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Maritime structures in heavy seas can experience wave impact events with high loads. The loads 
can lead to structural failure and even loss of life. Wave breaking in said sea states causes air to 
be entrained in water as aeration cloads, remaining long enough to be transported and to play a 
role in the impulsive interaction with the structure. A small amount of air in water already forms 
a highly compressible mixture. Compressibility influences the magnitude of the impact loads.
A new cartesian grid method for compressible multiphase flow is introduced to account for 
water, air and homogeneous mixtures of air and water. The method is designed to predict the 
hydrodynamic loads on moving bodies engaging with interfaces between fluids having large 
density ratios. An equation for conservation of energy is omitted by enforcing pressure-density 
relations. The interface between fluids is transported using a geometric Volume-of-Fluid method. 
The interface between fluids and structure is taken care of by a cut-cell method. An additional 
fraction field for the amount of air in water in combination with a new formulation for the 
multiphase speed of sound prevent overprediction of compressibility by artificial air entrainment.
New experimental data of 2D wedge impacts with aerated water, made available as open data, 
are presented to demonstrate the validity of the numerical method. For low aeration levels, the 
simulation results in terms of the impact loads on the wedge and the frequencies of pressure 
waves generated upon impact are in good agreement with the experimental data. Increasing the 
level of aeration reduces the maximum impact load on the wedge. Reflected density waves lead 
to secondary loads on the wedge. The intensity of the secondary loads, relative to the primary 
load of impact, increases with the aeration level while the density wave frequency decreases.

1. Introduction

Maritime structures sail through heavy seas. Water waves encountered in these sea states can induce wave impacts on the 
structures and generate high loads. Wave loads have caused structural failure in the past [6,37,71,40]. In some cases, wave loads 
have led to loss of life [44,4].

Waves impact with structures like ships, quay walls, breakwaters and the side walls of containment tanks. The impulsive interac-
tion between water and structure can also be represented by a structure that falls onto a free surface. A theoretical account of a falling 
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structure impacting with water is given by Von Karman [68]; experiments with this structure were performed by Greenhow [28]. 
Later work on impacts [70,78,42,27] has in common that the water was assumed incompressible.

Heavy seas feature breaking waves. Wave overturning causes air pockets to be enclosed, which break up under water to form 
clouds of air bubbles, that are only a fraction of a wave height in size. The small air bubbles remain entrained for several wave periods 
[64], the entrained air making up in the order of a percent of the water volume [7,55]. We refer to the process of air entrainment as 
aeration, and we call the mixture of water and air aerated water.

Due to aeration, the assumption of incompressibility of water is not always justified in modelling impulsive interaction of water 
with fixed structures [7,8,5,50,32]. Also for moving structures, experiments have demonstrated that aeration affects the results 
[48,49,23,24]. A small amount of air in water already leads to a significant increase in the compressibility of the mixture [75]. The 
compressibility of aerated water can cause the peak of the impact load to be smaller and the duration of the load to be longer, 
compared to impacts with water that can be considered incompressible. Compressibility also allows for the generation of density 
waves. These waves are defined as short-period oscillations of density and pressure propagating through the mixture with the speed 
of sound.

An early theory to account for compressibility with aeration was given by Peregrine and Thais [55] for a rapidly filling cavity, 
inspiring numerical methods for modelling aerated water impacts on structures. These methods show similarities to those for the 
prediction of cavitation erosion [63], vaporization [18], compressible wave impacts [46] and underwater explosions [51].

There is a scale difference of O(104) and higher between a maritime structure and the aeration bubbles in the breaking waves 
that interact with the structure. A one-fluid formulation allows for coarser grids and likely has lower computational cost compared to 
methods in which every air bubble near the structure is resolved or tracked [10–12]. The implication of using a one-fluid formulation 
is that air bubbles move with the same speed as the water containing them. This is a reasonable model for the situation half a wave 
period after a wave near a maritime structure has broken.

A one-fluid, weakly-compressible method for modeling homogeneous mixtures of air and water was introduced by Bredmose 
et al. [6]. The method was based on the theoretical work of Peregrine and Thais [55]. The method solves for the conservation of 
mass (water and air), momentum, and energy. Aerated water is solved compressibly while the water remains incompressible in the 
energy equation. According to Ma et al. [47], the method features significant spurious oscillations in pressure and velocity near the 
interface between water and air. These oscillations are an artifact of a fully-conservative scheme [61] and can result in non-physical 
pressures and negative volumes of water [1].

The method proposed by Dias et al. [17] is similar to the method of Bredmose et al. [6]. It was designed for large aeration levels, 
omitting tracking or reconstruction of the interface between fluids. Oscillations in pressure and velocity were not present any more, 
but the fluid-fluid interface became so diffuse that the distinction between the compressible fluids disappeared. A diffuse interface 
may prevent oscillations, but it introduces a non-monotonic behavior of the speed of sound across the fluid-fluid interface when 
using the one-fluid assumption. Non-monotonic behavior is the spurious reduction in speed of sound near the interface between air 
and water causing erroneous pressure oscillations.

Ma et al. [47] introduced a Kapila-based model [39] being quasi-conservative to prevent the unphysical oscillations around the 
interface. The method is able to account for moving bodies and interface tracking using a cut-cell method and a Volume-of-Fluid 
method. A third-order MUSCL reconstruction was used for the interpolation of density values from cell centers to cell faces. A HLCC 
approximate Riemann solver was used for transporting convective fluxes. Comparison with experimental data of a flat plate entry 
in aerated water [48] validates that the method can predict the hydrodynamic loads involved in such an entry. At the same time, 
interface diffusion across several mesh cells for large flow gradient regions was reported.

The model proposed by Plumerault et al. [57] omitted the energy equation by using equations of state that describe the pressure-
density relation. They introduced a new fraction field indicating the amount of air in water. A pressure-relaxation method is used 
to solve the system of equations. A pressure equilibrium is solved to compute the transport of the fluid-fluid interface, instead of 
solving a transport equation. Compared to the quasi-conservative model of Ma et al. [47], no assumption of the material derivative 
of entropy equal to zero is made. According to Ma et al. [47], the method of Plumerault et al. [57] is vulnerable to diffusion of the 
interface between fluids and to non-physical pressure oscillations at the density wave front, for similar reasons as for the method of 
Bredmose et al. [6].

Others accounts of the effect of aeration are Elhimer et al. [23] and Hong et al. [35]. These are left out of the discussion due to 
significant differences in modeling but do contribute to the overview of existing literature made here.

The objective of this article is to introduce an efficient, quasi-conservative consistent numerical method for modeling the inter-
action between homogeneous aerated water and maritime structures. We are mainly aiming at quantifying how aeration affects the 
impact loads on arbitrarily-shaped structures in the presence of a complex configuration of the interface between fluids. A secondary 
interest pertains to the effect of density waves on the hydrodynamic load, i.e. capturing the pressure oscillations as a result of reflect-
ing and refracting density waves rather than resolving the discontinuity of density at the density wave front in the greatest detail. 
The following can be considered novelties:

• compared to Bredmose et al. [6], Plumerault et al. [57] and Ma et al. [47] that have a diffuse interface between fluids, the 
interfaces are kept sharp by means of a Volume-of-Fluid (VOF) method and geometric reconstruction of the fluid-fluid and fluid-
body interface so that the moment of impact and the impact load are represented accurately and the non-monotonic behavior is 
prevented;

• contrary to Plumerault et al. [57], a transport equation is solved for the additional volume fraction field so that, in future, the 
2

aeration level can vary near the free surface. At present, for verification purposes, the aerated water is homogeneous;
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Body 1-𝐶𝑏

Air above water 𝐶𝑎

Water 𝛽𝑙

Mixture 𝐶𝑓

Air 𝛽𝑔

Fig. 1. Illustration of the phases of matter in the solver and how they are represented discretely in the cartesian grid. Volume fraction 𝐶𝑓 is used for representing 
aerated water, 𝐶𝑎 for air above the water, 𝛽𝑙 for the water part of the homogeneous air-water mixture, 𝛽𝑔 for the air part. 𝐶𝑏 gives the part of a volume not occupied 
by the body and open to fluid.

• the speed of sound in the aerated mixture is adapted near the interface between fluids with respect to Wood et al. [76] to prevent 
a non-monotonic behavior of the speed of sound upon impact with bodies;

• contrary to Ma et al. [47] that formulated their methods as a density-based solver, the numerical method is set up as a pressure-
based solver like those found for underwater explosions [51]. For low Mach numbers a pressure-based solver should be more 
efficient than a density-based solver, because the Courant number is not based on the speed of sound, but on the fluid velocities 
allowing for larger time steps. The oscillations at the disontinuity can be kept low by controlling the Courant number;

• benchmark experimental data for aerated water entries are rare. An experiment with wedge in aerated water were performed 
specifically for the purpose of validating the numerical method in this article. Where most investigations quantify only the effect 
of aeration on the magnitude of the primary impact peak, here also the post-impact, secondary loads from reflected density 
waves are considered.

The article starts with Sec. 2 introducing the variable definitions and the mathematical model in its conservative form. This 
mathematical model already begins with the assumption of a single fluid. The system of equations is closed by deriving the non-
conservative formulation of the VOF transport equation and introducing pressure-density relations in Sec. 3. In Sec. 4 the grid 
structure is introduced, followed by Sec. 5 explaining the solution algorithm. In Sec. 6 the method is tested systematically against 
several benchmark 1D and 2D cases from literature. In Sec. 7 the wedge entry in aerated water is simulated and compared to the 
experiment that was set up specifically for validation of the method. The article ends with a summary of the conclusions.

2. Mathematical model

2.1. Interface capturing

‘Free surface’ is used interchangeably with ‘interface’. Computing the position of the fluid-fluid and the fluid-body interfaces 
accurately is relevant for determining the moment of impact. A color function 𝑓 (x, t) is used to capture the position of the interface. 
Transport of the interface is described by

𝐷𝑓

𝐷𝑡
= 𝜕𝑓

𝜕𝑡
+ (u ⋅∇)𝑓 = 0, (1)

in which 𝑓 (x, t)=0 gives the position of the interface and u the interface velocity.
A fixed Cartesian grid is used to divide the domain in volumes. We make use of an interface-capturing Volume-of-Fluid (VOF) 

method, in which the color function 𝑓 is replaced by a discrete volume fraction field. A volume fraction is the average of the 
continuous color function for a given volume.

The definition of the volume fractions given in Fig. 1. Volume fraction 𝐶𝑏 indicates the part of a volume that is open to fluid. 
‘Body’ is used interchangeably with ‘structure’. Fraction (1 −𝐶𝑏) then represents the part of a volume that is occupied by the body. 
Volume fraction 𝐶𝑎 indicates the part of a volume that is occupied with gas (air), where 𝐶𝑓 gives the part of the volume occupied 
with liquid, either water or aerated water, a homogeneous mixture of air and water.

Following Plumerault et al. [56], additional volume fraction fields are introduced to indicate the part by volume of the ho-
mogeneous mixture that is gas, 𝛽𝑔 , and the part that is water 𝛽𝑙 . These volume fractions are necessary for the formulation of the 
mathematical model.

2.2. Fluids: conservative form

The governing equations for the mathematical model are formulated for a multiphase flow of immiscible Newtonian fluids. The 
3

one-fluid approximation is applied allowing for a single velocity and a single pressure field [52]. Equilibrium of pressure and a 
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no-slip boundary condition between fluids is applied, which is justified by the fact that our emphasis is on short-duration impacts 
with aerated water.

For the air in aerated water, we neglect bubble interaction and effects of surface tension. The air bubbles are assumed to be 
sufficiently small [74]. The assumption of a homogeneous air-water mixture is valid when the eigenfrequencies of the pressure 
waveguide due to compressibility are well below the bubble resonance frequency [75], so that the mixture effectively behaves as a 
single medium. When translated to our simulation setups, this is a requirement that is met in all cases. For long-duration events, the 
model requires an extension to deal with relative velocities between the fluids.

An equation for the conservation of mass, using a single velocity field u, is formulated for each phase

𝜕𝛼𝑘𝜌𝑘

𝜕𝑡
+∇ ⋅

(
𝛼𝑘𝜌𝑘u

)
= 0, 𝑘 = 𝑎, 𝑙, 𝑔, (2)

in which subscript 𝑎 stands for air above water, 𝑙 for the liquid part of the phase with aerated water, and 𝑔 for the air part of the 
aerated water phase. Fractions 𝛼𝑘 are defined as

𝛼𝑎 =
𝐶𝑎

𝐶𝑏

,

𝛼𝑙 =
𝛽𝑙𝐶𝑓

𝐶𝑏

,

𝛼𝑔 =
𝛽𝑔𝐶𝑓

𝐶𝑏

.

(3)

Refer to Fig. 1 for the definition of the volume fractions.
The equation for the conservation of mass for the aggregate fluid is obtained from the sum of the equations for each phase

𝜕𝜌

𝜕𝑡
+∇ ⋅ (𝜌u) = 0, 𝜌 =

𝐶𝑏 −𝐶𝑓

𝐶𝑏

𝜌𝑎 +
(1 − 𝛽𝑔)𝐶𝑓

𝐶𝑏

𝜌𝑙 +
𝛽𝑔𝐶𝑓

𝐶𝑏

𝜌𝑎. (4)

Parameter 𝜌 is the aggregate fluid density that is used together with the algebraic relations

𝛽𝑔 + 𝛽𝑙 = 1,

𝐶𝑓 +𝐶𝑎 = 𝐶𝑏,
(5)

Although not required, we now say that 𝜌𝑔 = 𝜌𝑎 because for all our applications the gas entrained in water originates from the air 
above it.

The equations for the conservation of momentum, using again a single velocity field and a single pressure field read

𝜕𝜌u

𝜕𝑡
+∇ ⋅ (𝜌u ⊗ u) + ∇𝑝+ 𝜌g = 0. (6)

Here, 𝑝 is the pressure in the aggregate fluid and g the vector of the acceleration of gravity. Note that the viscous term has been 
omitted from the momentum equation as mainly short-duration events will be considered, in which viscous effects such as the 
formation of boundary layers can be ignored.

2.3. Body motion

The body is assumed rigid and is displaced by a state-space representation of Newton’s second law. The position of the body x𝑏 is 
found from

𝜕x𝑏

𝜕𝑡
= u𝑏, (7)

and the body velocity u𝑏, in turn, is found from

𝑚𝑏

𝜕u𝑏

𝜕𝑡
= F𝑏. (8)

The mass of the body, 𝑚𝑏, is assumed constant. The force on the body, F𝑏, includes the force of gravity and the force exerted by the 
fluid.

The fluid force on the body is found from integrating the pressure in the normal direction to the boundary along the body contour. 
Viscous stresses on the body, as said, and rotation of the body are not considered.

3. Closure of system of equations

3.1. Fluids: speed of sound

Sec. 2 described the system of equations consisting of three independent equations for the conservation of mass, equations for the 
4

conservation of momentum in the axis directions, and two equations for the state-space of the body. The pressure and velocity field 



Journal of Computational Physics 514 (2024) 113167M. van der Eijk and P. Wellens

are solved from this system. But the system of equations is not yet closed as it is not yet been defined how to solve for the density 
field. That is described in this section, with due attention to closure of the system in three-phase points where air, aerated water and 
body meet as we consider this a novelty with respect to the existing literature.

Densities are obtained algebraically using equations of state. These equations depend on the pressure and make the connection 
between the continuity equation (4) and the momentum equation (6) so that the change of density in time can be solved for. The 
relation between pressure and density can be written in a general form using the speed of sound. The square of the speed of sound is 
the ratio of the change in pressure to the change in density. Assuming that changes are small and neglecting second order terms and 
higher, the equation of state for an individual fluid becomes

𝐷𝜌𝑘

𝐷𝑡
= 1

𝑐2
𝑘

𝐷𝑝

𝐷𝑡
, 𝑘 = 𝑎, 𝑙, 𝑔, (9)

with 𝑐 is the speed of sound, being the propagation rate of a pressure wave with infinitesimal amplitude through a fluid at rest. The 
derivatives are taken at constant entropy, implying an adiabatic process.

The conservation of mass equation in Eq. (4) contains an aggregate density field which needs to be solved. The equation is 
rewritten in Eq. (10) such that Eq. (9) can be used.

𝐷𝜌

𝐷𝑡
+ 𝜌∇ ⋅ u = 0, (10)

in which the first term is the material derivative of the aggregate density 𝜌. The material derivative of the aggregate fluid cannot be 
replaced yet with Eq. (9). Additional explanation is needed for solving the aggregate density 𝜌 and the material derivative of this 
density. Using Eq. (4), definitions for the air and water density, and the speed of sound 𝑐 need to be formulated.

The material derivative of the aggregate density 𝜌 in Eq. (10) is rewritten by substituting the formulation of the aggregate density 
in Eq. (4). The material derivatives of the individual fluids are replaced with Eq. (5). Accounting for the presence of the body through 
volume fraction 𝐶𝑏, the material derivative of the aggregate density becomes

𝐷𝜌

𝐷𝑡
=

𝐶𝑏 −𝐶𝑓

𝐶𝑏

1
𝑐2
𝑎

𝐷𝑝

𝐷𝑡
+

𝐶𝑓

𝐶𝑏

(
𝛽𝑔

𝑐2
𝑎

+
1 − 𝛽𝑔

𝑐2
𝑙

)
𝐷𝑝

𝐷𝑡
+

𝐶𝑓

𝐶𝑏

(
𝜌𝑎 − 𝜌𝑙

) 𝐷𝛽𝑔

𝐷𝑡
+

1 − 𝛽𝑔

𝐶𝑏

(
𝜌𝑙 − 𝜌𝑎

) 𝐷𝐶𝑓

𝐷𝑡
. (11)

The body is assumed rigid, resulting in 𝐷𝐶𝑏

𝐷𝑡
= 0 and, therefore, not visible in Eq. (11). The remaining unknowns to be defined for 

the aggregrate fluid and its material derivative are:

• the speeds of sound in air and water, 𝑐𝑎 and 𝑐𝑙 (Sec. 3.2), and
• the pressure-density relation for air and water, 𝜌𝑎 and 𝜌𝑙 (Sec. 3.2), and
• the material derivatives of 𝛽𝑔 and 𝐶𝑓 near the interface between air and aerated water, and the calculation of 𝛽𝑔 (Sec. 3.3).

Resolving these unknowns in the next sections will lead to an equation of state of the aggregate fluid and a formulation of the 
aggregate speed of sound 𝑐, rather than separate equations for the constituent fluids.

3.2. Fluids: equations of state

The air above water, 𝐶𝑎 = 1 −𝐶𝑓 , and the air in aerated water, 𝛽𝑔 , are assumed compressible and to undergo isentropic compres-
sion. The relation between density and pressure under these circumstances is [51]

𝜕𝜌𝑎

𝜕𝑝
= 1

𝑐2
𝑎

= 1
𝑎𝑐𝛾

(
𝑝

𝑎𝑐

) 1−𝛾

𝛾

with 𝑎𝑐 =
𝑝

𝜌𝛾
, (12)

in which 𝛾 is the ratio of specific heat of the gas at a constant pressure to its specific heat at a constant volume, and 𝑎𝑐 the isentropic 
constant. Note that the right-hand side of Eq. (12) represents a relation for the speed of sound in air (𝑐𝑎) and can be used for 
substitution in Eq. (11). The specific heat ratio for air is equal to 1.0 for isothermal conditions and 1.4 for adiabatic conditions. 
Peregrine and Thais [55] showed the choosing a value of either 1.0 or 1.4 for the coefficient makes little difference for the loads 
generated during an impact. An adiabatic process happens relatively fast compared to an isothermal process like the propagation of 
sound. There is no time for heat exchange making 𝛾 = 1.4 a good assumption.

A nonlinear relation between density and pressure is derived from Eq. (12) by integration using 𝑎𝑐 = 𝑝0∕𝜌
𝛾

𝑎,0. The formulation 
for 𝜌𝑎 is needed in the material derivative in Eq. (11) and the aggregate density in Eq. (10).

𝜌𝑎 = 𝜌𝑎,0

(
𝑝

𝑝0

) 1
𝛾

(13)

Here, 𝜌𝑎,0 represents a reference value for the density. It is there to prevent “drifting” of the density during a simulation [72]. The 
reference value is chosen equal to the initial density, which is chosen equal to the density at atmospheric pressure.

The water part of the aerated water, 𝛽𝑙 , is assumed weakly-compressible. For weakly compressible fluids, the relation between 
5

density and pressure is [51]
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𝐷𝜌𝑙

𝐷𝑝
= 1

𝑐2
𝑙

, (14)

with 𝑐𝑙 the speed of sound in water. The speed of sound in water is assumed constant and can be directly substituted in Eq. (11). The 
integration of Eq. (14) results in a linear relation between the density of the water and the pressure needed in Eq. (11) and Eq. (10)
for the aggregate density.

𝜌𝑙 = 𝜌𝑙,0 +
1
𝑐2
𝑙

(
𝑝− 𝑝0

)
, (15)

in which 𝜌𝑙,0 is the initial density to be chosen equal to the density of water under atmospheric conditions. Considering water 
weakly-compressible in this way will have little influence on the impact loads we are interested in, because for the pressure range 
we expect, the volume change of air in aerated water will be much larger than the volume change of water in aerated water. Hence, 
the major part of the volume change of the aerated water can be attributed to the volume change of air. Nevertheless, accounting 
for the compressibility of the liquid at this moment may extend the suitability of the method to applications not currently envisaged. 
Sec. 7.2 features a reflection on the pressure range in our current applications.

3.3. Fluids: volume fraction transport

In order to transport the interface between fluids, it is necessary to transport the volume fraction fields 𝐶𝑓 and 𝛽𝑔 . Also the 
material derivative for these volume fractions, for use in Eq. (11), have not yet been derived.

The dominance of the inertial effects over buoyancy makes the assumption of a constant mass fraction 𝜇𝑔 valid. The mass fraction 
is the ratio of the mass of aeration over the mass of the mixture of water and air. The constant mass fraction 𝜇𝑔 is predefined by

𝜇𝑔 =
𝛽𝑔𝜌𝑎

𝑚𝑓

, (16)

means that 𝐷𝜇𝑔

𝐷𝑡
= 0. Here, 𝑚𝑓 is the mass of mixture air and water equal to 𝜌𝑓 𝐶𝑓 times the volume of the grid cell. The mass fraction 

can be rewritten to solve 𝛽𝑔 , needed for solving the aggregate density 𝜌

𝛽𝑔 =
𝜇𝑔𝜌𝑙

(1 − 𝜇𝑔)𝜌𝑎 + 𝜇𝑔𝜌𝑙

. (17)

Substituting Eq. (16) in 𝐷𝜇𝑔∕𝐷𝑡 = 0 in combination with Eq. (9) results in the missing formulation of the material derivative of 𝛽𝑔

in Eq. (11)

𝐷𝛽𝑔

𝐷𝑡
= 𝛽𝑔

(
1 − 𝛽𝑔

)( 1
𝜌𝑙𝑐

2
𝑙

− 1
𝜌𝑎𝑐

2
𝑎

)
𝐷𝑝

𝐷𝑡
. (18)

As mentioned in the introduction, a non-conservative formulation of the transport equation for 𝐶𝑓 needs to be derived to prevent 
difficulties with spurious oscillations around the interface [1]. A formulation like this is found by considering mechanical equilibrium, 
i.e. equilibrium of pressure and velocity, between fluids [52].

The transport of the air-water interface with 𝐶𝑓 needs a different formulation than the conservative form in Eq. (1). As mentioned 
in the introduction, a non-conservative formulation of the transport equation needs to be derived to prevent difficulties with spurious 
oscillations around the interface [1]. This formulation is found by using the mechanical (pressure and velocity) equilibrium between 
the fluids [52]. Summing all mass equations like for Eq. (4), as in Eq. (2), and using Eq. (9) for every phase results in an equation for 
total mass balance

𝐷𝑝

𝐷𝑡
= −

𝐶𝑏

𝛽𝑔𝐶𝑓+(𝐶𝑏−𝐶𝑓 )
𝜌𝑎𝑐2𝑎

+ (1−𝛽𝑔 )𝐶𝑓

𝜌𝑙𝑐
2
𝑙

∇ ⋅ u. (19)

Filling in the sum of the mass balance of 𝑎 and 𝑙 results in

𝐷𝐶𝑓

𝐷𝑡
= −𝐶𝑓∇ ⋅ u −𝐶𝑓

(
𝛽𝑔

𝜌𝑎𝑐
2
𝑎

+
1 − 𝛽𝑔

𝜌𝑙𝑐
2
𝑙

)
𝐷𝑝

𝐷𝑡
. (20)

Note the independence of 𝐶𝑏 which is essential for under-or overpredicting compressibility of a mixture and the similar form as the 
Kapila’s one-dimensional transport equation [39]. The equation has proved to be competent and easier to deal with than the fully 
conservative formulation [38,61]. The right-hand side of Eq. (20) assures that the material derivative of the phase entropy is zero in 
the absence of shock waves.

The material derivative of 𝐶𝑓 in Eq. (20) is needed to solve the transport of aerated water, but also for the material derivative of 
the aggregate density in Eq. (11). Substituting the missing unknowns defined in Sec. 3.1 in Eq. (11) results in the final formulation 
6

of the material derivative of the aggregate density needed for solving the total mass balance
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Fig. 2. Woods’ formulation in Eq. (24) for mixture sound of speed 𝑐𝑓 . Plotted for air volume fraction 𝛽𝑔 assuming 𝐶𝑓 = 1.

𝐷𝜌

𝐷𝑡
= 𝜌

⎛⎜⎜⎜⎝
(1−𝛽)𝐶𝑓

𝐶𝑏

𝜌𝑙𝑐
2
𝑙

+

𝐶𝑏−𝐶𝑓

𝐶𝑏
+ 𝛽𝐶𝑓

𝐶𝑏

𝜌𝑎𝑐
2
𝑎

⎞⎟⎟⎟⎠
𝐷𝑝

𝐷𝑡
. (21)

3.4. Fluids: mixture speed of sound

The final formulation of the material derivative of the aggregate fluid is known in Eq. (21). This means that, using Eq. (9), a 
formulation for the aggregate speed of sound is derived

1
𝜌𝑐2

=
⎛⎜⎜⎜⎝
(1−𝛽)𝐶𝑓

𝐶𝑏

𝜌𝑙𝑐
2
𝑙

+

𝐶𝑏−𝐶𝑓

𝐶𝑏
+ 𝛽𝐶𝑓

𝐶𝑏

𝜌𝑎𝑐
2
𝑎

⎞⎟⎟⎟⎠ . (22)

For the air-water mixture let’s define a mixture density (𝜌𝑓 ) by splitting the formulation in Eq. (4)

𝜌𝑓 = (1 − 𝛽𝑔)𝜌𝑙 + 𝛽𝑔𝜌𝑎, 𝜌 =
𝐶𝑓

𝐶𝑏

𝜌𝑓 +
𝐶𝑏 −𝐶𝑓

𝐶𝑏

𝜌𝑎, (23)

where 𝜌𝑓 is the density of the aerated water. According to [75], the speed of sound formulation for homogeneous mixtures

1
𝜌𝑓 𝑐2

𝑓

=
𝛽𝑔

𝜌𝑎𝑐
2
𝑎

+
1 − 𝛽𝑔

𝜌𝑙𝑐
2
𝑙

and (24)

1
𝜌𝑐2

=

𝐶𝑏−𝐶𝑓

𝐶𝑏

𝜌𝑎𝑐
2
𝑎

+

𝐶𝑓

𝐶𝑏

𝜌𝑓 𝑐2
𝑓

. (25)

The mixture speed of sound formulation of Wood is illustrated in Fig. 2. Fig. 2 shows a large decrease in speed of sound for a small 
fraction of 𝛽𝑔 , even up to values lower than the speed of sound of air 𝑐𝑎 and water 𝑐𝑙 at atmospheric conditions.

Compressibility factor

The trend in Fig. 2 can be explained by looking to the general formulation of the speed of sound [74]

𝑐𝑓 = 1√
𝜌𝑓 𝜅𝑓

, (26)

in which 𝜅𝑓 is the compressibility factor for the mixture. Assuming the compressibility factor for air and density for water constant 
(𝐶) for a low volume fraction 𝛽𝑔 , 𝜅𝑓 ≈ 𝜅𝑎, and 𝜌𝑓 ≈ 𝜌𝑙 results in

𝑐𝑓 = 𝐶√
𝛽𝑔 − 𝛽2

𝑔

. (27)

Where the density hardly changes, the mixture has the compressibility of air.

3.5. Fluids: new formulation speed of sound

For the speed of sound around the interface where a clear distinction is between air and water, the mixture speed of sound 
7

formulation of Woods’ does in reality not hold. There is no mixture between air and water at the fluid-fluid interface while we do 
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Fig. 3. Frozen speed of sound for different mixtures 𝛽𝑔 , varying 𝐶𝑓 over 𝐶𝑏 . The cross represents the speed of sound of air.

use a homogeneous mixture model as stated in Sec. 2.2. The speed of sound at the interface is underestimated. The Woods’ equation 
results in non-monotonic behavior and inaccurate wave transmission around the interface, getting worse for diffusive interfaces.

Ansari and Daramizadeh [2] gave another drawback for the mixture speed of sound relation in Eq. (25). The indicated problem is 
relevant for high-density ratio flows with large air volume changes and cavitation. The defined pressure-density relation in Sec. 3.1
can lead to negative densities when sub-atmospheric pressures play a role. A negative density results in a complex speed of sound 
for the mixture. As the introduction mentioned, aeration can lead to cavitation, meaning that the negative densities need to be 
prevented.

We decrease the effect of the non-monotonic behavior of the speed of sound across an interface by maintaining a sharp interface 
(explained in next Sec. 4). The consistent approach for determining the mass and momentum fluxes by [22] is used to deal with 
high-density ratio flows and sharp interfaces. The formulation of the air density by Wemmenhove [72] is used to prevent negative 
values when cavitation is involved. However, more attention needs to be paid when a rigid body, a cut-cell method, is involved.

Results in Sec. 6.4 showed that these measures were not enough when a body at the fluid-fluid interface is involved. The 
compressibility was not well predicted by comparing it with another numerical model. Saurel et al. [62] developed a formulation 
by adding an extra governing equation like the six-equations model of Hong et al. [34] to solve interface problems separated 
by compressible media. The corresponding formulation for the speed of sound is found called the frozen sound speed relation. 
This relation is the high-frequency limit of the particles with no mechanical equilibrium being the upper limit while the Woods’ 
(mechanical equilibrium) speed of sound formulation is the lower limit. The particles are not able to adapt. Applying one of the two 
formulations was found to have small influence in the results [65]. In this paper we did find differences when a body was involved. 
By not assuming a homogeneous mixture around the interface, a transmitted pressure wave by the interface is better predicted.

The use of the frozen speed-of-sound formulation at the fluid-fluid interface solved the compressibility issue at the interface when 
a body is involved; around the body, and the interface between the mixture, 𝐶𝑓 , and air, (1 −𝐶𝑓 ). The new formulation for the speed 
of sound replaces Eq. (22) in Eq. (11) with

1
𝜌𝑐2

=
𝐶𝑏

𝐶𝑓 𝜌𝑓 𝑐2
𝑓
+ (𝐶𝑏 −𝐶𝑓 )𝜌𝑎𝑐

2
𝑎

(28)

where 𝑐𝑓 is given by mixture speed of sound formulation in Eq. (24) for volume fraction 𝛽𝑔 .
The authors are aware that changing the mixture speed of sound violates the mathematical derivation of the model in Sec. 3. The 

combination of the frozen speed of sound for volume fraction 𝐶𝑓 and the mixture speed of sound for volume fraction 𝛽𝑔 , including a 
body with two unique volume fraction fields is new. The behavior of the new formulation is illustrated in Fig. 3 and can be compared 
with Fig. 2.

4. Grid structure

Before introducing the discretization of the governing equations, the grid structure is introduced with the definitions and notations 
needed to solve the system of equations. A brief account is provided of how to identify the material interface between water and air, 
of the arrangement of variables being solved for within a grid cell, and of the cut-cell method to incorporate moving bodies. This 
account follows the lines of the method introduced by van der Eijk and Wellens [22].

A fixed 2D cartesian grid is employed to divide the domain in cells. Cell labeling is used to identify the position of the interface 
within the grid. As stated in the introduction, the method should maintain a sharp interface to reduce the nonmonotonic behavior 
of the speed of sound. Labeling aids in keeping the interface sharp because cells with air can be treated differently from cells with 
(aerated) water, and differently again from cells that contain the interface between air and (aerated) water. The cell labeling proposed 
by van der Eijk and Wellens [22] is used and illustrated in Fig. 4a. The choice of label is based on the volume fraction 𝐶𝑓 . A cell 
completely filled by the body is labeled B and is not included in the system of equations. A cell without liquid (𝐶𝑓 = 0) is labeled 
8

E (empty, for historical reasons [41]). When a cell contains some fluid and is adjacent to an E-cell, it is given the S-label (surface). 
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F F F F B

F F F F F

S C F C S

E S C S E

E E S S E

(a) The labeling system for grid cells [22].

p, 𝜌 u1

u2

(b) A staggered arrangement of variables.

Fig. 4. Fixed Cartesian grid structure with labels making a distinction between body, water, and air. Standard MAC configuration of variables (staggered); scalar 
variables (𝑝 and 𝜌) are defined in cell centers ( ), the velocity field 𝑢 is sampled at the faces of the cell (→).

A cell with some fluid and adjacent diagonally to one empty cell is labeled as C. Remaining cells are labeled F (fluid, again for 
historical reasons). A F-cell is not allowed to connect with an E-cell. Note that a F-cell is not necessarily completely filled.

The standard Marker-and-Cell (MAC) staggered arrangement of variables within a grid cell is used, meaning that the scalar 
variables (pressure 𝑝, density 𝜌, and volume fractions 𝐶𝑓 , 𝐶𝑏, 𝛽𝑔) are positioned in cell centers, and the components of the velocity 
vector normal to the cell faces (u = [u1, u2]𝑇 ) are positioned at those faces. The arrangement of variables is shown in Fig. 4b. 
Control volumes are employed to solve the governing equations. Two different kinds of control volume are used. Conservation of 
momentum is solved for in momentum control volumes, and continuity is solved for in mass control volumes. Mass control volumes 
coincide with grid cells, see Fig. 5a. Momentum control volumes lie staggered in the grid with respect to mass control volumes. All 
control volumes are shown in Fig. 5b. Averaging is needed to obtain values of the density at the positions of the velocity components. 
A consistent averaging procedure is described by van der Eijk and Wellens [22] and not discussed further here.

The body is represented using a cut-cell method [25]. A cell is called a ‘cut cell’ when part of the body’s contour intersects with 
this cell. The part of the cell not occupied by body is referred to as volume fraction, or volume aperture, 𝐶𝑏. The interface between 
body and fluids cuts through the cell by means of piecewise-linear segments. Volume and face apertures are used to account for the 
presence of the body. Volume aperture 𝐶𝑏 indicates the part of a grid cell’s volume that is open to fluid. Face apertures 𝑎𝑏 indicate 
the area of a grid cell’s faces that is open to flow. Apertures are illustrated in Fig. 5a. Apertures scale the size of the control volumes 
so that the equations in cut cells are solved like those in uncut cells; the discretization of the equations does not change. A visual 
representation of the scaling of control volumes is given in Fig. 5b. The size of the mass control volume is 𝐶𝑏𝛿𝑥𝛿𝑦, and left-most part 
of the boundary of the control volume that is open to flow is 𝑎𝑏𝛿𝑦. More about the treatment of cut cells is given in van der Eijk and 
Wellens [22].

5. Discretization and solution algorithm

The governing equations for conservation of mass (4) and conservation of momentum (6) of the fluids are discretized and 
combined with the discrete representations of the equations of motion of the body (7) and (8) into a system of equations for solving 
the pressure 𝑝 and the body velocity u𝑏. The fluid velocities u are solved from the pressure gradients. The fluid and body velocities 
are used to transport the interface between fluids and the interface between fluids and body. Density 𝜌 and the fraction of air in 
water 𝛽𝑔 (aeration) are solved algebraically. The equations are combined into a solution algorithm.

The solution algorithm is an extension of the incompressible two-phase flow method in van der Eijk and Wellens [22], that 
uses the same discretization techniques for the mass, momentum and interface transport to obtain a consistent method. Without 
consistency, momentum losses and distortion of the interface are found for high-density ratio flows. A temporary continuity equation 
was used to obtain consistency, solving it on momentum control volumes to prevent momentum losses as a result of the staggered 
grid.

A one-step projection method [14] is used for solving the pressure. Time levels are indicated using superscripts 𝑛 + 1 and 𝑛. A ∼
above variables indicates an auxiliary step. The following discrete operators are used to compose the system of equations: Ω𝑓 , Ω𝑐 . 
ℭ𝑓 , 𝑀𝑐 , 𝑀𝑓 , A𝑐 , I, in which subscript (𝑓 ) or (𝑐) is used to indicate whether the operator is applied on momentum or mass control 
volumes respectively. The symbols represent the discrete

• 𝑀 : divergence operator, that depends on grid sizes and face apertures 𝑎𝑏 [25].
• 𝑀𝑇 : transpose of the divergence operator that equals the negative gradient operator, working on pressures that are considered 

constant within grid cells [13].
• ℭ: convective operator that retains the skew-symmetry of its continuous counterpart [67].
9

• Ω: volume operator representing the grid cell volume scaled by 𝐶𝑏 [25].
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𝑎𝑏𝛿𝑦

𝛿𝑥

𝛿𝑦

𝑦

𝑥

(1-𝐶𝑏)𝛿𝑥𝛿𝑦

𝐶𝑏−𝐶𝑓

𝐶𝑏

𝐶𝑏𝛿𝑥𝛿𝑦
𝐶𝑓

𝐶𝑏

𝐶𝑏𝛿𝑥𝛿𝑦 𝐶𝑏𝛿𝑥𝛿𝑦

(a) Cut cell with volume aperture 𝐶𝑏 indicating the part of the grid 
cell’s volume open to fluid and face aperture 𝑎𝑏 indicating the area of 
a grid cell’s face open to flow. The mass control volume is shown as 
(–). The filling ratio of cells is administered in terms of 𝐶𝑓 and 𝐶𝑏 .

𝛿𝑥

𝛿𝑦

(b) Staggered arrangement of control volumes within the grid. 
Mass control volumes coincide with grid cells.

Fig. 5. Control volumes and cut cells. Cut cells are used to represent arbitrarily shaped moving bodies in the grid by means of piecewise-linear segments. Cut cells 
scale mass control volumes (–) and momentum control volumes with an averaging procedure, leading to this graphical representation of control volumes. Vertical 
momentum control volumes (–), and horizontal momentum control volumes (–) lie staggered with respect to mass control volumes.

• A: operator that integrates the pressure along the body contour using face apertures 𝑎𝑏 [22].
• I: identity matrix

The operators depend on time because of the volume and face aptertures that change with the moving body.

The solution algorithm is explained as implemented.

FOR EACH TIME STEP

1. Solve volume fraction transport for fluid and body (𝐶𝑛+1
𝑓

, 𝐶𝑛+1
𝑏

) and reconstruct interfaces with face apertures 𝑎𝑛+1
𝑏

2. Solve auxiliary momentum field 𝜌̄ū and 𝜌𝑛

3. Solve auxiliary density and vector field 𝜌̄ and ū
4. Solve vector field including all explicit terms ũ and 𝜌𝑛+1 and 𝛽𝑛+1

𝑔

5. Solve new pressure field with 𝛿𝑝 and coupling with body u𝑛+1
𝑏

6. Solve new fluid velocity field u𝑛+1

After every time step, a Courant number is calculated for the new velocity field u𝑛+1 [22]. When the Courant number does not satisfy 
the criterion associated with the time integration, the time step is halved until it does. When the Courant number is below a user 
defined minimum Courant number for 10 time steps, then the time step is doubled.

The following describes the discretization in order of the steps in the solution algorithm in subsections that have the same number 
as the step in the algorithm.

5.1. Interface transport

The interface capturing method consists of two steps: interface transport and geometrical reconstruction of the interface. Interface 
transport depends on the interface orientation and the discrete volume fraction field. The update for 𝐶𝑓 is solved by means of the 
discrete representation of Eq. (20). The update for 𝛽𝑔 is solved algebraically using Eq. (17). Transport equation (20) can be separated 
into an advective and a compressive part. For the advective part fluxes are computed along the boundary of a mass control volume. 
10

Fig. 6 shows a visual representation of a flux in a cut cell. Using fluxes, the discretization of the transport equation (20) becomes
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Fig. 6. Flux in a cut-cell near the interface between air and aerated water. The hatched area (–) represents the size of the flux 𝛿𝐶𝑓 . The area surrounded by the 
dashed line (–) represents the volume of the air-water mixture 𝐶𝑓

𝐶𝑏

𝛿𝑥𝛿𝑦 in the mass control volume.

𝐶𝑛+1
𝑓

= 𝐶𝑛
𝑓
− 1

𝛿𝑥𝛿𝑦

∑
𝑠𝑖𝑑𝑒𝑠

𝛿𝐶𝑓,𝑠𝑖𝑑𝑒

1
− 𝛿𝑡

𝛿𝑥𝛿𝑦

𝐶𝑛
𝑓

𝐶𝑛
𝑏

(
𝛽𝑛

𝑔

𝜌𝑛
𝑎

(
𝑐2
𝑎

)𝑛 +
1 − 𝛽𝑛

𝑔

𝜌𝑛
𝑙

(
𝑐2
𝑙

)𝑛

)
𝐷𝑝

𝐷𝑡

2

, (29)

where the material derivative is discretized as in Sec. 5.5.
Boxed term 1 represents the advective part, boxed term 2 represents the compressive part. A flux 𝛿𝐶𝑓 is of the form

𝛿𝐶𝑓 ∝
𝐶𝑓

𝐶𝑏

𝑢1𝛿𝑡𝑎𝑏𝛿𝑛, (30)

with 𝛿𝑛 representing the cell face size which in 2D corresponds to either 𝛿𝑥 or 𝛿𝑦. In the example in Fig. 6, 𝛿𝑛 is equal to 𝛿𝑦.
There is existing literature about using reconstruction after transporting the interface, to good effect [53,69,15]. Geometric 

reconstruction reduces mass loss and keeps the interface sharp. The bilinear interface reconstruction method of van der Eijk and 
Wellens [19] is used. The labelling system in Fig. 4a is used for marking out cells where the interface needs reconstruction; those are 
cells labeled with S or C. An example of a PLIC interface segment is shown in Figs. 5a and 5b.

The body is displaced similarly to Eq. (29). The difference is that the compressive term does not need to be computed. The 
transport equation for the body is

𝐶𝑛+1
𝑏

= 𝐶𝑛
𝑏
− 1

𝛿𝑥𝛿𝑦

∑
𝑠𝑖𝑑𝑒𝑠

𝛿𝐶𝑏,𝑠𝑖𝑑𝑒. (31)

After updating 𝐶𝑏 to 𝐶𝑛+1
𝑏

, the interface between body and fluids is reconstructed using the same PLIC method that is used for the 
interface between fluids. The face apertures 𝑎𝑛+1

𝑏
indicated in Fig. 5a are found by averaging end points of the reconstruction lines 

in neighboring cells.
The motion of the rigid body is solved with a Eulerian method. It is not necessarily shape preserving, but in this way the same flux 

schemes are used for body and fluids, ensuring mass conservation. In addition, the mass fluxes of the fluids and body can be matched 
and made consistent, preventing momentum and mass losses [22]. Consistency is not guaranteed using the Lagrangian method and 
might require ad-hoc treatments.

5.2. Auxiliary momentum field

The momentum equation (6) is solved in steps. First, an auxiliary momentum field 𝜌̄ū is solved for

𝜌̄ū− 𝜌𝑛u𝑛

𝛿𝑡
Ω𝑛+1

𝑓
+ℭ𝑛

𝑓

(
𝜌∗{u𝑛,u𝑛

𝑏
}
)

u𝑛. (32)

Momentum 𝜌∗u is defined as the weighted average of momentum contributions from the two fluids that are modelled

𝜌∗u = (𝐶𝜌𝑓 + (1 −𝐶)𝜌𝑎)u, (33)
11

in which 𝐶 is a weight that is based on the mass fluxes
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𝐶 =
|𝛿𝐶𝑓 ||u|𝑎𝑏𝛿𝑡𝛿𝑛

, (34)

using 𝛿𝐶𝑓 from Eq. (30) to obtain consistency between mass and momentum.
Density field 𝜌𝑛 is found using the values of 𝑝𝑛, 𝐶𝑛

𝑓
and 𝐶𝑛

𝑏
and the reconstruction of the interface from the mass control volumes 

that have overlap with the momentum control volume under consideration using the definition in Eq. (4). When the pressure at the 
position of a velocity in a cell is necessary, it is found as the average of the two nearest pressures in the direction of that velocity.

5.3. Auxiliary density

An auxiliary density field 𝜌̄ is computed for the momentum control volume that complies with the discretization of the momentum 
fluxes and VOF fluxes by means of a temporary continuity equation. The auxiliary density field is needed due to the inconsistency 
between 𝜌𝑛+1 and 𝜌̄ [22,59,9]. The temporary continuity equation reads

𝜌̄− 𝜌𝑛

𝛿𝑡
Ω𝑛+1

𝑓
+𝑀𝑛

𝑓

(
𝜌∗{u𝑛,u𝑛

𝑏
}
)
= 0, (35)

using the following approach near the interface between fluids and body

𝑀𝑛
𝑓

(
𝜌𝑛{u𝑛,u𝑛

𝑏
}
)
= 𝑀𝑛

𝑓
(𝜌𝑛u𝑛) +

(
1 −𝑀𝑛

𝑓

)(
𝜌𝑛u𝑛

𝑏

)
. (36)

An auxiliary vector field ū is computed by dividing the auxiliary momentum field by the auxiliary density found from Eq. (35).

5.4. New density & new aeration fields

A second auxiliary velocity field ũ is constructed to contain the remaining terms of the momentum equation, that are integrated 
explicitly in time

ũ = ū − 𝛿𝑡

(
Ω𝑛+1

𝑓

)−1
(

1
𝜌𝑛+1

(
𝑀𝑇

𝑐

)𝑛+1
𝑝𝑛 + g

)
, (37)

in which the new pressure field 𝑝𝑛+1 is split into a temporal change 𝛿𝑝 and the pressure field at the old time level 𝑝𝑛.
Density field 𝜌𝑛+1 is computed similarly to 𝜌𝑛. However, the new pressure field 𝑝𝑛+1, needed for equations of state of the 

fluids described in Sec. 3.1, remains as of yet unknown. In order to prevent having to iterate between density and pressure until 
convergence, which would involve a significant computational effort with solving a Poisson equation at every iteration, rather an 
auxiliary pressure field 𝑝̃ is constructed. Even without iterating between density and pressure, the Poisson equation in the current 
method described here constitutes 90% of the total computational cost. The auxiliary pressure field is found from

𝑝̃− 𝑝𝑛

𝛿𝑡
Ω𝑛+1

𝑓
+𝑀𝑛

𝑐

(
𝑝𝑛{u𝑛,u𝑛

𝑏
}
)
−
(
𝑝𝑛 − 𝜌𝑛

(
𝑐2
)𝑛
)

𝑀𝑛
𝑐

(
{u𝑛,u𝑛

𝑏
}
)
= 0. (38)

Note that this equation is solved on mass control volumes. Then, using Eqs. (12) and (15) for the air density 𝜌𝑛+1
𝑎

and liquid 
density 𝜌𝑛+1

𝑙
, respectively, the new density field 𝜌𝑛+1 is computed. The densities 𝜌𝑛+1

𝑎
and 𝜌𝑛+1

𝑙
are functions of 𝑝∗, but also of 𝐶𝑛+1

𝑓

and 𝐶𝑛+1
𝑏

, see Sec. 5.2.

The new aeration field 𝛽𝑛+1
𝑔

is computed using the new density values 𝜌𝑛+1
𝑎

and 𝜌𝑛+1
𝑙

, together with Eq. (17) in which the mass 
fraction 𝜇𝑔 is required to remain constant.

5.5. Pressure equation & coupling with body

The equation for the pressure change 𝛿𝑝 is obtained by taking the divergence (𝑀𝑐 ) of the momentum equation and substituting it 
into the continuity equation by eliminating the velocity field at the new time step u𝑛+1. The discrete continuity equation for a mass 
control volume equals

1
𝜌

𝐷𝜌

𝐷𝑡
+𝑀𝑛+1

𝑐

(
{u𝑛+1,u𝑛+1

𝑏
}
)
= 0. (39)

After substituting the discrete momentum equation into Eq. (39) and rearranging terms, an equation for 𝛿𝑝 and u𝑛+1
𝑏

is obtained

𝛿𝑡𝑀𝑛+1
𝑐

(
Ω𝑛+1

𝑓

)−1 1
𝜌𝑛+1

(
𝑀𝑇

𝑐

)𝑛+1
𝛿𝑝−

(
1 −𝑀𝑛+1

𝑐

)
u𝑛+1

𝑏
= 𝑀𝑛+1

𝑐
ũ + 1

𝜌

𝐷𝜌

𝐷𝑡
. (40)

The material derivative density term in Eq. (40) is solved with Eq. (21)

1
𝜌

𝐷𝜌

𝐷𝑡
= 1

𝜌𝑛+1
(
𝑐2
)𝑛+1

(
𝛿𝑝

𝛿𝑡
Ω𝑛+1

𝑐
+𝑀𝑛+1

𝑐

(
𝑝𝑛{ũ, ũ𝑏}

)
− 𝑝𝑛𝑀𝑛+1

𝑐
{ũ, ũ𝑏}

)
, (41)

from which the unsteady term with the pressure change 𝛿𝑝 needs to be moved to the left-hand side of Eq. (40). How the speed of 
12

sound (𝑐) is computed is described in Sec. 3.5.
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The discrete representation of the equations of motion of the body Eq. (8) is given by

u𝑛+1
𝑏

− u𝑛
𝑏

𝛿𝑡
𝑚𝑏 +𝑚𝑏g +A𝑛+1

𝑐
(𝛿𝑝+ 𝑝𝑛) , (42)

in which A𝑐 is an operator that integrates the pressure over the surface of the body. Similar to the auxiliary velocity and pressure 
fields, an auxiliary body velocity ũ𝑏 is formulated including terms that are integrated explicitly

ũ𝑏 = u𝑛
𝑏
+ 𝛿𝑡𝑚−1

𝑏

(
𝑚𝑏g +A𝑛+1

𝑐
𝑝𝑛
)
. (43)

Fluids and body are coupled through the pressure. The following system of equations needs to be solved to find the field of 
pressure change 𝛿𝑝 the body velocity u𝑏[

L𝑝 −𝑀𝑛+1
𝑏

𝛿𝑡𝑚−1
𝑏
A𝑛+1

𝑐
I

]
⋅
[

𝛿𝑝

u𝑛+1
𝑏

]
=
[
R𝑝

ũ𝑏

]
, (44)

in which

L𝑝 = 𝛿𝑡𝑀𝑛+1
𝑐

(
Ω𝑛+1

𝑓

)−1 1
𝜌𝑛+1

(
𝑀𝑇

𝑐

)𝑛+1 − 1
𝜌𝑛+1

(
𝑐2
)𝑛+1 𝛿𝑡−1Ω𝑛+1

𝑐
, and

R𝑝 = 𝑀𝑛+1
𝑐

ũ+ 1
𝜌𝑛+1

(
𝑐2
)𝑛+1

(
𝑀𝑛+1

𝑐

(
𝑝𝑛{ũ, ũ𝑏}

)
− 𝑝𝑛𝑀𝑛+1

𝑐
{ũ, ũ𝑏}

)
.

(45)

5.6. New fluid velocity field

Finally, after having solved for the pressure change and the body velocity, the new fluid velocity field is computed from

u𝑛+1 − ũ

𝛿𝑡
Ω𝑛+1

𝑓
+
(
𝑀𝑇

𝑐

)𝑛+1
𝛿𝑝 = 0. (46)

5.7. Reflection on discretization schemes

In this section the time integration has been represented as implicit for the pressure and Forward Euler for the explicit terms. 
This was for the purpose of presenting an already complex combination of equations, and in the presentation we wanted to keep 
emphasis on the equations and not confound matters with the details of the discretization. The algorithm as presented works, but 
improvement with respect to the presented algorithm can be obtained with the discretization discussed here.

The convective term in Eq. (32) is solved on a momentum control volume. This term is discretized using the high-resolution 
scheme [77,33]. The high-resolution scheme combines high-order accuracy with monotonicity and switches from second-order to 
first-order upwind near the interfaces between body and fluids and between fluids. An explicit second-order Adams-Bashforth time 
stepping scheme then is employed for the convective term to allow for larger time steps. The suitable Courant restriction for the 
combination of these two schemes is 0.25 or lower [72].

The material derivative of the pressure is solved on mass control volumes. The advective term of the derivative is split into 
two terms as illustrated in Eq. (41). The divergence term of the pressure is discretized using arithmetic averaging of pressures. The 
pressure equation in Eq. (44) is solved monolithicly to prevent instabilities that occur when the body mass is of similar order as the 
added mass [25]. When using a partitioned approach for fluids and body, a similar procedure as in Banks et al. [3] or in Roenby 
et al. [60] can be adopted. The equations of motion of the body are integrated in time using the Crank-Nicolson scheme [22].

The material interfaces defined using volume fractions 𝐶𝑓 and 1 −𝐶𝑏 are transported using a direction-split scheme called COSMIC 
[45]. The COSMIC scheme is applied for the advective term in Eq. (29). A correction around the interface [73] is used to conserve 
mass for incompressible flows.

A final note on the discretization is that it was not designed to be completely mass conserving. It is quasi-conservative in which 
mass errors are carefully balanced against momentum errors and other errors that can be expected on the fairly coarse grids that 
cannot be avoided for the envisioned application of wave impacts on structures at sea. It is demonstrated next that the errors are 
well behaved and that the numerical results show good agreement with analytical solutions and experimental results.

6. Verification and validation with results from existing literature

Peregrine et al. [54] showed that it is likely that density waves are formed in the compressible medium after wave impacts 
of aerated water against structures. The capability of our method to represent the propagation of density waves is investigated by 
comparing with results of existing benchmark tests with compressibility from literature: a shock tube, a piston and a 2D shock bubble.

6.1. 1D shock tube

A shock tube is a 1D case in which a fluid or fluids at different initial pressure are separated before being released. The propagation 
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of a density wave in a tube filled with air at different states initially was presented by van der Eijk and Wellens [20] using a similar 
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x 1[m]

x < 0.5[m] x > 0.5[m]

Fig. 7. Setup of simulation of a shock tube with water (blue) and air. Water initially at high pressure.

numerical method. Two shock tube cases are considered here. One with water at high pressure on one side of the tube and air on the 
other, and one with aerated water at a higher pressure one side of the tube than the other. Gravitational effects are not relevant and 
are omitted from the simulations. For both cases, three different grid resolutions are used and the effect of the Courant number on 
the results is evaluated.

6.1.1. Shock tube with two separated fluids

The first case resolves a density wave through a shock tube with two fluids, water and air. A shock tube with water and air was 
investigated analytically by Sod [66]. The setup of the simulation is illustrated in Fig. 7.

The fluid configuration, pressure and density satisfy the following initial conditions

𝐶𝑓 =
{

1[-], 𝑥 < 0.5[m]
0[-], 𝑥 > 0.5[m] , 𝑝 =

{
1.0[Pa], 𝑥 < 0.5[m]
0.1[Pa], 𝑥 > 0.5[m] and 𝜌 =

{
1.0[kg/m3], 𝑥 < 0.5[m]
0.125[kg/m3], 𝑥 > 0.5[m] .

The initial velocity field is zero. Aeration is not considered, so 𝛽𝑔 = 0. As equations of state, these relations are employed

𝜌𝑙 = 𝑝, 𝜌𝑎 =
(

𝑝

𝑎𝑐

) 1
𝛾𝑎

,

with 𝜌𝑙 the density of water and 𝜌𝑎, 𝑎𝑐=1.34543 and 𝛾𝑎=1.25 the density, specific heat ratio and isentropic constant for air, leading 
to the following expressions for the speed of sound in water and air respectively

1
𝑐2
𝑙

= 1, 1
𝑐2
𝑎

= 1
1.34543𝛾𝑎

(
𝑝

1.34543

) 1−𝛾𝑎
𝛾𝑎 .

The maximum Courant number, based on the instantaneous fluid velocities, equals 0.2. The final time for the simulations is set at 
0.25[s]. Simulations are performed for several grid resolutions to investigate convergence. The resolutions are 250, 500, and 1000 
cells over the tube length.

The simulation results are shown in Fig. 8 and compared to the analytical results of Sod [66]. The displacement of the interface 
between fluids is predicted well. The mass loss is never larger than 0.4% for the air phase and 0.01% for the liquid phase. A 
rarefaction wave propagates through the water in negative 𝑥-direction and a compression wave propagates through the air in positive 
𝑥-direction. The fluid velocity is continuous across the interface between water and air. The velocity gradients in the rarefaction wave 
(0.2< 𝑥 <0.5) are smoothed by numerical viscosity, which decreases with increasing grid resolution. Note that the compression wave 
front is not a formal discontinuity in the method; the velocity jump is smeared out over a couple of grid cells. The numerical viscosity 
is not sufficient to prevent wiggles near the compression wave front: small spurious velocity oscillations are found there that are 
independent of the spatial grid size; the wiggles are there because a shock-capturing method has not been applied and no amount 
of resolution is sufficient to resolve the discontinuity [29]. The velocity of the compression wave front is underestimated by 1.0% 
and also the fluid velocities are somewhat underestimated compared to the analytical results. This could be due to using the non-
conservative form of the equations in the method. The non-conservative form does not satisfy the same Rankine-Hugoniot conditions, 
describing the states of the fluid on either side of the compression wave front, as the conservative form.

6.1.2. Shock tube with aerated water (water-air mixture)

The second case is a shock tube filled with aerated water, i.e. a homogeneous water-air mixture, with a higher pressure and 
density in the left-most half of the tube. An analytical solution for density wave propagation though dispersed fluids (mixtures) was 
reported in Franquet [26]. The assumption of homogeneity means that transport of the interface through 𝐶𝑓 is not resolved; 𝐶𝑓

is equal to one throughout the domain. The mass fraction of the air in water is 𝜇𝑔=1.31⋅10−5[-]. The initial conditions for the air 
volume fraction associated with that mass fraction, and for the pressure on either side of the shock tube are

𝛽𝑔 =
{

1.95 ⋅ 10−3[-], 𝑥 < 0.5[m]
1.00 ⋅ 10−2[-], 𝑥 > 0.5[m] , 𝑝 =

{
106[Pa], 𝑥 < 0.5[m]
105[Pa], 𝑥 > 0.5[m] .

The initial conditions for the density of the air in water and for the density of the water are

𝜌𝑎 =
{

6.91[kg/m3], 𝑥 < 0.5[m]
1.33[kg/m3], 𝑥 > 0.5[m] , 𝜌𝑙 =

{
1027.4[kg/m3], 𝑥 < 0.5[m]
1027.0[kg/m3], 𝑥 > 0.5[m] .

The equations of state are the same as in Sec. 3.1.
At first a maximum Courant number based on the instantaneous fluid velocities of 0.001 is set. The final time of the simulations 
14

is 5.5137⋅10−4[s]. Simulations with three grid resolutions are performed, using 250, 500 and 1000 cells in the length of the tube.
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Fig. 8. Shock tube with water and air: numerical results compared to analytical solution [66] for three different grid resolutions at time 𝑡 =0.25[s].

The results of the simulations are shown in Fig. 9. The results are in agreement with the analytical solution except at the 
discontinuity where wiggles are found because it is underresolved. At the discontinuity, the results will not converge to the analytical 
solution. However, convergence for the pressure signal is found for the 𝐿1 and 𝐿2 norm up to first-order and 𝐿∞ above first-order.

The slight jump in the aeration and density field near 𝑥 = 0.5[m] is caused by a temperature fluctuation, which our method does 
not solve for. Similar observations as for the shock tube with water and air separately can be made regarding numerical viscosity, 
the resolution of velocity gradients and oscillations near the compression wave front.

Next, the effect of the maximum Courant number on the results is investigated. Simulations are performed in which the maximum 
Courant numbers are varied between 5⋅10−4 and 1⋅10−2 at a grid resolution of 1000 cells. The results are shown in Fig. 10, zooming in 
on the direct vicinity of the compression wave at time 𝑡 =5.51⋅10−4[s]. The resolution of the jump in velocity over the compression 
wave front is strongly affected by the choice for the maximum Courant number. With a Courant number of 5⋅10−4 the jump is 
resolved well but velocity oscillations (wiggles) are observed. The oscillations become smaller for higher Courant numbers, until for 
a value of 5⋅10−3 no oscillations remain. But at a maximum Courant number of 1⋅10−2, the jump in velocity near the compression 
wave front is also not resolved well anymore.

For the shock tube with aerated water the speed of the propagating density wave is close to 200[m/s]. That means that for a 
Courant number based on the fluid velocities of 5⋅10−3, the Courant number based on the speed of the density wave is approximately 
1. Considering the shock tube with separated water and air with a Courant number based on fluid velocities of 0.2, the Courant 
number based on the density wave speed is 0.3.

To obtain an adequate representation of the fluid properties on either side of the density wave front, the experience with the 
shock tubes gives us that the Courant number based on the speed of the density wave needs to be below 1.

Note that the numerical method is not intended for a complete representation of shock fronts, but for the representation of effects 
associated with compressibility in impacts between waves and structures, such as the pressure oscillations due to density waves 
through the compressible medium.

6.2. Water or rigid body piston

To demonstrate the method’s performance at capturing low-frequency, low-velocity, large scale compression of fluids that are 
separated by an interface, vertical 1D ‘piston’ simulations are performed [47,16]. The piston is either a layer of water or a body 
initially placed in between two layers of air before releasing it to fall down due to gravity. The piston compresses the air below while 
gaining and losing inertia, after which the compressed air pushes the piston back up again. At these low velocities, the water piston, 
being weakly compressible, is expected to behave the same as the piston that is modelled as a moving body.

The piston simulation setup is shown in Fig. 11. The piston is hatched to indicate that it can either be a rigid body (𝐶𝑏 is 
15

transported) or water (𝐶𝑓 is transported). The initial air density is 1[kg/m3], and the density of water and body is 1000[kg/m3]. The 
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Fig. 9. Shock tube aerated water: numerical results compared with analytical solution [26] for three different grid resolutions at time 𝑡 =5.51⋅10−4[s].

Fig. 10. Shock tube aerated water: effect of maximum Courant number (based on instantaneous fluid velocity) on the velocity on either side of the compression wave 
front. Simulations performed with grid 1000 and velocity shown at time 𝑡 =5.51⋅10−4[s].

pressure follows an aerostatic pressure distribution with value of 1⋅105[Pa] at the bottom end of the domain. The gravity constant g
is [0, -9.81]𝑇 [m/s2]. The maximum Courant number is 0.2. The velocity field when the simulations start, is zero.

Results are given in Fig. 12 in terms of the pressure at the bottom end of the domain for different numbers of cells over the full 
height of the domain. Results are compared to those of Guilcher et al. [30]. The pressure over time with a piston composed of water 
in Fig. 12a has converged for grid 450 and then matches the results of Guilcher et al. [30]. The 𝐿1, 𝐿2, and 𝐿∞ convergence rate 
found for the grid resolutions is above 2. When the water is replaced by a moving rigid body for grid 450, the pressure in Fig. 12b, 
the pressure is a match to that below the water piston. Both piston motions have the same expected physical behavior, even though 
the transport algorithms for 𝐶𝑓 and 𝐶𝑏 are quite different.

6.3. 2D shock bubble

The test case with a shock bubble is performed to investigate how density waves change direction and how they are transmitted 
between fluids in simulations with a compressible multiphase method. Helium shock-bubble experiments were performed by Haas 
16

and Sturtevant [31] and the results serve as a benchmark.
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Fig. 11. Piston: simulation setup. Hatched area indicates either water or a moving rigid body.

Fig. 12. Piston: pressure below piston as a function of time when piston is either water or moving rigid body.

𝑝𝑎𝑡𝑚 89[mm]

356[mm]
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Fig. 13. Shock bubble: simulation setup with air at two states of pressure, and helium bubble in the air at one of these states.

The simulation setup for the 2D helium shock bubble case is illustrated in Fig. 13. Air, initially, is in two states on either side 
of the domain, just as for the shock tube. A cylindrical helium bubble is placed in the air at one of these states, approximately in 
the middle of the domain. The domain boundaries are closed with atmospheric pressure prescribed on the left horizontal end of 
the domain. Because the simulation setup is symmetrical in y-direction only half of the domain in that direction is simulated. Three 
grid resolutions are used in half of the domain: 1200x150, 800x100, and 400x50. A Courant number of 0.2 is used. The shock front 
arrives at the 𝑥-position of the helium bubble at 6⋅10−5[s] after the fluids are released. From here on, the moment the shock front 
arrives at the position of the bubble is defined as t=0[s].

The helium bubble in the experiment was contaminated with 28% air (of mass) [31]. The fluid properties in Table 1 take the 
contamination into account and are given for a temperature of 25 degrees Celsius [31]. These properties, according to the Rankine-
Hugoniot equations, are associated with an initial shock front speed of 420[m/s] and a Mach number of 1.22 [31,58]. Quirk and 
Karni [58] conducted a detailed numerical study of the helium shock bubble. Kreeft and Koren [43] also simulated the shock 
bubble, but with different fluid properties using a density-based model solving Kapila’s five-equation model for inviscid, non-heat-
conducting, compressible two-fluid flows. Even though the fluid properties they used were different, the same shock front speed as 
17

in the experiment was obtained [43].
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Table 1

Initial fluid properties for helium shock bubble simulation [31].

𝛾 𝜌 𝑝 𝐶𝑓 𝛽 𝑢

[−] [𝑘𝑔∕𝑚3] [𝑘𝑔∕𝑚𝑠2] [−] [−] [𝑚∕𝑠]

Air 1 1.4 1.168 1.0 ⋅ 105 1.0 0 0
Air 2 1.4 1.612 1.5698 ⋅ 105 1.0 0 -115.5
Helium 1.648 0.212 1.0 ⋅ 105 0 0 0

Fig. 14. Shock bubble: definition of interfaces and density wave fronts together with a space time plot of the position of the interfaces and wave fronts. Numerical 
results (markers) at three grid resolutions: 400x50 , 800x100 and 1200x150 , compared with Quirk and Karni [58] (solid lines). The maximum Courant number 
is 0.2.

Table 2

Shock bubble: velocity magnitudes (in [m/s]) of interfaces and density wave fronts.

𝑣𝑠 𝑣𝑟 𝑣𝑡 𝑣𝑢𝑖 𝑣𝑑𝑖 𝑣𝑗

Haas and Sturtevant [31] 410 900 393 170 145 230
Quirk and Karni [58] 422 943 377 178 146 227
Kreeft and Koren [43] 419 956 - 176 - -
Present model 1200x150 CFL=0.2 417 970 384 184 146 215

In the simulations, the front of the density wave before interacting with the helium bubble at 𝑡 =0[s], is smeared out over ten grid 
cells. We chose the position in the middle of these 10 cells as the position of the density wave front to compare with the results from 
literature. The results of the simulations are given in terms of the positions and the velocities of the interfaces and the density wave 
fronts. The definition of all interfaces and shock fronts is given in Fig. 14a. Interfaces and shock fronts are identified by their velocities 
𝑣. Fig. 14b features a space-time plot of the interfaces, in which the results of the numerical method at three grid resolutions are 
compared with the results of Quirk and Karni [58]. The maximum Courant number is 0.2. The results of our numerical method have 
converged, independent of how the discontinuity in the wave is solved. A convergence rate between the three grid resolutions of 1.3 
is found. Where the grid spacing used by Quirk and Karni [58] was 0.056[mm], a relatively coarse grid is used in our simulations, 
with the 1200x150 grid having a spacing of 0.30[mm]. Spurious oscillations at the density wave front were not observed. Even at 
these coarse grids, the positions of the interfaces over time are in good agreement with Quirk and Karni [58]. A similar conclusion 
was found for the cases with the shock tube.

The velocity magnitudes of the interfaces and the density wave fronts are compared with the experimental results of Haas and 
Sturtevant [31] and the numerical results of Quirk and Karni [58] and Kreeft and Koren [43] in Table 2. Good agreement is found 
between the results of our method using grid 1200x150 (maximum Courant number 0.2) and the existing results from literature.

Fig. 15 shows density profiles at time 𝑡 =1.4⋅10−4[s], taken at 𝑦 = 89[mm] at the top of the domain and at 𝑦 = 49.5[mm] in the 
middle of the domain, for grid resolutions 400x150 and 1200x150 and Courant numbers 0.005 and 0.2. Comparing results for the 
same Courant number, but different spatial grid resolution, and for the same spatial resolution but different Courant numbers, makes 
clear that increasing the spatial grid resolution and reducing the Courant number yield nearly the same effect: the density profile 
shows more variation and the density wave front is spread out less in space. The increase in grid resolution and the lowering of the 
Courant number did not significantly affect the position of the density wave front or the interface of the bubble themselves. The fluid 
interface between helium and air (at 𝑣𝑑𝑖 and 𝑣𝑢𝑖) is captured well and smeared out less due to the geometrical reconstruction.

6.4. 2D wedge entry in incompressible water

The test case of a 2D wedge impact with incompressible water is considered to evaluate the new speed-of-sound formulation in 
18

Eq. (28). The setup of the simulation is shown in Fig. 16a, containing the dimensions of the domain and the wedge; it is the same 
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Fig. 15. Shock bubble: density profile 𝜌 at time 1.4⋅10−4[s] for different grid resolutions and Courant numbers. Dashed lines for 𝜌 at 𝑦 = 89[mm]. Solid lines for 𝜌 at 
𝑦 = 49.5[mm].

Fig. 16. 2D wedge entry: simulation setup and force on wedge as a function of time. Force from the current method with 𝛽𝑔=0.0 and two different formulations for 
the speed of sound compared with incompressible model from an earlier article [20]. Grid 33x18 used.

setup as the one used in the next section about validation. The angle that the bottom planes of the wedge make with the horizontal, 
the so-called deadrise angle (𝛼), is 15[deg]. In the simulation the wedge falls down vertically and impacts with the water. The 
vertical velocity of the wedge upon impact (𝑉𝑖) is 7.0[m/s]. The grid is named for the number of cells that are used to represent the 
bottom plane of the wedge within the dashed box in Fig. 16a, because it is important to resolve the water jets formed in that box 
with sufficient accuracy. For the simulations described here, a grid resolution of 33x18 in the box is used.

Two simulations without aeration, so that 𝛽𝑔=0.0, are performed, from which the vertical force on the wedge over time is 
obtained. Without entrained air in water, the results of these simulations should be close to that of the incompressible method 
described in van der Eijk and Wellens [20]. One simulation is performed with an implementation of the traditional mixture speed 
of sound in Eq. (25). The other simulation is performed with an implementation of the new formulation for the speed of sound in 
Eq. (28). Zooming in on the peak of the force in Fig. 16b, one finds that the force from the implementation with new speed of sound 
in Eq. (28) is a near-exact match with the force from the incompressible method [20]. The force from the implementation with 
the traditional mixture speed of sound in Eq. (25), shows a low-frequent oscillation. The low-frequent oscillation is the result of a 
numerical artifact that we call ‘spurious compressibility’. In violent free surface flow, grid cells labelled F can sometimes receive a 
lower value for the filling ratio 𝐶𝑓 than 1. Using Woods’ equation, Eq. (25), values for 1 − 𝐶𝑓 are treated the same as aeration, so 
that a fluid containing an artifact of violent free surface flow can become misrepresented as a compressible fluid. Small values for 
1 − 𝐶𝑓 can already lead to a significant decrease of the speed of sound. The spurious compressibility shows up as force oscillations 
some moments after the wedge impacts with the water. Eq. (28) corrects for the presence of F-labelled cells with values for 𝐶𝑓 lower 
than 1 and therefore does not lead to force oscillations that should not be there.

7. 2D wedge impact with aerated water

In order to evaluate the capabilities of the numerical method in terms of fluid-structure interaction with compressible aerated 
water, it is validated against a new experiment that was performed specifically for this article. The data of the experiment will be 
made available as open data. Before motivating why it was necessary to conduct a new experiment, first an overview of existing 
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literature about experiments with aerated water is provided.



Journal of Computational Physics 514 (2024) 113167M. van der Eijk and P. Wellens

7.1. Brief overview of experiments with aerated water

Experimental data for fluid-structure interaction with aerated water is rare [48,23,49,50,36], with Eroshin et al. [24] being an 
early account such an experiment. Ma et al. [48], Mai et al. [49], Hong et al. [36] used a flat plate and Elhimer et al. [23] used 3D 
cones with different deadrise angles. A general conclusion they made is that the effect of aeration is relevant for designing maritime 
structures operating in heavy seas. A significant reduction of the impact loads is found compared to impacts with pure water.

For flat plate impacts, Ma et al. [48] found that increasing the level of aeration increases the rise time and fall time of the impact 
pressure on the plate. They added that with flat plate impacts cavitation likely plays a role. Mai et al. [49], also studying flat plate 
impacts, motivated that the high-frequency oscillations associated with the compressibility of the medium they found, can have 
consequences for the fatigue analysis of the structure, but that the standard regulations for taking impact pressures into account may 
be conservative in the presence of aeration, as these, being based on pure water, specify impact pressures that are too high. Their 
results are in agreement with the numerical results of Hong et al. [36].

For cone impacts with aerated water, Elhimer et al. [23] found a reduction of the wetted contact surface, a reduction of the 
impact pressure, and a reduction of the average pressure, compared to cone impacts with pure water. They showed that the edge 
Mach number (𝑀𝑎𝑒𝑑𝑔𝑒) is relevant for indicating the significance of aeration on the peak pressures. The edge Mach number is the 
ratio of the fluid expansion velocity along the bottom of the body and the speed of sound of the mixture

𝑀𝑎𝑒𝑑𝑔𝑒 =
𝑉𝑖

tan(𝛼)𝑐𝑓

, (47)

where 𝑐𝑓 is found from Eq. (24) and 𝛼 is the deadrise angle, that was illustrated in Fig. 16. Elhimer et al. [23] concluded that when 
the edge Mach number (𝑀𝑎𝑒𝑑𝑔𝑒) is above 0.05, compressibility has a relevant effect on the impact pressure. When 𝑀𝑎𝑒𝑑𝑔𝑒 is above 
0.3, the type of nonlinearity related to that in the equation of state of the air-water mixture is found. In the range 0.05 < 𝑀𝑎𝑒𝑑𝑔𝑒 < 0.3
the largest changes in impact pressures are found.

7.2. Experimental setup

The existing experiments in literature focus on finding the effect of aeration on the impact pressure. While that is certainly our 
motivation, too, validating the numerical method requires more than only the pressure. Because the speed of sound of the mixture 
has such a central role in the derivation of the closure model, the experiment for validation was designed to capture not only 
the pressure upon impact, but also the secondary pressure oscillations as a result of the reflected density waves. The body in the 
experiment is formed by a wedge, because the numerical method is not suited to capture the phase changes associated with the 
cavitation encountered by Ma et al. [48].

The setup of the experiment consists of three parts: the box containing water, the fall tower and the wedge attached to a guiding 
mechanism within the fall tower. The guiding mechanism prevents rotation. The error in orientation of the wedge due to tolerances 
between tower and guiding mechanism was investigated and found to be smaller than 0.1 degree. The fall height from the tip 
of the wedge to the initial free surface of the water is at most 2.83[m] so that, with friction, a maximum impact speed 𝑉𝑖 up to 
7.0[m/s] can be achieved. The box and wedge are illustrated in Fig. 17, in which 𝛼 is the deadrise angle. The box is made of 
36[mm] thick plywood, with a 30[mm] perspex front, having the overall inner dimensions of in-plane width×height×out-of-plane 
width=1100×900×240[mm]. The out-of-plane width of the wedge is 238[mm]. This is somewhat smaller than the box to prevent 
contact between wedge and box, while minimizing 3D effects due to the gap between wedge and box. The width of the wedge 
between chines is 218[mm], being five times smaller than the width of the box. The water level in the box is 495[mm] with respect 
to the bottom of the box.

Two wedges are used, each with a mass of 31.78[kg/m], having different deadrise angles (𝛼). One has a deadrise angle of 15[deg], 
the other of 30[deg]. These deadrise angles are encountered frequently in industry at different cross-sections of high-speed vessels 
[21]. The side walls of the wedge above the chine are 0.20[m] high. The wedge is equipped with four pressure sensors, positioned 
along the bottom of the wedge. The positions of the sensors on one side of the wedge are shown in Fig. 17 for the two different 
deadrise angles. The other two pressure sensors are placed symmetrically at the other side of the wedge. The type of pressure sensor 
is 113B25 ICP of PCB Piezotronics, with a membrane diameter of 5.54[mm]. This type measures impact pressures accurately during 
a short time, after which they are ‘loaded’ and need to ‘discharge’. The pressure sensor closest to the tip of the wedge us called 
pressure sensor 1, the other, closest to the chine, is called 2. The sensors place on the other side of the wedge are used as measure of 
the variability of the pressure. A sampling frequency of 100[kHz] was used to record the pressure.

Air bubbles in water are created at the bottom of the box. Homogeneity is approximated through the use of sixteen AS23 fresh 
water air diffusers of Pentair equally distributed along the bottom of the box. The air diffusers create bubbles with varying size 
in the order of 1[mm] in diameter. The aeration level is measured with the method of Ma et al. [48]. A cylindrical tube is used 
that is significantly larger than the size of the bubbles. The time it takes to fill the tube with air determines the aeration level. The 
standard deviation and mean of the aeration levels 𝛽𝑔 in the experiment are shown in Fig. 18 for three different locations in the box. 
The position of the wedge in the box is indicated by the solid black lines near the origin of the horizontal axis. For every location, 
six aeration measurements are performed and expressed as volume of air over volume of water. The standard deviation of the six 
aeration measurement increases with increasing level of aeration. It is less than 1⋅10−3 for the aeration levels approximating 1% 
by volume, rising to 2.5⋅10−3 for the aeration levels close to 4% by volume. The variation between locations also increases with 
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increasing level of aeration, being smaller than 3⋅10−3 for the aeration level close to 1% and rising to more than 1⋅10−2 for aeration 
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Fig. 17. Setup of wedge impact experiment with aerated water. Dimensions of the experiment are also the dimensions of the numerical domain.

Fig. 18. Aeration measurements represented as air volume over water volume at the free surface for different locations in the box. Position of the wedge is indicated 
by solid black lines at the bottom of the graph.

levels of 4%. A homogeneous air-water mixture was not achieved, especially considering the aeration levels near the boundary of 
the box, but near the position of the wedge homogeneity is approximated reasonably well.

The experiment is conducted for combinations of four aeration levels (𝛽𝑔 = 0.0, 0.01, 0.02, 0.04[-]) and two deadrise angles (𝛼
= 15, 30[deg]). The impact velocity of the wedge is kept constant at 𝑉𝑖=7[m/s]. The combinations are illustrated with white circles 
in Fig. 19, showing the edge Mach number as a function of aeration level and deadrise angle. The maximum edge Mach number 
achieved is 𝑀𝑎𝑒𝑑𝑔𝑒 = 0.5. Every test in the experiment is repeated five times and gives 10 data signals as a function time per pressure 
sensor (recall the symmetrically placed pressure sensors). The 10 data points per time step are used to determine the mean and the 
standard deviation of the pressure. The expected maximum pressure on the wedge is between 104 and 107[Pa], so that the density 
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changes in the mixture can be attributed mainly to the air in water [23].
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Fig. 19. The edge Mach number (𝑀𝑎𝑒𝑑𝑔𝑒) depending on the impact velocity 𝑉𝑖 = 7[m/s] and the deadrise angle 𝛼 of the wedge, and the aeration level 𝛽𝑔 for a 
homogeneous mixture. The experimental tests are represented by .

Table 3

Simulation parameters.

Parameter Value

𝜌𝑙 [kg/m3] 999.00
𝜌𝑎 [kg/m3] 1.22
𝑝𝑎𝑡𝑚 [Pa] 1.00⋅105

ℎ0 [m] 0.01

(a) Initial conditions of fluids 
and wedge.

Variable Values

𝛼 [deg] 15 30
𝛽𝑔 [-] 0.0 0.01 0.02 0.04

(b) Variables considered in the numerical 
simulations.

7.3. Numerical setup

The size of the domain in the numerical setup is given by Fig. 17. The top boundary of the domain is used to define the atmospheric 
pressure. The remaining walls are closed and can reflect density waves. The initial height of the bottom of the wedge above the initial 
waterline ℎ0 is 10[mm]. The air layer between the wedge and the interface is not expected to affect the loadings as the deadrise 
angles are too high [21,79].

The relevant parameters for the fluids and wedge are given in Table 3a. The degrees of freedom of the wedge are limited to allow 
only vertical motion. The end time of the simulations is 0.10[s] so that the entire slamming stage of the interaction between wedge 
and aerated water is captured. A maximum Courant number of 0.2 is used. The impact velocity of the wedge in the simulations is 
𝑉𝑖 = 7.0[m/s]. According to the conclusions made for Fig. 10, this allows for solving density wave speeds up to 130[m/s].

Simulations are performed for the same cases in Fig. 19, represented by the white dots, for which tests in the experiment were 
performed. The relevant parameters are also summarized in Table 3b. These cases cover the range of 0.05 < 𝑀𝑎𝑒𝑑𝑔𝑒 < 0.5.

A grid convergence test for the simulated pressure is conducted with 𝛼=15[deg] and 𝛽𝑔=0.0[-]. The dashed box in Fig. 17 is 
used as a reference for the grid resolution. The reported number of cells therefore is an indication of the number of cells in horizontal 
and vertical direction used to capture the slope of the bottom of the wedge. The simulation results of the grid convergence test are 
shown in Fig. 20. The figure shows the pressure obtained at the location of pressure sensor 1 (closest to the tip of the wedge) as solid 
lines, and the pressure at the location of pressure sensor 2 as dashed lines. The value of the pressure at any time is the average taken 
over the area of the sensor with diameter 5.54[mm].

The discussion of convergence will focus on pressure sensor 1; the results obtained for pressure sensor two follow a similar trend. 
One measure of grid convergence is to consider the pressure integrated over time up to 0.005[s], representing an equivalent of 
impulse. The pressure impulse converges rapidly. The pressure impulse on the finest grid of 135x35 has a value of 487.0[Pa⋅s]. 
The difference in pressure impulse with the coarsest grid was 1% of that value; a difference of 0.2% was obtained for 66x29; and 
a difference of 0.04% for 109x29. Another measure of grid convergence is to consider the maximum pressure during impact. The 
maximum pressure on the finest grid of 132x35 is 3.7⋅105. The difference in maximum pressure with the coarsest grid of 33x18 is 
6.6% of that value. For grid 109x29 the difference in maximum pressure is 2.0% of that value. Grid convergence in terms of the 
maximum impact pressure therefore has not been obtained. As the convergence is not monotonous, we do not expect that formal 
grid convergence of the maximum pressure can be obtained. This needs to be accounted for in our interpretation of the comparison 
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between experiment and simulations. All simulations from here on are performed with grid 109x29.
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Fig. 20. Simulation results for grid convergence test, using 𝛼=15[deg] and 𝛽𝑔=0.0[-]. Pressure sensor 1 represented by solid lines. Pressure sensor 2 represented by 
the dashed lines. Pressure is the average taken over the area of the sensor with diameter 5.54[mm].

7.4. Comparison simulations and experiment: maximum pressures

Fig. 21 shows the pressures obtained from the numerical simulations with grid 109x29 together with the pressures obtained 
from the tests in the experiment. The atmospheric pressure was subtracted from all results. Solid blue lines are for pressure sensor 1 
and dashed blue lines are for pressure sensor 2. The blue lines for the pressure from the experiment are the average of ten signals. 
A band is formed along the lines representing one standard deviation above and below the average. The lines from the experiment 
show that discharging the pressure sensors after impact leads to an increased bandwidth around the average pressure and increased 
uncertainty.

Red lines in Fig. 21 represent the pressures from the simulations, solid lines for pressure sensor 1 and dashed lines for pressure 
sensor 2. The lines are the average pressures obtained from two simulations at each aeration level 𝛽𝑔 with the minimum and 
maximum value measured at that level on either side of the wedge, see Fig. 18. The following simulations were performed: 𝛽𝑔 equals 
1.0 and 1.5% for the aeration level of 1.0%; 𝛽𝑔 equals 1.9 and 2.4% for a level of 2.0%; 𝛽𝑔 equals 3.7 and 4.6% for the aeration level 
of 4.0%. The uncertainty found from the grid convergence test is not included in Fig. 21.

The simulated pressures show good visual agreement with the measured pressures for both deadrise angles and for all aeration 
levels. The pressures obtained during impacts with the 30[deg] deadrise angle wedge are hardly affected by the level of aeration. This 
conclusion is consistent between the simulation results and the experimental results. For the wedge with a deadrise angle of 15[deg], 
the maximum pressure during impact goes down with increasing level of aeration, both in the simulations and in the experiments. 
There are a number of differences between simulation results and measurements for this wedge. For pressure sensor 2, the pressure in 
the simulations rises before the pressure in the measurements rises, as if the water reaches pressure sensor 2 earlier in the simulations 
than it does in the experiments. The most likely explanation is that the jets of water formed by the wedge displacing water are fairly 
thin, and therefore underresolved in the simulations.

Although the maximum pressure in the measurements can be higher than the pressure in the simulations for some cases, the 
pressure in the simulations near the maximum pressure is consistently higher. We observed that before for simulations and experi-
ments without aeration, and then it seemed to be due to 3D effects caused by the gaps between wedge and box at both out-of-plane 
endpoints of the wedge. That is, however, not the only explanation for the difference in pressure between simulations and experiment 
in this study, because the difference in pressure increases with increasing level of aeration. It seems that the aerated water in the 
experiments with higher levels of aeration than 1% is more compressible than what is modelled in the simulations.

A final difference that is apparent, is that pressure sensor 1 in the experiment registers a pressure elevation before a pressure 
is registered in the simulations. That difference in pressure between simulations and experiment before the maximum pressure is 
attained, becomes larger with increasing levels of aeration. Similar results were found by Elhimer et al. [23] and Ma et al. [47]
who explained the difference by a layer of froth at the free water surface that becomes larger with higher levels of aeration. The 
explanation seems plausible and consistent with what can be observed from Fig. 21, but at present we lack the means to investigate 
this further.

The pressure maxima in simulations and experiment, with their respective bandwidths, are plotted as a function of level of 
aeration in Fig. 22. An uncertainty of 2%, as a result of the simulation results not being completely converged for maximum pressures, 
is included in the graph. Fig. 22 confirms that the level of aeration hardly affects the maximum impact pressures for the wedge with 
a deadrise angle of 30[deg]. The pressure maxima from the simulations are within the uncertainty band of the experiments, for both 
wedges at both pressure sensor locations. For the wedge with a deadrise angle of 15[deg], the effect of aeration on the maximum 
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impact pressure is significant. The trends for increasing levels of aeration between simulations and experiment are different. The 
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Fig. 21. Impact pressures: simulation results (red) with experimental results (blue) for two pressure positions. Pressure sensor 1 is represented by solid lines ( ). 
Pressure sensor 2 is represented by dashed lines ( ). Band for the experiments composed of one standard deviation below and one above average pressure. 
Grid 109×29 was used for the simulations. Simulated pressures are the average of two simulations with the minimum and maximum value for aeration at that level. 
Band around numerical results formed by minimum and maximum. Uncertainty of grid convergence not included in graphs. (For interpretation of the colors in the 
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figure(s), the reader is referred to the web version of this article.)
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Fig. 22. Maximum impact pressures for different levels of aeration. Simulation results are compared with experimental result. The band around the experimental 
pressure maxima is formed by one standard deviation. The filled band around the simulated pressures is formed by the uncertainty due to the grid size and the 
variation in measured aeration values near each aeration level.

Fig. 23. Time sequence of simulated pressure fields for wedge impact 𝛼 = 15[deg] and 𝛽𝑔 = 0.04[-] at different time instances. From the sequence it becomes 
apparent that density waves are formed that propagate through the domain. The numerical grid was 109×29.

aerated water in the experiment seems to become more compressible with increasing level of aeration than the modelled air-water 
mixture in the simulations. This could potentially have to do with the fact that the ratio of air to water for higher levels of aeration 
is such that bubbles start to influence each other and that the assumption of homogeneity is not valid anymore.

7.5. Comparison simulations and experiment: post-impact pressure oscillations and frequency analysis

The wedge impacting with the aerated water generates density waves due to the compressibility of the air-water mixture. The 
density waves reflect off of domain boundaries and propagate back to the wedge. The back-and-forth propagation of the density 
waves causes pressure oscillations on the wedge. A time sequence of the simulated pressure after impact for the wedge with 𝛼 = 
15[deg] and for aerated water with 𝛽𝑔 = 0.04[-] is shown in Fig. 23. Grid 109x29 was used for the simulation. The density waves 
become apparent by their front, which shows as a barrier between regions with higher and lower pressure that propagates through 
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the domain.
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Fig. 24. Simulated pressure along bottom of wedge (𝛼 = 15[deg]) over time for different levels of aeration. Interaction of reflected density waves pressure oscillations 
on the wedge. Numerical grid used is 109×29.

In Fig. 24, the simulated pressure over time along the chine of the wedge with a deadrise angle of 𝛼 = 15[deg] is shown for four 
levels of aeration. Grid 109x29 was used for the simulations. In the simulations, an increase in aeration level results in an increase 
in amplitude of the post-impact pressure oscillations.

The frequency content of the post-impact pressure oscillations was obtained by means of a Fourier analysis of the time signals 
obtained with the innermost pressure sensor identified as sensor 1 in Fig. 17. Filtered time signals of pressure sensor 1 are shown 
in Fig. 25 together with the amplitude spectra of the time signals for all considered aeration levels. In order to focus on only the 
effect of pressure oscillations as a result of density waves, the time signal of the pressure were filtered by means of a band-pass filter 
that leaves out all frequency content below 40[Hz] and above 400[Hz]. From a hammer test it was found that structural vibrations 
are higher than 400[Hz]. The pressure oscillations are expected to be caused by reflection of the density waves from the domain 
boundaries; that means that the frequencies can be predicted by using the speed of sound of the medium together with a typical size 
of the domain. The speeds of sound of the aerated mixture with aeration levels 𝛽𝑔 =0.01, 0.02, 0.04[-] are given by 𝑐𝑓 =109, 77, 
55[m/s] according to Eq. (24). These velocities are within the mentioned 130[m/s] that can be solved with current Courant number 
of 0.2.

The expected frequencies of the pressure oscillations can then be found as 𝑓𝑐 = 𝑐𝑓∕(2𝐿𝑑 ), with 𝐿𝑑 a typical size of the domain 
such as the water depth 𝐿𝑑 = ℎ𝑤 = 0.495[m] or the length of the tip of the wedge to the side walls along the waterline 𝐿𝑑 = 𝑥𝑤

= 0.550[m]. Frequencies 𝑓𝑐 associated with horizontal distances and vertical distances have been indicated in Fig. 25 by means of 
dashed vertical lines. The amplitude spectra are based on time signals that last for ℎ𝑤∕𝑐𝑓 [s] in order to allow at least two pressure 
cycles to take place, starting from 0.002[s] after the moment the tip of the wedge first touches the free surface. For consistency, the 
time signals in Fig. 25 show that same time span; the pressure time signals are normalized with the maximum pressure amplitude 
found in the amplitude spectra, i.e. 104[Pa].

Interestingly, for the experiments with aeration level 𝛽𝑔 = 0.0, an amplitude peak was found with a frequency of around 450[Hz] 
(not shown in figure). Amplitudes at those frequencies are likely polluted with structural vibrations, but if not they would indicate 
that there was some air in the water at a level of 𝛽𝑔 = 0.0005). At higher aeration levels, the peaks in the amplitude spectra of the 
experiment correspond sufficiently well with the predicted frequencies 𝑓𝑐 to consider density waves the main explanation for the 
pressure oscillations and to consider Eq. (24) a good representation of the speed of sound in the mixture. Perfect correspondence 
cannot be expected when taking into account that the velocity of the wedge causes a Doppler shift, that the distance between pressure 
sensor 1 and the domain boundaries is not constant and that the density waves undergo constructive and destructive interference. 
It is also found that the magnitude of the pressure oscillations in the experiments increases by 4% of the maximum impact pressure 
when comparing 𝛽𝑔 =0.01[-] and 𝛽𝑔 =0.04[-]. The increase of magnitude with increasing aeration, but not necessarily the percentage 
itself, is in agreement with the results found in Fig. 23.

When comparing the numerical results with the experimental results, we find that the frequencies 𝑓𝑐 of the pressure oscillations, 
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associated with the peaks in the amplitude spectra, are similar between the two. The amplitudes for aeration level 𝛽𝑔 = 0.01[-], 
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Fig. 25. Filtered time signals and amplitude spectra of post-impact pressure oscillations caused by density waves for 𝛼 = 15[deg]. Time signals start 0.002[s] after 
impact. Band-pass filter between 40 and 400[Hz]). Dashed vertical lines indicate frequencies 𝑓𝑐 associated with typical sizes of the domain. The numerical grid used 
is 109×29.

between simulation and measurement, are nearly identical. The amplitudes of the pressure oscillations also increase for increasing 
levels of aeration, just like in the experiment, but in the simulations an increase in magnitude of 20% is observed between 𝛽𝑔 =0.01[-] 
and 𝛽𝑔 =0.04[-], compared to the 4% in the experiments. For higher levels of aeration, the amplitudes of the pressure oscillations 
in the simulations are always higher than in the experiment. A potential explanation for the difference between simulations and 
experiments at higher aeration levels is increased dissipation due to 3D effects near the air bubbles in the water. Further research is 
necessary to determine whether the assumption of homogeneity of the air-water mixture is justified for aeration levels above 𝛽𝑔 = 
0.01[-].

8. Conclusion

A new compressible pressure-based multiphase model is presented for modeling the interaction of homogeneous aerated water 
with moving bodies. It is efficient because the operation that requires most computational effort is solving the Poisson problem for 
the pressure with a number of unknowns equal to the number of grid cells in the domain. The model can deal with high-density ratio 
compressible flows using a non-conservative formulation for transport of the interface. The unphysical increase of compressibility, 
caused by a non-continuous representation of the interface leading to artificial air entrainment, is prevented by means of an additional 
volume fraction field and a new formulation for the speed of sound.

The numerical results are in good agreement with solutions for traditional compressible multiphase flow cases: an oscillating 
water piston, a shock tube for separated and dispersed phases, and a cylindrical helium shock bubble. The test cases demonstrate 
the method’s ability to handle contact discontinuities and rarefactions. Geometrical reconstruction of the fluid-fluid and fluid-body 
interfaces kept these interface sharp. Issues with wiggles around the contact discontinuity were not encountered, because the Courant 
limit of our formulation depends on the fluid velocities and not on the speed of the density waves. Even with coarse grid resolutions, 
the pressure levels in propagating density waves were well predicted, but the discontinuity between pressure levels was diffused over 
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a couple of grid cells.
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Fig. 25. (continued)

A 2D experimental setup for wedge impacts with water was converted specifically for this article to validate the numerical method 
for the interaction between aerated water and moving bodies in terms of the pressure. Air diffusion stones were placed on the bottom 
of a box with water to generate aeration levels up to four percent (by volume). We considered Mach numbers of up to 0.5, based 
on the velocity of the wedge upon impact and the mixture speed of sound. The numerical and experimental results are in good 
visual agreement for lower aeration levels, both showing a similar maximum pressure and development of the pressure over time. 
For a deadrise angle of the wedge of 15 degrees the differences at higher aeration levels are larger. For the higher aeration levels, 
the maximum pressures in the experiment during impact were lower than in the simulations. We believe this to be due to three 
dimensional effects of the bubbles in the mixture in the experiment at higher aeration levels. These are not accounted for by the 
numerical model.

The post-impact pressure oscillations due to density waves reflecting from the domain boundaries had higher amplitudes in the 
simulations than in the experiment. The post-impact oscillation amplitudes become larger with increasing aeration level, up to 4% 
of the maximum impact pressure in the experiment and up to 20% in the simulations. The governing frequencies of the post-impact 
oscillations were in good agreement. The speed of sound in the water-air mixture, therefore, is represented well. It is a matter of 
future study which parts of the numerical method influence the amplitudes of the density waves after impact, so that the method 
becomes a better representation of the experiment. Overall the assumptions underlying the method are applicable for aeration levels 
up to 1%.
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