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Abstract

The energy consumption of trains is highly efficient due to the low friction between steel wheels and rails, although the efficiency
is also influenced largely by the driving strategy applied and the scheduled running times in the timetable. Optimal energy-efficient
driving strategies can reduce operating costs significantly and contribute to a further increase of the sustainability of railway trans-
portation. The railway sector hence shows an increasing interest in efficient algorithms for energy-efficient train control, which
could be used in real-time Driver Advisory Systems (DAS) or Automatic Train Operation (ATO) systems. This paper gives an ex-
tensive literature review on energy-efficient train control (EETC) and the related topic of energy-efficient train timetabling (EETT),
from the first simple models from the 1960s of a train running on a level track to the advanced models and algorithms of the
last decade dealing with varying gradients and speed limits, and including regenerative braking. Pontryagin’s Maximum Principle
(PMP) has been applied intensively to derive optimal driving regimes that make up the optimal energy-efficient driving strategy of
a train under different conditions. Still, the optimal sequence and switching points of the optimal driving regimes are not trivial
in general, which led to a wide range of optimization models and algorithms to compute the optimal train trajectories and more
recently to use them to optimize timetables with a trade-off between energy efficiency and travel times.

Keywords: Scheduling, Timetabling, Energy minimization, Optimal train control, Regenerative braking

1. Introduction

Global warming is an increasingly important topic these
days. One of the causes of global warming is the increasing
amount of carbon dioxide (CO2) emissions which comes for a
large part from transport. Therefore, the European Union (EU)
set targets to decrease these CO2 emissions. One of the sec-
tors affected by these measures is the railway sector. For the
railway sector targets are set by the UIC (International Union
of Railways) and CER (Community of European Railway and
Infrastructure Companies). The short term target is to decrease
CO2 emissions by 30% over the period 1990 to 2020, with a
further decrease by 50% in 2030 (UIC, 2012). Furthermore,
energy consumption of railway companies should be decreased
in 2030 by 30% compared to 1990. A further incentive for rail-
way undertakings to reduce energy consumption is the reduced
operating costs and enlarged competitive advantages involved.

As a consequence, railway companies in Europe have started
research on opportunities to decrease energy consumption in or-
der to be sustainable and more profitable in the future. Several
ways to achieve this goal are as follows:

• An operator can deploy rolling stock that is more energy-
efficient (due to more efficient engines or streamlining).
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• An operator may better match the capacities of the trains
with the demand, so that fewer empty seats are moved
around.

• An operator can deploy measures concerning heating,
cooling, lighting, etc. of parked trains during nights in or-
der to save energy.

• Energy-efficient train control (EETC) or eco-driving may
be applied, in which a train is driven with the least amount
of traction energy, given the timetable.

• The timetable may be constructed in such a way that it
allows EETC most effectively, resulting in energy-efficient
train timetabling (EETT).

This paper focuses on the last two options: energy-efficient
train control (EETC) and energy-efficient train timetabling
(EETT). A good overview of different measures in order to de-
crease energy consumption for urban rail transport can be found
in González-Gil et al. (2014).

EETC has been and is a hot topic in the literature. Much re-
search effort aims at finding the optimal driving strategies of a
train that minimize energy consumption (Khmelnitsky (2000);
Liu and Golovitcher (2003); A. Albrecht et al. (2015b,c)). Most
of this research is based on optimal control theory, and in par-
ticular on Pontryagin’s Maximum Principle (PMP) (Pontryagin
et al., 1962), to derive the optimal control. This leads to opti-
mal driving regimes such as maximum acceleration, cruising,
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coasting and maximum braking, see Figure 1. The problem
is then to find the optimal sequence of these driving regimes
and the switching points between the regimes for a range of
different circumstances and train types. The optimal driving
strategy must then be translated into feasible and understand-
able advice to train drivers in real-time. This generated consid-
erable research in developing Driver Advisory Systems (DAS)
that provide specific speed advice to the train drivers with the
main challenge to incorporate the current delays into the advice
(Kent, 2009; ON-TIME, 2013; Panou et al., 2013). Energy sav-
ings between 20% to 30% have been reported when applying
EETC in a DAS compared to normal train operation, for exam-
ple see Franke et al. (2000) and ON-TIME (2014a).
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Figure 1: Optimal driving regimes for energy-efficient driving on flat track as
function of time with switching points at t1, t2 and t3.

The impact of train operation on energy savings depends on
the timetable. More recently this led to research on the topic of
optimal running time supplements (Scheepmaker and Goverde,
2015). A running time supplement is the extra running time
on top of the technically minimum running time between two
stations which is included in the timetable primarily to man-
age disturbances in operations and to recover from small de-
lays. However, if a train is punctual then these supplements
can be used for energy-efficient driving. Nevertheless, in prac-
tice energy efficiency is not yet considered in the construction
of timetables which sometimes leads to allocating most run-
ning time supplements before main stations where punctuality
is measured at the cost of insufficient supplements or even un-
realizable running times earlier on the route. Another recent
stream of research considers the synchronization of accelerat-
ing and braking trains to support regenerative braking, like T.
Albrecht (2004). With regenerative braking, kinetic energy is
converted into electricity that is fed back to the power supply
system to be used by other (nearby) trains. A more detailed de-
scription about the working of regenerative braking and differ-
ent regenerative braking technologies for urban transport can be
found in the review paper of González-Gil et al. (2013). Energy
savings up to 35% have been reported after timetable optimiza-
tion compared to using the normal timetable, for example see
T. Albrecht and Oettich (2002) and Sicre et al. (2010).

This paper provides a thorough review of the literature on

energy-efficient train control and timetabling, starting with the
first simple models from the 1960s of a train running on a level
track to the advanced models and algorithms of the last decade
dealing with varying gradients and speed limits, and including
regenerative braking. The focus is on the differences between
the mathematical models and algorithms in terms of applicabil-
ity, accuracy and computation time, and their main conclusions
on the structure of the optimal driving strategy.

Our method is based on a literature study focussed on EETC
and EETT. We structured the publications based on the frame-
works shown in Figure 2 and Figure 9. Our review paper in-
cludes publications up to January 2016. The recent paper by
X. Yang et al. (2016) also provides a review of EETC and EETT
with a focus on urban rail. In contrast to that paper, we con-
sider general railway systems and focus on the differences in the
mathematical problem formulations and solution approaches.

Section 2 introduces a basic EETC problem and outlines the
mathematics involved. Section 3 reviews the EETC literature
building on the concepts and terminology of the basic model.
The application of EETC in EETT is the topic of Section 4,
which reviews the related literature on the optimization of run-
ning time supplements and the synchronization of accelerating
and braking trains. Finally, Section 5 ends this literature review
with the main conclusions and an outlook to future research di-
rections of EETC and EETT.

2. A basic model and solution approaches

This section considers a basic optimal train control problem
to define the basic notation and illustrate the main modelling
concepts which will be extended later in the paper. This prob-
lem was analysed by Milroy (1980) in the late 1970s as one of
the first optimal train control problems. Here, we give a modern
analysis. A rigorous mathematical treatment and further exten-
sions are given in Howlett and Pudney (1995) and A. Albrecht
et al. (2015b,c).

2.1. A basic energy-efficient train control model

Consider the problem of driving a train from one station to
the next along a flat track within a given allowable time T in
such a way that energy consumption is minimized. The train
speed v(t) at time t is governed by a tractive or braking effort
F(t) and a resistance force R(v) according to the Newton force
equilibrium

ρmv̇(t) = F(t) − R(v(t)), (1)

where v̇ = dv/dt is the derivative of speed to time, m is the train
mass and ρ the dimensionless rotating mass factor (Brünger and
Dahlhaus, 2014). The force F is the tractive effort of the en-
gine for F ≥ 0 and the braking effort due to the brakes for
F < 0. The maximum tractive effort Fmax is a non-increasing
function of speed, which is approximated by a piecewise linear,
quadratic and/or hyperbolic function of speed depending on the
engine (Brünger and Dahlhaus, 2014). The maximum braking
force Fmin is usually approximated based on a constant braking
rate (independent of speed). The resistance force is given by
the Davis equation R(v) = R0 + R1v + R2v2 with non-negative
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coefficients Ri ≥ 0, i ∈ {0, 1, 2}, which is a strictly increasing
quadratic function in speed (Davis, 1926). The constant and
linear coefficients are rolling resistances and depend on mass,
while the quadratic term is the air resistance which is mass in-
dependent.

It is convenient to normalize the equations as mass-specific
by the specific resistance r(v) = R(v)/ρm = r0 + r1v + r2v2

and the specific tractive effort u(t) = F(t)/ρm with u(t) ∈ U =

[−umin, umax(v(t))] for t ∈ [0,T ], where

umax(v) =
Fmax(v)
ρm

> 0 and umin =
Fmin

ρm
> 0.

Recall that r(v) is strictly increasing and ri ≥ 0, i ∈ {0, 1, 2}.
The energy consumption to be minimized is the work

done by the traction power P(t) = F(t)v(t) over time, i.e.,∫
u+(t)v(t)dt, where the integral is only over the (positive) spe-

cific tractive effort denoted as

u+(t) = max(u(t), 0). (2)

Note that in this example we assume that braking does not cost
nor generate energy. We finally get the basic optimal train con-
trol problem

J = min
u

∫ T

0
u+(t)v(t)dt (3)

subject to

ẋ(t) = v(t) (4)
v̇(t) = u(t) − r(v(t)) (5)
x(0) = 0, x(T ) = X, v(0) = 0, v(T ) = 0 (6)
v(t) ≥ 0, u(t) ∈ [−umin, umax(v(t))], (7)

where x(t) is the distance travelled over time, and X is the total
distance travelled. The variables (x, v) are the state variables
and u is the control variable.

2.2. Pontryagin’s Maximum Principle
This optimal control problem has the standard form

minu
∫ T

0 f0(x, v, u)dt, subject to the ordinary differential equa-
tions ẋ(t) = f1(x, v, u) and v̇(t) = f2(x, v, u) with boundary con-
ditions for x and v and (algebraic) path constraints gi(x, v, u) ≥
0, i = 1, . . . , n, as given in (7). Note that the control is bounded
from above by a mixed constraint that depends on the state v.
Necessary conditions for these optimal control problems are
given by Pontryagin’s Maximum Principle (Pontryagin et al.,
1962). According to the PMP the optimal control variable û
should be selected from the admissible control variables that
maximize the Hamiltonian

H(x, v, ϕ, λ, u) = − f0(x, v, u) +ϕ f1(x, v, u) +λ f2(x, v, u), (8)

where (ϕ, λ) are the co-state (or adjoint) variables which satisfy
the differential equations

ϕ̇(t) = −
∂H̃
∂x

(x, v, ϕ, λ, µ, u) and λ̇(t) = −
∂H̃
∂v

(x, v, ϕ, λ, µ, u)
(9)

without boundary conditions. Here, H̃ is the augmented Hamil-
tonian (or Lagrangian)

H̃(x, v, ϕ, λ, µ, u) = H(x, v, u, ϕ, λ, u) +

n∑
i=1

µigi(x, v, u), (10)

with respect to the additional path constraints gi(x, v, u) ≥ 0,
where µi are Lagrange multipliers satisfying the complemen-
tary slackness conditions µi ≥ 0 and µigi(x, v, u) = 0. Moreover,
the Karush-Kuhn-Tucker (KKT) necessary condition ∂H̃/∂u =

0 must be satisfied by the optimal solution.
Note that the differential equations (4) and (5) of the state

variables satisfy ẋ(t) = ∂H̃/∂ϕ = v and v̇(t) = ∂H̃/∂λ = u−r(v),
so that we end up with a special boundary value problem of
four differential equations in four variables with four boundary
conditions. Unfortunately, the boundary conditions are both the
initial and final conditions for the state equation, and none for
the co-state equation. (If the final state is free, then the final
co-states must be zero, ϕ(T ) = λ(T ) = 0, which is easier to
solve.)

For the example problem we get the following Hamiltonian:

H(x, v, ϕ, λ, u) = −vu+ + ϕv + λ(u − r(v)), (11)

and augmented Hamiltonian

H̃(x, v, ϕ, λ, µ, u) = H(·) + µ1(umax(v)− u) + µ2(u + umin), (12)

with the additional differential equations for the co-state (ϕ, λ)

ϕ̇(t) = 0 and λ̇(t) = λr′(v) − ϕ + u+ − µ1u′max(v). (13)

From the first equation of (13) it follows that ϕ = ϕ0 is a con-
stant. Moreover, from the complementary slackness conditions
follows that µ1 = 0 if u < umax(v), and µ1 ≥ 0 if u = umax(v)
(maximum acceleration).

According to the PMP the optimal control is

û(t) = arg max
u∈U

H(x̂(t), v̂(t), ϕ̂(t), λ̂(t), u), (14)

where (x̂, v̂) and (ϕ̂, λ̂) are the state and co-state trajectories as-
sociated to the control trajectory û. Typical for an optimal train
control problem is that the Hamiltonian is (piecewise) linear in
the control variable u, by which the optimal control may not be
uniquely defined from the necessary conditions on some non-
trivial interval. For the example problem, the Hamiltonian (11)
can be split around u = 0, yielding

H(x, v, ϕ, λ, u) =

{
(λ − v)u + ϕv − λr(v) if u ≥ 0
λu + ϕv − λr(v) if u < 0, (15)

which is linear both for non-negative and negative values of u.
Discarding for the moment the control constraints u ∈ U, the
optimal control must satisfy the necessary optimality condition
∂H/∂u(x, v, ϕ, λ, u) = 0, giving λ − v = 0 for u ≥ 0 and λ = 0
for u < 0, which are independent of the value of the control
variable u (besides its sign). Taking also the control constraints
(7) into account, the optimal control is characterized as

û(t) =


umax(v(t)) if λ(t) > v(t) (MA)
u ∈ [0, umax] if λ(t) = v(t) (CR)
0 if 0 < λ(t) < v(t) (CO)
−umin if λ(t) ≤ 0 (MB).

(16)
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The optimal control is illustrated in Figure 1. Clearly, the max-
imum control û = umax implies maximum acceleration (MA),
zero control û = 0 implies coasting (CO), i.e., rolling with the
engine turned off, and the minimum control û = −umin im-
plies maximum braking (MB). The singular solution defined
by λ(t) = v(t) corresponds to speed-holding or cruising (CR),
i.e., driving at a constant optimal cruising speed using partial
tractive effort û ∈ [0, umax]. To see this, note that the singu-
lar solution only holds over some nontrivial interval if also the
derivatives are the same, λ̇(t) = v̇(t). Moreover, µ1 = 0 since
u < umax(v) except maybe at some isolated points as otherwise
we are back in regime (MA). Then from (5), (13), λ(t) = v(t)
and u > 0, it follows that the optimal cruising speed must sat-
isfy

ϕ0 = vr′(v) + r(v). (17)

This equation has a unique solution vc which gives the optimal
cruising speed over some interval. Recall that r(v) is a non-
negative strictly-increasing quadratic function and thus convex
in v. Then also ψ(v) = vr(v) is a non-negative strictly-increasing
convex function for v ≥ 0 with ψ′(v) = vr′(v) + r(v), and in
particular ψ′(v) ≥ ψ′(0) = r(0) = r0. Hence, by (17) a unique
optimal cruising speed exists if ϕ0 > r0. Also note that this
implies ϕ0 > 0 and thus the solution λ = 0 with u < 0 cannot
hold except at a single time point, since in this case we get
λ̇(t) = −ϕ0 < 0 and therefore λ is not constant over a nontrivial
interval. So without loss of generality, we added the singular
point λ = 0 in (16) to the (MB) regime. Later, we will see
that the singular solution λ = 0 may occur when considering
gradients.

However, finding the optimal cruising speed usually takes
some creativity since (17) has two unknowns v and ϕ0. An addi-
tional equation can be obtained from the PMP which also states
that the Hamiltonian is constant along the optimal control and
state trajectories (if the cost and dynamic equations are inde-
pendent of time), i.e.,

H(x̂(t), v̂(t), λ̂(t), ϕ̂(t), û(t)) = C for all t ∈ [0,T ]. (18)

So the Hamiltonian is kept at its maximum value along the op-
timal control and state trajectories. In the example problem for
the singular solution under v = λ, (18) gives ϕ0v − vr(v) = C.
After substituting (17) this gives the additional equation

v2r′(v) = C (19)

with the additional unknown C. Note that from (19) follows
C ≥ 0. Still we end up with two equations in three unknowns.
In general, the cruising speed vc can be parameterized in either
ϕ0 or C and then solved for the optimal parameter using a nu-
merical procedure. Nevertheless, vc can also be considered as a
parameter itself.

2.3. Solution approaches

The optimal control problem can be reformulated as a bound-
ary value problem in (x, v, ϕ, λ) connected by the optimal con-
trol structure (16). Starting with estimates for the initial values

ϕ(0) = ϕ0 and λ(0), first the optimal cruising speed vc is com-
puted from (17) which is then used for the cruising regime in
(16). Then the trajectories for (x, v, λ) could in principle be
computed as an initial value problem forward in time t using a
shooting method (Stoer and Bulirsch, 2002), with u(t) specified
by (16) depending on the computations of v(t) and λ(t). If the
computed final values x(T ) and v(T ) are equal to the boundary
conditions (6) then we have found the optimal trajectories. Oth-
erwise, the initial values are adjusted and the procedure starts
again. However, shooting methods are really sensitive to the
initial values and this procedure does not work well in practice.

A different approach to solve the optimal train control prob-
lem is by constructive methods. These methods are based on the
observation that an optimal driving trajectory must be a con-
catenation of the four optimal driving regimes given by (16),
in the case of flat track. Then the problem is replaced by
finding the optimal order of driving regimes and the switching
times between regimes, along with a possible optimal cruising
speed. For the example problem, the optimal order of the driv-
ing regimes is maximum acceleration, cruising, coasting and
maximum braking, while the cruising regime may also be ab-
sent. The basic decision variables then become the switching
time from acceleration to cruising (and thus the cruising speed
vc) and the switching time from cruising to coasting, if both
these regimes are optimal, or a direct switching from accel-
eration to coasting. Note that the switching time to the final
braking regime is implicitly determined when the speed trajec-
tory reaches the braking curve in time to reach the destination
X at time T . This braking curve can be computed by solving
v̇(t) = −umin − r(v(t)) backwards from v(T ) = 0.

The switching times and the number of driving regimes de-
pend on the terminal time T . For the example problem, the op-
timal driving trajectory may consist of maximum acceleration
to some switching speed, coasting and maximum braking (the
case of short distance with sufficient time) or maximum accel-
eration to the cruising speed, cruising, coasting and maximum
braking (long distance with sufficient time). Note that coasting
is always present due to the continuity of the co-state variable
(in this case that the dynamic equations do not depend explic-
itly on time), although the coasting regime can be very short
depending on the terminal time. The minimal feasible termi-
nal time corresponds to maximum acceleration to the maximum
speed, cruising at maximum speed, and maximum braking, i.e.,
time-optimal driving for the minimal running time Tmin. Note
that the minimal-time train control problem is a slightly differ-
ent optimal control problem with a variable terminal time that
needs to be minimized. Hence, the time-optimal solution is not
energy-efficient. In the energy-efficient train control problem
the lengths of the coasting and cruising regimes depend on the
available running time supplement T−Tmin. An energy-efficient
solution exists only if the scheduled running time exceeds the
minimal running time.

3. Energy-efficient train control

This section gives a literature review of EETC models and
solution methods. The review is mainly chronological where

4



the first simple models are extended and adapted to derive more
complex models. We will use the concepts and terminology
introduced in the description of the basic model in Section 2 to
provide a consistent terminology throughout the review.

A distinction can be made between models with continuous
traction control (such as in Section 2) and models with discrete
traction throttle settings. Moreover, regenerative braking may
be used or not. The review is clustered in these distinct classes.

Another clustering can be obtained through the solution
method applied. Two main solution approaches can be distin-
guished which are both explicitly or implicitly based on the op-
timal control structure derived from the optimality conditions
of Pontryagin’s Maximum Principle (PMP) such as discussed
in Section 2. These are exact solutions by numerical algorithms
that solve the differential equations indirectly using the derived
optimal control structure, and heuristics that find suboptimal
solutions to the dynamic equations by artificial intelligence or
search algorithms using knowledge of the optimal control struc-
ture. A third solution approach is to solve the optimal control
problem by transcribing the problem into a nonlinear optimiza-
tion problem and solving this problem directly, as opposed to
indirectly solving the necessary optimality conditions.

The remainder of this section considers subsequently indirect
exact methods without and with regenerative braking, indirect
exact methods with discrete control, direct methods, and heuris-
tic methods. An overview of the framework that we used for the
classification of EETC can be found in Figure 2.

Without 

regenerative

 braking

Solution 

method

Control

Braking 

behavior

With or without 

regenerative

 braking

Continuous 

control
Discrete control

Heuristics
Direct exact 

solution methods

Indirect exact 

solution methods

EETC

Figure 2: Framework of EETC.

3.1. Exact methods without regenerative braking
The first study on energy-efficient train control was carried

out by Ichikawa (1968) in Japan. His model is similar to the
basic model discussed in Section 2, but the resistance force was
simplified as r(v) = v by which (5) reduces to the linear differ-
ential equation v̇(t) = u(t) − v(t). Since now both differential
equations are linear, Ichikawa could derive analytical expres-
sions for the various regimes by applying the PMP. He gave a
complete analysis of all four driving regimes on level tracks:

1. Maximum acceleration (MA),
2. Cruising by partial traction force (CR),
3. Coasting (CO), and
4. Maximum braking (MB),

as well as the resulting optimal control rules. In the conclusions
he mentioned that “Considerable idealization has been made on
the equations of motion for the train in this report, but the basic
point seems to have been revealed about the optimal operation
of a train. The author believes that the report will serve to make
the beginning of scientific and reliable research on the econo-
mization of train operation for which huge amount of energy is
consumed everyday.” (Ichikawa, 1968, p. 865)

Strobel et al. (1974) continued the research for the opti-
mal control strategy of a train with a model similar to that of
Ichikawa (1968), but they modelled the resistance force as a
quadratic function of speed with an additional term for gra-
dient resistance. Nevertheless, they then linearized the resis-
tance function and thus could derive analytical expressions for
all driving regimes using the PMP as well. As a result of the
possible negative slopes they found a second singular solution
consisting of partial braking to maintain cruising, although they
stated that this solution was “practically without significance”
(Strobel et al., 1974, p. 379). Strobel et al. (1974) thus found
five driving regimes for varying gradients:

1. Maximum acceleration (MA),
2. Cruising by partial traction force (CR1),
3. Coasting (CO),
4. Cruising by partial braking (CR2), and
5. Maximum braking (MB).

They mentioned that for suburban train traffic the cruising
regimes could be neglected. This further simplification allowed
them to derive a suboptimal algorithm for real-time compu-
tation. They implemented their algorithm and compared the
resulting computer-aided train operation with manually con-
trolled train movements in a train simulator, which revealed a
substantially improved adherence to timetables and driving en-
ergy savings of approximately 15%. Note that the energy sav-
ings compared to using technical minimum running times will
be higher than the energy savings that are achieved in practice,
since not all drivers without DAS drive as fast as possible. The
approach was translated into a driver advice about the optimal
driving regime. The algorithm of Strobel et al. (1974) formed
the basis for the first DAS implemented in board computers of
the Berlin S-Bahn (suburban trains) in Germany at the begin-
ning of the 1980s. However, the computations to determine
the switching points were made offline, due to the limited com-
putational power of the computers in those days (Oettich and
Albrecht, 2001).

T. Albrecht and Oettich (2002) revisited the research of Stro-
bel et al. (1974) to determine the optimal driving strategy for a
single train using the linearized resistance equations. They used
Simulink to numerically calculate switching curves that could
be used to calculate the switching points in the optimal trajec-
tory backwards from the target station. The control algorithm
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was applied in a DAS on the train driving simulator at Dres-
den University of Technology (TU Dresden), and in real-time
passenger operation at the suburban railway line S1 in Dresden,
see T. Albrecht (2005a). The successful real-time test showed
energy savings of 15% to 20% compared with manual driving.

Since 1982 a lot of research about optimal train control has
been carried out by the University of South Australia (UniSA).
The research started with the PhD research of Milroy on con-
tinuous train control similar to the basic model of Section 2
(Milroy, 1980; Howlett and Pudney, 1995). Milroy (1980) ap-
plied the PMP and concluded based on his research on urban
railway transport that there are three driving regimes in the op-
timal driving strategy for urban railways on level track and with
a fixed speed limit (see Figure 3):

1. Maximum acceleration (MA),
2. Coasting (CO), and
3. Maximum braking (MB).

Later, Howlett proved mathematically based on the PMP that
the general optimal driving strategy for level track and a fixed
speed limit consists of four driving regimes including cruising
(Howlett, 1990), which had already been found by Strobel et al.
(1974).
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Figure 3: Optimal driving regimes without cruising (for metro and suburban
railway systems) over time with switching points between driving regimes at t1
and t2.

The theoretical ideas of continuous energy-efficient train
control were implemented by UniSA in a commercial system
named Metromiser. The system consisted of two parts: a
software package for timetable planners to generate energy-
efficient timetables, and a DAS for energy-efficient train opera-
tion (Howlett and Pudney, 1995). The DAS part of Metromiser
advised the train driver when to coast and when to brake in or-
der to minimize energy consumption using light and sound in-
dications (Benjamin et al., 1987; Howlett et al., 1994; Howlett
and Pudney, 1995; Howlett, 1996; Cheng, 1997). However,
Metromiser assumed a constant effective gradient during coast-
ing and braking phases (Pudney and Howlett, 1994). The first
successful runs with the system were done on the (sub)urban
trains in Adelaide (Australia) in 1984, and later in Toronto

(Canada), Melbourne (Australia) and Brisbane (Australia). The
achieved energy savings were more than 15% compared to
the trains running without Metromiser, and also punctuality
increased. Benjamin et al. (1987) and Howlett et al. (1994)
showed that for suburban trains to which Metromiser was ap-
plied the coasting phase is the most important driving regime
due to the short stop distances.

Around 1990, Netherlands Railways (NS, Nederlandse
Spoorwegen) also investigated the EETC problem. Van Don-
gen and Schuit (1989a,b, 1991) investigated the optimal driving
strategy and found the four optimal driving regimes by mea-
surements and experience. Static advice about cruising and
coasting was included in the timetable for the train drivers on
the intercity line between Zandvoort and Maastricht/Heerlen in
the Netherlands. Results with the optimal driving strategy in-
dicated energy savings of 10% compared to the normal prac-
tice of train operation with reduced constant timetable speeds.
Moreover, they found that both optimizing the cruising speed
(by applying constant power) and the coasting distance led to
the most energy savings. In addition, Van Dongen and Schuit
(1989a,b, 1991) found that it is even better not to apply maxi-
mum acceleration for the Dutch power supply system with its
low voltage, since this led to a high drop in voltage and energy
losses. They therefore recommended to apply a low and con-
stant line current in consideration of the low catenary voltage.

Liu and Golovitcher (2003) considered the EETC problem
with varying gradients and speed limits. Since both gradients
and speed limits are functions of distance, they reformulated
the optimal control problem with distance as the independent
variable instead of time. This change of independent variable
had been proposed before by Howlett et al. (1994) and Pudney
and Howlett (1994) to deal with varying speed limits, and by
Howlett and Pudney (1995) for both varying speed limits and
gradients. With distance x as independent variable, the state
variables now become time t(x) and speed v(x), and the energy
consumption equals

∫
u+(x)dx, where now u(x) = F(x)/ρm

with u(x) ∈ U = [−umin, umax(v(x))] for x ∈ [0, X]. Note that∫ T

0
u+(t)v(t)dt =

∫ T

0
u+(t)

dx
dt

dt =

∫ X

0
u+(x)dx.

The equivalent EETC problem in terms of distance with the
additional speed limit upper bounds is then:

J = min
u

∫ X

0
u+(x)dx (20)

subject to the constraints

ṫ(x) = 1/v(x) (21)
v̇(x) = (u(x) − r(v(x)) − g(x))/v(x) (22)
t(0) = 0, t(X) = T, v(0) = 0, v(X) = 0 (23)
v(x) ∈ [0, vmax(x)], u(x) ∈ [−umin, umax(v(x))], (24)

where X is the total distance travelled, t(x) is the time over the
distance travelled, and T is the total available running time. The
variables (t, v) are the state variables and u is the control vari-
able. Note that now v̇(x) and ṫ(x) denote the derivatives of v
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and t with respect to the independent variable x. The resistance
force now consists of a train resistance r(v) and a line resis-
tance g(x), where line resistance g(x) is defined as the specific
external force due to track gradient or curvature. It is assumed
that tracks have piecewise constant gradients. Note that on up-
hill slopes g(x) > 0 and on downhill slopes g(x) < 0. Total
resistance may be defined now also as r(v, x) = r(v) + g(x) =

r2v2 + r1v + r0 + g(x), which is thus explicitly a function of both
speed and distance.

The optimal control û(x) can be derived similar to Section 2
by applying Pontryagin’s Maximum Principle as follows. The
Hamiltonian is

H(t, v, ϕ, λ, u, x) = −u+ +
φ

v
+
λ(u − r(v) − g(x))

v

=

 ( λv − 1)u +
ϕ
v −

λ
v (r(v) + g(x)) if u ≥ 0

λ
v u +

ϕ
v −

λ
v (r(v) + g(x)) if u < 0,

(25)

and the associated augmented Hamiltonian

H̃(x, v, ϕ, λ, µ, u) = H+µ1(umax(v)−u)+µ2(u+umin)+µ3(vmax−v),

where ϕ(x) and λ(x) are the co-state variables satisfying the dif-
ferential equations

ϕ̇(x) = −
∂H̃
∂t

= 0 (26)

λ̇(x) = −
∂H̃
∂v

=
λu + λvr′(v) − λr(v) + ϕ

v2 − µ1u′max(v) + µ3.(27)

Note that the Hamiltonian is now also a function of the inde-
pendent variable x due to the line resistance g(x). Similar to
Section 2, the optimal control û(x) that maximizes the Hamil-
tonian for varying gradients is

û(x) =


umax((v(x)) if λ(x) > v(x) (MA)
u ∈ [0, umax] if λ(x) = v(x) (CR1)
0 if 0 < λ(x) < v(x) (CO)
u ∈ [−umin, 0] if λ(x) = 0 (CR2)
−umin if λ(x) < 0 (MB).

(28)

The optimal speed-distance profile for a level track is illustrated
in Figure 4.

Liu and Golovitcher (2003) derived the above five driving
regimes from the PMP where the cruising regime is split into
partial power and partial braking. The latter may occur on nega-
tive gradients. They also showed that the optimal cruising speed
vc is the root of (19) or the maximum speed, whichever is lower.
To determine the sequence of optimal controls they derived four
control switching graphs describing the possible switchings be-
tween the five driving regimes depending on speed v(x) and
speed limit vmax(x) at the switching moment, which could ei-
ther be v(x) < vmax(x), or v(x) = vmax(x) with vmax(x) remaining
constant at x, dropping down or jumping up. In each of these
switching graphs, conditions were derived for switching to an-
other regime depending on the value of speed, optimal cruising
speed, (changed) speed limit, and the beginning of a steep climb
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Figure 4: Speed profile of a basic energy-efficient driving strategy with switch-
ing points between driving regimes at x1, x2 and x3.

or end of a steep descent, see also Golovitcher (2001) for more
details. For the final determination of the optimal control, Liu
and Golovitcher (2003) divided the distance in intervals with
constant line resistance g(x) = gn on (xn−1, xn). On each of these
intervals the dynamic equation (22) is again independent of dis-
tance. Thus the Hamiltonian (25) is constant there, providing a
complementary optimality condition on each interval, cf. (18).
Based on the optimal driving regimes, the control switching
graphs and the complementary optimality conditions, Liu and
Golovitcher (2003) finally derived a numerical algorithm con-
sisting of an outer loop that finds the cruising speed vc on each
interval of constant line resistance and an inner loop that builds
the optimal trajectory for the given values of vc. They imple-
mented the algorithm in a simulation and optimization package,
which has been applied for crew training and timetable opti-
mization. Several case studies were reported. A simulation of
a metro system with Automatic Train Operation (ATO) showed
energy savings of 3% compared to using technical minimum
running times. Here a simple control algorithm, which com-
putes the required speed based on the remaining time and dis-
tance only, was compared with the energy-efficient algorithm
that constantly re-calculates the optimal trajectory to the next
station using the track gradient profile to find the optimal speed
and locations for switching the control.

Vu (2006) also considered the optimal train control prob-
lem in speed and time as function of distance and showed that
the optimal control for a specific journey on a non-steep track
is unique. Based on this research, Howlett et al. (2009) de-
veloped a new local energy minimization principle to calcu-
late the critical switching points on tracks with steep gradients.
A steep uphill section is a section in which the train has in-
sufficient power to maintain a cruising speed when climbing,
while a steep downhill section is a section in which the train
is increasing speed when applying coasting (Vu, 2006). They
showed that a maximum acceleration regime is necessary for a
steep uphill section and a coasting regime for a steep downhill
section. Furthermore, they showed that the necessary condi-
tions defining the optimal switching points near steep gradients
are also necessary conditions for minimization of local energy
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usage subject to a weighted time penalty. This minimization
was adopted as a more efficient means to compute the opti-
mal switching points in the DAS Freightmiser for freight trains,
the follow-up of Cruisemiser described in Section 3.3. During
trial tests in Australia and India in the period between 2002 and
2007, energy savings of about 15% were achieved for freight
trains with Freightmiser compared to freight trains without this
DAS (Howlett et al., 2008). Freightmiser was also tested on
a passenger high speed line in the UK with energy savings of
22% compared to normal operation (Coleman et al., 2010).

A. Albrecht et al. (2013a) proved that the switching points
obtained from the local energy minimization principle are
uniquely defined for each steep section of track and therefore
also deduced that the global optimal strategy is unique. They
now reported an implementation of the algorithm in a DAS
called Energymiser, the follow up of Freightmiser. Energy-
miser has been used with energy savings between 7% and 20%
compared to normal driving without Energymiser, see A. Al-
brecht et al. (2015a). In addition, A. Albrecht et al. (2014)
showed by means of numerical examples using Energymiser
that the optimal train control strategy indeed consists of max-
imum power instead of partial power for acceleration. The
power is then applied for a smaller time resulting in a lower total
energy consumption. Recently, the French railway undertaking
SNCF (Société Nationale des Chemins de fer Français) applied
Energymiser on their TGV high speed trains using tablets to
display driving advice to the train drivers (A. Albrecht et al.
(2015c)).

Aradi et al. (2013) used a predictive optimization model to
calculate the energy-efficient speed profile taking into account
varying gradients and speed limits. Their algorithm considers
both the current location of the train and some distance further
ahead to make a prediction about the speed profile. The multi-
objective function of the algorithm aims at minimizing the total
energy consumption and at maximizing punctuality. Sequen-
tial quadratic programming (SQP) was used to solve the model.
The model was applied in a case study of a locomotive-hauled
train on a 15 km track on the Swiss line between Fribourg and
Bern, showing energy savings of 15.3% compared to normal
operation.

Scheepmaker and Goverde (2015) also considered the EETC
model (20)–(24) with varying gradients and speed limits and
derived the PMP optimality conditions, see also Scheepmaker
(2013). To find the switching points, they developed a two-
stage iterative algorithm that calculates the optimal cruising
speed using Fibonacci search and the optimal coasting point
for the given cruising speed using the bisection method. The
algorithm was implemented in MATLAB and applied in a case
study on the regional train line between Utrecht Central and
Rhenen in the Netherlands. The results from the EETC model
were compared with the UZI method applied by train drivers
at NS. The UZI method (Universeel Zuinigrijden Idee, Dutch
for universal energy-efficient driving idea) is a simple coast-
ing strategy for short and long distances derived empirically
by an enthusiastic train driver. In the UZI method, for short
distances with scheduled running time t ∈ {2, . . . , 8} minutes,
the driver accelerates with maximum power to the coasting

speed vcoast(t) = 60 + 10 · t km/h and then starts coasting.
For longer distances, the time to start coasting tcoast before
the arrival time at the next station is defined as a function of
the track speed limit as tcoast(vmax) = 4 + (vmax − 100)/10
minutes for vmax ∈ {100, . . . , 140} km/h (Scheepmaker, 2013;
Velthuizen and Ruijsendaal, 2011). The results of Scheepmaker
and Goverde (2015) showed that extra energy savings compared
to the UZI method of at least 5% were possible by using the
EETC model which considers both cruising and coasting, as
well as the exact running time supplement and the track and
train characteristics. Compared to time-optimal running times
the energy savings were 15.7%. With respect to an improved
timetable with uniform running time supplements the energy
savings increased to 15.9% for UZI and 21.8% for the EETC
model compared to time-optimal running. An example of an
energy-efficient speed profile including varying gradients and
speed limits can be found in Figure 5. The reported computa-
tion time of the EETC algorithm was on average 190 seconds
(laptop with 2.1 GHz processor speed and 8 GB RAM) for a
train run between two stops (including varying gradients). The
method could be used for static energy-efficient speed advice
with optimal cruising speed and coasting point information for
punctual trains.
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Figure 5: Example of an energy-efficient speed profile with varying gradients
and speed limits for the line Utrecht Central-Rhenen (adapted from Scheep-
maker and Goverde (2015)).

Su et al. (2013) considered the EETC problem in time (3)–(7)
on level track with the simplifying assumptions that the maxi-
mum traction, maximum braking and resistance forces are all
constants. As a result they could derive analytical expressions
for all regimes based on the PMP. Su et al. (2014) extended the
previous model with maximum traction, maximum braking and
resistance forces as functions of speed although the exact func-
tions are not given. Since their focus is on subway systems, they
assumed that the maximum speed is the optimal cruising speed.
The computation of the energy-efficient speed profile is based
on a given amount of energy available for each section between
two stops. The algorithm first discretizes the section into parts
of equal distances and then starts with maximum acceleration
on the first part. Then as long as energy is left the train either
accelerates with maximum power if the speed is below the max-
imum speed or cruises with an energy consumption that coun-
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ters the train and line resistances. When all available energy has
been used, both speed profiles for coasting until the end of the
section and for maximum braking from the end of the section
are computed, with the minimum speed of these profiles giving
the final coasting and braking regimes (and their intersection).
They applied their algorithms on the Beijing Yizhuang metro
line in China in a timetabling algorithm, see Section 4.

A. Albrecht et al. (2013b) observed that timetabled arrival
times are not always efficient when meeting the specified times
requires the train to vary its pace throughout the journey and
thus to waste energy. Therefore, they proposed to use time win-
dows which define the earliest and latest arrival time at a spe-
cific location to improve the energy-efficient driving strategies.
In a case study from the UK they showed that 13% extra energy
could be saved with a 1-minute time window, and 18% with a 3-
minute time window both compared to no time window. T. Al-
brecht et al. (2013c) also described the use of time windows in-
stead of target times at minor stops and junctions to decrease en-
ergy consumption. They mentioned that target windows should
only be applied if slight delays of a train do not have immediate
consequences to surrounding trains. They extended the algo-
rithm described in T. Albrecht and Oettich (2002) to include
time intervals without giving the details. Jaekel and Albrecht
(2013) further developed the concept of time windows to so-
called Train Path Envelopes (sequences of time windows) to
limit the time-distance search space for energy-efficient train
control with respect to adjacent trains.

3.2. Exact methods with regenerative braking

A different option for energy saving is to incorporate regen-
erative braking where the kinetic energy of the running train
is fed back to the catenary system when the train brakes us-
ing the regenerative braking. This energy can then be used by
other trains so that the overall energy consumption of the train
decreases.

Asnis et al. (1985) studied the energy-efficient train control
problem including regenerative braking for level track. They
considered the basic problem (3)–(7) but with the adjusted ob-
jective function

J = min
u

∫ T

0
(u+(t) − ηu−(t))v(t)dt, (29)

where the second term ηu−v gives the energy regenerated by
the braking of the train. Here, u−(t) = −min(u(t), 0) denotes
the specific braking force (the negative part of the control) sim-
ilar to (2), and η ∈ [0, 1] is the recuperation coefficient which
determines the efficiency of the regenerative braking system.
Note that the problem reduces to the basic problem if η = 0 (no
regenerative braking). The resistance force r(v) was modelled
in an abstract way that included the usual quadratic function in
speed but with r0 = 0. Asnis et al. (1985) derived necessary
conditions by applying PMP, resulting in the following optimal

control strategy

û(t) =


umax(v(t)) if λ(t) > v(t) (MA)
u ∈ [0, umax] if λ(t) = v(t) (CR)
0 if ηv(t) < λ(t) < v(t) (CO)
u ∈ [−umin, 0] if λ(t) = ηv(t) (RB)
−umin if λ(t) < ηv(t) (MB).

(30)
Here the driving regime RB denotes regenerative braking.
Hence, the possibility for regenerative braking generates an
additional singular solution corresponding to partial braking.
Note that we distinguish between the partial braking regime
CR2 from (28) and the regenerative braking regime RB, since
the latter may also contribute energy to the cost function and
may thus lead to potential different strategies. However, for
level track, Asnis et al. (1985) showed that this singular solu-
tion does not occur over a nontrivial interval. Hence, regenera-
tive braking is only used with maximum braking. However, the
optimal driving regime sequence may now also contain maxi-
mum braking before a coasting regime. Asnis et al. (1985) also
derived analytical expressions in the special case of r(v) = v.
They did not provide an algorithm to construct an optimal driv-
ing regime sequence with the associated switching times.

Khmelnitsky (2000) considered the EETC problem with vari-
able gradient profiles and speed restrictions as well as regener-
ative braking. He used the same objective function (29) as As-
nis et al. (1985) but using distance as independent variable, by
which it transforms to

J = min
u

∫ X

0
(u+(x) − ηu−(x))dx. (31)

This is equal to (20) with an additional term for the regenerative
braking.

However, Khmelnitsky (2000) used time t(x) and total en-
ergy E(x) = K(x) + P(x) as state variables. Total energy is
the sum of kinetic energy K(x) and potential energy P(x) at
position x. Potential energy is the energy due to the track
height P(x) = mgh(x) which other authors model using the
track gradients, and kinetic energy is the energy due to motion
K(x) = 1

2 mv2. The train resistance force is now a function of ki-
netic energy w(K) = w0 +w1

√
K +w2K, which equals the usual

Davis equation r(v) using the transformation v =
√

2K/m. We
use a different notation w(x) to distinguish it from the squared
function r(v). The constraints can now be described as:

ṫ(x) = 1/
√

2K(x) (32)
Ė(x) = u(x) − w(K(x)) (33)
t(0) = 0, t(X) = T, E(0) = 0, E(X) = EX (34)
K(x) ∈ [0, K̄(x)], u(x) ∈ [−umin, umax(K(x))], (35)

where K̄(x) is the maximum kinetic energy at position x, which
can be derived from the speed profile using the transformation
K̄ = 1

2 mv2
max. Khmelnitsky (2000) derived the PMP necessary

conditions for problem (31)–(35) and also found the optimal
control structure (30) with five regimes, but now in terms of
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distance:

û(x) =


umax(K(x)) if λ(x) > K(x) (MA)
u ∈ [0, umax] if λ(x) = K(x) (CR)
0 if ηK(x) < λ(x) < K(x) (CO)
u ∈ [−umin, 0] if λ(x) = ηK(x) (RB)
−umin if λ(x) < ηK(x) (MB).

(36)
In order to keep a constant speed (and kinetic energy) along an
interval, the tractive or braking force has to change according
to the grade profile

u(x) = Ṗ(x) + w(K(x)). (37)

Hence for varying gradients, Khmelnitsky (2000) showed that
both singular solutions could occur in a cruising regime with
partial traction or partial braking equal to the track and train re-
sistance forces on intervals with minor grades or falls where the
right-hand side of (37) stays within the bounds of traction and
braking forces, respectively. Note that the definition of minor
grades and falls depends on both the grade profile and the speed.
He also proved that the equations λ(x) = K(x) and λ(x) = ηK(x)
have no more than one root for each minor grade and each mi-
nor fall interval, respectively, so that the cruising speeds are
well-defined. Moreover, he proved that the smaller the running
time, the higher the optimal cruising speeds. For steep grades
where the speed decreases even at full traction or for steep falls
where speed increased even at full braking, he showed that the
cruising phase should be interrupted in advance by maximum
acceleration or maximum braking, respectively. Khmelnitsky
(2000) solved the problem with a numerical algorithm that first
locates the intervals of singular cruising regimes (CR, RB) and
then links them together with a sequence of regular driving
regimes (MA, CO, MB). For full recovery of braking energy
(η = 1) he remarked that the cruising and coasting regimes
merge constituting a unique stabilization regime on intervals
with minor grades and falls. A case study on a 40 km railway
line with two hills and three different speed limits showed fast
computation times within 10 seconds on an IBM PC-586 com-
puter.

Franke et al. (2000) considered the EETC problem with re-
generative braking with mass-specific kinetic energy E(x) =
1
2 v2 and time t as state variable of distance as independent vari-
able. They simplified the resistance equation into the linear
equation w(E) = w0 + w2E and thus neglected the term in

√
E.

In terms of the normal Davis resistance this discards the linear
speed term but not the quadratic speed. Moreover, they approxi-
mated the traction and braking force as piecewise constant. The
objective function is the integral of electric power P = uv and
an additional nonlinear term Ploss(u, v) for the power losses of
the propulsion (traction and regenerative braking) system, for-
mulated in speed. Hence, they considered the following optimal
control problem:

J = min
u

∫ X

0
(u(x)v(x) + Ploss(u(x), v(x)))dx, (38)

subject to

ṫ(x) = 1/
√

2E(x) (39)
Ė(x) = u(x) − w(E(x)) − g(x) (40)
t(0) = 0, t(X) = T, E(0) = 0, E(X) = 0 (41)
E(x) ∈ [0, Ē(x)], u(x) ∈ [−umin, umax(E(x))]. (42)

Since the simplified dynamic equation in E is linear, they could
derive analytical expressions for the various driving regimes
and solve the problem by a Discrete Dynamic Programming
(DDP) algorithm. For this, they reformulated the optimal con-
trol problem (38)–(42) as a multistage optimization problem
by discretizing the problem into K stages k = 0, . . . ,K − 1,
such that the resistance including the grade profile wk and the
traction/braking force uk could be considered constant in each
stage. Stage k covers the distance interval [xk, xk+1) with length
∆xk = xk+1− xk. This then results in the Dynamic Programming
problem

min
∑

k

f0(Ek,∆xk, uk,wk), (43)

subject to

Ek+1 = f1(Ek,∆xk, uk,wk) (44)
tk+1 = tk + f2(Ek,∆xk, uk,wk) (45)
Ek

min ≤ Ek ≤ Ek
max, t

k
min ≤ tk ≤ tk

max (46)
−umin(wk) ≤ uk ≤ umax(wk, Ek, Ek+1) (47)

and the given initial state (t0, E0) = (0, 0) and scheduled finite
state (tK , EK) = (T, 0). Here, the function f0 is obtained using
a numerical approximation of (38) over each stage with fixed
resistance wk and control uk, and f1 and f2 are the analytical
expressions to (39) and (40) depending on the values of wk and
uk. The DPP algorithm was implemented in a Nonlinear Model
Predictive Controller (NMPC) to optimize the driving strategy
in real-time. The algorithm was applied in a case study on the
Swiss line Zürich HB-Luzern where in two controlled runs the
driver operated the train exactly according to the pre-calculated
optimization results. Results from simulations and the pilot
runs showed potential energy savings between 10% and 30%
compared to mean manual driving strategies and fastest driving.
A remarkable result from their model was that no maximum ac-
celeration or maximum braking is applied at high speeds due to
the nonlinear power losses.

Baranov et al. (2011) considered the EETC problem with
both mechanical and regenerative braking with distance as in-
dependent variable. Denote by u f , ub and ur the mass-specific
force due to traction, braking and regenerative braking, respec-
tively. Then the optimal train control problem is formulated as:

min
u f ,ur

∫ X

0
(u f (x) − ηur(x))dx,

subject to

v̇(x) =
(
u f (x) − ub(x) − ur(x) − r(v(x)) − g(x)

)
/v(x),

together with (21), (23), v(x) ∈ [0, vmax(x)], and the con-
trol limits u f (x) ∈ [0, ū f (v(x))], ub(x) ∈ [0, ūb(v(x))], ur(x) ∈
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[0, ūr(v(x))]. Here, η is a the efficiency factor of regenerative
energy returned to the network. Using the PMP, they found
seven driving regimes: the three familiar regimes MA, CO and
MB (maximum braking with both mechanical and regenera-
tive braking), three cruising regimes with either partial traction
(CR), with partial regenerative braking (RB) or with full re-
generative braking and partial mechanical braking, and finally
a regime with full regenerative braking. An algorithm to con-
struct the optimal control sequence of these driving regimes is
mentioned as an open question.

Rodrigo et al. (2013) discretized distance into n − 1 intervals
and transformed the optimal control problem into an optimiza-
tion problem with speed vi at the fixed points i = 1, . . . , n as
n decision variables. They therefore expressed the objective
function, dynamic equations and constraints as functions of the
n-tuple of speed values and solved the resulting optimization
problem by the Lagrange multiplier method using MATLAB.
They included the option of regenerative braking with an effi-
ciency coefficient and considered two case studies of Madrid’s
metro Line 8 in Spain. For regenerative braking they con-
cluded that it is optimal to start with maximum acceleration un-
til some average cruising speed. In the central sections, traction
and regenerative braking are alternated with preferably braking
on downward slopes to generate energy, and at the destination
braking is applied to recover as much energy as possible. The
average regenerated energy was approximately 23%. When re-
generative braking is not possible, however, they found that it
is optimal to start with maximum acceleration until a speed is
reached that ensures arrival on time using coasting. In cen-
tral sections partial traction is used for cruising and in case of
speed restrictions coasting is preferred before braking if time
allows. The energy consumption of mechanical braking was
higher than with regenerative braking. The two case studies
showed a big increase in computation time if mechanical brak-
ing was applied instead of regenerative braking. The compu-
tation time for the first case study between the stations Nuevos
Ministerios and Colombia was 34.82 s for regenerative brak-
ing and 290 s for mechanical braking. In the second case study
between the stations Colombia and Mar de Cristal the compu-
tation time increased to 90.22 s for regenerative braking up to
1,977 for mechanical braking.

Regenerative braking in the optimal control for metro trains
is considered by Qu et al. (2014). They used the objective func-
tion (31) but assumed full recovery of regenerative braking en-
ergy (η = 1) and no steep slopes. In this case, coasting is not
used and the optimal driving strategy consists of a sequence of
the three driving regimes maximum acceleration, cruising and
maximum braking, see Figure 6. They presented an iterative
numerical algorithm to compute the optimal cruising speeds
for given speed restrictions and scheduled running time. The
authors applied it to a case study based on the Shenzhen Metro
Line 1 in China to show that the presence of a speed restriction
changes the cruising speeds.

In the European rail project ON-TIME (Optimal Networks
for Train Integration Management across Europe) an iterative
algorithm was developed for an on-board DAS to calculate the
optimal control of a train (ON-TIME, 2014a). The algorithm
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Figure 6: Speed profile of an energy-efficient driving strategy without coasting
and with switching points between driving regimes at x1 and x2.

is based on PMP and includes regenerative braking as well
as traction efficiency with time as independent variable. They
thus assumed the five optimal driving regimes as in (30), which
was used in an iterative gradient-based algorithm that computes
the switching times between regimes by iteratively replacing
regimes on a subsection as long as the running time can be
increased. The regime changes are selected as the ones that
provide most energy savings with the smallest change in run-
ning times. The three options to increase the running time on
a subsection with given start and end speed are (i) reducing the
duration of maximum acceleration and replacing it with cruis-
ing at a lower speed or coasting; (ii) reducing the duration of
cruising, and (iii) replacing part of it by coasting; and reducing
the cruising speed. Results on a case study on the Dutch rail-
way network between Utrecht Central and Eindhoven showed
energy savings of 20% to 30% by the use of the algorithms
compared to non-optimized train driving.

A. Albrecht et al. (2015b,c) discussed the key principles of
optimal train control and extended their previous work by in-
cluding regenerative braking. Their problem statement includes
varying (steep) gradients. The problem formulation is the same
as the dynamic constraints with respect to distance (21)–(24)
with the objective equal to (31). This leads to the following
optimal control strategy:

û(x) =


umax(v(x)) if λ(x) > v(x) (MA)
u ∈ [0, umax] if λ(x) = v(x) (CR)
0 if ηv(x) < λ(x) < v(x) (CO)
u ∈ [−umin, 0] if λ(x) = ηv(x) (RB)
−umin if λ(x) < ηv(x) (MB).

(48)
The results indicate that regenerative braking should only be in-
cluded in a cruising phase to maintain a certain cruising speed
during a steep downhill section. Moreover, they derived analyt-
ical equations for the modified dimensionless co-state variable
η = λ/v − 1. Phase plots of the state and modified-co-state
variables were drawn for constant gradients to find the optimal
switching points between control regimes for different initial
conditions. They implemented their model in MATLAB and
successfully tested it on two examples with steep uphill and
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steep downhill sections, and checked the calculations with the
results from Energymiser. Moreover, they showed an example
of Energymiser in a case study of the high speed TGV trains of
SNCF between Lyon and Valance (France) without considera-
tion of regenerative braking. Results indicated that the amount
of running time supplement influences the optimal driving strat-
egy. Energy savings of 22.6% can be achieved with 10% run-
ning time supplement in relation to time-optimal running.

3.3. Exact methods with discrete control
The models considered up to now assumed continuous trac-

tion control, which is applicable to most trains nowadays (Liu
and Golovitcher, 2003). Nevertheless, there are also trains
where traction is controlled using discrete throttle settings. For
example, in Australia most freight trains used to have diesel-
electric traction with discrete throttle settings (Howlett, 2000).
Therefore, the literature also considered energy-efficient train
control models where traction control is restricted to a finite
number of discrete values. In particular, this changes the cruis-
ing regime since not all control settings are possible to maintain
an optimal constant cruising speed. Still, for freight trains the
distance between two stops is much longer than for suburban
trains and therefore some kind of approximate cruising phase
would be the dominant phase.

Cheng and Howlett (1992) first described the energy-efficient
train control problem with discrete throttle settings as follows.
Assume that there are m + 1 distinct throttle settings f j, j =

0, . . . ,m, with f0 = 0 the zero fuel case corresponding to coast-
ing, and f j < f j+1, j = 1, . . . ,m a sequence of increasing fuel
supply rates. Moreover, let ti, i = 0, . . . , n + 1 be a sequence
of switching times between throttle settings with f jk+1 the rate
of fuel supply maintained in the interval (tk, tk+1) for a duration
of τk+1 = tk+1 − tk. Let t0 = 0 and tn+1 = T . Furthermore, it
is assumed that braking is only applied at the final stage with
maximum braking rate b. Then the minimum fuel consumption
optimization problem is formulated as

min
n−1∑
k=0

f jk+1τk+1 (49)

subject to

v̇(t) =
H f jk+1

v(t)
− r(v(t)), t ∈ [tk, tk+1) (50)

for k = 0, . . . , n − 1, and

v̇(t) = b − r(v(t)), t ∈ [tn, tn+1], (51)

with the additional constraints (4), (6) and v(t) ≥ 0. Here, H
is some constant. Note that this first problem formulation as-
sumes flat track. Cheng and Howlett (1992) solved this problem
using Lagrange multiplier theory by formulating a Lagrangian
function and applying the Karush-Kuhn-Tucker necessary con-
ditions.

Cheng and Howlett (1992) showed that cruising is now ap-
proximated by alternating between maximum acceleration and
coasting which leads to a sawtooth pattern between two speeds
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Figure 7: Speed profile of an energy-efficient driving strategy with discrete
control (throttle settings) with switching points between driving regimes at x1,
x2 and x3 (the cruising phase consists of different phases of acceleration and
coasting).

V and W, where a train repetitively accelerates to some critical
speed W and then coasts until a certain critical speed V < W,
where it will accelerate again to the critical speed W, et cetera,
see Figure 7. This strategy was coined a ‘strategy of optimal
type’. The critical speeds are obtained from the equation

λv − µ = vr(v), (52)

where λ and µ are the non-negative Lagrange multipliers cor-
responding to the fixed distance X and fixed running time T ,
respectively. Since vr(v) is a convex function, there are ex-
actly two solutions to (52), of which V denotes the lower and
W the higher. Furthermore, the speed where braking begins
was shown to be the solution U to λv − µ = 0. Starting with
maximum acceleration, a strategy of optimal type is then char-
acterized by the three speeds 0 < U < V < W, where λ and µ
can be computed in terms of V and W as

λ =
Wr(W) − Vr(V)

W − V
and µ =

VW (r(W) − r(V))
W − V

.

Then the braking speed follows by U = U(V,W) = µ/λ. A
numerical procedure to solve the optimal control problem for
a strategy of optimal type is now obtained by finding speeds V
and W such that the resulting errors in the total distance X and
time T are zero. With n = 2p + 3, for any nonnegative integer
p, the solution starts with maximum acceleration to W, oscil-
lates p times with coasting-maximum acceleration between the
critical speeds V and W, coasts to the braking speed U < V ,
and then brakes with maximum braking. Cheng and Howlett
(1993) showed that the critical speeds Vp and Wp converge to
an idealized strategy with speed Vp = Wp = Z as p→ ∞ which
minimizes the fuel consumption. The oscillation strategy can
thus be interpreted as an approximate cruising regime.

Howlett (1996) extended the energy-efficient train control
problem with discrete throttle settings to varying gradients us-
ing the associated formulation with distance as independent
variable. For non-steep gradients again an approximate cruis-
ing regime is obtained with oscillations between two critical
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speeds. The switching points now depend on the gradients
and hence the oscillation interval durations τk are no longer
regular. Recall, that by definition for a non-steep track the
speed increases in an acceleration regime and decreases during
each coasting or braking regime. The critical speeds and cor-
responding switching times are computed for a fixed number
of acceleration-coasting phases by adjusting the values of the
Lagrange multipliers µ and λ. For steep gradients, the approxi-
mate cruising regime is interrupted by segments of coasting and
traction.

Howlett et al. (1994) extended the problem to varying speed
limits. In this case, each segment (xi, xi+1) of constant speed
limit is associated with a separate Lagrange multiplier λi that
takes a different value on the different segments, and (52) is
rewritten as

λi = r(v) + µ/v

on (xi, xi+1). Since the critical speeds for various track segments
are defined by different values of the parameter λi, the critical
speed intervals (Vi,Wi) are nested over the various segments.
The models usually consider a train as a point mass. However,
Howlett et al. (1994) also showed that a real train with a dis-
tributed mass can be treated as a point mass by constructing a
modified gradient profile.

Cheng (1997) contained most results for discrete control and
also Howlett and Pudney (1995) captured all the results for dis-
crete control with some additional information (next to their
results for continuous control up to 1995). The models and
algorithms for discrete throttle control setting were used in a
DAS named Cruisemiser (Benjamin et al., 1989; Howlett et al.,
1994; Cheng, 1997), which extended the ideas of Metromiser
(see Section 3.1) to long-haul freight trains in Australia.

3.4. Direct exact methods

The solution approaches considered so far first derived the
optimal driving regimes from the necessary conditions for opti-
mality using Pontryagin’s Maximum Principle, and then tried to
solve the resulting optimization problem of finding the optimal
sequence and switching points of the optimal driving regimes
by solving the differential equations of the train movements for
the optimal driving regimes. This approach worked well for
special cases but the general problem with varying gradients
and speed limits is very difficult to solve, while the inclusion of
regenerative braking made the problem even harder to solve.

A different approach for solving optimal control problems
is obtained by discretizing the dynamic system into a prob-
lem with a finite set of variables and then solving the resulting
static nonlinear programming problem by nonlinear program-
ming (NLP) methods (Betts, 2010). Only recently this direct
approach has been considered for solving EETC problems.

Y. Wang et al. (2011) considered the EETC problem with
varying gradients, curves and speed restrictions. They used ki-
netic energy and time as state variables in the independent vari-
able distance and assumed a linear resistance force as in Franke
et al. (2000). As objective function they used a trade-off be-

tween energy consumption and driving comfort:

min
u

∫ X

0

(
u(x) − α

∣∣∣∣∣du(x)
dx

∣∣∣∣∣) dx,

subject to (39)–(42), but assuming also a constant maximum
traction force, i.e., u(x) ∈ [−umin, umax]. Here, α is a weight
factor to balance between the two objectives. They then dis-
cretized the problem into a discrete-space problem by divid-
ing distance in discrete intervals similar to Franke et al. (2000),
where they approximated the nonlinear terms through piece-
wise affine (PWA) functions, and finally reformulated it into
a MILP (mixed integer linear programming) problem. A case
study of a 10 km long line was considered with a fixed speed
limit, 20 fixed discretization intervals of 500 m, and α = 500.
Still the computation time was about 10 min and, as a result of
the rough discretization, the optimal control and train trajectory
were not very accurate.

Y. Wang et al. (2013) reconsidered the EETC problem of
Y. Wang et al. (2011) but now considered maximum traction
force as a usual nonlinear function of speed, which they approx-
imated by PWA functions. The resistance equation was still as-
sumed linear in the kinetic energy. They now also proposed a
Pseudospectral method (Rao et al., 2010; Ross and Karpenko,
2012) to solve the problem and compared this with the MILP
and DDP methods of Franke et al. (2000). For the Pseudospec-
tral method, the optimal control problem was first reformu-
lated into a multiple-phase optimal control problem with each
phase corresponding to a constant gradient, curve and speed
limit (Betts, 2010). This multiple-phase optimal control prob-
lem could then be transformed into a nonlinear programming
problem using the Pseudospectral method, where the state and
control functions are approximated by orthogonal polynomials
based on interpolation of orthogonal collocation points. The
PSOPT solver was used to transform and solve the NLP prob-
lem. The three approaches were compared in the case study
of the 10 km long line where now varying gradients and speed
limits were added. The MILP problem used again a 500 m in-
terval while for the DDP method a space interval of 100 m was
chosen. The solvers were PSOPT, CPLEX for the MILP prob-
lem, and a generic MATLAB Dynamic Programming function
for the DDP problem. For a scenario with a constant maxi-
mum traction force, PSOPT took 6 min, DDP took 2 min, and
CPLEX required 32 seconds, but the DDP and MILP models
were highly inaccurate with respect to the PSOPT solution.
In a second scenario, the maximum traction was considered
as a nonlinear function of speed. Again the DDP and MILP
approaches were highly inaccurate compared to the smooth
PSOPT solution. The computation time for PSOPT was how-
ever very high with 19 min, compared to 2 min and 1 min for
the DDP and MILP approaches.

P. Wang et al. (2015) considered the EETC problem (20)–
(24) with the state variables speed and time as function of dis-
tance and varying gradients and speed limits, plus additional
timetable constraints using the Train Path Envelope (TPE)
to model intermediate stops as mandatory target points and
through-passing of stations as time windows. The model was
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reformulated as a multiple-phase optimal control problem with
each phase corresponding to a constant gradient and speed
limit, and then solved using the Gauss Pseudospectral Method
using the GPOPS solver (Rao et al., 2010). The model was
applied to a case study based on the 50 km corridor Utrecht
Central-’s-Hertogenbosch in the Netherlands with eight sta-
tions. In a first scenario, a regional train was considered with
four scheduled stops from Utrecht Central to Houten Castellum
for both the original timetable and an adapted timetable with
smaller running times as would be provided by a Traffic Man-
agement System (TMS). The solutions are computed within 6
seconds for each train run between two stops, and the speed-
distance and force-distance diagrams show a driving behavior
as expected from the optimal driving regimes known from ap-
plying the PMP. The faster train uses less coasting and needs
more energy as a result. In a second scenario, an intercity train
is considered from Utrecht Central to ’s-Hertogenbosch which
overtakes a regional train in a station halfway. Two strategies
are computed: one with mandatory target points at all interme-
diate stations according to the scheduled pass-through times,
and another with time windows on the five intermediate stations
besides the overtaking and end stations. The optimal trajecto-
ries use coasting before all scheduled target points and speed
restrictions, while for the time-window case a smoother opera-
tion was obtained with a constant cruising speed over all inter-
mediate stations. The case with the time windows saves 4.5%
extra energy. The computation time for time-window case was
less than 30 seconds for the entire trajectory.

3.5. Heuristics

In addition to exact solution methods based on PMP to de-
termine the optimal driving strategy, also artificial intelligence
or search algorithms have been applied to directly solve the
energy-efficient train control problem.

Chang and Sim (1997) developed a coast control driving
strategy for metro systems with varying speed limits and us-
ing regenerative braking. They developed an algorithm with
the objective to minimize the total traction energy consumption
by taking into account punctuality and riding comfort in penalty
functions. The riding comfort is described by the jerk, which
is the change of acceleration over time. The successive driving
regimes are translated into a coast control lookup table, which
gives the distance to start each driving regime and could be in-
corporated in an ATO system. The authors developed a Genetic
Algorithm (GA), which was implemented in C++ on an IBM
486 PC. The algorithm was applied to a case study consisting
of a track of 923 m between two stops with a speed restric-
tion halfway of 40 km/h. Two scenarios were tested with the
model : a normal schedule with 90 s scheduled running time,
and a tight timetable in which the scheduled running time be-
tween the two stops is assumed 0 s, which forces the algorithm
to consider a delay. The model results were compared with a
fuzzy ATO controller. Results indicated that energy savings of
2.5% for the tight timetable to 6.8% for the normal timetable
were achieved and that punctuality also increased in both cases.
For the normal timetable scenario the jerk was higher than with

the fuzzy ATO controller, but it remained within the boundaries
of passenger comfort. The results were generated within 30 s.

Lechelle and Mouneimne (2010) developed a GA approach
to find energy-efficient speed profiles. A GA generates numer-
ous operating speed profiles according to certain rules speci-
fied by the users. In turn, a single-train simulator simulates
the movement of a train for each of these speed profiles and
computes the corresponding traction energies. Through an iter-
ative process, the GA gradually converges towards an energy-
optimised speed profile. This approach was implemented in
a tool called OptiDrive and applied on a case study of the
tramway network of Rouen in France. Results showed 7% en-
ergy saving compared to normal real-time operation.

Domı́nguez et al. (2011) developed a simulation model for
the Madrid metro system driven by ATO. The simulation model
includes four independent modules (ATO, engine, train dy-
namics, and energy consumption). The configuration data for
the ATO consists of four parameters: traction, cruising speed,
coasting, and braking deceleration rate. The considered ATO
system provided only certain discrete values for each parame-
ter, resulting in a solution space of 156 alternative speed pro-
files per inter-station run, which enabled an exhaustive simu-
lation of all feasible ATO speed profiles. In addition the re-
sulting speed profiles were filtered based on comfort and opera-
tional conditions such as a minimum speed throughout the jour-
ney (20 km/h), maximum number of reaccelerations, maximum
slope for coasting, and minimum speed limits along curves. The
resulting running times were plotted against the associated en-
ergy consumption, after which a Pareto curve could be used
to determine the most energy-efficient speed profile given the
available running time, see Figure 8. The curves were used
to determine a set of four alternative speed profiles per inter-
station run associated with the fastest running time, the sched-
uled running time (at most 20 seconds more than the time-
optimal running time), and two running times uniformly dis-
tributed in between. The approach was applied on the Madrid
Metro line 3 in Spain resulting on average in 13% energy sav-
ings compared to the previous ATO design without affecting the
scheduled running times.

Domı́nguez et al. (2012) extended the simulation model of
Domı́nguez et al. (2011) by considering the energy in the
substations to include regenerative braking. Using the same
method as before the model was also tested on the Madrid
Metro line 3. Energy savings of 6% to 11% were reported for
the optimal speed profiles including optimal use of regenera-
tive braking energy compared to operation without using the
optimal speed profiles.

Three different optimization algorithms for finding energy-
efficient speed profiles were studied by Lu et al. (2013). The
authors make use of a graphic model to simplify calculation of
the optimal control by avoiding nonlinear complexity. The ob-
jective of the optimization is to minimize total traction energy
considering punctuality constraints. The optimal speed profile
is determined by constructing a complete weighted and directed
speed graph. The authors compared the heuristic methods Ant
Colony Optimization (ACO) and the Genetic Algorithm, and
Dynamic Programming. Varying gradients as well as speed
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limits were taken into account. The algorithms were applied
in different examples in which the total distance was fixed, but
the available running time was variable. The results showed
that the speed profiles with the lowest total energy consump-
tion were gained with the DP algorithm, but this costs the most
computation time. On the other hand, the heuristic algorithms
did not guarantee finding an optimal solution.

Sicre et al. (2014) proposed a Genetic Algorithm with Fuzzy
parameters based on the accurate simulation of a train motion to
determine the optimal driving strategy for delayed high-speed
trains. Fuzzy cruising speeds and switching times were used to
consider manual train driving. Moreover, regenerative braking
was included. The objective of the GA is to find the solution
that has the target running time with the minimum energy con-
sumption. A general structure for efficient manual driving was
proposed that was easy to implement for drivers. This struc-
ture replaced the cruising regime by a partial traction phase that
maintains a speed as long as traction is required. However, if
braking is necessary to keep the speed constant on a downhill
section braking would not be applied, but the train would coast
instead and thus increasing its speed where braking is applied if
a speed limit would be reached. The approach requires several
runs of the Fuzzy GA with different target running times start-
ing with the scheduled running time where in each iteration the
target time is updated by the estimated delay of the former run.
To allow a real-time calculation, the algorithm was restricted to
two GA runs with a computation time limit of 15 seconds each.
The approach was applied in a numerical case of the Spanish
High Speed line between Calatayud and Zaragoza in Spain for
recovery from a temporary speed restriction at the beginning of
the stretch that would lead to a 1:04 min delay if the nominal
driving strategy would not be updated. The scheduled running
time was 26 min which included 4:08 min (15.9%) running time

supplement. Energy savings of 5.5% on pantograph level and
6.7% on substation level were achieved compared to the nomi-
nal operations.

Chevrier et al. (2013) proposed a bi-objective optimiza-
tion approach for computing running times as a trade-off be-
tween minimizing running time and energy consumption us-
ing a heuristic Evolutionary Algorithm (EA). They consider the
time formulation (3)–(7) with varying gradients and speed lim-
its, but with both the energy consumption J and total time T
as objectives to be minimized. They decomposed the problem
into i = 1, . . . , n sections of constant speed limit and in each
section i they built the speed profile by splitting the section in
two parts with target speeds va,i and vb,i in the first and second
part, respectively, which are the decision variables of the EA.
Continuity is guaranteed by incorporating the speed limit in the
next section and linking the exit and entry speeds of successive
sections. In the first part only maximum acceleration or braking
is used to reach the first target speed va,i from the entry speed.
Then in the second part the second target speed vb,i is reached
initially by coasting and possibly braking after which cruising
is used to complete the rest of the section. The algorithm is fol-
lowed by a post-processing step for smoothing the speed profile
with cruising regimes where a maximum braking regime is fol-
lowed by either maximum acceleration or acceleration while
coasting (on a steep descent). The EA algorithm finds multiple
and well-spread non-dominated (Pareto) solutions in a single
run that a planner can choose from. The algorithm has been ap-
plied in two case studies of a 2.2 km long line with five sections
and a 20.2 km long line with also five sections. In both cases the
algorithm runs for 60 seconds to produce a wide set of Pareto
optimal speed profiles, where a planner can select a solution
with given scheduled running time and associated energy con-
sumption. The results show that the energy consumption can
be reduced significantly already by slightly increasing the run-
ning times. When more running time is allowed (up to 22%
more than the time-optimal running time), energy savings may
be even close to 50% in comparison to the technical minimum
running time.

3.6. Summary on EETC

Table 1 gives an overview of the different literature on the
EETC. The fourth column ‘Method’ indicates Approximation
(A) if a heuristic method is used or the model contained sim-
plifications. Most research is on the topic of continuous train
control using PMP with algorithms for finding exact solutions.
All rail modes are considered with an emphasis on metro/urban
and regional/IC (intercity) railway systems. To compute realis-
tic speed profiles it is important to take into account nonlinear
train traction and resistance, line resistance with in particular
varying gradient profiles, and varying speed limits. Curve re-
sistances and tunnels are often ignored.

Some algorithms are applied in a real-time Driver Advi-
sory System. For those algorithms, fast calculation times are
achieved by using efficient algorithms, simplifications of the
problem, or offline computations of a set of solutions that can
be chosen from online. For the analysis of more complex
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Table 1: Summary of EETC literature.
Publication Control RB Method Real- Varying features Mode of transport

time Speed
limits

Gradients High
speed

Regional,
IC

Freight Metro,
urban

Ichikawa (1968) C E x
Strobel et al. (1974) C E x x
T. Albrecht and Oettich (2002) C E x x
Milroy (1980) C E x x
Howlett (1990) C E x x x
Cheng and Howlett (1992) D E x x
Cheng and Howlett (1993) D E x x
Howlett et al. (1994) D E x x x
Howlett (1996) D E x x x
Cheng (1997) D E x x x x
Van Dongen and Schuit (1989a,b, 1991) C A x x x
Howlett and Pudney (1995) C, D E x x x x x x
Howlett (2000) C, D E x x x x x
Oettich and Albrecht (2001) C E x x x x
T. Albrecht (2014) C E x x x x
Liu and Golovitcher (2003) C E x x x x x
Vu (2006) C E x x
Howlett et al. (2009) C E x x x x
A. Albrecht et al. (2013a) C E x x
A. Albrecht et al. (2013b) C E x x x x
A. Albrecht et al. (2014) C E x x x x x
A. Albrecht et al. (2015b,c) C E x x x x x x
Lechelle and Mouneimne (2010) C A x x x x
Domı́nguez et al. (2011) C A x x x
Aradi et al. (2013) C E x x x
Chevrier et al. (2013) C E x x x
Lu et al. (2013) C A/E x x x
Rodrigo et al. (2013) C E x x
Scheepmaker and Goverde (2015) C E x x x
Su et al. (2013) C A x x
Su et al. (2014) C A x x x
T. Albrecht et al. (2013c) C E x x x x x
Jaekel and Albrecht (2013) C E x x x x x
ON-TIME (2014a) C E x x x x x
Qu et al. (2014) C E x x x
Y. Wang et al. (2011) C A x x
Y. Wang et al. (2013) C A, E x x
P. Wang et al. (2015) C E x x x x

Asnis et al. (1985) C x E x
Chang and Sim (1997) C x A x x
Franke et al. (2000) C x A x x x x
Khmelnitsky (2000) C x E x x x x x
Baranov et al. (2011) C x E x x
Domı́nguez et al. (2012) C x A x x x
Sicre et al. (2014) C x A x x x

Legend: RB = Regenerative Braking, C = Continuous, D = Discrete, E = Exact, A = Approximation, IC = intercity.
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driver behavior or regenerative braking over networks, simu-
lation and/or heuristics like GA have been applied. Also regen-
erative braking has been considered with still the main focus on
a single train (energy consumption at the pantograph).

Finally, there are differences between different modes of rail
transport. Table 2 shows the main differences. The differ-
ences are mostly related to the maximum speed of the trains
and the average distance between two stations. The table indi-
cates that cruising becomes more important when the average
distance between two stations increases. This can be explained
by the fact that at short distances the maximum speed cannot be
reached and the running time supplements of the timetable are
very small. Therefore any optimal speed to start coasting can
be reached, while for longer distances cruising naturally comes
in play.

4. Energy-efficient train timetabling

This section discusses energy-efficient train timetabling,
which is the problem of finding a timetable for one or more
trains on a railway corridor or network that allows as much as
possible energy-efficient driving. The total running time of each
train over the corridor may be pre-specified or may still have
to be determined. In both cases, the aim is to determine the
running time between each pair of consecutive stops for each
train such that the total (planned) energy consumption of the
involved trains is minimum.

For each trip between two consecutive stations, the planned
running time consists of the minimum running time between
the stations plus a running time supplement. The minimum en-
ergy consumption that is needed on a single trip between two
stations is decreasing in the amount of running time supple-
ment. Indeed, if more running time supplement is available,
then less energy is needed by running at a lower cruising speed
or starting earlier with coasting. This effect is shown in Figure
8, which also shows the decreasing added value of more run-
ning time supplement. Increasing the amount of running time
supplement is often also useful for increasing the robustness
of the timetable. However, it also leads to increased (planned)
journey times for the passengers.

We used a framework based on EETT with and without re-
generative braking. With regenerative braking the models con-
sider synchronization of accelerating and regenerative braking
trains. Without regenerative braking the models from literature
focus on finding the optimal amount and distribution of the run-
ning time supplements. An overview of our framework is given
in Figure 9.

Section 4.1 first describes a basic version of a model for
EETT. Then Section 4.2 focuses on EETT without regenerative
braking. Finally, Section 4.3 reviews the literature including the
possibility of regenerative braking.

4.1. Basic timetabling model

In this section we give a brief description of a basic
timetabling model for a single train. Suppose a single train
is to be scheduled along the consecutive trips in the set Q =
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Figure 9: Framework of EETT.

{1, 2, . . . , n}. The minimum running time of trip q ∈ Q is de-
noted by rq, and the dwell time of the stop between trips q and
q + 1 is denoted by dq.

The basic problem here is to distribute a given amount of
time supplement Z in such a way among the trips that the total
energy consumption of the train is minimum. To that end, let
the decision variables Dq, Aq and S q denote the departure time,
the arrival time and the time supplement of trip q ∈ Q, respec-
tively. Then the timetabling model for scheduling this single
train can be described as follows:

min f (D, A, S ) (53)

subject to

Aq − Dq = rq + S q for q = 1, . . . , n (54)
Dq+1 − Aq = dq for q = 1, . . . , n − 1 (55)

n∑
q=1

S q ≤ Z. (56)

The objective function (53) expresses the total energy consump-
tion of the train in terms of the departure times, the arrival times,
and the time supplements of the trips. For evaluating the ob-
jective function (53), a trade-off curve as shown in Figure 8 is
used. Constraints (54) and (55) express the running time and
dwell time of trip q in terms of the trip’s departure time, ar-
rival time and time supplement. Constraint (56) indicates that
the total amount of slack time should not exceed the maximum
amount of slack time Z.

The above model is a basic model for scheduling just a sin-
gle train, where minimizing the energy consumption is the only
objective. For generating a timetable for more than one train,
at least headway constraints and connection constraints must be
taken into account as well. Furthermore, regenerative braking
requires modeling the interaction between the energy produc-
tion and the energy consumption of nearby trains. In addition,
also other objectives, such as robustness, may be pursued. For
different approaches to deal with an objective like robustness,
we refer to Cacchiani and Toth (2012).
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Table 2: Comparison of EETC solutions by mode of transport.

Train type Driving regimes Most important
driving regime

Maximum Speed
[km/h]

Average stop
spacing [km]

Regenerative
braking included Algorithms

High speed MA, CR, CO, MB CR (& CO) 200-300 > 50 Possible E, A
Regional and IC MA, CR, CO, MB CR & CO 120-160 > 25 Possible E
Freight MA, CR, CO, MB CR & CO 80-100 > 30 Possible E
(Sub)urban MA, CR, CO, MB CO 100-120 > 5 Possible E, A
Metro MA, CO, MB CO 80 > 1 Yes E, A

Legend: MA = Maximum Acceleration, CR = Cruising, CO = Coasting, MB = Maximum Braking, E = Exact method, A = Approximation, IC = intercity.

4.2. EETT without regenerative braking
T. Albrecht and Oettich (2002) belonged to the first ones re-

searching EETT and dynamic train operations. They used a
simulation model to compute the energy utilization for each dis-
cretized running time between two consecutive stops of a train.
Then they calculated the optimal timetable with Dynamic Pro-
gramming, in which the total running time of each train is opti-
mally distributed along the line. They also aimed at increasing
the probability that passenger connections can be maintained in
case of delays. Therefore, a multi-objective function was used:
minimizing expected waiting time at transfer stations (passen-
gers) and minimizing energy consumption (operator). The final
solution was based on the minimum Euclidean distance from
the ideal point. The results show that the algorithm inserted
extra running time supplements to decrease the waiting time at
a connection and to reduce energy consumption. The devel-
oped method was successfully tested at the suburban railway
system of Dresden in Germany: it led to 15-20% reduction in
energy consumption compared to using the normal timetable,
see T. Albrecht (2005a,b). The EETT algorithm has been im-
plemented in the driver simulator of TU Dresden, see T. Al-
brecht (2005b).

Ghoseiri et al. (2004) considered an optimization model for
scheduling a number of passenger trains on a railway network
including single and double track sections and several stations.
Their model is a large non-linear mathematical programming
model that is solved with the commercial solver LINGO. They
consider the multi-objective function of minimizing the total
travel time of the passengers and minimizing the fuel consump-
tion costs of the operator. The solution process for the multi-
objective problem consists of two steps. In the first step the
Pareto curve of the trade-off between running time and energy
consumption is determined by the ε-constraint method. Then
a multi-objective optimization is performed in which different
distance-based methods are used to select the final timetable
from the Pareto curve. The model was tested on a number of
relatively small artificial instances. The results clearly show the
trade-off between the two objectives: lower travel times cost
more energy. Due to the nature of the model, it is not possible
to explicitly describe the resulting optimal driving strategies.

Ding et al. (2011) used a two-level iterative optimization
model to determine the energy-efficient driving strategy as well
as the optimal timetable for a metro line. They consider the
driving regimes acceleration, coasting, and braking. At the
first level, an optimization model computes the energy-efficient
driving strategy by determining the switching points. At the
second level, an optimization model determines the optimal

running time supplements. They use a Genetic Algorithm for
solving the iterative two-level optimization model. The authors
apply their model on a single case study. They report that the
energy consumption can be reduced by up to 19.1% compared
to the timetable without optimization.

Sicre et al. (2010) considered optimizing the running time
distribution for a high speed train. A simulation model com-
putes the relation between the amount of running time supple-
ment and the energy consumption per trip, which results in
trade-off curves between running time and energy consump-
tion per trip between two stops. In this simulation model the
energy-efficient driving strategy is based on a ‘manual’ driv-
ing module with heuristic rules to change between the optimal
driving regimes known from the EETC literature. An optimiza-
tion model then distributes the available running time over the
trips in order to minimize the total energy consumption. The
model only redistributes the available running time supplement,
so there is no focus on finding the optimum total amount of
running time supplement. The authors report savings of about
33.6% compared to using the commercial timetable with tech-
nically minimum running times over a high-speed journey from
Madrid to Zaragoza with two intermediate stops.

Cucala et al. (2012) further optimized the model of Sicre
et al. (2010) for high speed trains. They included uncertain
delays in the model by using fuzzy numbers and punctuality
constraints. In addition, they changed the single objective func-
tion into a bi-criteria objective function aiming at minimizing
total energy consumption and minimizing delays. The pre-
ferred timetable is found by distributing the available running
time supplement among the trips. For this, first an EETC prob-
lem is solved per trip using a Genetic Algorithm and a simula-
tor. As in Sicre et al. (2010), these models determine per trip
the trade-off curve between running time and energy consump-
tion. Then a fuzzy mathematical programming model is used to
distribute the running time supplement among the trips, where
fuzzy models are used to determine uncertainty in delays. Since
the problem is solved by a mathematical programming model,
no analytical descriptions of the solutions are derived. On a
journey from Madrid to Barcelona with four intermediate stops,
the authors report a reduction in energy consumption of 5.25%
in the optimized timetable without delays, and of 6.67% in the
delayed optimized timetable both in comparison with using the
commercial timetable. They thus conclude that it is useful to
consider delays in the optimization.

L. Yang et al. (2012) considered the EETC problem with
variable running times for multiple high-speed trains without
regenerative braking and discarding cruising. Their objective
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was to find a trade-off between total traction energy and to-
tal travel time in the railway network, where weight factors
are used to determine the balance between the two objectives.
Cruising at a fixed speed was not taken into account; the authors
mention that cruising is just a special sort of traction opera-
tion and could be considered easily. Hence, the optimal driving
strategy is a sequence of acceleration and coasting phases until
final braking. The EETC was calculated based on a simulation
model for determining the driving behavior and a Genetic Algo-
rithm to find the optimal control strategy for multiple trains in
a network by taking into account the headway between trains,
the speed limits and the riding comfort. Fuzzy variables are
included in the simulation part to simulate uncertainty in the
performance of the train during operation. Penalty functions
were included to differentiate between the priority of trains.
The model was implemented in VC++ 6.0 on a PC with 2.67
GHz processor and was tested on two numerical examples for
high speed trains. In the first example, the difference between
three objective functions is compared, i.e., technical minimum
running times, energy-efficient train operation (single train op-
timization) and a combination of both (multiple train optimiza-
tion). Results indicated that a combination of minimizing total
travel time and energy consumption is the most realistic. In the
second example the weight factor for the objective function was
varied. The best total objective function was achieved when
equal weights were used. The computation time of the model
varied between 400 s and 2,000 s, depending on the settings of
the parameters in the model.

Su et al. (2013) developed an optimization model that deter-
mines both an energy-efficient driving strategy and an optimal
distribution of the running time supplements in the timetable
of a metro line. The aim is to minimize the total energy con-
sumption. To that end, the authors first explicitly calculate
the energy-efficient switching points for the different driving
regimes. A second algorithm calculates the minimum running
time for a train, given the maximum speed limits. Then a third
algorithm distributes the running time supplements among con-
secutive trips in order to minimize the total energy consump-
tion, based on the gradients of the curves between running
time and energy consumption. The running time calculations
are simplified by assuming constant acceleration, braking, and
running resistances. Based on experiments involving the Bei-
jing Yizhuang metro line, the authors conclude that the energy
consumption can be reduced on average by 10.3% by applying
EETC in the current timetable compared to normal operation. If
the timetable is modified based on the results of the model, then
the energy consumption can be reduced by 14.5% compared to
to normal operation.

In a follow-up paper, Su et al. (2014) aimed at overcoming
some of the shortcomings of the model of Su et al. (2013). To
that end, they extend the energy-efficient optimization model
into an integrated energy-efficient optimization model. In this
model they also consider the headway times between consecu-
tive trains in order to incorporate passenger demand and mul-
tiple trains. Moreover, the authors now allow variable gradient
profiles. In the same way as in Su et al. (2013), the model
first calculates the optimal train control per trip. Then the opti-

mal distribution of the running time supplements is determined,
again based on the per trip trade-off curves of running time and
energy consumption. Finally the headway times between con-
secutive trains are determined, thereby taking into account pas-
senger demand and fleet size. This is done by iterating over the
first two algorithms for different values of the cycle time and the
fleet size. In a case study of the Beijing Yizhuang metro line,
the authors determine that the energy consumption could be re-
duced by 25.4% during peak hours and 15.9% during off-peak
hours compared to normal operation. Over a whole day, the
energy consumption could be reduced by 24.0% in comparison
with normal operation.

Li et al. (2013) described another multi-objective timetable
optimization approach. They considered three objectives: min-
imizing energy consumption, carbon emissions, and passenger
travel time. All objectives are equally weighted in the opti-
mization. To solve the problem, a multi-objective optimization
model is proposed. This model is a deterministic model, but it is
solved by fuzzy multi-objective optimization techniques avail-
able in LINGO. The model is applied to the Wuhan-Guangzhou
high speed railway line in China, which includes 10 stations. In
the resulting timetable, a reduction in energy consumption of
about 17.6% is realized in comparison with the timetable that
minimizes passenger travel times. However, this comes at a cost
of an increase in total passenger travel time of 8.6%. Especially,
the journey times increased for the heavier trains with high re-
sistance coefficients and the trains with high carbon emission
factors.

Y. Wang et al. (2014) considered the optimal trajectory plan-
ning problem for two trains without regenerative braking, and
incorporating varying gradients and speed limits. The authors
studied the effects of using two different signalling systems,
namely a fixed block system (FBS) or a moving block systems
(MBS). The objective of their algorithm is to minimize total
traction energy consumption for a leading and a following train.
The nonlinear terms in the train model and constraints were ap-
proximated by piecewise affine functions. In order to separate
the two trains, minimum headways were applied. Two different
approaches were considered in the paper to solve the problem.
A greedy approach where first the leading train is optimized and
afterwards the following train, and a simultaneous approach,
where the optimization of the two trains is done simultane-
ously. Two solution approaches were used: a MILP method and
a Pseudospectral method, both implemented in MATLAB. The
models were applied on a case study of a 1,332 m track between
two stops of the Beijing Yizhuang metro line in China. The re-
sults indicated that moving block leads to more energy savings,
since the headways between two trains can be shorter. More-
over, a simultaneous approach performed better in energy min-
imization than a greedy approach. The Pseudospectral method
performed better in terms of energy consumption and punctual
running than the MILP approach, however, the computation
times of the MILP approach were much faster. For the instances
with parameter values corresponding to the more accurate mod-
els the computations times for the MILP approach were above
a minute, while the fastest Pseudospectral method took more
than several minutes.
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P. Wang and Goverde (2016) considered the train trajectory
optimization problem for two successive trains without regener-
ative braking with consideration of general infrastructure (vary-
ing gradients and speed limits) and operational constraints, as
well as signalling constraints. Operational constraints refer to
time and speed restrictions from the actual timetable, while sig-
nalling constraints refer to the influences of signal aspects and
automatic train protection on train operation. They extended the
multiple-phase optimal control model of P. Wang et al. (2015)
by modelling also signalling constraints in the TPE and applied
a Pseudospectral method as solution method. They considered
various delays of the first train and computed the resulting op-
timal trajectory for the second train, with the objective to min-
imize a trade-off between delays and energy consumption. For
this purpose, two optimization policies were developed with ei-
ther limited or full information of the train ahead. A regional
signal response policy only assumed information on the signal
ahead such as with a stand-alone DAS that is not connected to a
TMS. This policy ensures that the train makes safe responses to
different signalling aspects. On the other hand, a global green
wave policy assumed that the signal release times by the train
ahead are available corresponding to a DAS connected to a cen-
tralized Traffic Management System that monitors and predicts
the movements of the trains and communicates the correspond-
ing earliest signal approach times to the following trains. The
green wave policy then aims at avoiding yellow signals and
thus proceeds with all green signals. A case study considered a
50 km corridor with eight stations in the Netherlands operated
by regional and nonstop intercity trains in a 15 minute cyclic
timetable with the intercity trains overtaking the regional trains
halfway. The optimal trajectories were computed for various
delays of a regional train. The results showed the benefits on
energy consumption and train delay of the following trains if
accurate predictive information of the leading train is available.
The more delay of the leading train, the better the performance
of the green wave policy in both energy consumption and delay.

The combination of timetabling and energy-efficient train op-
eration is also studied by Binder and Albrecht (2013) for the
European rail project ON-TIME (ON-TIME, 2014b). They de-
veloped a Dynamic Programming algorithm for regional trains
that determines the optimal arrival and departure times at in-
termediate stops in a corridor between two main stations with
fixed departure and arrival time, and thus the optimal distribu-
tion of the running time supplements and the dwell times along
a corridor. The objective includes three criteria: minimization
of the expected energy consumption, minimization of the ex-
pected arrival delay at the main station at the end of the corri-
dor, and minimization of the expected delay at the intermedi-
ate stations. First, Train Path Envelopes are determined which
limit the solution space in the optimization. Within a TPE,
the optimal train trajectory is computed. The model consid-
ers stochastic dwell times, but the running times are assumed to
be deterministic and follow the optimal energy-efficient driving
strategy for the running time obtained by fixing the arrival and
departure times. Binder and Albrecht (2013) tested the model
on a German corridor between two main stations with five in-
termediate stations. Depending on the weights of the three ob-

jectives, the authors report expected energy savings between
4.3% and 12.9% in comparison to the technical minimum run-
ning times. In the ON-TIME project the model was applied
to fine-tune the arrival and departure times at the intermediate
stops of the regional trains on corridors between main intercity
stations (Goverde et al., 2016). First, the arrival and departure
times of all trains at the intercity stations were optimized us-
ing a micro-macro two-level timetabling approach generating a
conflict-free timetable with an optimal trade-off between travel
times and robustness. Then the energy-efficient speed profiles
were computed for the intercity and freight trains with respect
to the fixed scheduled running times, after which the TPEs were
determined for the regional trains between the intercity stations.
Then the Dynamic Programming model was applied to the re-
gional trains. Goverde et al. (2016) applied this method to a
Dutch railway network of several interconnected railway lines
and report energy savings of 35.5% for all trains over the net-
work with respect to the energy consumption of the minimum
running times.

Mills et al. (1991) studied a different version of EETT. They
focused on solving the meet-and-pass problem for freight trains
in Australia. Since the main part of the Australian railway
network is single track, one of the main issues is the meet-
and-pass problem for freight trains in different directions. The
dynamic rescheduling system they describe aims at reschedul-
ing train movements in such a way that train lateness and en-
ergy consumption are minimized. The described model is a
non-linear optimization model for determining energy-efficient
speed profiles, and a discrete heuristic for solving the meet-
and-pass problem. The model was tested on a railway corridor
between Port Augusta and Tarcoola (Australia). The reported
savings in this experiment are about 6%. The non-linear model
used about 21.5 minutes on a HP9000/340 workstation. The
discrete heuristic required about 3.3 minutes.

4.3. EETT with regenerative braking

Another way to save energy during train operation is by us-
ing regenerative braking, i.e., to use the released kinetic energy
by regenerative braking of a train as traction energy for other
nearby trains. This regenerated energy can be transmitted over
the catenary (overhead line) system to the other trains. The
effective distance to transfer this regenerated energy over the
catenary system depends on the voltage and the current of the
power supply. Catenary systems using high voltage alternating
current (AC) have less energy loss and thus can transmit the re-
generated energy over a larger distance than low voltage direct
current (DC) systems. Examples of the former are the German,
Swiss and Austrian 15 kV AC electrification systems, and of
the latter are the Belgian, Italian or Spanish 3kV DC or the
Dutch 1.5 kV DC catenary systems. For low voltage DC sys-
tems it is thus important to have overlapping time intervals of
the accelerating and regenerative braking train in the same elec-
trified section to make efficient use of the regenerated energy.
Thus the aim is to synchronize the processes between acceler-
ating and regenerative braking of trains, where the gain of the
synchronization is higher when the electrical voltage is lower.
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One of the first papers studying this topic was T. Albrecht
(2004). He considered additional running time for the synchro-
nization of acceleration and regenerative braking instead of ad-
ditional dwell time at stations for synchronization. The model
aims at finding the optimal distribution of the running time sup-
plements in order to minimize total energy consumption and
power peaks. The model was solved by a Genetic Algorithm
and applied on a case study of the S-Bahn of Berlin. It was
shown that, in the case of constant dwell times, regenerative
braking may lead to an extra 4% of energy savings in compari-
son to running time optimization for individual trains. In case of
stochastic dwell times, energy consumption is about 6% higher
than with constant dwell times.

Regenerative braking is also considered by Peña-Alcaraz
et al. (2012). They developed a mathematical programming
model to determine a timetable for metro systems that mini-
mizes the total energy consumption by optimally using the re-
generative braking energy of the trains. The synchronization
of acceleration and braking is modeled by a power flow model,
which considers increased running times instead of increased
dwell times. Then the timetable model determines the opti-
mally synchronized timetable. However, energy-efficient train
control is not considered in the model, because the focus is on
maximizing the use of regenerative braking by synchronization
of acceleration and regenerative braking. Based on a simulation
model of the metro of Madrid, the authors report energy savings
of the optimized timetable of about 7% on average compared to
using the published timetable without loss of service to the pas-
sengers.

X. Yang et al. (2013) studied the topic of synchronization of
accelerating and regenerative braking trains for metro systems.
They did not explicitly look at regeneration of energy, but at
maximizing time overlaps of nearby accelerating and braking
trains. The authors first described the problem in terms of a
mathematical programming model. Then a Genetic Algorithm
was developed to find the optimally synchronized timetable by
using headway and dwell time control. On a case study in-
volving the Beijing Yizhuang metro line, the model increased
the time overlaps of nearby accelerating and braking trains
with 22.1% during peak hours and with 15.2% during off-peak
hours. The authors did not consider transmission losses nor
converter inefficiency of the regenerated energy.

X. Yang et al. (2014) further developed the model of X. Yang
et al. (2013). In addition to energy savings by using regenera-
tive braking, the authors also take into account passenger wait-
ing time. Again they first described the problem in terms of
a mathematical programming model with two objective func-
tions. The model does not take into account uncertainty in the
dwell time process at stations: it treats passenger behaviour as
deterministic. The model is solved by a Genetic Algorithm.
Again in a case study involving the Beijing Yizhuang metro
line, the model could reduce the energy utilization by 8.9%,
while at the same time the passenger waiting time could be
reduced by 3.2% compared to using the published timetable.
However, the authors assumed that all regenerative energy is
used by another train, while this is not always realistic.

X. Yang et al. (2015) again improved the model of X. Yang

et al. (2013). Instead of just focusing on time overlaps of nearby
accelerating and braking trains, they consider all trains in the
same track interval of electricity supply, and they extend the
time horizon to the whole day. The authors assume that trains
are operating according to the optimal speed profiles, and aim
at synchronizing the arrivals and departures of trains such that
as much as possible regenerated energy can be used. They first
describe this scheduling problem in terms of a Mixed Integer
Programming model. Again they develop a Genetic Algorithm
for solving this model. They test their algorithm on the Beijing
Yizhuang metro line. Their conclusion is that their algorithm
leads to 7.0% reduction in energy consumption in comparison
with the currently operated timetable, and to 4.3% reduction in
comparison with the algorithm of X. Yang et al. (2013). The
improved algorithm leads to an increase of 36.2% in the utiliza-
tion of regenerated energy.

Next, Li and Lo (2014a) developed an integrated energy-
efficient operation model. In their model they both optimize
the timetable and the speed profiles by taking into account the
headways between trains. They applied a Genetic Algorithm to
solve their model. The timetabling part of the model tries to
synchronize the accelerating and regenerative braking of trains
in order to reuse the regenerated energy. The speed profile part
calculates the optimal train control in order to minimize the net
energy consumption. The model was again applied to the Bei-
jing Yizhuang metro line. One of the results of the model is
that the energy savings are about 25% if the headways between
trains are minimal (i.e. 90 seconds). In that case the energy sav-
ings of the integrated approach are about 20% higher than those
of a two-step approach. The energy savings are smaller when
the headways increase, which is also observed by Feng et al.
(2013). Also the difference between the integrated approach
and the two-step approach gradually decreases for increasing
headways. However, Li and Lo (2014a) assumed simplified
train dynamics with a constant acceleration rate, deceleration
rate, running resistance, and energy transmission loss factor.

Finally, Li and Lo (2014b) developed a model to determine
the cycle time, the headway time, and the speed profiles for a
metro line, dynamically depending on the passenger demand
and such that the energy consumption is minimized. If the pas-
senger demand is high, then a small cycle time and short head-
way times are required to be able to handle the passenger de-
mand. If the demand is lower, then the cycle time and the head-
way times may be longer. The authors make several simplifying
assumptions, e.g. they assume that there is no coasting phase,
but only a cruising phase. Based on these assumptions, they
develop an explicit quadratic expression for the net energy con-
sumption of a train during one cycle, thereby also considering
regenerated energy. Then they set up the corresponding KKT
conditions, and they solve these in an iterative way. The model
was applied to the Beijing Yizhuang metro line. The results ob-
viously depend on the assumptions for the passenger demand.
In the experiment with fluctuating passenger demand that was
carried out, using a dynamic cycle time and headway time could
save up to about 8% energy in comparison with the shortest
possible fixed cycle time and headway time that allow satisfy-
ing all passenger demand. If the fixed cycle time and headway
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time are increased, then the corresponding energy consumption
may be the same as that of the dynamic ones, but in that case
the transport capacity may not be sufficient in the cycles with a
high passenger demand.

4.4. Summary on EETT

The main results of the literature survey are summarized in
Table 3. In this table the column “RB” indicates whether re-
generative braking is taken into account. Part of the research fo-
cuses on optimizing speed profiles of trains in order to minimize
the energy consumption, where the total running time is used as
a variable to influence the total energy consumption. Another
part of the research focuses on optimally distributing running
time supplements over the successive train runs according to
different multi-criteria objectives including the minimization of
total energy consumption. A third research stream focuses on
regenerative braking and tries to synchronize the timetable in
order to maximize the use of regenerated braking energy.

The models for finding optimal running time supplements
over a train line are mainly divided into Gradient Search,
Dynamic Programming, Genetic Algorithms, and Simulation.
Moreover, when regenerative braking is available, the synchro-
nization of accelerating and braking trains is optimized mainly
using Genetic Algorithms and Simulation. Different kinds of
railway modes have been considered, although most focus is
on regional trains and metro trains. Most research consid-
ers single-train line optimization, while surrounding trains are
mainly considered with regenerative braking.

5. Conclusions

The general energy-efficient train control problem is charac-
terized by nonlinear dynamics from the traction and train resis-
tance forces as function of speed, distance-dependent state con-
straints from speed restrictions, bounded controls, and a fixed
time horizon. Since the state constraints and the line resistance
forces from varying gradients depend on distance, most models
in the literature take distance as the independent variable rather
than time. The objective is typically minimization of energy
consumption, which is the integral of the (scaled) applied forces
over distance. The states are mostly speed and time as function
of distance, with some authors taking energy as an alternative
to speed. To solve the resulting optimal train control problem,
distance is typically partitioned into sections of constant gradi-
ent and speed limit, and the problem becomes a multiple-phase
optimal control problem where each phase (section) is linked
with its adjacent phases via continuity constraints in the state
variables. In this case, the number and order of driving regimes
become less obvious, by which solving the problem becomes
numerically challenging.

The optimal train control structure can be derived by apply-
ing Pontryagin’s Maximum Principle, which gives necessary
conditions for the optimal train control. For level track and no
or fixed speed limit the optimal train control structure consists
of a sequence of the four driving regimes maximum accelera-
tion by full traction, cruising by partial traction, coasting with

no traction, and maximum braking, in this order, where cruis-
ing and coasting may be absent depending on the time horizon
and speed limit. When varying speed limits are considered, ad-
ditional maximum acceleration regimes may occur in the opti-
mal control structure at each speed limit increase and additional
coasting regimes before each speed limit decrease. With vary-
ing gradients the cruising regime can be realized by partial trac-
tion or partial braking depending on the gradient, while steep
gradients may require maximum traction or maximum braking,
even in front of a steep uphill or downhill section. When also
regenerative braking is possible, the optimal train control struc-
ture is extended to seven driving regimes where also (partial or
full) regenerative braking can be used for cruising or braking.
In addition, recent literature considers further operational con-
straints such as various target points, flexible time and/or speed
windows, or signalling constraints.

Pontryagin’s Maximum Principle gives the optimal driving
regimes but not the optimal sequence of these regimes nor the
optimal switching points between regimes. The literature there-
fore describes many numerical algorithms to solve the optimal
control problem by determining the switching points between
driving regimes and associated optimal cruising speeds. Several
efficient algorithms have been developed for special cases or
assumptions such as level track, absence of steep gradients, as-
sumed linear train resistance, discarding the coasting regime, or
setting the cruising speeds equal to the speed limits. These spe-
cial cases can be used for suboptimal train control in particular
situations. A recent approach based on a direct Pseudospectral
method is promising to solve the most general energy-efficient
train control problem with varying gradients and speed limits.

The energy consumption is largely determined by the
timetable and in particular by the amount of scheduled run-
ning time supplements. In the energy-efficient train timetabling
problems the running time supplements are the decision vari-
ables and the objective is to find the optimal distribution of the
running time supplements for a train on one or more legs of
its journey, where the objective is mainly a trade-off between
minimizing both travel time and energy consumption, and in
some cases also delay. The energy-efficient train control prob-
lem is mostly used as a subproblem and the overall optimization
problem is solved by Gradient Search, Dynamic Programming,
Simulation or Genetic Algorithms. When regenerative braking
is possible, the focus shifts to synchronizing braking and ac-
celerating trains so that the regenerated braking energy can be
used by nearby accelerating trains. Simulation and Genetic Al-
gorithms are here the main solution methods.

The literature on energy-efficient train control is struggling
between developing more accurate advanced models on the one
hand and faster algorithms on the other. The algorithms in the
existing DAS and ATO systems rely on some simplifications
to be able to compute (sub)optimal driving advice in real-time
or are based on offline computed solutions for a large set of
scenarios. The main difference between the theoretical models
for EETC and a DAS in practice is that the theoretical models
try to find the optimal driving strategy, while a DAS often set-
tles for suboptimal solutions using heuristics. The computation
time increases for EETC models when more realistic behavior
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Table 3: Literature on energy-efficient timetabling.
Publication Objective(s) Process Algorithm Transport mode Scope RB

T. Albrecht and
Oettich (2002)

Expected wait-
ing time, energy
consumption

Distribution of run-
ning time supple-
ments

Dynamic Program-
ming

Suburban trains
with ATO

Single train on a line
with 10 stations

Ghoseiri et al.
(2004)

Travel time, fuel
consumption

Timetabling Non-linear Mathe-
matical Program-
ming, ε-constraint
method

Passenger trains Several trains on lines
with varying numbers
of stations

Ding et al. (2011) Energy consump-
tion

Distribution of
running time
supplements,
switching points

Genetic Algorithm Metro trains Single train on a line
with 6 stations

Sicre et al. (2010) Energy consump-
tion

Distribution of run-
ning time supple-
ments

Simulation, Opti-
mization

High speed trains Single train on a line
with 4 stations

Cucala et al. (2012) Delays, energy
consumption

Distribution of run-
ning time supple-
ments

Genetic Algorithm,
Simulation, Fuzzy
Linear Program-
ming,

High speed trains Single train on a line
with 6 stations

L. Yang et al.
(2012)

Travel time, energy
consumption

Coasting control Genetic Algorithm High speed trains Three trains in an ex-
ample network

Su et al. (2013) Energy consump-
tion

Distribution of run-
ning time supple-
ments

Explicit formulas
based on simplify-
ing assumptions

Metro trains Single metro on a line
with 14 stations

Su et al. (2014) Energy consump-
tion

Distribution of run-
ning time supple-
ments and headway
control

Iterative applica-
tion of the methods
from Su et al.
(2013)

Metro trains Multiple metros on a
line with 14 stations

Li et al. (2013) Travel time, car-
bon emission, en-
ergy consumption

Distribution of run-
ning time supple-
ments

Fuzzy multi-
objective non-
linear optimization

Regional trains and
high speed trains

Multiple trains on a
line with 10 stations

Y. Wang et al.
(2014)

Energy consump-
tion

Headway optimiza-
tion

Mixed integer lin-
ear programming
and Pseudospectral
method

Metro trains Two following trains
between two stops
with fixed or moving
blocks

P. Wang and
Goverde (2016)

Delays, energy
consumption

Headway optimiza-
tion

Pseudospectral
method

Mixed regional and
intercity trains

Multiple trains on a
line with fixed blocks
and 8 stations

Binder and Al-
brecht (2013)

Expected delays,
energy consump-
tion

Distribution of run-
ning time supple-
ments

Dynamic Program-
ming

Regional trains Single train on a line
with 7 stations

Mills et al. (1991) Train lateness, en-
ergy consumption

Meet-and-pass
problem

Non-linear opti-
mization, discrete
heuristic

Freight trains Several trains on a sin-
gle track corridor

T. Albrecht (2004) Power peaks, en-
ergy consumption

Running time op-
timization for syn-
chronization

Genetic Algorithm Suburban trains One train an a line
with 16 stations, tak-
ing into account also
other trains

x

Peña-Alcaraz et al.
(2012)

Energy consump-
tion, regenerated
energy

Running time op-
timization for syn-
chronization

Mathematical Pro-
gramming and DC
power flow model

Metro trains One metro on a line
with 36 stations, tak-
ing into account also
other metros

x

X. Yang et al.
(2013)

Overlap time Headway and dwell
time optimization
for synchronization

Genetic Algorithm Metro trains Several metros on a
line with 14 stations in
two directions

x

X. Yang et al.
(2014)

Passenger waiting
time, regenerated
energy

Headway and dwell
time optimization
for synchronization

Genetic Algorithm Metro trains Several metros on a
line with 14 stations in
two directions

x

X. Yang et al.
(2015)

Energy consump-
tion

Headway and dwell
time optimization
for synchronization

Genetic Algorithm Metro trains Several metros on a
line with 14 stations in
two directions

x

Li and Lo (2014a) Net energy con-
sumption

Timetable op-
timization for
synchronization

Genetic Algorithm Metro trains Several metros on a
line with 14 stations in
two directions

x

Li and Lo (2014b) Net energy con-
sumption

Dynamic cycle
time, headway and
speed profiles

Simplifying as-
sumptions, KKT
conditions

Metro trains Several metros on a
line with 14 stations in
two directions

x

Legend: ATO = Automatic Train Operation, RB = Regenerative Braking, KKT = Karush-Kuhn-Tucker.
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is included, like varying gradients and speed limits. In real-time
operation fast algorithms for a DAS are needed. Furthermore,
additional constraints may be included in a DAS to provide the
train driver with a stable driving advice (i.e. no continuously
changing advice) or specific driving regimes may be excluded,
such as coasting or cruising at less than the speed limit. This
also relates to the drivability of the optimal driving strategy in
terms of the number and time intervals between driving regime
changes, which applies more to DAS than ATO, as well as how
the advice is presented to the driver and the acceptability of
a driver to use a DAS. This needs more research from a hu-
man factors point of view. Moreover, the option of regenerative
braking increases the number of driving regimes even more. In
this respect, a comparison of EETC with or without regenera-
tive braking is also required with respect to energy consumption
and the complexity of the associated driving strategy. Neverthe-
less, even suboptimal driving strategies can lead to significant
energy savings. In due time, power of computers will increase
allowing more advanced algorithms to be used in real-time in
a DAS. And of course, there is active research in model and
algorithm development where the increased knowledge about
the optimal driving strategies under various conditions and con-
straints will be a guide to find more evident algorithms.

Recent research also focused on including more operational
(schedule and signalling) constraints in the train control prob-
lem, which also paves the way to extend the single-train op-
timal control problem to multi-train optimal control problems
where the energy consumption of multiple trains is optimized
dynamically including their interaction. This multi-train opti-
mization problem can be included in real-time railway Traffic
Management Systems, where the aim is first to avoid real-time
conflicts and second to minimize the total traction energy con-
sumption of all trains in a network. An initial study in this
area was presented by Mills et al. (1991), but there has not yet
been much follow-up research. The additional operational con-
straints will also be useful for more realistic energy-efficient
timetabling problems for multiple trains, which is yet a largely
unexplored topic.

Incorporating energy-efficiency in timetable design is an-
other area of future research. There are currently limited pa-
pers on this topic, but the attention to this field has been in-
creasing recently. Besides theoretical results, railway under-
takings also start showing interest in EETT. For example, re-
cently NS is investigating a change in their timetable design
process by redistributing the amount of running time supple-
ments and scheduling more realistic running times, which in-
creases the opportunities for energy-efficient driving. Also the
Swiss Federal Railways SBB (Schweizerische Bundesbahnen)
is investigating EETT for their regional train services by uni-
formly redistributing the running time supplements over the tra-
jectories and using flexible arrival times. In the future, research
will investigate the optimal amount and distribution of the run-
ning time supplements as wel as the balance between different
objectives for timetable design, like minimizing total running
time, total delay, energy consumption, and maximizing passen-
ger comfort. Moreover, the efficiency of these models and the
interaction with the applied EETC strategies and possible DAS

implementations need to be tested in pilots. The awareness of
the impact of EETC to exploit time allowances for energy sav-
ings will change both operational railway traffic management
and timetabling. The review of models and algorithms pre-
sented in this paper may guide future research directions and
lead to a further reduction of energy consumption and costs in
the railways of the future.
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