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Abstract

Machine learning interatomic potentials (MLIPs) enable accurate atomistic modeling, but reliable
uncertainty quantification (UQ) remains elusive. In this study, we investigate two UQ strategies,
ensemble learning and D-optimality, within the atomic cluster expansion framework. It is revealed
that higher model accuracy strengthens the correlation between predicted uncertainties and actual
errors and improves novelty detection, with D-optimality yielding more conservative estimates.
Both methods deliver well calibrated uncertainties on homogeneous training sets, yet they under-
predict errors and exhibit reduced novelty sensitivity on heterogeneous datasets. To address this
limitation, we introduce clustering enhanced local D-optimality, which partitions configuration
space into clusters during training and applies D-optimality within each cluster. This approach
substantially improves the detection of novel atomic environments in heterogeneous datasets. Our
findings clarify the roles of model fidelity and data heterogeneity in UQ performance and provide
a practical route to robust active learning and adaptive sampling strategies for MLIP development.

1. Introduction

Machine learning interatomic potentials (MLIPs) have reshaped computational materials science by
bridging the accuracy of quantum-mechanical methods with the scale of classical molecular dynamics
(MD) [1, 2]. By learning the mapping from local atomic environments (LAEs) to potential energy sur-
faces using first-principles data, MLIPs routinely approach near-quantum fidelity at a fraction of the
computational cost [3, 4]. This advance has enabled simulations of complex, previously inaccessible
phenomena, from phase transformations and defect kinetics to catalyst discovery and non-equilibrium
transport, at time and length scales far beyond ab initio MD (AIMD) [5-7].

Unlike traditional, physically motivated functional forms such as the embedded-atom model, MLIPs
are constrained by their training distributions. When presented with out-of-distribution (OOD) atomic
environments, they may yield unreliable or unphysical predictions, limiting transferability in practical
workflows. This challenge has motivated a rich set of uncertainty quantification (UQ) strategies to assess
reliability of energies and forces. Among these, D-optimality and ensemble-based methods have been
particularly influential owing to their practical implementation across multiple frameworks. The D-
optimality criterion, implemented in moment tensor potentials (MTPs) [8—10], the atomic cluster expan-
sion (ACE) [11-13], and neuroevolution potentials (NEPs) [14], identifies informative configurations via
their contribution to feature-space volume (e.g. extrapolation grade). In parallel, ensemble approaches
estimate epistemic uncertainty by measuring the spread of predictions across models trained with differ-
ent initializations, data bootstraps, or hyperparameters.

© 2026 The Author(s). Published by IOP Publishing Ltd
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Beyond their role in diagnosing reliability, UQ methods have become central to data generation
via active learning. In UQ-guided loops, candidate configurations discovered during exploration are
selectively labeled and appended to the training set, yielding automated, recursive improvement in both
accuracy and robustness. This paradigm has matured into a standard practice for MLIP development:
it reduces the size (and cost) of reference datasets while enhancing stability under demanding condi-
tions. In applications, D-optimality-based selection within MTPs is a mainstay for metals and alloys [15—
19], whereas ensemble-force criteria are particularly effective in complex, heterogeneous systems such as
silicon—oxygen networks [7]. Recent hyperactive learning strategies further accelerate sampling by biasing
dynamics toward uncertain regions, efficiently generating information-rich configurations for linear ACE
potentials [20]. Collectively, these developments underscore the pivotal role of UQ in both the applica-
tion and advancement of MLIPs [21, 22].

Despite this progress, key questions remain regarding calibration and transferability of UQ metrics.
Notably, Lysogorskiy et al reported within the ACE framework that D-optimality and ensemble indic-
ators offer broadly comparable reliability [23]. Two issues are particularly pressing. First, how does the
baseline predictive accuracy of a fitted MLIP influence the fidelity of its uncertainty estimates? Second,
how does increasing dataset heterogeneity (e.g. mixing simple elastic deformations with defect-rich
clusters, surface reconstructions, liquid-like motifs, and high-strain-rate configurations) affect the cal-
ibration and sensitivity of UQ measures? These questions are especially relevant for on-the-fly active
learning, wherein the training set evolves to include progressively more diverse atomic environments,
potentially improving coverage while challenging model generalization.

In this work, we systematically evaluate ensemble-based and D-optimality UQ within the ACE frame-
work. We quantify how model accuracy and dataset heterogeneity together govern (i) the alignment
between predicted uncertainties and realized errors and (ii) each method’s capability to flag novel config-
urations and LAEs. Building on these insights, we introduce a clustering-enhanced local D-optimality cri-
terion: configuration space is partitioned into clusters of similar atomic motifs, and extrapolation grades
are computed within each cluster rather than globally. This strategy improves calibration, tracks true
errors more faithfully, and more reliably detects OOD LAE:s in large-scale deformation simulations. The
resulting protocol maintains the computational efficiency of ACE models while providing uncertainty
estimates that are both sensitive and robust across heterogeneous datasets.

2. Methods

2.1. MLIPs

In this study, we use the ACE framework for UQ analysis for three main reasons. First, ACE [11-13,
23, 24] provides a general, mathematically complete formalism [25] that can be extended to other
descriptors such as spectral neighbor analysis potential [26] and MTP [8-10]. Second, it strikes an
optimal balance between accuracy and computational efficiency [12]. Third, ACE’s built-in support for
extrapolation-grade evaluation in both ASE [27] and LAMMPS [28] makes it straightforward to apply
from small clusters up to million-atom configurations. To keep our analysis focused, we consider only
linear ACE models. We explore six models of increasing complexity, ranging from 15 to 945 functions,
covering a corresponding span of training accuracies. Throughout fitting, we fix the force-weighting
parameter x at 0.01 and cap the number of training steps at 2000. The pacemaker package manages ACE
training [12, 13].

2.2.UQ

2.2.1. Ensemble learning

Following the [23], we compute the maximum deviations of configurational energies and atomic forces,
which serve as quantitative measures of uncertainty for each atom (Uf aom) and the whole configuration
(Ug,cfy and Uf g, ), respectively, formulated as:

Uk, cfg = mkaX|E]’-‘ — <E]>| , (1)
UF,atom = maX|Fi‘{ - <Fl>| ) (2)

k
Ur ety = max <mkax1:§ — (F;) |) , (3)

where k= 1,...,K are the indices of the ACE models in the ensemble, E]k is the energy predicted by
model k for the configuration j, and (E;) is the ensemble average of the energy for the corresponding
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configuration. The force on atom i in ensemble model k is given by F¥, while (F;) is the ensemble force
average. Then, we compare the uncertainties Uf stom, UF,cfy and Uk g, to their respective ground-truth
errors, defined as:

€E,cfg = ‘EJDFT - <E]>‘ ) (4)
€F,atom — ‘FPFT - <F1>| 5 (5)
er iy = ngg]xlF?FT — (F))l. (6)

In an active learning loop, new configurations or LAEs are selected when their uncertainties in pre-
dicted energy (Ug, ) or force (U cfy OF UFatom) exceed specified thresholds e or ep. Previous studies
have typically relied on a force-based criterion, but the choice of e varies widely: hyperactive learn-
ing with linear ACE models often uses 0.2-0.4 eV A~! [7], whereas active learning for MTPs in silicon-
oxygen systems employs 1-2eV A~! [20]. Lysogorskiy et al proposes a consistent threshold for both
energy and force:

e=Q;+1.5xIQR, (7)

where Q; is the third quartile of the training-error distribution of configurational energies or atomic
forces and IQR = Qs—Q; is its interquartile range [23]. In this work, we adopt equation (7) because it
automatically adapts to each ACE model’s specific training-error characteristics.

Using equation (1), we establish the configuration-based energy criterion (CBE), noting that an
atom-level energy criterion is physically meaningless since energy cannot be properly partitioned at the
atomic scale [23]. Similarly, we derive two force-based uncertainty metrics from equations (2) and (3):
the atom-based force criterion (ABF) and the configuration-based force criterion (CBF). For small sys-
tems, we employ both CBE and CBF to detect novel configurations, while ABF serves as the primary
metric for identifying new LAEs in large-scale simulations. A configuration is identified as novel if its
energy uncertainty exceeds the threshold (Ug,g > €g) or its force uncertainty surpasses the critical value
(UF,cfg > €F,cfg)> While an atom is flagged as new when its local force uncertainty exceeds the threshold

(UF,atom > 5F,atom)~

2.2.2. D-optimality

The pacemaker package is used to construct the D-optimal active set and to evaluate extrapolation
grades ~ for our linear-in-parameters ACE models [12, 13, 23]. Following [23], we consider, for each
chemical species u, a reference dataset with N, atomic environments. For every environment i we form
a vector of n, ACE basis functions

Bi = (Bil7Bi2a'-'7Binv)7 (8)
and collect all such rows into the matrix

By -+ By,

>
I

(9)

Bn,1 -0 Bwun,

where typically N,, > n,, i.e. many more environments than basis functions are available. Using the
MaxVol algorithm [23, 29], pacemaker selects n, rows whose #, X n, submatrix has (approximately) max-
imal determinant; these rows define the active-set matrix A#.

Any environment from the reference set can then be written as a linear combination of the active

environments,
ny _
B =Y B, (10)
k=1
which can be expressed compactly as
v =BA;". (11)
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The atomic D-optimality extrapolation grade is defined as the largest absolute coefficient [23]

BiA'|. (12)

Vi = m}ilx"ylgi)‘ = max

By construction, environments that belong to the active set satisfy vaom < 1, whereas yaom > 1 indicates
extrapolation with respect to the current active set. Moreover, multiplying any basis function by a con-
stant for all environments rescales both B; and Au in the same way, so that 7y,,om is scale-invariant, as
discussed in [23].

In our implementation, pacemaker additionally performs a simple force-based outlier filtering when
constructing ﬁu: atoms whose force magnitudes exceed

£=Q;+1.5xIQR, (13)

with Qs the third quartile and IQR the interquartile range of the force distribution, are discarded from
the active-set search. By contrast, the standard MTP workflow retains every atom when computing v [9,
10]. This preliminary filtering reduces the impact of a few extreme configurations on the D-optimality
matrix and makes the extrapolation grades more stable (see section 3.4).

Within standard active-learning frameworks, two complementary extrapolation grades are typically
used: the atomic grade 7,om defined above and a configuration-level grade

Vefg = MAXYatom (1) P (14)
i€cfg

which aggregates the most extrapolative atom in each configuration. Configurations or atoms with v > 1
are treated as extrapolative, and the MaxVol algorithm is then used to select determinant-optimizing
environments from these candidates for subsequent DFT calculations and active-set updates [23].
Although our present work focuses specifically on UQ methodology, this canonical active learning pro-
cedure provides important context for evaluating the performance of detection metrics and their implic-
ations for active learning efficiency.

2.3. Simulation and visualization

We utilize the Vienna ab initio simulation package (VASP) to perform first-principles calculations of all
new configurations [30]. A gradient-corrected functional in the Perdew—Burke—Ernzerhof form is used to
describe the exchange and correlation interactions [31]. Electron-ion interactions are treated within the
projector-augmented-wave (PAW) method, using the standard PAW pseudopotentials provided by VASP
[32]. The energy convergence criterion is set to 10~®eV for electronic self-consistency calculations. The
plane-wave cutoff energy is chosen to be 520 eV. The KPOINTS are generated by VASPKIT [33], based
on the Monkhorst—Pack scheme [34], with a consistent density of 27t x 0.03 A~!. Additionally, LAMMPS
is used for force calculations and atomic extrapolation grade (Ysom) for million-atom configurations
[28]. OVITO is employed for the visualization of the atomic structures [35].

3. Results

3.1. Dataset preparation and analysis

We employ the body-centered cubic tungsten (BCC W) dataset from our recent work [36] for UQ.
Figure 1 displays all the configurations of the six subsets (A to F) using the first two principal compon-
ents of the MACE descriptor [37], with each subset annotated by its representative configuration. Details
of these subsets are summarized below:

A Unit cells undergoing elastic deformation (two atoms per cell).

B AIMD snapshots and simple defects, including vacancies, dislocations, grain boundaries (GBs), and
surfaces.

C Atomic clusters extracted from complex defects in large-scale MD simulations, with periodic bound-
ary conditions reconstructed using an empirical interatomic potential-guided grand-canonical Monte
Carlo (EIP-GCMC) method. Methodological details are provided in [36].

D Spherical BCC clusters embedded in vacuum within a periodic box, introducing a large fraction of
free surfaces.

E Atomic clusters cut from complex defects using the MLIP-3 package [10].

F A comprehensive validation set from our previous study [36], spanning diverse defect and deforma-
tion scenarios, including GBs with random perturbations, GBs under severe compression, two- and
three-dimensional random GBs, and crack tip originally from [38].
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Figure 1. Six subsets of W configurations used in this study. Each point represents a configuration projected onto the first two
principal components of its MACE descriptor. (A) Elastic deformations; (B) supercell configurations from AIMD simulations
and defective structures (grain boundaries, vacancies, and dislocations); (C) defect-related structures with reconstructed peri-
odic boundary conditions; (D) BCC spherical clusters with free surfaces; (E) atomic clusters from defective regions; (F) test set
configurations. Representative atomic structures for each subset are shown in the insets. The union of datasets A and B forms the
domain expertise (DE) set, with B termed the non-elastic subset. Datasets C, E, and F are from [36].

Subsets A and B together form the typical foundation for initial MLIP training through domain expert-
ise (DE). This progression, which starts from simple elastic strains in A, moves through increasingly
complex defect structures and surfaces in B to E, and culminates in the broad validation collection in F,
enables systematic assessment of MLIP performance and UQ behavior across increasing configurational
complexity.

In the following sections, we perform UQ analysis using two dataset combinations. The first employs
A+ B for training and C+ E + F for testing, representing a typical scenario where MLIPs predict atomic
environments for unseen defects from standard DE datasets. The second, more challenging combination
uses A+ D for training and B+ C+ E +F for testing, where elastic deformations (A) and free surfaces
(D) create highly heterogeneous features. In this case, all test configurations become OOD relative to the
training set. Our results demonstrate that while both ensemble learning and D-optimality provide satis-
factory UQ performance in the first scenario, they struggle with the increased complexity of the second
case.

3.2. Ensemble learning method

In this section, we employ the maximum deviation of ACE predictions to quantify uncertainty via the
ensemble learning method, following [23] and as detailed in 2. At the configurational level, we consider
the CBE and CBF criteria, quantified by Ug f; and Uf , respectively. At the atomic level, we adopt the
ABF criterion, denoted by Uf stom. CBE and CBF facilitate active learning or sampling of entire config-
urations, whereas ABF is tailored to select LAEs in large scale simulations. We then compute the corres-
ponding errors e cfy, €r,cfg> and e arom (defined in 2) and examine the correlation between each uncer-
tainty metric and its error. We consider A+ B as the training set with C+ E +F for testing. A six mem-
ber ensemble is employed to quantify predictive uncertainty.

To illustrate the impact of model accuracy on UQ, we first present two ACE models at opposite ends
of the basis-set complexity: the compact Func 15, which uses just 15 basis functions, and the expansive
Func 945, which employs 945 basis functions. We evaluate three UQ metrics: CBE (figures 2(a) and (d)),
CBF (figures 2(b) and (e)), and ABF (figures 2(c) and (f)). The results in figure 2 reveal three key obser-
vations. First, CBE demonstrates weak error correlations for both models, with Func-945 showing only
slight improvement. Second, both force-based metrics (CBF and ABF) achieve substantially stronger cor-
relations, where CBF’s superior performance stems from its integration of structural information across
all atoms in a configuration. Third, while increased model complexity significantly reduces training-set
errors and uncertainties, test-set performance remains relatively unaffected, as indicated by the dashed
lines and arrows in figure 2. This persistent gap reflects the test data’s OOD nature and the growing sep-
aration between training and test distributions as models become more accurate.
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Figure 2. Correlation between model error and uncertainty evaluated using ensemble learning with ACE models. (a)—(c) Func-
15 models (15 functions) with Fpysg = 171.62 meV A~! and Ermse = 9.05 meV/atom. (d)—(f) Func-945 models (945 func-
tions) with Fryse = 51.37 meV A~! and Epumse = 1.46 meV/atom. Columns represent different uncertainty criteria: (a), (d)
configuration-based energy (CBE), (b), (e) configuration-based force (CBF), and (c), (f) atom-based force (ABF). Dashed

lines show mean error and uncertainty values. Arrows indicate systematic performance shifts between Func-15 and Func-945
ensembles.

To systematically evaluate the impact of model accuracy, we compute Spearman’s rank correlation
coefficient (p), a nonparametric measure of how closely the ordering of predicted uncertainties matches
the ordering of observed errors, across models with progressively lower force root mean square error
(Frmse)- Figure 3(a) demonstrates that for the CBE criterion, correlation strength increases monotonic-
ally with increase in model accuracy for both training and test datasets, showing particularly dramatic
increase in test data. The CBF criterion (figure 3(b), solid line) shows analogous accuracy dependence
while achieving substantially stronger correlations than CBE. Notably, the ABF criterion (dashed line)
reveals divergent behavior: test data correlations increase steadily with accuracy, training set correlations
remain consistently low (p < 0.7) and show no systematic relationship with model accuracy. Three fun-
damental insights emerge from this analysis. First, force-based criteria (CBF and ABF) universally sur-
pass the energy-based CBE in correlation strength. Second, CBF consistently outperforms ABF. Third,
and most significantly, test data correlations not only benefit more from improved model accuracy than
training data, but also maintain superior absolute correlation strength across all accuracy levels. These
findings collectively establish that robust UQ requires both careful metric selection and ongoing model
refinement, with force-based configuration-level analysis delivering optimal performance for practical
applications involving defection of novel configurations or LAEs.

The primary goal of UQ is to detect unseen configurations and LAEs. We derive UQ thresholds
for CBE (eg,cfy), CBF (gF,cfg), and ABF (efaom) (see section 2) to flag OOD configurations and LAEs.
Applying these thresholds to the combined C, E, and F test sets (figure 1), we identify OOD configur-
ations using CBE (figure 3(c)) and CBF (figure 3(d)), and detect OOD LAEs using ABF (figure 3(e))
for both the Func-15 and Func-945 models. The Func-15 model selects very few new configurations
or LAEs, classifying most test cases as ID despite high errors. In contrast, the more accurate Func-945
model flags a substantial fraction of new configurations and LAEs, due to the clearer separation between
training and test data (figure 2). Figure 3(f) illustrates how the selection rate of each criterion scales with
model accuracy, defined as the fraction of flagged configurations (relative to total test configurations)
or LAEs (relative to total test-set atoms). Higher model accuracy consistently yields more flagged items.
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Figure 3. Uncertainty quantification performance in ensemble learning: role of model accuracy. (a), (b) Spearman’s p
(uncertainty-error correlation) vs force RMSE (Frumse) for training/test data across three criteria: configuration-based energy
(CBE), force (CBF), and atomic force (ABF). (c)—(e) Comparison between Func-15 and Func-945 models for in-distribution
(ID) and out-of-distribution (OOD) detection across CBE, CBF, and ABF criteria for the test data. (f) Selection rate vs Fruse
using adaptive/fixed thresholds for all criteria.

Notably, at comparable accuracy levels, CBF outperforms CBE in detecting novel configurations, a trend
particularly evident for the highest-fidelity ACE models.

A key remaining question concerns the relative performance of adaptive versus fixed thresholds for
OOD detection. We assess this by applying the mean thresholds of our three criteria (CBE, CBF, and
ABF) across different Frysg levels (figure S1) as fixed thresholds to evaluate selection rates. As shown
by the dashed lines in figure 3(f), fixed thresholds exhibit selection rates with minimal dependence
on Fryse. While both approaches demonstrate similar selection rates at Frysg = 100 meV A~!, fixed
thresholds identify more configurations/LAEs below this value and fewer above it. However, while fixed
thresholds may select more configurations/LAEs at low Frusg, this does not necessarily indicate bet-
ter OOD detection accuracy. These findings collectively demonstrate the superior reliability of adaptive
thresholds for OOD detection.

We also evaluate how ensemble size affects the detection of novel configurations and LAEs. Using our
most-accurate ACE model (Func-945) with ensemble sizes ranging from 3 to 30 models, figure S2(a)
shows that force-based metrics (CBF and ABF) exhibit strong ensemble-size dependence, while CBE
remains relatively stable. All three criteria achieve consistent selection rates only when the ensemble con-
tains >10 models, which is twice the conventional five-model standard [7]. To understand this depend-
ence, we compute the Spearman correlation p between prediction error and uncertainty for both train-
ing (A + B) and test (C+ E+ F) sets (figures S2(b), (c)). The fluctuating p values reveal no systematic
trend with ensemble size, indicating Spearman’s p alone cannot explain the detection trends. Analysis
of prediction errors (figures S2(d)—(i)) shows larger ensembles simultaneously increase test-set errors
while decreasing training-set errors. This growing train-test divergence enhances novel configuration/LAE
detection, an effect distinct from model accuracy effects in figure 2. Moreover, larger ensembles provide
two key advantages: (1) increased mean test-set uncertainty (figure S2(j)), and (2) reduced novelty-
detection thresholds ¢ (figures S2(k)—(m)), except for CBE (figure S2(m)). These lower thresholds enable
more OOD flagging, fully explaining the rising selection rates in figure S2(a).

3.3. D-optimality criterion and MaxVol algorithm
In our analysis of the D optimality criterion, we use the extrapolation grade v computed via the MaxVol
algorithm for UQ (see section 2). Analogous to the ensemble approach, we derive g and Yatom to assess
the uncertainty of entire configurations and individual atoms, respectively.

We first consider A+ B as the training set with C+ E + F for testing. Figure 4 presents extrapola-
tion grades at both configuration and atom level (7.t and 7tom), plotted against energy and force errors.
The threshold =1 (dashed line in the figure) separates ID (v < 1) from OOD (> 1) regimes across
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(d)—(f) Func-945. (a), (d) Configurational energy errors. (b), (e) Configurational force errors. (c), (f) Atomic-level force errors.
Vertical dashed lines mark the extrapolation threshold (y=1).

both models. Our D-optimality analysis reveals distinct patterns in UQ when comparing the Func-15
and Func-945 models. The more accurate Func-945 model (panels d—f) shows significantly stronger
error-grade correlations than Func-15 (panels a—c), consistent with ensemble method results in figure 2.
The range of 7 values also differs by orders of magnitude: Func-15 yields grades around 107, whereas
Func-945 reaches values near 10°, highlighting how higher model accuracy improves discrimination
among configurations and LAEs. For both models, configurational energy errors (figures 4(a) and (d))
and force errors (figures 4(b) and (e)) remain random below ., = 1 but increase markedly once 7.,
exceeds 1. Overall, these results confirm that D optimality effectively identifies OOD configurations and
that 7., correlates more strongly with configuration force errors than with energy errors, consistent with
the ensemble learning trends shown in figure 3. At the atomic level (figures 4(c) and (f)), Yatom iden-
tifies more OOD LAEs in the Func-945 case, yet the per-atom force errors show only a weak depend-
ence on Y,om. Notably, many atoms with 7,m > 1 exhibit very low errors, indicating potential extra-
polation capability of the MLIP. These results collectively establish D-optimality as a robust method for
configuration-level UQ, while revealing inherent limitations in atomic-level analysis.

We then compare OOD detection performance between ensemble learning and D-optimality
approaches in figure 5. The solid lines in figure 5(a) demonstrate that D-optimality achieves consistently
high configuration-level detection (>90%) across all model accuracies, while LAE detection improves
from ~5% to ~70% with increasing accuracy. Compared to both 6-member and 30-member ensemble
results, D-optimality shows superior configuration-level detection and comparable atomic-level perform-
ance, despite requiring only a single ACE model. This reveals D-optimality’s dual advantages of more
conservative detection and greater computational efficiency relative to ensemble methods.

The detailed comparison between ensemble learning and D-optimality is shown in figures 5(b)—

(d), contrasting their ability to identify ID and OOD configurations/LAEs in the combined C+E+F
test set using Func-945 potentials. D-optimality demonstrates superior detection performance, flagging
over 99% of test configurations as OOD (upper panels in figures 5(b) and (c)). In contrast, ensemble
methods miss significant fractions of high-error cases: the energy-based ensemble overlooks ~33% and
the force-based ensemble ~16%, incorrectly labeling them as ID (lower panels). At the atomic level
(figure 5(d)), D-optimality identifies 64% of atoms as OOD LAEs versus 55% for ensembles, demon-
strating more comprehensive local environment sampling. However, both approaches exhibit character-
istic limitations: they incorrectly classify high-error atomic sites (up to 1eVA~!) as ID (demonstrat-
ing overconfidence) while flagging low-error sites (0.05eVA~!) as OOD (showing underconfidence), as
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highlighted by the arrows. This reflects the fundamental challenge of atomic-level active learning com-
pared to whole-configuration sampling. Neither method achieves perfect discrimination—both systemat-
ically miss critical high-error sites while oversampling well-predicted regions, leading to inefficient com-
putational resource allocation that undermines overall sampling efficiency.

3.4. Influence of data heterogeneity

To probe the limitations of ensemble learning and D optimality on structurally heterogeneous data, we
devise a stringent scenario. The training set consists of 30 elastic deformation configurations (dataset

A) and 30 nanospheres (dataset D), while datasets B, C, E, and F serve as the test set. This arrangement
echoes the neighborhood mode of MLIP 3’s active learning framework [10], in which vacuum embedded
clusters are constructed so that novel LAEs occupy the cluster center. By applying both UQ methods in
this context, we uncover their respective blind spots and derive practical lessons for optimizing active
learning protocols to heterogeneous training sets.

All ensemble learning uncertainty calculations employ Func-945 models. Figure 6 reveals a funda-
mental paradox in ensemble-based UQ: despite strong force error-uncertainty correlations at both con-
figurational (figure 6(a)) and atomic (figure 6(b)) levels, the method fails catastrophically for novelty
detection. The detected OOD fractions (only 0.076% of configurations and 0.265% of atoms, corres-
ponding to data points beyond the dashed uncertainty thresholds) represent complete failure, since the
entire test set should be identified as OOD by design. This conclusion is unequivocal given that the
training set contained just two structural motifs (elastically deformed bulk structures and BCC nano-
spheres), while the test set consists entirely of different defect-bearing configurations.

This critical failure originates from the training data’s intrinsic heterogeneity. Figure 6(c) reveals
that the training-set force errors exhibit bimodal distribution: one mode corresponds to easily predicted
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Figure 6. Limitations of ensemble learning for datasets containing subsets with heterogeneous complexity. (a) Force error vs
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elastic-deformation configurations, while the other reflects the inherently more complex nanosphere sur-
face environments. A single global uncertainty threshold, forced to accommodate both regimes, becomes
dominated by the high-error nanosphere population and consequently sets an excessively high threshold
for the elastic-deformation cases. The test set replicates this bimodal structure, with clusters centered
near 10~*eVA~! (Group 1) and 10! eV A~! (Group 2). As a result, the unified cutoff even fails to
identify high-error Group 2 sites as OOD. This prevalence of false negatives in the high-error regime not
only compromises UQ’s reliability for active learning and adaptive sampling but also exposes the funda-
mental limitation of single-threshold methods when applied to multimodal error distributions.

Using Func 945 models, we compute D optimality extrapolation grades by training on 30 configur-
ations each from datasets A and D and testing on the combined B 4+ C + E + F set. Figure 7 compares
force errors against these grades at both the configurational and atomic scales. At the configuration level
in figures 7(a) and (D) optimality flags 75.4% of test structures as OOD, improving on the ensemble
method (figure 6) yet still inadequate given that every test configuration is, by design, OOD. At the
atomic level in figure 7(b), only 10% of local environments are detected as OOD. Compared with the
ensemble results in figure 6, extrapolation grades show much better selection rates but weaker correla-
tion with force errors. Moreover, the v values span just 0.1-10, a dramatically narrower range than the
10° observed for the homogeneous A + B training set as shown in figure 4. These observations demon-
strate that structural heterogeneity constrains both the magnitude and the predictive reliability of D
optimality grades.

To further elucidate the limitations of D-optimality and MaxVol algorithm, we present a simplified
two-dimensional example in figure 7(c) demonstrating the MaxVol algorithm’s active set selection and
extrapolation grade calculation, where three distinct non-overlapping subsets (a, b, ¢) with respective
active sets (vq,v2), (v3, v4), and (vs, V) combine to form a new active set (vy, vs). This analysis reveals
critical inconsistencies in extrapolation grade determination: while point A appears ID (5 = 0.76) and
point B OOD (7,5 = 1.17) in the combined dataset, examination of individual subsets shows the oppos-
ite behavior: point A consistently demonstrates OOD character (7, = 6.36, y34 = 2.41, 756 = 2.34) while
point B is clearly ID (34 = 0.88) as it belongs to subset b. A comprehensive regional scan (figure 7(d))
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further demonstrates that grade calculations based on the combined dataset overwhelmingly tend toward
underestimation, with only rare cases of overestimation, as exemplified by points A and B respectively.
These results highlight a core weakness of MaxVol: it targets only the extreme vertices of training data-
set and ignores interior points. Novel data that lie within this hull receive low ~ values, remain unse-
lected, and leave large regions of configuration space unsampled, ultimately constraining the reach of
D-optimality based active learning in MLIP development.

3.5. Improved D-optimality approach
To overcome the D-optimality limitations revealed in figure 7, we propose a clustering-enhanced local
D-optimality approach that significantly improves UQ for structurally diverse datasets, as shown in
figure 8. The key insight stems from recognizing that conventional single-grade calculations (7. or
Yatom) Systematically underestimate novelty in heterogeneous dataset (figure 7), prompting our modi-
fied algorithm to instead compute subset-specific grades (7Ycfg,i O Vatom,;) and select their minimum as
the final metric, a strategy that simultaneously prevents both underestimation by combined datasets and
overestimation from individual subsets (as shown in figures 8(a) and (b)). This approach proves partic-
ularly useful for identifying transitional configurations between distinct structural regimes, as demon-
strated by the point A in figures 7(c) and (d): where traditional methods would erroneously classify this
boundary-spanning environment as ID, our minimum-grade criterion correctly flags it as OOD, thereby
capturing crucial yet easily overlooked atomic environments that are essential for developing truly com-
prehensive MLIP.

To validate our clustering enhanced D optimality approach, we apply it to the W dataset sourced
from [39]. This dataset comprises a diverse set of pre labeled subgroups, including distorted BCC unit
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Figure 8. A new D-optimality approach for uncertainty quantification. Schematic illustrations compare (a) the original D-
optimality with (b) our clustering-enhanced local D-optimality method. Atomistic configurations of a fractured tungsten
(W) polycrystal are shown, with atomic colors indicating the extrapolation grade (atom) computed using (c) the original D-

optimality and (d) its improved variant. Scatter plots demonstrate the correlation between atomic force errors and extrapolation
grades for (e) the original and (f) the refined approach.

cells, FCC and HCP crystals, high temperature BCC phases, vacancies, self interstitials, surface configura-
tions, liquids, and others. Rather than using the original DFT energies and forces, we employ predictions
from the universal NEP89 potential [40] to label all structures, thereby enabling the calculation of true
errors for large scale configurations. For each pre labeled subgroup, we train a dedicated ACE model
and assemble its active set. We then compute the extrapolation grade v for every atom with respect to
each active set and assign each atom the minimum ~ value across all subgroup models as its final extra-
polation grade. We test this procedure on a fractured polycrystal model from our recent work [36]. As
shown in figure 8, the original D optimality method (figure 8(c)) flags only a few fracture surface atoms
as OOD, despite leaving many high error ID atoms undetected (figure 8(e)). By contrast, our clustering
enhanced version (figure 8(d)) correctly identifies a much larger set of fracture surface atoms as OOD,
all with > 1. Crucially, figure 8(f) confirms that these newly detected atoms consistently exhibit higher
force errors, demonstrating the superior reliability of our method for UQ.
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4. Discussion

Our study reveals consistent principles and key distinctions between both UQ methods. For ensemble
learning, we establish three critical findings. First, force-based criteria (CBF/ABF) show superior error-
uncertainty correlations compared to energy-based metrics (CBE), with configuration-level analysis prov-
ing more reliable than atomic-level assessment. Second, model accuracy plays a crucial role in effect-

ive novelty detection. Third, robust detection requires larger ensembles of at least 10 models for stable
performance. These principles also apply to D-optimality approaches, where configuration-level metrics
similarly outperform atomic-level analysis in error correlation. However, a key difference emerges regard-
ing accuracy dependence: atomic-level D-optimality detection shows strong sensitivity to model accur-
acy, while configuration-level performance remains largely accuracy-independent. Both methods exhibit
qualitatively similar novelty identification behavior, with D-optimality offering a more conservative and
computationally efficient alternative to ensemble learning. While increasing MLIP count can improve
ensemble detection capability, this comes at substantial computational cost during both training and
inference. We therefore recommend D-optimality as the preferred acquisition criterion. When unavail-
able (e.g. for universal MLIPs), ensemble methods must incorporate force-based analyses, high-fidelity
models, and sufficiently large ensemble sizes (minimum 10 models) to ensure adequate performance.

Critically, our analysis reveals fundamental limitations in both ensemble and D-optimality UQ meth-
ods when handling heterogeneous training data. These approaches systematically fail to properly quantify
uncertainty across multimodal distributions, leading to unreliable novelty detection. This failure stems
from their inability to simultaneously accommodate diverse atomic environments. Yet this heterogeneity
is unavoidable in practice. Proper MLIP training sets must encompass the complete spectrum of atomic
environments found in real materials, including surfaces, interfaces, point defects, and bulk polymorphs
across multiple space groups [41]. They must also incorporate extreme configurations like isolated
atoms, dimers at varying separations, and collision geometries relevant to radiation-damage cascades
[39]. The RANDSPG algorithm’s material-agnostic approach, enumerating all 230 space groups with ran-
dom primitive cells of 3-10 atoms [42], further demonstrates this inherent diversity. For high-entropy
alloys, the challenge compounds as structural and chemical diversity interact in ways not yet fully under-
stood. This unavoidable heterogeneity creates a fundamental tension: while current UQ methods work
well for near-homogeneous data, they break down for the complex, multimodal distributions required
for robust MLIP development. Our results expose this critical gap in the workflow of MLIP develop-
ment, where inadequate UQ leads to persistent undersampling of precisely those atomic environments
that are most informative yet most challenging to model.

Our findings have significant implications for on-the-fly active learning of LAEs in large-scale simu-
lations, where atom-based UQ is required. In the standard MLIP-3 and pacemaker workflows, a spherical
cluster around each candidate ‘core’ atom is extracted, enclosed in vacuum layers, and appended to the
training set. However, this practice inadvertently incorporates surface atoms that are irrelevant to bulk-
focused simulations. Because these extreme surface configurations substantially enlarge the envelope of
active set in the MaxVol algorithm as illustrated in figures 7(a) and (b), the extrapolation grade under-
estimates the novelty of true bulk environments in the following active learning; genuinely new local
structures are misclassified as ID simply because they are less exotic than the spurious surface atoms.
Consequently, the original extrapolation-grade criterion renders on-the-fly active learning in MLIP-3 and
pacemaker ineffective for generating truly local, bulk-specific MLIPs. A simple remedy is to construct
the active set using only the core atoms, thereby excluding those with artificially truncated coordina-
tion. Alternatively, one can fill the vacuum region via EIP-GCMC and retain only the lowest-energy
configurations [36]. Both strategies preserve structural relevance to the target simulation, prevent dilu-
tion of the uncertainty metric by spurious surfaces, and restore the extrapolation grade’s sensitivity to
genuinely novel local structures.

Yet the most reliable ensemble learning and D-optimality based UQ must be performed locally,
gradually and independently for each candidate environment during on-the-fly active learning. Hodapp
et al recently exemplified this approach by embedding an isolated screw dislocation in BCC metals or
partial dislocation in FCC metals into a fully periodic supercell while excluding all atomic environ-
ments outside the defect core [43, 44]. By calculating the extrapolation grade solely within this narrowly
defined region, their acquisition algorithm accurately identifies truly novel dislocation configurations
and discards spurious outliers. The resulting MTP achieves remarkably low fitting errors and accurately
reproduces the Peierls barrier, demonstrating that a defect-centered, locality-preserving sampling strategy
is essential for reliable active learning. If the initial training set is heterogeneous, important environ-
ments will remain undersampled. A practical solution is to partition active learning by structural motif,
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handling bulk phases, interfaces, and dislocations in separate acquisition loops in order to maintain
extrapolation-grade accuracy and ensure comprehensive coverage of every relevant atomic environment.

The clustering-enhanced local D-optimality scheme proposed in this study reduces the impact of
structural heterogeneity by evaluating uncertainty within clusters of geometrically similar environments.
This partitioned analysis maintains the accuracy of MLIPs and supports their transferability across
defect-rich configurational landscapes. The approach is particularly helpful when expanding an exist-
ing database that already contains several defect classes. Unsupervised algorithms such as k-means or
BIRCH [45] can be used to divide the dataset into structurally coherent clusters before active learning
or DIRECT sampling is applied. A comparable cluster-wise strategy could also be adopted for ensemble-
based acquisition by assigning separate uncertainty thresholds to each subset; however, training many
independent models would raise the computational cost substantially.

When using the original D-optimality method, it is important to note that the MaxVol algorithm
focuses only on the most exotic atomic environments and therefore considers only the outer bound-
ary of the dataset when constructing the active set. The major advantage is speed in the evaluation of
the extrapolation grades, even for very large structures containing million atoms, but the drawback is
reduced accuracy. In practice, the extrapolation grades calculated on heterogeneous datasets are often
underestimated. Even with clustering-enhanced local D-optimality, capturing the fine details of every
motif is difficult unless the acquisition step is carefully designed like Hodapp et al [43]. As a result, D-
optimality-based active learning that starts from a global dataset tends to add very exotic structures or
LAEs, which primarily guarantees the numerical stability of MD but may fall short of reproducing spe-
cific properties, such as dislocation migration or grain-boundary phase transitions, with DFT-level fidel-
ity. A complementary route is provided by the QUESTS framework of Schwalbe-Koda et al [46], which
measures the information-entropy increment that a candidate environment would contribute to a kernel-
density estimate of the training distribution. Because this metric is model-free and depends only on geo-
metric descriptors, it remains sensitive to rare motifs even in strongly heterogeneous datasets and can
flag genuinely novel environments before any potential is fitted. Future studies could explore incorporat-
ing more expressive descriptors, such as SOAP [47] or the message passing MACE representation [37, 48,
49], to better handle multi-element systems.

5. Conclusions

In summary, we have advanced the theoretical foundations of UQ for MLIPs within the ACE framework
and delivered practical improvements that reinforce active learning workflows. By integrating high fidel-
ity base models with both configuration and atom resolved diagnostics, we enhance ensemble learning
and D optimality’s capacity to detect truly novel atomic environments. We further expose the key fail-
ure modes that arise in heterogeneous configuration spaces and introduce a clustering enhanced local

D optimality criterion that restores reliable uncertainty estimates across diverse datasets. These devel-
opments are essential for robust adaptive sampling and active learning, underpinning the efficient and
confident development of MLIPs.
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