paradigm (OCP) and the Fixed Stock Paradigm 

(FSP), and the price effects influencing demand (price elasticity, substitution and intensity changes).  

 

Functional demand for a certain product or service is not the only thing that influences supply. Price 

dynamics also have an effect, though these are only relevant in the OCP. To take into account these 

effects, Auping (2011) and van der Linden (2020) included demand change due to price elasticity and 

demand change due to substitution in their copper and cobalt models. This is also applied in the nickel 

model. In addition, intensity improvements through innovation were included.  

Appendix E1: Resource depletion paradigms 

Two paradigms in research depletion studies with different perspectives on resource scarcity are the FSP 

and the OCP (Castillo & Eggert, 2019; van der Linden, 2020). In the FSP, which has a physical view on 

scarcity, natural scientists argue that there is a limited stock of minerals on Earth and this may not be 

enough to meet increasing demand. This suggests absolute scarcity of minerals and is reflected in peak 

models, which show a certain point in time where the maximum rate of extraction is reached, which will 

thereafter only decline (Castillo & Eggert, 2019).  

 

In the OCP, an economic approach, economists argue that markets will adapt as prices are driven up by 

depletion, discouraging consumption and encouraging technological development, exploration, recycling 

and substitution. This is reflected in Cumulative Availability Curves (CAC), which show the mass of 

materials that can be extracted based on costs per unit of mass. At higher costs, more material can be 

extracted (Castillo & Eggert, 2019). 

 

Both approaches have benefits and drawbacks. Proponents of the OCP argue that fixed stock thinking is 

not adaptive enough and does not reflect real world market responses. In turn, proponents of the FSP 

argue that prices are not an adequate warning for mineral scarcity, as price trends for abundant and 

scarce minerals do not differ much and external mining costs are not reflected by markets (Henckens et 

al., 2016; Castillo & Eggert, 2019). These diverging views should be taken into account when interpreting 

research depletion studies. 

 

The papers in appendix A contain predominantly fixed stock elements, such as an expected production 

peak (Valero et al., 2018a), and while viewing some aspects, such as energy demand and technology 

mix, as dynamic, many view other aspects, such as production, metal intensity and resources and 

reserves as static. In reality, these factors are all dynamic and potentials are always changing based on 

new discoveries and price fluctuations (Manberger & Stenqvist, 2018; Bucholz & Brandenburg, 2018). 

The most dynamic elements are included by Manberger & Stenqvist (2018), who focus specifically on the 

effects of substitution, technological development and technological diversity. These factors are 

considered to be important in the OCP. 

 

The models assessing single materials also contain more OCP elements. Van der Linden (2020) explicitly 

considered both paradigms and Castillo & Eggert (2019) attempted to reconcile the paradigms and 

created a modified CAC, which they applied to copper. Table E1 shows how each paradigm considers 

different types of potential for obtaining resources. The types of potential are based on Blok & Nieuwlaar 

(2021). Hybrid paradigms are also possible, but these are not considered in this thesis. 
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Table E1: how different types of potential are determined in the two paradigms. 

Potential Fixed stock paradigm Opportunity cost paradigm 

Theoretical potential Fixed resources Resources can increase through exploration 

Technical potential Fixed extractable 
resources 

Extractability of resources can increase through innovation. 
Innovation can also lead to product property changes, thereby 
reducing demand 

Economic/market 
potential 

Resources can change to 
reserves (and back) when 
price changes 

Resources can change to reserves (and back) when price 
changes. There are also feedback mechanisms, through elasticity 
and substitution that can influence demand and thereby price. 

 

Appendix E2: Price elasticity 

Price elasticity of demand describes the degree of responsiveness of consumers to changes in price. In 

general, as demand increases, so does price. In turn, an increased price can lead to reduced demand. 

Price elasticity of demand is therefore a negative number. In addition to price elasticity of demand, there 

is also price elasticity of supply, which is a positive value (Harris & Roach, 2018).  

 

Price elasticity can differ depending on the time frame. Short-term price elasticity reflects sudden changes 

in price, whereas long-term price elasticity describes long-term changes. The latter is usually higher than 

the former because consumers have more time to respond (Blok & Nieuwlaar, 2021). The values for 

short- and long-term price elasticity, as well as the method for determining the effect of relative price on 

demand and the average long-term effect were taken from Van der Linden (2020).  

Appendix E3: Substitution 

Nickel has some very good properties which make it an important material for various applications. It is 

highly corrosion and heat resistant, highly ductile, has catalytic properties and is fully recyclable (Nickel 

Institute, n.d.). Currently, nickel is mainly used in stainless steel and an important future demand category 

is likely to be batteries. Therefore, specific attention is paid to these two categories. 

 

Substitution can be divided into two types: material substitution, where a different material is used in the 

same technology, and technological substitution, where a different technology is used to provide the 

same function (Sprecher et al., 2015). Examples for both types are shown in table E2. Substitution can 

occur at different levels of the system. This is illustrated in figure E1. At each branch in the chain, a switch 

can be made, leading to different nickel demand. The larger the number of switches that can be made, 

and the easier this can be done, the higher the flexibility of the system, one of the three aspects of 

resilience. 

 

Table E2: potential nickel substitution in stainless steel and batteries (Deloitte, 2015a; Sverdrup & Olafsdottir, 2019; 

BNEF, 2019; IEA, 2020b; USGS, 2020a). The focus here is on substitution in the energy system, but substitution can 

also occur in the RoE. * The batteries in this list can contain many different materials. 

Application Why nickel is used Potential material substitution Potential technological substitution 

Stainless 
steel 

Erosion, corrosion and 
heat resistance 

Molybdenum, niobium, cobalt, 
vanadium, chromium, titanium 

Energy generation technologies that 
require less stainless steel. 

Batteries  Higher energy densities LFP, LMO, LCO, sodium-ion, liquid, 
magnesium-based, fluoride-ion, 
chloride-ion, metal-air* 

Other forms of storage and flexibility 
options and other forms of 
transportation and vehicle types. 
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Figure E1: Various options at different levels to fulfil the functions of moving 1 km and delivering 1 kWh of electricity. 

Created with information from Hadjipaschalis et al. (2009), Brown et al. (2018) and BNEF (2019). 

 

In the model, technological substitution is not considered explicitly, but the technology mix of generation 

technologies, storage and transportation does differ for the different ET scenarios. Material substitution 

(and potential resubstitution) is based on the relation between the nickel price and the substitute price and 

an assumed substitution threshold per demand category that indicates the difficulty of substitution.  

 
The substitute price is based on the initial substitute price and on the relative change in energy price (Van 

der Linden, 2020). Carbon costs equal to those for nickel were also included, because this was deemed 

more accurate than not including carbon costs at all, since carbon costs were also included for nickel. 

Additional factors, such as scarcity of the substitute, also influence the substitute price, but other than 

scarcity induced in the model by increasing substitution, this was not taken into account.  

 

Especially for batteries, a wide range of materials could become substitutes, so it is difficult to determine 

an initial substitute price. Because of the large uncertainty involved regardless of the chosen method, the 

simple method of using the initial nickel price was chosen. This makes the two prices equal at the start, 

which means the substitution threshold determines whether substitution occurs. 
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The substitution threshold is an arbitrary, highly uncertain value in this thesis that can be played around 

with to obtain different substitution effects. The substitution threshold will prevent substitution from 

occurring at the start despite equal prices and only once the nickel price becomes sufficiently high, will 

substitution kick in. To get some kind of basis regarding the relative substitution threshold of different 

demand categories, the following literature was consulted. 

 

Svedrup & Olafsdottir (2019) assessed long-term stainless-steel supply using the integrated System 

Dynamics (SD) WORLD6 model. In this assessment, they looked at iron, nickel, magnesium and 

chromium. Their analysis shows that nickel is a key element that can limit stainless steel production due 

to potential supply constraints after 2045. Svedrup & Olafsdottir (2019) also discuss potential substitutes. 

Currently, there is no exact replacement for nickel in stainless steel while retaining quality, but 

molybdenum, niobium, cobalt and vanadium can be used to fulfil some of nickel’s functions. However, 

these materials currently have higher prices and lower production volumes than nickel, which means 

substantial substitution with these materials is currently not viable (Svedrup & Olafsdottir, 2019). Van der 

Linden (2020) agrees that nickel’s application in stainless steel is hard to substitute and her assumed 

substitution threshold values for nickel are used in the model for stainless steel. 

 

Regarding batteries, there are various technologies currently in use that do not contain nickel, such as 

LFP, LMO and LCO batteries. There are also batteries that require less nickel, such as certain NMC 

batteries. However, the current trend is toward increasing the fraction of nickel in NMC batteries and 

batteries in general, due to the higher energy density and because cobalt is scarcer than nickel (BNEF, 

2019). This is something that could be reversed if nickel becomes scarcer, but it is also important to keep 

in mind that more of a certain material is required if the energy density is lower.  

 

In the future, the continued research and improvements in battery technology will likely lead to at least 

increased diversity of technologies, but also to potential disruption of the prominence of lithium-ion in 

battery technologies. Potential disruptive technologies, some with much greater energy densities than 

lithium-ion batteries, include sodium-ion batteries, liquid batteries, magnesium-based batteries, fluoride-

ion batteries, chloride-ion batteries and metal-air batteries (Deloitte, 2015a; IEA, 2020b).  

 

It is difficult to model such disruptions, but the diversity of technologies as well as the fact that batteries 

are a relatively new demand category for nickel means the flexibility is likely to be higher than for stainless 

steel. Therefore, a lower substitution threshold is used (Van der Linden, 2020). In addition, a disruption 

scenario was created in which the impact of a radically new storage technology was assessed (See 

section 2.5 in the main text). For other applications, a substitution threshold in between the thresholds for 

batteries and stainless steel is used. 

Appendix E4: Intensity improvement 

Intensity improvement is a form of incremental innovation that can be achieved by changing product 

properties in two ways. First, by using resources in a more efficient manner to fulfil the same function, and 

second, by improving the functionality without using more resources. In the model, the units for intensity 

are tonne/GW, tonne/GWh and tonne/vehicle for electricity generation technologies, battery storage 

technologies and transport technologies respectively. The units for hydrogen tanks are also tonne/vehicle.  
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These units show that intensity does not only change when the number of tonnes decreases, but also 

when the amount of GW or GWh increases. Figure E2 shows how the nickel intensity of batteries and 

vehicles was calculated, as well as the general components that determine intensity for the different types 

of demand. The green variables lead to a higher, and the red variables lead to a lower nickel intensity. 

 

 
Figure E2: variables that influence nickel intensity in batteries, vehicles and electricity generation technologies. The 

battery types, storage functions, vehicle types and generation technologies are also included for extra clarification. 

Green = variable that leads to a higher nickel intensity; Red = variable that leads to a lower nickel intensity; Blue = 

variable that could lead to a higher or lower nickel intensity. 

 

IEA (2019) assessed possibilities for increasing material efficiency. They estimated a reduced steel use 

potential of up to 32% for buildings by 2060 relative to 2017 in their material efficiency scenario, applying 

this to 10% of buildings. Assuming linear change, this is an overall reduction of 0.07% per year. For their 

RTS, they assumed no material intensity changes.  

 

Although the values from IEA (2019) applied to steel in buildings, the intensity improvement is assumed to 

also apply to nickel in all energy system applications in the model. Furthermore, it is assumed that this is 

the autonomous intensity improvement that would occur if price remained stable. However, a price-based 

element was also added because it is assumed that increasing price will lead to more innovation and 

decreasing price to less (Blok & Nieuwlaar, 2021). 

 

The other factors that influence nickel intensity are assumed not to be as related to nickel price as 

material efficiency. In addition, it is assumed that the cathode fraction of total battery weight, the nickel 

fraction of cathode weight and energy density remain relatively constant per battery type. They differ for 

the different battery types, but this is taken into account in the market share (storage mix) and substitution 

parts of the model.  
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Energy density is expected to continue increasing in the future (Deloitte, 2015a; BNEF, 2019; Ilika, 2019). 

However, this is mostly either because of increased nickel share, which is taken into account in the 

market share, or because of a completely new technology that does not contain nickel, which is 

considered in the radical innovation disruption scenario (See section 2.5 in the main text). 

 

A higher battery capacity increases the range of an EV. As energy density increases, battery capacity of 

vehicles will also increase, unless battery size is reduced, which has benefits for the weight of the vehicle. 

However, density increase and capacity increase are assumed to cancel each other out with respect to 

their effect on nickel intensity and are therefore not considered further. 

 

For electricity generation technologies, increased energy efficiency will reduce nickel intensity. It is 

assumed that additional material requirements due to energy efficiency increase are negligible. However, 

there is a theoretical maximum to energy efficiency and it cannot continue increasing indefinitely. In 

addition, for some technologies, the efficiency is already very high. Because of the uncertainty on how to 

treat energy efficiency changes, they are not considered in the model. Instead, the upper value in the 

range for material efficiency of 0.07% per year is used, with the reasoning that even if this is an 

overestimation, it can be considered to also partially include intensity reduction due to energy efficiency 

improvements. 

 

Lifetime extension is also a product property change that reduces the requirement for new nickel. 

However, with the exception of vehicle battery lifetime extension, this is not considered in the model, 

which is another reason to use the upper value in the range for material efficiency. In the model, not all 

infrastructure reaches the end of its expected lifetime. Some capacity, including coal, oil, natural gas and 

nuclear, is retired early because of the ET. This is based on the SSPs and is shown in the model as a 

negative inflow. 

 

Increased nickel requirements due to the ET can be seen as a disturbance according to the supply chain 

resilience framework by Sprecher et al. (2015). Price elasticity, substitution and intensity changes 

(changing product properties) can increase the resilience of the supply chain and minimise the impact of 

the ET, thereby also reducing potential limitations of nickel availability on the pace of the ET. All three 

price effects increase resilience but in extreme events they can function as disruptor themselves. This is 

considered in the radical innovation disruption scenario. 
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Appendix F: Demand sub model input and data sources 

Table F1: values and data sources used for the constants and lookups in the demand sub model. A range is included 

and a row is highlighted yellow if uncertainty is assessed for a specific variable. Dmnl = dimensionless. 

Element Unit Type Min Max Explanation/assumptions Source 

Socio-economic data (see tables D2 - D5) 

Population Million 
people 

Lookup Selected SSP 
scenarios 

Population IIASA (2018) 

GDP Billion 
$/year 

Lookup Selected SSP 
scenarios 

GDP (PPP) in US$2005 IIASA (2018) 

Electricity generation data (see tables D2 - D5) 

Electricity demand GWh/ 
year 

Lookup Selected SSP 
scenarios 

Obtained from the secondary energy 
(electricity) section of the database 

IIASA (2018) 

VRE share Dmnl Lookup Selected SSP 
scenarios 

Based on the share of wind and solar 
energy in total electricity supply 

IIASA (2018) 

Required generation 
capacity 

GW Lookup Selected SSP 
scenarios 

Obtained from the technological 
indicators (capacity) section 

IIASA (2018) 

Initial generation 
capacity 

GW Constant 
 

Selected SSP 
scenarios 

Based on modelled data because 
actual data could not be found. 

IIASA (2018) 

Percentage small 
scale PV 

Dmnl Lookup The share of small-scale PV is assumed to be 32% in 
2015 and 18% from 2050 onward 

Olson & Bakken 
(2019) 

Fraction with CCS Dmnl Lookup Selected SSP 
scenarios 

Based on calculated fraction of CCS 
in electricity generation. Used a value 
of 15% to take into account the 
energy penalty of CCS. 

IIASA (2018); 
Budinis et al. 
(2018) 

Storage data 

Initial stationary 
storage stock 

GWh Constant 
 

11 For 2017, but assumed to be 
applicable enough for 2015 

IRENA (2017) 

Storage mix Dmnl Lookup See table D8 See the text below table D8 BNEF (2019); 
Van der Linden 
(2020) 

Storage capacity as 
fraction of electricity 
demand 

Dmnl Lookup See table D7 Base storage as fraction of electricity 
demand + values for one of the 
flexibility scenarios. 

Zerrahn (2018) 

Hours of PHS Hour Constant 30 Calculated based on reported energy 
and power. 

IRENA (2017); 
IHA (2018) 

Percentage PHS of 
total hydro capacity 

Dmnl Constant 0.12 Remained unchanged in the past 5 
years and is assumed to remain so. 

IHA (2016-2020) 

Hours of TES Hour Constant 7 IRENA (2017) assumed 5 - 9 hours IRENA (2017) 

Base % of CSP 
equipped with TES 

Dmnl Constant 0.38 See table D13 Achkari & El 
Fadar (2020) 

Transportation data 

Initial vehicle stock Vehicle Constant 
 

1.28E9 Passenger vehicles and commercial 
vehicles (trucks and buses) 

Statista (2018a) 

Initial vehicle mix Dmnl Constant See table D9 Based on the average of 2000 and 
2010 values of the new vehicle mix. 
 

BNEF (2019); 
Van der Linden 
(2020) 
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New vehicle mix 
electrification ET 

Dmnl Lookup See table D9 See the text above table D9 BNEF (2019); 
Van der Linden 
(2020) 

New vehicle mix 
electrification BAU 

Dmnl Lookup See table D10 See the text above table D10 IEA (2017a); 
Watari et al. 
(2018) 

New vehicle mix 
hydrogen ET 

Dmnl Lookup See table D11 See the text above table D11 HC (2017) 

New vehicle mix 
hydrogen BAU 

Dmnl Lookup See table D12 See the text above table D12 IRENA (2018) 

Vehicle function 
share 

Dmnl Lookup The shares of passenger vehicles, buses and trucks 
are assumed to be 75%, 24% and 1% respectively in 
2015 and 80%, 19% and 1% respectively from 2050 

onward. 

Van der Linden 
(2020) 

Vehicles/capita vs 
GDP/capita 

Vehicle
/capita 

Lookup See model Relationship between the number of 
vehicles per capita and GDP/capita 

Our World in 
Data (2014) 

Battery capacity 
vehicles 

GWh/ 
vehicle 

Constant See table C5 All battery capacities are kept 
constant because it is assumed that 
any changes in capacity are covered 
by intensity changes. 

See table C5 

Battery degradation Dmnl Constant 0.75 Repurposed batteries have about 70 
- 80% of the initial capacity 

Walker et al. 
(2015); White et 
al. (2020) 

EV battery lifetime Year Constant 8 Half of the assumed vehicle lifetime 
of 16 years. 

Walker et al. 
(2015); White et 
al. (2020) 

Base max % 
repurposed 

Dmnl Constant 0.22 See table D13 BNEF (2016) 

Available V2G power 
per FCV 

GW/ 
vehicle 

Constant 1E-5 Based on Oldenbroek et al. (2017) Oldenbroek et 
al. (2017) 

Hours of FCV V2G Hour Constant 6 

V2G timing Dmnl Constant Depending on the flexibility scenario, this is 0.33 for low 
flexibility, 0.5 for medium flexibility and 0.67 for high. 

Assumption 

RoE data 

Initial total nickel 
demand 

Tonne/
year 

Constant 1.896e+06 This was the total nickel demand in 
the base year, 2015 

Statista (2018b) 

Percentage stainless 
steel 

Dmnl Constant 0.7  Assumed to stay more or less the 
same within the ROE category 

Nickel Institute 
(n.d.) 

Lifetime data 

Average lifetime 
electricity 
technologies 

Year Constant See table C2 Based on the average of values 
provided by multiple sources. 

See table C2 

Average lifetime 
storage technologies 

Year Constant 18 This value falls within the range 
provided by IRENA (2017) and fits 
with use in vehicles of 8 years and 
additional stationary use of 10 years. 

IRENA (2017) 

Average lifetime 
vehicles 

Year Constant 16 If a battery is used in a vehicle for 8 
years each vehicle would require 
exactly two batteries during its 
lifetime 

See table C6 
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Nickel intensity data 

Initial nickel intensity 
electricity 
technologies 

Tonne/ 
GW 

Constant See table C1 Based on the average of values 
provided by multiple sources. 

See table C1 

Initial nickel intensity 
storage technologies 

Tonne/ 
GWh 

Constant See table C3 Calculated by combining energy 
density, the nickel fraction per 
cathode and the cathode fraction per 
battery 

See table C3 

Initial nickel intensity 
hydrogen tanks 

Tonne/
vehicle 

Constant 0.112 Presumably refers to infrastructure, 
not the tank on board a vehicle. Still, 
the value should be treated with 
caution because it seems quite high. 

Tokimatsu et al. 
(2018) 

Autonomous material 
efficiency change 

Dmnl Constant -0.0007 Determined based on assumptions of 
linear change and comparability of 
steel in buildings and nickel in other 
infrastructure. Because this is the 
upper value of a range starting at 0, it 
is assumed to also partially include 
energy efficiency and lifetime 
changes 

IEA (2019) 

Additional intensity 
due to CCS multiplier 

Dmnl  Constant CCS was included in the model by multiplying 
intensities for bio, oil, coal and natural gas by 1.1, 2.3, 
2.1 and 1.8 respectively, based on the difference 
between values with and without CCS (see table C1) 

See table C1 

Substitution data 

Substitution 
threshold stainless 
steel 

Dmnl Constant 7.5 Van der Linden (2020) assumed a 
range of 5 - 10 for nickel 

Van der Linden 
(2020) 

Substitution 
threshold batteries 

Dmnl Constant 2.5 5 Batteries are assumed to be easiest 
to substitute. Half of the substitution 
threshold for steel is assumed 

Assumption  

Substitution 
threshold other 
applications 

Dmnl Constant 6.25 Because of the variety of different 
applications, this is assumed to equal 
the full range of substitution 
possibilities from the min for batteries 
to the max for stainless steel (2.5 -
10). 

Assumption 

Short term 
substitution strength 

1/year Constant 0.04 Van der Linden (2020) assumed a 
range of 0.02 - 0.06.  

Auping & Pruyt 
(2013); Van der 
Linden (2020) 

Long term 
substitution strength 

1/year Constant 0.125 Van der Linden (2020) assumed a 
range of 0.1 - 0.15.  

Period for long term 
effect 

Year Constant 10 Number of years it takes for the long-
term substitution strength and the 
long-term price elasticity to apply. 
Van der Linden (2020) used a range 
of 5 - 15. 

Auping & Pruyt 
(2013); Van der 
Linden (2020) 

Relative influence 
external factors 

Dmnl Constant 0.5 Relative influence of the energy price 
and other potential external factors 
on the substitute price compared to 
the influence of substitution itself.  
 
 
 

Van der Linden 
(2020) 
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Price elasticity data 

Short term price 
elasticity 

1/year Constant -0.05 Based on Van der Linden (2020), but 
made negative because it applies to 
demand. Van der Linden (2020) used 
ranges of 0.02 - 0.08 and 0.1 - 0.25 
for short term and long-term price 
elasticity respectively. 

Auping & Pruyt 
(2013); Van der 
Linden (2020) 

Long term price 
elasticity 

1/year Constant -0.175 

Postponed demand data 

Administration 
postponed demand 

Year Constant 0.5 2 The time it takes to include 
postponed demand in the new 
demand request. Van der linden 
(2020) used an administration time of 
15 here, but this is assumed to be 
much too high. 

Assumption 
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Appendix G: Background, assumptions & data: supply dynamics 

This appendix contains background information that can be consulted to provide some more context for 

the concepts related to the supply dynamics discussed in the main text. Assumptions are also explained. 

Appendix G1: Nickel resources 

 

 
Figure G1: Global distribution (top) and ore type (bottom) of nickel resources and reserves per country. Total 

resources are estimated to be 334 Mt. IW = International Waters, which is where deep-sea deposits are located in the 

form of manganese nodules (included as sulfides in the model). Created with data from Mudd (2020). 

 

Appendix G1.1: Exploration 

In the model, exploration is included when the OCP is switched on. Exploration is split into initial 

exploration, which converts nickel in the resource base to inferred resources, and further discovery which 

converts nickel in the inferred resources to measured and indicated resources. 
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At first, exploration was calculated by multiplying the undiscovered nickel deposits (based on an initial 

resource base of 1.5E11 tonnes) with the ratio of current resources over the resource base and a price-

based factor that combines profit with expectations for the ET, based on van der Linden (2020). However, 

this often led to behaviour where supply did not meet demand over time. Therefore, an additional power 

for price-based exploration was included to bring demand and supply closer together. The formula for 

exploration is shown in equation 1. 

 

 
 

In which: 

 

E = exploration  

RI = initial resources  

BI = initial resource base  

B = resource base  

P = normalised profit  

V = expectations of the ET = change in new vehicles 

x = power for price-based exploration 

 

Including factor x can lead to insights on potential additional exploration efforts that could be required for 

supply to continue meeting demand. The idea behind the addition of this factor is that in the future, price 

(and expectations) is a more important determinant of additional exploration efforts than historic 

exploration. The choice was made here for x to apply to both price and expectations instead of only to 

price, based on the way the variables were created. In future adaptations, it could also only be applied to 

price to see what impact that has. 

Appendix G1.2: Resources to reserves 

The next part of the supply chain is the conversion of measured and indicated resources to reserves. In 

the model by Van der Linden (2020) this happened in a continuous way. However, at the level of 

individual mines, reserves are declared in chunks. To model this, a variable was added for opportunity 

identification, in which each mine checks once every few years for an opportunity to declare new 

reserves. 

 

A class system was constructed where the resources were divided into ten equal classes (eleven when 

including reserves). Each class was assumed to have different capital costs associated with creation of 

new capacity. This made it possible for some classes to be economical at a certain time step while other 

classes were not, thereby converting resources to reserves in chunks at each opportunity check. 

 

Two routes for converting resources to reserves were created based on whether there is already existing 

capacity (which has already been invested in) in a certain area. If there is, an opportunity check is 

performed on an annual basis and new reserves are first declared for existing capacity based on current 

potential profitability of that capacity and additional desired operation time at that capacity. Any remaining 

resources can then be converted via the second route for which an opportunity check is done once every 

few years. Based on future potential profitability, this can lead to increasing capacity (or to creating 

entirely new capacity in a new area) through new investment. 



56 
 

Reserves can also be converted back to resources when they are no longer profitable. When the current 

profit (based on operating capacity) and the current potential profit (based on operating and mothballed 

capacity) become negative, reserves are converted back to resources during an opportunity check. The 

structure for converting resources to reserves is shown in figure 2.15 (main text). A duplicate structure 

was added to implement the class system while preventing complications in the main supply chain.  

 

During mining, 20% was assumed to be lost (Johnson et al., 2008; Eckelman, 2010), ending up in tailings. 

With sufficient incentive, tailings can be mined again. Tailings were assumed to have the same difficulty 

of mining as class 10 resources. This is the most difficult to mine class, but it can be profitable at times. If 

it turns out that tailings are easier to mine, a different class can be assigned to them in future adaptations. 

This is a simplified estimation and any differences in ore grade are ignored. However, because this is a 

relatively small part of the model, with a relatively small impact on overall behaviour, it is not included in 

more detail. Losses from mining tailings were assumed to be 5%. See appendix G3.2 for more on losses. 

 

Tailings will have an Open Cut (OC) or Underground (UG) mine linked to them. Because no data was 

collected for the energy requirements for tailings, the energy requirements for the connected OC or UG 

mine were used, although this may be an over- or underestimation. In future adaptations of the model, 

this could be adjusted. 

 

The development of nickel reserves, production and the ratio between the two (R/P ratio) between 2000 

and 2019 is shown in figure G2. The changes are more in line with the OCP, as, despite increased 

production, reported reserves are increasing and reported resources have remained constant (USGS, 

2020a). The R/P ratio shows the number of years of a resource left if production and reserves remain 

constant (Blok & Nieuwlaar, 2021). However, this is not the case and the R/P ratio has remained relatively 

stable over the years as new resources were discovered. 

 

 
Figure G2: from top to bottom: nickel reserves (tonne), production (tonne/year) and R/P ratio (year) from 2000 to 

2019. Resources were consistently reported as 130 million tonnes over these years (USGS, 2020a). Note: there is a 

discrepancy between the values reported by USGS (2020a) and the data from Mudd (2020) as shown in figure G1. 
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Appendix G2: Production capacity 

Production capacity can be split into mining capacity and refining capacity. In this thesis, the focus is on 

mining capacity. It is acknowledged that refining capacity can differ significantly from mining capacity in 

terms of location and size and that there is international trade, as is illustrated in figure G3. If the refining 

capacity is not close to the mining capacity, there will be additional delays in the system, which reduces 

the stability and thereby the resilience of the system. In addition, it can create complex geopolitical 

dynamics that could lead to disruptions in the nickel supply chain. However, these additional complexities 

are beyond the scope of this research. 
 

 
Figure G3: Static nickel material flow diagram for the year 2015 (excluding disposal and recycling). Unit: kilo tonnes. 

Created with data from WBMS (2018). Total mining was about 2.1 million tonnes. This is close to a total value of 2.3 

million tonnes reported by USGS (2020a). The regional classification by IIASA (2018) was used. 
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Regarding mining capacity, a distinction is made between different types. These are elaborated on in 

table G1. The database by Mudd (2020) includes 652 different projects, each with a certain status. These 

statuses are also included in table G1 and linked to a type of mining capacity. As the nickel price goes up, 

it becomes attractive to mine in more areas so the availability of mining capacity increases, either through 

adding greenfield or brownfield capacity or by taking mothballed capacity out of Care and Maintenance 

(C&M). The mechanisms for doing so in the model are discussed in the following sections. 

 

Table G1: different types of mining capacity included in the model and the status they have at the start of the model. 

Between brackets, the number of projects with a certain initial status in the database by Mudd (2020) is shown. 

Tailings are included here as greenfield, because the tailings in the database are connected to past projects that 

were not included as operating or mothballed in the model. New tailings created in the model can be considered part 

of brownfield capacity once it becomes economical to mine them. 

Type of capacity Status Elaboration 

Greenfield capacity Deposit (527), tailings (5) 
or development (1) 

Completely new mine (at least in the model), either for a deposit 
or for old tailings, either to be developed or under development 

Brownfield capacity Operating (64) 
 

Capacity addition to an existing operating mine 

Operating capacity Existing operating capacity 

Mothballed capacity Maintenance (55) Existing capacity in C&M 

 

G2.1 Operating and mothballed capacity 

Existing capacity of a certain project is either operating or mothballed. When a mine is mothballed, 

operations are stopped for a certain period of time and a mine is put into C&M. This can happen when the 

price becomes too low for operation to be beneficial. If the mine is mothballed for a certain period of time 

(longer than the maximum mothball time) without restarting, it is assumed to be decommissioned. Initial 

values for operating and mothballed capacity and the mechanism for mothballing are explained below. 

 

Nickel mine production per country in the base year 2015 (WBMS, 2018) and the number of operating 

mines in each country around that time (Mudd, 2020) are shown in table G2. Based on this data, average 

operating capacity in the base year was estimated. In the model, initial operating capacity per project is 

assumed to equal average annual production in the country the project is located in plus an additional 

percentage based on assumed initial average capacity utilisation, with a minimum capacity of the 

minimum capacity set in the model. 

 

It was assumed that the initial average mothballed capacity for projects with the status 'maintenance' is 

the same as the initial average production for projects with the status 'operating', which is about 34000 

tonnes/year based on the data by WBMS (2018) and Mudd (2020), plus an additional percentage based 

on assumed initial average capacity utilisation. 

 

 

 

 

 

 

 

 



59 
 

Table G2: nickel mine production (tonne/year), number of operating mines and estimated average operating capacity 

(tonne/year). Only the countries with operating capacity and production in 2015 are included in this table. Note: 

WBMS (2018) reported mine production for Myanmar, Kosovo, Botswana, Spain and Norway, but these countries 

were not reported as operating mines by Mudd (2020). On the other hand, for Zambia, Solomon Islands and the 

Dominican Republic, WBMS (2018) did not report any production, but Mudd (2020) did report operating capacity. This 

discrepancy is probably because the data in the database by Mudd (2020) spans over multiple years and does not 

apply exactly to 2015, so some mines may have closed or opened slightly after 2015. Nevertheless, it was chosen to 

stick with the data from Mudd (2020), and production without operating capacity was ignored and operating capacity 

without production was given the minimum operating capacity as production. For Zimbabwe, the status for some of 

the mines was left blank by Mudd (2020), so based on the data by WBMS (2018) it was assumed that one of the 

mines with proved reserves was operating and the others were deposits. 

Country Production in 2015 (WBMS, 2018) Operating mines (Mudd, 2020) Average production 

Australia 225300 7 32186 

PNG 25600 1 25600 

Indonesia 129000 7 18429 

Philippines 465000 9 51667 

New Caledonia 186100 3 62033 

Brazil 89000 3 29667 

Canada 235000 6 39167 

Russia 261000 2 130500 

Turkey 8600 1 10000 

Albania 6700 1 10000 

Finland 10300 3 10000 

China 101400 2 50700 

Zimbabwe* 16110 1 16110 

USA 27200 2 13600 

Guatemala 56510 2 28255 

Colombia 36700 1 36700 

Greece 19800 3 10000 

Madagascar 47300 1 47300 

Cuba 53800 3 17933 

Morocco 200 1 10000 

South Africa 56700 2 28350 

 

The mechanism for mothballing is shown in figure G4. When it becomes unprofitable for mines to 

continue operating, they don’t shut down immediately because there are also costs involved with putting a 

mine into C&M. Therefore, a certain profit deficit was allowed in the model and mothballing occurs only 

once the profit deficit exceeds the maximum profit deficit, which was assumed to be a certain percentage 

of initial investment. The same happens, but then the other way around when restarting a mine again. A 

different maximum profit deficit and minimum profit surplus was set for each mine based on their profit 

over investment, because it was assumed that mines with a larger profit over investment could take more 

risks and by waiting slightly longer before mothballing and waiting slightly shorter before starting up again. 
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Figure G4: mechanism for mothballing (right) and restarting (left). 

 

G2.2 Creating new capacity 

For creating new capacity, the model first checks whether there are enough reserves available to create a 

certain minimum capacity that can run for the duration of the average mine operation plan. It then checks 

whether there is already existing, developing or upgrading capacity that can mine the reserves and if 

there are enough reserves left to create additional capacity, this intention is ‘made clear to potential 

investors’.  

 

However, not all mines can be invested in at once and some have a better business case than others (a 

higher profitability and/or other forms of investment attractiveness). It is assumed that there is a global 

maximum capacity increase percentage, based on historic global capacity increase. This limits the 

amount of new capacity that can be created in a year and the Vensim function ‘allocation by priority’ was 

used to allocate this capacity over the projects with the highest investment attractiveness. If a certain 

mine that is allocated new capacity already has existing capacity, the capacity is allocated as brownfield 

capacity. If there is no existing capacity, the capacity is allocated as greenfield capacity.  

 

It was assumed that greenfield capacity takes longer to develop than brownfield capacity and a 

development time of between 5 and 10 years (Extractives Hub, n.d.) is attributed to a certain project 

based on investment attractiveness. It was assumed that countries with a better investment climate often 

have less corruption and other inefficiencies, thereby increasing the likelihood of faster development. 

Development time can differ quite a lot per processing method, however, this was not included in the 

model. This is an important aspect that could be included in future adaptations. For brownfield capacity, 

the upgrade time was assumed to be about 3 years.  

 

Appendix G3: Supply chain 

The nickel (closed loop) supply chain broadly includes the following steps: mining (including mining, 

milling and beneficiation), processing (including smelting and refining), product production, use and 

recycling. Mining is determined by the availability of reserves and the availability of operating capacity. 

The other supply chain stages are discussed below. 
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G3.1 Nickel processing 

Sulfides and laterites require different forms of processing and are used to create different products. 

Nickel products can be divided over two classes (class I and class II). Sulfides are used to create class I 

products and laterites, which can be subdivided over limonites and saprolites, can be used to create both 

class I and class II products (Schmidt et al., 2016).   

 

Class I products are refined products that consist of more than 99% nickel and Class II products are non-

refined products that consist of less than 99% nickel. Class I products are suitable for most uses of nickel, 

including battery production. Class II products are mostly used for stainless steel production (Gigametals 

Corporation, 2019). A certain percentage of stainless steel is currently also supplied by class I. However, 

as it is expected that in the future battery demand will grow, it is assumed most stainless steel will be 

produced from class II, so class I demand is assumed to consist only of battery and ‘other’ demand. 

 

There are various primary extraction methods for the different nickel ore types, broadly categorised as 

either Hydrometallurgical (HM, metal extraction through leaching with solvents) or Pyrometallurgical (PM, 

metal extraction through high temperature). The processing methods included in the database by Mudd 

(2020) are explained in table G3. New processing methods could be developed in the future, but these 

are not considered in the current model. This is something that could be added in future adaptations. 

 

Table G3: principal nickel processing methods and the number (and percentage) of deposits with this method in the 

database by Mudd (2020). 86 deposits (13%) were undefined. *F in the database by Mudd (2020). 

Processing method Deposits Elaboration (Kyle, 2010; Meshram et al., 2018) 

Nickel sulfides 

PM* Pyrometallurgical 406 (62%) After beneficiation, flotation produces nickel concentrate which is then 
smelted, usually in a flash smelting furnace to produce nickel matte.  

HM Hydrometallurgical 5 (1%)  Processing of nickel sulfides via a HM route 

Nickel laterites (HM) 

HPAL High Pressure Acid 
Leaching 

90 (14%) A process used for limonite ores where the ore is leached in sulphuric 
acid at elevated temperature (240 - 270 °C).  

DNI Direct Nickel 1 (0.2%) A relatively new process used for limonite and saprolite ores where 
nickel is recovered under ambient conditions with a tank-leach method. 

HL Heap Leaching 9 (1%) 
 

A process used for saprolite and limonite ores where the ore is irrigated 
with sulphuric acid after being stacked in heaps.  

ATL Atmospheric Pressure 
Tank Leaching 

1 (0.2%) A process used for limonite and saprolite ores where the ore is leached 
in mineral acid at atmospheric pressure.  

Nickel laterites (PM) 

RKEF Rotary Kiln Electric arc 
Furnace 

14 (2%) A process used for saprolite ores where the ore is mixed with coke, 
dried and calcinated in a rotary kiln (900 - 1000 °C) and smelted in an 
electric furnace (1550 °C)    

Nickel laterites (combined) 

C Caron 1 (0.2%) A process used for limonite (and some saprolite) ores where the ore is 
first roasted at about 850 °C and then leached in an ammonia solution. 

Incomplete 

DSO Direct Shipping Ore 32 (5%) Ore that is shipped directly to a different location. 

B Beneficiation 7 (1%) Treatment of ore to improve properties for smelting. 
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Each processing method has different characteristics that impact its attractiveness. This includes energy 

requirements, reagent requirements, capital costs, nickel losses and environmental impacts. Due to time 

constraints, it was not possible to gather data for each processing method for each characteristic. Only 

energy requirements, nickel losses and GHG emissions were obtained for some processes and estimated 

for others, which influenced energy costs and costs due to carbon taxes. For reagent costs and capital 

costs, the same values were used for all processing methods, even though this is not the case. This is an 

important shortcoming that should be taken into account when analysing the results.  

 

When distinguishing between the processing methods in table G3, certain assumptions were made. First, 

all sulfide processing was treated the same, and for HM sulfide processing, the values for PM sulfide 

processing were used. DSO and beneficiation indicate incomplete processing close to the mining facility. 

However, it was assumed that further processing would occur later on. Beneficiation applies to 7 projects 

in the database; 5 Deep Sea Mining (DSM) projects, 2 sulfide projects and 1 laterite project. The laterite 

project was changed to undefined and for the rest the values for PM sulfide processing were used. 

 

DSO applies to 32 projects in the database, all laterites in Asian countries, including Indonesia, the 

Philippines, Myanmar and PNG (which is considered part of Asia by IIASA, 2018), many of which supply 

China (see figure G3). It was assumed that this ore is used to feed the nickel pig iron industry in China 

(Prasetyo, 2018). Pig iron is produced through PM processing of saprolites, usually by using a Blast 

Furnace (BF; see figure 2.19 in the main text). The values for pig iron production were applied to the 

deposits indicated as DSO in the database by Mudd (2020). 

 

Some projects in the database by Mudd (2020) had an undefined processing method. For some an 

assumption was made based on other information in the database and the processing method was added 

to the database. Others received the label undefined. For these projects (all laterites), HPAL was 

assumed, based on the expected increase in class I nickel demand due to increasing battery demand. 

 

A further assumption in this thesis is that all HM processing of laterites leads to class 1 nickel. Due to the 

small concentration of HL, ATL and DNI in the database, less attention was paid to accuracy here. In 

future adaptations this may need to be adjusted.  

G3.2 Losses and recycling 

After processing, the finished nickel is used to produce various products. During product fabrication a 

small fraction of the nickel is lost permanently and a larger fraction becomes primary scrap. Because this 

scrap is easily collected at the production facilities, it is assumed all of it can be recycled (ICA, n.d.). The 

rest of the nickel ends up in the products and becomes part of the use stock. 

 

Nickel stays in use for the lifetime of products, which can differ per product. In the model, the average 

lifetime of stainless steel in electricity generation technologies was used as a proxy for the average 

lifetime of class II nickel. The average lifetime of batteries was used as a proxy for class I nickel.  

 

After use, some of the nickel is collected and some is lost based on the End-of-Life Collection Rate (EoL 

CR). The collected nickel goes to the scrap stock as secondary scrap. Part of the scrap is recycled and 

the rest is lost based on the End-of-Life Processing Rate (EoL PR), which is determined based on the 

difference between the nickel content of scrap and average nickel ore grade. The idea is that if these two 

values come closer together, more recycling occurs (Van der Linden, 2020). The product of EoL CR and 

EoL PR is the End-of-Life Recycle Rate (EoL RR) (Gloser et al., 2013), which was 68% for Nickel in 2010 

according to Nickel Institute (2016). This value was assumed to be the same in the base year (2015).  
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It is important to note here that different sources use different EoL RRs for nickel. Manberger & Stenqvist 

(2018) used a value of 60%, which matches with the values reported by UNEP (2011) of 57 - 63%. Van 

der Linden (2020) did not report EoL RR directly. She used values between 40% and 80% for EoL CR for 

copper, cobalt and nickel and she calculated EoL PR based on the nickel content in scrap and the nickel 

ore grade. However, this led to an initial EoL RR of about 20% - 40%, which is much lower than what was 

reported in other research.  

 

Van der Linden (2020) also assumed that the cobalt and nickel content of scrap would increase as the 

portion of the demand from batteries increased, because of better organized collection. This may be true 

for cobalt, but most nickel recycling occurs in alloy state, for example in the form of stainless steel and the 

collection of stainless steel is already well organised, which is why nickel already has quite a high EoL RR 

(Nickel Institute, 2020; ISSF, 2021). Therefore, the increased share of batteries is likely to lead to a 

decrease in EoL RR instead of an increase.  

 

To obtain a better understanding of the impact of an increasing share of batteries, a distinction was made 

between class I (a mixture of products) and class II (stainless steel) nickel in scrap. According to EuRIC 

(2020), the EoL RR for stainless steel is 90%. Based on this value and the 68% total EoL RR, the initial 

average EoL RR for class I nickel was determined based on the initial relative share of class I and class II 

nickel. 

 

An initial EoL CR was also assumed for class I and class II nickel. For class I nickel, this was assumed to 

be 60%, based on Van der Linden (2020). For class II nickel, this was assumed to be 95%. Based on the 

initial EoL RR and the assumed initial EoL CR, the initial nickel content of scrap, which determines EoL 

PR in the model, was calculated. 

 

This nickel content of scrap was assumed to remain constant for class II nickel, but to change for class I 

nickel based on the battery share. Three EoL waste management strategies were included that influenced 

this, one where batteries increase the extractable nickel content of scrap compared to other class I 

products, one where they have no effect and one where they reduce the extractable nickel content of 

scrap compared to other class I products. A fourth EoL waste management strategy was also included 

where batteries increase the extractable nickel content of scrap, as well as where the EoL CR of batteries 

increases over time (about 2% per year was assumed). 

 

Another indicator for recycling is the recycling input rate. This is the fraction of total metal supply derived 

from recycling that determines how much nickel is required from primary processing to be able to fulfil the 

demand (van der Linden, 2020). UNEP (2011) report a nickel recycling input rate between 29% and 41%. 

This indicator is also included in the model.  

 

At each stage of the supply chain, losses occur. This includes mining losses, processing losses, 

production losses, use losses and scrap losses. These losses are shown in table G4. According to 

Johnson et al. (2008), refining losses are negligible, so for processing losses only the primary extraction 

method was considered. Meshram et al. (2018) show that even within certain processing methods, the 

nickel recovery can differ based on specific locations and ore types (on a more detailed level than simply 

the distinction between sulfides and laterites). To keep it simple, average values were used. 
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Table G4: losses at different stages of the supply chain. These values are generally a lot higher than what was used 

by Van der Linden (2020) (between 4 and 8% per operation stage). *Assumed to apply to PM sulfide processing. 

Process Losses (%) Source 

Mining 

Mining 20 Johnson et al. (2008); Eckelman (2010) 

Primary processing 

RKEF (Ferronickel) 5 Johnson et al. (2008); Eckelman (2010); Norgate & 
Jahanshahi (2011) 

BF (Nickel pig iron) 8 Eckelman (2010) 

Caron (Nickel oxide) 13 Average of Johnson et al. (2008) and Norgate & 
Jahanshahi (2011) 

Flash (Matte)* 5 Eckelman (2010) 

HPAL 8 Norgate & Jahanshahi (2011); Khoo et al. (2017) 

HL 27 Norgate & Jahanshahi (2011) 

ATL 20 Norgate & Jahanshahi (2011) 

DNI 6 Khoo et al. (2017) 

Further in the supply chain 

Production of batteries  
(used for all class I) 

7.5 BNEF (2019) 

Production of stainless steel 
(used for all class II) 

1 Johnson et al. (2008); Eckelman (2010) 

Use and scrap EoL RR = 68% Nickel Institute (2016). Changes over time in the model. 
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Appendix H: Supply sub model input and data sources 

Table H1: values and data sources used for the constants and lookups in the supply sub model. A range is included 

and the row is highlighted in yellow if uncertainty is assessed for a specific variable. Dmnl = dimensionless. 

Element Unit Type Min Max Explanation/assumptions Source 

Resource and reserve data 

Initial resources Mt 
nickel 

Constant 
 

Values in the 
database 

Initial measured, indicated and 
inferred resources, assumed to apply 
to 2015. Total resources including 
reserves are reported. Resources 
were calculated by subtracting 
reserves from total resources. 

Mudd (2020) 

Initial reserves Mt 
nickel 

Constant 
 

Values in the 
database 

Initial proved and probable reserves, 
assumed to apply to 2015 

Mudd (2020) 

Initial status Dmnl Constant Either a 1 or a 0 Indicates whether a resource has a 
deposit, tailings, or operating, 
mothballed or developing capacity 

Mudd (2020) 

Administration time Year Constant 
 

15 Factor taken from van der Linden 
(2020) that plays a role in exploration 
when exploration otherwise becomes 
too high. Van der Linden (2020) used 
a range of 10 - 20. 

Auping & Pruyt 
(2013) 

Initial resource base 
nickel 

Tonne Constant 1.5E11 Van der Linden (2020) obtained this 
value from USGS. 

Van der Linden 
(2020) 

Power for price-
based exploration 

Dmnl Constant 0.5 1 Included in the model to give more 
weight to the price-based element of 
determining exploration. 

Assumption 

Opportunity check 
frequency 

Year Constant 2 3 Represents how often mining 
companies check whether new 
reserves can be declared. 

Assumption 

Resource class 
presence 

Dmnl Constant Either a 1 or a 0 Used to distinguish between 
resources and reserves. Class 0 = 
reserves, the rest are resources 

Assumption 

Resource class 
division 

Dmnl Constant 0.1  10% because there are 10 resource 
classes, not including class zero, 
which represents the reserves. 

Assumption 

Mining and refining data 

Initial nickel stock Tonne Constant 486500 Total metal exchange stocks for 2015, 
including the London metal exchange 
and the Shanghai metal exchange. 

WBMS (2018) 

Initial percentage 
mine stock 

Dmnl Constant 0.77 Calibrated to match initial nickel price Assumption 

Percentage lost 
during mining 

Dmnl Constant 0.2 Losses during mining, milling and 
beneficiation. 

Johnson et al. 
(2008); 
Eckelman 
(2010) 

Percentage lost in 
tailings 

Dmnl Constant 0.05 This is a relatively small part of the 
model, so less attention is paid to the 
details of this variable. 

Assumption 

Percentage lost 
during processing 

Dmnl Constant See table G4 Different values apply to different 
processing methods 

See table G4 



66 
 

Average time mining 
to refining 

Year Constant 
 

0.1 The time it takes for the ore to get 
from the mine to the processing plant. 
Assumption by van der Linden (2020), 
who used a range of 0.09 - 0,11. 

Van der Linden 
(2020) 

Nickel mined before 
2015 

Tonne Constant 60000000 Historically mined nickel, originally 
obtained from USGS. 

Nickel Institute 
(2016) 

Production, use and recycling data 

Minimum stock 
transit time 

Year  Constant 0.04 Van der Linden (2020) used 0.05. 
Here 0.04 was used because it 
brought the two price calculation 
methods closest together. 

Van der Linden 
(2020) 

Percentage lost 
during production  

Dmnl Constant See table G4 Different values apply to different 
nickel containing products 

See table G4 

Percentage of 
primary scrap 

Dmnl Constant 0.325 Van der Linden (2020) used a range 
between 0.25 and 0.4 to represent the 
percentage of primary scrap for 
copper, cobalt and nickel. 

Van der Linden 
(2020 

Percentage of total 
mined nickel in use 

Dmnl Constant 0.57 This is an assumption by the Nickel 
Institute, based on the long lifetime of 
nickel products. 

Nickel Institute 
(2016) 

Initial EoL RR nickel Dmnl Constant 0.68 EoL RR for nickel in 2010; assumed 
to be similar in 2015 

Nickel Institute 
(2016) 

Initial EoL RR 
stainless steel 

Dmnl Constant 0.9 Assumed to apply to nickel containing 
stainless steel. 

EuRIC (2020) 

Initial EoL CR Dmnl Constant 0.6 (class I); 
0.95 (class II) 

Van der Linden (2020) reported a 
range between 0.6 and 0.8 (but used 
a range between 0.4 and 0.8) for 
copper, cobalt and nickel, based on a 
report by Gloser et al. (2013) on 
copper. 0.6 was selected for class I 
nickel to obtain a better matching 
initial nickel content of scrap (0.01 - 
0.02 according to Van der Linden 
(2020)). For class II, consisting 
entirely of stainless steel, an EoL CR 
of 0.95 was chosen to match with an 
EoL RR for stainless steel of 0.9 
(EuRIC, 2020). 

Assumption 

EoL CR improvement 1/Year Constant 0.02 Improvements in collection rate in EoL 
management strategy 4. 

Assumption 

Initial percentage of 
use in scrap 

Dmnl Constant 0.001 Calibrated to make a smoother start.  
 

Assumption 

Maximum nickel 
recycling efficiency 

Dmnl Constant 0.95 Value used for nickel by van der 
Linden (2020). This value was also 
used as the EoL PR for class II nickel, 
which together with the EoL CR leads 
to an EoL RR of 0.9 (EuRIC, 2020). 

Van der Linden 
(2020) 

Average time scrap 
to recycling 

Year Constant 1 Van der Linden (2020) assumed a 
range between 0.38 and 0.42. Here a 
value of 1 was assumed to prevent an 
unrealistically high peak at the start. 
 

Assumption 
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Initial recycling input 
rate 
 
 

Dmnl Constant 0.35 Although it is based on relatively old 
data, this is assumed to be the initial 
fraction of finished nickel stock 
coming from recycled scrap. 

UNEP (2011) 

Mining and refining capacity data 

Global maximum 
capacity increase 
percentage 

Dmnl Constant 0.1 0.5 Based on 22% production increase 
between 2010 and 2011 (highest 
since 2000, but the economic crisis 
may have something to do with this, 
which means there may have been 
underutilised existing capacity). 

USGS (2020a) 

Minimum capacity Tonne/
year 

Constant 10000 Assumption based on annual 
production data by USGS (2020a) 

Assumption 

Maximum capacity Tonne/
year 

Constant 1E5 1E6 Maximum capacity of a single mine. Assumption 

Average mine 
operation plan 

Year Constant 10 20 This is the designed production 
lifetime of the mine based on reserves 
and expected economic conditions. 

Extractives Hub 
(n.d.) 

Development time Year Constant 5 10 This is the time it takes to develop a 
new mine. Both the lower bound and 
the upper bound are included in the 
model and a different value is 
selected per mine based on project 
investment attractiveness. 

Extractives Hub 
(n.d.) 

Upgrade time Year Constant 3 It is assumed that it takes less time to 
increase the capacity of an existing 
mine than to create a new mine. 

Assumption 

Initial average mine 
production 

Tonne/
year 

Constant 34000 Based on production data in 2015 
(WBMS, 2018) and the operating 
status reported by Mudd (2020) 

WBMS (2018); 
Mudd (2020) 

Initial average mine 
production per 
country 

Tonne/
year 

Constant See table G2 

Initial average 
capacity utilisation 

Dmnl Constant 0.8 Van der Linden (2020) used a range 
for minimum capacity utilisation 
between 0.7 and 0.9. 

Assumption 

Average maximum 
profit deficit as 
percentage of 
investment 

Dmnl Constant 0.03 0.08 A lower and an upper bound are 
included in the model with a 
respective distance of -0.2 and +0.2 
from the average and a different value 
is selected per mine based on profit 
over investment ranking. 

Assumption 

Average minimum 
profit surplus as 
percentage of 
investment 

Dmnl Constant 0.03 0.08 Assumption 

Average maximum 
mothball time 

Year Constant 10 30 A lower and an upper bound are 
included in the model with a 
respective distance of -5 and +5 from 
the average and a different value is 
selected per mine based on profit over 
investment ranking. According to 
Ashby et al. (2016) mines can remain 
in C&M for several decades. 

Assumption 
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Appendix I: Background, assumptions & data: price dynamics 

This appendix contains background information that can be consulted to provide some more context for 

the concepts related to the price dynamics discussed in the main text. Assumptions are also explained 

and values used in the model are shown.  

Appendix I1 Cost structure 

The cost structure consists of capital costs and operating costs. The latter can be divided into fixed and 

variable costs. The cost structure for nickel mining is complex. Detailed data is available, but costs a lot of 

money to obtain, so in this thesis many assumptions and approximations were made. More detailed data 

could however be plugged into the model in the future.  

 

The cobalt model of Van der Linden (2020) was used as a basis for the costs included in this thesis. The 

cobalt model includes energy costs as the main determinant for mining costs and smelting and refining 

costs. It also includes transport costs, taxes and a carbon price. Van der Linden (2020) only included 

marginal (variable) costs. This is reasonable for a global model, but when individual mines are 

considered, capital costs and fixed operating costs become more important. 

 

Capital costs were based on capacity. Although capital costs differ per processing technology, only data 

for the exponential relationship between capacity and capital costs for HPAL technology was found (Dry, 

2013) and this was used to represent the capital costs for all projects. Values for the components used in 

this relationship are shown in appendix J. In future research it would be useful to include processing 

technology specific capital costs. Fixed operating costs were assumed to be about 2% of capital costs. 

This is an estimated 1% for labour and an estimated 1% for other costs based on Dry (2013). 

 

The variable operating costs included in the model consist of energy costs for mining, processing and 

transport (based on energy use and energy price); reagents and other on-site costs; royalties and taxes; 

and a carbon price. These are different for each mine and depend on multiple factors, such as ore type 

(sulfide or laterite), ore grade, mine type (UG or OC), processing method, country, energy type, transport 

distance and by-products (Bleiwas, 1984; Eckelman, 2010; STRADE, 2016). 

 

Appendix I1.1: Energy for mining processing and transport 

The broad final energy intensity range of nickel production is shown in figure I1. In general, sulfides 

require less energy than laterites and a PM route is less energy intensive than a HM route (Eckelman, 

2010).  

 

There are various steps in the production of nickel that each require a certain amount of energy. These 

steps include mining, milling and beneficiation, primary extraction, refining and transport. The energy 

requirements also differ per processing method. Values for each step are shown per processing method 

in table I1 and elaborated on below. 
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Figure I1: final energy intensity range for nickel production. Averages are indicated by vertical lines. Nickel pig iron 

production is not included in this figure. Adapted from Eckelman (2010).  

 
Table I1: final energy requirements for processes. The values in plain text were obtained from Eckelman (2010). The 

bold values were switched around compared to what was stated by Eckelman (2010) based on his figures. The 

values in italics were estimated based on Norgate & Jahanshahi (2011), Northey et al. (2014) and Khoo et al. (2017). 

Combined OC and UG mining was assumed to be an average of OC and UG mining. DSM was assumed to be twice 

as much as this (highly uncertain assumption). Transport fuel takes into account average distances, but more may be 

used for international trade. This was not considered. Further details are described below.  

Type Fuel Electricity Transport fuel 

Mining, milling and beneficiation (GJ/tonne ore) 

OC mine 0.141 0.060 - 

UG mine 0.066 0.149 - 

Combined OC and UG 0.1 0.1 - 

DSM 0.2 0.2 - 

Milling and beneficiation 0 0.200 - 

Nickel ore - - 0.245 

Primary extraction/smelting (GJ/tonne product; also GJ/tonne nickel with mass-based allocation) 

RKEF (Ferronickel)  117 25 2 

BF (Nickel pig iron) 27 2 0.1 

Caron (Nickel oxide) 406 22 1 

Flash (Matte) 21 16 1 

HPAL 339 11 1 

HL 263 9 1 

ATL 208 7 1 

DNI 321 10 1 

Refining (GJ/tonne nickel) 

Electrorefining 0 15.3 - 

Electrowinning 5.7 7.2 - 

Refined nickel - - 2 
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When looking at energy requirements, it is important to distinguish between fuel and electricity use. This 

is relevant both for determining costs and for determining GHG emissions, which add to environmental 

impacts, but also to costs when a carbon price is implemented. Biofuels or other more sustainable fuels 

may be used in the mining industry in the future. However, in the model, fuels were assumed to remain 

fossil fuels. The same goes for transport fuels. In future research this could be linked more to the SSPs 

and the assumptions for electrification and hydrogen use in trucks. For electricity more diversity was 

assumed based on the SSPs and costs and emissions depend on the electricity mix of the country a 

certain mine is located in. This mix was estimated based on regional SSP data for five broad regions. 

(see section I1.4) 

 

Eckelman (2010) provides data for the average final fuel and electricity requirements of UG and OC 

mining and the final electricity requirements for milling and beneficiation in MJ/tonne ore. Based on this, 

values for combined UG and OC mining (average of the two) and for DSM (2 times the average) were 

also determined. The value for DSM is a highly uncertain assumption.  

 

An important determinant for the energy demand of mining is ore grade, as the higher the ore grade, the 

lower the energy requirements per tonne of nickel. Ore grade is included in the model by first taking 

average ore grades of a project for proved and probable reserves and for measured, indicated and 

inferred resources as reported in the database (Mudd, 2020) and using those averages until the original 

resources in the database run out.  

 

Ore grade was reported by Mudd (2010) for reserves and for reserves and resources combined. The 

latter was assumed to apply to resources, which was assumed to work as a rough estimation but is not 

that accurate because it also contains the influence of the reserves. In future research this data could be 

manipulated in such a way that the ore grade for only resources is obtained. 

 

Once the resources have run out, and if through exploration in the OCP more resources are discovered in 

a certain area, ore grade is expected to decay exponentially based on equation 2 (Van der Linden, 2020). 

The normalisation value in this equation was determined based on the initial total resources of a certain 

deposit and the final ore grade in the database. 

 

 
In which: 

 

OG = Ore Grade 

C = Cumulative mined nickel 

N = Normalisation value ore grade 

x = Power for ore grades 

 

Sometimes the ore grade in the database by Mudd (2020) for the resources of a certain project is larger 

than the ore grade for the reserves. It was assumed that this is because factors other than ore grade 

make the resources less economically attractive. Because of this, and because different projects with 

different ore grades become profitable at different times, overall average ore grade can increase and 

decrease over time. However, the general trend is expected to be a decrease. Based on relative ore 

grade, it is also possible to determine how much by-product can be produced for each tonne of nickel that 

is produced. 
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In addition to energy requirements for mining, Eckelman (2010) provides data for final fuel and electricity 

requirements of some representative companies using different primary extraction methods, as well as 

average data for various refining methods. The values in table I1 are based mainly on Eckelman (2010), 

because he included multiple processes and most other consulted sources reported energy demand in 

terms of Primary Energy Demand (PED) and not in terms of final energy demand for the production 

facilities. Final energy demand was used here because these values were used to determine costs for the 

facilities and it was assumed that all the costs for upstream energy use are already included in fuel and 

electricity prices.  

 

There was a discrepancy between the values reported by Eckelman (2010) for fuel use for ferronickel and 

nickel pig iron (where nickel pig iron had a much higher fuel use per tonne product than ferronickel) and 

the figures he presented (where ferronickel had a much higher PED than pig iron per tonne product). By 

switching the values around, they fit much better with the figures and this also matches other literature. 

 

No concrete data was provided by Eckelman (2010) for HM processing of laterite ores, so these values 

were estimated based on qualitative information and other sources. For transport, the values were 

assumed to equal the value for matte, since both cases concern transport of an intermediate product to a 

refinery. Since the main goal of using these numbers in the model is to favour a certain project over 

another, the exact numbers matter less than the relative order. However, there are some allocation issues 

that can influence this order. These issues are discussed in appendix I1.3. 

 

Northey et al. (2014) provided electricity and fuel requirements for pyrometallurgy of sulfide ores and 

hydrometallurgy of laterite ores via HPAL. According to these values, HPAL requires about 23 times more 

fuel and 0.73 times more electricity than the PM route of obtaining class I nickel. This is quite a large 

difference and when applied to the data by Eckelman (2010), HPAL becomes very energy intensive, with 

higher values than Caron. This is not the case according to Norgate & Jahanshabi (2011). Therefore, the 

values calculated in this manner were used as upper range values for HPAL. 

 

Norgate & Jahanshabi (2011) provided embodied energy values for ferronickel, Caron, HPAL, HL and 

ATL. Embodied energy is in terms of PED and it is important to keep in mind that other factors than 

electricity and fuel use also play a role when determining PED, such as the amount of sulfur used in the 

processing (especially for HPAL) and the amount of potential energy sources used as reductants (Nickel 

Institute, 2020). Despite this, it was assumed that the order of the processes (from high to low embodied 

energy: Caron, HPAL, ferronickel, HL, ATL) would remain more or less the same.  

 

Norgate & Jahanshabi (2011) allocated embodied energy to all valuable co-products, including the iron in 

ferronickel on a mass basis. Their order from highest to lowest energy requirements matches table I1, 

with the exception of ferronickel. However, their value for ferronickel is relatively high compared to other 

sources (Eckelman, 2010 and Nickel Institute, 2020) when a similar mass-based allocation is applied. 

This is likely to be the reason for the difference in order. 

 

The value given by Norgate & Jahanshabi (2011) for HPAL is 0.48 times the embodied energy for Caron 

and this was used in combination with the Caron values from Eckelman (2010) to determine lower range 

estimates for HPAL. The averages of the lower and upper estimates are shown in table I1. The values by 

Norgate & Jahanshabi (2011) for HL and ATL are 0.78 and 0.61 times the embodied energy of HPAL 

respectively. This was applied to the HPAL values to estimate the HL and ATL values. The values for DNI 

were based on Khoo et al. (2017), who reported a value for DNI that was 0.95 times the value for HPAL. 

This approach is an approximation that does not take into account differences in the fractions of energy 

supplied by fuel and electricity. 
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Appendix I1.2: Alternative energy calculation methods 

In addition to the method for determining energy use in appendix I1.2, an alternative method was included 

in the model, based on an exponential function relating ore grade and energy use. The two methods differ 

in two important ways. The alternative method includes the impact of ore grade on processing energy 

requirements (whereas the method in appendix I1.2 only includes the impact of ore grade on mining 

energy requirements), but there is also less distinction between the different processing methods.  

 

In initial runs, changing the energy calculation method did not have a very large impact on key 

performance metrics, so it was not considered in the main text of this thesis. However, the different 

methods could be explored further in future research and are therefore included in this appendix. 

 

For the alternative method, two different functions relating ore grade and energy use were found, one 

based on Valero et al. (2013) and one based on Elshkaki et al. (2017). Values for the components of 

these functions are shown in appendix J. The function by Valero et al. (2013) was included because all 

the functions for calculating energy requirements for by-products were also based on their work (see table 

I9). However, these functions should be treated with care as various discrepancies were identified (also 

see section I2.1). Valero et al. (2013) reported ore grade as a percentage, but this leads to results that 

deviate widely from the other methods, which is why a fraction was used instead.  

 

Appendix I1.3: Processing energy cost allocation 

For the method described in appendix I1.1, different allocation methods can be used to attribute energy 

use to the constituents of a certain nickel product. The two methods covered in this thesis are mass-

based allocation, as done by Norgate & Jahanshabi (2011) and full allocation to nickel, as done by Nickel 

Institute (2020). The allocation method is very important for the relative order of energy requirements for 

certain processing methods, so both methods are included in the model as a switch. Table I2 shows the 

assumptions on nickel content of different nickel products that were used in the mass-based allocation. It 

was assumed that all HM processing of laterites led to class I nickel. 

 

Table I2: average nickel content of the different final and intermediate products. NI = Nickel Institute. EAF = Electric 

Arc Furnace. 

Product Range Value used in this thesis Source 

Class 1 (refined) nickel > 99% 100% Eckelman (2010) 

Nickel oxide sinter 75 - 78% 77% Eckelman (2010) 

Ferronickel 15 - 45% 27% Eckelman (2010); NI (2020)  

Nickel pig iron (BF) 1.5 - 8% 5% Eckelman (2010) 

Nickel pig iron (EAF) 8 - 17% - Eckelman (2010) 

Cu-Ni matte 40 - 80% 70% Eckelman (2010) 

Ni-Co sulfate 55 - 60% 58% SMM (n.d.) 

 

Figure I2 and figure I3 show the energy requirements for each processing path for the full allocation to 

nickel and mass-based allocation respectively. To obtain these figures, the following assumptions were 

made. Values for mining, milling and beneficiation in GJ/tonne ore were converted to GJ/tonne nickel 

based on an assumed average ore grade of 0.013. For the laterite routes, OC mining was assumed and 

for the sulfide route, UG mining was assumed. The value for milling and beneficiation in table I1 was 

assumed to apply to all processes. For mining, no allocation to by-products is included in the figures.  
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For primary extraction, values in GJ/tonne nickel product were assumed to be equal to GJ/tonne nickel 

through mass-based allocation for figure I3. For figure I2, these values were divided by average nickel 

content (table I2). For refining, values in GJ/tonne nickel were used. Electrorefining was applied to the 

sulfide route and electrowinning was applied to the laterite routes. In the model, values for certain 

processes may differ based on different combinations of mine type and extraction method and an ore 

grade that changes over time, leading to a wide variety of costs. 

 

According to Eckelman (2010), pyrometallurgy of sulfide ores requires the least primary energy on a 

contained nickel basis, followed by pyrometallurgy of laterite ores. Then comes hydrometallurgy of laterite 

ores and Caron and finally pig iron production. This matches with the representation in figure I2, with the 

exception of ferronickel, which has a higher value than the HM processes. This may be because figure I2 

is in terms of final energy and does not include the energy contained in the sulfur used in HM processes 

which contributes to a significant fraction of the PED (Nickel Institute, 2020). 

 

In the model, energy use is determined by the factors discussed above, the ore grade development and 

the autonomous specific energy consumption (SEC) change which is assumed to be 1% per year due to 

technological developments that lead to efficiency improvements (Blok & Nieuwlaar, 2021).  

 

All HM laterite processing was treated the same as HPAL regarding nickel recovery. It was assumed that 

all lead to the production of class I nickel. However, if this is not the case, figures I2 and I3 may need to 

be adapted slightly. Because there are relatively few deposits included in the database by Mudd (2020) 

with HL, ATL or DNI as processing method, this was not assessed further. 

 

 
Figure I2: final energy demand for various processing methods broken down by energy type and processing stage. 

Full allocation to nickel was applied. An ore grade of 0.013 was assumed to determine the energy demand for mining. 

Product transport includes the transport of both intermediate products and refined products. Based on data from 

Eckelman (2010), Norgate & Jahanshahi (2011), Northey et al. (2014), Khoo et al. (2017) and Nickel Institute (2020). 
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Figure I3: final energy demand for various processing methods broken down by energy type and processing stage. 

Mass based allocation was applied. An ore grade of 0.013 was assumed to determine the energy demand for mining. 

Product transport includes the transport of both intermediate products and refined products. Based on data from 

Eckelman (2010), Norgate & Jahanshahi (2011), Northey et al. (2014) and Khoo et al. (2017). 

Appendix I1.4: Energy price 

Future energy price is highly uncertain and difficult to model, especially due to the many changes that 

may occur to energy markets due to an increasing penetration of renewable energy. Because of this, Van 

der Linden (2020) assumed three broad scenarios for fuel price that are used in the model. One with an 

increasing average price (high price scenario), one with a decreasing average price (low price scenario) 

and one that varies in the middle (medium price scenario). These scenarios are shown in figure I4. 

 

 
Figure I4: fuel price scenarios used in the model. Values are in 2005 $. Data up to 2018 is based on BP (2019). The 

scenario shapes are based on Van der Linden (2020). 
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The initial fuel price was based on the average price for different types of coal, oil and natural gas 

covered by BP (2019). This was about 5 $/GJ in 2015 (4 $/GJ in 2005 $). Electricity price was modelled 

linearly as a changing difference from the fuel price. In 2015, the average industrial electricity price in the 

USA was about 19 $/GJ (15$/GJ in 2005$) (EIA, 2020b). Based on this the initial average difference 

between fuel and electricity prices was 11 2005$/GJ. 

 

It was assumed that as the share of renewable energy in the electricity mix increases (from about 22.8% 

in 2015 (REN21, 2015)), this difference will become increasingly smaller, until at a certain point fuel prices 

become more expensive than electricity prices because more fuel (such as hydrogen and synthetic fuels) 

is made from electricity than the other way around (Blok & Nieuwlaar, 2021). It was assumed that this 

point could happen at about 75% renewable energy share in the electricity mix.   

 

The SSP database provides global data, but also a distinction between the following regions or 

categories: Asia, Latin America, Middle East and Africa, Organisation for Economic Cooperation and 

Development (OECD) and Reforming economies. Based on the SSP data, renewable energy shares in 

the electricity mix were determined for each region. For international waters, global averages were used. 

This data is shown in tables I4 - I7. Table I3 shows the nickel containing countries per SSP region. 

 

Table I3: nickel containing countries per region as classified by IIASA (2018). 

Region Countries 

Asia PNG, Indonesia, Philippines, Myanmar, New Caledonia, China, Solomon Islands, India 

Latin America Argentina, Brazil, Guatemala, Colombia, Dominican Republic, Cuba 

Middle East and Africa Guinea, Côte d'Ivoire, Oman, Togo, Botswana, Zimbabwe, Zambia, Burundi, Tanzania, 
Malawi, Madagascar, Morocco, Cameroon, Ethiopia, South Africa 

OECD Australia, Canada, Puerto Rico, Turkey, Albania, Serbia, Kosovo, Poland, Finland, USA, 
Spain, Norway, Greece, Sweden 

Reforming Economies Russia, Kazakhstan 

 

Table I4: renewable energy shares for SSP1-19 per region. 

 

 

Table I5: renewable energy shares for SSP2-19 per region. 

 
 

Table I6: renewable energy shares for SSP5-19 per region. 

 
 

Renewable energy shares SSP1 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Asia 0.143 0.163 0.234 0.334 0.763 0.815 0.786 0.721 0.758 0.821 0.866

Latin America 0.576 0.559 0.636 0.738 0.857 0.930 0.944 0.916 0.914 0.945 0.968

Middle East and Africa 0.101 0.087 0.146 0.301 0.721 0.856 0.881 0.889 0.913 0.914 0.920

OECD 0.159 0.189 0.303 0.424 0.715 0.917 0.909 0.867 0.867 0.936 0.939

Reforming economies 0.199 0.177 0.208 0.290 0.409 0.735 0.926 0.958 0.990 0.985 0.999

Global 0.180 0.196 0.281 0.394 0.737 0.858 0.855 0.817 0.841 0.887 0.909

Renewable energy shares SSP2 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Asia 0.145 0.174 0.285 0.592 0.662 0.641 0.574 0.594 0.617 0.683 0.785

Latin America 0.608 0.616 0.543 0.657 0.840 0.872 0.844 0.882 0.920 0.962 0.996

Middle East and Africa 0.123 0.120 0.108 0.306 0.427 0.514 0.579 0.617 0.717 0.808 0.865

OECD 0.155 0.203 0.263 0.396 0.567 0.603 0.624 0.679 0.725 0.751 0.839

Reforming economies 0.197 0.190 0.175 0.271 0.559 0.598 0.696 0.762 0.826 0.863 0.938

Global 0.179 0.211 0.270 0.480 0.615 0.631 0.618 0.654 0.701 0.762 0.846

Renewable energy shares SSP5 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Asia 0.143 0.130 0.126 0.189 0.421 0.609 0.715 0.769 0.808 0.826 0.826

Latin America 0.591 0.541 0.375 0.527 0.865 0.970 0.978 0.977 0.984 0.991 0.998

Middle East and Africa 0.142 0.127 0.089 0.193 0.600 0.767 0.793 0.822 0.871 0.920 0.959

OECD 0.148 0.180 0.209 0.305 0.571 0.732 0.802 0.836 0.861 0.877 0.892

Reforming economies 0.186 0.161 0.107 0.152 0.466 0.757 0.892 0.961 0.991 0.998 1.000

Global 0.176 0.182 0.174 0.251 0.525 0.703 0.779 0.820 0.857 0.883 0.901
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Table I7: renewable energy shares for SSP2-baseline per region. 

 

Appendix I1.5: Royalties and taxes 

Royalties per country are shown in table I8. They influence the relative profitability of mines based on the 

country they are located in. Royalties could not be obtained for all countries, so for some, assumptions 

were made based on nearby countries. Royalties were assumed to remain static throughout the model.  

 

Table I8: royalties per country as fraction of sales. For the countries in italics data for that specific country could not 

be found and the value of a nearby country was assumed. For international waters, 0 was assumed. The values in 

this table are quite uncertain and in future research, it would be beneficial to devote more attention to the royalties. 

Country Royalty Source Country Royalty Source 

Australia 0.025 Government of Western 
Australia (2013) 

Zimbabwe 0.02 Manhando (2015) 

PNG 0.02 EITI (2020) Zambia 0.02 Assumption 

Indonesia 0.1 The Insider Stories (2019) Burundi 0.02 Assumption 

Philippines 0.05 Republic of the Philippines 
(2018) 

Tanzania 0.02 Assumption 

Myanmar 0.04 Lexology (2019) USA 0 Gentile (2019) 

New Caledonia 0.025 Assumption Spain 0.1 USSEC (2007) 

Argentina 0.02 Assumption Norway 0.03 USSEC (2018) 

Brazil 0.02 AngloAmerican (2020) Malawi 0.02 Assumption 

Guinea 0.02 Assumption Solomon Islands 0.02 Assumption 

Canada 0.13 The Mining Association of 
Canada (2008) 

Guatemala 0.01 Worstall (2019) 

Côte d'Ivoire 0.02 Assumption Colombia 0.12 Restrepo et al. (2015) 

Russia 0.08 Government of Western 
Australia (2015) 

Greece 0.025 Newman (2004) 

Puerto Rico 0 Assumption Dominican Rep. 0.05 World Bank (2006) 

Turkey 0.02 Sakar & Clark (2013) Kazakhstan 0.08 Assumption 

Albania 0.055 Deloitte (2016) Madagascar 0.02 Rabary (2019) 

Serbia 0.055 Assumption Cuba 0.05 Elias et al. (2019) 

Kosovo 0.05 Republic of Kosovo (2012) India 0.04 Assumption 

Oman 0.02 Assumption Morocco 0.02 Redstone exploration 
services (n.d.) 

Togo 0.02 Assumption Cameroon 0.02 Assumption 

Poland 0.055 Assumption Ethiopia 0.02 Assumption 

Botswana 0.03 IDE-JETRO (n.d.) Sweden 0.03 Assumption 

Finland 0 Farooki et al. (2017) South Africa 0.0375 Deloitte (2015b) 

China 0.04 Wu et al. (2018) Int’l waters 0 Assumption 

Renewable energy shares SSP2 Baseline 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Asia 0.143 0.168 0.239 0.208 0.206 0.178 0.171 0.192 0.200 0.209 0.224

Latin America 0.608 0.616 0.503 0.445 0.441 0.444 0.420 0.465 0.505 0.502 0.562

Middle East and Africa 0.095 0.098 0.094 0.114 0.139 0.196 0.231 0.305 0.306 0.354 0.365

OECD 0.155 0.203 0.256 0.253 0.251 0.272 0.299 0.289 0.290 0.312 0.350

Reforming economies 0.196 0.189 0.169 0.159 0.165 0.185 0.195 0.204 0.236 0.304 0.353

Global 0.179 0.211 0.257 0.256 0.271 0.276 0.286 0.307 0.315 0.341 0.373
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The royalty data was gathered from many different sources with varying degrees of accuracy and for 

different periods in time. Most royalties were as a fraction of sales, but in some cases, assumptions had 

to be made. The collected data probably contains inaccuracies and the values for countries for which no 

data was found are very rough estimates. Royalties may also change over time, which was not 

considered. Future research should be done to determine how to deal with royalties in a better fashion. 

 

In addition to royalties, a tax on profit is also included in the model. This variable is a lot less important 

than the royalties because it does not determine the profitability (and thereby relative preference) of a 

certain mine. It only influences variables such as profit surplus and exploration efforts for that specific 

mine. Therefore, the same value of 30% is used for each mine (PWC, 2012). 

 

Appendix I1.6: Reagents and other costs 

In addition to the costs mentioned above, reagents and other costs also play an important role. However, 

no data was gathered for these costs. Instead, initial average total marginal costs were determined based 

on initial nickel price (see appendix I3.2), with an assumed initial nickel scarcity of 1 (demand = supply). 

The costs calculated above were then subtracted from this total cost and the remainder was assumed to 

be the cost for reagents and other costs.  

 

However, because initial costs differ per run based on certain methodological assumptions and scenarios, 

some initial runs were first done (see figure I5) and the average of these runs was taken: 4750 $/tonne. 

This value was assumed to remain constant throughout the model. In reality, these costs can vary and 

they are also different for each processing method and can be impacted by the carbon price and other 

economic dynamics. However, this is something that could be assessed further in future research. 

 

 
Figure I5: calculated costs for reagents and other per processing energy allocation method. The difference is 

relatively large between the two processing energy allocation methods, with smaller differences between SSPs. An 

average of 4750 $/tonne was assumed 

Appendix I1.7: Carbon price 

A carbon price is included in the SSP scenarios with a target of 1.5 °C. This carbon price is shown in 

tables D2 – D5 and is the same for all regions in a certain scenario. It is assumed that the carbon price 

applies to all GHGs in terms of CO2-eq. Carbon costs are determined in the model by multiplying the 

carbon price with GHG emissions. These emissions are determined in the impact sub model, which is 

covered in appendix K.  
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Carbon costs for mining are currently fully allocated to nickel and don't impact by-product cost. This is 

something that could be changed in future adaptations of the model. However, an estimate of carbon 

costs for processing of by-products was included and so was an estimate of carbon costs for substitutes, 

based on the carbon costs for nickel. If more or less fuel was estimated to be required for the processing 

of a certain by-product, this was taken into account. However relative non-energy related emissions were 

not taken into account. 

Appendix I2: By-products 

Nickel mining has the following by-products, with in brackets the percentage of primary production of 

these metals originating from nickel mines: cobalt (~50%), palladium (~50%), platinum (~15%), osmium 

(~15%), rhodium (~15%), iridium (~5%), ruthenium (~5%), copper (~5%), gold (~5%), silver 

(undetermined) and selenium (undetermined) (Nassar et al., 2015). The database by Mudd (2020) 

includes a few more potential by-products, but excludes osmium, iridium, ruthenium and selenium, 

leading to a total of 19 by-products included in the model.  

 

Of the elements for which the primary production from nickel mining is 15% or higher, cobalt, palladium 

and platinum are the most relevant for the energy system. Cobalt is mostly used in batteries and electric 

vehicles (van der Linden, 2020) and palladium and platinum are used in different types of vehicles and 

fuel cells (Manberger & Stenqvist, 2018). Different nickel deposits will become profitable at different times. 

This is partially because of the by-products that can be produced, but it also influences which by-products 

can be produced. So, nickel production is not only directly important for the energy system, it also 

influences the production of other metals that are important for the energy system. 

Appendix I2.1: By-products in the model 

By-products are treated in less detail in the model than nickel. Only a certain percentage of the production 

of each by-product is the result of nickel mining, so in reality most of the dynamics of by-products (with a 

low dependency on nickel) are determined by factors that are unrelated to nickel mining. Initial prices for 

each by-product are shown in table I9. Initial total by-product marginal costs were determined based on 

these prices in the same way as was done for nickel (see section I1.6).  

 

Initial energy use for by-products was determined by using functions for the relationship between initial 

average ore grade and energy use for each by-product. This relationship is determined by a coefficient for 

by-product energy use and a power for by-product ore grade. Values for these variables, as well as for 

initial average by-product ore grade are shown in table I9.  

 

General average energy costs were then determined based on the initial energy use, fuel price, electricity 

price and the fractions of electricity use for mining and for processing. Next, average other costs were 

determined based on the difference between average marginal costs (based on the initial marginal costs 

and the relative change in fuel price) and general average energy costs.  

 

The average other costs were then combined with energy costs (based on energy use calculated with 

changing ore grades) and carbon costs to determine dynamic marginal costs for by-products. By 

converting this to marginal costs in terms of nickel and subtracting the energy costs for nickel mining, the 

potential additional costs for by-products could be calculated.  
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The whole structure is relatively complex and is probably easier to understand by engaging with the 

model. Part of the structure is included in the cost structure section of the model, part of it is included in 

the ore grade section of the model and part of it is included in the additional cost info section of the model. 

In future adaptations, this could be organised in a more logical way. 

 

Table I9: by-product data. Non-price data was obtained from Valero et al. (2010), Valero et al. (2013), Valero & 

Valero (2014) and Valero et al. (2015). Where there were discrepancies between values, the data from the latest 

publication was used. NI = Nickel Institute. 

Ele-
ment 

Price (3 yr. 
avg. 2015 
- 2017; 
$/tonne)* 

Inflation 
corrected 
price (2005 
$/tonne) 

Average 
concen-
tration in 
Earth’s crust 

Average 
ore 
grade 

Average 
concentration 
in refined 
products** 

Power for 
by-product 
ore grade 
** 

Coefficient 
for energy 
use*** 
(GJ/tonne) 

Sources for 
price data 

By-products      

Cu 5500 4097 6.6E-5 1.7E-02 0.81 -0.35 23.8 NI (2020) 

Au 39000000 29051100 1.3E-9 2.2E-06 0.00014 -0.29 2645 Bullion by Post 
(2020) 

Ag 600000 446940 1.2E-8 4.3E-06 0.9 -0.5 24.7 

U 65692 48934 1.5E-6 3.2E-03 0.75 -0.28 138.8 Trading 
Economics 
(2020) 

Mo 18000 13408 1.8E-6 5.0E-04 0.92 -0.5 23.6 

W 37890 28224 2.7E-6 8.9E-03 0.9 -0.5 1.6 Metalary (2020) 

Pb 1995 1486 6.7E-6 2.4E-02 0.64 -0.5 3.6 Trading 
Economics 
(2020) 

Zn 2320 1728 1.0E-4 6.1E-02 0.79 -0.5 3.0 

Co 36000 26816 5.1E-9 1.9E-03 0.05 -0.64 2.2 NI (2020) 

Pt 32054000 23877025 5.0E-10 8.0E-07 0.9 -0.5 20 NI (2020) 

Pd 23334000 17381497 5.0E-10 8.0E-07 0.9 -0.5 20 NI (2020) 

Rh 29483000 21961887 5.0E-10 8.0E-07 0.9 -0.5 20 NI (2020) 

Cr 1175 875 2.0E-4 6.4E-01 0.81 -0.5 11.8 USGS (2020b) 

Fe 64 48 9.7E-4 7.3E-01 0.95 -0.5 3.6 Trading 
Economics 
(2020) 

SiO2  45 34 2.3E-1 6.5E-01 0.98 -0.5 4.0 USGS (2020c) 

Sc 1600000 1191840 2.5E-5 6.0E-02 0.86 -0.5 21.8 Mudd (2020) 

Re 2280000 1698372 2.0E-10 2.2E-04 0.9 -0.5 20 USGS (2020d) 

Mn 1500 1117 4.9E-5 5.0E-01 0.67 -0.5 20 Mudd (2020) 

Bi 11557 8609 5.1E-8 2.5E-03 0.9 -0.5 26.3 USGS (2018) 

Nickel****      

Ni S 11000 8194 5.8E-5 3.40E-02 0.47 -0.67 17 NI (2020) 

Ni L 4.1E-6 4.40E-02 0.08 -0.5 2.1 

*The value for Cr is an average of 2014 and 2017. The values for Sc and Mn are 2018 averages. 

** Valero et al. (2013) used 0.9 and -0.5 respectively when they lacked data. Here the same is done. 

*** If no data could be found, a value of 20 (bold) was used. This is very arbitrary and likely to lead to inaccurate representations for 

these by-products. For gold, the coefficient of 135664 provided by Valero & Valero (2014) was adapted to accommodate an ore 

grade in t/t instead of an ore grade in g/t. 

**** For nickel, different values than those provided by Valero et al. were used if more detailed information was available through the 

database by Mudd (2020).  
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A new by-product price was calculated based partially on the average marginal cost of that by-product 

based on the initial marginal costs and the relative change in fuel price, and partially on the average 

marginal cost based on the mining of the by-product from nickel deposits. The relative shares were based 

on the initial percentage of the production of a certain by-product due to nickel mining. 

  

Another factor influencing by-product price is the degree of by-product scarcity. Keeping the scarcity at 1 

would mean that if the ore grade of a by-product in a certain nickel deposit is equal to or greater than the 

overall average ore grade of the by-product, the price and therefore the revenue would always be higher 

than the costs due to the percentage cost on top of marginal cost. In reality this is not the case, because 

scarcity is an important driver of price. 

 

However, without expanding the model to an unreasonable size, it is not possible to know what the 

dynamics around scarcity of by-products may be. Therefore, some assumptions were made. First it was 

assumed that as for nickel, scarcity would go up and down based on price dynamics. For by-products with 

a high dependency on nickel, such as cobalt and palladium, the scarcity was assumed to equal nickel 

scarcity. However, the lower the dependency of a by-product on nickel, the more out of sync its scarcity 

was assumed to be with nickel scarcity. This was done by relating the scarcity of these by-products to a 

delayed nickel scarcity. 

 

Regardless of what choices are made regarding the scarcity of by-products, they will be arbitrary without 

expanding the model. Therefore, the choice for making the scarcities of the different metals out of sync 

was based on ameliorating hog cycles. In reality not all the scarcities of metals would be in sync and if 

they are or if they are assumed to be 1, the hog cycles would more frequently have higher peaks (and the 

peaks are already quite high). So, the reasoning for creating a by-product scarcity that is out of sync with 

nickel was to make the dynamics less extreme and less dependent on by-products. 

 

It is important to keep in mind that because of the simplifications and arbitrary choices regarding by-

products, the dynamics of the by-products are even more uncertain than the dynamics of nickel and the 

model should not be used to conclude anything meaningful about specific by-products, with the possible 

exception of cobalt and palladium because they are more dependent on nickel production. 

 

By-products were deemed profitable if the additional revenue is greater than the additional costs. This can 

be because the by-product ore grade of a certain nickel project is higher than the average overall by-

product ore grade and/or because modelled by-product scarcity drives up the price. In this case, the by-

products are recovered and the additional costs for by-products are added to the total marginal cost of the 

deposit. For mines with platinum as a main product, the platinum is always recovered and the profitability 

of the platinum has a larger influence on whether a certain mine is profitable. 

 

This marginal cost is used to determine the profitability of specific nickel mines. However, to determine 

the nickel price, only the costs allocated to nickel are relevant. There are different ways of allocating 

mining costs between nickel and its by-products. These are discussed in appendix I2.2.  

 

The processing method can impact the recovery possibilities for by-products, but this is not considered. 

As a simplification, the same losses as the losses for nickel apply when relating the two to each other. 

This could be changed in future adaptations of the model. 
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Appendix I2.2: Mining energy cost allocation 

When multiple minerals are mined from a certain deposit, there are different ways of allocating the mining 

costs between the by-products. Valero et al. (2015) discuss three methods: allocation based on mass, 

allocation based on prices and allocation based on ERC. The formulas for these allocation methods are 

shown in equations 3 - 5. Further information on how to calculate ERC can be found in Valero et al. 

(2015) and can be gathered from the model. 

 

 
In which: 

 

m = annual production 

p = price 

B* = exergy replacement cost 

 

Arguments can be made for or against each of these allocation methods. For example, an argument 

against mass-based allocation is that the fraction of gold in a certain deposit can be very small but it has 

high value and high mining costs, so it would be unfair to the other metals in the deposit to only attribute a 

small fraction of the costs to gold. In this case, price based-allocation is a better option and this is used as 

the main allocation method in this thesis. 

 

Valero et al. (2015) argue that an even better allocation method is allocation based on ERCs, stating that 

it is a ‘physical measure independent of monetary arbitrariness supported by the rigorous theory of 

Thermoeconomics’. However, this method of allocation is much more complex and requires many more 

uncertain inputs.  

 

Appendix I3: Nickel price and profit 

In this appendix, the calculation methods for determining the nickel price and profit are discussed. 

However, first, the historic nickel price is shown in figure I6. 
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Appendix I3.1: Historic nickel price  

 
Figure I6: nickel price for the past 25 years in US$/tonne (Trading Economics, 2020). 

 

Appendix I3.2: Price calculation 

Following van der Linden (2020), a switch for selecting between two different methods for calculating 

nickel price was included in the model. Both methods include a relationship with marginal cost and a 

relationship with scarcity. The first method, based on the days of demand in stock, is shown in equation 6 

(Sverdrup et al., 2017). The second, based on availability and consumption, is shown in equation 7 

(Usanov et al., 2013). This is the method that was also used to determine initial average total marginal 

costs, initial total by-product marginal costs and by-product price. 

 

 
In which: 

 

P = price 

M = average marginal costs 

b = marginal cost bottom price relationship 

S = days of demand in stock 

Y = days in a year 

x = exponent nickel price curve 

p = percentage cost on top of marginal cost 

A = available supply 

C = forecasted consumption 
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Average marginal cost was based on existing mines, which includes operating mines and mines in C&M. 

This was done because including all mines would lead to unrealistically high costs, because unprofitable 

mines would also be included. In contrast, including only operating mines could potentially lead to 0 costs 

if no mines are operating at a certain point in time.  

Appendix I3.3: Profit calculation 

When looking at the price dynamics for individual mines, a distinction was made between current values, 

current potential values and future potential values. These different types of values are described in the 

main text (section 2.3.3). Details on their calculation are quite complex and can be understood best by 

engaging with the model. 

 

Relative profit over investment was used to rank the different projects in terms of profitability. In future 

research, Net Present Value (NPV) and Internal Rate of Return (IRR) could be used instead. There are 

built in formulas for this in Vensim, but they are difficult to implement. Possibilities for implementation 

could be explored for future adaptations. 

Appendix I4: Investment attractiveness 

Profit is not the only factor that influences investment. To influence preferential investment in the model, 

an overall investment attractiveness index was researched. Investment attractiveness is influenced by a 

wide range of factors. The Fraser institute conducts the most elaborate survey-based analysis of mining 

company opinions in an attempt to rank the investment attractiveness of mining countries. However, the 

Fraser institute (2020) did not cover all the countries of interest in the model. Transparency International 

conducts an annual assessment of the Corruption Perception Index (CPI) of countries (see table I10). The 

countries included cover those of interest in the model. There is a decent correlation (R^2 = 0.4; figure I7) 

between the Fraser Investment attractiveness index and the CPI, so CPI was used as a proxy for 

investment attractiveness. In future adaptations of the model, other factors could be included. 

 

 
Figure I7: correlation between investment attractiveness and corruption (Fraser Institute, 2020; Transparency 

International, 2020) 
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Table I10: Fraser investment attractiveness score, corruption perception score and normalised corruption perception 

score per country in the model (Fraser Institute, 2020; Transparency International, 2020). For international waters, 

the lowest corruption perception score was assumed, simply to reflect the increased difficulty of DSM. 

Country Fraser 
score 

Corruption 
score 

Normalised 
score 

Country Fraser 
score 

Corruption 
score 

Normalised 
score 

Australia 77 77 0.87 Zimbabwe 45 24 0.09 

PNG 59 28 0.15 Zambia 38 34 0.24 

Indonesia 73 40 0.32 Burundi - 19 0.01 

Philippines - 34 0.24 Tanzania 33 37 0.28 

Myanmar - 29 0.16 USA 69 69 0.75 

New Caledonia - 69 0.75 Spain - 62 0.65 

Argentina 53 45 0.40 Norway 70 84 0.97 

Brazil 63 35 0.25 Malawi - 31 0.19 

Guinea 77 29 0.16 Solomon Islands - 42 0.35 

Canada 72 77 0.87 Guatemala 36 26 0.12 

Côte d'Ivoire - 35 0.25 Colombia 58 37 0.28 

Russia - 28 0.15 Greece - 48 0.44 

Puerto Rico - 69 0.75 Dominican Rep. 36 28 0.15 

Turkey 82 39 0.31 Kazakhstan - 34 0.24 

Albania - 35 0.25 Madagascar - 24 0.09 

Serbia - 39 0.31 Cuba - 48 0.44 

Kosovo - 36 0.26 India - 41 0.34 

Oman - 52 0.50 Morocco - 44 0.38 

Togo - 29 0.16 Cameroon - 25 0.10 

Poland - 58 0.59 Ethiopia - 37 0.28 

Botswana 63 61 0.63 Sweden 82 85 0.99 

Finland 92 86 1.00 South Africa 65 44 0.38 

China - 41 0.34 Int’l waters - 18 0.00 
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Appendix J: Price sub model input and data sources 
Table J1: values and data sources used for the constants and lookups in the price sub model. A range is included 

and a row is highlighted yellow if uncertainty is assessed for a specific variable. Dmnl = dimensionless. 

Element Unit Type Min Max Explanation/assumptions Source 

Ore grade data 

Project ore type Dmnl Constant Either a 1 or a 0 Indicates which ore type is used by a 
certain project 

Mudd (2020) 

Average nickel ore 
grade 

Dmnl 
 

Constant 
 

Values in the 
database 

 

Ore grade was reported for reserves 
and for reserves and resources 
combined. The latter was assumed to 
apply to resources, which was 
assumed to work as a rough 
estimation but is not that accurate 
because it also contains the influence 
of the reserves. In future research this 
data could be manipulated in such a 
way that the ore grade for only 
resources is obtained, but this was not 
done here due to time constraints. 

Mudd (2020) 

Average by-product 
ore grade 

Power for ore grades Dmnl Constant 0.1 0.5 Determines how quickly average ore 
grade declines. Van der Linden (2020) 
used a range between 0.38 and 0.42  

Assumption 

Cost data 

Fuel demand for 
mining, milling and 
beneficiation 

GJ/ 
tonne 
ore 
 

Constant See table I1 Fuel or electricity demand for different 
mine types per tonne of ore. The 
lower the ore grade, the higher the 
energy demand 

See table I1 
 

Fuel demand for ore 
transport 

Electricity demand 
for mining, milling 
and beneficiation 

Fuel demand for 
primary extraction 

GJ/ 
tonne 
product 
 

Constant 
 

See table I1 
 

Fuel or electricity demand for different 
processing methods per tonne of 
product. Depending on the processing 
energy allocation method this is equal 
to energy demand per tonne of nickel 
or it has to be divided by the nickel 
content of the product first. 

See table I1 

Fuel demand for 
product transport 

Electricity demand 
for primary extraction 

Average nickel 
content of products 

Dmnl Constant See table I2 Indicates the percentage of a certain 
product consisting of nickel. 

See table I2 

Fuel demand for 
refining 

GJ/ 
tonne 

Constant See table I1 Fuel or electricity demand for different 
refining methods per tonne of product. 

See table I1 

Fuel demand for 
nickel transport 

Electricity demand 
for refining 

Autonomous specific 
energy consumption 

Dmnl Constant 0.1 Efficiency improvements due to 
innovation. Rule of thumb value.  In 
future research a more exact industry 
value can be found based on past 
developments. 

Blok & 
Nieuwlaar 
(2021) 
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Initial fuel price $/GJ Constant 4 Based on the average price for 
different types of coal, oil and natural 
gas covered by BP (2019). In 2005 $. 

BP (2019) 

Energy price 
scenario high 

1/Year Lookup See figure I4 Three energy price scenarios, high, 
mid and low based on assumptions on 
how the energy price may change 
over time. Historic values up to 2018 
from BP (2019). Behaviour adapted 
from Van der Linden (2020) 

BP (2019); Van 
der Linden 
(2020) 

Energy price 
scenario mid 

Energy price 
scenario low 

Intercept electricity 
price function 

$/GJ Constant 15.805 Linear formula based on a renewable 
energy share of 22.8% (REN21, 2015) 
and a difference of 11 $/GJ between 
electricity and fuel price in 2015 (BP, 
2019; EIA, 2020b) and a difference of 
0 $/GJ by the time the renewable 
energy share becomes 75% 

Assumption 

Slope electricity price 
function 

$/GJ Constant -21.073 

Royalty as a 
percentage of sales 

Dmnl Constant See table I8 Royalties were gathered from various 
data sources. When the type of 
royalty was unclear, it was assumed 
to be as a percentage of sales. 
Royalties for countries for which data 
could not be found were based on 
those of nearby countries. 

See table I8 

Override based on 
initial runs 

$/tonne Constant 4750 Average value for reagents and other 
marginal costs based on initial runs.  

See appendix 
I1.6 

Carbon price $/tonne 
CO2eq 

Lookup Selected SSP 
scenarios 

All included SSP scenarios have a 
certain carbon price (tax) except 
SSP2-baseline. 

IIASA (2018) 

Regional renewable 
energy share 

Dmnl Lookup Selected SSP 
scenarios 

Based on the share of renewable 
energy in total electricity supply for the 
regions included in the SSP database 

IIASA (2018) 

Coefficient capital 
costs 

$ Constant 41.238E6 Variables used in the formula that 
relates capacity and capital costs for 
HPAL. Determined based on Dry 
(2013) 

Dry (2013) 

Exponent capital 
costs 

Dmnl Constant 1.0508 

Additional expenses 
for DSM 

Dmnl Constant 2 20 DSM is assumed to be 2 - 20 times 
more expensive than ordinary mining. 
This is a highly uncertain assumption 
and more research is required to 
better represent DSM in the model. 

Assumption 

Alternative energy calculation methods 

Power for nickel ore 
grade [sulfides] 

Dmnl Constant -0.844; -0.67 Variables used in the formulas that 
relate ore grade to energy use for the 
mining of sulfides and laterites. The 
first value is for Elshkaki et al. (2017), 
the second value is for Valero et al. 
(2013). For the formula by Elshkaki et 
al. (2017) uses a percentage as input 
for ore grade. The formula by Valero 
et al. (2013) was assumed to use a 
fraction as input for ore grade. 
 
 
 

(Elshkaki et al., 
2017; Valero et 
al., 2013) 

Power for nickel ore 
grade [laterites] 

Dmnl Constant -0.607; -0.5 

Coefficient for nickel 
energy use [sulfides] 

GJ/ 
tonne 

Constant 199.51; 17 

Coefficient for nickel 
energy use [laterites] 

GJ/ 
tonne 

Constant 169.53; 2.1 
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Processing fraction Dmnl Constant 0.6 Represents the fraction of the total 
energy use for mining and processing 
for processing. This is an assumption 
based on getting average final energy 
use close to calculation method 1. 
This variable is relevant when 
assessing mining and processing 
separately. However, it also 
influences the fraction of energy from 
electricity or from fuels based on the 
processing method. In reality the 
processing method would impact this 
fraction, but this is not included. 

Assumption 

By-product and allocation data 

Initial by-product 
price 

$/tonne 
by- 
product 

Constant See table I9 Based on three-year average prices 
between 2015 and 2017. In 2005 $. 

See table I9 

Initial average ore 
grade by-products 

Dmnl Constant See table I9 Initial average ore grade of by-
products 

See table I9 

Power for by-product 
ore grades 

Dmnl Constant See table I9 Variables used in the formula that 
relates ore grade to energy use for the 
mining of different by-products 

See table I9 

Coefficient for by-
product energy use 

Dmnl Constant See table I9 See table I9 

Average 
concentration by-
products in Earth’s 
crust 

Dmnl Constant See table I9 Average concentration of by-products 
in Earth’s crust 

See table I9 

Average 
concentration by-
products in refined 
products 

Dmnl Constant See table I9 Average concentration of by-products 
in refined products 

See table I9 

Average 
concentration nickel 
in Earth’s crust 

Dmnl Constant See table I9 Average concentration of nickel in 
Earth’s crust 

See table I9 

Reference 
temperature 

Kelvin Constant 298.15 Reference temperature Valero et al. 
(2015) 

Universal gas 
constant 

kj/kmol
Kelvin 

Constant 8.314 Universal gas constant  

Projects with 
platinum as main 
product 

Dmnl Constant Either a 1 or a 0 Assumption, based on project name 
and/or company name in the 
database by Mudd (2020). 

Mudd (2020) 

Nickel price data 

Initial nickel price $/tonne  Constant 8194 Based on three-year average prices 
between 2015 and 2017. In 2005 $. 

Nickel Institute 
(2020) 

Price averaging 
period 

Year Constant 0.25 Assumption by Van der Linden (2020) 
who used a range between 0.1 and 
0.4. 

Van der Linden 
(2020) 

Percentage cost on 
top of marginal cost 

Dmnl Constant 0.1 Van der Linden (2020) used a range 
between 0.05 and 0.25 

Auping (2011); 
Van der Linden 
(2020) 
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Exponent nickel price 
curve 

Dmnl Constant -1 Based on the model by Van der 
Linden (2020). In her thesis she 
mentions values between -0.85 and -
0.65 and in her code, she mentions 
values between -0.95 and -0.85. 
However, -1 seems to lead to a 
reasonable price that is similar to the 
price calculated based on availability 
and consumption, so this is used. 

Van der Linden 
(2020) 

Marginal cost bottom 
price relationship 

Dmnl Constant 0.05 Based on the model by Van der 
Linden (2020). In her thesis she 
mentions values between 0.3 and 
0.36 and in her code, she mentions 
values between 0.08 and 0.12. 
However, 0.05 seems to lead to a 
reasonable price that is similar to the 
price calculated based on availability 
and consumption, so this is used. 

Van der Linden 
(2020) 

Inflation Dmnl Constant 1.3327 Percentage increase of 2020 $ 
compared to 2005 $ 

Inflation 
calculator 

Profit data 

Long forecasting 
period 

Year Constant 2 Van der Linden (2020) assumed a 
value that is twice as much as the 
short forecasting period. 

Auping (2011); 
Van der Linden 
(2020) 

Short forecasting 
period 

Year Constant 1 Van der Linden (2020) assumed a 
range between 0.5 and 2.  

Averaging time Year Constant 3 The time over which the price is 
averaged to determine the investment 
price premise. 

Assumption 

Nickel taxes Dmnl Constant 0.3 Tax on profit, applied equally to all 
countries. 

PWC (2012) 

Minimum profit over 
investment 

Dmnl Constant 1.2 2 This variable determines the minimum 
profit over investment mining 
companies want to make to go 
forward with investment. 

Assumption 

Initial long-term profit 
forecast 

Dmnl Constant 0; 0.5 Van der Linden (2020) used 0. Here 
developing and operating mines were 
assumed to have a value of 0.5, 
because they had to have been 
profitable initially to be approved, and 
the rest were given a value of 0. 

Assumption 

Long-term profit 
forecasting period 

Year Constant 2 See the model for its use. Van der Linden 
(2020) 

Investment attractiveness data 

Investment 
attractiveness 

Dmnl Constant See table I10  Normalised corruption perception 
score. 

See table I10 

Averaging period Year Constant 1 The time over which profit adjusted 
investment attractiveness is averaged 
to determine the final ranking. 

Assumption 



89 
 

Appendix K: Background, assumptions & data: impacts 

This appendix contains background information that can be consulted to provide some more context for 

the concepts related to the sustainability impacts discussed in the main text. Assumptions are also 

explained and values used in the model are shown.  

 

Multiple nickel LCAs, including various impact categories, were assessed. Due to a lack of data for all 

processing methods from a single source, the same method as used for determining final fuel and 

electricity requirements was used for obtaining LCA estimates. Although different sources did cover 

multiple impact categories, there was only a consistent match between sources for Global Warming 

Potential (GWP) for all processing methods and electricity generation technologies. Therefore, only GWP 

was assessed in this thesis. However, once more detailed data becomes available for the other impact 

categories, this can be plugged into the model in the future. 

 

Although life cycle emissions are not solely based on processing technology (there could also be country 

specific factors for example), processing technology is assumed to have the greatest contribution, and life 

cycle emissions are therefore distinguished based on this. 

 

PED is also an impact category that is often assessed. However, in this thesis, only final energy use, 

excluding non-energy use, is included because this was easier to include for a dynamic energy mix. 

However, in future adaptations of the model, non-energy use can be included and final energy use could 

be converted into PED by adding (dynamic) conversion efficiencies for electricity generation technologies. 

Appendix K1: Greenhouse gas emissions 

The LCA by the Nickel Institute (2020) was used as the basis for determining GWP. They provided data 

for class I nickel and for ferronickel. Other sources that were used include Norgate & Jahanshahi (2011), 

Wang et al. (2015) and Khoo et al. (2017). Table K1 shows the GWP of the different processing methods 

included by these sources, as well as the estimated values used in this thesis. 

 

This estimation was done as follows. First, the value of 45 kg CO2eq/kg nickel for ferronickel production 

based on Nickel Institute (2020) was used for RKEF. Next, the value of 13 kg CO2eq/kg nickel for class I 

nickel production based on Nickel Institute (2020) was converted to a value for HPAL (24 kg CO2eq/kg 

nickel) and a value for PM sulfide production (9 kg CO2eq/kg nickel) based on the statement by Nickel 

Institute (2020) that 27% of class I nickel came from HPAL in their calculations and the rest from PM 

sulfide production.  

 

Wang et al. (2015) were the only source that included pig iron production and, since their value for RKEF 

was exactly the same as the value for Nickel Institute (2020), their value for pig iron production of 41 kg 

CO2eq/kg nickel was used for BFs.  

 

Norgate & Jahanshahi (2011) were the only source including the Caron process and HL. They used 

mass-based allocation. Assuming 77% nickel in the product created by the Caron process (see table I2), 

Caron was estimated to be about 2.5 times more CO2 intensive than HPAL. HL was estimated to be 

about 0.78 times as CO2 intensive as HPAL. Using the HPAL value determined based on Nickel Institute 

(2020), this led to estimated values of 19 kg CO2eq/kg nickel for HL and 60 kg CO2eq/kg nickel for 

Caron. 
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Norgate & Jahanshahi (2011) also reported a value for ATL that was 0.65 times as CO2 intensive as 

HPAL and Wang et al. (2015) reported a value for ATL that was 0.4 times as CO2 intensive as RKEF. On 

average this leads to a value for ATL of 16 kg CO2eq/kg nickel. 

 

Khoo et al. (2017) provided data for the GWP of stainless-steel production for HPAL, RKEF and DNI (1.09 

times the value for HPAL). Even though this is for stainless steel, the relative values were assumed to be 

similar to relative values for nickel only, and based on this, a value of 26 kg CO2eq/kg nickel was 

calculated for DNI. 

 

Table K1: GWP of nickel processing technologies for the current electricity mix. In brackets, the relative GWP 

compared to one of the other processing technologies reported by a certain source is shown. These relative values 

are used to determine the final estimated values used in this thesis. 

Process Nickel Institute 
(2020) 

Norgate & 
Jahanshahi (2011) 

Wang et al. (2015) Khoo et al. (2017) Estimated values 

Kg CO2 eq./kg Ni  
(full allocation to 
nickel) 

Kg CO2 eq./kg Ni  
(mass based 
allocation) 

Kg CO2 eq./kg Ni 
(assumed full 
allocation to nickel) 

Kg CO2 eq./kg Ni 
in stainless steel* 

Kg CO2 eq./kg Ni 
(full allocation to 
nickel) 

Class 1 13 (27% HPAL, 
73% PM sulfide) 

    

PM sulfide     9 

HPAL  23  79 (0.53 * RKEF) 24 

HL  18 (0.78 x HPAL)   19 

ATL  15 (0.65 x HPAL) 18 (0.4 x RKEF)  16 

DNI    86 (1.09 x HPAL) 26 

Caron  45**   60 

RKEF*** 45 (3.46 x Class 1) 23** 45 (2.5 x ATL) 150 (1.89 x HPAL) 45 

BF***   41 (0.91 x RKEF)  41 

*Because this is in stainless steel the values are much higher than for just nickel. 

**It is unclear what Norgate & Jahanshahi assumed as the percentage of nickel in the products from these processes. 

Based on the range of 15 - 45% for RKEF (see table I2) the value could be 51 - 153 kg CO2eq/kg nickel. The lower 

end of this range is assumed. Based on 77% for Caron, the value could be 58 kg CO2eq/kg nickel (2.5 x HPAL). 

***Reported as ferronickel and pig iron for RKEF and BF respectively. 

 

In this thesis, a distinction was made between LCA results for electricity generation and for other 

processes. This is because the other processes were assumed to remain relatively constant, but, 

because of the ET, the electricity generation mix will become significantly different in the future and so will 

its impacts. The fuel mix used on-site may also become different (by switching to more biofuels and 

hydrogen, etc.), however this was not fully considered. This is something that could be included in future 

adaptations of the model. 

 

Nickel Institute (2020) indicated the percentage of the GWP caused by electricity generation. This 

includes electricity generation off-site and electricity generation on-site. Both were included as electricity 

generation, even though in the case of electricity generation on-site, the energy is delivered as a fuel. 

This was done to also partially reflect fuels becoming more renewable over time. However, this may have 

led to less consistency with other sources. 
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Table K2 shows the estimated contribution of electricity to GWP for the different processing methods and 

the final values used for GWP excluding electricity. These values were estimated as follows. First, the 

value of 47% for ferronickel production provided by Nickel Institute (2020) was used for RKEF. Next, the 

values for HPAL and PM sulfide production were determined based on the value of 32% for class I nickel 

provided by Nickel Institute (2020). 

 

This was done by first taking the 13 kg CO2eq/kg nickel from table K1 and multiplying it by 0.32 to obtain 

4 kg CO2eq/kg nickel that could be attributed to electricity and 9 kg CO2eq/kg nickel that could be 

attributed to other factors. Then the 27% and 73% shares for HPAL and PM sulfide processing were 

used, in combination with a processing electricity use for PM sulfide processing that is 1.7 times the 

processing electricity use for HPAL, to determine that 2.65 kg CO2eq/kg nickel could be attributed to 

electricity for HPAL and 4.5 kg CO2eq/kg nickel could be attributed to PM sulfide processing, thereby 

leading to 11% and 50% contribution of electricity to GWP respectively, based on the estimated values in 

table K1. 

 

Next, the values for HL, ATL and DNI were determined by relating the electricity use for these processes 

to the electricity use for HPAL. To illustrate for HL, the relative electricity use compared to HPAL (0.89) 

was multiplied by 2.65 kg CO2eq/kg nickel and the subsequent value was divided by the estimated value 

for HL in table K1, leading to a 12% contribution of electricity to GWP. 

 

The values for Caron and BF were determined by relating the electricity use for these processes to the 

electricity use for RKEF. The values for electricity use for these processes were first converted to values 

in terms of a full allocation to nickel by dividing the values obtained from table I1 by the values in table I2. 

The final values used for GWP excluding electricity were determined by multiplying the contribution of 

electricity to GWP by the estimated values in table I1 and then subtracting the subsequent values from 

the values in table I1. 

 

Table K2: contribution of electricity to the GWP of nickel processing technologies and final values used for GWP (in 

kg CO2 eq./kg Ni) excluding electricity in the model. 

Process Contribution of electricity to 
GWP (Nickel Institute, 2020) 

Electricity use 
(GJ/tonne Ni)* 

Estimated Contribution of 
electricity to GWP  

Final values used for 
GWP excl. electricity 

Class 1 32%    

PM sulfide  31 (1.7x HPAL) 50% 5 

HPAL   18 11% 21 

HL  16 (0.89 x HPAL) 12% 17 

ATL  14 (0.78 x HPAL) 13% 14 

DNI  17 (0.94 x HPAL) 9% 24 

Caron  29 (0.31 x RKEF) 11% 52 

RKEF*** 47% 93 47% 24 

BF***  40 (0.43 x RKEF) 22% 32 

* Electricity use for smelting and refining (see table I1), as electricity use for mining was assumed to be equal for 

each processing method. Electricity use for HPAL, HL, ATL and DNI is very uncertain because it is based on relative 

PED compared to other processes and not specifically on relative electricity requirements 
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Table K3 shows the GWP for electricity generation technologies with and without CCS. The main sources 

used to determine these values are Hertwich et al. (2015) and Asdrubali et al. (2015), supplemented by 

Turconi et al. (2013) for oil and nuclear, Pehl et al. (2017) for biomass and Amponsah et al. (2014) for 

ocean energy. The value for oil + CCS was calculated as the average of coal + CCS and natural gas + 

CCS. 

 

Table K3: GWP for electricity generation technologies. The cells containing the values that were used, are highlighted 

in yellow. In some cases, a single source was used, in other cases average values were used. Values are in kg 

CO2eq/MWh except for the final column. 

Technology Turconi et al. 
(2013) 

Amponsah et 
al. (2014) 

Hertwich et al. 
(2015) 

Asdrubali et al. 
(2015) 

Pehl et al. 
(2017) 

Final value  
(tonne CO2eq/GJ) 

Biomass 51    98 0.027 

Biomass + CCS     -312 -0.087 

Coal 924  864 900  0.24 

Coal + CCS   233  109 0.065 

Oil 774     0.22 

Oil + CCS      0.067 

Natural gas 533  527 375  0.15 

Gas + CCS   247  78 0.069 

Geothermal  32  34  0.0094 

Hydro 8 25 42 12 97 0.0075 

Nuclear 12    4 0.0033 

Ocean  19    0.0053 

Solar 65 86 31 30 9 0.0086 

Wind 18 17 10 9 4 0.0028 

 

The GWP calculated in the model is the result cradle to gate life cycle emissions for nickel. It does not 

include any impacts of manufacturing stainless steel, batteries and other products, and also no emissions 

due to waste management. 

 

To take into account innovation, a factor for carbon intensity improvement was also included in the model. 

The processing energy allocation method was also taken into account. In addition, a rough estimate for 

by-product processing emissions was based on the GWP for nickel and so was an estimate for the 

emissions for substitutes.    

 

The estimated values in table K1 are based on the current average ore grade. However, as ore grade 

decreases, energy requirements and thereby GHG emissions increase. Because of this, some of the 

deposits in the database by Mudd (2020) lead to much higher GHG emissions, because of their lower ore 

grade. However, changing ore grade is only considered for the GWP due to electricity, even though this 

will likely also lead to increased fuel and reagent requirements, thereby impacting the GWP excluding 

electricity. This is something that could be improved in future adaptations of the model. 
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Appendix K2: SSP regional data 

Tables K4 - K7 show the electricity mix for different regions per SSP (IIASA, 2018). The sums of the 

renewable energy technologies in these tables lead to the values in the tables in appendix I1.4. Unlike the 

global SSP data (appendix D1.1), totals were calculated instead of taken from the database to determine 

the shares, due to slight rounding discrepancies. This means the electricity mix share does not contain 

any geothermal or ocean energy in scenarios where there was no data for those, making it slightly 

different than what is indicated in appendix D1.1. 

 

In the tables below, the fraction of an energy source + CCS refers to the fraction of that energy source, 

not the fraction of total electricity generation. To determine the fraction of oil with CCS, average values for 

biomass with CCS, coal with CCS and natural gas with CCS were used. For electricity generation, no 

distinction was made between PV and CSP in the database by IIASA (2018), so all solar energy was 

considered as PV.  

 

Table K4: electricity mix per region for SSP1-19. Global is used for international waters. 

 

 

 

Electricity mix OECD SSP1 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.019 0.026 0.033 0.078 0.097 0.076 0.092 0.126 0.138 0.136 0.143

Coal share 0.381 0.346 0.255 0.036 0.031 0.015 0.014 0.017 0.016 0.012 0.011

Oil share 0.047 0.025 0.015 0.063 0.009 0.001 0.001 0.001 0.000 0.000 0.000

Gas share 0.190 0.227 0.209 0.214 0.090 0.044 0.067 0.111 0.115 0.050 0.049

Geothermal share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hydro share 0.130 0.134 0.144 0.169 0.201 0.120 0.093 0.115 0.121 0.115 0.118

Nuclear share 0.222 0.213 0.218 0.263 0.154 0.022 0.009 0.005 0.001 0.001 0.001

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.003 0.038 0.065 0.164 0.245 0.307 0.376 0.378 0.355 0.360

Wind share 0.009 0.026 0.088 0.112 0.254 0.477 0.417 0.250 0.230 0.330 0.318

Fraction of bio + CCS 0.000 0.000 0.000 0.088 0.915 0.969 0.996 1.000 1.000 1.000 1.000

Fraction of coal + CCS 0.000 0.000 0.000 0.009 0.164 0.745 0.998 1.000 1.000 1.000 1.000

Fraction of gas + CCS 0.000 0.000 0.013 0.034 0.326 0.875 0.990 0.952 0.907 0.936 0.750

Fraction of oil + CCS 0.000 0.000 0.004 0.044 0.468 0.863 0.995 0.984 0.969 0.979 0.917

Total renewable share 0.159 0.189 0.303 0.424 0.715 0.917 0.909 0.867 0.867 0.936 0.939

Electricity mix REF SSP1 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.002 0.002 0.012 0.071 0.135 0.354 0.597 0.681 0.723 0.681 0.769

Coal share 0.171 0.189 0.163 0.124 0.062 0.038 0.008 0.006 0.005 0.005 0.001

Oil share 0.027 0.013 0.023 0.008 0.004 0.004 0.000 0.000 0.000 0.000 0.000

Gas share 0.408 0.432 0.440 0.362 0.345 0.155 0.040 0.027 0.005 0.010 0.000

Geothermal share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hydro share 0.197 0.175 0.188 0.203 0.216 0.310 0.273 0.254 0.259 0.301 0.225

Nuclear share 0.195 0.190 0.167 0.216 0.180 0.069 0.025 0.010 0.000 0.000 0.000

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.000 0.002 0.005 0.013 0.025 0.031 0.020 0.007 0.001 0.001

Wind share 0.000 0.000 0.005 0.011 0.045 0.046 0.025 0.002 0.001 0.002 0.003

Fraction of bio + CCS 0.000 0.000 0.000 0.543 0.838 0.951 0.996 1.000 1.000 1.000 1.000

Fraction of coal + CCS 0.000 0.000 0.006 0.044 0.109 0.216 1.000 1.000 1.000 1.000 1.000

Fraction of gas + CCS 0.000 0.000 0.010 0.063 0.219 0.185 0.411 0.581 0.381 0.260 0.000

Fraction of oil + CCS 0.000 0.000 0.005 0.217 0.389 0.450 0.802 0.860 0.794 0.753 0.667

Total renewable share 0.199 0.177 0.208 0.290 0.409 0.735 0.926 0.958 0.990 0.985 0.999

Electricity mix Asia SSP1 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.004 0.009 0.018 0.054 0.059 0.050 0.051 0.062 0.069 0.074 0.099

Coal share 0.637 0.658 0.476 0.204 0.027 0.038 0.053 0.070 0.062 0.042 0.021

Oil share 0.051 0.025 0.008 0.029 0.001 0.000 0.000 0.000 0.001 0.001 0.000

Gas share 0.111 0.110 0.237 0.379 0.154 0.106 0.124 0.168 0.127 0.070 0.046

Geothermal share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hydro share 0.138 0.144 0.169 0.198 0.182 0.139 0.123 0.115 0.112 0.116 0.123

Nuclear share 0.057 0.043 0.046 0.053 0.055 0.041 0.037 0.041 0.052 0.066 0.067

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.000 0.011 0.030 0.395 0.478 0.485 0.449 0.473 0.523 0.541

Wind share 0.002 0.010 0.036 0.052 0.127 0.149 0.127 0.096 0.105 0.109 0.102

Fraction of bio + CCS 0.000 0.000 0.000 0.391 0.991 0.995 1.000 1.000 1.000 0.999 0.999

Fraction of coal + CCS 0.000 0.000 0.000 0.004 0.868 0.987 1.000 1.000 1.000 1.000 1.000

Fraction of gas + CCS 0.000 0.000 0.008 0.072 0.620 0.987 1.000 0.984 0.978 0.960 0.907

Fraction of oil + CCS 0.000 0.000 0.003 0.156 0.826 0.990 1.000 0.995 0.993 0.986 0.969

Total renewable share 0.143 0.163 0.234 0.334 0.763 0.815 0.786 0.721 0.758 0.821 0.866
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Table K5: electricity mix per region for SSP2-19. Global is used for international waters. 

 

Electricity mix MAF SSP1 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.001 0.001 0.020 0.063 0.049 0.024 0.016 0.012 0.010 0.012 0.023

Coal share 0.239 0.190 0.175 0.023 0.004 0.002 0.002 0.001 0.001 0.001 0.000

Oil share 0.210 0.221 0.219 0.207 0.004 0.000 0.001 0.000 0.000 0.000 0.000

Gas share 0.440 0.494 0.446 0.450 0.256 0.135 0.112 0.106 0.084 0.084 0.079

Geothermal share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hydro share 0.099 0.084 0.107 0.168 0.132 0.079 0.052 0.036 0.034 0.033 0.033

Nuclear share 0.010 0.008 0.014 0.019 0.016 0.007 0.004 0.003 0.002 0.001 0.001

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.000 0.010 0.035 0.383 0.619 0.711 0.754 0.786 0.788 0.792

Wind share 0.001 0.002 0.010 0.036 0.156 0.134 0.103 0.087 0.083 0.081 0.072

Fraction of bio + CCS 0.000 0.000 0.000 0.568 0.998 1.000 1.000 1.000 1.000 1.000 1.000

Fraction of coal + CCS 0.000 0.000 0.000 0.006 0.925 1.000 1.000 1.000 1.000 1.000 1.000

Fraction of gas + CCS 0.000 0.000 0.003 0.078 0.697 0.976 0.995 0.984 0.977 0.946 0.867

Fraction of oil + CCS 0.000 0.000 0.001 0.218 0.873 0.992 0.998 0.995 0.992 0.982 0.956

Total renewable share 0.101 0.087 0.146 0.301 0.721 0.856 0.881 0.889 0.913 0.914 0.920

Electricity mix LAM SSP1 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.006 0.009 0.029 0.043 0.043 0.028 0.024 0.023 0.024 0.029 0.035

Coal share 0.047 0.049 0.106 0.002 0.008 0.002 0.006 0.008 0.009 0.006 0.003

Oil share 0.158 0.137 0.031 0.047 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.195 0.234 0.208 0.196 0.123 0.063 0.048 0.074 0.076 0.048 0.029

Geothermal share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hydro share 0.569 0.547 0.576 0.636 0.541 0.343 0.252 0.259 0.292 0.307 0.379

Nuclear share 0.024 0.021 0.019 0.017 0.012 0.004 0.002 0.001 0.001 0.001 0.000

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.000 0.003 0.007 0.081 0.294 0.423 0.434 0.433 0.442 0.369

Wind share 0.000 0.004 0.028 0.052 0.192 0.265 0.244 0.201 0.165 0.168 0.185

Fraction of bio + CCS 0.000 0.000 0.034 0.273 0.997 1.000 1.000 1.000 1.000 1.000 1.000

Fraction of coal + CCS 0.000 0.000 0.000 0.000 0.169 1.000 1.000 1.000 1.000 1.000 1.000

Fraction of gas + CCS 0.000 0.000 0.032 0.125 0.443 0.778 0.881 0.927 0.888 0.893 0.897

Fraction of oil + CCS 0.000 0.000 0.022 0.133 0.536 0.926 0.960 0.976 0.963 0.964 0.966

Total renewable share 0.576 0.559 0.636 0.738 0.857 0.930 0.944 0.916 0.914 0.945 0.968

Electricity mix Global SSP1 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.012 0.016 0.025 0.064 0.071 0.061 0.068 0.080 0.083 0.083 0.097

Coal share 0.400 0.406 0.319 0.107 0.026 0.023 0.028 0.035 0.030 0.020 0.011

Oil share 0.065 0.046 0.030 0.057 0.004 0.001 0.000 0.000 0.000 0.000 0.000

Gas share 0.202 0.223 0.252 0.308 0.152 0.090 0.097 0.128 0.106 0.066 0.054

Geothermal share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hydro share 0.162 0.162 0.183 0.220 0.217 0.151 0.120 0.115 0.114 0.113 0.116

Nuclear share 0.153 0.130 0.119 0.134 0.081 0.028 0.020 0.019 0.022 0.027 0.026

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.002 0.021 0.040 0.281 0.400 0.459 0.483 0.512 0.535 0.548

Wind share 0.006 0.016 0.053 0.071 0.169 0.247 0.208 0.139 0.133 0.156 0.148

Fraction of bio + CCS 0.000 0.000 0.003 0.272 0.949 0.978 0.998 1.000 1.000 1.000 1.000

Fraction of coal + CCS 0.000 0.000 0.000 0.007 0.515 0.903 1.000 1.000 1.000 1.000 1.000

Fraction of gas + CCS 0.000 0.000 0.011 0.065 0.530 0.912 0.984 0.972 0.953 0.944 0.856

Fraction of oil + CCS 0.000 0.000 0.005 0.115 0.665 0.931 0.994 0.991 0.984 0.981 0.952

Total renewable share 0.180 0.196 0.281 0.394 0.737 0.858 0.855 0.817 0.841 0.887 0.909

Electricity mix OECD SSP2 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.011 0.012 0.013 0.001 0.002 0.005 0.011 0.013 0.012 0.013 0.013

Coal share 0.394 0.358 0.242 0.028 0.015 0.009 0.002 0.000 0.000 0.000 0.000

Oil share 0.042 0.015 0.004 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.186 0.209 0.277 0.353 0.233 0.164 0.083 0.035 0.001 0.000 0.000

Geothermal share 0.003 0.004 0.004 0.013 0.037 0.042 0.042 0.044 0.043 0.041 0.041

Hydro share 0.132 0.140 0.130 0.137 0.121 0.095 0.073 0.066 0.064 0.063 0.063

Nuclear share 0.223 0.215 0.213 0.221 0.185 0.224 0.291 0.286 0.275 0.249 0.161

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.006 0.023 0.052 0.091 0.133 0.158 0.184 0.183 0.188 0.220

Wind share 0.009 0.040 0.094 0.193 0.316 0.329 0.340 0.372 0.422 0.446 0.502

Fraction of bio + CCS 0.000 0.000 0.000 0.433 0.636 0.962 0.926 0.960 0.998 1.000 1.000

Fraction of coal + CCS 0.000 0.000 0.000 0.564 0.992 0.990 1.000 1.000 1.000 1.000 1.000

Fraction of gas + CCS 0.000 0.000 0.000 0.122 0.619 0.882 0.850 0.850 0.852 1.000 0.000

Fraction of oil + CCS 0.000 0.000 0.000 0.373 0.749 0.944 0.925 0.937 0.950 1.000 0.667

Total renewable share 0.155 0.203 0.263 0.396 0.567 0.603 0.624 0.679 0.725 0.751 0.839
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Electricity mix REF SSP2 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.001 0.000 0.000 0.000 0.005 0.016 0.017 0.011 0.011 0.013 0.008

Coal share 0.189 0.221 0.190 0.001 0.003 0.005 0.003 0.000 0.000 0.000 0.000

Oil share 0.037 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.423 0.408 0.438 0.522 0.171 0.065 0.035 0.000 0.000 0.000 0.000

Geothermal share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.008 0.015

Hydro share 0.195 0.189 0.169 0.210 0.390 0.342 0.388 0.420 0.439 0.434 0.395

Nuclear share 0.155 0.163 0.197 0.206 0.267 0.332 0.266 0.238 0.174 0.137 0.062

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.000 0.000 0.006 0.017 0.030 0.045 0.072 0.121 0.164 0.205

Wind share 0.000 0.000 0.006 0.055 0.148 0.210 0.246 0.259 0.247 0.245 0.314

Fraction of bio + CCS 0.000 0.000 0.000 1.000 0.733 0.844 0.936 1.000 1.000 1.000 1.000

Fraction of coal + CCS 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000

Fraction of gas + CCS 0.000 0.000 0.000 0.130 0.918 0.850 0.851 0.000 0.000 0.000 0.000

Fraction of oil + CCS 0.000 0.000 0.000 0.710 0.884 0.898 0.929 0.667 0.333 0.333 0.000

Total renewable share 0.197 0.190 0.175 0.271 0.559 0.598 0.696 0.762 0.826 0.863 0.938

Electricity mix Asia SSP2 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.001 0.008 0.029 0.012 0.006 0.009 0.011 0.010 0.009 0.010 0.009

Coal share 0.639 0.659 0.531 0.072 0.016 0.004 0.003 0.002 0.000 0.000 0.000

Oil share 0.049 0.020 0.006 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.109 0.105 0.104 0.177 0.090 0.038 0.019 0.002 0.000 0.000 0.000

Geothermal share 0.004 0.006 0.003 0.004 0.005 0.005 0.005 0.005 0.006 0.006 0.006

Hydro share 0.138 0.151 0.160 0.200 0.155 0.122 0.096 0.082 0.076 0.073 0.071

Nuclear share 0.058 0.043 0.075 0.157 0.232 0.318 0.404 0.402 0.382 0.317 0.215

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.000 0.018 0.102 0.122 0.156 0.175 0.220 0.241 0.277 0.339

Wind share 0.002 0.008 0.074 0.274 0.375 0.349 0.287 0.277 0.285 0.318 0.360

Fraction of bio + CCS 0.000 0.000 0.000 0.057 0.692 0.844 0.906 1.000 1.000 1.000 1.000

Fraction of coal + CCS 0.000 0.000 0.000 0.215 1.000 1.000 1.000 1.000 1.000 1.000 0.000

Fraction of gas + CCS 0.000 0.000 0.000 0.165 0.915 0.861 0.850 0.851 0.000 0.000 0.000

Fraction of oil + CCS 0.000 0.000 0.000 0.146 0.869 0.902 0.919 0.950 0.667 0.667 0.333

Total renewable share 0.145 0.174 0.285 0.592 0.662 0.641 0.574 0.594 0.617 0.683 0.785

Electricity mix MAF SSP2 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.000 0.000 0.000 0.002 0.012 0.025 0.024 0.012 0.010 0.008 0.007

Coal share 0.000 0.000 0.000 0.002 0.003 0.001 0.001 0.001 0.000 0.000 0.000

Oil share 0.320 0.253 0.101 0.035 0.012 0.003 0.001 0.000 0.000 0.000 0.000

Gas share 0.544 0.618 0.788 0.603 0.445 0.307 0.171 0.093 0.030 0.000 0.000

Geothermal share 0.001 0.001 0.001 0.001 0.008 0.005 0.003 0.002 0.001 0.001 0.001

Hydro share 0.121 0.108 0.100 0.152 0.124 0.085 0.059 0.043 0.033 0.027 0.022

Nuclear share 0.012 0.009 0.002 0.053 0.113 0.175 0.249 0.289 0.253 0.192 0.135

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.002 0.001 0.035 0.082 0.120 0.158 0.189 0.234 0.307 0.379

Wind share 0.002 0.008 0.006 0.116 0.201 0.279 0.334 0.371 0.438 0.463 0.457

Fraction of bio + CCS 0.000 0.000 0.000 0.250 0.619 0.779 0.805 0.928 1.000 1.000 1.000

Fraction of coal + CCS 0.000 0.000 0.000 0.500 0.500 0.500 0.500 0.500 0.000 0.000 0.000

Fraction of gas + CCS 0.000 0.000 0.000 0.135 0.490 0.906 0.850 0.850 0.850 0.000 0.000

Fraction of oil + CCS 0.000 0.000 0.000 0.295 0.536 0.728 0.718 0.759 0.617 0.333 0.333

Total renewable share 0.123 0.120 0.108 0.306 0.427 0.514 0.579 0.617 0.717 0.808 0.865

Electricity mix LAM SSP2 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.020 0.029 0.022 0.026 0.033 0.068 0.055 0.031 0.057 0.017 0.003

Coal share 0.053 0.053 0.009 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000

Oil share 0.129 0.042 0.014 0.006 0.001 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.185 0.268 0.423 0.294 0.092 0.021 0.012 0.000 0.000 0.000 0.000

Geothermal share 0.008 0.010 0.007 0.003 0.001 0.011 0.016 0.023 0.014 0.017 0.014

Hydro share 0.580 0.576 0.466 0.422 0.443 0.355 0.307 0.266 0.230 0.203 0.171

Nuclear share 0.025 0.021 0.012 0.041 0.067 0.107 0.144 0.118 0.080 0.038 0.004

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.000 0.000 0.057 0.138 0.202 0.212 0.248 0.268 0.304 0.348

Wind share 0.000 0.000 0.047 0.148 0.224 0.236 0.255 0.313 0.351 0.421 0.460

Fraction of bio + CCS 0.000 0.000 0.000 0.090 0.622 0.724 0.666 0.613 0.910 0.743 0.000

Fraction of coal + CCS 0.000 0.000 0.000 0.615 1.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of gas + CCS 0.000 0.000 0.000 0.189 0.874 0.850 0.850 0.857 0.000 0.000 0.000

Fraction of oil + CCS 0.000 0.000 0.000 0.298 0.832 0.525 0.505 0.490 0.303 0.248 0.000

Total renewable share 0.608 0.616 0.543 0.657 0.840 0.872 0.844 0.882 0.920 0.962 0.996
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Table K6: electricity mix per region for SSP5-19. Global is used for international waters. 

 

 

 

Electricity mix Global SSP2 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.007 0.010 0.018 0.007 0.009 0.018 0.020 0.016 0.015 0.011 0.009

Coal share 0.404 0.411 0.325 0.041 0.012 0.004 0.002 0.001 0.000 0.000 0.000

Oil share 0.062 0.032 0.012 0.005 0.002 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.204 0.216 0.264 0.309 0.177 0.109 0.059 0.026 0.006 0.000 0.000

Geothermal share 0.003 0.005 0.003 0.007 0.015 0.016 0.016 0.016 0.015 0.014 0.013

Hydro share 0.163 0.171 0.162 0.189 0.175 0.138 0.113 0.099 0.090 0.083 0.076

Nuclear share 0.151 0.129 0.129 0.165 0.194 0.255 0.320 0.320 0.292 0.238 0.154

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.003 0.017 0.069 0.103 0.141 0.164 0.199 0.222 0.262 0.321

Wind share 0.006 0.022 0.070 0.208 0.313 0.318 0.306 0.324 0.360 0.393 0.428

Fraction of bio + CCS 0.000 0.000 0.000 0.077 0.558 0.829 0.834 0.895 0.963 0.967 0.970

Fraction of coal + CCS 0.000 0.000 0.000 0.293 0.997 0.994 1.000 1.000 1.000 1.000 1.000

Fraction of gas + CCS 0.000 0.000 0.000 0.142 0.684 0.883 0.850 0.850 0.850 1.000 1.000

Fraction of oil + CCS 0.000 0.000 0.000 0.171 0.746 0.902 0.895 0.915 0.938 0.989 0.990

Total renewable share 0.179 0.211 0.270 0.480 0.615 0.631 0.618 0.654 0.701 0.762 0.846

Electricity mix OECD SSP5 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.009 0.012 0.012 0.025 0.101 0.113 0.095 0.084 0.071 0.055 0.045

Coal share 0.395 0.346 0.185 0.058 0.006 0.000 0.000 0.000 0.000 0.000 0.000

Oil share 0.037 0.030 0.013 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.197 0.230 0.409 0.422 0.195 0.074 0.034 0.016 0.004 0.002 0.001

Geothermal share 0.003 0.004 0.005 0.010 0.008 0.006 0.004 0.003 0.003 0.002 0.002

Hydro share 0.127 0.125 0.106 0.122 0.149 0.118 0.089 0.071 0.059 0.050 0.045

Nuclear share 0.223 0.214 0.184 0.212 0.229 0.194 0.165 0.148 0.135 0.121 0.106

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.005 0.024 0.039 0.120 0.259 0.367 0.434 0.485 0.524 0.565

Wind share 0.009 0.033 0.062 0.108 0.193 0.237 0.246 0.244 0.243 0.245 0.236

Fraction of bio + CCS 0.000 0.000 0.000 0.542 0.939 0.988 0.999 1.000 1.000 1.000 1.000

Fraction of coal + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of gas + CCS 0.000 0.000 0.000 0.034 0.275 0.510 0.722 0.686 0.345 0.131 0.000

Fraction of oil + CCS 0.000 0.000 0.000 0.192 0.405 0.499 0.574 0.562 0.448 0.377 0.333

Total renewable share 0.148 0.180 0.209 0.305 0.571 0.732 0.802 0.836 0.861 0.877 0.892

Electricity mix REF SSP5 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.003 0.004 0.010 0.024 0.118 0.225 0.213 0.193 0.163 0.135 0.125

Coal share 0.169 0.110 0.041 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Oil share 0.001 0.018 0.023 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.486 0.517 0.570 0.543 0.325 0.130 0.073 0.038 0.009 0.002 0.000

Geothermal share 0.000 0.001 0.000 0.006 0.020 0.017 0.010 0.002 0.000 0.000 0.000

Hydro share 0.183 0.156 0.095 0.109 0.271 0.429 0.468 0.459 0.454 0.455 0.455

Nuclear share 0.158 0.194 0.259 0.278 0.209 0.112 0.035 0.000 0.000 0.000 0.000

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.000 0.002 0.002 0.005 0.019 0.051 0.090 0.104 0.089 0.077

Wind share 0.000 0.000 0.000 0.010 0.052 0.068 0.151 0.217 0.270 0.319 0.342

Fraction of bio + CCS 0.000 0.000 0.000 0.447 0.909 0.973 0.988 1.000 1.000 1.000 1.000

Fraction of coal + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of gas + CCS 0.000 0.000 0.000 0.024 0.225 0.474 0.611 0.581 0.236 0.000 0.000

Fraction of oil + CCS 0.000 0.000 0.000 0.157 0.378 0.482 0.533 0.527 0.412 0.333 0.000

Total renewable share 0.186 0.161 0.107 0.152 0.466 0.757 0.892 0.961 0.991 0.998 1.000

Electricity mix Asia SSP5 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.000 0.000 0.002 0.007 0.032 0.052 0.044 0.037 0.035 0.034 0.034

Coal share 0.633 0.646 0.500 0.213 0.036 0.000 0.000 0.000 0.000 0.000 0.000

Oil share 0.053 0.053 0.036 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.112 0.128 0.272 0.401 0.188 0.051 0.010 0.002 0.000 0.000 0.000

Geothermal share 0.004 0.004 0.004 0.005 0.005 0.003 0.002 0.002 0.002 0.002 0.002

Hydro share 0.138 0.108 0.063 0.063 0.120 0.120 0.104 0.091 0.085 0.083 0.081

Nuclear share 0.059 0.042 0.066 0.179 0.354 0.340 0.275 0.230 0.192 0.174 0.174

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.001 0.012 0.022 0.105 0.256 0.389 0.461 0.502 0.517 0.523

Wind share 0.001 0.017 0.046 0.091 0.160 0.177 0.176 0.177 0.184 0.190 0.186

Fraction of bio + CCS 0.000 0.000 0.000 0.724 0.958 0.986 0.994 0.998 0.998 0.998 0.999

Fraction of coal + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of gas + CCS 0.000 0.000 0.000 0.002 0.005 0.013 0.033 0.032 0.000 0.000 0.000

Fraction of oil + CCS 0.000 0.000 0.000 0.242 0.321 0.333 0.342 0.343 0.333 0.333 0.333

Total renewable share 0.143 0.130 0.126 0.189 0.421 0.609 0.715 0.769 0.808 0.826 0.826
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Table K7: electricity mix per region for SSP2-baseline. Global is used for international waters. 

 

Electricity mix MAF SSP5 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.000 0.000 0.000 0.007 0.053 0.086 0.075 0.065 0.065 0.063 0.055

Coal share 0.093 0.073 0.040 0.017 0.003 0.000 0.000 0.000 0.000 0.000 0.000

Oil share 0.262 0.173 0.056 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.500 0.621 0.774 0.697 0.296 0.109 0.057 0.028 0.008 0.002 0.000

Geothermal share 0.001 0.001 0.001 0.013 0.014 0.006 0.004 0.002 0.002 0.001 0.001

Hydro share 0.141 0.123 0.076 0.110 0.246 0.195 0.124 0.090 0.072 0.059 0.052

Nuclear share 0.002 0.007 0.041 0.083 0.102 0.125 0.150 0.150 0.121 0.078 0.041

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.001 0.010 0.037 0.189 0.334 0.431 0.508 0.584 0.654 0.716

Wind share 0.001 0.002 0.002 0.025 0.098 0.147 0.159 0.156 0.148 0.143 0.135

Fraction of bio + CCS 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Fraction of coal + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of gas + CCS 0.000 0.000 0.000 0.043 0.519 0.865 1.000 1.000 1.000 1.000 1.000

Fraction of oil + CCS 0.000 0.000 0.000 0.348 0.506 0.622 0.667 0.667 0.667 0.667 0.667

Total renewable share 0.142 0.127 0.089 0.193 0.600 0.767 0.793 0.822 0.871 0.920 0.959

Electricity mix LAM SSP5 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.000 0.001 0.003 0.023 0.158 0.174 0.152 0.144 0.140 0.129 0.128

Coal share 0.051 0.058 0.104 0.067 0.013 0.000 0.000 0.000 0.000 0.000 0.000

Oil share 0.146 0.102 0.031 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.188 0.277 0.472 0.386 0.113 0.026 0.020 0.023 0.016 0.009 0.002

Geothermal share 0.009 0.011 0.007 0.012 0.009 0.006 0.004 0.004 0.003 0.003 0.002

Hydro share 0.582 0.524 0.341 0.381 0.432 0.364 0.282 0.231 0.197 0.176 0.165

Nuclear share 0.025 0.022 0.017 0.014 0.008 0.004 0.001 0.000 0.000 0.000 0.000

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.001 0.004 0.017 0.083 0.213 0.319 0.382 0.431 0.475 0.505

Wind share 0.000 0.004 0.019 0.094 0.183 0.214 0.221 0.216 0.213 0.208 0.198

Fraction of bio + CCS 0.000 0.000 0.000 0.848 0.986 0.994 0.998 1.000 1.000 1.000 1.000

Fraction of coal + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of gas + CCS 0.000 0.000 0.000 0.009 0.081 0.367 1.000 1.000 1.000 1.000 1.000

Fraction of oil + CCS 0.000 0.000 0.000 0.286 0.355 0.453 0.666 0.667 0.667 0.667 0.667

Total renewable share 0.591 0.541 0.375 0.527 0.865 0.970 0.978 0.977 0.984 0.991 0.998

Electricity mix Global SSP5 RCP 1.9 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.005 0.006 0.006 0.015 0.069 0.090 0.078 0.069 0.064 0.057 0.052

Coal share 0.403 0.395 0.291 0.128 0.020 0.000 0.000 0.000 0.000 0.000 0.000

Oil share 0.061 0.052 0.028 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.207 0.239 0.392 0.434 0.199 0.067 0.028 0.014 0.004 0.002 0.001

Geothermal share 0.003 0.004 0.004 0.008 0.008 0.005 0.003 0.003 0.002 0.002 0.002

Hydro share 0.161 0.146 0.102 0.111 0.171 0.157 0.124 0.103 0.090 0.081 0.075

Nuclear share 0.153 0.131 0.116 0.175 0.256 0.230 0.192 0.166 0.139 0.115 0.098

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.003 0.016 0.028 0.113 0.259 0.377 0.449 0.502 0.542 0.579

Wind share 0.006 0.022 0.046 0.089 0.163 0.192 0.198 0.197 0.198 0.201 0.193

Fraction of bio + CCS 0.000 0.000 0.000 0.626 0.954 0.989 0.997 1.000 1.000 1.000 1.000

Fraction of coal + CCS 0.000 0.000 0.000 0.000 0.000 0.071 0.167 0.500 0.500 0.500 0.500

Fraction of gas + CCS 0.000 0.000 0.000 0.019 0.183 0.426 0.730 0.823 0.787 0.674 0.234

Fraction of oil + CCS 0.000 0.000 0.000 0.215 0.379 0.495 0.631 0.774 0.762 0.725 0.578

Total renewable share 0.176 0.182 0.174 0.251 0.525 0.703 0.779 0.820 0.857 0.883 0.901

Electricity mix OECD SSP2 Baseline 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.011 0.012 0.013 0.007 0.001 0.001 0.001 0.000 0.001 0.003 0.004

Coal share 0.394 0.358 0.250 0.141 0.122 0.112 0.114 0.138 0.190 0.174 0.095

Oil share 0.042 0.015 0.004 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.186 0.209 0.277 0.433 0.539 0.597 0.571 0.547 0.469 0.445 0.441

Geothermal share 0.003 0.004 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hydro share 0.132 0.140 0.130 0.119 0.112 0.102 0.089 0.075 0.069 0.066 0.063

Nuclear share 0.223 0.215 0.213 0.171 0.087 0.019 0.016 0.027 0.051 0.068 0.114

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.006 0.023 0.022 0.017 0.009 0.012 0.014 0.014 0.021 0.036

Wind share 0.009 0.040 0.087 0.104 0.122 0.160 0.197 0.199 0.205 0.222 0.247

Fraction of bio + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of coal + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of gas + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of oil + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Total renewable share 0.155 0.203 0.256 0.253 0.251 0.272 0.299 0.289 0.290 0.312 0.350
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Electricity mix REF SSP2 Baseline 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001

Coal share 0.189 0.221 0.191 0.145 0.048 0.014 0.016 0.014 0.014 0.014 0.012

Oil share 0.037 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.424 0.408 0.444 0.512 0.635 0.665 0.676 0.685 0.715 0.592 0.467

Geothermal share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hydro share 0.194 0.189 0.168 0.151 0.140 0.129 0.109 0.092 0.085 0.091 0.091

Nuclear share 0.155 0.163 0.197 0.184 0.152 0.136 0.114 0.097 0.035 0.090 0.168

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.011

Wind share 0.000 0.000 0.000 0.007 0.025 0.055 0.085 0.111 0.150 0.208 0.250

Fraction of bio + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of coal + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of gas + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of oil + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Total renewable share 0.196 0.189 0.169 0.159 0.165 0.185 0.195 0.204 0.236 0.304 0.353

Electricity mix Asia SSP2 Baseline 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.001 0.009 0.031 0.021 0.015 0.025 0.019 0.009 0.008 0.014 0.015

Coal share 0.640 0.659 0.570 0.540 0.484 0.453 0.459 0.480 0.461 0.372 0.268

Oil share 0.049 0.020 0.006 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gas share 0.110 0.109 0.121 0.195 0.270 0.334 0.330 0.268 0.242 0.268 0.348

Geothermal share 0.004 0.006 0.004 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hydro share 0.138 0.152 0.166 0.155 0.166 0.142 0.125 0.123 0.124 0.116 0.111

Nuclear share 0.058 0.043 0.064 0.054 0.040 0.035 0.041 0.060 0.098 0.152 0.160

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.000 0.019 0.015 0.013 0.006 0.014 0.030 0.034 0.040 0.049

Wind share 0.000 0.000 0.019 0.015 0.013 0.006 0.014 0.030 0.034 0.040 0.049

Fraction of bio + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of coal + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of gas + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of oil + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Total renewable share 0.143 0.168 0.239 0.208 0.206 0.178 0.171 0.192 0.200 0.209 0.224

Electricity mix MAF SSP2 Baseline 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.008 0.012 0.009

Coal share 0.240 0.190 0.142 0.075 0.066 0.102 0.152 0.101 0.141 0.202 0.225

Oil share 0.243 0.205 0.087 0.035 0.013 0.003 0.001 0.000 0.000 0.000 0.000

Gas share 0.413 0.499 0.675 0.777 0.781 0.696 0.602 0.566 0.503 0.360 0.270

Geothermal share 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hydro share 0.092 0.087 0.086 0.072 0.058 0.043 0.032 0.029 0.030 0.033 0.027

Nuclear share 0.009 0.007 0.002 0.000 0.000 0.004 0.015 0.028 0.050 0.084 0.140

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.002 0.001 0.001 0.001 0.007 0.017 0.028 0.043 0.061 0.082

Wind share 0.002 0.008 0.006 0.040 0.081 0.145 0.182 0.243 0.226 0.248 0.247

Fraction of bio + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of coal + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of gas + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of oil + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Total renewable share 0.095 0.098 0.094 0.114 0.139 0.196 0.231 0.305 0.306 0.354 0.365

Electricity mix LAM SSP2 Baseline 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass + CCS share 0.020 0.029 0.023 0.001 0.000 0.001 0.002 0.035 0.074 0.058 0.083

Coal + CCS share 0.053 0.053 0.029 0.013 0.004 0.004 0.005 0.006 0.005 0.003 0.001

Oil share 0.129 0.042 0.014 0.006 0.002 0.000 0.000 0.000 0.000 0.000 0.000

Gas + CCS share 0.185 0.268 0.441 0.531 0.552 0.552 0.575 0.529 0.490 0.495 0.437

Geothermal share 0.008 0.010 0.007 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hydro share 0.580 0.576 0.457 0.381 0.316 0.256 0.193 0.152 0.132 0.116 0.104

Nuclear share 0.025 0.021 0.012 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.029 0.050 0.079 0.125

Wind share 0.000 0.000 0.015 0.061 0.125 0.188 0.220 0.249 0.249 0.249 0.250

Fraction of bio + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of coal + CCS 0.000 0.000 0.000 0.000 0.300 0.587 0.948 1.000 1.000 1.000 0.972

Fraction of gas + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of oil + CCS 0.000 0.000 0.000 0.000 0.100 0.196 0.316 0.333 0.333 0.333 0.324

Total renewable share 0.608 0.616 0.503 0.445 0.441 0.444 0.420 0.465 0.505 0.502 0.562
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Electricity mix Global SSP2 Baseline 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Biomass share 0.007 0.010 0.018 0.010 0.006 0.010 0.007 0.007 0.011 0.014 0.016

Coal share 0.404 0.410 0.337 0.274 0.232 0.219 0.226 0.226 0.237 0.217 0.171

Oil share 0.061 0.032 0.012 0.005 0.002 0.001 0.000 0.000 0.000 0.000 0.000

Gas share 0.204 0.217 0.270 0.372 0.444 0.479 0.462 0.429 0.389 0.351 0.335

Geothermal share 0.003 0.005 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hydro share 0.163 0.171 0.161 0.143 0.135 0.115 0.096 0.086 0.081 0.076 0.068

Nuclear share 0.151 0.129 0.124 0.093 0.051 0.025 0.027 0.038 0.059 0.091 0.121

Ocean share 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Solar share 0.000 0.003 0.017 0.014 0.010 0.006 0.012 0.023 0.029 0.041 0.059

Wind share 0.006 0.022 0.058 0.087 0.119 0.145 0.171 0.191 0.193 0.210 0.231

Fraction of bio + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of coal + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of gas + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fraction of oil + CCS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Total renewable share 0.179 0.211 0.257 0.256 0.271 0.276 0.286 0.307 0.315 0.341 0.373
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Appendix L: Impacts sub model input and data sources 

Table L1: values and data sources used for the constants and lookups in the impacts sub model. A range is included 

if uncertainty is assessed for a specific variable. Dmnl = dimensionless. 

Element Unit Type Min Max Explanation/assumptions Source 

Regional data 

Regional mix Dmnl Lookup 
 

Selected SSP 
scenarios 

Electricity mix for the five regions 
included in the model 

IIASA (2018) 

Regional CCS 
fraction 

Dmnl Lookup 
 

Selected SSP 
scenarios 

CCS fraction for the five regions 
included in the model 

IIASA (2018) 

Country regions Dmnl Constant Either a 1 or a 0 Indicates which region a certain 
country belongs to 

IIASA (2018) 

Project related data 

Project country Dmnl Constant Either a 1 or a 0 Indicates which country a certain 
project is located in 

Mudd (2020) 

Project mine type Dmnl Constant Either a 1 or a 0 Indicates which mine type is used by 
a certain project 

Mudd (2020) 

Project process Dmnl Constant Either a 1 or a 0 Indicates which principal process is 
used by a certain project 

Mudd (2020) 

Process class Dmnl Constant Either a 1 or a 0 Indicates whether a certain principal 
process leads to the production of 
class 1 or class 2 nickel. Most data 
was gathered from Schmidt et al. 
(2016). However, it was assumed that 
all HM laterite processing, including 
HL, ATL and DNI led to class 1 nickel. 
Because the frequency of these 
methods in the database by Mudd 
(2020) was low, this was assumed to 
not have a very large impact on the 
overall results. 

Schmidt et al. 

(2016); 

assumption for 

HL, ATL and 

DNI. 

GHG emissions data 

GWP electricity 
generation 
technologies 

Tonne 
CO2eq
/GJ 

Constant See table K3 GWP electricity generation 
technologies 

See table K3 

GWP electricity 
generation 
technologies with 
CCS 

Tonne 
CO2eq
/GJ 

Constant See table K3 GWP electricity generation 
technologies with CCS 

See table K3 

Initial GHG 
emissions per 
process excluding 
electricity 

Tonne 
CO2eq
/tonne 

Constant See table K2 Initial GHG emissions per process 
excluding electricity 

See table K2 

Carbon intensity 
improvement 

Dmnl Constant -0.001 Autonomous carbon intensity 
improvements due to innovation 

Assumption 
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Appendix M: Switches, base values and performance metrics 

Table M1: switches included in the model, the number of options per switch and the base value. A&C = Availability 

and consumption. 

Switch Options Base Elaboration 

Disruption scenario switches 

Energy transition switches 

SSPs 4 4  
(BAU) 

Three SSPs that comply with 1.5 °C (which can be seen as the disruption 
scenarios) and one BAU scenario. This switch influences electricity 
generation capacity, electricity demand, electricity mix, VRE share, 
population, GDP and carbon price 

Transport scenario  2 1 
(electri- 
fication) 

Electrification and hydrogen scenario. A further distinction is made 
between BAU and the ET based on the SSPs Influences vehicle mix. 

Flexibility scenario 3 2 
(mid) 

Three flexibility scenarios that determine storage requirement. 

Energy price 
scenario  

3 2 
(mid) 

Low price scenario, medium price scenario and high price scenario. 
Influences the energy costs for mining and processing, by-product costs 
and substitute costs. 
 

Other disruption scenario switches 

Supply disruption 2 1 
(off) 

When this switch is turned on, a supply disruption occurs for 1 year starting 
in 2030 and in 2045. The disruption affects the country that at that time has 
the largest share of nickel mining and it shuts down all mines in that 
country for a year. 

Radical innovation  2 1 
(off) 

When this switch is turned on, a radical new battery technology is 
discovered that does not require nickel. It occurs in 2035 and in 2050 and 
the effect in 2035 is that the substitution threshold for batteries is halved. 
The effect in 2050 is that the substitution threshold is halved again. 
 

Structural uncertainty switches 

Paradigm switch 2 2 
(OCP) 

FSP & OCP. The main paradigm used in this thesis is the OCP. This 
switch influences intensity changes, price elasticity changes, substitution 
and exploration. 

Processing method 
energy allocation  

2 2 
(full) 

Mass based allocation and full allocation to nickel. Influences the 
percentage of energy costs for processing attributed to nickel. This switch 
also influences GHG emissions. 

Mining energy 
allocation  

3 2 
(price) 

Mass based allocation, price-based allocation and ERC based allocation. 
Influences the percentage of mining energy costs attributed to nickel. 

By-product inclusion  2 1 
(incl.) 

Option to include or exclude by-products in determining costs and profit of 
the mines. 

Price calculation  2 2 
(A&C) 

Calculation based on days of demand in stock and calculation based on 
availability and consumption. The parameters contributing to these two 
methods were set in such a way that they lead to very similar results. 
Therefore, only one of the methods is used in the model, the calculation 
based on availability and consumption. 

Option to mine 
resources  

2 1 
(off) 

Option to mine resources when no profit is being made, but the mine has 
not been mothballed yet. 
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Sustainability policy switches 

EoL management of 
batteries  

4 2 
(same) 

Four EoL waste management strategies. One where the EoL waste 
management of batteries is worse than traditional uses of class 1 nickel, 
one where it is the same, one where it is better and one where there is 
further increased effort in managing battery waste. 

Improved EV 
battery lifetime  

2 1  
(off) 

When this switch is turned on the EV battery lifetime doubles from 8 years 
to 16 years, the assumed lifetime of the vehicles. 

Forward supply 
chain loss reduction  

2 1 
(off) 

When this switch is turned on, all losses occurring in the forward supply 
chain are halved. 

Unused switches (not included in the experimental set up, but potentially interesting to explore in future adaptations) 

Energy calculation 
method 

3 1 In addition to the main energy calculation method described in section I1.1, 
an additional method is included in the form of two different formulas (see 
section I1.2). 

Vehicle calculation 2 1 This switch changes between two alternative methods for determining the 
number of vehicles. 

Stockpiling inclusion 2 1 
(off) 

This switch allows the inclusion of stockpiling. Further research is required 
how it can best be implemented. 

 

Table M2: key uncertainties in the model, their range and their base values. These variables are highlighted in yellow 

in tables F1, H1, J1 and L1. *Additional runs were done with values between 0.01 and 0.3. 

Uncertainty Minimum Maximum Base value 

Demand sub model 

Substitution threshold batteries 2.5 5 3.75 

Administration postponed demand 0.5 2 1 

Supply sub model 

Power for price-based exploration 0.5 1 0.75 

Opportunity check frequency 2 3 2.5 

Global maximum capacity increase 
percentage* 

0.1 0.5 0.25 

Maximum capacity 1E5 1E6 5.5E5 

Average mine operation plan 10 20 15 

Average maximum profit deficit as 
percentage of investment 

0.03 0.08 0.05 

Average minimum profit surplus as 
percentage of investment 

0.03 0.08 0.05 

Average maximum mothball time 10 30 20 

Price sub model 

Power for ore grades 0.1 0.5 0.3 

Additional expenses for DSM 2 20 10 

Minimum profit over investment 1.2 2 1.6 
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Table M3: performance metrics assessed in the results. 

Performance metric Unit Elaboration 

Main demand indicators 

Final nickel demand Tonne/year Annual nickel demand including price effects but 
excluding postponed demand 

Cumulative final demand Tonne Total final nickel demand between 2015 and 2060 

Additional demand indicators 

Total functional nickel demand Tonne/year Annual nickel demand excluding price effects and 
postponed demand. 

Total substitution Tonne/year Substitution for all demand categories  

Substitution of batteries Tonne/year Substitution for only batteries 

Demand changes due to price elasticity Tonne/year Increase or reduction in demand due to price elasticity 

Demand request Tonne/year Annual nickel demand including price effects and 
postponed demand 

Postponed demand Tonne/year Demand that has not been fulfilled in the year that it 
occurred and is to be fulfilled at a later time 

Nickel demand for vehicle batteries Tonne/year Nickel demand for batteries in EVs 

Nickel demand for electricity generation Tonne/year Nickel demand for stainless steel in electricity generation 
technologies 

Nickel demand for stationary batteries Tonne/year Nickel demand for batteries for stationary purposes 

Nickel demand for the RoE Tonne/year Nickel demand for stainless steel and other applications 
in the RoE 

Main supply indicators 

Nickel mining Tonne/year Annual nickel mining, excluding mining losses.  

Cumulative mined nickel Tonne Total mined nickel between 2015 and 2060 

Additional supply indicators 

Nickel processing Tonne/year Annual nickel processing, excluding processing losses.  

Cumulative mined cobalt Tonne Total mined cobalt between 2015 and 2060 

Cumulative mined palladium Tonne Total mined palladium between 2015 and 2060 

Fraction of mines per mine type Dmnl Fraction of mines that are OC 

Fraction of mines per ore type Dmnl Fraction of mines that are laterite mines 

Depletion of original resources Tonne Cumulative mined nickel and cumulative mining losses 
subtracted from the original resource total in the 
database by Mudd (2020) 

Total operating mining capacity utilisation Dmnl Share of the operating mining capacity that is being used 
at a certain point in time 

Total exploration Tonne/year Indicates the total exploration done by the different mines 
in the model.  

Main economic indicator 

Average periodic nickel price $/tonne Average nickel price per quarter 

Additional economic indicators 

Degree of nickel scarcity Dmnl Annual consumption over availability 

Average nickel marginal costs $/tonne Annual average marginal costs for nickel 
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Average nickel royalties $/tonne Annual average royalties for nickel 

Reagents and other marginal costs $/tonne Annual average costs for reagents and other costs. Set 
at 4750 $/tonne, but included here anyway so all costs 
are represented. 

Average credits for by-products $/tonne Annual average costs allocated to by-products 

Average marginal costs deposits $/tonne Annual average marginal costs for the whole deposits, 
including both nickel and by-products. 

Average energy costs $/tonne Total annual average marginal costs for energy use 

Average energy costs mining $/tonne Annual average marginal costs for energy use for mining 

Average energy costs smelting & refining $/tonne Annual average marginal costs for energy use for 
smelting and refining 

Average carbon costs $/tonne Annual average costs for GHG emissions 

Average electricity price $/GJ Annual average electricity price 

Main sustainability indicators 

Average final energy use GJ/tonne Total average final energy use 

Average ore grade of existing mines Dmnl Average ore grade of operating and mothballed mines 

Average ore grade of known deposits Dmnl Average ore grade of all deposits in the database by 
Mudd (2020) 

Cumulative GHG emissions Tonne CO2-
eq 

Total GHG emissions between 2015 and 2060 

Total EoL RR Dmnl Average EoL RR of class 2 and class 1 nickel combined 

Additional sustainability indicators 

Average final energy use mining GJ/tonne Average final energy use for mining 

Average final energy use processing GJ/tonne Average final energy use for processing. This does not 
include refining 

Total final energy use GJ/year Total annual final energy use of all mines combined 

Total GHG emissions Tonne CO2-
eq/year 

Total annual final GHG emissions of all mines combined 

Total recycling Tonne/year Total annual secondary production of nickel 

Recycling input rate Dmnl Share of total nickel consumption from recycled nickel 

 

 

  



105 
 

Appendix N: Additional results 

This appendix includes some results that were not deemed relevant enough to be included in the main 

text but could nevertheless be interesting. The order of the results presented here is the same order as 

the results presented in the main text. 

Appendix N1: Additional demand projections 

Figure N1 shows the impact of the selection of the electrification or hydrogen transportation scenario on 

final nickel demand and substitution. On average, the nickel demand in the hydrogen scenario is higher. 

This is partially because there is more substitution in the electrification scenario, but mostly due to a 

highly uncertain assumption of the nickel intensity of hydrogen tanks based on Tokimatsu et al. (2018). 

Therefore, until further research is done on the nickel requirements of hydrogen infrastructure, this result 

should be treated with caution and all other figures are based solely on the electrification scenario. 

 

 
Figure N1: impact of the transport scenario on final demand and substitution. 

 

Figure N2 shows demand change due to price elasticity and battery substitution, which both increase as 

total functional demand increases. Figure N3 shows demand request and postponed demand for both the 

OCP and the FSP. In the FSP, postponed demand and the demand request become very high because 

supply is not able to fulfil demand and price effects like substitution don’t occur. The impact of postponed 

demand can be seen by comparing final demand with demand request.  

 

 
Figure N2: demand change due to price elasticity and battery substitution per assessed SSP. 
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Figure N3: demand request and postponed demand for the OCP (top) and the FSP (bottom). 

 

Figure N4 shows the relative impact of electricity generation capacity and SBS to total nickel demand. 

The fluctuation in the nickel demand for electricity generation capacity is caused by the discrete 

implementation. This is something that could potentially be adapted in future versions of the model, but it 

does not have a large impact on the overall results. 

 

 
Figure N4: nickel demand for electricity generation capacity and SBS per SSP. 

 

Most nickel is required for SBS in the SSP2 scenarios because of the lower GDP per capita in these 

scenarios, which means a lower number of vehicles is projected, including EVs that can be used for V2G 

storage and battery repurposing. SSP2-19 has a higher share of EVs than SSP2-baseline in earlier years, 

which is why SSP2-baseline requires the most nickel for stationary storage initially. Then, because SSP2-

19 has a slightly lower GDP per capita than SSP2-baseline and a higher VRE share, most nickel for new 

SBS is required for SSP2-19. 
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In all scenarios, SBS contributes to a relatively small share of the total nickel demand. This is because 

most storage is covered by PHS, CSP TES, V2G and battery repurposing. When the hydrogen scenario 

is included, the electrification transportation scenario leads to slightly lower SBS requirements, because 

there is more V2G. Storage requirements are also avoided through other flexibility measures.  

 

The impact of the flexibility scenarios is shown in figure N5. The choice of flexibility scenario makes a 

difference for SBS requirements. For the ET scenarios, nickel is only required for new SBS in the low 

flexibility scenario. However, because this storage is not much, the choice of flexibility scenario is 

negligible for the final nickel demand. Figure N5 also shows that when EV batteries have a shorter 

lifetime, less SBS is required due to the repurposing of EV batteries. However, this leads to a relatively 

small additional nickel demand compared to the savings obtained when increasing EV battery lifetime. 

 

 
Figure N5: nickel demand for SBS per flexibility scenario and for EV battery lifetime. 

Appendix N2: Additional BAU single run results 

 

 
Figure N6: share of processing per technology for a single run with base settings. Shares differ per run.  

Assumptions: DSO = BF, beneficiation = PM sulfide, undefined = HPAL.  
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       Figure N7: share of operating capacity per country for a single run with base settings. Shares differ per run. 

Because multiple colours are repeated, it is not always clear which country a certain line refers to. However, this 

figure is meant for illustrative purposes. Further information can be obtained by running the model. 

 

 
Figure N8: number of mines from which certain by-products are recovered for a single run with base settings. Values 

differ per run. Because multiple colours are repeated, it is not always clear which by-product a certain line refers to. 

However, this figure is meant for illustrative purposes. Further information can be obtained by running the model. 
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Figure N9: resilience for the four assessed SSPs for single runs with base settings (only varying the SSPs). On the 

left, the difference between cumulative demand and consumption is shown in tonne. On the right, the average 

periodic nickel price is shown in $/tonne. Behaviour differs per run, however, in general, the resilience is higher for 

the BAU scenario (SSP2-baseline) than for the ET scenarios. 

 

Appendix N3: Additional energy transition results 

Figure N10 shows the average marginal costs for royalties and for reagents and other costs. Royalties 

fluctuate with price as they are a certain fraction of the price. This fraction changes as the nickel share 

from certain countries changes, but this effect is less visible. Reagents and other costs were assumed to 

remain constant at 4750 $/tonne. 

 

 
Figure N10: average marginal costs for royalties and reagents and other costs. 

 

 
Figure N11: by-product credits and average marginal costs for deposits. Values go up to about 250000 2005$/tonne 

for both figures, but they were cut off at 100000 2005$/tonne for better clarity. 

 



110 
 

Figure N11 shows by-product credits and the average marginal costs for deposits. The average marginal 

costs for nickel shown in figure 3.7 (main text) equal the average marginal costs for deposits minus the 

average credits for by-products. The height of this credit is based on the by-product composition and on 

mining energy allocation. In figure N11, there are two distinct pathways for average marginal costs for 

deposits. This is based on the choice to include or exclude by-products in the model. 

 

Figure N12 shows average final energy use for mining and processing. For mining, final energy use is 

determined by mine type, ore grade and efficiency improvements. For processing, it is determined by 

efficiency improvements, the processing energy allocation method, and the processing method (which 

depends i.a. on ore type). Single run results for the fraction of each processing method were shown in 

figure N6. This shows that the share of more energy intensive processing methods increases over time. 

 

 
Figure N12: average final energy use for mining and processing (this does not include refining). 

 

 
Figure N13: average energy costs for mining (up to 14000 2005$/tonne, but cut off for clarity) per SSP (top left) and 

average energy costs for processing & refining per SSP (top right), per fuel price scenario (bottom left) and per 

processing energy allocation method (bottom right). 
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Figure N13 shows average energy costs for mining, processing and refining. For mining, costs increase 

first in the ET scenarios (mostly due to carbon price), after which they gradually decrease in most runs 

(due to efficiency improvements and a reduction in carbon emissions), but increase rapidly in some (due 

to decreasing ore grades). In the BAU scenario, the influence of the fuel price (appendix I1.3) is visible.  

 

The three fuel price scenarios are also visible in the average energy costs for processing and refining, 

and so are energy efficiency improvements as a downward trend is visible over time. The rest of the 

differences are determined by the mix of processing methods which depends on the deposit types of the 

existing mines at a certain time. The processing energy allocation method also has a large impact. 

 

Figure N14 shows the total annual final energy use and total annual GHG emissions of all mines 

combined. The total final energy use by 2060 ranges between about 0.2 PJ/year and 30 EJ/year, with the 

values for most runs between 0.5 and 5 EJ. The annual total GHG emissions by 2060 range between 

about 1E4 and 5.5E8, with the values for most runs between 2E7 and 3E8 tonne CO2eq/year. Due to the 

large annual fluctuations in the model, the extremes are deemed less relevant than the values with the 

highest density. The total GHG emissions of the ET scenarios first increase and then become lower over 

time due to the increasing share of renewable energy. 

 

 
Figure N14: total annual final energy use and total annual GHG emissions of all mines combined.  

 

Figure N15 shows the results for multiple runs for mine type (OC) share and ore type (laterite) share. This 

figure shows that over time a higher share of laterites is being mined, which leads to higher energy costs 

for processing. However, because most laterites have OC mines, the share of OC mining increases which 

leads to lower energy costs for mining.  

 

 
Figure N15: fraction of existing mines per mine type and per ore type. 
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Appendix N4: Additional results for other disruptions 

 

 
Figure N16: additional results for the radical battery innovation disruption. 

 

 

 
Figure N17: additional results for the FSP. As more resources are depleted, less can be mined and cumulative mined 

nickel levels off. The results for ore grade are based purely on what was included in the database by Mudd (2020) 

and the order in which specific mines are commissioned and decommissioned. 
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Figure N18: additional results for the influence of a 1-year supply disruption in 2030 and 2045, where mining stopped 

in the country with the largest share of supply at those times. The supply disruption is visible in the total operating 

mining capacity utilisation, as certain mines stop producing without necessarily being mothballed, and in the recycling 

input rate, where the share of recycled nickel in final nickel availability increases as less primary nickel is available. 

 

Appendix N5: Additional sustainability policy results 

 

 
Figure N19: additional results for EoL waste management. 

 

Figure N20 shows total recycling per EoL waste management strategy and per SSP. It logically follows 

that a better recycling strategy with a higher EoL RR also leads to more recycling. In addition, there is 

more recycling in the ET scenarios than in the BAU scenarios. This is likely because there is more 

demand in the ET scenarios and therefore also more waste, and because the share of batteries is larger 

and batteries have a much shorter lifetime than stainless steel, thereby ending up in scrap faster. 
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Figure N20: total recycling per EoL waste management strategy and per SSP. 

 

 

 
Figure N21: additional results for EV battery lifetime increase. 
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Appendix N6: Additional structural uncertainty results 

 

 
Figure N22: additional results for processing energy allocation method. 

 

 

 
Figure N23: additional results for by-product inclusion. 
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Figure N24: results for the option to mine resources just before a mine is potentially mothballed. This leads to a much 

higher and more realistic operating mining capacity utilisation, as well as to more cumulative mined nickel and 

different points in time for the peaks and troughs of the cycles in average periodic nickel price. 

 

 



117 
 

 
Figure N25: results for the mining energy allocation method. 

 

 

 
Figure N26: results for the price method. A&C = availability and consumption. 
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Appendix N7: Identification of influential parameters 

The graphs below are usually generated with a much larger number of runs than 1000, so they should be 

considered as crude results. However, they were simply used for further exploration of certain influential 

parameters. Further results can be generated for all these figures, but the focus in the current work was 

on average periodic nickel price as an indicator for resilience, and average final energy because of the 

interest in the material-energy nexus. In future research other performance metrics could be assessed in 

more detail and more runs could be done to create more robust versions of the figures below. 

 

Average periodic nickel price 

 
Figure N27: variables with the highest impact on average periodic nickel price at different points in time. Average 

periodic nickel price is impacted most by the SSPs in later years. At the start, the option to mine resources, the 

inclusion of by-products and the processing energy allocation method play an important role. The impacts of radical 

innovation are also visible. Parameters that have a large impact are average maximum profit deficit as percentage of 

investment, administration of postponed demand and power for price-based exploration. 

 

 

Average final energy use 

 
Figure N28: variables with the highest impact on average final energy use at different points in time. The processing 

energy allocation method switch has the largest impact by far. The parameter with the largest impact in intermediate 

years is average maximum mothball time. The parameter with the largest impact in later years, where, in some 

cases, average final energy use shoots up, is the power for ore grades. The power for price-based exploration also 

has an impact in later years. 
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Final nickel demand 

 
Figure N29: variables with the highest impact on final nickel demand at different points in time.  

 

Nickel mining 

 
Figure N20: variables with the highest impact on nickel mining at different points in time.  

 

 

Average ore grade of existing mines 

 
Figure N31: variables with the highest impact on average ore grade of existing mines at different points in time. 
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Average ore grade of all deposits 

 

 
Figure N32: variables with the highest impact on average ore grade of all deposits at different points in time. 

 

Cumulative GHG emissions 

 
Figure N33: variables with the highest impact on cumulative GHG emissions at different points in time. 

 

EoL RR 

 
Figure N34: variables with the highest impact on EoL RR at different points in time. 
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Appendix N8: Additional parametric uncertainty results 

 

 
Figure N35: average final energy use and average ore grade of existing mines for the inclusion of by-products switch, 

power for price-based exploration (<= 0.7 = low, > 0.7 = high), average mine operation plan (<= 15 years = short, > 

15 years = long) and average maximum mothball time (<= 20 years = short, > 20 years = long). 
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Figure N36: degree of nickel scarcity and the average periodic nickel price for average maximum profit deficit as 

percentage of investment (<= 0.055 = low, > 0.055 = high; note: these values are fractions), average maximum 

mothball time (<= 20 years = short, > 20 years = long), average mine operation plan (<= 15 years = short, > 15 years 

= long) and a minimum profit over investment target (<= 1.6 = low, > 1.6 = high). 
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Figure N37: difference between cumulative demand and consumption per SSP and for lower values for administration 

of postponed demand (<= 1 year) and higher values (> 1 year). This can be used as an indicator for resilience in 

addition to price (also see figure N9). 

 

 
Figure N38: additional results for exploration. The thick lines every 10 years are caused by the discrete 

implementation of new vehicle mix. The changes in new vehicle mix are used to determine the expectations of the 

ET, which impacts exploration in the model. In the ET scenarios, the expectations of the ET are initially high, which 

leads to a large amount of exploration between 2020 and 2040. Then, as a large part of the transition has occurred, 

expectations decrease again. In the BAU scenario, the expectations of the ET transition are initially low, but after 

2040 they start to increase as the BAU starts to catch up with the ET. The radical innovation disruption leads to a 

lower nickel demand, which means less nickel is required and there is generally also slightly less exploration.  

 

 

Appendix N9: Results for a reduced global capacity increase 

This appendix shows results for a global maximum capacity increase percentage between 1% and 30% 

instead of between 10% and 50%. In contrast with figure N27, the global maximum capacity increase 

percentage has a large impact on nickel price in figure N39. Administration of postponed demand remains 

important, but power for price-based exploration is not included here, because only the top two largest 

impacts at any point in time are included and it is overshadowed by the SSPs and the global maximum 

capacity increase percentage.  

 

The results in figure N40 show a lower nickel availability for a lower global maximum capacity increase 

percentage, leading to more substitution and thereby a lower demand and lower GHG emissions. The 

average ore grade of known deposits also remains higher. 
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Average periodic nickel price 

 
Figure N39: variables with the highest impact on average periodic nickel price at different points in time for a global 

maximum capacity increase percentage between 1% and 30%. 

 

 
Figure N40: results for performance metrics for global maximum capacity increase (<= 0.10 = low, > 0.10 = high). 
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Appendix N10: Focus on ore grade 

In this appendix, additional attention is paid to ore grade because of its interesting behaviour in the 

current model. Figure N41 shows average ore grade of existing mines and average ore grade of known 

deposits based on values for certain influential parameters (also see figure N31 and figure N32) for the 

OCP. Values for the same parameters are very similar for the FSP at the start. However, for the FSP, the 

values are zoomed in more, because ore grade changes less, as can be seen in figure N42. This allows 

the inspection of additional details that are not visible in Figure N41. Different parameters were chosen in 

figure N42 (because of the similarity between the FSP and the OCP at the start) to show additional 

explanations for the differences in behaviour between runs at a higher resolution.   

 

Figure N41 shows that the SSPs have a large impact on the development of the ore grade. The ore grade 

decreases more for the ET scenarios than for the BAU scenario because of the higher nickel demand and 

subsequent supply. Of the BAU runs that are clearly visible for existing mines, most runs also exclude by-

products, which also generally leads to higher average ore grades for existing mines. This is because 

when by-products are not considered, the mines with the highest nickel ore grade are most attractive. The 

impact of the inclusion of by-products on average ore grade of known deposits is lower, as mining takes 

place regardless of which mine this occurs in, thereby generally reducing average ore grade.  

 

There are some exceptions to the general reduction of average ore grade of known deposits (which can 

be seen in figure N42), where ore grade sometimes increases slightly over time. This is because, in some 

cases, the average ore grade reported in the database by Mudd (2020) was higher for the resources of a 

certain deposit than for the reserves. It is assumed that in these cases different factors than ore grade 

have a larger influence in determining the profitability of part of a certain deposit. Another case where the 

average ore grade of known deposits could increase, is if new deposits are discovered. However, this 

was not included in the current model. It was assumed that over time it becomes less likely to find new 

deposits with higher ore grades, so the general trend of a reducing ore grade over time is a decent 

representation of reality. 

 

Figure N41 also shows that a higher power for ore grade leads to a sharper decrease in ore grade for 

both existing mines and known deposits. This is in line with equation 2 (appendix I1.1). A higher power for 

price-based exploration leads to a less sharp decrease in ore grade, because this leads to lower 

exploration and thereby less mining. This is in line with equation 1 (appendix G1.1). 

 

Figure N42 shows some more similarities between certain runs where the ore grade of existing mines 

increases over time around 2030. In addition to excluding by-products, many of these runs allow the 

mining of resources, have reduced losses, a short average maximum mothball time and a high global 

maximum capacity increase percentage. 

 

Figure N42 also shows that when the switch for mining resources is turned on, average ore grade initially 

decreases faster. The same applies to runs where loss reduction is included. However, in general the 

differences in the FSP runs are very minor and don’t have a large impact on the overall results. 

 

 

 



126 
 

 
Figure N41: from top to bottom, the impact of SSP, by-product inclusion, power for ore grade (high > 0.3; low <= 0.3) 

and power for price-based exploration (high > 0.7; low <= 0.7) on average ore grade of existing mines and average 

ore grade of known deposits for the OCP. 
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Figure N42: from top to bottom, the impact of mining resources, loss reduction, average maximum mothball time 

(long >20 years; short <= 20 years) and global maximum capacity increase (high > 0.25; low <= 0.25) on average ore 

grade of existing mines and average ore grade of known deposits for the FSP. 
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Appendix N11: Results for top supplying countries 

 

 
Figure N43: share of operating capacity for top supplying countries per SSP. 
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Appendix N12: Class I vs class II nickel 

As stated in section 2.3.2 and appendix G3.1, nickel products can be divided into class I (used in various 

products, including batteries) and class II (used in stainless steel) nickel. Class I products contain more 

nickel and class II products could potentially be processed further to produce more class I products if 

there is an oversupply of class II and an undersupply of class I. This is illustrated in figure N44. 

 

 
Figure N44: additional processing required when less class I nickel is produced than required and more class II is 

produced than required (right). The figure on the left shows there are also situations (when the value is negative) 

where there is not enough class II nickel to fulfil class II demand and/or there may be more class I nickel than 

required. Note: the way this was calculated (MIN(Class based demand[Class 1]-Initial consumption per class[Class 

1], Initial consumption per class[Class 2]-Class based demand[Class 2])) means that for the positive values there 

may still be more class I required if the values in this figure are limited by the availability of a surplus of class II nickel. 
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Appendix O: Comparison with previous research 

In this appendix, the results and assumptions of the current research are compared with previous 

research in further detail. Table O1 contains a comparison with the work by Van der Linden (2020) and 

below this table a comparison with other work is made. 

 
Table O1: differences in the assumptions used for factors determining the amount of nickel in EV batteries and in the 

RoE for Van der Linden (2020) and the current study. The yellow highlighted cells indicate the assumptions that lead 

to higher nickel requirements. If the assumptions lead to similar demand no cell is highlighted.  

Factor Van der Linden (2020)  Current study  

Nickel in EV batteries 

Method for 
projecting number of 
vehicles 

Based on a relationship between GDP and 
number of vehicles for cars and trucks and 
a relationship between population and 
number of vehicles for buses. This led to 
about 1.2E9 - 2.3E9 vehicles by 2050, 
with 1.5E9 for SSP2-baseline 

Based on a relationship between GDP/capita and 
number of vehicles (Our World in Data, 2014). 
This led to about 2.1E9 - 2.8E9 vehicles, with 
2.2E9 for SSP2-baseline. 

Lifetime of vehicles 20 years for cars, 30 years for buses, 18 
years for trucks 

16 years for all types 

Lifetime EV batteries Not included (equal to vehicle lifetime) 8 years (16 years for the improved EV battery 
lifetime policy) 

EV share of new 
vehicles 

Extrapolated from BNEF (2019) Extrapolated from BNEF (2019) and Van der 
Linden (2020). For the electrification scenario and 
the ET scenarios the values are the same as for 
Van der Linden (2020) up to 2050. For BAU, 
these values were based on the IEA RTS. 

Battery market share Projected a larger share of NMC811 
batteries with 72% nickel and 9% cobalt 
and did not consider NCA+ 

Projected a larger share of NCA+ batteries with 
82% nickel and 5% cobalt because these 
batteries have a higher energy density. 

Battery capacity of 
vehicles 

Included an uncertainty range of 20 - 120 
kWh/BEV  

71 kWh/BEV 

Nickel in the RoE 

Nickel per dollar 
GDP 

Used a value of 5.43E-6 lb/$ (= 2.46E-9 
tonne/$). It is unclear where this figure 
comes from. It is also unclear whether the 
demand modelled in a bottom-up way was 
subtracted from this. 

Base year demand RoE/base year GDP (= 
21.38E-9 tonne/$ for SSP2-baseline). The base 
year demand modelled in a bottom-up way was 
subtracted from the total nickel demand in the 
base year to obtain the RoE base year demand. 

Other differences 

Nickel in electricity 
generation capacity 

Not considered as a separate category, 
considered as part of the RoE 

Considered as a separate category due to the 
large changes expected in the ET. 

Nickel in consumer 
electronics 

Included as a separate category, 
considered to increase based on 
population. 

Not considered as a separate category, 
considered as part of the RoE because less 
extreme changes are expected for this category 

Nickel for stationary 
storage 

Based on an increase in demand and a 
slowing of this increase over time. 

Based on behind the meter requirements and grid 
requirements not covered by PHS, CSP TES, 
V2G and repurposed vehicle batteries 

 

Below a comparison is made between assumptions in the current study and those in other studies. The 

data for Wood Mackenzie (n.d.) could not be accessed, so this study was excluded from the comparison. 
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● Consideration of EVs: three of the studies in figure 3.28 (main text) did not consider (or barely 

considered) nickel demand for EV batteries. Elshkaki et al. (2017) did not focus on the ET and 

their analysis did not contain any EVs. Rietveld et al. (2019), who have similar values for the RoE 

and electricity generation capacity compared to the current analysis, also barely considered EVs. 

De Koning et al. (2018) did consider EVs, but did not consider nickel demand for EVs, instead 

focussing on other materials. 

● Projected vehicle stock: in the current study, the projected number of motor vehicles (including 

passenger vehicles, trucks and buses) is between 2.1 billion and 2.8 billion by 2050 for the 

different SSPs (2.2 billion for SSP2-baseline). This matches reasonably well with projections by 

WEC (2011), IEA (2017a), IEA (2017b) and EIA (2019a), who combined project about 2 billion - 

2.5 billion passenger vehicles and trucks by 2050 and with projections by Watari et al. (2018) who 

based on IEA (2017a) projected 1.9 - 2.3 billion light duty vehicles (passenger vehicles and light 

trucks). However, the value for SSP2-baseline in the current analysis is about 700 million more 

than the number projected by Van der Linden (2020) for SSP2-baseline, and the number 

projected by Valero et al. (2018a), who only considered passenger vehicles. 

● Projected EV share of new vehicles: the projected EV share of new vehicles also differs per 

study. The relative shares of the different types of EVs also make a difference. In the current 

study, the EV share of new vehicles for the ET is the same as the projection by Van der Linden 

(2020), which comes close to the B2DS share used by Watari et al. (2018) based on IEA (2017a). 

The BAU EV share of new vehicles by Valero et al. (2018) also comes close to this. The BAU EV 

share of new vehicles in the current study is the same as the RTS share used by Watari et al. 

(2018) based on IEA (2017a).  

● Battery type: in the current study a larger share of NCA+ (82% nickel) is projected, compared to 

a larger share of NMC811 (72% nickel) projected by Van der Linden (2020) and a nickel intensity 

of 0.6 kg/kWh, equivalent to a 100% share of NMC622 (54% nickel) used by Manberger & 

Stenqvist (2018). 

● Battery capacity: Similar values for battery capacity were used in the current study, the study by 

Van der Linden (2020) and the study by Manberger & Stenqvist (2018). Valero et al. (2018a) and 

Watari et al. (2018) didn’t consider battery capacity and type. Instead, they assumed a certain 

nickel intensity per vehicle, 58 and 47 kg/vehicle for BEVs and 18 and 19 kg/vehicle for PHEVs 

respectively. This is close to the nickel intensity calculated in the current study. 

● Lifetime assumptions: in the current study, a vehicle lifetime of 16 years was assumed. This is 

similar to the 15 years assumed by Watari et al. (2018). Manberger and Stenqvist (2018) 

assumed 15 years for passenger vehicles, 10 - 15 years for buses and 20 years for trucks. Van 

der Linden et al. (2020) assumed 20 years for passenger vehicles, 18 years for trucks and 30 

years for buses. It is unclear what lifetime was used by Valero et al. (2018a). However, something 

that was considered in the current study that none of the other studies included (Manberger & 

Stenqvist (2018) did consider it, but only applied it to lithium), is that EV batteries generally don’t 

last as long as the vehicles they are used in. EV batteries need to be replaced every 8 years 

(Walker et al., 2015; Assuncao et al., 2016; De Rousseau et al., 2017 White et al., 2020).  

● Other considerations: regarding the RoE, nickel demand in the current study was calculated by 

dividing the base year demand for the RoE (total base year demand - base year demand for the 

energy system) by the base year GDP. This led to a similar RoE demand compared to Rietveld et 

al. (2019). However, the value for nickel per dollar GDP is 10 times larger than the value used by 

Van der Linden (2020). It is unclear where Van der Linden (2020) obtained her value. Valero et 

al. (2018a) also project lower demand for the RoE because they assume a constant demand. 

Regarding electricity generation, Watari et al. (2018) did not consider nickel for electricity 

generation capacity.  
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Figure O1: cumulative nickel demand reported in previous research and in the current study for both the BAU 

scenario and the ET scenarios. It is important to keep in mind the different time scales for proper comparison. The 

best comparison can be made with the work by Manberger & Stenqvist (2018) and the work by Watari et al. (2018), 

who calculated cumulative nickel demand for a similar time frame compared to the current study. The data for the 

nickel projections by Van der Linden (2020) was not obtained from her report directly, as she mainly reported on 

cobalt. Instead, it was obtained by adding a variable for cumulative demand to her model, subtracting the years 

before 2015 and running her model using the code she provided. The data for Manberger & Stenqvist likely only 

refers to nickel for the ET and does not include nickel for BAU.   

 

 
Figure O2: difference in fuel price (referred to by Van der Linden (2020) as energy price) in the model by Van der 

Linden (2020) and the current model. Van der Linden (2020) states in her model that her initial energy price is based 

on the oil price in 2000. It is therefore assumed that her values are in 2000$. The values in the current study are in 

2005$. A total inflation of 13.41% occurred in the period between 2000 and 2005. The initial energy price in the 

current model was based on a mixture of crude oil, natural gas and coal prices reported by BP (2019). 
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Figure O3: cumulative cobalt demand reported in previous research and cumulative mined cobalt in the current study. 

The * indicates that the values for the current study refer to cobalt mined as a by-product of nickel production and not 

cobalt demand. 
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Glöser, S., Soulier, M., & Tercero Espinoza, L. A. (2013). Dynamic analysis of global copper flows. Global 
stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation. Environmental 
Science & Technology, 47(12), 6564-6572. doi:10.1021/es400069b 

Government of Western Australia, Department of State Development (2013). Mineral royalty rate analysis 
stakeholder consultation paper - West Australian Department of Mines and Petroleum. Retrieved from: 
https://www.jtsi.wa.gov.au/docs/default-source/default-document-
library/mrra_stakeholder_consultation_paper_2013.pdf?sfvrsn=3c746b1c_5 

Government of Western Australia, Department of State Development (2015). Mineral Royalty Rate 
Analysis: Final report 2015. Retrieved from: https://www.jtsi.wa.gov.au/docs/default-source/default-
document-library/mineral-royalty-rate-analysis-final-report-0315.pdf?sfvrsn=76076e1c_6 

Grandell, Leena, Antti Lehtilä, Mari Kivinen, Tiina Koljonen, Susanna Kihlman, and Laura S. Lauri. "Role 
of critical metals in the future markets of clean energy technologies." Renewable Energy 95 (2016): 53-
62. 

Grand View Research (GVR, 2019). Concentrated Solar Power Market Analysis, By Technology 
(Parabolic Trough, Linear Fresnel, Dish, Power Tower), By Region (North America, Europe, Asia Pacific, 
South & Central America, MEA), And Segment Forecast, 2018 – 2025. Retrieved from: 
https://www.grandviewresearch.com/industry-analysis/concentrated-solar-power-csp-market 

Habib, K., & Wenzel, H. (2014). Exploring rare earths supply constraints for the emerging clean energy 
technologies and the role of recycling. Journal of Cleaner Production, 84, 348-359. 

https://www.stradeproject.eu/fileadmin/user_upload/pdf/STRADE_Rpt_D2-01_EU-MiningIndustry-Competitiveness_Apr2017_FINAL.pdf
https://www.stradeproject.eu/fileadmin/user_upload/pdf/STRADE_Rpt_D2-01_EU-MiningIndustry-Competitiveness_Apr2017_FINAL.pdf
https://www.fraserinstitute.org/studies/annual-survey-of-mining-companies-2019
https://www.fch.europa.eu/sites/default/files/documents/Power_trains_for_Europe.pdf
https://www.americanprogress.org/issues/green/reports/2019/11/21/477569/multinational-mining-corporations-exploiting-u-s-taxpayers/
https://www.americanprogress.org/issues/green/reports/2019/11/21/477569/multinational-mining-corporations-exploiting-u-s-taxpayers/
https://www.gigametals.com/site/assets/files/4910/giga_metals_presentation_4sep19.pdf
https://www.jtsi.wa.gov.au/docs/default-source/default-document-library/mrra_stakeholder_consultation_paper_2013.pdf?sfvrsn=3c746b1c_5
https://www.jtsi.wa.gov.au/docs/default-source/default-document-library/mrra_stakeholder_consultation_paper_2013.pdf?sfvrsn=3c746b1c_5
https://www.jtsi.wa.gov.au/docs/default-source/default-document-library/mineral-royalty-rate-analysis-final-report-0315.pdf?sfvrsn=76076e1c_6
https://www.jtsi.wa.gov.au/docs/default-source/default-document-library/mineral-royalty-rate-analysis-final-report-0315.pdf?sfvrsn=76076e1c_6


138 
 

Hadjipaschalis, I., Poullikkas, A., & Efthimiou, V. (2009). Overview of current and future energy storage 
technologies for electric power applications. Renewable and sustainable energy reviews, 13(6-7), 1513-
1522. 

Harris, J.M., & Roach, B. (2018). The Theory of Environmental Externalities. Environmental and Natural 
Resource Economics: A Contemporary Approach (4th edition, p.74). New York: Taylor & Francis. 

Hausfather, Z. (2018): Explainer: How ‘Shared Socioeconomic Pathways explore future climate change. 
Carbon brief. Retrieved from: https://www.carbonbrief.org/explainer-how-shared-socioeconomic-
pathways-explore-future-climate-change 

Henckens, M., van Ierland, E.C., Driessen, P.P.J., & E. Worrella, E. (2016). Mineral resources: Geological 
scarcity, market price trends, and future generations. Resources Policy, 49, 102-111. doi: 
10.1016/j.resourpol.2016.04.012. 

Hertwich, E. G., Gibon, T., Bouman, E. A., Arvesen, A., Suh, S., Heath, G. A., ... & Shi, L. (2015). 

Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of 
low-carbon technologies. Proceedings of the National Academy of Sciences, 112(20), 6277-6282. 

Hydrogen Council (HC, 2017). Hydrogen Scaling up. Retrieved from: https://hydrogencouncil.com/wp-
content/uploads/2017/11/Hydrogen-scaling-up-Hydrogen-Council.pdf 

Ilika Technologies Ltd. (Ilika, 2019). Solid-state battery technology: Capital markets Day December 2019. 
https://www.ilika.com/images/uploads/downloads/Ilika-Capital-Markets-Day-Presentation-Dec-2019.pdf 

InsideEVs (2020). Compare Electric Cares: EV Range, Specs, Pricing & More. Retrieved on 4 August 
2020 on https://insideevs.com/reviews/344001/compare-evs/ 

Institute of Developing Economies -Japan External Trade Organisation (IDE-JETRO, n.d.). Norilsk Nickel. 
Retrieved from https://www.ide.go.jp/English/Data/Africa_file/Company/botsuwana01.html   

International Copper Association (ICA, n.d.). Copper Recycling. Retrieved from: 
https://copperalliance.org/wp-content/uploads/2017/03/ica-copper-recycling-201712-A4-HR2.pdf 

International Institute for Applied Systems Analysis (IIASA, 2018). SSP Database: Shared Socioeconomic 
Pathways – version 2.0, December 2019. Retrieved from: 
https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about 

International Energy Agency (IEA, 2017a). Energy Technology Perspectives 2017: Catalysing Energy 
Technology Transformations. Retrieved from 
https://webstore.iea.org/download/direct/1058?fileName=Energy_Technology_Perspectives_2017-
PDF.pdf   
 
International Energy Agency (IEA, 2017b). The Future of Trucks: implications for energy and the 
environment. Retrieved from https://webstore.iea.org/download/direct/288 
 
International Energy Agency (IEA, 2019): Material efficiency in clean energy transitions. Retrieved from 
https://webstore.iea.org/download/direct/2454 

International Energy Agency: Photovoltaic Power Systems Programme (IEA PVPS, 2019). Trends in 
Photovoltaic Applications. Retrieved on 25 November 2020 from https://iea-pvps.org/wp-
content/uploads/2020/02/5319-iea-pvps-report-2019-08-lr.pdf 

https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change
https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change
https://hydrogencouncil.com/wp-content/uploads/2017/11/Hydrogen-scaling-up-Hydrogen-Council.pdf
https://hydrogencouncil.com/wp-content/uploads/2017/11/Hydrogen-scaling-up-Hydrogen-Council.pdf
https://www.ilika.com/images/uploads/downloads/Ilika-Capital-Markets-Day-Presentation-Dec-2019.pdf
https://insideevs.com/reviews/344001/compare-evs/
https://www.ide.go.jp/English/Data/Africa_file/Company/botsuwana01.html
https://copperalliance.org/wp-content/uploads/2017/03/ica-copper-recycling-201712-A4-HR2.pdf
https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about
https://webstore.iea.org/download/direct/1058?fileName=Energy_Technology_Perspectives_2017-PDF.pdf
https://webstore.iea.org/download/direct/1058?fileName=Energy_Technology_Perspectives_2017-PDF.pdf
https://webstore.iea.org/download/direct/288
https://webstore.iea.org/download/direct/2454
https://iea-pvps.org/wp-content/uploads/2020/02/5319-iea-pvps-report-2019-08-lr.pdf
https://iea-pvps.org/wp-content/uploads/2020/02/5319-iea-pvps-report-2019-08-lr.pdf


139 
 

International Energy Agency (IEA, 2020b): Innovation in batteries and electricity storage. Retrieved from: 
http://documents.epo.org/projects/babylon/eponet.nsf/0/969395F58EB07213C12585E7002C7046/$FILE/
battery_study_en.pdf 

International Hydropower Association (IHA, 2016). 2016 Hydropower Status Report. Retrieved from: 
https://www.hydropower.org/sites/default/files/publications-
docs/2016%20Hydropower%20Status%20Report_1.pdf 

International Hydropower Association (IHA, 2017). 2017 Hydropower Status Report. Retrieved from: 
https://www.hydropower.org/sites/default/files/publications-
docs/2017%20Hydropower%20Status%20Report.pdf 

International Hydropower Association (IHA, 2018). 2018 Hydropower Status Report. Retrieved from: 
https://www.hydropower.org/publications/2018-hydropower-status-
report#:~:text=Worldwide%20hydropower%20installed%20capacity%20rose,153%20GW%20of%20pump
ed%20storage. 

International Hydropower Association (IHA, 2019). 2019 Hydropower Status Report. Retrieved from: 
https://www.hydropower.org/sites/default/files/publications-docs/2019_hydropower_status_report_0.pdf 

International Hydropower Association (IHA, 2020). 2020 Hydropower Status Report. Retrieved from: 
https://www.hydropower.org/sites/default/files/publications-docs/2020_hydropower_status_report.pdf 

International Renewable Energy Agency (IRENA (2017). Electricity Storage and Renewables: Costs and 
markets to 2030. Retrieved from: 
https://www.irena.org/DocumentDownloads/Publications/IRENA_Electricity_Storage_Costs_2017.pdf 

International Renewable Energy Agency (IRENA, 2018). Hydrogen from Renewable Power: Technology 
outlook for the energy transition. Retrieved from: https://www.irena.org/publications/2018/Sep/Hydrogen-
from-renewable-power 

International Stainless-Steel Forum (ISSF, 2021). Recycling. Retrieved 6 February 2021 from 
https://www.worldstainless.org/about-stainless/environment/recycling/ 

Johnson, J., Reck, B. K., Wang, T., & Graedel, T. E. (2008). The energy benefit of stainless-steel 

recycling. Energy policy, 36(1), 181-192. 

Khoo, J. Z., Haque, N., Woodbridge, G., McDonald, R., & Bhattacharya, S. (2017). A life cycle 
assessment of a new laterite processing technology. Journal of Cleaner Production, 142, 1765-1777.  

Kis, Z., Pandya, N., & Koppelaar, R. H. (2018). Electricity generation technologies: Comparison of 
materials use, energy return on investment, jobs creation and CO2 emissions reduction. Energy Policy, 
120, 144-157. 

Kleijn, R., & Van der Voet, E. (2010). Resource constraints in a hydrogen economy based on renewable 
energy sources: An exploration. Renewable and sustainable energy reviews, 14(9), 2784-2795. 

Kleijn, R., Van der Voet, E., Kramer, G. J., Van Oers, L., & Van der Giesen, C. (2011). Metal 
requirements of low-carbon power generation. Energy, 36(9), 5640-5648. 

Kyle, J. (2010) Nickel laterite processing technologies – where to next? In ALTA 2010 
Nickel/Cobalt/Copper Conference, 24 - 27 May, Perth, Western 
Australia. https://researchrepository.murdoch.edu.au/id/eprint/4340/ 

http://documents.epo.org/projects/babylon/eponet.nsf/0/969395F58EB07213C12585E7002C7046/$FILE/battery_study_en.pdf
http://documents.epo.org/projects/babylon/eponet.nsf/0/969395F58EB07213C12585E7002C7046/$FILE/battery_study_en.pdf
https://www.hydropower.org/sites/default/files/publications-docs/2016%20Hydropower%20Status%20Report_1.pdf
https://www.hydropower.org/sites/default/files/publications-docs/2016%20Hydropower%20Status%20Report_1.pdf
https://www.hydropower.org/sites/default/files/publications-docs/2017%20Hydropower%20Status%20Report.pdf
https://www.hydropower.org/sites/default/files/publications-docs/2017%20Hydropower%20Status%20Report.pdf
https://www.hydropower.org/publications/2018-hydropower-status-report#:~:text=Worldwide%20hydropower%20installed%20capacity%20rose,153%20GW%20of%20pumped%20storage
https://www.hydropower.org/publications/2018-hydropower-status-report#:~:text=Worldwide%20hydropower%20installed%20capacity%20rose,153%20GW%20of%20pumped%20storage
https://www.hydropower.org/publications/2018-hydropower-status-report#:~:text=Worldwide%20hydropower%20installed%20capacity%20rose,153%20GW%20of%20pumped%20storage
https://www.hydropower.org/sites/default/files/publications-docs/2019_hydropower_status_report_0.pdf
https://www.hydropower.org/sites/default/files/publications-docs/2020_hydropower_status_report.pdf
https://www.irena.org/DocumentDownloads/Publications/IRENA_Electricity_Storage_Costs_2017.pdf
https://www.irena.org/publications/2018/Sep/Hydrogen-from-renewable-power
https://www.irena.org/publications/2018/Sep/Hydrogen-from-renewable-power
https://www.worldstainless.org/about-stainless/environment/recycling/
https://researchrepository.murdoch.edu.au/id/eprint/4340/


140 
 

Lexology (2019). Mining duties, royalties and taxes in Myanmar. Retrieved from 
https://www.lexology.com/library/detail.aspx?g=9c8c4d35-718a-4bc7-a063-bbd8f6e2d4eb   

Månberger, A., & Stenqvist, B. (2018). Global metal flows in the renewable energy transition: Exploring 
the effects of substitutes, technological mix and development. Energy policy, 119, 226-241. 

Manhando, B. (2018) Overview of the Zimbabwe Mining Sector [presentation] Chamber of Mines of 
Zimbabwe. Retrieved from http://www.mineafrica.com/documents/Zimbabwe's%20Mining%20Sector%20-
%20Chamber%20of%20Mines.pdf    

McLellan, B., Yamasue, E., Tezuka, T., Corder, G., Golev, A., & Giurco, D. (2016). Critical minerals and 
energy–impacts and limitations of moving to unconventional resources. Resources, 5(2), 19. 

Meshram, P., Abhilash, & Pandey, B.D. (2018). Advanced Review on Extraction of Nickel from Primary 

and Secondary Sources, Mineral Processing and Extractive Metallurgy Review, 40(3), 157-193. DOI: 
10.1080/08827508.2018.1514300   

Metalary (2020). Tungsten Price. Retrieved from: https://www.metalary.com/tungsten-price/ 

Mocker, M., Aigner, J., Kroop, S., Lohmeyer, R., & Franke, M. (2015). Raw Materials for Renewable 

Energy Technologies–Availability and Ecological Aspects. Chemie Ingenieur Technik, 87(4), 439-448. 

Moreau, V., Dos Reis, P. C., & Vuille, F. (2019). Enough Metals? Resource Constraints to Supply a Fully 

Renewable Energy System. Resources, 8(1), 29. 

Moss, R. L., Tzimas, E., Kara, H., Willis, P., Kooroshy, J. (2011). Critical Metals in Strategic Energy 
Technologies - Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies 
(report no. JRC65592). JRC-scientific Strategy reports, European Commission. doi: 10.2790/35600 
10.2790/35716 

Moss, R.L., Tzimas, E.; Willis, P., Arendorf, J., (2013a). Critical Metals in the Path towards the 
Decarbonisation of the EU Energy Sector. Assessing rare metals as supply-chain bottlenecks in low-
carbon energy technologies.  (report no. JRC82322). Joint Research Centre. European Commission. 
https://doi.org/10.2790/46338  

Moss, R. L., Tzimas, E., Kara, H., Willis, P., & Kooroshy, J. (2013b). The potential risks from metals 
bottlenecks to the deployment of Strategic Energy Technologies. Energy Policy, 55, 556-564. 

Mudd, G. M. (2010). Global trends and environmental issues in nickel mining: Sulfides versus laterites. 
Ore Geology Reviews, 38(1-2), 9-26. 

Mudd, G. (2020). Nickel Resources Database [personal communication, 10 November, 2020] 

Murakami, S., Kawamoto, T., Masuda, A., & Daigo, I. (2015). Metal demand to meet SDG energy-related 
goals. Glob. Env. Res, 19, 181-186. 

Nansai, K., Nakajima, K., Kagawa, S., Kondo, Y., Suh, S., Shigetomi, Y., & Oshita, Y. (2014). Global 
flows of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and 
platinum. Environmental science & technology, 48(3), 1391-1400. 

Nassar, N. T., Graedel, T. E., & Harper, E. M. (2015). By-product metals are technologically essential but 
have problematic supply. Science advances, 1(3) 

https://www.lexology.com/library/detail.aspx?g=9c8c4d35-718a-4bc7-a063-bbd8f6e2d4eb
http://www.mineafrica.com/documents/Zimbabwe's%20Mining%20Sector%20-%20Chamber%20of%20Mines.pdf
http://www.mineafrica.com/documents/Zimbabwe's%20Mining%20Sector%20-%20Chamber%20of%20Mines.pdf
https://doi-org.tudelft.idm.oclc.org/10.1080/08827508.2018.1514300
https://www.metalary.com/tungsten-price/


141 
 

Newman, H.R. (2004). The Mineral Industry of Greece. U.S. Geological Survey Minerals Yearbook 2004. 
Retrieved from https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-
pubs/country/2004/grmyb04.pdf 

Nickel institute (n.d.). About Nickel. Retrieved from: https://nickelinstitute.org/about-nickel/ 

Nickel Institute (2016). Nickel Recycling. Retrieved from: 
https://www.nickelinstitute.org/media/2273/nickel_recycling_2709_final_nobleed.pdf 

Nickel institute (2018). Nickel Energizing Batteries. Retrieved from: 
https://nickelinstitute.org/media/2318/nickel_battery_infographic-finalen2.pdf  

Nickel Institute (2020). Life Cycle Assessment of Nickel Products: Reference year 2017. Final Report. 

Nordelöf, A., Romare, M., & Tivander, J. (2019). Life cycle assessment of city buses powered by 
electricity, hydrogenated vegetable oil or diesel. Transportation Research Part D: Transport and 
Environment, 75, 211-222. 

Norgate, T., & Jahanshahi, S. (2011). Assessing the energy and greenhouse gas footprints of nickel 
laterite processing. Minerals Engineering, 24(7), 698-707.  

Northey, S. A., Haque, N., Lovel, R., & Cooksey, M. A. (2014). Evaluating the application of water 
footprint methods to primary metal production systems. Minerals Engineering, 69, 65-80. 

Oldenbroek, V., Verhoef, L. A., & Van Wijk, A. J. (2017). Fuel cell electric vehicle as a power plant: Fully 
renewable integrated transport and energy system design and analysis for smart city areas. International 
Journal of Hydrogen Energy, 42(12), 8166-8196. 

Olivetti, E.A., Ceder, G., Gaustad, G.G., & Fu, X. (2017). Lithium-Ion Battery Supply Chain 
Considerations: Analysis of Potential Bottlenecks in Critical Metals. Joule, 1(2). Doi: 
10.1016/j.joule.2017.08. 

Olson, D., Bakken, B. E. (2019): Utility-scale solar PV from big to biggest: How lowest costs will power the 
growth of big solar – everywhere. DNV GL Group. https://www.dnvgl.com/feature/utility-scale-solar.html 

O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., ... & Solecki, W. 
(2017). The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 
21st century. Global Environmental Change, 42, 169-180. 

Our World in Data (2014): Motor vehicles per 1000 inhabitants vs GDP per capita, 2014. Retrieved on 25 

November 2020 from https://ourworldindata.org/grapher/road-vehicles-per-1000-inhabitants-vs-gdp-per-
capita?country=MOZ+NER 

Pehl, M., Arvesen, A., Humpenöder, F., Popp, A., Hertwich, E. G., & Luderer, G. (2017). Understanding 

future emissions from low-carbon power systems by integration of life-cycle assessment and integrated 

energy modelling. Nature Energy, 2(12), 939-945. 

 

Pihl, E., Kushnir, D., Sandén, B., & Johnsson, F. (2012). Material constraints for concentrating solar 

thermal power. Energy, 44(1), 944-954. 

 

Prasetyo, P. (2018). The effect of entry into force of the mining law 2009 began January 2014 in the 

production of NPI (Nickel Pig Iron) in China. In IOP Conference Series: Materials Science and 

Engineering, 285(1), 012015. IOP Publishing. 

 

https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/country/2004/grmyb04.pdf
https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-pubs/country/2004/grmyb04.pdf
https://nickelinstitute.org/about-nickel/
https://www.nickelinstitute.org/media/2273/nickel_recycling_2709_final_nobleed.pdf
https://nickelinstitute.org/media/2318/nickel_battery_infographic-finalen2.pdf
https://www.dnvgl.com/feature/utility-scale-solar.html
https://ourworldindata.org/grapher/road-vehicles-per-1000-inhabitants-vs-gdp-per-capita?country=MOZ+NER
https://ourworldindata.org/grapher/road-vehicles-per-1000-inhabitants-vs-gdp-per-capita?country=MOZ+NER


142 
 

PWC (2012): Corporate income taxes, mining royalties and other mining taxes: A summary of rates and 

rules in selected countries. Retrieved from https://www.pwc.com/gx/en/energy-utilities-

mining/publications/pdf/pwc-gx-miining-taxes-and-royalties.pdf 

 

Rabary, L. (2019). Update 2-Madagascar to raise minerals taxes, take 20% stake in mining projects. 

Thomson Reuters. Retrieved from https://uk.reuters.com/article/madagascar-mining/update-2-

madagascar-to-raise-minerals-taxes-take-20-stake-in-mining-projects-idUKL8N28K3I6    

 

Radoia, P. (2019). European Market Outlook. Retrieved on 26 November from 

https://www.solarpowersummit.org/wp-content/uploads/2019/03/Day-1-European-Market-Outlook.pdf 

 

Raugei, M., & Leccisi, E. (2016). A comprehensive assessment of the energy performance of the full 

range of electricity generation technologies deployed in the United Kingdom. Energy Policy, 90, 46-59. 

 

Redstone Exploration Services (n.d.). Morocco. Retrieved from http://redstone-exploration.com/country-

profiles/morocco/    

 

REN21 (2015). Renewables 2015 Global Status Report. Retrieved from https://www.ren21.net/wp-
content/uploads/2019/05/GSR2015_Full-Report_English.pdf 
 

Republic of Kosovo (2012). Mining Strategy of the Republic of Kosovo 2012 – 2025. Ministry of Economic 

Development. Retrieved from https://kryeministri-ks.net/wp-

content/uploads/docs/Mining_Strategy_of_the_Republic_of_Kosovo_2012-2025.pdf 

 

Republic of the Philippines (2018). Nickel industry projects lower production in 2019. Philippine News 

Agency. Retrieved from https://www.pna.gov.ph/articles/1055926 

 

Restrepo, J.C., Velez Gomez, L.D., Ramirez Canedo, J.C., & Duque, E. (2015). Mining in Colombia: A 

review of the calculation of government take. Retrieved from 

https://www.researchgate.net/publication/281650586_Mining_in_Colombia_A_review_of_the_calculation_

of_government_take/link/5da0e310299bf116fe9ed034/download 

Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’neill, B. C., Fujimori, S., ... & Lutz, W. (2017). 

The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions 
implications: an overview. Global Environmental Change, 42, 153-168. 

Rietveld, E., Boonman, H., van Harmelen, T., Hauck, M., Bastein, T. (2019). Global Energy Transition and 
Metal Demand - An Introduction and Circular Economy Perspectives. TNO. Doi: 
10.13140/RG.2.2.25790.54086 

Sakar, G.E., & Clark, D. (2013). Turkey: Mining Sector and Mining Law. Mondaq. Retrieved from 
https://www.mondaq.com/turkey/mining/217158/mining-sector-and-mining-law 

Schmidt, T., Buchert, M., & Schebek, L. (2016). Investigation of the primary production routes of nickel 
and cobalt products used for Li-ion batteries. Resources, Conservation and Recycling, 112, 107-122. 

Sinn, H.W. (2017). Buffering volatility: A study on the limits of Germany’s energy revolution. European 
Economic. Review, 99, 130-150. doi: 10.1016/j.euroecorev.2017.05.007 

Speirs, J., Contestabile, M., Houari, Y., & Gross, R. (2014). The future of lithium availability for electric 

vehicle batteries. Renewable and Sustainable Energy Reviews, 35, 183-193. 

https://www.pwc.com/gx/en/energy-utilities-mining/publications/pdf/pwc-gx-miining-taxes-and-royalties.pdf
https://www.pwc.com/gx/en/energy-utilities-mining/publications/pdf/pwc-gx-miining-taxes-and-royalties.pdf
https://uk.reuters.com/article/madagascar-mining/update-2-madagascar-to-raise-minerals-taxes-take-20-stake-in-mining-projects-idUKL8N28K3I6
https://uk.reuters.com/article/madagascar-mining/update-2-madagascar-to-raise-minerals-taxes-take-20-stake-in-mining-projects-idUKL8N28K3I6
https://www.solarpowersummit.org/wp-content/uploads/2019/03/Day-1-European-Market-Outlook.pdf
http://redstone-exploration.com/country-profiles/morocco/
http://redstone-exploration.com/country-profiles/morocco/
https://www.ren21.net/wp-content/uploads/2019/05/GSR2015_Full-Report_English.pdf
https://www.ren21.net/wp-content/uploads/2019/05/GSR2015_Full-Report_English.pdf
https://kryeministri-ks.net/wp-content/uploads/docs/Mining_Strategy_of_the_Republic_of_Kosovo_2012-2025.pdf
https://kryeministri-ks.net/wp-content/uploads/docs/Mining_Strategy_of_the_Republic_of_Kosovo_2012-2025.pdf
https://www.pna.gov.ph/articles/1055926
https://www.researchgate.net/publication/281650586_Mining_in_Colombia_A_review_of_the_calculation_of_government_take/link/5da0e310299bf116fe9ed034/download
https://www.researchgate.net/publication/281650586_Mining_in_Colombia_A_review_of_the_calculation_of_government_take/link/5da0e310299bf116fe9ed034/download
https://www.mondaq.com/turkey/mining/217158/mining-sector-and-mining-law
https://doi.org/10.1016/j.euroecorev.2017.05.007


143 
 

Sprecher, B., Daigo, I., Murakami, S., Kleijn, R., Vos, M., & Kramer, G. J. (2015). Framework for 
resilience in material supply chains, with a case study from the 2010 rare earth crisis. Environmental 
science & technology, 49(11), 6740-6750. 

Statista (2018a). Number of passenger cars and commercial vehicles in use worldwide from 2006-2015. 
Retrieved on from: https://www.statista.com/statistics/281134/number-of-vehicles-in-use-
worldwide/#:~:text=In%202015%2C%20around%20947%20million,vehicles%20were%20in%20operation
%20worldwide. 

Statista (2018b). Nickel demand worldwide from 2015-2018. Retrieved on 25 November from 

https://www.statista.com/statistics/273653/global-demand-for-nickel-since-2007/ 

Statista (2020). Average service life of trucks in Japan from fiscal year 2010-2019. Retrieved from: 
https://www.statista.com/statistics/679750/japan-truck-average-lifespan/ 

Strategic Dialogue on Sustainable Raw Materials for Europe (STRADE, 2016). European Policy Brief: 
The Cost Competitiveness of Mining Operations in the European Union. No.08/2016. Retrieved from: 
https://st6.ning.com/topology/rest/1.0/file/get/3410397167?profile=original 

Sullivan, J. L., Clark, C. E., Han, J., & Wang, M. (2010). Life-cycle analysis results of geothermal systems 
in comparison to other power systems (No. ANL/ESD/10-5). Argonne National Lab. (ANL), Argonne, IL, 
United States. Doi: 10.2172/993694 

Sumitomo Metal Mining Col, ltd (SMM, n.d.). Producing High-Quality Products form Low-Grade Nickel 
Oxide Ore. Retrieved from: https://www.smm.co.jp/E/csr/activity_highlights/persistence/highlights1.html 

Sverdrup, H. U., Ragnarsdottir, K. V., & Koca, D. (2017). Integrated Modelling of the Global Cobalt 
Extraction, Supply, Price and Depletion of Extractable Resources Using the WORLD6 Model. BioPhysical 
Economics and Resource Quality, 2(4). doi:10.1007/s41247-017-0017-0 

Sverdrup, H. U., & Olafsdottir, A. H. (2019). Assessing the long-term global sustainability of the 
production and supply for stainless steel. Biophysical Economics and Resource Quality, 4(2), 8. 

The Insider Stories (2019). Indonesia Raises Nickel Royalty from 5% to 10%. Retrieved from 
https://theinsiderstories.com/indonesia-raises-nickel-royalty-from-5-to-10/ 

The Mining Association of Canada (2008). Comparative review of the rate of royalty in the Canada mining 
regulation, as relates to National and International Competitiveness. Retrieved from https://mining.ca/wp-
content/uploads/2019/03/ComparativeReviewoftheRateofRoyalty.pdf 

Tidball, R., Bluestein, J., Rodriguez, N., & Knoke, S. (2010). Cost and performance assumptions for 
modeling electricity generation technologies (No. NREL/SR-6A20-48595). National Renewable Energy 
Lab. (NREL), Golden, CO, United States. Doi: 10.2172/993653 

Tokimatsu, K., Wachtmeister, H., McLellan, B., Davidsson, S., Murakami, S., Höök, M., ... & Nishio, M. 
(2017). Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements 
and the 2 C target. Applied energy, 207, 494-509. 

Tokimatsu, K., Höök, M., McLellan, B., Wachtmeister, H., Murakami, S., Yasuoka, R., & Nishio, M. (2018). 

Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the 
well-below 2° C target with 100 percent renewable energy. Applied energy, 225, 1158-1175. 

Trading Economics. (2020). Commodities. Retrieved from: https://tradingeconomics.com/commodities 

https://www.statista.com/statistics/281134/number-of-vehicles-in-use-worldwide/#:~:text=In%202015%2C%20around%20947%20million,vehicles%20were%20in%20operation%20worldwide
https://www.statista.com/statistics/281134/number-of-vehicles-in-use-worldwide/#:~:text=In%202015%2C%20around%20947%20million,vehicles%20were%20in%20operation%20worldwide
https://www.statista.com/statistics/281134/number-of-vehicles-in-use-worldwide/#:~:text=In%202015%2C%20around%20947%20million,vehicles%20were%20in%20operation%20worldwide
https://www.statista.com/statistics/273653/global-demand-for-nickel-since-2007/
https://www.statista.com/statistics/679750/japan-truck-average-lifespan/
https://st6.ning.com/topology/rest/1.0/file/get/3410397167?profile=original
https://www.smm.co.jp/E/csr/activity_highlights/persistence/highlights1.html
https://theinsiderstories.com/indonesia-raises-nickel-royalty-from-5-to-10/
https://mining.ca/wp-content/uploads/2019/03/ComparativeReviewoftheRateofRoyalty.pdf
https://mining.ca/wp-content/uploads/2019/03/ComparativeReviewoftheRateofRoyalty.pdf
https://tradingeconomics.com/commodities


144 
 

Transparency International (2020). Corruption Perception Index 2019. Retrieved from 

https://www.transparency.org/en/cpi/2019/index/nzl 

Turconi, R., Boldrin, A., & Astrup, T. (2013). Life cycle assessment (LCA) of electricity generation 

technologies: Overview, comparability and limitations. Renewable and sustainable energy reviews, 28, 
555-565. 

United Nations Environment Programme (UNEP, 2011). Recycling rates of metals. Retrieved from 
https://wedocs.unep.org/bitstream/handle/20.500.11822/8702/Recycling_Metals.pdf?sequence=1&isAllow
ed=y 

United States Department of Energy (USDOE, 2011). Critical Materials Strategy. 
https://www.energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf 

United States Geological Survey (USGS, 2018). Mineral Commodities Summaries: Bismuth. Retrieved 
from: https://s3-us-west-2.amazonaws.com/prd-wret/assets/palladium/production/mineral-
pubs/bismuth/mcs-2018-bismu.pdf  

United States Geological Survey (USGS, 2020a). National Minerals Information Centre: Nickel Statistics 

and Information. Retrieved from: https://www.usgs.gov/centers/nmic/nickel-statistics-and-information 

 

United States Geological Survey (USGS, 2020b). Commodity Statistics and Information: Chromium 

Statistics and Information. Retrieved from: https://www.usgs.gov/centers/nmic/chromium-statistics-and-

information 

United States Geological Survey (USGS, 2020c). National Minerals Information Centre: Silica statistics 

and Information. Retrieved from: https://www.usgs.gov/centers/nmic/silica-statistics-and-information 

United States Geological Survey (USGS, 2020d). National Minerals Information Centre: Rhenium 
Statistics and Information. Retrieved from: https://www.usgs.gov/centers/nmic/rhenium-statistics-and-
information  

Usanov, A., Ridder, M., Auping, W. L., & Lingemann, S. (2013). Coltan, Congo and Conflict (Rapport No 

21 05 13). Retrieved from 

https://hcss.nl/sites/default/files/files/reports/HCSS_21_05_13_Coltan_Congo_Conflict_web.pdf 

  

U.S. Securities and Exchange Commission (USSEC, 2007). Annual Report 2007: Lunding Mining 

Corporation. Retrieved from 

https://www.sec.gov/Archives/edgar/data/1377085/000120445908001228/lundinexh991.htm   

 

U.S. Securities and Exchange Commissions (USSEC, 2018). EMX Royalty Corporation (formerly 

Eurasian Minerals Inc.) Management Discussion and Analysis three and six months ended June 30, 

2018. Retrieved from https://www.sec.gov/Archives/edgar/data/1285786/000106299318003448/exhibit99-

2.htm   

Valero, A., Valero, A., & Martínez, A. (2010). Inventory of the exergy resources on earth including its 

mineral capital. Energy, 35(2), 989-995. 

Valero, A., Valero, A., & Domínguez, A. (2013). Exergy replacement cost of mineral resources. Journal of 

environmental accounting and management, 1(1), 147-148. 

https://www.transparency.org/en/cpi/2019/index/nzl
https://wedocs.unep.org/bitstream/handle/20.500.11822/8702/Recycling_Metals.pdf?sequence=1&isAllowed=y
https://wedocs.unep.org/bitstream/handle/20.500.11822/8702/Recycling_Metals.pdf?sequence=1&isAllowed=y
https://www.energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf
https://www.usgs.gov/centers/nmic/nickel-statistics-and-information
https://www.usgs.gov/centers/nmic/chromium-statistics-and-information
https://www.usgs.gov/centers/nmic/chromium-statistics-and-information
https://www.usgs.gov/centers/nmic/silica-statistics-and-information
https://www.usgs.gov/centers/nmic/rhenium-statistics-and-information
https://www.usgs.gov/centers/nmic/rhenium-statistics-and-information
https://hcss.nl/sites/default/files/files/reports/HCSS_21_05_13_Coltan_Congo_Conflict_web.pdf
https://www.sec.gov/Archives/edgar/data/1377085/000120445908001228/lundinexh991.htm
https://www.sec.gov/Archives/edgar/data/1285786/000106299318003448/exhibit99-2.htm
https://www.sec.gov/Archives/edgar/data/1285786/000106299318003448/exhibit99-2.htm


145 
 

Valero, A., & Valero, A. (2014). Thanatia: The Destiny of the Earth's Mineral Resources: a 
Thermodynamic Cradle-to-cradle Assessment (1st edition). Singapore: World Scientific. 

Valero, A., Domínguez, A., & Valero, A. (2015). Exergy cost allocation of by-products in the mining and 
metallurgical industry. Resources, Conservation and Recycling, 102, 128-142. 

Valero, A., Valero, A., Calvo, G., & Ortego, A. (2018a). Material bottlenecks in the future development of 

green technologies. Renewable and Sustainable Energy Reviews, 93, 178-200. 

Valero, A., Valero, A., Calvo, G., Ortego, A., Ascaso, S., & Palacios, J. L. (2018b). Global material 

requirements for the energy transition. An exergy flow analysis of decarbonisation pathways. Energy, 159, 
1175-1184. 

Van der Linden (2020). Exploration of the Cobalt System: Scenarios for a critical material for the energy 

system. Delft University of Technology. https://repository.tudelft.nl/islandora/object/uuid%3Ae51dbb87-

09f7-4c33-a956-226874a1e7b7?collection=education 

 

Van der Voet, E., Van Oers, L., Verboon, M., & Kuipers, K. (2019). Environmental implications of future 

demand scenarios for metals: methodology and application to the case of seven major metals. Journal of 

Industrial Ecology, 23(1), 141-155. 

Vidal, O., Le Boulzec, H., & François, C. (2018). Modelling the material and energy costs of the transition 
to low-carbon energy. EPJ Web of Conferences, 189 (00018). EDP Sciences. 
https://doi.org/10.1051/epjconf/201818900018 

Walker S, Young S, Fowler M. (2015). Repurposing electric vehicle batteries for energy storage to 
support the smart grid. IEEE Canadian Review, 20-23. Retrieved on 26 November from 
http://canrev.ieee.ca/cr73/Repurposing_Electric_Vehicle_Batteries_for_Energy_Storage_to_Support_the_
Smart_Grid.pdf 

Wang, S., Li, H., Li, C., Hao, X., Bao, Q., & Zhang, L. (2015). LCA Evaluation for Different Treatment 
Processes of Nickel Laterite Ore. In Energy Technology 2015 (93-103). Springer, Cham. 
https://doi.org/10.1007/978-3-319-48220-0_11 

Watari, T., McLellan, B., Ogata, S., & Tezuka, T. (2018). Analysis of potential for critical metal resource 

constraints in the international energy agency’s long-term low-carbon energy scenarios. Minerals, 8(4), 
156. 

Watari, T., McLellan, B. C., Giurco, D., Dominish, E., Yamasue, E., & Nansai, K. (2019). Total material 
requirement for the global energy transition to 2050: A focus on transport and electricity. Resources, 
Conservation and Recycling, 148, 91-103. 

WBMS (2018) Nickel Workbook June 2018 [personal communication, 12 May, 2020] 

World Energy Council (WEC, 2011). Global Transport Scenarios 2050. Retrieved from: 
https://www.worldenergy.org/assets/downloads/wec_transport_scenarios_2050.pdf 

Wentker, M., Greenwood, M., & Leker, J. (2019). A bottom-up approach to lithium-ion battery cost 
modeling with a focus on cathode active materials. Energies, 12(3), 504. 

White, C., Thompson, B., & Swan, L. G. (2020). Repurposed electric vehicle battery performance in 
second-life electricity grid frequency regulation service. Journal of Energy Storage, 28, 101278. 

https://repository.tudelft.nl/islandora/object/uuid%3Ae51dbb87-09f7-4c33-a956-226874a1e7b7?collection=education
https://repository.tudelft.nl/islandora/object/uuid%3Ae51dbb87-09f7-4c33-a956-226874a1e7b7?collection=education
https://doi.org/10.1051/epjconf/201818900018
http://canrev.ieee.ca/cr73/Repurposing_Electric_Vehicle_Batteries_for_Energy_Storage_to_Support_the_Smart_Grid.pdf
http://canrev.ieee.ca/cr73/Repurposing_Electric_Vehicle_Batteries_for_Energy_Storage_to_Support_the_Smart_Grid.pdf
https://doi.org/10.1007/978-3-319-48220-0_11
https://www.worldenergy.org/assets/downloads/wec_transport_scenarios_2050.pdf


146 
 

Wood Mackenzie (n.d.): Figure in Els, F. (2018). Electric vehicle demand will double nickel price – as 
soon as 2022. Retrieved from: http://www.mining.com/electric-vehicle-demand-will-double-nickel-price-
soon-2022 

World Bank (2006). Mining Royalties A Global Study of Their Impact on Investors, Government, and Civil 

Society (37258). Retrieved from 

http://documents1.worldbank.org/curated/en/103171468161636902/pdf/372580Mining0r101OFFICIAL0U
SE0ONLY1.pdf    

World Bank (2017). The growing role of minerals and metals for a low carbon future. Washington, D.C. 

https://doi.org/10.1596/28312  

Worstall, T. (2019). Guatemalan Nickel Royalties – If Only The Guardian Understood Basic Economics. 
Continental Telegraph. Retrieved from https://www.continentaltelegraph.com/2019/06/guatemalan-nickel-
royalties-if-only-the-guardian-understood-basic-economics/ 

Wu, G., Li, Y., & Tongda, J. (2018). Mining in China: overview. Thomson Reuters. Retrieved from 
https://uk.practicallaw.thomsonreuters.com/w-011-
1348?transitionType=Default&contextData=(sc.Default)&firstPage=true&bhcp=1   

Zerrahn, A., Schill, W. P., & Kemfert, C. (2018). On the economics of electrical storage for variable 
renewable energy sources. European Economic Review, 108, 259-279. 

Zhou, T., Roorda, M. J., MacLean, H. L., & Luk, J. (2017). Life cycle GHG emissions and lifetime costs of 

medium-duty diesel and battery electric trucks in Toronto, Canada. Transportation Research Part D: 
Transport and Environment, 55, 91-98. 

 
 

 

http://www.mining.com/electric-vehicle-demand-will-double-nickel-price-soon-2022
http://www.mining.com/electric-vehicle-demand-will-double-nickel-price-soon-2022
http://documents1.worldbank.org/curated/en/103171468161636902/pdf/372580Mining0r101OFFICIAL0USE0ONLY1.pdf
http://documents1.worldbank.org/curated/en/103171468161636902/pdf/372580Mining0r101OFFICIAL0USE0ONLY1.pdf
https://www.continentaltelegraph.com/2019/06/guatemalan-nickel-royalties-if-only-the-guardian-understood-basic-economics/
https://www.continentaltelegraph.com/2019/06/guatemalan-nickel-royalties-if-only-the-guardian-understood-basic-economics/
https://uk.practicallaw.thomsonreuters.com/w-011-1348?transitionType=Default&contextData=(sc.Default)&firstPage=true&bhcp=1
https://uk.practicallaw.thomsonreuters.com/w-011-1348?transitionType=Default&contextData=(sc.Default)&firstPage=true&bhcp=1

