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Phonon-number resolution of voltage-biased mechanical oscillators with weakly
anharmonic superconducting circuits
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Observing quantum phenomena in macroscopic objects, and the potential discovery of a fundamental limit
in the applicability of quantum mechanics, has been a central topic of modern experimental physics. Highly
coherent and heavy micromechanical oscillators controlled by superconducting circuits are a promising system
for this task. Here we focus in particular on the electrostatic coupling of motion to a weakly anharmonic circuit,
namely, the transmon qubit. In the case of a megahertz mechanical oscillator coupled to a gigahertz transmon, we
explain the difficulties in bridging the large electromechanical frequency gap. To remedy this issue, we explore
the requirements to reach phonon-number resolution in the resonant coupling of a megahertz transmon and a
mechanical oscillator.

DOI: 10.1103/PhysRevA.104.053509

I. INTRODUCTION

The applicability of quantum phenomena to macroscopic
or massive systems has been the topic of intense investiga-
tion [1,2], especially in view of the incompatibility between
general relativity and quantum mechanics [3–5]. For exam-
ple, spontaneous wave-function collapse models hypothesize
that macroscopicity may provide a fundamental origin to the
quantum-to-classical transition [6]. Micromechanical struc-
tures oscillating at megahertz frequencies, such as suspended
membranes, could be well suited to explore these ideas, due to
their large mass and long coherence times [7]. However, the
harmonic nature of their motion presents a challenge for their
control at a quantum-mechanical level.

One way this can be addressed is by coupling a nonlinear
system to the otherwise harmonic oscillator. One experimental
field in which this is done successfully is circuit quantum
electrodynamics (QED) [8]. In circuit QED, microwave res-
onators are coupled to superconducting qubits, most often
to the weakly anharmonic transmon qubit, the most promi-
nent building block of a superconducting quantum computer
[9,10]. If the introduced nonlinearity is sufficient to spectrally
resolve the number of photons in the resonator, a host of
techniques are then available to construct quantum states of
the resonator [11–14]. By similarly coupling superconduct-
ing circuits to acoustical vibrations through piezoelectricity,
phonon-number resolution has been achieved, enabling the
preparation of quantum states of motion [15–18]. In these
cases however, the high frequency of the mechanical oscilla-
tors makes these systems poorly suited to probe macroscopic
effects [7]. An alternative, better suited to lower-frequency
mechanics, is to embed a voltage-biased oscillator in a circuit
[19]. Coupling superconducting qubits to megahertz mechan-
ical oscillators in this manner has been the topic of multiple
experiments; however, the coupling was always too small
to enable the spectral resolution of phonon-number states
[20–23].

Here we explore the reasons behind these difficulties and
explore possible solutions in the particular case of weakly
anharmonic superconducting circuits. The results are three-
fold. First, we present a method for analyzing voltage-biased
mechanical oscillators embedded in electrical circuits. More
specifically, we show how an equivalent electrical circuit can
be derived for the mechanical oscillator, which makes all the
tools of circuit quantization available to write a Hamiltonian
of the system. Second, we demonstrate the difficulty that lies
in obtaining phonon-number resolution of subgigahertz me-
chanical oscillators coupled to gigahertz weakly anharmonic
circuits. The large frequency gap causes the breakdown of
common assumptions in deriving dispersive interactions and
in this case leads to currently unattainable requirements on
the transmon coherence time. Third, we explore the resonant
coupling of megahertz mechanical oscillators and supercon-
ducting circuits as a solution to the above-mentioned problem.
In particular, we derive the requirement on the transmon and
mechanical coherence times to obtain phonon-number resolu-
tion of different types of mechanical oscillators.

II. COUPLING MECHANISM AND COUPLING RATE

A. Intuitive picture of the coupling mechanism

The coupling mechanism between the mechanical motion
and the circuit is illustrated in Fig. 1(a). The mechanical
oscillator plays the role of a mechanically compliant plate of
a capacitor Cd . By voltage biasing the capacitor with a voltage
V0, a charge q will accumulate on the plates following

q = Cd (x)V0, (1)

where the displacement of the oscillator is denoted by x.
Motion will lead to a current flowing in the leads supplying
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FIG. 1. Equivalent circuit of a voltage-biased mechanical oscilla-
tor coupled to a transmon. (a) A transmon with Josephson inductance
LJ and capacitance CJ is connected to a mechanical oscillator with
capacitance Cd biased with a voltage V0. Movement of the mechan-
ical oscillator will induce a current through the junction, which
implements electromechanical coupling. (b) In a circuit equivalent
of this system, the voltage-biased mechanical oscillator is replaced
with a capacitor Cd in parallel with a series Lm-Cm resonator repre-
senting the mechanical degree of freedom. The electrical equivalent
allows us to readily apply circuit quantization to derive the system
Hamiltonian.

the voltage

i = q̇ = ẋ
∂Cd

∂x
V0. (2)

If this current flows through a Josephson junction, it will
modify the junctions effective inductance. Specifically, the
effective junction inductance will acquire different values for
each Fock state of the mechanical oscillators motion. If the
junction is embedded in a resonant circuit (e.g., a transmon
qubit) featuring a narrow linewidth, this effect could reveal a
spectrum of different peaks corresponding to different Fock
states of the mechanical oscillators motion [24]. We call this
effect phonon-number resolution.

B. Equivalent circuit

To quantify this effect, we make use of an equivalent cir-
cuit for the voltage-biased mechanical oscillator derived in
Appendix A 1 and shown in Fig. 1(b). Here Cd corresponds
to the capacitance formed by the mechanical oscillator (in-
cluding its static displacement induced by the voltage). The
series composition of Lm and Cm represents the mechanical
degree of freedom, and this part of the circuit resonates at the
mechanical frequency

ωV0
m = 1√

LmCm
=

√
keff(V0)

m
(3)

and has an impedance

Zm =
√

Lm

Cm
= D(V0)2

V 2
0 C2

d

√
keff(V0)m, (4)

where m is the mass of the mechanical oscillator, D(V0) corre-
sponds to the distance separating the two capacitive plates of
Cd , and the effective spring constant of the oscillator keff(V0)
is

keff(V0) = k − V 2
0 Cd

D(V0)2
, (5)

with k the spring constant of the unbiased oscillator. We refer
to the change in spring constant with voltage as electrostatic
spring softening. The condition keff(V0) > 0 dictates the max-
imum applicable voltage, as the mechanical oscillator will
become unstable for keff(V0) < 0.

C. Hamiltonian of a transmon coupled
to a mechanical oscillator

We consider the voltage-biased mechanical oscillator cou-
pled to a transmon qubit composed of a junction LJ and a
capacitance CJ such that the total capacitance in parallel to the
junction is Ct = CJ + Cd [see Fig. 1(b)]. Following standard
circuit quantization techniques [25], the Hamiltonian is of the
form

Ĥ = h̄ω′
t â

†â − A

12
(â + â†)4

+ h̄ω′
mĉ†ĉ − h̄g(â − â†)(ĉ − ĉ†), (6)

as derived in Appendix A 2. Here â and ĉ are annihilation
operators for the transmon and the mechanical oscillator,
respectively. The frequency ω′

t = 1/
√

LJCt is related to the
frequency of the first transition (|g〉 ↔ |e〉) of the transmon
ωt through ωt = ω′

t − A/h̄. The charging energy A = e2/2Ct

quantifies the anharmonicity of the transmon, and we have
made the approximation A/h̄ωt � 1/20 in order to write the
anharmonicity of the junction as the fourth power of (â + â†)
[9]. The mechanical frequency is renormalized when quantiz-
ing the circuit ω′

m = 1/
√

LmCm
√

(Cm + Ct )/Ct .
The quantity which is most relevant to this discussion is the

coupling

g =
√

ω′
mω′

t

2

√√√√ 1 − (
ω

V0
m /ω0

m

)2

1 + CJ
Cd

(
ω

V0
m /ω0

m

)2 . (7)

The coupling can be increased by having the mechanical
oscillator capacitance dominate over the other capacitance of
the transmon Cd � CJ . Also, increasing the applied voltage
lowers the effective spring constant keff, which lowers the ratio
ωV0

m /ω0
m and increases the coupling. This route to increasing

the coupling is ultimately limited by the fact that the effective
spring constant should remain positive.

III. GIGAHERTZ TRANSMON–MEGAHERTZ
MECHANICAL OSCILLATOR

We first explore the conditions to obtain phonon-number
resolution in the spectrum of a gigahertz transmon coupled to
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FIG. 2. Overview of coupling schemes and their requirements for phonon-number resolution. The height of the spectral features schemat-
ically displayed depends on the occupation of the annotated state. We denote mechanical Fock states by |0〉 , |1〉 , . . . and Jaynes-Cummings
[26] eigenstates by |n, −〉 = (|n, g〉 − |n − 1, e〉)/

√
2, where n refers to the number of phonons in the mechanical oscillator and g and e refer

to the ground and the first-excited state of the transmon, respectively. (a) Megahertz mechanics coupled to a gigahertz transmon. In this case,
phonon-number resolution is achieved when the cross-Kerr interaction χm is larger than the transmon linewidth γt . (b) Mechanics resonantly
coupled to a transmon. The separation between phonon-dependent spectral peaks is given by the smallest energy scale: the coupling rate
g or the transmon anharmonicity A. Here we schematically show the case where g is the smallest, leading to a Jaynes-Cummings spectrum.
Phonon resolution then relies on these energy scales being larger than the spectral linewidth, given by 4γt nth if the transmon has the dominating
decay rate, where nth refers to the thermal occupation of the transmon. (c) A higher, gigahertz electrical mode is added to the previous setup.
Phonon-number resolution in the high-frequency spectrum comes when the representative linewidth γt,H + 4γt,Lnth is lower than the coupling
rate g and cross-Kerr coupling χLH . The spectrum shown here corresponds to the case where the coupling is smaller than the cross-Kerr
coupling.

a megahertz mechanical oscillator as schematically summa-
rized in Fig. 2(a).

A. Normal-mode picture of the dispersive interaction

If the coupling is small relative to the frequency differ-
ence between the oscillators g � � = ω′

t − ω′
m, the system

is better described by transforming the Hamiltonian through a
Bogoliubov transformation to [27]

Ĥ � h̄ω̃′
t ã

†ã − Ã

2
ã†ã†ãã

+ h̄ω̃′
mc̃†c̃ − Ãm

2
c̃†c̃†c̃c̃ − χmã†ãc̃†c̃. (8)

Here ã and c̃ are annihilation operators for the normal modes
of the system. Since these can be expressed as a linear com-
bination of the original annihilation and creation operators
(without a tilde), they are both electrical and mechanical
in nature. However, due to the assumption g � �, ã still
refers to mostly electrical oscillations and c̃ mostly mechan-
ical oscillations. Likewise, the frequencies ω̃′

t and ω̃′
m and

anharmonicity Ã acquire only small shifts with respect to
their original values (without a tilde). The detuning between
mechanical and electrical frequency is so large in this case
that the sum of oscillation frequencies � = ω′

t + ω′
m is com-

parable to the difference � ∼ � ∼ ω′
t . This regime forbids

the usual rotating-wave approximation when performing the
Bogoliubov transformation [27]. This results in a cross-Kerr
interaction between the modes given by

χm � 8Ag2 ω′2
m

ω′4
t

. (9)

This interaction could give rise to phonon-number resolution:
If we combine the energy of the electrical mode and the
cross-Kerr interaction into one term (h̄ω̃′

t − χmc̃†c̃)ã†ã, the
frequency of the electrical mode depends on the number of
phonons in the mechanical mode c̃†c̃. In order for phonon-
number resolution to be observable however, the shift per
phonon should be greater than the linewidth of the electrical
mode χm � γt .

B. Requirements for phonon-number resolution

This condition is however difficult to meet given the ex-
pression for the cross-Kerr interaction of Eq. (9). Indeed, χm

is weighted by the anharmonicity A, but, to remain in the
transmon limit, A has an upper limit A < h̄ω′

t/20. Further, χm

is also weighed by the coupling squared g2, which also has
an upper limit in order to keep the effective spring constant
of the mechanical oscillator positive [see Eq. (A12)]. Taking
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these facts into account, the cross-Kerr coupling, a function
of bias voltage V0, exhibits a maximum value, derived in
Appendix B 1 to be

χm < max[χm] = h̄ω′
t

10

(
ω0

m

ω′
t

)3

. (10)

So if we require a certain χm to resolve phonon-number reso-
lution, based on a transmon linewidth γt , we can determine a
minimum value for ω0

m. In addition, we can say with certainty
that for mechanical oscillators of a lower frequency, it will be
mathematically impossible to obtain the required cross-Kerr
coupling.

We consider a typical transmon of frequency ωt = 2π × 6
GHz and dephasing rate T2 = 50 μs [28], corresponding to a
linewidth γt = 2π × 3 kHz. If we require the cross-Kerr shift
to be ten times larger than the linewidth χm = h × 30 kHz,
we obtain ω0

m > 2π × 220 MHz. So with a typical transmon,
the lowest possible mechanical frequency which would enable
phonon-number resolution is 220 MHz. This is however a
theoretical optimum, when the bias voltage is such that keff =
0 (resulting in a zero-frequency mechanical oscillator), so
realistically phonon-number resolution is only possible with
mechanical oscillators of a much higher frequency.

An alternative approach to phonon-number resolution
would be to obtain an anharmonicity in the mechanical mode
Ãm = χ2/4Ã [27] which exceeds the mechanical linewidth.
However, this approach is limited by the influence of the trans-
mon dissipation on the mechanical linewidth, resulting on
even more stringent requirements for the transmon coherence
time (see Appendix B 1 b).

IV. MHZ TRANSMON–MHZ MECHANICAL OSCILLATOR

A. Quantum-coherent coupling requirement

Given the difficulties in achieving phonon-number reso-
lution in this dispersive regime, we now study the opposite
regime, where the transmon and mechanical oscillator are on
resonance. This would involve a transmon of a low (on the
order of megahertz) frequency and thermally populated even
when cooled in a dilution refrigerator. As shown in Ref. [14],
this does not necessarily mean that one loses access to the
quantum nature of the system. Note that the intermediate
regime (g � � � �) is studied in Appendix B 2 and is less
favorable than resonant coupling. As derived in Appendix B 3,
phonon-number resolution [schematically shown in Fig. 2(b)]
is attained when

4γt nth � g, A/h̄, (11)

where nth is the average number of excitations in the trans-
mon due to its thermalization with the environment. We have
defined phonon-number resolution as being able to spectro-
scopically resolve the |0〉 and |1〉 mechanical Fock states. The
first part of the requirement 4γt nth � g corresponds to the
condition that the coupling rate should be much higher than
the thermal decoherence rate 4γt nth. This condition is known
as the quantum-coherent coupling regime [29]. Note that we
have assumed that the limiting dissipation rate is that of the
electrical degree of freedom.

We also considered adding a second, gigahertz electrical
mode in the spirit of Ref. [14]. The low-frequency electrical
mode and mechanical mode are still coupled resonantly, while
the two electrical modes are coupled through a cross-Kerr
interaction. The aim of this addition is to observe phonon-
number resolution in the spectrum of the high-frequency
mode, which is unaffected by thermal fluctuations. The
Hamiltonian describing this system is

Ĥ = h̄ω′
t,H â†â − AH â†â†ââ

+ h̄ω′
t,Lb̂†b̂ − ALb̂†b̂†b̂b̂ + h̄ω′

mĉ†ĉ

− h̄g(b̂ − b̂†)(ĉ − ĉ†) − χLH â†âb̂†b̂, (12)

where â, b̂ and ĉ and the subscripts H , L, and m correspond to
the high-frequency (HF) electrical mode, the low-frequency
(LF) mode, and the mechanical oscillator, respectively. As
derived in Appendix C, the condition to discriminate different
phonon states in the spectrum of the high-frequency mode,
schematically shown in Fig. 2(c), is

γt,H + 4γt,Lnth � χLH/h̄, g � ωm, ωt,L, (13)

where γt,H is the linewidth of the HF mode and nthγt,L the
thermalization rate of the LF mode. This setup thus yields a
similar requirement (quantum-coherent coupling) to the case
without the high-frequency mode.

In both schemes discussed here, achieving quantum-
coherent coupling experimentally will be complicated by the
large thermal populations nth of megahertz degrees of freedom
at typical cryogenic operating temperatures. Another techni-
cal complication from a high nth will be the small amplitude
of spectral features, as megahertz modes will have their state
mixed over a large number of eigenstates. The latter problem
may be solvable through cooling schemes enabled by phonon-
number resolution [14].

B. Quality factor needed and discussion

The technical barrier to phonon-number resolution in the
resonant regime, with or without a high-frequency mode, is
achieving quantum-coherent coupling 4γt,Lnth � g. We cal-
culate in the table of Fig. 3 the quality factor of the electrical
mode resonant with the mechanics necessary to achieve a
coupling equal to ten times the relevant linewidth g = 10 ×
4γt,Lnth, for a variety of mechanical oscillators. This quality
factor is given by Q = ω′

t/γt and Q = ω′
t,L/γt,L for a mechan-

ical oscillator coupled to a single transmon or two electrical
modes, respectively. Note that the mechanical quality factor
should also match or exceed the electrical quality factor. We
have assumed that the applied voltage brings the oscillator
to the cusp of instability ωV0

m /ω0
m = 0.9. Also, we chose ca-

pacitances and Josephson inductances which maximize the
coupling while maintaining the transmon limit A/h̄ωt < 1/20.
The thermal occupancy nth is computed with a 20 mK temper-
ature.

The studied mechanical oscillators are 100 kHz [30] and
1 MHz [31] membranes, which have areas of A = 1 mm2

and A = 0.06 mm2, respectively, and can be suspended
300 nm above another capacitive plate [32]. Addition-
ally, we consider 10-MHz, 15-μm-diam, and 100-nm-thick
membranes suspended 50 nm above an electrode [33] and
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FIG. 3. Quality factor required for the resonant coupling of a
mechanical oscillator and transmon [schemes (b) and (c) of Fig. 2]. In
the first column we provide a schematic of the mechanical oscillator
and the capacitance it implements considering the smallest exper-
imentally achieved gap between the mechanical oscillator and its
corresponding electrode. In the second column we provide the capac-
itance and inductance, which ensures resonance with the mechanical
oscillator and maximum coupling while remaining in the transmon
regime. We then provide the coupling relative to the frequency,
assuming that the bias voltage applied to the mechanical oscillator
only reduces its frequency through electrostatic spring softening by
10%. Finally, we provide the quality factor of both the mechanical
oscillator and transmon needed for the linewidth to be ten times
smaller than the coupling (quantum-coherent coupling).

hypothetical smaller membranes with a 100-MHz frequency
achieved by reducing the area by a factor 10 [34]. Con-
cerning even higher-frequency oscillators, note that gigahertz
voltage-biased mechanical oscillators have successfully been
resonantly coupled to transmons [35].

For megahertz oscillators however, very large capacitances
are required for the electrical mode to reach low frequencies.
A natural solution is to make use of parallel-plate capacitors.
However, these typically result in relatively low quality factors
due to dielectric losses [36]. A 170-MHz circuit making use of
amorphous silicon as a dielectric at around 10 mK was mea-
sured [14] to have a quality factor 3×103. Whereas dielectric
losses can be mitigated in gigahertz circuits by constructing
capacitors on a single plane, with electric fields traversing
extremely clean crystalline substrates and vacuum, this ap-
proach may be challenging for the large capacitances needed
here. Obtaining both large capacitors in conjunction with low
losses is thus the main roadblock to realizing phonon-number
resolution with resonantly coupled mechanical oscillators and
transmons.

A few other challenges can be foreseen. Lowering the
transmon frequency translates to very large Josephson induc-

tances. The values in Fig. 3 for the Josephson inductance are
in the range from 700 nH to 700 μH, corresponding to h×
230 MHz to 230 kHz in terms of Josephson energy and 470 pA
to 470 fA in terms of critical current. Such junctions may be
complicated to fabricate or operate. Additionally, thermally
excited current may on average exceed the critical current of
the junction, which could make the operation of the device
difficult. One may have to apply sideband cooling to the low-
frequency electrical mode [14] or the mechanical oscillator to
which is it coupled [37].

V. CONCLUSION

We have shown that phonon-number resolution of mega-
hertz mechanical oscillators is not achievable with state-
of-the-art gigahertz transmons. As an alternative, we have
proposed the resonant coupling of mechanical motion to a
megahertz transmon, with and without an additional gigahertz
electrical mode. The most prominent technical challenge as-
sociated with this approach is to construct a low-frequency
transmon with a quality factor on par with gigahertz trans-
mons.

As an outlook, we acknowledge alternative techniques to
access the quantum nature of low-frequency mechanical os-
cillators using superconducting circuits. One could increase
the anharmonicity of the system such that the expression for
χm is favorably modified by the irrelevance of higher levels of
the superconducting circuit. Recent experimental successes in
this direction have been demonstrated using a Cooper-pair box
[22,23], following earlier theoretical proposals [19,38]. The
fluxonium qubit [39] also seems like an attractive option at
first: It can operate at a megahertz operating frequency where
it features a large anharmonicity. However, as its frequency is
decreased through flux biasing, its electrical dipole moment,
which scales the coupling to a voltage-biased membrane,
is exponentially suppressed [40]. Alternatively, one could
make use of optomechanical coupling to transfer quantum
states in the gigahertz regime to the lower frequencies of
the mechanical oscillation [41]. Recent developments regard-
ing coupling through superconducting interference also show
promise [42–44].

The code used to generate the table in Fig. 3, as well as the
simulations in the Appendixes, is available in [45].
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APPENDIX A: HAMILTONIAN OF A VOLTAGE-BIASED
MECHANICAL OSCILLATOR COUPLED

TO A TRANSMON

In this Appendix we will derive the Hamiltonian of a
voltage-biased mechanical oscillator coupled to a transmon,
displayed in Eq. (6). We will first derive the equivalent circuit
for the voltage-biased mechanical oscillator (Fig. 4). This will
allow us to construct an circuit equivalent for the coupled
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FIG. 4. Equivalent circuit. (a) Voltage-biased mechanical oscil-
lator and (b) its equivalent circuit.

system and thus make use of standard circuit quantization
techniques to obtain the system Hamiltonian.

1. Equivalent circuit of a voltage-biased mechanical oscillator

Here we derive the equivalent circuit of a voltage-biased
mechanical oscillator shown in Fig. 4. We will first derive the
mechanical equations of motion, based on a Lagrangian de-
scription of the electromechanical system shown in Fig. 4(a).
We will then obtain the electrical equations of motion, linking
current injected towards the mechanical oscillator to voltage
across its capacitance. After linearizing the equations around
the static equilibrium imposed by the bias voltage, we will
extract the admittance of the electromechanical system. From
this admittance we can build an electrical circuit with the same
admittance, which will constitute our equivalent circuit

a. Mechanical equation of motion

The Lagrangian of the system shown in Fig. 4(a) is

L = 1
2Cd (x)v2 + 1

2 mẋ2 − 1
2 kx2, (A1)

where the position-dependent capacitance is

Cd (x) = ε0A

d − x
. (A2)

The mechanical equation of motion is given by

d

dt

(
∂L
∂ ẋ

)
= ∂L

∂x
, (A3)

yielding

mẍ + kx = v2

2

ε0A

(d − x)2
. (A4)

b. Electrical equation of motion

From the definition of capacitance, we have

q = Cd (x)v. (A5)

By taking the derivative of this relation with respect to time
we get

q̇ = i = v
dCd (x)

dt
+ Cd (x)v̇, (A6)

where

dCd (x(t ))
dt

= ε0A
d

dt

[
1

d − x(t )

]
= εA

[
ẋ(t )

[d − x(t )]2

]
, (A7)

yielding the electrical equation of motion

i = v̇
ε0A

d − x
+ vẋ

ε0A

(d − x)2
. (A8)

c. Linearization around the static equilibrium

We first write (A4) in a static limit d
dt = 0 given an initial

dc voltage v = V0 leading to a constant displacement x = x0,

kx0 = V 2
0

2

ε0A

(d − x0)2
. (A9)

A dc voltage (positive or negative) will thus increase x0,
pulling the two plates of the capacitor closer together. We
rewrite (A4) considering small variations of voltage and po-
sition with respect to their static values x → x0 + δx and
v → V0 + δv,

mδ̈x + kx0 + kδx = (V0 + δv)2

2

ε0A

(d − x0 − δx)2
. (A10)

By Taylor expanding to first order in δx and δv and using
Eq. (A9) we get

mδ̈x + keff(V0)δx = δvV0
ε0A

(d − x0)2
, (A11)

where the effective spring constant keff(V0) is

keff(V0) = k − V 2
0 ε0A

(d − x0)3
. (A12)

By Taylor expanding the electrical equation of motion (A8) to
first order in δx and δv around the static equilibrium we obtain

i = δ̇v
ε0A

d − x0
+ δ̇xV0

ε0A

(d − x)2
. (A13)

d. Frequency domain

We introduce the phasors δv → Vejωt , i → Ie jωt , and
δx → Xejωt , where V , X , and I are time-independent complex
numbers. Additionally, we introduce the (voltage-dependent)
rest position of the mechanical oscillator D = d − x0 and the
corresponding capacitance Cd = ε0A/D. Making the above
substitutions in Eqs. (A11) and (A13), we get

−ω2mX + keffX = V
V0Cd

D
, (A14)

I = jωCdV + jωCdV0
X

D
. (A15)

Equation (A14) gives the conversion between mechanical mo-
tion amplitude and the amplitude of voltage oscillations

X = V
V0Cd/D

keff − ω2m
. (A16)

Plugged into Eq. (A15), it provides the equivalent admittance
of the voltage-biased mechanical oscillator

Y (ω) = I

V
= jωCd + jω

V 2
0 C2

d /D2

keff − ω2m
. (A17)
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e. Equivalent circuit

The admittance above can be rewritten

Y (ω) = I

V
= jωCd + 1

1
jωCm

+ jωLm
, (A18)

which is exactly equal to the admittance of the circuit shown
in Fig. 4(b). This circuit may thus serve as an equivalent
circuit to the voltage-biased mechanical oscillator. The capac-
itance and inductance representing the mechanical mode are,
respectively,

Cm = V 2
0 C2

d

D2

1

keff
, Lm = D2

V 2
0 C2

d

m. (A19)

2. Derivation of the system Hamiltonian

In this section we will use circuit quantization [25] to
obtain the Hamiltonian of the circuit of Fig. 1(b). We define
the flux φ from the voltage v across a circuit component as

φ(t ) =
∫ t

−∞
v(t ′)dt ′. (A20)

By denoting the fluxes associated with the voltage across
the inductor and the junction by φm and φt , respectively, the
Lagrangian of the system is written

L = Ct
φ̇2

t

2
+ Cm

(φ̇t − φ̇m)2

2
+ EJ cos

(
φt

�0

)
− φ2

m

2Lm
, (A21)

where �0 = h̄/2e. The canonical momenta (dimensionally
charges) associated with the fluxes are given by

qt = ∂L
∂φ̇t

= (Ct + Cm)φ̇t + Cmφ̇m, (A22)

qm = ∂L
∂φ̇m

= Cmφ̇t + Cmφ̇m. (A23)

Expressing the Lagrangian using these variables rather than
the derivative of flux yields

L = 1

Ct

q2
t

2
+ Cm + Ct

CmCt

q2
m

2
+ 1

Ct
qmqt + EJ cos

(
φt

�0

)
− φ2

m

2Lm
.

(A24)

We now use a Legendre transformation to turn this Lagrangian
into a Hamiltonian

H =
∑

i

qiφ̇i − L

= 1

Ct

q2
t

2
+Cm + Ct

CmCt

q2
m

2
+ 1

Ct
qmqt − EJ cos

(
φt

�0

)
+ φ2

m

2Lm

� 1

Ct

q2
t

2
+Cm + Ct

CmCt

q2
m

2
+ 1

Ct
qmqt + φ2

t

2LJ
− EJ

24

φ4
t

�4
0

+ φ2
m

2Lm
,

(A25)

where the approximate equality holds in the limit of weak an-
harmonicity or equivalently φt � �0. We have introduced the
Josephson inductance as LJ = EJ/�

2
0. We now promote the

classical variables to quantum variables qi → q̂i and φi → φ̂i,

postulating the commutation relation

[φ̂i, q̂ j] = ih̄δi j . (A26)

By introducing the associated creation and annihilation oper-
ators

φ̂t =

√√√√ h̄

2

√
LJ

Ct
(â + â†), q̂t = −i

√√√√ h̄

2

√
Ct

LJ
(â − â†),

(A27)

φ̂m =

√√√√ h̄

2

√
Lm(Cm + Ct )

CmCt
(ĉ + ĉ†),

q̂m = −i

√√√√ h̄

2

√
CmCt

Lm(Cm + Ct )
(ĉ − ĉ†), (A28)

we obtain the Hamiltonian of Eq. (6).

APPENDIX B: DERIVATION OF REQUIREMENTS
FOR THE COUPLING OF A MECHANICAL

OSCILLATOR TO A TRANSMON

In this Appendix we study the requirements for phonon-
number resolution of a voltage-biased mechanical oscillator
coupled to a single transmon. The Hamiltonian of interest
is that of Eq. (6). Our analysis is divided into three differ-
ent regimes. In Appendix B 1 we study the case where the
mechanical oscillator and transmon are very far detuned in
frequency such that the rotating-wave approximation (RWA)
cannot be applied when analyzing the coupling � ∼ � ∼ ωt .
In this regime we show that the magnitude of the cross-Kerr
coupling χm has a maximum value depending on the mechan-
ical frequency, which leads to the relation (11) discussed in
the main text. In Appendix B 2 we study the case where the
RWA may be applied, but where the mechanical oscillator and
transmon are still detuned with respect to the coupling fre-
quency such that � � � � g. We show that this regime leads
to more stringent requirements on the coupling magnitude
than the resonant regime. This resonant regime is studied in
Appendix B 3, where we demonstrate that quantum-coherent
coupling is a requirement for phonon-number resolution as
discussed through Eq. (13).

1. Dispersive regime: Non-RWA case � ∼ � ∼ ωt

Here we determine the condition to observe phonon-
number resolution in the regime where the transmon and
mechanical oscillator are very far detuned in frequency, such
that � ∼ � ∼ ωt , and the RWA, which assumes � � �,
cannot be applied. In this regime the systems is best described
in the normal-mode basis of Eq. (8). We will investigate the
requirements to obtain phonon-number resolution both in the
spectrum of the transmon (due to the cross-Kerr coupling χm)
and in the spectrum of the mechanical oscillator (due to its
anharmonicity Ãm).
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a. Requirement to attain χm/h̄ � γt

The quantity of interest is the cross-Kerr coupling relative
to the transmon frequency at this highest possible anhar-
monicity A = ω′

t/20,

χm

h̄ω′
t

� 8

20
g2 ω′2

m

ω′4
t

, (B1)

which should exceed the quality factor of the transmon Qt =
ω′

t/γt . Using Eq. (A12) to express ω′
m and g as a function of

the unbiased and effective spring constants, we get

χm

h̄ω′
t

� 1

10

(
ω0

m

ω′
t

)3
√

C2
d (k − keff )2(Cd k + CJkeff )

(CJ + Cd )3k3
. (B2)

Using Mathematica, we find that the square root

S =
√

C2
d (k − keff )2(Cd k + CJkeff )

(CJ + Cd )3k3
(B3)

may not exceed unity

max[S] =
⎧⎨
⎩

( Cd
CJ+Cd

)3/2
< 1 at keff = 0 if CJ < 2Cd

Cd

15
√

3CJ
< 1 at keff = k CJ−2Cd

3CJ
if CJ > 2Cd .

(B4)

By applying Eq. (B4) to Eq. (B2), we find that

χm

h̄ω′
t

<
1

10

(
ω0

m

ω′
t

)3

, (B5)

and if we want phonon-number resolution Q−1
t � χm/h̄ω′

t we
obtain

Q−1
t � 1

10

(
ω0

m

ω′
t

)3

, (B6)

which gives rise to the discussion of Eq. (11).

b. Requirement to attain Ãm/h̄ � γeff
m

Here we investigate the requirement to attain phonon-
number resolution in the spectrum of the mechanical oscil-
lator. Due to its coupling to the transmon, the normal-mode
corresponding to mostly mechanical oscillations acquires an
anharmonicity Ãm. Following Ref. [27], the magnitude of this
anharmonicity is related to the cross-Kerr interaction and the
anharmonicity of the transmon through χm = 2

√
ÃÃm and can

thus be approximated (assuming Ã ∼ A) to

Ãm

h̄
= χ2

m

4Ã
� 16

(
A

h̄

)
g4 ω′4

m

ω′8
t

. (B7)

This quantity should exceed the linewidth of the mechanical
mode, which will be broadened through its interaction with
the transmon to an effective linewidth γ eff

m . To determine this
linewidth, we first consider that the dissipation of the trans-
mons energy to the environment can be captured through a
Lindblad operator [46]

γt
(
âρâ† − 1

2 â†âρ − 1
2ρâ†â

)
, (B8)

where ρ is the density matrix of the system. The collapse
operator â relates to the normal-mode collapse operators

through [27]

â � ã − 2
g

ω′
t
c̃. (B9)

By injecting this expression into Eq. (B8), we note that the
dissipation of the mode c̃ has a magnitude 4γt (g/ω′

t )
2. We

will assume that this dissipation induced by the coupling
dominates over the intrinsic dissipation rate of the mechan-
ical oscillator such that the effective dissipation rate of the
mechanical mode is γ eff

m = 4γt (g/ω′
t )

2. Note that if phonon-
number resolution is achieved in the mechanical spectrum,
the effective linewidth will be even broader due to thermal
effects [see Eq. (S26) of Ref. [14]]. However, phonon-number
resolution requires at least γ eff

m � Ã′
m/h̄, which gives

4γt
g2

ω′2
t

� 16

(
A

h̄

)
g4 ω′4

m

ω′8
t

. (B10)

Considering the maximum anharmonicity which would main-
tain the transmon regime A = h̄ω′

t/20, this condition is
rewritten

Q−1
t � 1

20

(
ω′

m

ω′
t

)5

S, (B11)

where S is defined in Eq. (B3) and has a maximum value of
1 [see Eq. (B4)]. We can rewrite the condition of phonon-
number resolution as

Q−1
t � 1

20

(
ω′

m

ω′
t

)5

, (B12)

which reveals that the requirements on the transmon dissi-
pation rate are even more stringent than when striving for
phonon-number resolution in the transmon spectrum.

2. Dispersive regime: RWA case � � |�| and |� − A| � g

Here we determine the conditions to obtain phonon-
number resolution in a regime closer to resonance. Specif-
ically, we now assume that the transmon and mechanical
oscillator are close enough in frequency that the RWA applies

� � |�|, |� − A| � g. (B13)

The cross-Kerr interaction is then given by [9]

χm = 2A
g2

�(� − A/h̄)
(B14)

and the anharmonicity induced in the mechanics is

Am = χ2
m/4A = A

g4

�2(� − A/h̄)2
, (B15)

following the relation χm = 2
√

AmA [27]. We now derive
the conditions to obtain phonon resolution either in the me-
chanical spectrum Am � h̄γ eff

m or in the transmon spectrum
χm � h̄γ eff

t .

a. Requirements to attain Am/h̄ � γeff
m

The mechanical oscillator dissipation rate will be broad-
ened through its interaction with the transmon, acquiring an
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effective dissipation rate

γ eff
m = γm + γt

g2

�(� − A/h̄)
, (B16)

which can be derived from Fermi’s golden rule [9]. The dif-
ference in powers of g/� between this dissipation rate and Am

arises since the dissipation rate is proportional to the current
traversing a resistor squared while the anharmonicity is to
first order proportional to the fourth power of the current. If
mechanical Fock states are distinguishable in the spectrum of
the mechanical oscillator, then the linewidth will further be
broadened by thermal effects. We want the anharmonicity to
be at least larger than the linewidth of the second transition
(|1〉 ↔ |2〉), given by [see Eq. (S26) of Ref. [14]]

(3 + 8nth )

(
γm + γt

g2

�(� − A/h̄)

)
, (B17)

where nth is the average number of phonons in the mechanical
oscillator due to its thermalization with the environment. As-
suming nth � 1, we then have requirements on the dissipation
rate of both the mechanical oscillator and transmon

8nthγm � A

h̄

(
g4

�2(� − A/h̄)2

)
,

8nthγt � A

h̄

(
g2

�(� − A/h̄)

)
. (B18)

b. Requirements to attain χm/h̄ � γ
eff
t

Broadened by thermal effects, the effective transmon
linewidth is written

γ eff
t = (1 + 4nth )γt (B19)

[see Eq. (S26) of Ref. [14]]. The condition χm/h̄ � γ eff
t ,

assuming nth � 1, roughly gives

2nthγt � A

h̄

(
g2

�(� − A/h̄)

)
. (B20)

c. Conclusions

Trying to reach Am � γ eff
m or χm/h̄ � γ eff

t leads to a simi-
lar requirement

(2, 8)nthγt � A

h̄

(
g2

�(� − A/h̄)

)
(B21)

with only varying constants (2 and 8). However, the disper-
sive regime conditions g � |�| and g � |� − A| impose an
upper bound on the term on the right-hand side such that
(A/h̄)[g2/�(� − A/h̄)] � g. To prove this, first impose g <

ε|�| and g < ε|� − A|, where ε is a small quantity, which
establishes a domain D. Then distinguish two cases: 2g/ε < A
and 2g/ε > A. In the former (latter) case |χm| has four (two)
local maxima on the domain D which are easy to find graphi-
cally. For each maximum, it is easy to prove that |χm| < 4gε.
We thus summarize the requirements in the dispersive regime
as

(2, 8)nthγt ≪ g, (B22)

meaning that the requirements are even harsher than quantum-
coherent coupling, which is required with resonant coupling
(see the following section).

3. Resonant regime |�| � g

Here we derive the requirements to obtain phonon-number
resolution of a resonantly coupled transmon and mechanical
oscillator. Through the analysis of two different parameter
regimes A � g or g � A, we find that quantum-coherent cou-
pling is a requirement for phonon-resolution as written in
Eq. (13) and discussed in the main text. We will assume that
we can neglect the counterrotating terms of the coupling

−h̄g(â − â†)(ĉ − ĉ†) → −h̄g(âĉ† − â†ĉ) (B23)

through the approximation g � ω′
m, ω′

t .

a. Case A � h̄g

In this case the transition frequency between the first and
the second excited state of the transmon is detuned from the
mechanical oscillator frequency. So we consider the mechan-
ical oscillator to be coupled to a qubit consisting of the first
two levels of the transmon |g〉 and |e〉. In this regime, the
eigenstates of the coupled system are those of the Jaynes-
Cummings Hamiltonian [26]. These are given by

|n,±〉 = |g, n〉 ± |e, n − 1〉√
2

, (B24)

with eigenenergies (where the ground state |g, 0〉 has zero
energy)

h̄ωn,± = nh̄ωm,L ± √
nh̄g. (B25)

Addressing the |0, g〉 ↔ |1,±〉 transition independently of
the |1,±〉 ↔ |2,±〉 one is our chosen definition of phonon-
number resolution. These transitions are separated in fre-
quency by g(2 − √

2) � g/2. The linewidth of these tran-
sitions is the average of the linewidth of the mechanical
oscillator and transmon [47], given by [γm + γt (1 + 4nth )]/2,
where the transmon linewidth follows from Eq. (S26) of
Ref. [14]. Assuming that the thermally broadened transmon
linewidth dominates over that of the mechanical oscillator and
nth � 1, the condition for phonon-number resolution, such as
in the spectrum of Fig. 5, is

4γt nth � g � A

h̄
. (B26)

b. Case h̄g � A

In this regime, the mechanical oscillator is close to reso-
nance with multiple low-lying transitions of the transmon. To
capture this fact, we consider the anharmonicity of the trans-
mon to be a perturbation on top of the harmonic terms of the
transmon and the mechanical oscillator, which we will con-
sider to be on resonance. We call ω the frequency of both the
resonator and the harmonic part of the transmon Hamiltonian
ω = ω′

m = ω′
t . We now perform a Bogoliubov transformation

to the normal-mode basis, following Ref. [27]. Contrary to the
calculations leading to the Hamiltonian of Eq. (8), resonance
leads to normal modes which are equally mechanical and
electrical in nature, so we label their annihilation or creation
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|g, 0 |1, +

|g, 0 |1,

|n, + |n + 1,

|n, + |n + 1,+

|n,− ↔ |n + 1,

|n,− ↔ |n + 1,+

ωef

  A/ g

ωge = ωm Frequency

(a)

(b)

ω − ωge g(units of )

â
−

â
†

h̄

−4 −2 0 2 4

FIG. 5. Spectrum of an transmon coupled to a mechanical os-
cillator in the case A � h̄g. (a) Frequency landscape. We focus on
the regime where the transmon anharmonicity A dominates over the
coupling g such that the |e〉 ↔ | f 〉 transition of the transmon is ef-
fectively decoupled from the mechanical oscillator. (b) Spectrum. We
plot the expectation value 〈â − â†〉 while weakly driving the system
at a frequency ω. This corresponds to one quadrature in a homodyne
measurement of the transmon. With the condition 2nthγt � g/2, we
can resolve the Jaynes-Cummings spectrum of the coupled mechan-
ical oscillator and transmon. The exact simulation parameters and
numerical methods are provided in Appendix D. Arrows correspond
to the analytically predicted transition frequencies of Eq. (B25).

operators and frequencies by + and −. Assuming g � ω, the
normal modes are given by

â � α̂− + α̂+√
2

− g

2ω

α̂
†
− − α̂

†
+√

2
,

b̂ � α̂− − α̂+√
2

− g

2ω

α̂
†
− + α̂

†
+√

2
,

ω̃+ � ω + g − g2

2ω
, ω̃− � ω − g − g2

2ω
(B27)

to first order in g/ω. The Hamiltonian in the normal-mode
basis is then

Ĥ = h̄ω+α̂
†
+α̂+ + h̄ω−α̂

†
−α̂−−Ec/4

12
(α̂+ + α̂

†
+ + α̂− + α̂

†
−)4.

(B28)
Expanding the quartic term and keeping only terms which will
be relevant in first-order perturbation theory leads to

Ĥ � h̄ω+α̂
†
+α̂+ + h̄ω−α̂

†
−α̂−

− A+
2

[
(α̂†

+α̂+)2 + α̂
†
+α̂+ + 1

2

]

− A−
2

[
(α̂†

−α̂−)2 + α̂
†
−α̂− + 1

2

]

− χ

(
α̂

†
+α̂+ + 1

2

)(
α̂

†
−α̂− + 1

2

)
, (B29)

FIG. 6. Spectrum of a transmon coupled to a mechanical oscil-
lator in the case A � h̄g. (a) Frequency landscape. We focus on the
regime where the mechanics-to-transmon coupling g dominates over
the transmon anharmonicity A such that the two systems hybridize
into two electromechanical modes separated in frequency by 2g.
(b) Spectrum. We plot the expectation value 〈â − â†〉 while weakly
driving the system at a frequency ω. This corresponds to one quadra-
ture in a homodyne measurement of the transmon. With the condition
4nthγt/2 � A/4h̄, we can resolve the anharmonic spectrum of one of
the electromechanical modes. The exact simulation parameters and
numerical methods are provided in Appendix D. Arrows correspond
to the analytically predicted transition frequencies of Eq. (B29).

with anharmonicities A± = EC/4 and a cross-Kerr interaction
χ = EC/2. Following Fermi’s golden rule, the modes will
have dissipation rates (γt + γm)/2 [9]. To resolve at least the
transition between the ground and first-excited states of the
electromechanical modes, the linewidth of the first- to second-
excited state, dressed by thermal effects, should be smaller
than the mode anharmonicity. Assuming the transmon has a
dominating dissipation rate and that the modes are thermally
populated nth � 1, the larger linewidth of the first- to second-
excited state is given by [see Eq. (S26) of Ref. [14]]

γ± � 8nthγt . (B30)

Phonon-number resolution is then achievable when

8nthγt � A

h̄
� g. (B31)

An example of the obtainable spectrum is given in Fig. 6.
This requirement is combined with that of Eq. (B26) in the
requirement in Eq. (13).
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APPENDIX C: DERIVATION OF REQUIREMENTS
FOR COUPLING A MECHANICAL OSCILLATOR

TO TWO SUPERCONDUCTING MODES

We now consider adding a second high-frequency mode. In
this situation, we analyze different regime of parameters to de-
rive the requirement for phonon-number resolution of Eq. (13)
discussed in the main text. The HF mode is assumed to be
coupled (through the junction nonlinearity) by a cross-Kerr
interaction to the low-frequency electrical mode, in the spirit
of Ref. [14]. The LF mode is still assumed to be resonant with
the mechanical oscillator. The system follows the Hamiltonian
of Eq. (12). We have neglected many of the terms which
arise from the quartic nonlinearity under the assumptions
AH � h̄ω′

t,H and AL, χLH � h̄ωL,m. Note that we necessarily
have χLH = 2

√
AH AL. We will additionally assume that we

can neglect the counterrotating terms of the coupling

−h̄g(b̂ − b̂†)(ĉ − ĉ†) → −h̄g(b̂ĉ† − b̂†ĉ) (C1)

through the approximation g � ω′
m, ω′

t,L.

1. Case AL � h̄g � χLH

In the assumption AL � h̄g, the first- to second-excited-
state transition of the LF mode will be detuned and uncoupled
from the mechanical oscillator. The mechanical oscillator is
then effectively coupled to a qubit consisting of the ground
|g〉 and excited |e〉 states of the LF mode. We may thus rewrite
the Hamiltonian as

Ĥ = h̄ω′
t,H â†â − AH â†â†ââ +

∑
j�2

(Ej − jχLH â†â) | j〉 〈 j|

+ h̄ω′
t,L |e〉 〈e| + h̄(ω′

t,L + �)ĉ†ĉ

+ h̄g(|g〉 〈e| ĉ† + |e〉 〈g| ĉ) −
∑

n

χLH â†â |e, n〉 〈e, n| .
(C2)

Note that we multiplied the last term by the identity∑
n |n〉 〈n|. We may move to the eigenbasis of the Jaynes-

Cummings Hamiltonian which will capture the coupling
between the LF mode qubit and the mechanical oscillator
[26,46]

|n,+〉 = cos θn |e, n − 1〉 + sin θn |g, n〉 ,

|n,−〉 = − sin θn |e, n − 1〉 + cos θn |g, n〉 ,

tan 2θn = −2g
√

n

�
, (C3)

where the states |n,±〉 have energies

ωn,± = (ω′
t,L + �)n − �

2
± 1

2

√
4g2n + �2. (C4)

Constant energy terms are subtracted such that the ground
state |0, g〉 has zero energy. The resulting Hamiltonian is

Ĥ = h̄ω′
t,H â†â − AH â†â†ââ

+
∑
j�2

(Ej − jχLH â†â) | j〉 〈 j|

+
∑

n�1,s=±
h̄ωn,s |n, s〉 〈n, s|

− χLH

∑
n�1

cos(θn)2â†â |n,+〉 〈n,+|

− χLH

∑
n�1

sin(θn)2â†â |n,−〉 〈n,−| , (C5)

where we neglected the term

χLH cos(θn) sin(θn)
∑

n

(|n,+〉 〈n,−| + |n,−〉 〈n,+|), (C6)

valid in the limit which couples terms separated in frequency
by

√
4g2n + �2, which is much smaller than χLH under the

initial assumption χLH � h̄g. The HF spectrum reveals the
transitions

|g, n,±〉 ↔ |e, n,±〉 (C7)

at frequencies

ω′
t,H − χn,±

h̄
, (C8)

where χn,+ = χLH cos(θn)2 and χn,− = χLH sin(θn)2. Differ-
ent values of the ratio g/� lead to different frequencies; note
that we always have 0 < χn,± < χLH . If g/� � 1, χn,− ∼ 0
and χn,+ ∼ χLH and the HF mode is insensitive to n and only
sensitive to the states |g〉 and |e〉 of the LF mode. If g/� � 1,
χn,± ∼ χLH/2 and again sensitivity to n is lost. Numerically,
we find that both |χ1,+ − χ2,+| and |χ1,− − χ2,−| have a max-
imum at approximately χ/15 for g/� � 0.6, yielding

χ1,+ = 0.82χLH , χ1,− = 0.18χLH ,

χ2,+ = 0.75χLH , χ2,− = 0.25χLH .
(C9)

In order to resolve the |g, 1,±〉 ↔ |e, 1,±〉 transitions, the
detuning to the transition |g, 2,±〉 ↔ |e, 2,±〉 should exceed
the linewidth of the latter transition, which we call γH,eff,

γH,eff � χLH

15h̄
. (C10)

An example of the obtainable spectrum is given in Fig. 7.

2. Case AL, χLH � h̄g

We write the Hamiltonian in the basis of eigenstates of the
HF and LF modes

Ĥ =
∑

jH

| jH 〉 〈 jH | ⊗
[

EjH +
∑

jL

(EjL − jHχLH )

× | jL〉 〈 jL| + (h̄ω′
t,L − χLH )ĉ†ĉ

− g(| jL + 1〉 〈 jL| ĉ + | jL〉 〈 jL + 1| ĉ†)

]
. (C11)

Here the frequency of the LF mode depends on the state of
the HF mode. Since χLH � h̄g, the LF mode will only be
resonant with the mechanical oscillator when the HF mode
is in a specific state. We study the case where the LF mode
and mechanical mode are resonant if the HF frequency mode
is in its excited state. Additionally, since AL � h̄g, only a
single transition of the LF mode will be on resonance with the
mechanical oscillator, the ground- to excited-state transition
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FIG. 7. HF mode spectrum in the case AL � h̄g � χLH . (a) Fre-
quency landscape. In the regime where AL dominates over the
coupling rate, the |e〉 ↔ | f 〉 transition of the LF mode is effec-
tively decoupled from the mechanical oscillator. The nearly resonant
oscillator and |g〉 ↔ |e〉 transition of the LF mode then hybridize
following Jaynes-Cummings physics. (b) Spectrum. We plot the
expectation value 〈â − â†〉 while weakly driving the system at a
frequency ω. This corresponds to one quadrature in a homodyne
measurement of the HF mode. With the condition γH + 4nthγt �
χLH/h̄/15, we can resolve phonon-number-dependent transitions.
The exact simulation parameters and numerical methods are pro-
vided in Appendix D.

in this case. We can thus rewrite the Hamiltonian as

Ĥ = |gH 〉 〈gH | ⊗
[∑

jL

E jL | jL〉 〈 jL| + (h̄ω′
t,L − χLH )ĉ†ĉ

]

+ |eH 〉 〈eH | ⊗
[

h̄ω′
t,H +

∑
jL�2

(EjL − χLH ) | jL〉 〈 jL|

+ (h̄ω′
t,L − χLH ) |eL〉 〈eL| + (h̄ω′

t,L − χLH )ĉ†ĉ

− g(|eL〉 〈gL| ĉ + |gL〉 〈eL| ĉ†)

]
+ · · · . (C12)

We now apply the unitary transformation � jH Û jH , where UjH
is an identity except for jH = 1, when it brings the LF mode
and mechanical oscillator to the Jaynes-Cummings basis

|n,±〉 = |gL, n〉 ± |eL, n − 1〉√
2

, (C13)

where the states |n,±〉 have energies h̄ωn,±,

ωn,± =
(

ω′
t,L − χLH

h̄

)
n ± g

√
n. (C14)

Constant energy terms are subtracted such that the ground
state |0, g〉 has zero energy. The Hamiltonian is written

Ĥ = |gH 〉 〈gH | ⊗
[ ∑

jL

E jL | jL〉 〈 jL| + h̄(ω′
t,L + �)ĉ†ĉ

]

+ |eH 〉 〈eH | ⊗
[

h̄ω′
t,H +

∑
jL�2

EjL | jL〉 〈 jL|

+
∑

n,s=±
h̄ω′

t,L |n, s〉 〈n, s|
]

+ · · · . (C15)

Probing the HF spectrum will reveal the transitions

|gH , n, gL〉 ↔ |eH , n,±〉 ,

|gH , n, eL〉 ↔ |eH , n + 1,±〉 , (C16)

with frequencies

(ω′
t,H + ωn,±) − n

(
ω′

t,L − χLH

h̄

)
,

(ω′
t,H + ωn+1,±) −

[
n

(
ω′

t,L − χLH

h̄

)
+ ω′

t,L

]
, (C17)

ω′
t,H ± g

√
n,

ω′
t,H − χLH

h̄
± g

√
n. (C18)

In order to resolve the |g, 1,±〉 ↔ |e, 1,±〉 transitions, the de-
tuning to the transition |g, 2,±〉 ↔ |e, 2,±〉, given by g

√
2 −

g ∼ g/2, should exceed the linewidth of the latter transition
γH,eff,

γH,eff � g

2
. (C19)

An example of the obtainable spectrum is given in Fig. 8.

3. Case h̄g � χLH � AL

In this regime, we write the LF mode as harmonic

Ĥ = h̄ω′
t,H â†â − AH â†â†ââ

+ h̄ω′
t,Lb̂†b̂ + h̄(ω′

t,L + �)ĉ†ĉ

+ h̄g(b̂ĉ† + b̂†ĉ) − χLH â†âb̂†b̂, (C20)

which comes under the condition that its anharmonicity rep-
resents a perturbation to the Hamiltonian smaller than the
other interaction rates. We first perform a first basis change
to the normal modes resulting from the g coupling, leading
to electromechanical modes indexed by 1, with annihilation
operators defined by

b̂ = f

(
g

�

)
b̂1 + h

(
g

�

)
ĉ1,

ĉ = f

(
g

�

)
ĉ1 − h

(
g

�

)
b̂1, (C21)
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FIG. 8. HF mode spectrum in the case AL, χLH � h̄g. (a) Fre-
quency landscape. In the regime where χLH dominates the
mechanics-to-low-mode coupling g, the LF mode can only be cou-
pled to the mechanical oscillator for a given state of the HF mode.
As when the HF mode is in a different state, the frequency of the
LF mode is shifted by χLH � h̄g. We focus on the case where the
mechanical oscillator is resonant with the LF mode if the HF mode is
in state |e〉. Additionally, if AL dominates over the coupling rate, the
|e〉 ↔ | f 〉 transition of the LF mode is effectively decoupled from the
mechanical oscillator. The nearly resonant oscillator and |g〉 ↔ |e〉
transition of the LF mode then hybridize when the HF mode is in its
excited state following Jaynes-Cummings physics. (b) Spectrum. We
plot the expectation value 〈â − â†〉 while weakly driving the system
at a frequency ω. This corresponds to one quadrature in a homodyne
measurement of the HF mode. With the condition γt,H + 4nthγt,L �
g/2, we can resolve phonon-number-dependent transitions at fre-
quencies ω′

t,H ± g
√

n, where n is the number of phonons in the
mechanical oscillator. The exact simulation parameters and numer-
ical methods are provided in Appendix D.

where

f (x) = 1 + √
1 + 4x2√

8x2 + 2(1 + √
1 + 4x2)

,

h(x) = 2x√
8x2 + 2(1 + √

1 + 4x2)
, (C22)

and mode frequencies

ω1 + �1 = ω′
t,L + �

2

(
1 +

√
1 + 4

g2

�2

)
,

ω1 = ω′
t,L + �

2

(
1 −

√
1 + 4

g2

�2

)
, (C23)

as calculated with the Bogoliubov transformation described in
Ref. [27]. The resulting Hamiltonian is

Ĥ = h̄ω′
t,H â†â − AH â†â†ââ + h̄ω1b̂†

1b̂1 + h̄(ω1 + �1)ĉ†
1ĉ1

− χLH f

(
g

�

)2

â†âb̂†
1b̂1 − χLH h

(
g

�

)2

â†âĉ†
1ĉ1, (C24)

where we neglected the term

−χLH f

(
g

�

)
h

(
g

�

)
â†â(b̂†

1ĉ1 + b̂1ĉ†
1), (C25)

valid in the limit h̄g � χLH where the interaction b̂†
1ĉ1 couples

states separated in energy by 2g (near resonance), assumed
to be much larger than the strength of this interaction,
χLH f (g/�)h(g/�) < χLH . We now look for a reasonable
choice for the parameter g/�. In the case �= 0, the
cross-Kerr interaction between the electromechanical modes
χLH f (g/�)2 and χLH h(g/�)2 will be identical and equal to
χLH/2. The HF spectrum will then feature the transition fre-
quencies

h̄ω′
t,H − χLH (n+ + n−)

2
, (C26)

where n± refers to the occupation of each electromechanical
mode. Each measured peak would then correspond to multi-
ple states, which restricts the level of control attainable over
the quantum states of each electromechanical mode. Alterna-
tively, with g/� � 1, the LF mode would weakly hybridize,
with a very small cross-Kerr coupling, to the more mechan-
ical degree of freedom. An in-between is thus desirable,
with g/� ∼ 1 giving rise to two electromechanical modes,
one dominantly electrical, with a cross-Kerr coupling χL =
χLH f (g/�)2, and another more mechanical, with a cross-Kerr
coupling χm = χLH h(g/�)2. This gives rise to a HF spectrum

h̄ω′
t,H − χLnL − χmnm. (C27)

For example, with g/� = 1/4, 1/2, 1, we obtain χm/χL �
0.06, 0.17, 0.38. Different values allow the resolution of more
mechanical peaks between two electrical peaks, and the op-
timum will depend on the specifics of an experiment. To
conclude this section, resolution of the first mechanical Fock
states is possible for g/� ∼ 1 such that χm = χLH/3 and
χL = 2χLH/3 if

γH,eff � χLH

3h̄
, (C28)

where γH,eff is the effective linewidth of the HF mode. An
example of the obtainable spectrum is given in Fig. 9.

4. Case χLH � h̄g � AL

In this limit, the cross-Kerr should impose the relevant
basis and the coupling should be treated as a perturbation only.
We write the Hamiltonian as

Ĥ =
∑

j

| j〉 〈 j| ⊗ [Ej + (h̄ω′
t,L − jχLH )b̂†b̂

+ (h̄ω′
t,L − χLH )ĉ†ĉ − h̄g(b̂†ĉ + b̂ĉ†)], (C29)

where j denotes the state of the HF mode. What is emphasized
here is that for χLH � h̄g, the two LF modes will only couple
for certain values of j. We explore the case where the me-
chanical mode is resonant with the LF electrical mode when
the HF mode is in its first-excited state. The case where the
two low-frequency modes are resonant for the HF mode in
its ground state yields similar results; the advantage here is
that the HF spectrum reflects the occupation of the uncoupled
mechanical and LF mode, rather than a hybridized one.
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FIG. 9. HF mode spectrum in the case h̄g � χLH � AL . (a) Fre-
quency landscape. In the regime where the mechanics-to-low-mode
coupling h̄g dominates over the LF mode anharmonicity AL , the LF
mode and mechanical oscillator hybridize into two electromechan-
ical modes. (b) Spectrum. We plot the expectation value 〈â − â†〉
while weakly driving the system at a frequency ω. This corre-
sponds to one quadrature in a homodyne measurement of the
HF mode. With the condition γt,H + 4nthγt,L � χm/h̄, we can re-
solve phonon-number-dependent transitions at frequencies ω′

t,H −
nLχL/h̄ − nmχm/h̄, where nm is the number of phonons in the most
mechanical electromechanical mode, nL is the number of photons
in the most electrical electromechanical mode, and χm + χL = χLH .
The exact simulation parameters and numerical methods are pro-
vided in Appendix D.

We now apply the unitary transformation
∑

j | j〉 〈 j| Ûj ,
where the unitary transformation Ûj acts upon the Hilbert
space of the two low-frequency electromechanical modes.
The transformation Ûj should be the one which moves the
two coupled frequency electromechanical modes to a new
normal-mode basis (one for each state of the HF mode j),
with annihilation operators and frequencies defined as in
Eqs. (C21) and (C23). For j = 0 and j � 2 the two modes are
off-resonance by at least χLH � h̄g such that we can apply
the approximation g � � in Eqs. (C21) and (C23) leading to
unaltered modes b̂ j = b̂ and ĉ j = ĉ. For j = 1, the two modes
are near resonance, leading to two normal modes β̂± defined
by

β̂± = b̂ ± ĉ√
2

(C30)

and mode frequencies ω′
t,L − χLH/h̄ ± g. The Hamiltonian

becomes

Ĥ = |g〉 〈g| ⊗ [h̄ω′
t,Lb̂†b̂ + (h̄ω′

t,L − χLH + h̄�)ĉ†ĉ]

+ |e〉 〈e| ⊗ [h̄ω′
t,H + (h̄ω′

t,L − χLH − h̄g)β̂†
−β̂−

+ (h̄ω′
t,L − χLH + h̄g)β̂†

+β̂+] + · · · . (C31)

Probing the spectrum around ω′
t,H will reveal peaks at the

frequencies[
ω′

t,H + nL

(
ω′

t,L − χLH

h̄
− g

)
+ nm

(
ω′

t,L − χLH

h̄
+ g

)]

−
[

nLω′
t,L + nm

(
ω′

t,L − χLH

h̄

)]
(C32)

and[
ω′

t,H + nm

(
ω′

t,L − χLH

h̄
− g

)
+ nL

(
ω′

t,L − χLH

h̄
+ g

)]

−
[

nLω′
t,L + nm

(
ω′

t,L − χLH

h̄

)]
, (C33)

which couple the only states with some overlap

|g, nL, nm〉 ↔ |e, n− = nL, n+ = nm〉 ,

|g, nL, nm〉 ↔ |e, n− = nm, n+ = nL〉 , (C34)

respectively. Here the eigenstates |g, nL, nm〉 correspond the
HF mode in the ground state and the LF and mechanical
modes populated with nL and nm photons or phonons, respec-
tively. The eigenstates |e, n+, n−〉 correspond the HF mode
in the excited state and the hybridized low-frequency elec-
tromechanical modes populated with n+ and n− excitations,
respectively. Equation (C33) can be rewritten as

ω′
t,H − nL

(
χLH

h̄
− g

)
− nmg,

ω′
t,H − nL

(
χLH

h̄
+ g

)
+ nmg. (C35)

In this regime, the HF mode is mostly sensitive to the LF
mode, and detection of mechanical Fock states necessitates

γH,eff � g � χLH

h̄
, (C36)

where γH,eff is the effective linewidth of the HF mode. An
example of the obtainable spectrum is given in Fig. 10.

5. Effective HF mode linewidth γH,eff and conclusion

In order to determine an expression for γH,eff, we make the
assumption that the contribution coming from the coupling
to the lower-frequency electromechanical modes is domi-
nated by the linewidth of the electrical losses. By extending
Eq. (S26) of Ref. [14], we then have

γH,eff = γt,H + 2γt,L[〈nL〉 + (1 + 2〈nL〉)nth], (C37)

where 〈nL〉 measures the average occupation of the states
involved in a transition of interest, not the average number
of photons populating the low-frequency mode. In order to
derive a compact set of requirements valid for all the above
cases, we make the assumption that a representative measure
of γH,eff corresponds to transitions between states with 〈nL〉 ∼
1
2 , i.e., mechanical Fock states which are half hybridized with
the LF mode. We also assume that the thermal occupation of
the low-frequency modes is significant nth � 1, yielding

γH,eff � γt,H + 4nthγt,L. (C38)
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FIG. 10. HF mode spectrum in the case AL � h̄g � χLH .
(a) Frequency landscape. With dominating χLH , the LF mode fre-
quency is a function of the state of the HF mode. We focus on the
case where the mechanical oscillator is resonant with the LF mode
if the HF mode is in state |e〉. (b) Spectrum. We plot the expectation
value 〈â − â†〉 while weakly driving the system at a frequency ω.
This corresponds to one quadrature in a homodyne measurement of
the HF mode. With the condition γt,H + 4nthγt,L � g, with γH and γL

the dissipation rates of the HF and LF modes, respectively, we can re-
solve phonon-number-dependent transitions at frequencies ωt ± ng,
where n is the number of phonons in the mechanical oscillator. The
exact simulation parameters and numerical methods are provided in
Appendix D.

This effective linewidth can be injected into the require-
ments for phonon-number resolution derived in the four
preceding subsections

γH,eff � χLH

15h̄
, γH,eff � g

2
,

γH,eff � χLH

3h̄
, γH,eff � g � χLH

h̄
(C39)

to produce the approximate requirement in Eq. (13), which
summarizes the results of this section

γt,H + 4γt,Lnth � χLH

h̄
, g � ω′

m, ω′
t,L. (C40)

APPENDIX D: NUMERICAL METHODS

Here we explain the methods used to generate Figs. 5–10.
We aim to emulate the spectrum that one would measure
experimentally from the previously derived Hamiltonians. In
the case where the mechanical oscillator is only coupled to a
single transmon, we consider probing the transmon by adding
a weak drive term

Hdr(t ) = −ih̄γ×10−3(âeiωd − â†e−iωd ), (D1)

where ωd is the driving frequency and our choice of drive
strength γ×10−3 does not significantly populate the driven
mode. We then move to the rotating frame of the drive through
the unitary transformation

Û = eih̄ωd (â†â+ĉ† ĉ) (D2)

such that the transformed Hamiltonian, including the coupling
term, remains time independent,

Ĥ + Hdr(t ) → Û †ĤÛ = H + Hdr(0) − h̄ωd (â†â + ĉ†ĉ).

(D3)

We follow a similar process in the case where two electrical
modes are considered, where we wish to probe the high-
frequency mode. In this case the unitary transformation is

Û = eih̄ωd â†â, (D4)

Ĥ + Hdr(t ) → Û †ĤÛ = H + Hdr(0) − h̄ωd â†â. (D5)

We make use of QUTIP [48,49] to compute the steady state
using a Lindblad master equation, where each mode is sub-
jected to an interaction with the environment characterized by
two collapse operators. For example, for the mechanical mode
these collapse operators are written

√
γm(1 + nth )ĉ,

√
γmnthĉ†. (D6)

We then use the steady-state density matrix to compute and
plot the expectation value of â + â† to emulate a homodyne
measurement of the systems spectrum. The parameters used
in the simulation are summarized in Table I. The code used to
generate the associated figures is available in [45].

TABLE I. System parameters used to generate Figs. 5–10. Here ω, A, γ , nth, and N designate the frequency, anharmonicity, dissipation
rate, thermal occupancy, and Hilbert space size of the different modes of the system, respectively. The coupling between the low-frequency
electrical mode and the mechanical oscillator is denoted by g and the cross-Kerr interaction between the two electrical modes is χLH .

Mechanical oscillator ↔ LF electrical mode ↔ HF electrical mode

Figure ω γ nth N g ω A γ nth N χLH ω A γ nth N

5 1 10−7 1.2 6 0.005 1 0.05 10−4 1.2 6
6 1 10−7 1.2 6 0.75 1 0.005 4×10−5 1.2 6
7 1.0078 5×10−7 0.5 4 5×10−3 1 0.05 5×10−7 0.5 4 5×10−4 50 2.5 5×10−6 0 3
8 1 10−6 0.5 4 5×10−3 1 0.05 10−6 0.5 4 5×10−4 50 2.5 10−4 0 3
9 1.2 10−5 0.5 4 0.1 1 0.001 10−5 0.5 4 0.01 50 0.025 10−4 0 3
10 0.85 8.5×10−6 0.5 4 0.02 1 2.25×10−3 10−4 0.5 4 0.15 50 2.5 5×10−3 0 3
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