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1

Introduction

Abandoning an active lifestyle as a consequence of lacking the understanding of
speech in noisy and complex environments is a depressing experience for many people
and a severe social problem. Considering the European population, approximately
one in five is suffering from a hearing loss (Shield, 2006). The annual monetary
costs due to hearing loss are estimated to be 213 billion Euro for the European
Union (Shield, 2006).

The problem of understanding speech in noise is well studied. The desensitization
of the auditory perception as a result of different pathological causes and their com-
binations has generally direct consequences on speech intelligibility in silence and
noise. Peripheral disorders, i.e. physiological illness in the middle ear and/or the
cochlea are interdependent with higher neural stages of the auditory system.
Very consequential for the speech-in-noise problem is the degradation of the binau-
ral processing, for the hearing impaired. Binaural processing is a central auditory
process which takes a vital role in enriched and complex communication tasks. For
instance, the normal hearing of a young person binaurally unmasks speech in noise,
i.e. improves the signal-to-noise ratio (SNR) by about 10 dB if a continuous noise
source with the long-term spectrum of speech rotates from frontal position, where
the target speech is located, to the side. However, elderly people suffering from
presbycusis—the majority of hearing impaired people is affected by this age-related
widespread cochlea damage—experience only a difference of 2 to 3 dB in the same
binaural comparison (Duquesnoy, 1983).
In addition, if the continuous noise source is substituted by a competing voice, young
listeners with a healthy hearing generally gain another 3 to 4 dB advantage for lat-
eral noise positions and even retain an advantage of 7 dB if the competing voice
source coincides with the target voice in the frontal direction. In comparison, el-
derly people suffering from presbycusis show no benefit from gap listening due to
their elevated hearing threshold and declined temporal acuity (Duquesnoy, 1983).
In total, peripheral and concomitant central deficits of old people with presbycusis
amount to an SNR difference of 5 to 15 dB with respect to young listeners with
healthy hearing (Duquesnoy, 1983).
The severity of the problem is even more evident if one considers that one dB in
SNR corresponds to 15 to 20 % of absolute speech intelligibility at the threshold of
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understanding speech by 50 % in noise (Duquesnoy and Plomp, 1983).

Recent studies focus on the cognitive factors that are involved in the process of under-
standing speech in complex situations (see e.g., George et al., 2007; Pichora-Fuller,
2009). The findings widely indicate a primary dependence of speech intelligibility
on auditory factors and a secondary dependence on cognitive factors, which, never-
theless, can be significant in active communication.
Another important finding is that speech intelligibility of old people relies more on
cognition with respect to learned patterns than on an automatic bottom-up speech
processing (Pichora-Fuller et al., 1995). These and related studies support an asso-
ciation between good hearing and cognitive health, and, therefore, clearly indicate
the demand for early screenings and suitable clinical solutions to alleviate hearing
impairment as well as to restore social well-being.

1.1 What a hearing aid should offer in noisy circumstances

The problem that the speech-in-noise problem poses can be judged from the benefit
of todays hearing aids, as well as from their acceptance by those who are in need of
an aid in noisy conditions.
At present there live about 55 million people in the European Union with different
degrees of hearing loss. Until the year 2025, this number is expected to rise to ap-
proximately 100 million people (Shield, 2006, p. 32).

A first and general classification of the severity of a particular hearing loss is based on
the threshold of audibility in silence. Therefore, the individual threshold is measured
and related to the average limen of people with a healthy hearing. The audiogram is
usually recorded with a pure tone test method. This method specifies a frequency-
related hearing loss (HL) in dB, and serves as an important diagnostic. As a rule of
thumb, people with a hearing loss higher than 35 dB are considered to have difficul-
ties in understanding speech in silence (Plomp, 1986). To compensate their elevated
thresholds, hearing aids are successfully prescribed, to transpose natural speech into
the still available dynamic range, by signal amplification and compression.
Approximately 5 % of the EU inhabitants with a middle hearing loss (> 35 dB HL)
and 1 % of the EU inhabitants with a severe hearing loss (> 60 dB HL) depend on
hearing aids for understanding speech in silence.

Despite this success, the majority of hearing impaired people, i.e., approximately
17 % of the people in the EU with a mild hearing loss (> 25 dB HL), experience
generally no benefit from hearing aids. This is because their main problem is not
understanding speech in silence, but understanding speech in noise. For instance,
in case of Germany, the hearing aid manufacturer Audiological Technology Siemens
estimate that only 10 % of the people with a mild hearing loss own a hearing aid
(FCA, 2007).
The technological objectives a hearing aid should achieve to recover speech intel-
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ligibility in noise, have been inferred by audiometry tests of speech in noise. An
important diagnostic is the speech reception threshold (SRT) test in noise (Plomp
and Mimpen, 1979). The method specifies the SNR threshold of 50 % speech in-
telligibility. Above an absolute sound pressure level (SPL) of 65 dB, the SRT is
independent of the SPL. This allows for the definition of noise reduction solutions
that offer a constant SNR gain. Related to extensive studies of hearing disorders
and their prevalences, Plomp (1978) concluded that “every 4-5 dB of noise reduction
halves the percentage of auditorily handicapped of any degree.”
For a full compensation of the individual hearing loss in noise, the SRT difference
between the hearing impaired and the normal hearing people has to be overcome.
Referring to the numbers mentioned above, this corresponds to an averaged SNR
improvement of 5 to 15 dB for the elderly with an age-dependent normative pres-
bycusis pathology (Duquesnoy, 1983). It stands to reason that these are ambitious
but necessary requirements for an SNR improvement. Individuals facing a profound
hearing loss, as for example candidates for cochlear implants, will likely demand
even more powerful noise suppression algorithms for regaining speech intelligibility
in noise.

The SNR requirements must be interpreted with care, if one strives to meet them
by algorithmic approaches. As such it turned out that the SNR can well be derived
from speech intelligibility by speech audiometry. However, speech intelligibility can
at best be loosely derived from SNR, if a signal undergoes a linear enhancement
method. Higher processes of speech intelligibility on a microscopic signal level and
on a macroscopic semantic level, are not expressed in the purely physical SNR mea-
sure. Besides, if a nonlinear algorithm is applied to enhance speech in noise, the
SNR measure has been shown to fail as a predictor of speech intelligibility (see e.g.,
Loizou and Kim, 2011). Consequently, it is today increasingly accepted that psycho-
acoustical and physiological measures of speech intelligibility need to be applied, if
speech enhancement approaches are to be assessed in an objective manner.

1.2 Today’s hearing aid solutions

A recent three-year study on the benefit of current directional behind-the-ear (BTE)
hearing aids across a wide range of types of hearing loss by Gnewikow et al. (2009),
revealed the state of the art in terms of a speech intelligibility enhancement in noisy
conditions. In an SRT test in a continuous diffuse noise field with a long-term speech
spectrum, the hearing aids generated an SNR improvement of 2 to 3 dB in the di-
rectional mode relative to the omnidirectional mode. However, the overall success of
wearing a hearing aid in noise conditions is higher. That is, the benefit of wearing
a hearing aid in terms of speech intelligibility improved the SNR by 4 dB for people
with a mild hearing loss and by 6 dB for people with a severe hearing loss. The
assessment of the total gain in a percent-correct score test, using the directional
processing, revealed an improvement of speech intelligibility of about 20 %, 30 %
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and 15 % for people with a mild hearing loss, moderate hearing loss and severe
hearing loss, respectively.
In terms of subjective ratings, people with a mild hearing loss consistently preferred
in a user-preference questionnaire the directional hearing aid mode over omnidirec-
tional mode. People with a moderate and severe hearing loss, however, consistently
preferred listening in the omnidirectional mode.
It is suspected that the study may paint an optimistic picture of the overall benefit,
for the reason that the hearing aid wearers were equipped with professionally fitted,
top-notch hearing aids (Gnewikow et al., 2009).

Nevertheless, the study reveals clearly the limitations of today’s hearing aid solu-
tions in noise, and seems to agree well with other studies (Hamacher et al., 2008).
The reasons for the limited effectiveness of hearing aids are threefold.
First, small monaural hearing aids, i.e. BTE or in-the-ear (ITE) hearing aids, which
are largely sold and advertised with soft factors like “invisibly small and comfort-
able”, are physically inadequate to incorporate an effective spatial sampling scheme,
nor do they have the computational processing power to run strong and robust
speech enhancement algorithms.
Secondly, a stigma is attached to hearing loss. Hearing loss is associated with age
and dementia. As a consequence, many people with mild hearing loss are reluctant
to face and treat their handicap.
Thirdly, small and more comfortable high-end hearing aids are expensive. People
usually postpone purchasing and extensive audiological testing until their basic com-
munication is severely affected.
As a consequence, active rehabilitation is often missed and non-auditory factors,
as cognitive and mental health, are affected (Pichora-Fuller, 2009). Furthermore, a
consideration of the hearing aid market situation reveals an apparent amplification
effect of these three factors.
A patient referred for counselling faces an intransparent market with limited tech-
nical solutions that are generally differentiated by cosmetic and comfort features.
The market is dominated by a small number of hearing aid manufacturers, which
access a common patent-pool and, in Germany for instance, sell their products via
an exclusive dealer network that is bound by contract to a designated product line
(FCA, 2007). The product and market policy of feeding the stigma of hearing loss
by advertising invisible products, which implicitly excludes speech intelligibility im-
provement in noisy situations, on the one hand, and controlling distribution and
innovation by excluding new concepts and other competitors, on the other, gener-
ates and secures a total revenue of one billion Euro per year for an exclusive set of
companies, only in Germany (Handelsblatt, 2010). The current development might
be well justified in economical terms, but it does not correspond to the needs of
at least three quarter of the hearing impaired that have difficulties understanding
speech in noise.
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1.3 Current research lines

The enhancement of speech intelligibility is a difficult problem. After many decades
of pioneering research it can be summarized that primarily algorithms that exploit
spatial diversity by spatial sampling, provide a solution to the problem (see e.g.,
Hamacher et al., 2008). These algorithms are known as multichannel filters. Their
unifying feature is to enhance the target speech, either by a direct enhancement of
the target signal, or implicitly by suppressing the noise.

Popular multichannel filters are the well-known beamformers. Until now the beam-
forming filters pose the most robust and practically efficient solution to the speech-
in-noise problem. There are different types of beamforming filters. A powerful type
is the minimum variance distortionless response (MVDR) beamformer that allows
for a high and frequency-independent improvement of the SNR. The generalized
sidelobe canceler (GSC) framework, which is an adaptive method to calculate the
optimal filters instantaneously, represents a further advancement of beamformers.
The method is superior in coherent noise conditions, but interference suppression in
more complex and diffuse conditions is generally reduced to the gain that is provided
by the underlying fixed processing scheme (Greenberg and Zurek, 2001). Recent im-
plementations extend the GSC processing over two ears or bilaterally head-worn
arrays (see e.g., Hamacher et al., 2008).

Another class of multichannel filters aims at decomposing the input into independent
signals. This class is known as the blind source separation (BSS) approach (Kocin-
ski et al., 2011). The methods can be highly efficient in the suppression of coherent
noise sources, but are at the same time constrained by the underlying mathematics.
To overcome this constraint, algorithmic approaches have been developed for the
underdetermined case, i.e. when there are fewer microphones than mixed sources,
which show much potential (Zheng et al., 2009).

The third well-known class of multichannel filters is the multichannel Wiener fil-
ter. An efficient version of this filter, which makes few assumptions about the noise
field, is based on the binaural auditory principles of sound perception, that is, the
computational mimicry of the auditory scene analysis (i.e., CASA). Similar to the
model hearing process, the performance of binaural CASA filters is for the main part
given by the binaural interaction process and the head shadow effect. After basic
attempts showed signs of success, around the late eighties and early nineties of the
last century (see e.g., Gaik and Lindemann, 1986; Kollmeier and Koch, 1994), and
a decade of slower progress, the field lately got a new impulse by the introduction
of statistical models that simulate parts of the auditory schema-driven top-down
processing, thereby increasing the robustness of CASA algorithms in complex noise
fields considerably (Harding et al., 2005; Nix and Hohmann, 2006).

In general these three classes of multichannel algorithms give the means to improve
speech intelligibility in a signal-based manner. Prevalent and standard objective lis-
tening tests, which are generally designed to exclude any possible cognitive exploita-
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tion of contextual effects, demonstrate the suitability of these algorithms. Despite
that, when allowing more realistic interactions between lower and higher processes of
the brain, it recently turned out that approaches that generally prevent fatigue and
discomfort by even a coarse suppression of noise in speech gaps, that is, approaches
that increase the ease of listening, enhance speech intelligibility in a manner that
is beneficial to higher cognitive processes. For instance, dual task experiments of
speech reception and cognition provide evidence that top-down and bottom-up pro-
cesses are complementary means for solving the speech-in-noise problem (Humes,
2002). In accordance with this understanding it became possible to demonstrate
that single channel speech enhancement algorithms, which generally fail in enhanc-
ing speech intelligibility objectively (Hu and Loizou, 2007), yet provide a benefit by
reducing the cognitive load and can even increase the speech recognition rate in se-
mantically meaningful circumstances (Sarampalis et al., 2009). Nevertheless, if the
objective is a considerable improvement of speech intelligibility, results show that
any successful system will have to operate in domains that enable the best possible
instantaneous decomposition of the complex texture of real-world sound scenes. To
date, as mentioned above, this possibility is only provided by spatial sampling and
processing schemes.

1.4 Contents of this thesis

The above-mentioned research approaches can be classified as speech enhancement
algorithms suitable for the suppression of diffuse noise fields and algorithms that are
suited for the suppression of coherent noise interference. The combination of these
classes of algorithms has been pursued in several works, see e.g., Martin (2001),
Hamacher et al. (2008) and Rohdenburg (2008), and was laid down in a fundamental
account by Simmer et al. (2001) on the factorization of the minimum mean square
error (MMSE) solution into an MVDR-beamformer and a single-channel Wiener
post-filter.
The motivation of the present study is stemming from the same intent. Based on the
legacy of speech enhancement with beamforming techniques in Delft, known, e.g. by
the works of Soede et al. (1993), Merks (2000) and the country-wide market launch
of the MVDR-based hearing glasses of the manufacturer Varibel Innovations BV
(Boone, 2006), the present work proposes to combine bilaterally applied beamform-
ing front-ends with binaural CASA post-filters, for the purpose of a higher overall
speech intelligibility gain in noise.

Conceptually this work puts generalizability of the approaches and results before
refinement of a particular technical solution. This approach suggests itself in a field
where there is great heterogeneity of speech enhancement and evaluation methods.
In addition, the aim is to assess the binaural CASA approaches under realistic con-
ditions. Therefore only commercially available bilaterally applied hearing aids are
used as a front-end to the binaural CASA post-processors. For the same reason, real-
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world recordings of sound scenes are applied to test the signal processing schemes
with their complex physical nature.

Even though combined processing schemes are analyzed, the assessment through-
out this work is limited to the intelligibility improvement given by a set of binaural
CASA post-processors. These are the coherence-based algorithm of Allen et al.
(1977), the binaural waveform algorithm of Gaik and Lindemann (1986) and the
binaural envelope algorithm of Kollmeier and Koch (1994).
The influence of the beamforming front-end will be analyzed in terms of a statistical
analysis of binaural waveform and envelope cues in different noise conditions, and
throughout the assessment of the binaural post-filters.

The present review is based on a comprehensive study that incorporates the func-
tions of different CASA-processors, the psychophysical nature of binaural cues in
noise, as well as the model-based assessment speech intelligibility. The parts of
this holistic approach are interconnected via an evolutionary optimization method
and, partly, via a pattern-based classification approach. The latter mimics top-down
processes of the auditory scene analysis and allows for an optimal adaption of the
post-processor to the beamforming front-end and the sound scene in terms of the
binaural classification.

Chapter 2 to 4 introduce the general signal processing approach, a statistical anal-
ysis of binaural cues, their optimal activation and the intelligibility assessment of
binaurally and nonlinearly processed speech. Chapter 5 deals with the optimiza-
tion of the post-processors and the assessment of these throughout a wide range of
acoustic scenes. In the remainder of this introduction the contents of the following
chapters are described in greater detail.

Chapter 2 introduces the signal model of the spatial sampling scheme and the
MMSE factorization into an MVDR beamformer and a single-channel Wiener post-
filter. This serial processing scheme forms the general framework of the speech
enhancement approaches of this thesis. Following an analysis of theoretical and
practical MVDR beamformer solutions, the conventional Wiener post-filter will be
introduced and contrasted with the widely applied concept of ideal binary masks in
CASA noise suppression. In order to gain an understanding of the energy dispersion
of different signal mixtures in the time-frequency domain, an elementary statistical
analysis of the SNR distribution will be given.
Nonlinear speech enhancement by a varying time-frequency processing is a faulty
process in real-world applications, that generally leads to a quality-impeding arte-
fact known as musical noise. An efficient method for the suppression of this artefact
is the cepstral smoothing technique (Breithaupt and Martin, 2008). The method
will be introduced in Chapter 2.3.4 for a later optimization and application in Chap-
ter 5.3.

Following this general introduction of the here applied non-adaptive and adaptive
speech enhancement methods, three binaural CASA processors, which share the sep-
aration of speech and noise by spatial cues, are conceptually introduced.



8 Introduction

Various designs of binaural CASA algorithms for speech enhancement exist. Many
of them originate from the binaural algorithm of Gaik and Lindemann (1986). This
speech processor accomplishes a bilateral frequency decomposition and subsequently
calculates the interaural phase and level differences (IPD and ILD, respectively) of
the acoustic waveform, to employ these parameters as a directional classifier in a
magnitude weighted separation process.
A second group of binaural CASA algorithms adopts the concept of the multi-channel
spatial coherence algorithm of Allen et al. (1977). Based on primitive grouping, this
algorithm exploits the binaural waveform coherence to suppress diffuse sound.
A third well-known binaural CASA algorithm filters the signal in a conjoint cen-
tre and modulation frequency domain and was developed by Kollmeier and Koch
(1994). Therein the separation process is based on the binaural level and phase dif-
ferences of the envelope signal in the range of the fundamental frequency of speech.
As the envelope of the signal is considered to be more robust towards noise than
the acoustic waveform, this algorithm triggered much hope for an efficient speech
enhancement in highly adverse conditions, at the time of its development.
All these algorithms offer a binaural output signal, which is known to add to the
audiological benefit due to a cue-supported hearing.

In view of recent advancements in the field, the present study undertakes to update
and review these three binaural CASA processors, and additionally combines these
with a set of binaural front-ends. These front-ends are an artificial head (Institute
for Technical Acoustics (ITA) head of the RWTH Aachen), a BTE hearing aid (GN
ReSound type Canta 470-D) with and without directional processing, and the hear-
ing glasses (HG) in two directivity modes (Varibel Innovations BV). Both hearing
aids are mounted upon the Aachen head mannequin.

Chapter 3, the first part, deals with a statistical analysis of binaural waveform
and envelope cues in noise at the output of binaural front-ends. In the second part,
a pattern-based classification method for binaural waveform and envelope cues is
presented.

So far, CASA algorithms are generally applied without a thorough understanding
of the signal power dispersion of multiple sources in different feature spaces and the
manner in which binaural parameters change in noise. The current study works
towards better understanding by providing the statistics of binaural parameters of
the envelope and the fine-structure of waveforms in noise. For this purpose, the
binaural output of an artificial head is compared with the binaural output of highly
directional hearing aids. The binaural parameters are calculated on a short-time
base with a discrete Fourier transform (DFT) framework and an averaging of the
DFT-based power spectral densities over auditory filters. Given this psycho-physical
insight, the aim is to answer the question why binaural cue-based source separation
succeeds in some circumstances and fails in others.

An important consequence of the statistical analysis of binaural cues in noise is the
manner in which binaural cues are employed in the noise suppression process. As



1.4 Contents of this thesis 9

will be shown, the distribution of binaural parameters shows a strong dependency
on the strength and the spatial dispersion of the interference. To account for this
dependence, the application of binaural cues needs to be pattern-driven, that is,
comparable to the manner in which top-down processes of the auditory scene anal-
ysis activate different cues. Harding et al. (2005) introduced the principles of a
pattern-driven binaural source separation by employing a Bayesian classifier. We
adopted this approach for the calculation of weighting functions in the algorithms
of Gaik and Lindemann (1986) and of Kollmeier and Koch (1994). In contrast, the
algorithm of Allen et al. (1977) will be based on the standard primitive grouping
scheme, using the non-directional magnitude squared coherence at zero lag, as a
noise classifier.

Chapter 4 turns to the problem of speech intelligibility assessment of binaurally
and nonlinearly processed speech. To that end, a speech-based version of the speech
transmission index (STI) is extended by a binaural stage that incorporates the bin-
aural interaction and head-shadow effect. As will be shown in a subjective test series,
the model-based assessment method explained a great part of the binaural advantage
for linearly processed speech. However, the intelligibility of nonlinearly processed
speech cannot be predicted with this, or other purely bottom-up approaches of
speech intelligibility.

Therefore, the second part of this chapter aims at progressing towards an instru-
mental measure that is capable of estimating the influence of nonlinearity on intel-
ligibility. A method that roughly incorporates the changing information content in
short-time frames of speech, is the short-time level weighted speech intelligibility in-
dex (SII) of Kates and Arehart (2005b). The measure is abbreviated with I3, which
refers to three ranges of short-time speech frames that contribute differently to the
overall speech intelligibility. Thereby the metric accounts for the fact that conso-
nants are generally more meaningful to speech intelligibility than vowel sections.
Likewise, transients and transitions of speech are of higher weight to speech intel-
ligibility. These sections are well separated from the vowel sections by the speech
power level in small frames (Yoo et al., 2007). Nonetheless, as the subjective assess-
ment will show, the I3 measure constitutes a suboptimal solution in the assessment
of nonlinearily processed speech. Therefore, the short-time SII measures will be
combined with a series of information theoretic quantities, e.g. Shannon’s entropy,
to label transitional parts in speech.
Although subjective tests will show that these measures are able to detect transi-
tional parts in speech, they are generally outperformed by the I3 measure, the STOI
measure (Taal et al., 2010) and an optimized level-based SII version. Originating
from these results on objective speech intelligibility assessment, a short-time and
critical-band and Better Ear I3 method will be developed to account for the domi-
nant factor in binaural speech intelligibility, the head-shadow effect.



10 Introduction

Chapter 5 pursues the optimization and finally the assessment of binaural CASA
processors. Using the Better Ear I3 measure of binaural speech intelligibility as an
objective function, algorithmic parameter sets of the binaural speech processors will
be optimized with a genetic algorithm across groups of acoustic scenes. As a result
of the replicated model hearing process, the optimization realizes a most favourable
balance of, algorithmically accessible, cues and binding features. The holistic ap-
proach of model-based speech enhancement and assessment yields an optimal set
of parameters in this framework and consequently realizes the optimal algorithmic
benefit in a particular scene. Since the three binaural processors of this work are
based on different binaural processes, the evolutionary optimization constitutes an
innovative approach to the qualification of certain binaural cues and binding features
in varying acoustics.

Equipped with optimized parameter sets for certain algorithmic front-end/back-end
combinations for particular scenes, the benefit of binaural speech processors will be
assessed throughout a wide range of SNR conditions, target-masking angles, multi-
masking conditions, several diffuse real-world backgrounds and artificial reverber-
ation. Thereby the analysis will not only reveal the benefit that can be expected
in matched conditions, i.e. scenes the algorithm was optimized for, it also gives
information on the generalizability of binaural CASA algorithms in unmatched con-
ditions.
Lastly, a genetic optimization will be applied to the cepstral smoothing technique.
As a means to maintain the intelligibility benefit of CASA processors while maintain-
ing a quality enhancement in terms of the suppression of musical noise, the cepstral
smoothing technique is subsequently integrated in the processing chain with the
algorithm of Gaik and Lindemann (1986) and objectively assessed with respect to
binaural speech intelligibility and a binaural quality measure.

The study is concluded with a summary and an outlook in Chapter 6.



2

The Minimum Mean Square Error
solution factorized into a
beamformer and a post-filter

A familiar acoustical experience in populous surroundings is the ambiance of multi-
ple speakers and a diffuse background of reverberating sound power. The stronger a
talking partner is energetically masked by competing voices and reverberation, the
lower speech intelligibility gets.
If a target speaker is to be enhanced, array technology and beamforming filters
offer excellent means to exploit the spatial diversity of a given sound scene. The
principle of the popular and simple delay-and-sum beamformer is to add the mi-
crophone signals of the target speaker coherently through a correction based on the
inter-microphone delay times. In doing so, the signals from all other directions are
added incoherently. As a result, the processing causes an enhancement of speech
intelligibility by increasing the SNR.
A more powerful variant of beamforming is well-known as the minimum variance dis-
tortionless response (MVDR) beamforming, a directivity optimized spatial filtering.
The filter coefficients of the MVDR method are calculated by minimizing the output
power of the beamformer with the constraint of unity gain in the target direction.
As the MVDR filters are only optimal in the noise field they are optimized for, the
approach constitutes a maximum likelihood solution.
Under the assumption that the target signal and noise are uncorrelated, a univer-
sal and optimal reconstruction can theoretically be obtained by the multi-channel
Wiener filter, which realizes a Minimum Mean Square Error (MMSE) solution. To
approximate this theoretical approach, Simmer et al. (2001) showed that the MMSE
solution can be factorized into an MVDR beamformer and a single-channel Wiener
post-filter. As mentioned in the introduction, this combined processing scheme will
be the strategy of the present work to enhance speech intelligibility in noisy sur-
roundings.

With regard to the factorized MMSE solution, there are different approaches to dis-
tribute the tasks of coherent and incoherent noise suppression over the beamforming
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front-end and the post-processing back-end. Some systems combine the Generalized
Sidelobe Canceller (GSC), which is an adaptive beamforming framework for the
suppression of coherent noise, with a single-channel post-filter for the suppression of
diffuse noise (see e.g., Simmer et al., 2001). These approaches, however, have demon-
strated to have two major disadvantages in real-world application. First, the GSC
tends to be unstable in diffuse and variant noise conditions and is constrained by its
mathematical solution when the amount of coherent sources exceeds the number of
microphones (Greenberg and Zurek, 2001). Secondly, single-channel post-filters need
to define an estimate of the noise with a classification algorithm that distinguishes
between speech and noise, well-known as voice activity detection (VAD) algorithms.
Voice activity detection in a single-channel speech signal is generally known to be an
inaccurate estimation process that has shown to introduce an error that precludes
speech intelligibility improvement (Rohdenburg, 2008; Loizou and Kim, 2011).
In multi-channel setups, the attenuation of diffuse sound with a post-filter can al-
ternatively be based on the Magnitude Squared Coherence (MSC) function between
the microphones, an approach that was first applied to the problem of speech en-
hancement by Allen et al. (1977). If binaural hearing aids are considered, head-based
adaptive MVDR systems (GSC frameworks) with coherence-based post-processors
were developed by Lotter and Vary (2006) and Rohdenburg (2008).
A different allocation of tasks to suppress incoherent and coherent sources is ob-
tained through the combination of the general fixed MVDR beamformer and a
scene-adaptive directional post-processor. While the former is optimized to sup-
press an ideal diffuse noise field, the latter performs the suppression of coherent
noise sources. Variants of this approach can be found in the work of Seltzer et al.
(2007), who proposed the combination of an array and a post-filter, which suppresses
incoherent and coherent noise based on statistical modeling, or in the approach of
Lockwood et al. (2004), in which the output of bilaterally applied cardioid micro-
phones1 was post-processed with the algorithm of Kollmeier et al. (1993). Hence,
provided that fixed MVDR beamformers (or generally superdirective beamforming
solutions) are bilaterally applied as a front-end, an approximation of the MMSE
solution can be obtained by the sequential application of binaural speech processors
for the suppression of lateral noise sources. Binaural CASA algorithms have shown
to make only few assumptions about the noise field and, moreover, to belong to
an exclusive set of varying magnitude-based filters that are able to gain significant
improvement of the intelligibility (see e.g., Wittkop et al., 1997).
Moreover, the front-back ambiguity of CASA algorithms, which can be considered
as a modeled natural artifact, is supposed to be reduced by the superposition of a
directional beampattern (Kollmeier and Koch, 1994). Therefore, a benefit for the
processing of the binaural post-filter is expected due to the directivity of the front-
end.

1Directional microphones using an acoustical network to render a hypercardioid directivity
pattern (i.e. a first order gradient solution) are analogue realizations of superdirective arrays
(Merks, 2000).
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In this chapter, the combined MVDR front-end and binaural CASA-based back-end
system will be introduced. Subsequently to a theoretical introduction of the meth-
ods, practical solutions of the beamforming front-ends are analyzed. Post-filters in
general and their binaural CASA realizations are studied in the second part of this
chapter.

2.1 Signal model of the MMSE approximation approach

This section introduces the general approach of the combined processing scheme
that is studied in this work. As introduced, the MMSE solution is factorized into an
MVDR beamformer and a binaural CASA-based post-filter. Figure 2.1 A shows the
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1

Figure 2.1: A gives a schematic sketch of an additive signal model in a sound-field with
certain room characteristics and an array in endfire setup with respect to the target source.
Sketch B shows the processing scheme of this work, which comprises bilaterally applied
MVDR beamformers (or generally filters that offer superdirectivity) for the suppression of
diffuse noise and a binaural CASA-based speech processor for the suppression of coherent
interference as well as residual diffuse noise.

general signal model. The general aim is to enhance the target speaker s in a mix of
multiple interference, using an array of N microphones. For this purpose, the output
x̃ at each microphone � is band-limited and sampled over ι time intervals. To obtain a
frequency representation of the signal in short time-frames—in which speech signals
can efficiently be filtered (Paliwal and Wojcicki, 2008)—a transformation to the
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short-time Fourier transform (STFT) domain is performed with a Nd-point discrete
Fourier transform (DFT) over time-frames of short duration:

x�(d, n) =
Nd−1�

ι=0

χ(ι)x̃�(n∆T + ι)e−j2πι d
Nd , (2.1.1)

where d = 0, 1, . . . , Nd − 1, n, ∆T and χ are the frequency bin, the frame index, the
frame shift and a window function, respectively. The microphone signals x�(d, n)
can be written as a vector x(d, n), and considering the mix of signals, x(d, n) can
be expanded into:

x(d, n) = s(d, n) + v(d, n) = a(d)s(d, n) + v(d, n), (2.1.2)

in which s(d, n) denotes the source signal in the STFT domain, and a(d) is the
propagation path vector:

a(d) = (a0(d), a1(d), . . . , aN−1(d))
T
, (2.1.3)

between the source s and each microphone �, which is considered stationary through-
out this work. In Equation (2.1.3) the subscript T denotes the transposition of a
vector and v(d, n) is the noise vector that comprises all distortions, i.e. room rever-
beration, interfering sources or the microphone self noise. In the following, the time
and frequency index are omitted without a loss of general validity, for notational
convenience.

To separate the speaker s from the noisy mixture in the output y, the input vector
x can be multiplied with the multichannel filter coefficients w:

y = w
H
x, (2.1.4)

where H indicates the Hermitian transposed. The filter vector wopt that is obtained
from the MMSE solution is:

wopt = argmin
w(d,n)

E
��
s−w

H
x
�2�

. (2.1.5)

The solution constitutes a multichannel Wiener filter. As the practical realization
of such a filter is an unsolved problem for the broadband speech-in-noise problem
considered, combined processing schemes have been developed for an approximation
of this solution. Usually these consist of a beamformer and a post-filter solution.
Simmer et al. (2001) formalized those practical approximations of the MMSE filter
with a factorization into a complex weight vector of a MVDR beamformer and a
scalar single channel Wiener post-filter in the following way:

wopt =
φss

φss + φvv� �� �
wpost

Φ
−1

vv
a

aHΦ
−1
vv a� �� �

wMVDR

. (2.1.6)
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In this equation Φ
−1

vv
is the inverse cross power spectral density matrix of the noise

across the microphones, and φss and φvv are the power spectral densities of the target
signal and the noise, respectively. The calculation of the power spectral densities is
introduced in Chapter 2.3.

The MMSE factorization applied in the present work is outlined in Figure 2.1 B.
Bilaterally applied MVDR beamformers (or superdirective beamformers) form the
front-end to a central post-processor, which subsequently applies a soft-mask, i.e an
approximation of the Wiener gain, to both channels.
Compared to pure single-channel approaches that generally estimate the noise in
speech pauses, the here presented binaural CASA approach provides a constant
noise estimate by using the spatial information contained in the binaural parameters
to derive the filter-gains in each channel. Therefore, using the factorized weights of
Equation (2.1.6), Equation (2.1.4) can be rewritten for the combined binaural system
proposed here: �

yl

yr

�
= wpost

�
w

H

MVDR
xl

w
H

MVDR
xr

�
, (2.1.7)

where the indices l and r denote the left and right ear signal, respectively. Hence,
subsequent to the multiplication of each array vector with the beamformer weights
wMVDR, the binaural output is multiplied with the real-valued post-filter gain func-
tion wpost. This approach implies that binaural phase and level differences exist at
the output of the beamforming front-end, which can subsequently be accessed in
the source segregation process by the post-filter. Consequently, natural interaural
disparities are altered twice: once by the beamformer and then once by the post-
filter gain. Nevertheless, the combined binaural system delivers a binaural signal to
the ears, which is known to give speech intelligibility improvement, a topic that is
discussed later in this work.

The total benefit of an SNRtotal enhancement of the combined processing scheme is
calculated as the sum of the respective logarithmic noise suppression gains (Simmer
et al., 2001):

SNRtotal = SNRMVDR + SNRpost. (2.1.8)

The enhancement of the array SNRMVDR can be expressed as the inverse of the
MVDR array gain, i.e. the ability to suppress a diffuse noise field:

SNRMVDR = 10 log
10
(wH

Γvvw), (2.1.9)

in which Γvv denotes the complex coherence matrix that is equal to the normalized
noise correlation matrix Γvv = ΦvvN

trace(Φvv)
. The SNR enhancement of the post-filter

is SNRpost = 10 log
10
(|hpost|2), with hpost being the transfer-function of the post-

filter.

By these means, the processing units are complementary for approximating the
MMSE solution. Their respective contributions in suppressing coherent and inco-
herent noise signals are, however, subject to practical limitations. That is, there is
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generally no realizable MMSE solution to the considered speech-in-noise problem.
For instance, because of the serial processing of the beamformer and post-filter, the
latter depends on the output characteristics of the former. This dependency has a
direct consequence on the overall performance. A high attenuation of diffuse noise
through a beamformer might help a post-processor to detect and attenuate coher-
ent noise sources. However, it might also lead to a deterioration of spatial cues
that consequently hampers the separation process and thus the post-filtering qual-
ity. Therefore, it is a central question of the present study, whether audiologically
inspired post-filters are able to utilize the binaural disparities at the output of bilat-
eral beamformers in the source separation task. Practical simulations, later in this
work, aim to answer this and other questions that relate to the problem of speech
intelligibility enhancement in real-world scenarios. The remainder of this chapter
introduces practical realizations of the MVDR beamformer and the binaural CASA
post-filters applied in this work.

2.2 Practical superdirective beamforming

Spatial filtering by application of beamforming comes in three guises: the delay-and-
sum beamforming, the gradient processing and the MVDR beamforming. Whereas
delay-and-sum beamforming maximizes the amplitude of the target signal by cor-
recting the sound-travel time differences between the microphones in a preferential
direction, the gradient processing and the MVDR beamforming minimize the energy
of the array output by a decorrelation process of the sound field and enhance the
target by a steered unit filter gain. In cases the wavelength λ is greater than twice
the microphone spacing l, the gradient and MVDR processing can achieve superdi-
rectivity.

The quality of the beamformer solution can physically be assessed with the Direc-
tivity Index (DI):

DI = 10 log
10

�
|wH

a|2

wHΓvvw

�
, (2.2.10)

and the White Noise Gain (WNG):

WNG = 10 log
10

�
|wH

a|2

wHIw

�
. (2.2.11)

These expressions specify the two opposing aims of a practical beamforming solu-
tion, i.e. the suppression of diffuse noise, as expressed in a coherence matrix of the
sound field Γvv in the denominator of the DI, and the quality of the suppression of
uncorrelated noise among the sensors, as expressed through the identity matrix I in
the denominator of the WNG.

The MVDR solution, as introduced in Equation (2.1.6), can be calculated by mini-
mizing the signal power wH

Γvvw at the beamformer’s output, while obeying w
H
a =
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1 (Bitzer and Simmer, 2001). Although this leads to the directivity optimized solu-
tion, depending on the characteristics of the array, i.e. the number of microphones,
their location and the spacing between them, it is an impractical solution because
it amplifies uncorrelated noise among microphones at low frequencies, which results
in a negative WNG. The well-known approach for a balance between directivity
and self-noise amplification is provided through the WNG-constrained MVDR solu-
tion. This constrained solution is obtained through the stabilization of the matrix
inversion:

wMVDR |stab=
(Γvv + κI)−1

a

aH(Γvv + κI)−1a
, (2.2.12)

in which κI represents an adjustable amount of uncorrelated noise. Hence, by mod-
ifying κ, a compromise between the conflicting characteristics of target gain and
noise robustness can be reached. As there is no simple relation among κ and the
WNG, usually an optimization routine is used to reach optimal directivity at a given
minimum WNG (Merks, 2000). By virtue of this stability constraint, the mutual
uncorrelated self-noise of the transducers due to gain and phase mismatches as in-
evitable consequences of the production process, numerical noise due to errors in the
signal processing, and also noise due to wind turbulence, can efficiently be counter-
acted.

To exemplify the working principle of the constrained MVDR beamformer, a two
microphone endfire array (collinear with the target source) is simulated. We assume
the microphones to be in the far-field of the source, and the presence of an ideal
diffuse noise field that is to be attenuated. The distance l between the microphones
is 5 cm, which results in a spatial Nyquist frequency (c/2l, with c being the speed
of sound) of 3.4 kHz. Figure 2.2 shows two adjustments of the constraint MVDR
solution. One solution with a κ = 0 results in the unconstrained MVDR solution,
which is equal to a first order gradient solution with hypercardioid weights (Merks,
2000). The other setting is given by the a constrained MVDR solution with κ = 10.
In this case, the constrained MVDR processing approximates the robustness and the
gain of the delay-and-sum solution.
The DI for the unconstrained solution is 6 dB. For enfire-arrays it can be calculated
as 20 log

10
(N) (Merks, 2000). The WNG shows a strong amplification of uncorre-

lated noise at low frequencies. By inspecting the beamforming coefficients in Figure
2.2, a strong amplification towards low frequencies can be seen. As the unconstrained
MVDR beamforming imposes a decorrelation of the correlated noise—which is seen
as a phase difference of π among the filter coefficients, as long as sensor distance is
smaller than half of the wave length, i.e. l < λ/2, with λ being the wave-length, in
the right-hand plot of Figure 2.2—, the correlated target source will be decorrelated
as well. To offset this attenuation, high filter gains guarantee an undistorted target
signal, i.e. a unity gain. However, the inevitable consequence of this approach is the
amplification of uncorrelated noise (Bitzer and Simmer, 2001).
The opposite nature in terms of directivity and stability is found for the constrained
MVDR solution with κ = 10 in Figure 2.2. Almost no directivity is found for
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Figure 2.2: The DI and WNG for an endfire array with two omni-directional microphones
exemplify the working principle of the unconstrained MVDR beamforming with κ = 0 and
the constrained MVDR beamforming with κ = 10. The right-hand plots show the concomi-
tant complex beamforming weights.

f < 1 kHz. Only if the wavelength is small compared to the dimensions of the array
(up to the Nyquist limit), the solution generates a moderate gain. In contrast to
the unconstrained MVDR solution, uncorrelated noise is highly attenuated in the
entire spectrum, which is indicated by a constant positive WNG. As mentioned, the
solution boils down to an approximation of the delay-and-sum beamformer where all
delays are corrected with f -dependency for the target direction and constant gains
of 1/2.
Returning to the introduction of the three general beamforming solutions, the nar-
rowband low gain and robust delay-and-sum solution, and the broadband high gain
and unstable gradient solution, mark the extremes of the beamforming method and
can be seen as two sub-solutions of the constrained MVDR solution (Merks, 2000).
In practical applications, a compromise between the conflicting objectives of target
gain and self-noise amplification has to be found.

2.2.1 Bilateral beamforming and the effect on binaural cues and speech
intelligibility

As explained and illustrated, the beamformer approach exploits the spatial diversity
of sources to improve the SNR. If, however, this spatial diversity is cancelled in a
monaural or diotic signal, the benefit of the spatial filter is often practically com-
pensated by the lack of binaural cues, which are strongly used in the auditory scene
analysis. In order to realize an improvement of speech intelligibility, it is important
to convey the spatial diversity to the listener by providing a binaural output signal
(Desloge et al., 1997; Hamacher et al., 2008). Additionally, the hearing efforts are
relaxed through a natural spatial listening experience. Together with a low target
distortion as well as noise suppression, this effect adds to the listening ease and,
thus, acts against a lessening of mental attention and fatigue.
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Several head-related array systems have been developed to comply with the require-
ment of binaural cue preservation. In a recent study, Rohdenburg (2008) compared
different binaural noise reduction schemes, which were applied to the output of bilat-
eral BTEs with each three microphones. In an evaluation he found that head-related
arrays that accommodate superdirective beamforming and post-filtering in a joint
real-valued transfer-function, are well suited to provide an ideal balance between
noise suppression and binaural cue preservation. In a similar fashion, Merks (2000)
demonstrated that bilaterally applied endfire arrays using beamforming allow for
a subjective localization performance comparable to the localization with natural
binaural cues. As a matter of course, binaural cue fidelity is counteracted by the
width of the main-lobe and the beampattern, i.e. the directivity. As a consequence,
if the main lobe is narrow and the array gain is high, binaural cues tend to be un-
naturally modified. Moreover, binaural cues may strongly fluctuate in the vicinity
of inevitable zeros in the beampattern. Wearers of hearing aids using beamforming
usually adapt to these differences to some extent. Rohdenburg (2008) confirmed this
relative subjective robustness in favour of noise suppression. In an evaluation with
normal hearing people at SNRs around 0 dB and above, he found binaural cues to
be less important than the preclusion of target distortion. Merks (2000) compared a
binaural broadside-array that partially conveyed ILDs with a binaural endfire array
that maintained interaural time differences (ITD) as well as small ILD values. In
an SRT evaluation, he found no advantage due to dichotic presentation of the ILDs
as compared to the diotic stimulus. However, he observed an SRT advantage due
to the ITDs of 1.6 dB with the binaural endfire array, which is in consideration of
the above-mentioned tradeoff between practically achieved directivity gains and the
binaural cue-preservation, of an expected magnitude.

2.2.2 A review of the state-of-the-art of beamforming solutions

If we survey current solutions of binaural beamformers on a global level, one may
differentiate fixed and adaptive beamformers as well as bilaterally independent ap-
plied arrays and head-based arrays. Classical fixed schemes often consist of small
endfire arrays in BTEs, made up of two to three microphones over a distance of
about 2 cm, feeding a fixed gradient or MVDR beamformer processing scheme. The
above-mentioned hearing glasses (Varibel Innovations BV) employ two independent
arrays in endfire orientation and an MVDR scheme with four microphones that are
non-uniformly distributed over a length of 7.2 cm (Boone, 2006). Other solutions
extend the array over bilateral BTEs through a binaural link (Rohdenburg, 2008).
These bilateral head-related arrays need to account for the propagation model of
the array mounted on a head. Hence, these systems ideally employ individually
measured head-related transfer functions (HRTF). However, the resulting HRTFs
are found to be susceptible to the positioning of the array system. Together with
the suboptimal optimization of fixed MVDR filters for real-world applications, this
leads to processing artifacts (Rohdenburg, 2008).
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A solution to alleviate this instability was introduced: improving the beamformer
robustness. However, a tradeoff with the WNG constraint leads to less noise sup-
pression. Other approaches to circumvent the instability are the application of para-
metric head-models and the implementation of an adaptive MVDR beamformer in
a GSC framework, a method pursued by (Rohdenburg, 2008). Both concepts will
be described briefly.
The recording of individual array-based HRTFs is not acceptable for practical appli-
cation, because the individual audiological aid is constrained by the lack of time and
money. Therefore, head-models of different complexity could be employed for future
head-related array systems, which capture the most important characteristics of an
individual head (Lotter and Vary, 2006; Rohdenburg, 2008). Although the applied
models to date only permit a weak compromise with respect to measured HRTFs,
the approach may result in more favourable results in the near future as parametric
head-models improve. See, e.g. Fels (2008) for recent developments.
Adaptive solutions of head-related array systems using a GSC structure are often
based on a delay-and-sum solution in parallel with an adaptive path, or on an MVDR
solution in parallel with an adaptive path (Simmer et al., 2001; Rohdenburg, 2008).
Therein, the adaptive path captures an estimate of the noise field and adjusts the
spatial nulls of the beampattern towards the directions of coherent interferers. The
delay-and-sum solution in parallel with the adaptive path structure is expected to
be less effective in suppressing incoherent signals (Simmer et al., 2001). In theory,
the fixed MVDR solutions in parallel with an adaptive path structure is expected
to achieve a considerable suppression of coherent and incoherent noise. Unfortu-
nately, in realistic conditions, the advantage of such an adaptive structure remains
below expectations due to stearing errors and the above-mentioned noise sensitivity
(Greenberg and Zurek, 2001).

Rohdenburg (2008) compared the fixed and adaptive (GSC) MVDR beamformer
with a post-filter based on interaural coherence. His findings are summarized:

✷ As compared to the fixed processing scheme, a small SNR improvement of 2 dB,
using an instrumental measure, was found for the adaptive structure in op-
timal conditions using HRTFs instead of head-models. However, it showed a
much lower stability towards inevitable steering errors and other factors that
perturb the propagation model. When employing a parametric head-model
the advantage was eliminated, even under perfect steering conditions.

✷ The performance of an adaptive procedure depends on the sound field conditions.
In real-world scenarios, when background babble noise and multi-path direct
sound propagation occur, the adaptive approach is no longer well determined,
i.e. the number of coherent noise sources impinging on the array is greater
than the number of microphones in the array.

✷ A reliable detection of speech pauses in speech can improve the adaptive process-
ing. Gap detection (VAD), however, proves to be difficult in critical real-world
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conditions.

Also bilaterally applied fixed MVDR beamformers suffer from positioning displace-
ment and other deviations from the propagation model that was used during their
optimization. This was also reported by Merks (2000), who found that the beam-
pattern of a free-field optimized endfire array is perturbed at high frequencies by the
head. For this reason, he compared the binaural endfire array performance based on
a free-field propagation model optimization and a head-mounted optimization using
an artificial head. By means of an evaluation in a simulated diffuse noise field with
a female speech shaped noise colouration, he could not confirm a subjective benefit
due to the more accurate propagation model. Besides, the bilaterally applied endfire
array showed a robust and high SNR gain in this noise field, which differed from the
noise field in which the beamformer was optimized.

Recent advancements incorporate a localizer, or in general terms, a scene classifier.
For instance, Rohdenburg (2008) developed a head-mounted array with an adaptive
target-tracker based on a fixed MVDR beamformer and a coherence-based post-
filter. Using instrumental measures, an improvement of signal quality as well as
speech intelligibility over the same system without target-tracking was found, even
when the target is moving relative to the head-based array. In a similar fashion,
Boone et al. (2010) developed a system based on a combined processing scheme of
a bilaterally applied MVDR beamformer and a binaural CASA-based post-filter.
Therein the CASA-based localizer of Albani et al. (1996) served as a scene classifier
that triggered the aperture of the post-filter with a data-driven Bayesian classifica-
tion approach. Based on the complexity of the scene, the aperture of the post-filter
was adapted to guarantee an optimal signal quality, at the same time with a speech
intelligibility enhancement. The underlying concept of using the parametric output
of a localizer to estimate varying soft-gains for a high quality output had been pre-
viously introduced by Madhu (2009b).

To roundup this review, mainly two approaches of binaural and constrained MVDR
beamforming solutions that allow for a combination with a post-filter have been de-
veloped. One is based on bilateral endfire arrays that are connected via a binaural
link to extend the array dimensions. These systems need to take the diffraction
of the head into account by applying a propagation model. The other approach is
based on bilateral MVDR beamformers that work independently and do not require
a propagation model of the head.
Head-based arrays are a promising approach for future application in small BTE
hearing aids. What these require are suitable propagation models, including indi-
vidualized HRTF approximations. Adaptive implementations using a GSC struc-
ture of head-based systems did not demonstrate an advantage over fixed systems in
real-world applications. However, a head-based array system with a target tracker
demonstrated an improved speech intelligibility. Additionally, the head-based sys-
tems of Lotter and Vary (2006) and Rohdenburg (2008) integrate a post-filter that
employs the binaural waveform coherence as a classifier of diffuse noise. These
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systems can be considered as approximations of the MMSE solution. Using two bi-
lateral endfire arrays that establish separate beams, offers the advantage of a lower
susceptibility to deviations from the propagation model used in the optimization of
the MVDR filters, and positioning errors (Merks, 2000). Constrained superdirective
endfire solutions are characterized by a simple, robust and efficient processing. As a
result, these are already successfully applied in today’s hearing aids. Moreover, us-
ing a non-adaptive beamforming structure, i.e. neither adaptive “nulling” towards
interference nor a beam steering towards the target speaker offers the advantage
of a stable binaural image, which can be exploited by a binaural post-processor.
Moreover, as compared to algorithms in which binaural cues constantly change, a
hearing aid with stable binaural cues is considered to contribute substantially to the
listening ease.

This work primarily studies the improvement of speech intelligibility that can be
obtained with a set of binaural CASA-based post-processors at the output of differ-
ent bilateral front-ends in various acoustical conditions. Therefore, it is the general
approach of this study to create the boundary conditions of the analysis of the post-
processors as realistic as possible. For that purpose, exclusively genuine off-the-shelf
hearing aids are applied as beamforming front-ends. The following section presents
and analyzes the choice of hearing aids applied in this work.

2.2.3 Analysis of three bilaterally applied beamformers

In this thesis, three examples of real-world superdirective front-end solutions are
given, which are all based on bilateral endfire arrays featuring separate beamform-
ers. These are a commercially available BTE with and without a directivity mode
(GN ReSound type Canta 470-D) and the commercially available hearing glasses
(HG) in two settings, one of moderate directivity and one of high directivity (Vari-
bel Innovations BV).
A measurement of the DI with the hearing aids mounted on an artificial head (KE-
MAR manikin, Knowles Electronics) in anechoic conditions showed a speech intelli-
gibility weighted DI2 of 1.3 dB, 4.4 dB and 7.2 dB for the BTE (directivity mode)
and the HG in the low and high directivity mode, respectively (Boone, 2006). Dur-
ing the development of the HG in the high directivity mode, Merks (2000) conducted
several evaluations and found an audiological benefit of 6.2 dB for hearing impaired
people and an improvement of 7.5 dB for people with normal hearing in a diffuse
noise field. Hence, the hearing glasses realize more than a 5 dB SNR improvement
and, consequently, can be considered as being beneficial for the majority of hearing
impaired people (Duquesnoy and Plomp, 1983).

In the following, the three directional filters are reassessed with a set of physical
measures and compared to the unaided case. To that purpose, the hearing aids were

2DI =
�N1/3

i δiDIi, with δ being the band importance weights per one-third octave band
between 500 and 5000 Hz that are taken from ANSI/ASA (2007).
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applied without an audiological profile, a frequency-independent amplification gain
and no compression (the electrical signal was tapped prior to the receiver of the
hearing aids). Furthermore, the aids were mounted on a non-symmetric artificial
head system, the ITA mannequin head of Schmitz (1995), which is the head system
applied in this work. In the following the ITA mannequin will be referred to as the
Aachen head. See Section 3.2 for more details.
Impulse response measurements were performed in an anechoic chamber. Head and
torso resided on a rotating turn table, which was remotely controlled to record im-
pulse responses at both ears at steps of one degrees (∆θ = 1 deg) in the horizontal
plane, i.e. zero degree elevation (ϑ = 0 deg). For details on the measurement pro-
cedure see Chapter 3.2.

In a first analysis, the transfer functions of the hearing aids and the artificial head
(without an ear channel simulator) for frontal sound incidence, θ = 0 deg, are given
in the upper plots of Figure 2.3. The transfer functions show a frequency-dependent
behavior. Also the Aachen head offers an improved frequency-transfer at frequencies
higher than 2 kHz, due to the shape of the pinna. The observed high-pass roll-off
of about −25 dB/decade below 1 kHz at the output of the BTEs, is responsible
for attenuating the self-noise of the gradient-solution at low frequencies, as well as
low-frequency environmental noise. In comparison with these transfer functions, the
HG in the low and the high directivity mode show a rather frequency-independent
transfer of sound energy from the frontal direction. In addition, a deviation between
the left and the right channel can be observed at the output of each front-end as
a result of the unmatched microphones and asymmetries in the measurement setup
and the head-shape.

In a second analysis the front random (FR) index for frontal incidence, i.e. θ = 0
deg, of the hearing aids and the artificial head are measured. The logarithmic two-
dimensional FRθ=0 is:

FRθ=0(d) = 10 log
10

|h(d, θ = 0)|2
1

Nθ−1

��Nθ

u=1
|h(d, θ)|2

� , (2.2.13)

in which Nθ is the number of azimuthal measurement positions (Merks, 2000).
Hence, the FR determines the ratio of the squared array response in target di-
rection to the averaged squared array response due to all-sided sound incidence.
Generally, the FR equals the DI if the array’s target response equals the most sensi-
tive array direction. However, in contrast to the DI definition in Equation (2.2.10),
which represents a theoretical formulation, the DI for measurements is defined as
the ratio of the maximized squared array response with respect to the angles θ and
ϑ, to the average squared array response due to omnidirectional sound incidence
(Merks, 2000). If head diffraction or processing errors introduce off-axis maxima,
the DI calculation method will incorporate these and, hence, deviate from the target
direction. Therefore, in the present work, the FR is chosen with h(d, θ = 0) in the
numerator of Equation (2.2.13) to quantify the target gain of frontal direction in the
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Figure 2.3: Left and right ear transfer functions (dB) and the FR indexes (dB) at θ = 0 deg
for the hearing glasses (HG) in two different directional modes and the applied BTE hearing
aid in a directional mode (all mounted on the Aachen head). The results are contrasted with
the unaided case, by tapping the binaural output of the Aachen head mannequin.

left and the right channel. The second row of plots in Figure 2.3 gives the results.
As expected, the FRθ=0 is highest for the HG in the high directivity mode. Except
for high frequencies, a congruent but attenuated curve is observed for the FRθ=0 of
the HG in the low directivity mode. However, at high frequencies the FRθ=0 decays.
The FRθ=0 of the BTE shows strong fluctuations. The imbalance might be a result
of variations in the directional behavior of the applied microphones and asymmetries
in the mounting and alignment. An analysis of the FR of the same BTE hearing aid
in the omni-directional mode showed only small differences between the left and the
right channel. This comparison supposedly isolates the directional processing as be-
ing the reason for the observed imbalance of the left and right FRs in the directional
mode of the BTE. Moreover, listening to the output of the hearing aids revealed a
considerable internal noise level. Despite these processing errors, the BTE in the
directional mode shows a FRθ=0 of about 1 to 3 dB in a range from 0.5 to 2.5 kHz,
due to the applied first-order gradient processing.
The FRθ=0 of the Aachen head hovers around 0 dB and below, until approximately
2 kHz, when the directivity is shown to rise due to the shape of the pinna.

To gain a better understanding of the beam-pattern, the two-dimensional FR index
was subsequently calculated for all azimuthal directions and is depicted in Figure 2.4.
The approach offers a two-dimensional beampattern analysis, which provides an
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Figure 2.4: The FR-based directivity patterns (dB) in the horizontal plane as a function of
azimuth and frequency of the two-channel front-ends applied in this work are given. All
hearing aids are mounted on the Aachen head. For a comparison with the unaided case,
the directivity of the Aachen head is given. The FR of each plot is normalized to 0 dB.
As regards the BTE front-end, the directional programme mode is shown. Because of the
limited frequency transfer of this font-end, the FRs are only calculated until 7 kHz.

overall qualitative insight into the directivity of the front-ends.
Beginning with the HG in the high directivity mode, a high degree of sensitivity
around the median plane (θ = 0 deg) is observed, for the left and the right beam-
pattern. However, the patterns are broadened as compared to the initial results of
Merks (2000). This finding is likely a result of the practical implementation, i.e. re-
stricted filter and digital word length, but may also be due to the Aachen head. This
head mannequin is larger—about 2 cm in diameter—than the KEMAR head, which
was used at the time of the HG development. Already Merks (2000) had analyzed a
broadening of the main-lobe, the closer the temples are situated with respect to the
head. Moreover, Figure 2.4 shows how the frequency-dependent directional response
deviates from a high gain in look-direction due to the diffractions around the head
from above 3 to 4 kHz. At high frequencies, the directional characteristics of the
applied microphones can no longer be assumed omni-directional, which makes the
free-field beam-pattern susceptible to slight deviations throughout the propagation
path.
Furthermore, the decline of directivity at high frequencies of the HG in the low di-
rectivity mode that was illustrated with the FRθ=0 in Figure 2.3, can be explained
by observing the respective beam-pattern. As Figure 2.4 shows, the beam-pattern
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extends broadly along the median plane and splits up in spatial notches above ap-
proximately 4 kHz. These spatial notches at high frequencies coincide with the
FRθ=0 analysis direction. The DI, which maximizes the array response in the nu-
merator of Equation (2.2.13), would consequently be higher. Note that the DI is
used as a cost-function in the optimization process of the MVDR filters with the
aforementioned constraints of maximum noise sensitivity and a distortionless trans-
fer function for the target-direction.
The filters of the here applied HG have been optimized in a simulated free-standing
setup, without being mounted on a head mannequin. As previously mentioned, de-
spite this deviation from real-world application, the approach has been found to
be equally efficient and more robust as the optimization including the head-model.
Practical measurements showed that head-related MVDR filters depend consider-
ably on the mounting and the peculiarities of the head-model (Merks, 2000).
Non-optimal beam-patterns are observed with the bilaterally applied BTEs in the
directional mode. The maximum of the directivity turns out to be off-axis, at ap-
proximately −45 and 45 deg for left and right ear, respectively. In the range of
3.5 to 5.5 kHz, the beam-patterns clearly differ. At these frequencies, the left ear
BTE shows a lateral deviation of the main-lobe, while the right ear BTE offers the
main-lobe at 45 deg. Consequently, the deviation of the FRs at θ = 0 deg in Fig.
2.3 is found to be a consequence of the beam-pattern and not a consequence of a
general absence of directivity.
Regarding the Aachen head, and as previously observed, directivity shows to be
building up above approximately 2 kHz, due to the focussing direction of the pin-
nae. Furthermore, at higher frequencies, the main sensitivity is found laterally,
supposedly due to waves of small dimensions exciting the diaphragms of the micro-
phones, which reside at the entrance of the ear-channel, most efficiently out of the
perpendicular direction. Consequently, the observed directivity should differ from
the directivity when using genuine HRTFs.

In summary, three variants of real-world bilaterally applied beamformers have been
studied. The directional filters realize a compromise between super-directivity and
robustness and can be considered as possible front-ends for a future application
of binaural CASA post-filters. Whereas the HG showed an advantage in terms of
symmetry and frequency-transfer into the looking direction, the directional process-
ing of the BTE is clearly impeded by the placement of the microphones behind
the pinna and by an increased noise-sensitivity of the gradient-method.3 Moreover,
asymmetries due to mounting differences and, as found in the comparison with the
omnidirectional programme mode, unmatched microphones, result in substantial
differences between the left and right ear beam-pattern. Finally, the self-noise am-
plification at low frequencies of the gradient-processing requires a high-pass filter,
which produces an artificial sound character and, more important, decreases speech

3The noise sensitivity of the BTE in the directivity mode has not been measured, but was
qualitatively experienced during the measurement of the HRTFs by a low internal SNR of the BTE
in the directivity mode, hence, a high self-noise.
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intelligibility in the low frequency range.

The presented beamforming solutions sample the range of today’s array processing
in commercially available hearing aids. A challenge exists in the adaptation of the
CASA post-filter to the peculiarities of the interaural transfer functions of the differ-
ent front-ends. In Chapter 3.3.3 a statistical method will be introduced that allows
for adaptation in an efficient way. Up to this point, the beamforming front-ends of
the combined processing scheme have been introduced and analyzed. In the second
part of this chapter the CASA-based post-filters will be studied.

2.3 Varying filter-gain functions

This section is divided into four parts. The first part introduces the concept of
real-valued gain functions that are established in binaural CASA-based post-filters,
which are used later in this work. These gain functions are binary or smooth, i.e.
well-known as ideal binary masking, or soft-masking approaches, respectively. The
well-established concept of the Wiener filter is the linear variant of the soft-mask
approach. It requires perfect knowledge of the noise power as well as a perfect
analysis and synthesis filtering technique. Needless to say, these requirements are
not so stringent in reality. Consequently, the Wiener gain can only be approximated.
In a second part of this section, soft-masks and ideal binary masks are compared.
In a subsequent subsection, a statistical analysis is applied to the local (or bin-
wise) SNR values in the STFT domain. This allows us to gain an insight into the
complexity of the speech-in-noise problem across different conditions. The last part
of this section deals with the suppression of the musical noise phenomenon, which
is an inevitable artifact of time-varying real-valued gain functions. To this purpose,
the cepstral smoothing technique will be introduced.

2.3.1 The Wiener filter approach in the STFT domain

The post-filter defined in Equation (2.1.6) has been established as a single channel
Wiener filter. It can be calculated with the Fourier Transform of the single channel
MMSE solution (see Appendix A.1). Depending on a certain SNR, the Wiener
filter realizes the optimal single channel filter. Based on the power spectral density
estimates of signal and noise, the single channel Wiener post-filter is a spectral gain
function and it introduces signal distortion if φvv > 0. Therefore, the multi-channel
MMSE solution, and the here performed factorization into a MVDR beamformer
and single channel post-filter, does not imply a distortionless reconstruction of the
original signal.
The strength of the distortion can be constrained by introducing a multiplier ν as
(Madhu, 2009a):

wpost |stab=
φss

φss + νφvv

. (2.3.14)
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Any value of ν between zero and one leads to a particular balance between distortion
and interference suppression. As a result, a speech distortion weighted Wiener filter
can be formulated. Recent advances use varying distortion weights by calculating
the short-time probability of speech presence. Hence, these approaches apply a lower
value of ν in periods when the target is absent and noise dominates (Madhu, 2009a).
An alternative to this distortion constraint method is well-known as flooring by a
lower-bounding of the gain-function at max [Amin, wpost], in which Amin is the lower
bound of the final gain.

Originally Wiener’s approach was a linear and time-invariant filter that was based
on the assumption of random stationary processes (Simmer et al., 2001). Station-
arity, however, does not apply to speech. The requirement can be alleviated by
the fact that speech offers short-time stationarity. Block-wise analysis-synthesis fil-
terbank approaches are appropriate for short-term magnitude processing of speech
signals. Critical filterbanks, i.e. filterbanks with bandwidths that are approximately
equally distributed on a logarithmic frequency scale (hence, broadly comparable to
the tonotopic organization in humans), allow for a high resolution at low frequencies.
Due to their physiological and psycho-acoustical resemblance, critical filterbanks are
generally found in algorithmic approaches that aim to approximate certain percepts,
as e.g. speech intelligibility. In speech enhancement tasks, the direct DFT-IDFT4

transformation method is widely preferred for reasons of computational efficiency
and a higher spectral resolution at mid to high frequencies.

Generally, when processing speech with a short-time filterbank approach, a trade off
has to be found that realizes the highest possible frequency resolution while it must
not violate the short-time stationarity of speech. Motivated by the determination
of such an optimal frame length for speech processing in the STFT domain, Paliwal
and Wojcicki (2008) found that a window-length of 15 to 35 ms leads to optimal
speech intelligibility when speech is reconstructed from the short-time magnitude
spectrum. If the analysis frames are too long, the short-time stationarity of speech
can no longer be used. At the opposite extreme, i.e. if the frames are too short,
the spectral estimates of power spectral densities become less consistent, which is
caused by the stochastic nature of the speech signal. In addition, the shortest anal-
ysis frame-length is dictated by the lowest harmonic, i.e. the fundamental pitch
frequency that has to be resolved. To yield a stable estimate of the power spectral
densities, usually two to three times the pitch period should be accommodated in a
frame (Paliwal and Wojcicki, 2008). For example, a pitch-frequency range from 80
to 400 Hz has a period range from 2 to 12 ms.
Regarding the design of hearing aids, the system delay and the computational addi-
tionally load constrain the processing method. For instance, longer frames lead to
less computational load but increase the system delay. Altogether, the multiple con-
flicting objectives that underly the time-frequency processing furthermore hamper
an ultimate Wiener filter solution in speech enhancement approaches.

4IDFT denotes the inverse discrete Fourier transform. See Appendix A.2 for an definition of
the here applied DFT-IDFT filterbank method.
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2.3.2 Soft-masks versus ideal binary masks

The term mask originates from the psycho-acoustical phenomenon of masking, that
describes the process or the amount by which the threshold of audibility of one
sound is raised by the presence or the masking of another sound (Moore, 2003). This
auditory concept has been transferred to gain-functions, in which a mask is created to
isolate the target signal from a mix (Wang and Brown, 2006).5 Accordingly, a mask
based on the Wiener rule suppresses interference proportional to the ratio of signal
to noise. This particular mask is known as a linear soft-mask, i.e. Msoft = w. The
introduction of non-linearity, i.e. by compression or an expansion of the gain-values,
may increase interference suppression, and results in graduations of non-linear soft-
masks. The utmost non-linear gain function is well-known as the ideal binary mask
(IBM), which can be formulated as:

MIBM(d, n) =

�
1 if 10 log

10

�
φss(d,n)
φvv(d,n)

�
> ε

0 otherwise
, (2.3.15)

in which ε is an SNR criterion that can be chosen a priori or according to the global
SNR of the mix. If ε is equal to a fixed SNR-criterion, the IBM is dependent on
the SNR. If, however, the ε is determined by the mixing SNR, one speaks of a local
criterion, and the IBM is independent of the SNR.
Figure 2.5 shows a comparison of a linear smooth mask and an IBM for a mix of
three vowels in stationary speech shaped noise at 0 dB, with a local criterion ε of 0
dB. As can be seen, the IBM results in a unit gain clustering around the harmonics.
The linear soft-mask, on the other hand, scales the target power according to the
power ratio at each time-frequency bin. Listening to the two weighted results shows
an advantage for the IBM, which offers in this setup a higher quality perception due
to the unit gain for most of the harmonics and a rigorous interference suppression.
In a different setup, however, when the target speech power is softer and more widely
distributed over the time-frequency plane, the IBM might suppress transitional parts
of speech that particularly contribute to intelligibility.

A controversy exists in the field of speech enhancement about the optimal mask
approach. The IBM concept offers the advantage of a high-level interference sup-
pression. Therefore, the method requires a priori knowledge of the power spectral
densities at each time-frequency bin. However, such knowledge is not available out-
side the laboratory. Due to its considerable separation power, IBM masks have
frequently been suggested as a ceiling measure to define the ultimate CASA goal
(see e.g. Wang and Brown, 2006). Based on a broadband interference, IBMs even
allow for a full recovery of speech intelligibility in an SNR situation of −60 dB

5With regard to terminology it suggests itself to replace the widely familiar term ‘mask’ for
varying filter-gain functions in CASA approaches with ‘pattern’. This would also be more consistent
for the terminology of this thesis, where the term ‘pattern’ is used in the description of the binaural
classification approach. Nevertheless, in order to omit confusion with literature, the term ‘mask’ is
adopted for describing the varying filter-gain functions in this thesis.
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Figure 2.5: An ideal binary mask (IBM) (middle plot) and a linear soft-mask (right-hand
plot) with the associated gain functions (left-hand plot) in the STFT domain for the three
vowels /a/, /e/ and /i/ are given. Signal and noise were mixed at an SNR of 0 dB. The
IBM has a local criterion ε of 0 dB and the noise is stationary and equal to the long-term
spectrum of speech.

(Kjems et al., 2009). This is the effect of noise gating, also known as the vocoder
principle. The IBM method can be further improved. In a recent study, Kim
and Loizou (2010) showed that an overestimation of the noise power may result in
a considerable improvement of speech intelligibility using IBMs. Nonetheless, the
problem of estimating the power spectral density of the noise remains as a real-world
challenge. Therefore, any error in this estimation process is amplified by the IBM
hard-clustering approach. In addition, Madhu et al. (2010) demonstrated the su-
periority of the Wiener rule or linear soft-masks to the IBM method, in terms of
speech intelligibility. In their work it is shown that IBM using a local SNR criterion
generally offers a much higher intelligibility output than the IBM with a fixed SNR
criterion. Both concepts, however, by far cannot achieve the intelligibility gains of
the Wiener filter, especially in situations when the power of the target signal and
the interference are allocated in equal time-frequency regions. Given an accurate
estimation of the power spectral densities, the Wiener gain allows for full intelli-
gibility under SNR conditions as low as −35 dB in babble noise and single talker
interference conditions (Madhu et al., 2010).

At a later point in the present study, soft-masks will be derived based on spatial
classification. Subsequently, these soft-masks will be optimized using an instrumen-
tal measure of the binaural speech intelligibility. This approach is different from the
general method of optimizing the MMSE criterion, such that it allows for an optimal
intelligibility-based handling of distortions, which are inherent to the single-channel
filtering process (see e.g., Loizou and Kim, 2011).
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2.3.3 Implications of the SNR calculation method

An important measure to assess a particular speech-in-noise problem is the analy-
sis of the local SNR, i.e. the SNRl calculated per time-frequency bin. Regardless
of this fact, throughout most comparable studies, the SNR is calculated from the
root-mean-square (RMS) power of the temporal waveforms. Thereby a global SNR
calculation method offers a common reference, everybody is familiar with. The
global SNR, however, can only approximately define the speech-in-noise problem.
In this subsection, the implications of the global SNR mixing method are briefly
studied.

In order to analyze the distributions of the signal power in the time-frequency plane
at a typical global SNR level, four speech-in-noise conditions were generated and
the local SNRs were analyzed. The speech signals used consisted of zero mean,
RMS-normalized and phonetically balanced sentences of the TNO-corpus in the
Dutch language (TNO, 2000). The sentences were concatenated and silent peri-
ods were excluded with the application of a simple VAD algorithm. The signals
were convolved with the HRTF of the Aachen dummy head for frontal incidence at
the left ear, lowpass filtered at 8 kHz and digitized at a sampling frequency of 16
kHz. Subsequently, the time series were segmented in blocks of 256 samples and
Hanning-weighted. Each block was padded with zeros to yield a vector of 512 bins.
Consequently, a DFT was applied to generate spectro-temporal signal representa-
tions. Throughout all speech-in-noise conditions, the global SNR was set to −5 dB,
based on the long-term RMS levels of the waveforms. In order to make the distri-
bution of the signal power visible, a hard clustering of signal power was generated
using the IBM method with a fixed criterion ε of 6 dB. To calculate the IBMs as
in Equation (2.3.15), the power spectral densities were calculated with a first-order
recursive smoothing technique. Hence, the power spectral density of the signal is
determined from:

φss(d, n) = αφss(d, n− 1) + (1− α)s(d, n)s∗(d, n). (2.3.16)

For the noise we have:

φvv(d, n) = αφvv(d, n− 1) + (1− α)v(d, n)v∗(d, n). (2.3.17)

The variable α = exp (−∆T/τ̆) is a smoothing constant that depends on the filter-
bank frame-shift ∆T and the time constant τ̆ . The parameter τ̆ is typically in the
range of 8 to 30 ms. In this experiment, τ̆ was set to 8 ms. Speech enhancement in
hearing aids benefits from such a recursive filtering, because it introduces no addi-
tional system delay.

Four noise conditions were created. The target speaker was a female speaker, and
the target signal was mixed with:

A a male speaker,
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B two male speakers,

C speech babble of a lively canteen,

D speech babble of a lively canteen with additional reverberation6 of RT = 0.4 s,
applied to the target signal using the mirror image source model software
(MISM) of Van Dorp Schuitman (2009).

Fig. 2.6 shows the resulting signal power distributions in the time-frequency plots as
well as the probability density functions (PDFs) of the local SNRs. The PDFs were
generated using time series of 15 s length. For each PDF, the standard deviation σ

and the mean µ were calculated. Additionally, PDF portions of bins with an ampli-
tude ratio of more than 2, hence, a local SNR greater than 6 dB, were calculated.

Figure 2.6 gives the results. Beginning with condition A, one finds a homogeneous
distribution around µ = −5 dB. Local and global SNR correspond in this condi-
tion. The standard deviation of σ = 18 dB indicates that the two signals occupy
different regions in the observed time-frequency plane. This conclusion is verified
by inspecting the IBM of condition A, in which target signal components cluster
around dominant signal portions. About one third of all bins hold a local SNR of
more than 6 dB.
If in condition B two speakers interfere at the global SNR of −5 dB, σ of the local
SNR decreases to 17 dB and µ shifts to −8 dB. Only one-fifth of the time-frequency
bins offer a local SNR ≥ 6 dB. Compared with condition A, the speech-in-noise
problem is more difficult, although both conditions can be characterized with the
same global SNR value.
In condition C, i.e. the babble background of a lively canteen at a global SNR of
−5 dB, σ decreases to 14 dB and indicates that the signals are no longer separated
in the observed time-frequency representation. Regions of high signal power appear
as sparsely scattered outliers in the IBM mask. The local SNR has a µ of −16 dB,
which reveals a difference of more than 10 dB in local SNR, as compared to condition
A. Only 8 % of the mix offers a local SNR of more than 6 dB.
Finally, condition D, which is equal to condition C apart from the fact that rever-
beration was applied to the target signal, shows a µ of −12 dB and a σ of 13 dB.
The reduction of the standard deviation is a result of the reverberation. As the
reverberated target signal is smoothed, its dynamic range decreases and the PDF of
the local SNR has a narrower distribution. Although µ increases—as compared to
condition C, only about one-tenth of the bins offer a local SNR greater than 6 dB.

Overall, the experiment describes a series of issues that have to be considered when
describing a particular speech-in-noise problem. First, single and coherent speech
interferers are generally well separated from the target signal in a time-frequency
representation. Consequently, these can be separated efficiently. Secondly, as the

6RT is the reverberation time. It is defined as the length of time for which the sound pressure
level attenuates to a relative value of −60 dB, after the driving sound source is switched off.
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Figure 2.6: Four speech-in-noise conditions, each mixed at a global SNR of −5 dB. The
first row shows IBM masks of the mixtures. A fixed mask criterion ε = 6 dB is chosen.
The bottom row shows the associated PDFs of the local SNRs (∆SNRl). In each plot the
cumulative probability for a local SNR greater than 6 dB, the PDF standard deviation, σ,
and the PDF mean, µ, are given.

background becomes more continuous, e.g. a white spectrum, the separability de-
creases and the local SNR substantially falls off relative to the global SNR. Hence,
the global SNR is a limited measure to describe the speech-in-noise problem. Fi-
nally, if reverberation is applied to the target signal, its dynamic range tends to
decrease. Consequently, the signals become evenly mixed, i.e. most time-frequency
bins share approximately equal signal portions. As a result, signal classification and
enhancement is complicated.

The problem of the long-term waveform-based SNR is well-known. The crest factor,
defined as o(ι) = max(|x(ι)|)/xRMS(ι), represents one physical solution to the prob-
lem by calculating the ratio of the maximum signal value to its RMS (Zwicker and
Zollner, 1987). Thereby a small o indicates a smooth signal and the transmission
of a constant power-rate, whereas a high o indicates a spiky signal and a varying
power transmission. As has been shown, a local SNR measure constitutes a better
criterion for assessing the speech-in-noise problem. At a later point in this work,
a segmental SNR measure (coarser than the local SNR), calculated across critical
bands and time-frames of 32 ms length will be used together with a measure of
speech intelligibility, to assess the algorithmic signal enhancement.
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With respect to the composition of different sound scenes in the present work, the
global SNR method will be adopted, despite its limited explanatory power of the
speech-in-noise problem. However, as mentioned, the global SNR calculation method
facilitates a comparison with other studies, for instance with the work of Nix and
Hohmann (2006) in the following chapter. Where possible throughout the assessment
in Chapter 5, the global SNR will be referred to an objective measure of speech in-
telligibility. It was shown by Miller (1947) that similar deviations as described above
between the local and the global SNR, exist between speech intelligibility and the
global SNR measure.

A term that has frequently been used in the previous experiment is separability of
signals in the time-frequency domain. If the signal are disjoint,7 the speech intel-
ligibility of the model hearing system is considerably supported by the possibility
of glimpsing in pauses, harmonic grouping as well as clustering across time and
frequency. The more complex the background gets, in the experiment above, go-
ing from condition A to condition D, the stronger the smearing of different signals
over the time-frequency atoms becomes. Based on an IBM mask, dominant signal
power was shown to disperse into a sparse cloud, under complex conditions, and no
clustering across neighboring bins was observed. Hence, in the STFT domain, the
disjointness assumption is generally only justified for two speakers. For the most
part, this condition is attributed to the high dynamic range and the compressive
representation that the dynamic range of each of the two speaker signals requires
(Barker et al., 2000). Mathematically, disjointness can be expressed for speaker
s(d, n) and speaker s�(d, n) as (Madhu, 2009b):

s(d, n)s�(d, n) ≈ 0 ∀� �= . (2.3.18)

In summary, this subsection presents a statistical experiment that illustrated two
important realities if speech intelligibility is to be enhanced. The general tempo-
ral waveform-based calculation method of the SNR offers little information on the
actual difficulty of the speech-in-noise problem. A better measure to describe the
complexity of a scene is the mean SNR at the local time-frequency bin scale. How-
ever, as will be shown later in this work, also the local SNR is not strictly correlated
with speech intelligibility.
The second important fact inferred from the experiment is the absence of signal
disjointness in the STFT domain in most real-world noise conditions. This substan-
tially complicates the estimation of the noise power at low SNRs in single channel
applications (Barker et al., 2000). It is one of the research questions of this work,
whether further signal decompositions, as e.g. an analysis of interaural disparities
of the binaural signal, allow for a robust signal classification, even in complex and
low SNR conditions.

As it was shown in the last two subsections, mask-based single-channel filtering in-

7Note the concept of disjointness is applicable to other domains. Later in this work, a statistical
analysis will be applied to study this property in the binaural time-frequency (centre frequencies)
and the binaural temporal centre and modulation frequency domain.
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troduces distortions, irrespective of whether the Wiener filter or the IBM method is
applied. Furthermore, these distortions increase if the noise power is estimated from
the mixture in real-world situations. Faulty gains in the masks result in the well-
known musical noise phenomenon. The next subsection deals with the attenuation
of this kind of distortion.

2.3.4 Cepstral smoothing of masks8

As stated before, the success of varying gain-filter functions, or mask approaches,
is subject to the quality of the estimation procedure of the signal and noise pow-
ers. When applying these varying gain-filter functions for noise suppression, musical
noise, or narrow-band bursts, of short duration are an inevitable consequence of
the filtering process (Breithaupt and Martin, 2008). Also, when masks are deter-
mined in multidimensional signal spaces, e.g. by using binaural cues, they remain
(often coarse) estimations of the underlying signals. Consequently, the introduction
of faulty gains is inherent in the procedure and has to be counteracted.
In particular, fluctuating noise and passages of low SNR lead to non-stationary ar-
tifacts that show a duration and a spectral width of mostly just one bin for musical
noise, and may sustain over a couple of bins, as frequently observed with babble
noise interference (Breithaupt and Martin, 2008).
A method for the attenuation of these artifacts without affecting the quality of the
filter in terms of signal distortion and noise suppression is a difficult problem. There
exist a handful of remedies, among which the noise flooring and an overestimation
of the noise power are the classical solutions (both methods are introduced in Chap-
ter 2.3.1). Another general method to circumvent the problem is to smooth the
mask along time and frequency. However, all these techniques have their shortcom-
ings. Noise-flooring and the overestimation of noise power lead to lower interference
suppression and signal distortion. Smoothing a mask in time and frequency deterio-
rates speech intelligibility, as the fine-structure of onsets and in consonants becomes
blurred by such means.

As a consequence, the suppression of musical noise artifacts is closely related with
the tradeoff between signal suppression and target distortion. A method to lessen
this interdependence was introduced by Breithaupt and Martin (2008) and Madhu
et al. (2008), who applied the cepstral shaping technique to the problem.

The basis for this solution is the observation that musical noise is fluctuating ran-
domly, with high frequencies in the spectrum, in contrast with the spectral speech
features of the vocal tract filter and the vocal cords. Thereby, the latter shows
a rather high spectral frequency too, i.e. the fundamental frequency, but no ran-
domness. Because of this difference, these signal components become separable in
the cepstral domain (Oppenheim and Schafer, 1975). With the definition of dif-

8The techniques related to the cepstrum are distinguished from spectrum methods by a set of
established anagrams, e.g. frequency becomes quefrency.
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ferent quefrency-regions in the cepstrum, which correspond to different features of
speech and noise, a time-based smoothing can be applied that preserves the speech-
components while suppressing musical noise. The method is explained below.

A typical mask that realizes a compromise between interference suppression and
target distortion can be expressed as:

M (d, n) =

�
1 if φss(d, n) > φvv(d, n)

Amin otherwise
, (2.3.19)

in which Amin determines the maximum suppression that is permitted. To modify
independently the component signals of the mask M (d, n) in the cepstral domain,
the multiplicative mixture in the spectral domain9 is first linearized with the appli-
cation of the logarithm function and subsequently transformed to the cepstrum by
an inverse DFT:

Mc(g, n) =
1

Nd

Nd−1�

d=0

{log
n

M (d, n)} ej2πd
g

Nd , (2.3.20)

where g = 0, 1, . . . , Nd − 1 denotes the quefrency-bin. At each quefrency coefficient
of the mask representation in the cepstrum, a first order recursive averaging of the
time index is applied with:

Mc(g, n) = αxMc(g, n− 1) + (1− αx)Mc(g, n). (2.3.21)

In here, four ranges are defined that cover the elemental parts of speech and musical
noise in the cepstral domain. Each cepstral range features a particular time constant
αx that accounts for the different component signals:

αx =






αloE if g ∈ {0, . . . , gloE}
αhiE if g ∈ {gloE + 1, . . . , ghiE}
αp if g ∈ {gp}
αn if g ∈ {ghiE + 1, . . . , Nd/2} \ {gp}

. (2.3.22)

The lowest range contains the slowly varying spectral broadband envelope of speech,
i.e. the formants with maxima at resonances of the vocal filter. Any smoothing de-
creases the SNR (the target speech is damped) and slurs the phonemes. Therefore
the preservation of these speech characteristics is crucial to speech intelligibility and
a smoothing constant αloE close to zero should be applied. The second range com-
prises the fluctuating envelope components in the speech spectrum, i.e. the voiced
fine-structure of the speech spectra, that is largely dominated by dynamic articu-
lators in speech sounds. Moreover, this quefrency range is a stage of increasingly

9For a multiplicative mixture of the target speech and the distortion in the frequency domain,
the signal model of this work in Figure 2.1 needs to be extended by convolutional distortion, which
is given through the room impulse response by which the target speech is convolved. This reality
has, however, been omitted in this work for a better readability.
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occurring musical noise artifacts. Consequently, the smoothing constant αhiE has
to constitute a compromise between preservation of detailed spectral speech fea-
tures and a suppression of musical noise. The third broad range carries, with high
probability, the random unwanted peaks that cause the musical noise phenomenon.
A smoothing constant αn close to one is applied in this cepstral region, to reduce
the variance of the gain function in low SNR sections. The pitch of speech also
resides in this range of higher quefrencies. Therefore it has to be excluded from
the high smoothing. Fortunately, the cepstrum offers a robust way of estimating
the pitch, by taking the maximum value in the cepstral range of the first harmonic,
i.e. gp ∈ {70 Hz . . . 500 Hz}. With the relation gp = fs/F0, the pitch quefrency is
calculated with:

gp = argmax
g

{Mc(g, n)|gp−low ≤ g ≤ gp−high} . (2.3.23)

Since the pitch is mainly present in voiced speech and cannot always be perfectly
determined with Equation (2.3.23), a small time constant αp is usually applied that
realizes a compromise between pitch-preservation and musical noise suppression.
After the cepstral smoothing, the signal is transformed back to the spectral domain
by calculating the DFT and by element-wise exponentiation:

M (d, n) = exp

�
Nd−1�

g=0

Mc(g, n)e
−j2πg d

Nd

�
, (2.3.24)

with d = 0, 1, . . . , Nd−1. Figure 2.7 illustrates a female utterance, the vowels of /a/,
/e/ and /i/, in the spectral and cepstral domain (for algorithmic details of the DFT
approach see below). An inspection at equal time-instances of the spectrum and

Figure 2.7: A female utterance of the vowels /a/, /e/ and /i/ in a spectrogram representation
(plot A). Plot B shows an amplitude spectrum thereof at the time instant of 0.1 s. Plot
C gives the referring cepstrogram and in plot D the amplitude of the cepstrum at the time
instant of 0.1 s.

the cepstrum shows clearly how the component signals are resolved in the cepstral
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domain after taking the logarithm of the spectrum and transformation to the cep-
strum. While the broadband envelope resides at the low quefrency end, the higher
quefrency bins feature the highly fluctuating spectral components of speech as well
as the pitch, which additionally shows to be well resolved. Furthermore, one can
observe that the main features of these vowels are sustained for a relative long time
span in the cepstrum, whereas high quefrency bins mainly show a noise-like pattern,
due to turbulence in the vocal tract (with the exception of the quasi-periodic exci-
tation of the vocal folds in the event of voiced speech). Consequently, smoothing in
that region should not have a vital impact on speech intelligibility.

In a second example, the influence of the four different smoothing constants on
the spectrum is analyzed. Therefore, again, the threefold female vowel utterance is
mixed at an SNR of 0 dB with the long-term spectrum of average male speech of
Dutch sentences taken from the TNO corpus (TNO, 2000). The signals were lowpass
filtered at 8 kHz and sampled at 16 kHz. 256 samples were segmented and Hanning-
windowed prior to a 512-point DFT. The window-overlap was 50 %. In order to
create a highly non-linear mask, an IBM was established with a fixed ε = 0 dB
(see Equation (2.3.15)). The local SNR was calculated from the true power spectral
densities according to Equation (2.3.16) and (2.3.17), with an α of 8 ms.
The cepstrum was partitioned in the following sections: the low envelope cepstrum
ranging from the 0th to the 5th quefrency-bin (gloE) and the high envelope cepstrum
from ranging the 6th to 15th quefrency bin (ghiE). The remainder comprised the
fine-structure.

The upper left-hand plot in Figure 2.8 shows the IBM. The dominating formant
regions stand out with a distinct pitch pattern that stretches throughout the entire
frequency range. Random peaks that produce musical noise are scattered sparsely
across the plot. If the high quefrencies are strongly smoothed (αn = 0.99, upper
middle plot in Figure 2.8), the random peaks disappear. However, also the fine-
structure of the signal is affected, indicating that the filter-source model of speech
production is not entirely separable in the cepstral domain. If only the pitch is
smoothed (αp = 0.99, upper right-hand plot in Fig. 2.8), a contrast enhancement
of the pitch can be observed throughout the frequency range, especially at changes
of the pitch. When smoothing the low quefrency bins, the low frequency envelope
is affected and strongly smoothed (αloE = 0.99, lower left-hand plot in Figure 2.8).
Regions that show a fine-structure, like onsets and spectral details, are less modified.
As can be seen in the lower middle plot of Figure 2.8, these regions are influenced
when higher quefrencies are smoothed (αhiE = 0.99). Finally an example is given
with a practically possible combination of filter coefficients (lower right-hand plot
in Figure 2.8) in the cepstral domain, which results in a signal with considerably
attenuated musical noise artifacts and a perceptually decreased target distortion.

As the cepstrum is calculated from the real-valued mask, a symmetrical spectral
function, the cepstrum itself is also real-valued and symmetrical. This simplifies
the processing and allows for exploitation of the symmetry property of the cep-
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Figure 2.8: An IBM (using a fixed mask criterion of ε = 0 dB) of a female utterance of the
vowels /a/, /e/ and /i/ in a spectrogram, shown in the upper left-hand plot. The speech
was mixed at an SNR of 0 dB with time-invariant long-term speech shaped noise of a male
voice. The remaining plots show the influence of cepstral smoothing at different quefrency
regions in the STFT domain (see titles).

stral coefficients among the negative and the positive quefrencies, i.e. if g > Nd/2:
Mc(g, n) = Mc(Nd − g, n). Care has to be taken with respect to the time constants
used in the estimation of the power spectral densities, as e.g. done in the Equations
(2.3.16) and (2.3.17). If the time constants are too high, the cepstral smoothing
operator becomes ineffective (Breithaupt and Martin, 2008). Although the cepstral
smoothing technique was applied with IBMs in the examples of this section, it is
equally applicable to linear and nonlinear soft-masks.
In Chapter 5.3, the cepstral smoothing constants will be optimized in terms of speech
intelligibility for a set of direct DFT-IDFT implementations. The aim is to apply
the cepstral smoothing technique at the output of the combined speech enhance-
ment scheme, thereby increasing the output quality without a reduction of speech
intelligibility.
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2.4 Binaural CASA speech processors

This section introduces three speech enhancement processors that computationally
replicate different functional models of the binaural auditory scene analysis (i.e.
CASA). This section describes the basic algorithmic procedures and serves as a
preparation for the following chapters, in which the CASA processors are applied
downstream of several beamforming front-ends, analyzed in a statistical study, op-
timized and eventually assessed throughout a suite of noise conditions.

To date, many of the functions, as opposed to the underlying functionalities, of the
auditory system are understood (Adamy et al., 2003). When examining the audi-
tory system as a whole, a first functional classification may separate the lower neural
stages in the brainstem and the midbrain, from the higher stages of the auditory
cortex in the outer layer of the cerebrum. The principal function of the lower neural
stages is the establishment of an inner representation of the auditory scene via an
analysis of auditory cues. Four neural nuclei perform this task with neurons that
each respond to specific characteristics of the acoustic stimulus. Thereby the nuclei
contribute to a continuously updated multidimensional feature space.

With respect to the capability of the auditory system to tune into a single source
amid many sources, it is widely accepted that conscious choice combines bottom-up
grouping cues and top-down hypotheses by means of a temporal correlation of re-
sponse patterns along the auditory path (Brown and Wang, 2006). This mode of
operation is referred to as the binding process, an active grouping process, which is
accomplished via downward nerves from the auditory cortex. Hence, an alternat-
ing manner of listening—signal-based and hypothesis-driven—forms the auditory
system. It is the fastest sense and it draws its excellence from its evolutionary im-
portance as an alarm system to most of the vertebrates.

Although much of the auditory functions can be modeled based in offline simula-
tions, for hearing aids only the CASA-based lower neural stages, i.e. the signal-based
processes of the auditory scene analysis, just start to become manageable in real-
time applications with today’s technological possibilities. Despite the computational
complexity to model speech patterns as top-down processes, as it is for instance per-
formed in automatic speech recognition, those phoneme or sub-phoneme patterns
are difficult (if not impossible) to establish in real-time applications. The reason for
this shortcoming is for the most part imposed by the coarticulation phenomenon,
which describes that an instantaneous representation of speech on the sub-phoneme
level is influenced by the preceding and the following phoneme (Moore, 2003). That
is, pattern recognition needs to be retrieved from longer time spans and can possibly
not be accomplished in low-delay applications. Hence, in addition to the fact that
target patterns are deteriorated and altered by the superposition with interfering
sounds, a speech recognition top-down solution turns out to be insolvable for real-
time based sound separation approaches.
In consideration of these restrictions and challenges, it is unlikely that CASA-based
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speech processors might soon achieve human performance. Moreover, the objective
of CASA-based speech enhancement processors is the reconstruction of the wave-
form of the target speaker. The approach of the model hearing process, however,
is to transform the acoustic input into neural response patterns and to bind these
into streams. As Ellis (2006) has pointed out, this represents a fundamental differ-
ence and obviously offers a much better noise-handling. Despite the difficulty of the
speech enhancement approach, a set of binaural CASA processors has been devel-
oped that proves to solve the speech-in-noise problem (Wang and Brown, 2006).

As already described in the introduction, this cannot be regarded as a matter of
course. Compared to single-channel approaches, which generally fail to generate
a speech intelligibility benefit (Hu and Loizou, 2007), also binaural CASA-based
speech processors turned out to enhance speech intelligibility only under specific
conditions.

When reviewing variants of binaural CASA speech processors, three basic designs
can be found (Peissig, 1992; Wittkop et al., 1997). One frequently applied system
originates from the binaural algorithm of Gaik and Lindemann (1986), in the fol-
lowing referred to as the carrier-level-phase (CLP) algorithm. This speech processor
accomplishes a bilateral frequency decomposition and subsequently calculates the
interaural phase and level differences (IPD and ILD, respectively) of the acoustic
waveform, to employ these parameters as a directional classifier in an amplitude
weighted separation process. The CLP algorithm can be considered an implementa-
tion of the coincidence model of Jeffress (1948), which first explained the binaural
processing observed in subjective tests.
A second group of binaural CASA algorithms adopts the concept of the multi-channel
spatial coherence algorithm of Allen et al. (1977), hereafter referred to as the carrier-
coherence (CC) algorithm. Based on primitive grouping, this algorithm exploits the
binaural waveform coherence at zero lag, to suppress diffuse sound.
A third well-known binaural CASA algorithm filters the signal in a joint centre and
modulation frequency domain and was developed by Kollmeier and Koch (1994);
in the following referred to as the envelope-level-time (ELT) algorithm. Herein the
separation process is based on the level and time differences of the binaural envelope
signal in the range of the fundamental frequency of speech. As the envelope of the
signal was considered to be more robust towards noise than the acoustic waveform,
this algorithm triggered much hope for an efficient speech enhancement in highly
adverse conditions, at the time of its development.
All these algorithms offer a binaural output, which is known to add to the audiolog-
ical benefit based on a cue-supported hearing.

Although based on the principles of the before mentioned basic binaural processors,
there are many variants of these algorithms. Kollmeier et al. (1993) combined the
coherence and the coincidence method in one processor. Their approach was revised
and extended by Wittkop and Hohmann (2003) to improve speech quality. Albani
et al. (1996) combined the principles of algorithm CLP with a lookup table of bin-
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aural cues for incidence directions across the upper hemisphere. This lookup table is
based on the principles of neural response patterns of binaural cues, originally found
in the barn owl (Brainard et al., 1992). The algorithm incorporates the natural cone-
of-confusion artifact,10 a way to overcome it by an across-frequency interaction, and
a mechanism for the facilitation to dominant percepts.
What most of these algorithms did not account for was the altered nature of binaural
cues in the presence of noise. Rather, many algorithms use a reference lookup table
of binaural cues, recorded for a set of directions in anechoic conditions. An exception
is the algorithm of Gaik and Lindemann (1986), which uses a lookup table of bin-
aural cues that has been recorded in the presence of noise. A further advancement
was presented with the cocktail-party processor11 of Bodden (1993), using the same
core algorithm, i.e. algorithm CLP. The algorithm incorporates the adaptation to
HRTFs, contralateral inhibition as well as the precedence effect model, to estimate
a Wiener filter.
Roman et al. (2003) developed a binaural cocktail-party processor that uses a maxi-
mum a posterior (MAP) classifier for estimating a binary mask. Harding et al. (2005)
further developed this method by employing a posteriori statistics in the classifica-
tion process for estimating a soft-mask. Their approach, also based on algorithm
CLP, was deemed a front-end in automatic speech recognition. Nix (2005) and Nix
and Hohmann (2006) applied a MAP classification approach to CASA-based local-
ization, using the framework of algorithm CLP. In addition, Nix (2005) proposed a
statistical non-Gaussian multidimensional source separation method which draws on
the localization of sources and the dynamical spectro-temporal evolution of speech.
Compared to previous approaches that simulate primitive grouping, these algorithms
introduced the principles of schema-driven source segregation to CASA, by employ-
ing the knowledge of patterns.12 Therefore, the incorporation of patterns of binaural
cues can be understood as an attempt to mimic the binaural top-down processing.
As recently proposed by Blauert (2011) and Kolossa (2011), if the ultimate goal of
CASA is to achieve human performance, future CASA algorithms need to include
more sophisticated models of top-down processes.
Multi-layered bottom-up CASA processors that combine binaural and monaural cues
were proposed by Woods et al. (1996), Woodruff et al. (2010) and Weiss et al. (2011).
Recently, as an alternative to the common Jeffress-model, Li et al. (2011) proposed a
speech enhancement model based on the equalization-cancellation model of Durlach
(1960). There are also algorithms that explicitly, as opposed to the implicit approach
of algorithm CC, simulate the precedence effect,13 e.g as proposed by Martin (1997).

10The cone of common IPDs and ILDs around the cranical axis is known as the cone-of-confusion
artifact. The ambiguity resolves for broadband sounds.

11Often binaural CASA speech processors are referred to as ‘cocktail-party processors’. A term
that was initially established by Cherry (1953) to describe the human ability of listening to a
speaker in noisy surroundings.

12The ASA processes of ‘primitive grouping’ and ‘schema-driven segregation’ are studied in
(Bregman, 1990, p. 395 ff.)

13The precedence effect describes the psycho-acoustic phenomenon in which sounds gain a dom-
inant perceptual localization cue if these are associated with the first wavefront (Blauert, 1997).
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These approaches showed to be mainly capable of the localization of transients (Op-
dam, 2010), rather than generating a speech intelligibility enhancement.

In this work we present a conceptual study of the three principal binaural speech
processors, i.e. he algorithms CC, CLP and ELT, with and without a beamforming
front-end. A similar approach can be found in Wittkop et al. (1997), who compared
the algorithm of Kollmeier et al. (1993), which is a combination of algorithm CC
and CLP, with the algorithm of Kollmeier and Koch (1994), hence algorithm ELT in
the present work, in a listening test. Despite the important result that confirmed an
audiological success for normal hearing and hearing impaired people under specific
conditions, Wittkop’s review and analysis of binaural speech processors did not in-
clude a beamforming front-end and presented mainly a hands-on approach, with few
algorithmic details, for a small set of speech-in-noise conditions. Moreover, the com-
bined application of algorithm CC and CLP in Wittkop’s study was not supported
by a thorough analysis of the benefit given by each of the underlying processing
schemes. In addition, new algorithmic insights, as well as new statistical approaches
that had arisen in recent years to classify binaural cues in noise, suggest that bin-
aural CASA algorithms need to be revised.
In the following, the algorithmic frameworks of the three binaural speech processors
are introduced. Figure 2.9 juxtaposes the schemes. During the study of this work,
the initial conceptual designs of Gaik and Lindemann (1986); Allen et al. (1977) and
Kollmeier and Koch (1994) were looked at. With respect to the implementation,
the sampling frequency of each algorithm was 16 kHz. Algorithm ELT, using a
sampling of 16 kHz in the time domain, deviates in terms of frequency transfer be-
cause it offers an internal bandpass sampling frequency of only 8 kHz, which implies
that the temporal Nyquist frequency was limited to 4 kHz. However, considering
speech intelligibility, a frequency limitation of this degree does not result in a dis-
tinct disadvantage with respect to the other algorithms, which is a requirement for a
comparative study. To account for the non-stationarity and non-whiteness of speech
signals, each algorithm uses a direct DFT-IDFT analysis-synthesis approach with
Hanning-weighted frames of 16 ms length and an overlap of 50 %.14 Throughout
this work, the target source location is limited to the frontal direction.
This chapter exclusively presents the basic working principles of each algorithm. It
does not introduce the pattern-based classification, nor the optimization of the algo-
rithmic parameters, which will be presented in Chapters 3.3.3 and 5.2, respectively.
Besides, it should be emphasized that algorithm CC is based on the standard prim-
itive grouping scheme, using the non-directional magnitude squared coherence at
zero lag, as a noise classifier. Hence, only algorithm ELT and CLP will be extended
by a pattern-based classifier.

14See Appendix A.2 for a definition of the DFT-IDFT filterbank approach.
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2.4.1 Algorithm CC

It is one of the capabilities of the auditory system to suppress reverberation and dif-
fuse noise, presumably through a physiological decorrelation process and the head
shadow effect. It was found that reverberation has a severe impact on monaural de-
tection thresholds and a less severe impact on binaural detection thresholds, which
results in a significant binaural advantage when listening with two ears (Brown and
Palomaki, 2006).
The perception of reverberation on stimuli observed in experiments can be modeled
by the normalized spatial correlation function, i.e. the coherence, which extends the
interaural correlation process to the phenomenon of the precedence effect (Faller and
Merimaa, 2004).
The maximum of the normalized correlation function signifies the coherence between
the signals and results in a value between zero and one. Consequently, if the signals
are highly coherent, the value of the coherence function is tending towards one. Re-
verberation and diffuse sound are generally indicated by a low correlation between
the left and right ear signal and therefore can be identified with a low binaural
waveform coherence value. Thereby, the coherence function shows a main lobe with
a maximum that depends on the spatial displacement of the sound source. The
width of its main lobe is inversely proportional to the distance between the micro-
phones (or ears) and the diffuseness of the sound field. In order to perform speech
enhancement, Allen et al. (1977) selected the latter characteristic of the coherence
and applied it as a gain function that distinguishes between coherent and incoherent
signal portions, with the aim to improve speech quality. Their approach represents
the conceptual basis of the speech processor CC in this work.
Unfortunately, the multi-channel coherence function has a dependency on a set of
factors that impede their applicability. These are mainly the distance between the
microphones, i.e. a dependency on the wavelength of the sound, and the distance
towards the target speaker in relation to the reverberation radius.15

For two omni-directional receivers in an ideal diffuse sound field, the absolute mag-
nitude spatial coherence can be expressed as:

∆γ(f, l) =

����
sin(kl)

kl

���� , (2.4.25)

with k = 2πf/c being the wave number, c is the speed of sound and l is the distance
between the receivers. The function has a first zero at f = c/2l. As a result, the
coherence function can only be used as a meaningful agent for the differentiation be-
tween coherent and incoherent signal portions if the distance between the receivers

15The reverberation radius describes the distance around a source, at which direct sound and
reverberated sound have equal energy. With the assumption of a perfect diffuse reverberation

field, it can be calculated with: rRT = 0.1
�

V
πRT , where V is the volume of the room and RT the

reverberation time.
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and the frequency are sufficiently high. In addition and as above-mentioned, co-
herent signals should be tending towards one in order to be detected as the target
signal. Therefore, a target speaker should ideally be located within the reverberation
radius. A certain direct-to-reverberation ratio, however, always constitutes a certain
amount of decorrelation and, moreover, reverberation acts on the direct speech too.

In order to improve the direct-to-reverberation ratio, Martin (2001) suggests the
combination of the coherence-based post-filter with directional microphones. Based
on measurements with an artificial head, Jeub et al. (2009) showed that binaural
impulse responses expand the coherence function with respect to a free-field mea-
surement due to the head shadow effect. Consequently, the coherence function is
applicable at lower frequencies. A performance improvement of algorithm CC by
about 1 dB when using binaural impulse responses instead of free-field impulse re-
sponses was demonstrated in the attenuation of reverberation.

As the algorithms, which are considered here, are designed to enhance a speaker
in the frontal direction, the estimated spectral power densities in both channels as
well as the cross power spectral density are directly used to calculate the coherence
function at zero lag. If xl(d, n) denotes the input of the left channel and xr(d, n)
denotes the right channel in the STFT domain, the spectral power density estimates
can be calculated with the previously introduced first-order recursive smoothing of
the STFT signals:

φll(d, n) = αγφll(d, n− 1) + (1− αγ)|xl(d, n)|2, (2.4.26)

φrr(d, n) = αγφrr(d, n− 1) + (1− αγ)|xr(d, n)|2, (2.4.27)

φlr(d, n) = αγφlr(d, n− 1) + (1− αγ)xl(d, n)x
∗
r
(d, n), (2.4.28)

in which ∗ and αγ are the complex conjugate operator and the integration constant
for estimating the density functions, respectively. From these spectral power density
estimations, the normalized absolute magnitude coherence at zero lag is calculated
as:

∆γ(d, n) =
|φlr(d, n)|�

φll(d, n)φrr(d, n)
. (2.4.29)

The function ∆γ(d, n) can directly be multiplied with the modulus of the left and
right STFT signal, to enhance coherent target speech (preferably) from the front in
a diffuse sound field. In algorithm CC the square of the coherence function in Equa-
tion (2.4.29) is calculated, ∆γ2(d, n), which is the well-known magnitude squared
coherence (MSC) function.

As the benefit of the algorithm across many different conditions can be improved by
an empirical adaption processes, a set of algorithmic parameters is introduced. The
parameters of algorithm CC are given in Table 2.1.
Therein the parameters Amin, e and dx denote the maximum suppression of the
magnitude of the STFT bins, the compression or expansion of the weighting func-
tion, i.e. of the MSC function, and a lower cutoff frequency bin for applying the
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Table 2.1: Parameters and parameter ranges of algorithm CC.

fixed parameters
fs Nχ (analysis window size) Nd (DFT size) ∆T (overlap)

16 kHz 256 bin (16 ms) 512 bin 128 bin (8 ms)

algorithmic parameters
Amin e αγ dx

0.01 - 0.5 0.5 - 3 0.01 - 0.9 0.1 - 7 kHz

coherence function, respectively. Parameter dx is introduced to limit the influence
of a coherence-based weighting at low frequencies, where the coherence function is
broadened and, as before mentioned, a weak agent for interference suppression. In
Chapter 5.2, these algorithmic parameters are tuned in specific speech-in-noise con-
ditions to attain optimal speech intelligibility.

Using a particular parameter set, the magnitude weighting function of algorithm CC
is calculated with:

Mcc(d, n) =

�
1 if d < dx

max
�
∆γ2(d, n), Amin

�e
if d ∈ {dx, . . . , Nd/2}

, (2.4.30)

and multiplied with the magnitude of the STFT representation of the left and right
channel signal, as sketched in Fig. 2.9. The filtered signal is transformed back to
the time domain with the IDFT and an overlap-add technique. The original STFT
phase is left unchanged throughout the filtering process.

The MSC, calculated with the fixed parameters in Table 2.1, is analyzed in Fig-
ure 2.10. The upper row of plots shows the influence of the smoothing constant
αγ = exp (−∆T/τ̆) with different values for τ̆ for a canteen and a workshop back-
ground over a duration of 20 s. See Chapter 3.2 for a description of the sound
material. The results are compared to the theoretical MSC in an ideal diffuse noise
field, i.e. the square of Equation (2.4.25) with l = 20 cm.
The importance for averaging the magnitude squared normalized cross-power density
for inferring the coherence can be seen. Due to the practical existence of stochas-
tic signals in the left and the right channel per STFT atom, an MSC based on a
short sample mean does not represent the amount of linear relationship between
the channels. It rather tends to one because of the approximate instantaneous en-
ergy correspondence in the numerator and denominator of Equation (2.4.29). For
this reason an MSC close to 1/2 is observed if τ̆ is as short as 8 ms, although the
sound field is highly diffuse. Only if an averaging over several bins is performed, the
coherence converges towards the theoretical quantities of a diffuse noise field. For
a practical application of algorithm CC, the averaging of the coherence, however,
must not be too long, as this will slur transients in speech when applied in the STFT
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Figure 2.10: Application examples of algorithm CC are presented using the binaural im-
pulse responses of the Aachen head. The first row of plots gives the MSC over frequency
of different spatial scenes at different time constants (αγ = exp (−∆T/τ̆)) for averaging
the magnitude squared normalized cross-power density. The results are compared to the
theoretical MSC in an ideal diffuse noise field, i.e. the square of Equation (2.4.25) with
l = 20 cm. The second row of plots gives the MSC of speakers in frontal direction at an
SNR of 60 dB in a diffuse sound field. The middle plot at the bottom shows the MSC when
the same speakers are located at 90 deg. The right-hand plot at the bottom shows the MSC
of artificially reverberated speech at frontal position with an RT of 0.8 s.

weighting process.
The left-hand plot at the bottom of Figure 2.10 shows the MSC over frequency for
coherent speech of a male and a female speaker for a duration of 20 s. A high value
of the coherence is attained throughout the entire spectrum. The middle plot at the
bottom of Figure 2.10 shows the inability of algorithm CC to distinguish frontal from
lateral sources with an MSC calculated at zero lag. Hence, also for lateral sources
at 90 deg the MSC remains close to one. The right-hand plot at the bottom of
Figure 2.10 shows the influence of artificial reverberation (RT = 0.8 s, rRT = 0.6 m,
distance of the speaker 1 m) acting on the direct speech from frontal direction. The
coherence is severely decreased and the contrast between target and diffuse noise is
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weakened.

Today the approach of Allen et al. (1977) forms the basis of numerous speech pro-
cessors. For instance, coherence-based filters are applied in speech enhancement
for voice intercom systems (Martin, 2001) and binaural noise suppression systems
(Dörbecker and Ernst, 1996; Lotter and Vary, 2006; Rohdenburg, 2008). As an alter-
native to a joint gain function for the left and right channel, Wittkop and Hohmann
(2003) introduced separate coherence-based magnitude gain factors, which are cal-
culated from a binaural input. However, due to the complexity of their algorithm, it
offers three combined schemes of speech enhancement as well as a scene analyzer, it
is not directly clear whether this approach offers advantages over the here presented
method.

2.4.2 Algorithm CLP

Localization and intelligibility are closely related (Stern et al., 2006). This observa-
tion was made with concurrently active speakers, generally, such that correct local-
ization implies correct understanding. The auditory system is remarkably sensitive
to changes of interaural parameters. For pure tones, humans are able to discrimi-
nate ITDs with just noticeable differences (JNDs) of 10 µs, and JNDs of ILDs are at
1 dB. The angular resolution for speech-like sounds is 5 deg in the median plane and
reduces to 20 deg in lateral directions. Clicks on the contrary can be localized with
a difference of 1 deg in the frontal direction and about 5 deg in lateral directions
(Stern et al., 2006).

As previously mentioned, the coincidence model of Jeffress (1948) accounts for many
of the phenomena that are associated with binaural processing. The model spans a
two-dimensional space, with one axis formed by the centre frequencies, the tonotopic
axis, and the neural coincidence detectors of spatial displacement, forming the other
axis.
In the following, the model is implemented with a cross correlation function per
centre frequency bin. Therefore, subsequent to the estimation of the cross power
spectral density representation of the signals, as in Equation (2.4.28),16 interaural
disparity based on IPDs can be calculated in the standard way:

∆ϕ(d, n) = arg(φlr(d, n)). (2.4.31)

The ILDs are computed from the left and right auto power spectral density repre-
sentations of Equation (2.4.26) and (2.4.27):17

∆L(d, n) = 10 log
10

�
φll(d, n)

φrr(d, n)

�
. (2.4.32)

16Note Equation (2.4.28) changes for algorithm CLP, such that αγ is replaced with αPSD.
17Note Equations (2.4.26) and (2.4.27) change for algorithm CLP, such that αγ is replaced with

αPSD.
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The calculation of the final weighting function Mclp(d, n) follows a series of steps.
Again, several algorithmic parameters are introduced to adapt the processing of the
binaural algorithm to different scenes. First, a raw weighting function M �

clp
(d, n) is

computed for the suppression of time-frequency bins that show IPDs and ILDs which
deviate from the frontal direction. In addition, if one of the binaural parameters
fails as a classifier in a certain centre frequencies range, the classification with that
cue is restricted by an adjustable weighting function to its efficient working range.
Therefore, M �

clp
(d, n) is based on the following definition:

M �
clp

(d, n) =






M∆ϕ(d, n) if d ∈ {0, . . . ,min[dxϕ, dxL]− 1}
(1− ξ)M∆L(d, n) . . .

+ ξM∆ϕ(d, n) if dxL ≤ dxϕ ∩ d ∈ {dxL, . . . , dxϕ}
1 if dxL > dxϕ ∩ d ∈ {dxϕ, . . . , dxL}
M∆L(d, n) if d ∈ {max[dxϕ, dxL] + 1, . . . , Nd/2}.

(2.4.33)
Therein M∆L and M∆ϕ represent soft-masks of the ILD cue and the IPD cue, respec-
tively. These soft-masks are based on the a posteriori probability p that the signal
at a certain time-frequency atom in the STFT domain is generated by the target.
For instance, the soft-mask M∆L is computed with:

M∆L(d, n) = p(θt|∆L(d, n)), (2.4.34)

in which θt is the direction of the target signal. The soft-mask M∆ϕ is calculated
analogously. The computation of the a posteriori lookup tables is presented in
Chapter 3.3.3.
As it has been formalized in Equation (2.4.33), prior to the composition of the raw
weighting function, the soft-masks M∆L and M∆ϕ are restricted to specific frequency
ranges. The crossover frequencies dxL and dxϕ are tuning parameters of the algorithm
and allow for full overlap, a partition of the IPD at low frequencies and ILD at high
frequencies, and no overlap.18 Furthermore, in case when dxL ≤ d ≤ dxϕ, the
soft-masks are balanced with the parameter ξ. Using this variable assemblage of the
soft-masks, the CLP algorithm can be optimized with respect to the efficient domain
of each binaural cue and their weighted combination.

The weighting function Mclp(d, n) in Figure 2.9 is then calculated as:

Mclp(d, n) = max
�
(M �

clp
(d, n))e, Amin

�
, (2.4.35)

whereby the raw weighting function M �
clp

(d, n) is compressed or expanded with the
exponent e and lower bounded with Amin. Subsequently, Mclp(d, n) is multiplied
with the modulus of the original STFT signal in both channels. The original STFT
phase is left unchanged throughout the filtering process. In a last step, the filtered

18At around 1.5 kHz the ILD and IPD of the fine-structure of the waveform are unstable,
often equivocal, cues. As a consequence a unity gain weighting in this frequency range might be
advantageous for attaining a speech intelligibility gain.
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Table 2.2: Parameters and parameter ranges of algorithm CLP. �hist determines the main-
lobe of the algorithm. A description of this parameter is given in Chapter 3.3.3.

fixed parameters
fs Nχ Nd ∆T αPSD

16 kHz 256 bin (16 ms) 512 bins 128 bins (8 ms) 0.36 (τ̆ = 8 ms)

algorithmic parameters
dxL dxϕ [nL nL] [nϕ nϕ] �hist ξ Amin e

0 - Nd/2 0 - Nd/2 1 - 10 1 - 10 1 - 5 0 - 1 0.01 - 0.5 0.5 - 2

signals are transformed back to the time domain with the IDFT and a following
overlap-add technique.

The parameters of the algorithm CLP are outlined in Table 2.2. In order to improve
the performance further, three algorithmic parameters are introduced to modify the
raw weighting function. These are the bin sizes of sub matrixes (nL by nL for the
ILD values and nϕ by nϕ for the IPD) that are used to cluster adjacent bins in the
binaural domains with a smoothing process. This approach has been suggested in
Peissig (1992). A third parameter is introduced, �hist, to control the width of the
main lobe, in analogy to beamformers, of the binaural spatial filter. A description of
this parameter, which controls the a posteriori lookup table as well as the subsequent
optimization of parameters, is given in Chapter 3.3.3.

Algorithm CLP can be regarded as the classical binaural processor of time-frequency
masking. The speech processor has shown to work efficiently if the interferers are
disjoint in the time-frequency representation (Peissig, 1992). The performance, how-
ever, declines in diffuse noise fields, in the presence of reverberation and towards neg-
ative SNRs. For that reason, algorithm CLP does generally not have the capability
to unravel a target speaker from interference in diffuse sound fields. Nevertheless,
the algorithm can be considered a suitable candidate for speech enhancement in
many situations, in particular as it allows for a pattern-driven classification and,
hence, a high degree of plasticity towards many different conditions.

2.4.3 Algorithm ELT

In explaining the auditory deficiency of a mere binaural temporal disparity-based dis-
crimination of continuous sounds, Stern et al. (2006) refer to psycho-acoustical tests,
which show that identification according to interaural time difference (or equivalently
phase differences) can be easily achieved by modulating the stimuli with modula-
tion frequencies typically found in speech, i.e. from the articulation rate to pitch
frequencies. For this reason, it is assumed that concurrent speakers are grouped
with respect to the combination of modulation frequency and interaural temporal
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disparity.
For one part, this finding corresponds to the psycho-acoustical phenomenon of the
co-modulation masking release, which describes that signal detection can be im-
proved in masking experiments, if the envelope of the masker is modulated and this
modulation is coherent or correlated across different frequency bands (Moore, 2003).
The observation of Stern et al. (2006) is also supported by physiological findings,
which provide evidence of neurons that are tuned to modulation frequencies, and
which are supposedly organized perpendicularly to the mapping (hence, indepen-
dent) of centre frequencies, i.e. the tonotopic neural coding (Kollmeier and Koch,
1994).

Several monaural speech processors have been developed that mimic the auditory
modulation-based grouping of speech mixtures (Hu and Wang, 2004; Schimmel et al.,
2007). Based on a different concept, but still, predominantly based on modulation
perception, Mesgarani et al. (2004) developed a noise suppression algorithm which
simulates spectro-temporal response fields (STRFs) of the auditory cortex. The al-
gorithm performs a filtering at spectro-temporal modulations of less than 32 Hz,
which allows a flexible auditory pattern analysis in speech enhancement. In subjec-
tive evaluation the algorithm demonstrated an improvement of signal quality over a
noise estimation-driven Wiener filter approach.

Based on physiological and psycho-acoustical models of the lower neural stages of
the auditory apparatus, Kollmeier and Koch (1994) combined the two-dimensional
representation of centre and modulation frequencies, those in the range of pitch
frequencies, i.e. up to 400 Hz, with a model of binaural interaction. The algo-
rithm performs interference suppression based on binaural cues of the envelope at
different modulation frequencies; it was introduced as algorithm ELT in this work
and is schematically depicted in Figure 2.9. As can be seen, the main difference of
this algorithm to the algorithms CC and CLP is a location-based separation using
the binaural envelope signal in the centre and modulation frequency domain. Two
weighting functions, M ff

elt
and M ft

elt
, are subsequently calculated, in which the latter

is to be used as a magnitude-based weighting in the two channel STFT signal.

As such an integral expression converges slowly (Hartmann, 1997), The algorithm
starts with a decomposition of the signals into complex bandpass representations by
a DFT (length Nd in Table 2.3) over Hanning-weighted analysis windows (length
Nχ in Table 2.3). The analysis windows overlap by 0.125 ms, which results in a
sampling frequency of the complex bandpass signal of 8 kHz. To avoid aliasing in
the newly time-sampled bandpass representation, the signal is only processed up to
the Nyquist-frequency of 4 kHz. Additionally, a low-pass filter with a fourth order
FIR filter is applied to the complex band-pass time series with a cutoff frequency
of 3.6 kHz, in order to limit the frequency of the envelope estimates. No delay is
introduced with this filter by using the MATLAB (The MathWorks TM) function
filtfilt.m.

Subsequently, the envelope of the bandpass signal, e.g. for the left side E{xl(d, n)},
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is extracted using the Fourier transform. In the present implementation of algorithm
ELT, a window-wise 512-point DFT/IDFT analysis/synthesis approach across n is
calculated using a Hanning window of 128 bins, by which the bandpass signal is
weighted, and an appended array of 384 bins of zero amplitude, see Appendix A.2.
Having the signal transformed with the DFT, the negative frequency components
are set to zero. Subsequently, the IDFT is taken and the absolute value is computed.
The result is multiplied by a factor of two in order to arrive at an approximation
of E{xl(d, n)}. The method is similar to the envelope extraction with the Hilbert
transform from real-valued signals (Hartmann, 1997).

As a means to transform the signal in the centre and modulation frequency domain,
the envelope in the STFT domain is first frame-wise weighted (in temporal direction)
with a vector χ̊(n) that consists of a Hanning window of length Nχ̊ and an appended
array of Ndd −Nχ̊ zeros. Subsequently, the modulation spectrum is computed with
a DFT of length Ndd:

x̊l(d,m, o) =
Ndd−1�

n=0

χ̊(n)E{xl(d, o∆T̊ + n)}e−j2πn m
Ndd , (2.4.36)

where m = 0, 1, . . . , Ndd−1, o and ∆T̊ are the modulation frequency coefficient, the
frame index and the frame shift, respectively. See Table 2.3 for the details of the
present implementation of algorithm ELT. Note that ∆T̊ , which also specifies the
order of the system delay of algorithm ELT, is as short as 8 ms. In accordance with
the implementation of Kollmeier and Koch (1994), the resulting complex modulation
spectrum beyond 400 Hz (corresponding tom > 27) is discarded in the following cue-
based filtering process. In the inverse transform, the modulation spectrum m > 27
is retained unaltered.

The estimated modulation spectral auto and cross power spectral densities (MPSD)
are computed using the standard first-order recursive averaging method:

φ̊ll(d,m, o) = α̊φ̊ll(d,m, o− 1) + (1− α̊)|̊xl(d,m, o)|2, (2.4.37)

φ̊rr(d,m, o) = α̊φ̊rr(d,m, o− 1) + (1− α̊)|̊xr(d,m, o)|2, (2.4.38)

φ̊lr(d,m, o) = α̊φ̊lr(d,m, o− 1) + (1− α̊)̊xl(d,m, o)̊x∗
r
(d,m, o), (2.4.39)

and α̊ = exp(−∆T̊ /τ̆), where the time constant has been set to 8 ms.

Based on the MPSD representation in the left and right channel, the interaural phase
and level differences can be calculated as:

∆ϕ̊(d,m, o) = arg(φ̊lr(d,m, o)) (2.4.40)

and:

∆L̊(d,m, o) = 10 log
10

�
φ̊ll(d,m, o)

φ̊rr(d,m, o)

�
, (2.4.41)
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respectively. As opposed to the implementation of Kollmeier and Koch (1994) in
which the IPD was employed for the noise suppression task, in this work the related
ITD:

∆t̊(d,m, o) =
∆ϕ̊(d,m, o)

2πm
(2.4.42)

is applied.19 As it is shown in Chapter 3.3.2, ITDs of low modulation frequen-
cies are a better indicator in the source separation process than the corresponding
IPDs. Subsequently, the binaural representations of ∆L̊(d,m, o) (i.e., ∆L̃(d,m, o),
see footnote) and ∆t̊(d,m, o) are averaged with an adjustable sub matrix of [nL nL]
and [nt nt] bins, respectively. Hence, similar to the implementation of algorithm
CLP, a simple method of clustering, or in terms of ASA a primitive grouping, due
to the proximity along the tonotopic and periodotopic, i.e. modulation frequency,
dimensions is allowed.

Hereafter, the DFT coefficients and the frame index of the masks are omitted for
notational convenience.

As it was proposed by Kollmeier and Koch (1994), the robustness of the algorithm
can be improved by identifying unreliable ITD and ILD values by calculating the
standard-deviations σt and σL, respectively, across a sliding sub matrix of centre
and modulation frequencies of five by five bins (i.e., parameters nσt and nσL in
Table 2.3). The approach is adopted, by which two masks, one for the standard
deviation of the ILD values, denoted MσL and one of the ITD values, denoted Mσt,
are calculated as:

MσL =






1 if σL < 0.6 dB

(3.5− σL)/2.9 if 0.6 dB ≤ σL ≤ 3.5 dB

0 if σL > 3.5 dB

(2.4.43)

and

Mσt =






1 if σt < 0.6 ms

(3.5− σt)/2.9 if 0.6 ms ≤ σt ≤ 3.5 ms

0 if σt > 3.5 ms.

(2.4.44)

The probability-based soft-masks of the directional classifiers, i.e. M∆L and M∆t,
are calculated in the same way as shown for algorithm CLP in Equation (2.4.34),
however, using the respective lookup tables of the ELT algorithm. The computation
of the a posteriori lookup tables is presented in Chapter 3.3.3. These masks are
then averaged with the concomitant sub matrixes [nL nL] and [nt nt], followed by a
frequency-dependent cue combination and multiplication rule with the masks of the
statistical penalty measure:

M ff

elt
=

�
M∆LM eσL

σL if m ≤ mxo

(1− ξ)M∆LM eσL
σL + ξM∆tM eσt

σt if m > mxo

, (2.4.45)

19In addition, Equation (2.4.41) will be replaced with a magnified ILD calculation method, ∆L̃,
which is introduced in Equation (3.3.7) in Chapter 3.3.2. For the purpose of speech enhancement
Equation (3.3.7) is executed at the DFT resolution.
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where ξ, eσL, eσt and mxo are the balancing factor of the binaural cues, the ex-
pansion/compression exponents of the statistical penalty masks and a lower cutoff
modulation frequency parameter for employing the ITD of the envelope, respectively.
Based on the statistical analysis on binaural cues in Chapter 3.3.2, the lower cutoff
frequency parameter mxo has been adjusted to a modulation centre frequency of
78 Hz.

By means of the subsequent magnitude-based multiplication of the soft-mask M ff

elt

with the modulus of the original modulation spectra in both channels, lateral inter-
ference as well as centre and modulation frequency bins showing unreliable binaural
cues are attenuated. The high frequency modulation spectrum above 400 Hz is ap-
pended to the filtered modulation spectrum and left unchanged. In addition, the
original phase of the complex modulation spectrum is not altered in the mask-based
filtering process. The approach was found beneficial during the adjustment of the
algorithm as well as in view of the inverse transform of the altered modulation spec-
trum to the altered envelope signal. Regarding this algorithmic choice, Paliwal et al.
(2011) showed that the phase of a complex modulation spectrum does hardly con-
tribute to speech intelligibility in frames of short duration.

In the following, an example is given to illustrate the modulation-based weight-
ing process. Therefore a mix of two speakers is created. The target speaker is in
frontal direction and an interfering speaker at 270 deg (clockwise). The upper row
of Figure 2.11 images different processing steps of algorithm ELT. First, the upper
left-hand plot presents the combined centre and modulation frequency spectrum of
two speakers in the left channel at a certain point in time. The upper middle plot
shows the weighting function based on the ILD cue. The mask M ff

elt
is designed such

that the energy components that belong to the target in the frontal line are preserved
with a weighting value close to one (white). On the other hand energy components
that belong to the speaker at 270 deg are attenuated with a weighting value close
to zero (black). Finally, the upper right-hand plot shows the centre and modula-
tion frequency spectrum subsequent to the multiplication by the weighting function.
Regions with centre and modulation frequency bins that belong to the interfering
speaker at 270 deg are attenuated, as identified by darker shades of grey. The centre
and modulation frequency spectrum in this example shows mainly a laminar energy
distribution. Nevertheless, a distinct modulation pattern at low frequencies, i.e.
up to 500 Hz and around 1.8 kHz, can be observed. These regions exemplify how
sources that share the same centre frequencies are separated by means of different
modulation frequencies. Note that it would be beneficial for the modulation-based
filtering process if the periodotopic axis is finer resolved. However, constrained by
the well-known uncertainty principle, this implies longer analysis windows in which
the short-time stationarity of speech is easily exceeded.

Subsequent to a first filtering in the centre and modulation frequency domain, the
filtered envelope E � of the left and right channel is retrieved by applying the inverse
of Equation (2.4.36), i.e. the IDFT of the altered centre and modulation frequency
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Figure 2.11: The upper plots show a series of the algorithm ELT-based speech enhancement
in the carrier and modulation frequency domain from left to right: the upper left-hand plot
shows a mixture of two speakers. The upper middle plot shows a masking function M ff

elt using
only the ILD cue, and the upper right-hand plot shows the resulting centre and modulation
frequency spectrum subsequent to the multiplication of the original mixture with the mask.
The lower plots illustrate a typical weighting function M ft

elt: the lower left-hand plot is a
top view on the mask in the time-frequency domain, the lower middle plot and the lower
right-hand plot show time slices through the mask and the envelope functions at different
time ranges and frequencies.

spectrum.

Kollmeier and Koch (1994) proposed a correction factor, i.e. the root of the quo-
tient of the altered envelope and the original envelope, as a means to compensate
for a phase loss of the altered envelope signal.20 In our research, this approach was
adopted because of our empirical observation of an improved noise suppression, de-
spite the fact that the present implementation of algorithm ELT retains the original
phase throughout the signal flow. However, not the square root of the quotient is

20It remains unclear to the author whether Kollmeier and Koch (1994) implied with that state-
ment a loss of the group delay of the envelope or the absence of the sinusoidal phase information.
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taken (cf., Kollmeier and Koch, 1994), but an adjustable exponent e, of the quo-
tient is introduced, which allows for a compression, or expansion, of the weighting
function:

Ḿ ft

elt
(d, n) =

�
E �{xl(d, n)}

max[E{xl(d, n)}, �]

�e

. (2.4.46)

The parameter � in Equation (2.4.46) is introduced to avoid a division by zero, and
the overscore signifies a lowpass operation, in which the filtered envelope is smoothed
with a finite impulse response in the form:

E �{xl(d, n)} =

Nlp−1�

q=0

Ξ(q)E �{xl(d, n− q)}, (2.4.47)

where Ξ(q) is an impulse response with q = 0, 1, . . . , Nlp − 1 tabs.21 The low-
pass operation introduces an overall interference suppression, which enables a broad
masking, i.e. time-frequency bins are bound to bigger clusters at higher frequencies
as well as in regions of speaker dominance. A fine-scale masking, i.e. a modulation
correction, is observed everywhere else. The lower left-hand plot in Figure 2.11 de-

picts a typical soft-mask Ḿ ft

elt
in the centre frequency domain. Thereby the filter

order Nlp and the cutoff frequency dxo of the lowpass filter determine the balancing
between low frequency and high frequency masking. These parameters were found
to be crucial for the overall algorithmic success, and are, hence, part of the opti-
mization in Chapter 5.2.4.

Subsequently, the raw soft-mask is lower and upper bounded with:

M ft

elt
(d, n) = min[max[Ḿ ft

elt
(d, n), Amin], Amax]. (2.4.48)

The lower middle and lower right-hand plot in Fig. 2.11 display a range of possible
proportions between the original envelope E , the altered envelope E � as well as M ft

elt

at two centre frequencies (see titles). From the relative amplitudes, there are three
cases that can be differentiated:

(1) E >> E � the weighting factor is close to zero. A tendency of low-gain clustering
with neighbouring bins is observed.

(2) E ≈ E � dominant peaks are suppressed to about the proportion of (E �/E)e,
which results in a fine-scale masking.

(3) E << E � the weighting factor is close to one. A tendency of high-gain clustering
with neighbouring bins is observed.

21The lowpass filter was designed using the MATLAB (The MathWorks TM) function fir1.m
with the filter order Nlp and the cutoff frequency dxo. The filtering process was performed with
the MATLAB function filtfilt.m, which introduces no phase delay by the filtering process.
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Finally, the magnitude of the original left and right channel STFT representation are
multiplied by the mask M ft

elt
and transformed back to the time-domain stimulus with

an IDFT, followed by an overlap-add technique. As opposed to the algorithms CLP
and CC, algorithm ELT uses a Hanning synthesis window of length Nι to interleave
the reconstructed short-time frames, which can have an offset due to high amplitudes
in M ft

elt
. In the filtering process, the original carrier phase information is retained,

an approach that has shown to be beneficial for speech intelligibility enhancement
using the modulation-based filter approach (Paliwal et al., 2011).

The fixed and algorithmic parameters of processor ELT are given in Table 2.3. In
order to provide a comparison with the original implementation of Kollmeier and
Koch (1994), the published parameters of their implementation are given in the
second row. An important difference with the original implementation lies in the
analysis frame length of the complex bandpass signal (Nχ̊ in Table 2.3). The reason
for this modification was inspired by our statistical observation that the requirement
of short-time stationarity of speech is violated with the application of an analysis
frame-length of 40 ms, as proposed by Kollmeier and Koch (1994). As previously
mentioned, although modulation frequencies resolve better on longer time analysis
windows, a mix of sources tends to merge in the binaural modulation domain and
this leads to incorrect envelope ITD (or envelope-based IPD) and envelope ILD
values. Therefore, the analysis of the bandpass envelope signal was performed with
the shorter frame-length of 16 ms and an overlap of 50 %.

In listening tests Kollmeier and Koch (1994) and Wittkop et al. (1997) showed that
algorithm ELT yields a small but robust improvement of speech intelligibility at
very low mixing SNR conditions, but generally no improvement in coherent noise
setups. It is the question of the present work whether this improvement can be
verified or even improved with the present reviewed and optimized implementation
of the algorithm.

Summary

This chapter introduced the signal model of the combined processing scheme, which
comprises a bilaterally applied beamforming front-end and a CASA-based post-
processor. Practical beamforming solutions were presented that realize a compro-
mise between directivity and stability. In the second part of this chapter, the concept
of time-frequency masking was introduced. A statistical analysis of the energy dis-
tribution of several sources in the time-frequency domain brought to light to what
extent speech-in-noise problems may differ despite a common global RMS-based
SNR. Subsequently, the cepstral smoothing technique was introduced to possibly
improve the quality of the post-filter output. In the last section of this chapter three
binaural speech processors were introduced, that showed the potential for speech
and quality improvement.

The present work focusses on the improvement given by a set of binaural speech
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Table 2.3: Parameters and parameter ranges of algorithm ELT. �hist determines the main-
lobe of the algorithm. A description of this parameter is given in Chapter 3.3.3. The second
row in this table gives the parameters of the implementation of Kollmeier and Koch (1994).
Note that not every parameter can be directly compared, since the present algorithm deviates
in several details form the original implementation. The differences are discussed in this
chapter.

fixed parameters
fs Nχ Nd ∆T α̊

16 kHz 64 bin (4 ms) 256 bin 2 bin (0.125 ms) τ = 8 ms

25 kHz 64 bin (2,6 ms) 128 bin 4 bin (0.16 ms) unknown

fs (STFT domain) Nχ̊ Ndd ∆T̊

8 kHz 128 bin (16 ms) 512 bin 64 bin (8 ms)

6.25 kHz 256 bin (40 ms) 512 bin 64 bin (10 ms)

[nσL nσL] [nσt nσt]

5×5 bin 5×5 bin

5×5 bin 5×5 bin

algorithmic parameters
[nL nL] [nt nt] ξ eσL eσt

n×n bin; n ∈ 1. . . 10 n×n bin; n ∈ 1. . . 10 0 . . . 1 0.1 . . . 3 0.1 . . . 3

5×5 bin 5×5 bin 0.7 2 2

Nlp dxo � e

50 . . . 350 20 . . . 800 Hz 1× 10−6 . . . 0.01 0.1 . . . 2

unknown unknown unknown 0.5

Amax Amin �hist

2 . . . 10 0.01 . . . 0.5 1 . . . 5

10 0.1 –

processors that are serially connected to bilaterally applied beamforming front-ends.
To this end, the following chapter presents a statistical analysis of binaural cues
at the output of different bilaterally applied front-ends in varying noise conditions.
Subsequently, a novel pattern-based weighting method that accounts for the statis-
tics of binaural cues in dissimilar acoustics is introduced. Finally, in the last chapter
of this work, the binaural CASA algorithms are optimized and assessed through a
range of noise conditions.
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3

Binaural parameter statistics and
optimal pattern-based noise
suppression

As a means for efficient improvement of intelligibility of noise-corrupted speech,
the previous chapter introduced a series of binaural CASA speech processors, in
combination with several bilaterally applied beamforming front-ends. These CASA
processors share the application of interaural cues1 in the separation process. While
humans use a combination of multiple interaural and monaural cues in the localiza-
tion and source separation process, each of the here presented binaural algorithms
has only access to one or two parameters of interaural disparity.2 Although of high
spatial acuity in anechoic conditions, interaural parameters show a sensitive nature
and become weak indicators of direction in diffuse noise conditions. It is, therefore,
required to understand their behavior in different noise environments and to apply
them in the best possible way in the source separation process.

To achieve this, the current chapter studies interaural parameters of the fine-structure
and the envelope of the waveform in a statistical analysis. Following that, a Bayesian
classification method is introduced for the establishment of pattern-based weighting
functions in algorithms CLP and ELT. This probabilistic approach increases the ro-
bustness of the binaural algorithms at low SNRs and under diffuse conditions. Prior
to the statistical analysis, it appears worthwhile to summarize briefly a set of fea-
tures of the twofold auditory scene analysis (ASA) process and the role of interaural
parameters therein, on the basis of psycho-acoustical and physiological findings. By
examining their nature, much of the localization and eventual separation possibilities
with interaural cues in noise can readily be understood.

1Herein ‘interaural cues’ are interchangeably used with their computational analog, i.e. ‘inter-
aural parameters’.

2Briefly it has been mentioned in Chapter 2 that the algorithms CLP and ELT additionally
make use of the proximity and concurrency of signals throughout their feature spaces in terms of
an averaging process. However, this constitutes a very rudimentary algorithmic grouping scheme
as opposed to the conjectured schema-based binding approach in the auditory processing.



62 Binaural parameter statistics and optimal pattern-based noise suppression

3.1 Psycho-acoustical and physiological background

The two-fold ASA approach, i.e. the decomposition of an ambient scene into its
constituent components of perception and the binding of these cues at different neu-
ral layers to build coherent streams of the sources involved, is a complex reciprocal
system of bottom-up and schema-driven top-down processes (Blauert, 1997). These
two processes cannot work independently in a robust speech perception process.
What appears obvious for the schema-driven processing, essentially the formulation
of hypotheses about the percept based on available cues, is rather surprising for the
primitive grouping process.
Barker (2006) summarized a series of psycho-acoustical studies that describe this
phenomenon. It was found that central cues in the primitive grouping process can
be neglected, such as e.g. the fundamental frequency cue in whispered speech, while
the integration into streams remains well maintained. Moreover, primitive grouping
fails to deliver a robust basis for the binding process at abrupt phoneme transitions
and can generally not explain the integration of words into streams. Obviously, flex-
ible and sturdy track guiding is provided by the schema-driven top-down process.
Much of the schemata seem to be learned through life. A striking example are click
sounds in some African languages, which do not integrate in coherent speech streams
for people not belonging to this speech group.

Therefore, it is assumed that schema-driven processes play a dominant role in speech
perception. Barker (2006, p. 308) writes: “Primitive processes perhaps limit the
space over which schema-driven processes need to search in order to arrive at a cor-
rect hypothesis.” Besides the differentiation in bottom-up and top-down processes,
there seems to exist a hierarchy of grouping cues. It was found that articulatory
features of the vocal tract overrule spatial cues and that features that are invariant
on a high level, as accent and speaker identity, play a strong role in the grouping
process.

Considering the complex ASA process, a system far from universally understood, the
binaural speech processors in this work are simplified equivalents of the bottom-up
process.3 As described in the introduction, algorithms CLP and CC approximate the
peripheral analysis with an STFT and subsequently perform an interaural compar-
ison of the acoustic waveform. Algorithm ELT alternatively decomposes the STFT
bandpass signals of the left and right ear channel into modulation frequencies. Sub-
sequently, the interaural differences of a certain sound scene are inferred from the
temporal structure of the signal envelope across carrier and modulation frequencies.

Physiological and psycho-acoustical studies demonstrate that these CASA approaches
functionally mimic complementary parts of the actual binaural ASA processing,

3Later in this chapter a pattern recognition strategy for binaural cues is introduced, which
improves the source separation process. This approach can be understood as an attempt of bridging
the gap between bottom-up and top-down processes of the auditory system, in terms of binaural
processing. For practical application, it would require a classification algorithm to switch between
different scenes in order to apply the pattern-based separation algorithm efficiently.
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where none of them is adopting all necessary components of the underlying binau-
ral model ASA process. In fact, the different binaural IPD calculation methods in
algorithms CLP and ELT (fine-structure and envelope, respectively), correspond to
the two channel processing of IPDs, as found in physiological and psycho-acoustical
studies of mammals (see e.g., Dietz et al., 2009). These findings corroborate the
belief of an independent processing of the fine-structure or carrier IPDs in the me-
dial superior olive (MSO) and a combined processing of the envelope IPDs and ILDs
in the lateral superior olive (LSO). Based on these insights, the ILD computation
from the binaural fine-structure waveform in algorithm CLP can be considered an
approximation of the ILD cue assessment from the binaural envelope signal of the
model ASA process.

With respect to algorithm CC, i.e. the coherence based speech processors, we find
that apart from a strong relation between the binaural interaction process and
the binaural waveform coherence, there appears to be no substantiation for au-
ditory interaural coherence processing. Among other opposing reason, Van de Par
et al. (2001) for example, outline that the accuracy needed to normalize the cross-
correlation cannot be provided by the auditory system. In the light of these results,
the binaural coherence processing of algorithm CC is merely an implicit model to
explain the underlying auditory process of assigning a high perceptual weight to
a sound component, if its binaural waveform is coherent (Rakerd and Hartmann,
2010).

To date the perceptual ranking of the interdependent directional cues, i.e. the onset
and steady state fine-structure ITDs4, the envelope ITDs and the ILDs, have not
been clarified to the full extent (Stern et al., 2006). In addition to strong personal
differences, many parameters, like loudness, onset slope and envelope shape, play an
important role in the perception of each of these cues. Furthermore, the weighting of
each of these cues in the localization process is strongly influenced by the SNR and
the composition of the sound field, as e.g. the degree of diffuseness of the interfering
noise.

With regard to the frequency dependency of each of these directional cues, it is
well-known that the envelope IPD and ILD provide lateralization over the entire
frequency range. The carrier IPD, on the other hand, is only assessed in the lower
frequency spectrum, up to about 1.3 kHz in humans. This frequency limit is given
through the ambiguity in the spatial sampling at higher frequencies, i.e. above the
spatial Nyquist frequency, which starts from about 900 Hz, and which is additionally
imposed by the loss of phase locking of the neural firing rate in that frequency range
as the stimulus travels up the auditory nerve.

4If not explicitly noted, the IPD and ITD are interchangeably used to describe ‘interaural tem-
poral disparity’, as both cues equally describe the lateralization phenomena mentioned in this intro-
duction. There are, however, also opposing findings with narrow-band lateralization experiments
that support the sole application of the IPD in the auditory processing (Zhang and Hartmann,
2006).
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Dietz et al. (2009) analyzed the trading5 of interaural cues, i.e. the envelope IPD and
the carrier IPD, using sinusoidal amplitude-modulated tones. In psycho-acoustical
experiments the authors found a linear relationship in the trading between ILD
and fine-structure IPD as well as between ILD and envelope IPD. Furthermore, the
authors obtained a nonlinear association among the fine-structure IPD and the en-
velope IPD; specifically, such that the lateralization of a fine-structure IPD at 45 deg
and around 1 kHz needs a maximum envelope IPD to be counteracted. By develop-
ing a two-channel model for the fine-structure and envelope IPDs, Dietz et al. (2009)
were able to model lateralization independent of psycho-acoustical evaluation.

Rakerd and Hartmann (2010) studied interaural temporal cues in noise. The authors
confirmed their hypothesis, in which the degree of coherence is the only determining
parameter for the perceptual relevance of the carrier and envelope ITD, although
the responsiveness varied strongly with frequency. At low frequencies, in their study
an octave band with a centre frequency of 225 Hz, where the coherence is physically
high (the authors suggest the term ‘physically compressed’), the coherence had to be
large as compared to mid-bands, in their study a band centred at 715 Hz, to achieve
the same degree of localization distinctness. The same accounts for high frequency
bands, in their study a band centred at 2850 Hz, where only the envelope ITD allows
temporal lateralization. With the restrictions that the authors used noise bands to
derive their results (the envelope shape affects the results), they found that enve-
lope ITDs are of no additional use under adverse conditions. Overall, the authors
concluded that humans gradually favour other directional cues than the ITDs as the
coherence decreases.

To conclude this brief survey, it is expected that the interaural temporal fine-
structure differences between the ears are most important if these are available
(Stern et al., 2006). In silence, the ILD, together with the monaural cue of the
frequency transfer due to the direction from which the wave is impinging onto the
pinna,6 is important in the reduction of front-back confusion and ambiguities caused
by the cone of confusion effect. Temporal interaural differences in the binaural enve-
lope signal are used in humans when the coherence of the waveform is high, which is
rarely the case in real-world surroundings. In noise, the perceptual ranking of these
cues consequently changes, and psycho-acoustical experiments suggests a higher im-
portance of the ILD cue (Rakerd and Hartmann, 2010).

The following statistical study intends to gain an understanding of the applicability
of spatial cues in the noise suppression task. The strategy of this study has adopted
the methods of the statistical analysis of interaural fine-structure cues of Nix and
Hohmann (2006). In their work a DFT is used in the peripheral frequency decompo-

5The trading of an IPD cue with an ILD cue has comprehensively been studied in psycho-
acoustics to infer the relative importance of binaural cues in the localization process. Usually, the
cues are presented from the left and right hemisphere, and are subsequently balanced to retrieve a
localization percept from the midline (Dietz et al., 2009).

6The monaural phenomenon of localization in the median plane is known by Blauert’s Direc-
tivity Bands (Blauert, 1997)
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sition, prior to an averaging over broader carrier frequency bands. We conceptually
repeat this analysis with the binaural processing stage of our implementation of al-
gorithm CLP, on the output of a mannequin and several hearing aids.
As opposed to the statistical analysis of Nix and Hohmann (2006) up to the fourth
central moment (i.e. mean, variance, skewness and kurtosis), we limit the analysis
to the mean and standard deviation (square root of the variance), as these measures
are the most meaningful statistical measures and sufficient within the scope of this
work. In the second part of this chapter, we apply the statistical analysis to inter-
aural envelope cues. Consequently, the binaural stage of algorithm ELT is applied
to analyze binaural envelope cues up to maximum first fundamental (F0) pitch fre-
quencies, on the output of a mannequin and several hearing aids. Preparatory to
the statistical study, the following subsection deals with the data collection.

3.2 Data collection

It is a central theme of this study on binaural statistics and subsequent speech intelli-
gibility enhancement, to analyze contrasting acoustical scenes with different hearing
aids on an artificial head. Additionally to the possibility of creating these combi-
nations, the target signal and the interfering signals, such as a coherent jammer
or a diffuse background, need to be interchangeable and their spatial distributions
readily determined. To simplify the effort of the data collection, directional in-
formation is gathered by recording the HRTFs of the left and right ear for each
hearing aid, with the artificial head in different positions in a horizontal plane at
the ear-level. These HRTFs are used as a convolution kernel for the spatialization7

of monaural speech recordings at arbitrary directions. By superimposing spatialized
speech recordings with the real-world background scenes, which were recorded with
the identical recording setups, i.e. with each hearing aid setup, a great variety of
acoustical scenes can be created.

In the course of this data collection, the HRTF recordings were measured in the
anechoic room of the TU Delft. The setup for the recording consisted of an arc that
allows the placement of a loudspeaker at adjustable elevation angles, while keeping
a constant radius of 1 m to the centre of the arc, where the artificial head is po-
sitioned. As artificial head, the system of the Institute of Technical Acoustics at
RWTH, Germany (in this work referred to as the Aachen head) was used without
the optional A/D conversion and equalization processor stage (Schmitz, 1995). In
the present work, the RME Fireface 400 was used for the amplification and A/D con-
version. The Aachen head features the ear moulds of an individual, whose HRTFs
were selected on the basis of sound location accuracy and a small front-back error in

7The term spatialization is used in this work for describing the spatial arrangement of a sound
source with respect to the receiver. It is closely related to auralization (Vorländer, 2008, p. 103), yet
emphasizes the spatial rendering, i.e. in terms of space perception the phenomenon of localization.
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Figure 3.1: Illustration of the data collection: A shows the Aachen head in the anechoic
chamber of the TU Delft with the playback setup used in the HRTF recording. B displays the
BTE hearing aid of ReSound type Canta 4 470-D and C depicts two versions of the hearing
glasses of Varibel Innovations BV. Photograph D shows the preparation of the canteen
recording. F shows the autobus, which was used for the car noise recording, and E depicts
the sketch of the room that was simulated with a mirror image source model (MISM) for
different degrees of reverberation. In the MISM setup the HRTFs of the Aachen head are
applied. The height of the speaker and the head was adjusted to 2 m above the floor.

a free-field listening test. Torso, shoulders and neck were chosen to be close to the
respective dimensions of the individual with the best ears and within the ITU-T P.58
recommendation (Schmitz, 1995). The Aachen head system does not model the ear
channel and the ear-drum. Although artificial heads perform poorer than real heads
in subjective evaluation, the Aachen head is a particular good head system, as found
in a survey (Minnaar et al., 2001) and ideal for the extensive and reference-based
testing with different hearing aids that are mounted on it.
The free-field equalization of the HRTFs as well as the equalization of the loud-
speaker was performed with the recording of the transfer function of the loudspeaker
at the location of the head with a B&K type 4950 1/2-inch free-field microphone.
During the HRTF measurements, the Aachen head was mounted on a B&K turntable
type 3921 and the B&K control unit type 3922 was used for remote access.

A logarithmic sweep technique was used for all HRTF recordings (Hulsebos, 2004).
This recording technique offers a high and constant SNR over the frequency range
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with the applied measurement setup, and allows for the isolation of harmonic dis-
tortions in the measurement process. Using this property, the resulting HRTFs are
free from the harmonic distortions of the recording chain, including the hearing aids,
which are particularly sensitive to these distortions at greater sound pressure levels.
As the dynamic range was strongly determined by the hearing aid type, the stimu-
lus was three seconds long throughout all measurements and selectively repeated to
ensure a high SNR.

The applied speech material is taken from the Multilingual TNO Human Factors
database (TNO, 2000) and in the Dutch language. The sentences of this database
were developed by Plomp and Mimpen (1979). Prior to the application of this
speech material, pauses in the sentences were excluded by a simple VAD method8

and normalized to a common RMS level. For the calculation of statistical measures
of one speech source in a diffuse background noise, the monaural speech recordings
of three speakers (one female and two male speakers) were superimposed. In this
manner, a continuous stream of speech sounds is gathered, while speech modulation
is still present.

In turn, the hearing aids were placed on the Aachen head and different directivity
programmes were chosen. The measurement routine was set up to measure in steps
of 1 deg in the horizontal plane at ear-level with a sampling frequency of 44.1 kHz
and a word length of 16 bit. Both the BTE hearing aid (GN ReSound type Canta
4 470-D) and the hearing glasses (Varibel Innovations BV) were adjusted to have
neither frequency dependent amplification, nor compression. Furthermore, the sig-
nals were picked up before their respective receivers, i.e. the hearing aid speakers.
The HRTFs of the Aachen head were measured with the identical setup, in which
the output was taken from the built-in in-ear microphones. Table 3.1 shows the
possible combinations of the hearing aids of different directional modes, as well as
the Aachen head, with the scenes that have been recorded.
Spatially distributed noise sources were recorded in three different real world en-
vironments. The surroundings were selected to sample opposing acoustical charac-
teristics. A lively canteen was chosen for its diffuse ambiance with varying speech
sources in time and space. A rather invariant sound scene was recorded in a bus with
a dominant diesel engine at constant highway speed. The third real-world recording
was made in a workshop of architectural model making. It features a set of high
frequency sounds of saws, grinders and model printers. Therein, some sources were
rather static in time and space, while others were transient. As already mentioned,
with respect to the HRTF measurements, the identical setups of the different bin-
aural receivers were applied. By such means, it is assumed that the HRTFs and the
transfer functions of the instruments are matched throughout all measurements.
Graphs of the long-term spectra of the sound scene recordings with different hearing
aids and programmes, as well as the Aachen head, are shown in Figure 3.2.

8Short-time speech frames of 32 ms length with 50 % overlap were excluded if their RMS level
was below 40 dB with respect to the overall RMS level of the connected discourse.
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Table 3.1: Receiver and background scene combinations are given. The BTE hearing aid is
a GN ReSound type Canta 4 470-D and the hearing glasses (HG) are the Varibel spectacles.
The ∗ denotes a recording error. As a result only one channel was recorded. Based on a
temporal decorrelation a binaural signal was later generated. At the time this hearing aid
background recording is used in this work, the reader is reminded of this fact.

Recorder canteen autobus workshop

HG (low directivity) x x x∗

HG (high directivity) x x x∗

BTE (omni) x x x

BTE (directivity) x x x

Aachen head x x x

The Aachen head (Row E in Figure 3.2) gives a fair reference as the best approx-
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Figure 3.2: The long-term spectra of different receivers in different acoustic scenes. Prior
to the calculation of the spectra, the left and the right channel of a 30 s segment were
combined into a monaural signal through averaging. The hearing aids and modes are: A

hearing glasses low directivity, B hearing glasses high directivity, C BTE in omni-directional
mode, D BTE in directivity mode and E the Aachen head.

imation of the actual physical sound field spectra, since the hearing aids generally
exhibit highly fluctuating transfer functions in lateral positions. Looking at these
spectra, the canteen environment shows a typical long-term speech spectrum with
significant energy up to 4 kHz. The autobus spectrum shows prominent signal en-
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ergy at low frequencies and the workshop with many high frequency tools features a
white noise background character. Compared to the spectra of the hearing aids, the
hearing glasses (Row A and B in Fig. 3.2) seem to alter the spectra less than the
BTE hearing aid (Row C and D). Moreover, the BTE hearing aid transfer functions
roll off above 6.5 kHz. Looking at the workshop spectrum, similar to white noise,
the BTE imposes a certain degree of frequency shaping, whereas the hearing glasses
offer a flat transfer-function up to 8 kHz in both programme modes.

As mentioned, Table 3.1 lists the combinations of scenes and receivers that can sub-
sequently be digitally superimposed. For the simulation of a particular scene, the
global (i.e. waveform-based) SNR between a target speaker and a background scene
are calculated at the ear-level. Specifically, the global SNRs are calculated with the
long-term and binaurally averaged intensity levels, i.e. the RMSs, of the connected
discourse and the noise. This approach is adopted from Nix and Hohmann (2006)
and constitutes a crucial point, as it excludes the directional SNR characteristics of
the Aachen head and the hearing aids. It can be considered a suitable approach for
the statistical analysis of the interaural parameters at a constant SNR, in particular
with respect to the comparison among the different hearing aids and the Aachen
head. Moreover, as will be shown later in this work, the SNR enhancement of a
binaural processor is mainly determined by the ear-level SNR, which supports the
hypothesis of a strong dependency between the ear-level SNR and the statistics of
the binaural cues.

Figure 3.1 depicts the hearing aids and a set of recording environments. It also gives
a sketch (Figure 3.1, drawing E) of the MISM simulation setup, which was used for
an additional binaural cue analysis in simulated reverberation (Van Dorp Schuitman,
2009). For that purpose, two different reverberation characteristics with reverber-
ation times of 0.2 and 0.8 s were applied to the HRTFs of the Aachen head in the

horizontal plane at 1 deg steps. Using the relation rRT = 0.1
�

V
πRT , reverbera-

tion radii of 1.2 and 0.6 m were simulated. During the simulation first and second
order reflections were modeled with the MISM technique, whereas higher order re-
flection were appended to the IR using statistical modeling. The virtual sources
were omnidirectional. This complements the artificial sound scene mixing of clean
speech material and a diffuse background, described above, where the target signal
lacks reverberation. Based on this data collection across different sound scenes, the
following subsection presents the statistical analysis of binaural parameters.

3.3 Statistical analysis of interaural parameters

The analysis of interaural parameters is calculated with the frequency resolution
of auditory filters. This approach differs from the binaural speech processors of
this work, which operate at the DFT resolution in order to reach a high degree of
disjointness of concurrent sources. Yet, by calculating binaural parameters across
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auditory filters, we gain a more general insight into the statistics and facilitate the
comparison with physiological and psycho-acoustical data. Therefore, throughout
the following analysis, the spectral organization of carrier frequencies is based on
classical critical bands of Zwicker and Terhardt (1980), and the decomposition of
modulation frequencies up to high F0 pitch frequencies is based on constant relative
bandwidth filters of 1/3 octave, which is an approximation of the critical modulation
filterbank observed in psycho-acoustical tests (Kollmeier and Koch, 1994; Dau et al.,
1997).

Instead of applying refined binaural auditory algorithms that are intended to mimic
physiological and psycho-acoustical data as close as possible (see e.g., Dietz et al.
(2009)), we utilize the algorithms CLP and ELT up to the binaural stage and apply
an averaging over auditory-based frequency bands. The application of the analysis
stage of binaural speech processors for the calculation of binaural cues obviously
leads to differences with more accurate physiological and psycho-acoustical models.
Nevertheless, the approach reflects the statistics of the binaural cues as they are
available in the speech enhancement process of the applied speech processors. De-
spite this deviation, the results should still reveal general facts of the model ASA
process.
The algorithmic details of the speech processors did not differ from the parameters
given in the Tables 2.2 and 2.3. The only difference resides in the execution of the
critical band averaging (of the auto and the cross power densities), prior to the cal-
culation of the binaural cues.

As this work offers only a limited scope for a statistical analysis of binaural cues,
a selection of scenes and binaural front-ends had to be made. Therefore, out of
the measured acoustic background scenes (see Table 3.1), the canteen recording was
selected for subsequent statistical analysis. This condition is challenging for speech
intelligibility and as such troublesome in daily experience for many people. For the
comparison of the binaural cues at the output of a binaural beamformer and natu-
ral ears, we opted for the hearing glasses in low directivity mode, in the following
referred to as the HG (low directivity), and the Aachen head, respectively. As will
be shown, the HG (low directivity) offer well defined binaural parameters in free-
field conditions and good listening ease (Merks, 2000). The HG (low directivity) are
therefore considered a suitable candidate for a binaural speech processor front-end.
Binaural cues are furthermore analyzed in the presence of coherent interference.
Lastly, reverberation is applied to concurrent speakers.

In the following subsection, the interaural parameters are first computed from the
fine-structure to infer their statistics. Thereafter, the same is done with the binaural
parameters of the envelope. With the exception of an analysis of binaural cues of the
fine-structure in silence at the output of all binaural receivers employed in this work,
both subsections investigate the interaural parameters in identical acoustical scenes,
thereby allowing estimation of the separation power of the binaural parameters used
in the binaural speech processors.
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3.3.1 Inference from the fine-structure of the binaural signal

In this subsection a statistical analysis of interaural parameters is derived from the
fine-structure of the waveform. Using algorithm CLP (and the implication of a
Nyquist frequency of 8 kHz), an allocation of the DFT bins into 21 critical bands
(using the index dcb) of Zwicker and Terhardt (1980) as defined in ANSI/ASA (2007)
was performed by adding the squared magnitude spectra and the complex valued
cross spectra of the left and right channel:

xll(dcb, n) =

du(dcb)�

d=dl(dcb)

|xl(d, n)|2, (3.3.1)

xrr(dcb, n) =

du(dcb)�

d=dl(dcb)

|xr(d, n)|2, (3.3.2)

xrl(dcb, n) =

du(dcb)�

d=dl(dcb)

xl(d, n)x
∗
r
(d, n), (3.3.3)

where the overscore denotes the averaged quantities. In the summation process
dl and du denote the lower and the upper cutoff DFT frequency coefficients, re-
spectively, of each critical band dcb. Subsequently, the spectra were subjected to
a temporal smoothing according to Equation (2.3.16), i.e. a first order recursive
low-pass filter with a time constant τ̆ of 8 ms. The IPDs and ILDs are calculated
analog to Equation (2.4.31) and (2.4.32), respectively, per critical band dcb. Note
that the smoothing in Equation (3.3.3) results in an intensity-weighted IPD per crit-
ical band dcb. See the comment of Hohmann in Goupell and Hartmann (2007) for
alternative calculation methods, as well as the above-introduced smoothing method
and implications thereof.

The manner of calculating interaural parameters differs from the method used in
Nix and Hohmann (2006) in terms of the sampling frequency, DFT frame-length and
spectral resolution. For the last one, Nix and Hohmann (2006) used a finer scaling,
more specifically, a bandwidth of 0.57 times the equivalent rectangular bandwidth
(ERB), leading to 43 adjacent frequency channels in their study. The lower resolu-
tion chosen in the present work is considered to be adequate for a general analysis.
Since this study is regarded as a preparation for speech enhancement, the algorith-
mic parameters of Table 2.2 were held constant, as previously mentioned. In doing
so, the following analysis is limited to an upper frequency of 8 kHz, although it is
generally known that humans are able to analyze ILDs at frequencies higher than
this limit.

Based on this short-time analysis of binaural parameters, histograms for the IPD
and ILD cues were generated. The histograms have each 200 bins in the range of
−π to π for the IPD cue and in the range of −40 dB to 40 dB for the ILD cue. After
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Figure 3.3: The interaural cues IPD and ILD of the fine-structure waveform are analyzed
in terms of parameterized PDFs as a function of azimuth and critical bands, centered at
the frequencies (cf) of 0.15, 0.57 and 1.17 kHz for the IPD and at 1.6, 4 and 7 kHz for the
ILD. The columns juxtapose four hearing aid modes and the Aachen head. In the plots, the
solid lines give the mean and the dashed lines give the standard deviation around the mean,
both as a function of source azimuth. The value σ� shows the mean standard deviation over
all azimuths analyzed, and m� indicates the maximum azimuthal range of the mean.
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the binning processes, the histograms were normalized to yield probability density
functions (PDFs).

Interaural parameters inferred from the fine-structure in free-field conditions

Figure 3.3 gives a first analysis of the binaural parameters of the four hearing aids
and the artificial head at an SNR of 60 dB. In each subplot, an IPD or ILD of a
critical band is depicted for a revolving sound source from −90 to 270 deg in steps
of 5 deg, using the above-described speech material. The solid line in each plot
represents the mean value of the respective binaural parameter PDFs as a function
of source azimuth. At the left bottom of each plot, m� indicates the maximum range
(i.e. variation of the mean) of the binaural cue mean as a function of azimuth.9 The
dashed lines in each plot give the standard deviation σ of the respective binaural
parameter PDFs as a function of source azimuth around the mean. The single value
σ� (top left corner in each plot) accounts for the mean standard deviation over all
angles.

In Figure 3.3 the fine-structure IPD parameter is analyzed in the critical bands with
the centre frequencies of 0.15, 0.57 and 1.17 kHz and the fine-structure ILD param-
eter is given in the critical bands with the centre frequencies of 1.6, 4 and 7 kHz.
This first analysis highlights several characteristics of the short-time interaural pa-
rameters at the output of beamformers.

(1) A juxtaposition of the artificial head with the hearing aids shows a comparable
curvature of the mean value for hearing aids with low directivity, as observed
with HG (low directivity) and the BTE in the directional mode. This effect is
stronger in the absence of directivity, as seen with the BTE in the omnidirec-
tional mode.

(2) The interaural parameters at the output of the hearing glasses in the high
directivity mode differ strongly from natural interaural cues. With respect
to the IPD, this difference is predominantly observed in the rear horizontal
plane. The ILD shows a fluctuating behavior and has no resemblance with
the natural ILDs. The reason why the localization with the HG in the high
directivity mode shows good results (Merks, 2000), might be attributed to the
IPDs in the frontal plane, which are comparable to natural IPDs. The IPD
cue of the waveform’s fine-structure has shown to overrule the ILD cue easily if
both cues are conflicting (Rakerd and Hartmann, 2010). In addition, learning
effects are well-known to improve the localization with artificial cues too.

(3) The interaural parameters of the Aachen head and the BTE in the omni-
directional mode show a symmetry around the frontal plane (coronal plane).
This symmetry is a consequence of homogeneous IPDs and ILDs on concentric

9The equations of the range m� and the standard deviation σ� are given in Appendix A.3.
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circles around the intercranical axis, well-known and previously introduced as
the cone of confusion.

(4) No symmetry is exhibited by the IPDs and ILDs at the output of the di-
rectional hearing aids. Their IPDs expose a difference in slope between the
frontal and the rear hemisphere and the carrier ILDs tend to fluctuate in the
rear hemisphere. Thus, while the IPD at the output of the directional front-
end shows twisted cone of confusion artifacts, the ILD introduces ambiguities.
Considering a source in the median plane that is to be enhanced by a bin-
aural speech processor based on a binaural ILD weighting, potential sources
at many locations in the rear of the head and in a particular frequency band
might not be suppressed. However, the ILD fluctuation is different for each
DFT frequency band and a summation over all frequency bands, as performed
in the synthesis of the speech signals, should result in the intended attenuation
of a coherent interferer in the rear hemisphere. If the interferer is incoherent
and the PDFs are broad, obviously less discrimination power will result from
interaural parameters.

(5) As expected, the standard deviation is small throughout the analysis in free-
field conditions. Nonetheless, some fluctuation of the binaural parameters is
present. This fluctuation is higher for sources at lateral positions and around
singularities of the arctan function in the calculation of the IPD cue. Nix and
Hohmann (2006) indicate the source of this random fluctuation in the short-
time processing. Since the windowed short-time analysis has a time aligned
hop size in the left and right channel, a directional deviation of sources from
the median plane might be analyzed in one channel (window) earlier than
in the other. This leads to incorrect interaural parameters, an effect that
is cumulative along lateral positions. Therefore, the short-time processing
introduces a certain amount of randomness.

Overall, the statistical analysis of interaural fine-structure parameters in free-field
conditions shows that these parameters give a fair to excellent indication of direction
at the output of all binaural front-ends that have been studied.

Interaural parameters inferred from the fine-structure in noise

When two signals are added, their waveform distributions undergo a convolution
(Hartmann, 1997). A similar behavior is observed for interaural parameter distribu-
tions if the signals lack disjointness in the time-frequency domain, see e.g. Roman
et al. (2003). Hence, an undesirable implication of CASA-based source separation
is the manner in which the binaural parameters of a source are subjected to the
nature and strength of the interference. Clearly, the binaural parameters in noise
differ from the same quantities in free-field conditions. Consequently, a binaural
weighting function in a binaural speech processor that applies the binaural reference
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parameters of free-field conditions, will likely fail to unravel a complex mixture of
sources.

As mentioned before, a seminal study of interaural parameters of the fine-structure in
noise was given by Nix and Hohmann (2006). Their results are briefly recapitulated.

✷ Binaural parameters strongly fluctuate in frequency regions in which the noise
level is close to the signal level or higher.

✷ In free-field conditions, the ILD parameter is a good indicator of direction with
a mean corresponding to the direction and a narrow distribution. If, however,
the SNR is low, the standard deviation builds up and the mean shifts to the
median plane. The ILD becomes a weak parameter of direction.

✷ It was found that the mean of the IPD shifts to the median plane too, but much
less than the ILD. Nevertheless, the standard deviation of its distribution is
highly increased at low SNRs.

✷ A dependence of the statistics of interaural parameters on direction was demon-
strated. For the ILD Nix and Hohmann (2006) observe a high standard devi-
ation at lateral positions. This finding is in contrast with the observations of
the IPD parameter, for which higher directivity was found.

✷ The noise type, they concluded, is of lesser importance to the statistics than the
SNR in the analyzed frequency band.

In preparation for the formulation of an efficient and flexible approach of a binaural
parameter-based weighting process in the second part of this chapter, we will in the
following discuss the most salient characteristics, for an adequate placement of the
statistical analysis in the context of this work. Therefore, we restrict the analysis,
as mentioned before, to the comparison between the HG (low directivity) and the
Aachen head. This enables us to compare the interaural parameters at the output of
a beamforming front-end with their natural counterparts. The same pair of binaural
receivers will be used in the following section, which presents the statistics of binaural
envelope parameters.

The succeeding analysis examines the fine-structure ILD parameter in the critical
bands of the centre frequencies at 0.15, 2.15 and 7 kHz, and at SNRs of 0 and 10 dB.
The speech material is a sample of three superimposed speakers with as background
a lively canteen, as described in Chapter 3.2 on the measurement setup.

Figure 3.4 shows the results of the Aachen head recording in row A and the results
of the HG (low directivity) recording in row B. A series of observations can be made:

(1) As compared to the free-field conditions, the range m� of the ILD mean is
strongly compressed. While a range of about 50 dB is found in the free-field
conditions with the Aachen head at a centre frequency of 7 kHz, an m� of only
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Figure 3.4: The PDFs with mean (solid line) and standard deviation (dashed line) of the
fine-structure ILD parameter as a function of source direction, analyzed in different critical
bands and at the SNR of 0 and 10 dB. The centre frequencies are given in the titles. Row A

refers to the binaural output of the Aachen head and Row B presents the results at the
output of the HG (low directivity).

about 10 dB remains in the 0 dB mixing condition. Due to the dependency
on frequency of the head shadow effect, m� decreases towards lower centre
frequencies. Consequently, the fine-structure ILD parameter is a poor criterion
of direction for sounds with a wavelength greater than the dimensions of the
head, in particular in noise.

(2) At wavelengths considerably smaller than the dimensions of the head, the fine-
structure ILD is shown to moderately mediate an indication of direction, even
at low SNRs.

(3) The HG (low directivity) front-end is shown to compress the ILD parameter
range m� with respect to the Aachen head. Overall, the ILD parameter shows
a much lower slope across the frontal hemisphere and more fluctuation in the
rear hemisphere, leading to an increased ambiguity.

(4) The HG (low directivity) exposes a lower averaged standard deviation σ� than
the Aachen head. In particular, the growth of σ at lateral positions is not
observed with the HG (low directivity). The reason for this behavior might be
a combination of the absence of the cone of confusion, as a consequence of the
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Figure 3.5: The PDFs with mean (solid line) and standard deviation (dashed line) of the
fine-structure IPD parameter as a function of source direction, analyzed in different critical
bands and at the SNR of 0 and 10 dB. The centre frequencies are given in the titles. Row A

refers to the binaural output of the Aachen head and Row B presents the results at the
output of the HG (low directivity).

directivity pattern, and the implicitly raised source SNR at lateral positions,
due to the suppression of lateral sources by the beamforming of the front-end.

On the whole, the fine-structure ILD parameter as calculated from a short-time
analysis, appears to be a moderate source separation criterion in low SNR condi-
tions, for high frequencies. If the wavelength is in the order of the head size and
above, the distributions of the ILD parameter for all directions show overlap. In this
frequency range, consequently, the ILD is a poor indicator of direction. A disadvan-
tage is observed for the HG (low directivity), which exposes a considerable ILD cue
compression in the frontal plane and a high fluctuation in the rear plane.

Next, Figure 3.5 presents the statistics of the fine-structure IPD parameter in noise.
Again we list the most important results in row A for the Aachen head and in row
B for the HG (low directivity):

(1) As already demonstrated by Nix and Hohmann (2006), we find the mean of the
PDFs to be not as much shifted to the median plane as observed with the ILD
PDFs at low SNR conditions. Relative to the PDF ranges, the overall standard
deviation σ� is higher than found for the ILD, especially at high frequencies.
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Moreover, the standard deviation is proportional to the range m� and increases
due to the greater phase difference at higher frequencies.

(2) The standard deviation is increased at lateral positions, which is contradicting
to the findings of Nix and Hohmann (2006), who found an increased IPD vector
strength at lateral positions.

(3) Similar to the observations under free-field conditions (Figure 3.3), at lateral
positions and frequencies where the wavelength exceeds the spatial Nyquist
limit, a considerable increase of the standard deviation of the IPD can be
observed. In Figure 3.5, this is apparent in the critical band with the centre
frequency of 1.17 kHz. If we consider IPD lookup tables for binaural speech
processors, it is questionable whether the fine-structure IPD, with such a high
standard deviation, is a robust indicator of location for the DFT frequency
bins beyond the spatial Nyquist limit. For this reason, the possibility of using
the IPD for frequencies greater than the spatial Nyquist limit appears to be
considerably impeded.

(4) The comparison with the HG (low directivity) reveals a greater range of the
mean m� at low frequencies, which is probably due to the increased width of
the HG. Together with a lower standard deviation and no symmetry around
the frontal plane, the HG (low directivity) front-end might gain an advantage
in the binaural separation process. Regardless of this, the spatial Nyquist
limit appears to be slightly higher as deduced from the smooth curvature of
the mean around 90 deg in the critical band that resides at a centre frequency
of 1.17 kHz.

Overall, the fine-structure IPD cue as calculated in a short-time analysis has shown
to be a decisive criterion of direction even in low SNR (> 0 dB) conditions up to
the spatial Nyquist limit. An advantage in terms of parameter range and standard
deviation is observed for the HG (low directivity).

Coherent interference in free-field and reverberant conditions

We finalize this fine-structure analysis of interaural parameters with a brief look
at the mix of two speech sources in free-field and reverberant conditions. For that
reason, the running speech of two speakers, one female and one male speaker, is
mixed at an SNR of 0 dB. Pauses in the speech material are excluded using the above-
mentioned VAD procedure. One speech source is kept at 0 deg (female speaker) and
the other speech source is changing its location relative to the receiver from −90 to
270 deg (male speaker). In this experiment we skip the moment analysis and directly
show the histograms.10 Figure 3.6 gives the results for the HG (low directivity) in

10Although an analysis of the PDFs in terms of mean and standard deviation would simplify the
comparison with previous studies in this chapter, this cannot easily visualized for two concurrent
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Figure 3.6: The PDFs of the fine-structure IPD and ILD parameter for two speakers (one
at fixed position in frontal direction and one rotating horizontally around the head) as a
function of azimuth and critical band. The SNR has been adjusted to 0 dB under free-
field and reverberant conditions. Column A refers to the HG (low directivity) and the
Columns B refer to the output of the Aachen head. The simulated reverberation conditions
are distinguished through the reverberation time RT in the titles.

anechoic conditions (Column A) and the Aachen head in anechoic conditions as well
as two reverberant conditions with reverberation times of 0.2 and 0.8 s (Columns
with the title B). We summarize the observations as follows:

(1) In accordance with the findings on the local/global SNR experiment in Chap-
ter 2.3.2, it is expected that about 50 % of the time-frequency bins have a local
SNR of 0 dB and higher in favour of one of the two sources. This distribution
is clearly seen in the free-field conditions for both the ILD and IPD parameter.
The binaural parameter traces reside at quantities (as a function of azimuth)
as if no interference was present. This clearly speaks for the disjointness of

sources in a two-dimensional plot. Moreover, the non-symmetrical inclined cumulation due to the
interaction of two concurrent sources in the binaural domain can only be appropriately assessed
with higher statistics. Therefore, the PDFs are directly plotted here.
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two sources in the STFT domain and illustrates the fundamental reason why
binaural speech processors can achieve a remarkable suppression of coherent
noise sources. Nevertheless, there is a percentage of overlap between the origi-
nal traces, which should ideally be accounted for in a binaural speech processor
weighting function.

(2) For both fine-structure parameters, the main traces show a high compactness,
even for the HG (low directivity) and the critical band with a centre frequency
of 7 kHz. Due to the fluctuating nature of binaural cues around the mid-line,
the HG (low directivity) introduces more ambiguity, especially in the 7 kHz
band shown here.

(3) In critical bands at lower centre frequencies (here 150 Hz), there appears to be a
higher IPD vector strength of lateral sources than of concurrently active sources
in the median plane. Experiments with two male speakers (not presented here),
however, demonstrate this to be a result of the spectral difference between the
female and male voices.

(4) Artificial reverberation strongly affects the binaural phase at low frequencies.
A consistent IPD parameter cannot be measured in the presence of reverber-
ation, in particular in the critical band with a centre frequency of 150 Hz,
neither under the condition of a reverberation time of 0.8 s, nor 0.2 s. This
observation especially accounts for the 0.2 s situation, which might indicate
the MISM implementation to be the cause of this deficiency. Moreover, the
resolvability of low frequencies is also impeded by the block-wise DFT-based
processing. Psycho-acoustically more plausible is a peripheral Gammatone fil-
terbank analysis method that offers a continuity signal processing. Generally,
the loss of binaural phase information complies with psycho-acoustical studies.
As the binaural waveform coherence is physically compressed in this frequency
range, any diffusion or noise contamination severely degrades binaural phase
cues (Rakerd and Hartmann, 2010).

(5) In bands with medium centre frequencies the binaural signals expose greater
phase differences (0.57 kHz in Figure 3.6) and, thus, a certain degree of degra-
dation on the binaural fine-structure by reverberation, might still allow for a
distinct phase contrast. This is observed in the experiment. At RT = 0.2 s we
find a blurred but a clear phase pattern, whereas at RT = 0.8 s the pattern
is smooth, but starts to blur beyond recognition due to the increased amount
of reverberation. Interestingly, the mean phase difference as a function of az-
imuth, i.e. the range of the IPD cue, is hardly modified by mild reverberation.

(6) The ILD parameter is shown to be a moderately accurate indicator of sound
source localization in reverberation. Although the traces are blurred, the over-
all mean of the distributions is not as much shifted to the mean as found in
the diffuse background of the canteen situation above. Standing waves, as
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they occur in small rooms, might impede the ILD localization in reverberat-
ing rooms. This characteristic of rectangular rooms is not modeled with the
applied MISM method.

(7) A small binaural offset is observed for all histograms and median values.
Whether the reason is of acoustical origin or due to a measurement error could
not be clarified.

Conclusions

This subsection analyzed interaural parameters of the waveform fine-structure at
the output of different binaural receivers in free-field conditions, as well as in the
presence of coherent and incoherent interference.

A salient insight of the simulations is that directional hearing aids alter the front-
back ambiguity of natural binaural cues. This ambiguity is, in three dimensions,
well-known as the cone of confusion artifact for narrow-band sounds. Hence, besides
the attenuation of sounds from the side and the rear due to the directional processing
of the beamformer, the cone of confusion is warped.11

Whereas the fine-structure IPD is only moderately changed by a directional front-
end, the ILD parameter offers a narrower range around the mean in the frontal
hemisphere and a much increased oscillation around the mean, hence ambiguity,
behind the head. Whether this implies a disadvantage in the source separation
process will be addressed in Chapter 5.

As a difficult scene of real-life situations, we opted to present the study on the
interaural parameters of a speech source in the diffuse and time-invariant canteen
noise situation. Apart from the lowest critical bands at the output of the Aachen
head, we found the fine-structure IPD to be a useable cue of direction, even at an
SNR of 0 dB and up to the spatial Nyquist limit. The same holds to a lesser extent
for the ILD above the spatial Nyquist limit. These findings generally correspond
to physiological and psycho-acoustical data on binaural fine-structure cues, which
commonly state that localization and intelligibility are generally possible above an
SNR of 0 dB (Stern et al., 2006).

With respect to the influence of diffuse noise on binaural parameters, the present
study corresponds to the initial findings given by Nix and Hohmann (2006). The
mean of the fine-structure ILD is strongly shifted to the median plane and the
standard deviation is increased. The increase of the standard deviation of the fine-
structure IPD is higher relative to the maximum parameter range of the mean. Its
mean, however, is less shifted to the median plane, as compared to the fine-structure
ILD.

11In a side study it was found that this warping of artificial binaural parameters leads to a
unique binaural ‘labeling’ for each source direction. Consequently, the front-back confusion can be
widely eliminated with CASA-based localization algorithms (Opdam, 2010; Ketwaru, 2010).
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A quantitative comparison between the results of Nix and Hohmann (2006) and
our results cannot easily be carried out, due to different bandwidths used in the
calculation of the binaural parameters as well as different setups and sound material.
However, we have the impression that our results are qualitatively in agreement with
their results. By way of example, Nix and Hohmann (2006, Table II) explicitly give
the central moments for a source at 60 deg in a lively cafeteria. At an SNR of 0 dB
and at the ERB band with a centre frequency of 2.88 kHz, these authors find an ILD
of 2.52 dB and a standard deviation of 4.36 dB. The simulation presented here in
Figure 3.4 shows a mean of about −3 dB (the sign is a matter of the orientation in
the calculation of the ILD) and a standard deviation of about 5 to 6 dB at a critical
band of 2.15 kHz (SNR of 0 dB/canteen background).
In the same SNR and location setup, Nix and Hohmann (2006, Table III) report a
mean IPD of 2.85 rad and an IPD standard deviation of 1.48 rad at the ERB band
with a centre frequency of 540 Hz. Using the Aachen head and the same setting (but
different equipment and sound material), we obtain different values but comparable
proportions between mean and standard deviation. The mean IPD is of about 1.5
rad and the IPD standard deviation is of about 1 rad in the critical band with a
centre frequency of 560 Hz.

In a second study, we analyzed interaural parameters in the presence of a coherent
interferer at an SNR of 0 dB in anechoic and reverberant conditions. In anechoic
conditions, the quantities of the ILD and IPD parameters clustered around their free-
field values. In reverberation we find the ILD to be a more competent parameter in
the determination of direction than the IPD parameter.

The disjointness of two sources in anechoic conditions is the key to the success of
binaural speech processors in these tasks. Generally, the challenge lies in the correct
activation of interaural parameters in more difficult situations. An evolutionary
optimization of algorithm CLP in Chapter 5, through a set of difficult conditions
will further complement our understanding as to what extent each of the two fine-
structure cues can be applied in the computational separation process.

3.3.2 Inference from the envelope of the binaural signal

The sensitivity of the auditory system to amplitude modulation in the absence
of spectral cues can be assessed with the temporal modulation transfer function
(TMTF). A first graph of this transfer-function dates back to the early 20th century
(Riesz, 1928). About fifty years later, psycho-acoustical and physiological studies
started to propose an auditory separation of envelopes through modulation filters at
higher stages of the auditory nerve. The popular Dau model mimics these findings
(Dau et al., 1997). Due to the success of this algorithmic approach in explaining
modulation-related phenomena, it is an essential part of many recent auditory mod-
els, as e.g. models of speech intelligibility (Christiansen et al., 2010).

The introduced CASA speech processor of Kollmeier and Koch (1994) in Chapter
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Table 3.2: Centre frequencies (Hz) of the 1/3 octave modulation filterbank applied in the
analysis of binaural parameters of the envelope. The frequencies have been rounded to the
nearest integer.

40 50 63 79 100 126 159 200 252 317

2.4, algorithm ELT, is conceptually similar in that it establishes a three-dimensional
decomposition in the left and the right channel, i.e. a time-varying decomposition
of centre and modulation frequencies. The difference with the Dau model lies in
the DFT-bin processing, as opposed to an auditory carrier and modulation filter
analogy, and in the absence of the nonlinear adaption stage. The ELT processor, on
the other hand, is extended by a binaural interaction stage, of which the interaural
parameters are analyzed in the following.

To generalize the following analysis, the DFT-bins of the carrier and modulation
frequencies were subdivided and averaged into broader frequency bands. The centre
frequency bins were again averaged according to the critical band definition given in
ANSI (S3.5-1997, Table I), and the modulation frequency bins were averaged with a
filter bank of constant relative bandwidth of 1/3 octave. Such a frequency spacing
was found to approximate psycho-acoustical modulation tuning curves (see the in-
troduction in (Kollmeier and Koch, 1994)). The centre frequencies belonging to the
1/3 octave filter bank used in this work are given in Table 3.2.

Consequently, the DFT modulation spectra across centre frequencies are grouped
and added with:

x̊ll(dcb,mcb, o) =

du(dcb)�

d=dl(dcb)

mu(mcb)�

m=ml(mcb)

|̊xl(d,m, o)|2, (3.3.4)

x̊rr(dcb,mcb, o) =

du(dcb)�

d=dl(dcb)

mu(mcb)�

m=ml(mcb)

|̊xr(d,m, o)|2, (3.3.5)

x̊rl(dcb,mcb, o) =

du(dcb)�

d=dl(dcb)

mu(mcb)�

m=ml(mcb)

x̊l(d,m, o)̊x∗
r
(d,m, o), (3.3.6)

where the overscore denotes the averaged quantities. In these equations, ml and
mu are the lower and the upper cutoff DFT frequency coefficients, respectively, that
belong to a particular modulation band with index mcb. The first summation de-
notes the above-introduced critical band averaging. Subsequently, the auto power
and cross power signals in critical bands are time-averaged analog to the Equa-
tions (2.4.37) to (2.4.39) with a time constant τ̆ of 8 ms. Then, the interaural
parameters are calculated analog to the Equations (2.4.41) and (2.4.42). Due to the
time sampling of the complex band pass signals in algorithm ELT with 8 kHz (cf.
Table 2.3), the analysis is restricted to an upper frequency of 4 kHz to avoid aliasing.
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In the following we restrict the analysis of binaural parameters to focus on the most
important questions of this research. Therefore, only the free-field condition and an
SNR condition of 0 dB with the previously introduced canteen recording are pre-
sented. Furthermore, only a subset of the three-dimensional binaural feature space
can be given in the scope of this work. Nevertheless, the study is concentrating
on the salient characteristics and a comparison with the binaural parameters of the
fine-structure is attempted. The following analysis is linked to Appendix B, where
due to the novelty of the present examination, further investigations on the binaural
envelope parameters are given.

Interaural envelope parameters at the output of the Aachen head

Based on the binning process of binaural cues, Figure 3.7 gives the interaural differ-
ences of the envelope at two centre and modulation (-centre) frequency combinations,
dcb/mcb, as measured on the output of the Aachen head. Since the fundamental fre-
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Figure 3.7: The PDFs with mean (solid line) and standard deviation (dashed line) of the
envelope-based ILD and IPD parameter as a function of source direction of the Aachen
head and band combination. The titles denote the SNR condition, the carrier band centre
frequency and the modulation band centre frequency (mod).

quency of speech (F0) starts from approximately 70 Hz, it seems unusual to choose
a first modulation band with a centre frequency as low as 40 Hz. The reason is that
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algorithm ELT employs interaural parameters in the entire range of carrier and mod-
ulation DFT bins up to a maximum F0 frequency of approx. 400 Hz. In addition,
many dcb/mcb combinations reflect modulation frequencies that are higher than half
the bandwidth of the carrier band. The present research consequently encompasses
these frequency combinations. Our observations are summarized:

(1) In free-field conditions, we first observe meaningful ILDs of the envelope at
a centre frequency of 150 Hz and unambiguous IPDs of the envelope-based
IPD at a centre frequency of 2.15 kHz. Hence, as compared to the binaural
parameters of the fine-structure, the envelope-based parameters are shown to
be applicable in a broader frequency range.

(2) For a low-frequency carrier, here the band with a centre frequency of 150 Hz,
the shift of the envelope-based ILD towards the midline is smaller at an SNR
of 0 dB, than it has been observed for its fine-structure equivalent. A quan-
titative inspection of the fine-structure ILD in Figure 3.4 shows an maximum
parameter range m� = 2.02 dB at 150 Hz in the 0 dB condition, whereas the
envelope ILD offers a m� = 5.11 dB in the identical setup. Therefore the enve-
lope ILD appears to be a more robust cue of direction at low-frequency carrier
bands.

(3) The shift towards the median plane of the envelope ILD is shown to be greater
at higher carrier bands. This is illustrated for the dcb/mcb combination at
2.15 kHz/159 Hz. The ILD reduces from m� = 43.18 dB in the free-field
condition to m� = 6.18 dB in the 0 dB noise condition. The fine-structure
ILD direction-dependent range of the mean with m� = 5.66 dB in Figure 3.4
is not much smaller. Presumably interference phenomena at the contralateral
ear lead to changes of the modulation frequency and cause the huge interaural
difference for some lateral source positions observed in the free-field condition.

(4) Due to the increase of the standard deviation along with the reduction of m�,
the envelope ILD is considerably weakened as an indicator of direction in the
diffuse noise and 0 dB SNR condition. The similarity among the envelope-
and fine-structure-based ILD at high frequencies in noise gives a justification
for the general approach to calculate the ILD from the fine-structure. Differ-
ences are, however, likely to occur in the presence of a concurrent speaker.
Then the separation based on different fundamental speech frequencies should
theoretically lead to an advantage of the envelope-based ILD processing. In
Appendix B Figure B.3, a more exhaustive analysis of the envelope ILD cue
in the canteen background at 0 dB is given.

(5) The mean standard deviation σ� of the envelope ILD in the free-field condi-
tions is slightly higher than found with the fine-structure ILD, which is a con-
sequence of the aforementioned fluctuation of the ILD due to the short-term
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analysis. Because algorithm ELT is based on a twofold short-time window
analysis, the ILD estimation error is higher than in algorithm CLP, which is
based on single analysis-window processing.

(6) The mean standard deviation σ� of the envelope IPD is comparable with the
fine-structure IPD in a noise-free environment. A dependence between enve-
lope ILD and envelope IPD can be inferred by the fact that the IPD standard
deviation is increased at high envelope differences. As the envelope IPD is
calculated from an intensity weighted average of phase differences across DFT
bins, a strong ILD fluctuation at a particular DFT bin is shown to result in
an outlier of the IPD parameter.

(7) The indication of direction formed by the envelope IPD is a function of the low-
frequency modulation and, therefore, the phase differences are small for lateral
sources. For this reason, at low-frequency modulation bands no meaningful
phase difference can be computed, here shown in the modulation band with
a centre frequency of 40 Hz. In Appendix B Figure B.2, a more exhaustive
analysis of the envelope IPD cue in the free-field conditon is given. Therein it
can be observed that it takes a modulation band with a centre frequency of
about 100 Hz across all carrier bands to obtain a meaningful phase difference
at lateral positions.

(8) Although the envelope IPD circumvents the spatial Nyquist limit at high car-
rier frequencies, the standard deviation at low SNRs is high and comparable
to the fine-structure IPD in similar conditions. In addition, the mean envelope
IPD of lateral positions is subject to a shift to the median plane of about the
same order as the envelope ILD cue. This behavior is in contradiction with
the fine-structure IPD and strongly reduces the distinctness of the envelope
IPD in diffuse background conditions at low SNRs. Rakerd and Hartmann
(2010) support this result with the finding that the envelope IPD requires a
much higher coherence to be a decisive cue of direction, than found for the
fine-structure IPD. In Appendix B Figure B.4, a broader analysis of dcb/mcb

combinations of the envelope-based IPD in the canteen background at an SNR
of 0 dB is given.

(9) The range m� of the envelope ILD only slightly decreases towards higher mod-
ulation frequencies, as demonstrated in Figure B.1 in Appendix B. This is
an important result because it shows that the modulation frequency may be
greater than half the bandwidth of the carrier frequency band to calculate
valid ILD values. Dau et al. (1997) observed a similar phenomenon in psycho-
acoustical tests and model simulations. The authors relate it to the leaking
of modulation energy among broadly tuned modulation bands and interau-
ral fine-scale differences due to envelope fluctuations, which can be exploited.
Correspondingly, we explain this finding by interaural differences of the car-
rier which persist as a residual in the envelope fluctuations. Regarding speech
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Figure 3.8: The PDFs with mean (solid line) and standard deviation (dashed line) of the
envelope-based ILD and IPD parameter as a function of source direction of the HG (low
directivity) and band combination. The titles denote the SNR condition, the carrier band
centre frequency and the modulation band centre frequency (mod).

enhancement with a DFT approach, the observed phenomenon allows to cal-
culate IPDs across a great many of DFT bins that hold modulation frequencies
higher than half the bandwidth of their associated DFT-based carrier bins, as
done in Kollmeier and Koch (1994) .

Interaural envelope cues of the HG (low directivity) in a diffuse background

The previous experiment was repeated at the output of HG (low directivity). The
results are given in Figure 3.8. Our observations are listed:

(1) In free-field conditions, the envelope ILD of the HG (low directivity) shows a
smaller maximum deflection than the envelope ILD of the Aachen head. Thus,
the rangem� of the envelope ILD in the frontal plane is shown to be compressed.
However at an SNR of 0 dB, the parameter range is of approximately the
same order as found at the output of the Aachen head. Further combinations
of carrier and modulation frequency bands in the free-field condition at the
output of the HG (low directivity) are presented in Appendix B Figure B.5.

(2) The envelope ILD of the HG (low directivity) is a poor cue of direction at
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low dcb/mcb combinations and more so at low SNRs, which demonstrates a
disadvantage with respect to the Aachen head.

(3) The envelope IPD at the output of the HG (low directivity) is compressed
too and, hence, offers hardly any distinction in the frontal hemisphere in free-
field conditions. In the rear, the parameter shows fluctuations. At an SNR
of 0 dB, the deteriorated statistical properties of the envelope IPD render any
application useless, as it was previously observed with the Aachen head too.

(4) Similar to the statistical findings of the binaural fine-structure parameter, no
symmetry around the frontal plane is found, which, as a consequence of the
directional processing, gives rise to less front-back errors. The aforementioned
fluctuations in the rear hemisphere might, however, lead to confusion with
non-symmetrical positions behind the head.

With respect to the intended source separation, an interim summary of the findings
above yields disappointing results for interaural envelope parameters in diffuse noise
conditions. The envelope IPD has shown to be strongly distorted and cannot deliver
an indication of direction. The envelope ILD is less affected by a diffuse sound
field at an SNR of 0 dB. Yet, an envelope ILD-based source separation is likely to
be strongly hampered by the statistical properties of the short-time parameter too.
Figure B.3 and Figure B.4 in Appendix B give further statistical insights under these
conditions, for the natural envelope ILD and the natural envelope IPD, respectively.

The comparison between the Aachen head and the HG (low directivity) shows a
disadvantage of the binaural envelope statistics for the hearing aids. As it has been
shown, the leveling of the directional pressure differences in the frontal plane of the
HG (low directivity) has a detrimental effect on both envelope cues. The question
that arises at this point is whether the directional front-end will have a disadvantage
in the source separation process. Chapter 5.4 will treat this problem.

In preparation for a successful source separation, the calculation of the binaural
envelope parameters is altered in the following to compensate partly for the observed
susceptibility to noise. As the psycho-physical nature of these parameters cannot
fundamentally be changed, the basic aim is to facilitate the usage of the envelope
ILD parameter in diffuse noise conditions, and to use the envelope time difference
parameter for the suppression of coherent interference. Subsequent to the change
of the calculation method, we return to the statistical analysis of the interaural
envelope parameters in coherent interference and reverberation, as previously done
with the binaural fine-structure parameters.

Magnification of the envelope ILD

The limited potential of short-time interaural envelope cues to distinguish sources
at low SNRs and under diffuse conditions suggests the magnification of the binaural
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envelope parameters. Interaural magnification (as well as the term) was first in-
troduced by Durlach and Pang (1986) to enhance spatial perception. Later Peissig
(1992) analyzed this processing with an algorithm similar to the algorithm of Gaik
and Lindemann (1986), i.e. a variant of algorithm CLP of the present work.

We adopt this strategy and introduce a nonlinear magnification of the envelope ILDs
by squaring the auto power modulation spectra before calculating the ILD:

∆L̃(dcb,mcb, o) = 10 log
10




�
φ̊ll(dcb,mcb, o)

φ̊rr(dcb,mcb, o)

�2


 , (3.3.7)

where the overscore denotes the critical band averaging. The resulting envelope
ILDs of this approach are given in Figure 3.9 for the Aachen head in Row A and the
HG (low directivity) in Row B.

The plots indicate an amplification of the range m� by a factor of approximately
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Figure 3.9: The PDFs with mean (solid line) and standard deviation (dashed line) of the
envelope-based and magnified ILD as a function of source direction of the Aachen head in
Row A and the HG (low directivity) in Row B. The titles denote the SNR condition, the
carrier band centre frequency and the modulation band centre frequency (mod).

two. In a similar manner, the mean standard deviation σ� increases by a factor of
approximately two. What appears to offer no benefit on the whole, reveals a com-
pression of the standard deviation at low ILD, i.e. around the median plane. This
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is also verifiable for the HG (low directivity). While the envelope ILD is originally
compressed around the midline in the frontal hemisphere (see Figure 3.8), the mag-
nification introduces a higher range, i.e. a maximum variation of the mean, as a
function of direction. Additionally, a smaller σ� in the frontal direction is observed
after application of Equation (3.3.7).
In Appendix B, a more comprehensive overview of this approach in combination with
the HG (low directivity) is given. Overall, the advantage resulting from magnifica-
tion is for most directions offset by an increased standard deviation. Nevertheless,
we favour a higher range and a lower standard deviation of the level difference in the
median plane, over the original approach. Moreover, since the disjointness of sources
in the modulation spectra might be obscured by the compression of the envelope ILD
parameter at the output of the HG (low directivity) in the binaural domain, an ad-
vantage can be expected in coherent or moderately coherent interference conditions.
Consequently, the envelope ILD magnification approach should result in a better
source separation under these circumstances.

On the choice of envelope ITD in source separation

Preparatory work on noise suppression using the binaural temporal differences in
free-field conditions showed an advantage of the envelope ITD over the envelope
IPD. The envelope ITD is calculated analog to Equation (2.4.42), however, per cen-

tre and modulation critical band combination, i.e ∆t̊(dcb,mcb, o). Subsequently,
PDFs in the range of −3.5 ms to +3.5 ms with 500 bins were generated for the
following statistical analysis.

As can be seen at low-frequency modulation bands in Figure 3.10, small variations
of the IPD lead to high variations of the ITD. As a result of that, the standard
deviation of lateral sources is much higher than for sources in the median plane.
Due to the same effect, another benefit of the envelope ITD over the envelope IPD
is the reduced frequency at which clear directional labeling is possible. As the com-
parison between Figure 3.10 and 3.11 shows, the envelope ITD is an indicator of
direction, above the modulation band with a centre frequency of 100 Hz upward
(under free-field conditions). In the same band, the envelope IPD is less responsive
to direction. Yet its standard deviation for lateral sources is lower. The ratio m�/σ�

is approximately the same for the envelope ITD and the envelope IPD, however
beyond this modulation band the ratio increases in favour of the former.
Finally, the envelope ITD is approximately independent of frequency above approx-
imately a modulation band with a centre frequency of 126 Hz. If, for example, a
lateral sound source is to be identified, the envelope ITD approaches a common
maximum around 0.7 ms for lateral sources. This represents an advantage in the al-
gorithmic clustering of sources across carrier and modulation frequencies. For these
reasons, in this work, the method of calculating temporal differences from the bin-
aural envelope signal is chosen as the standard approach in algorithm ELT.
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Figure 3.10: The PDFs with mean (solid line) and standard deviation (dashed line) of the
envelope-based ITD parameter at the Aachen head as a function of source direction, analyzed
in carrier and modulation band combinations that are centred at the specified frequencies
(cf and mod. cf, resp.). The SNR was set to 60 dB.
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Figure 3.11: The PDFs with mean (solid line) and standard deviation (dashed line) of the
envelope-based IPD parameter at the Aachen head as a function of source direction, analyzed
in carrier and modulation band combinations that are centred at the specified frequencies
(cf and mod. cf, resp.). The SNR was set to 60 dB.
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An analysis of the envelope ITD at the output of the HG (low directivity), shown
in Figure B.8 in Appendix B, reveals an increased standard deviation, in particular
at medium carrier frequencies and behind the head. Nevertheless, the interaural
analysis at the output of the HG (low directivity) equally benefitted in preliminary
source separation exercises when using the envelope ITD.

So far we chose the envelope ITD as a parameter for source separation under free-field
conditions. For the sake of completeness, we conclude this study with an analysis of
the envelope IPD and the envelope ITD parameter at the output of the Aachen head
in the diffuse canteen situation at an SNR of 0 dB. The statistics of these interaural
parameter distributions are given in Appendix B in Figure B.4 and B.9. As it is
expected from previous inspection in this chapter, both figures demonstrate that
neither the envelope ITD nor the envelope IPD are suited to determine direction
under these conditions.

Coherent interference in free-field and reverberant conditions

An analysis of two coherent speech sources under free-field and reverberant condi-
tions in the binaural envelope domain, is given. In view of the overall aim of noise
suppression, the previously introduced envelope ITD and the magnified envelope
ILD are used for generating the PDFs. Despite the different algorithmic approach,
the experimentation setups are identical to the setups under which the analysis of
the binaural fine-structure cues in free-field and reverberant conditions was carried
out.

The results of the analysis are presented in Figure 3.12, where the letter A in the
titles refers to the HG (low directivity) and the letter B to the Aachen head. To
highlight the most important characteristics, only a subset of carrier and modula-
tion frequency band combinations is depicted. The left-hand side plots represent
histograms of modulation bands, of which the centre frequencies are within half the
bandwidth of the respective carrier frequency bands. The right-hand side plots show
histograms at the centre frequency of the highest modulation filter of 317 Hz used,
which is outside each of the employed carrier bands. Our observations of the analysis
are:

(1) No disjointness of two sources in the binaural domain of the envelope ITD
is observed at combinations of low carrier and modulation frequency bands.
The separation of the traces of concurrent speakers increases in higher carrier
or modulation bands and for a combination of both. In that sense, the two
front-ends show a comparable behavior.

(2) As found in a previous experiment, the envelope ILD is a clear indicator of
direction even in the low-frequency carrier band that resides at 150 Hz. The
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Figure 3.12: The PDFs of the envelope-based ITD and ILD parameter for two speakers (one
at fixed position in frontal direction and one rotating horizontally around the head) are given
as a function of azimuth and at combinations of carrier and modulation (mod) frequency
bands (the centre frequencies are specified for each row). The SNR has been adjusted to 0
dB under free-field and reverberant conditions. Column A refers to the HG (low directivity)
and the Columns B refer to the Aachen head. The simulated reverberation conditions are
distinguished through the reverberation time RT in the titles.

traces of the two sources are well separated at the output of the Aachen head.
Overall, the disjointness in the binaural domain is less distinct for the HG (low
directivity), in particular in low carrier frequency bands.

(3) Generally, no directional information can be obtained from the envelope ITD
parameter in mild reverberation. Merely at high carrier and modulation fre-
quency bands, the envelope ITD exhibits an azimuth-dependent distribution.
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In spite of that fact, the parameter is severely affected by a high standard
deviation of its distribution.

(4) A similar conclusion can be drawn from ILD histograms in reverberation.
Whereas these are shown to be rather stable, with respect to their mean,
the distributions are wide at all band combinations. This finding corresponds
to our observations on the fine-structure ILD and fine-structure IPD: the enve-
lope ILD is shown to be less affected by reverberation than the envelope ITD.
Again, the results have to be qualified as reverberation has been simulated
with an MISM approach.

(5) The reason for the offset that is observed in some plots could not be identified.
It is likely that the envelope along the high frequency carrier is difficult to
compute numerically and therefore sensitive to a small but constant mismatch
between the left and the right channel.

Conclusions

In the second part of this statistical study, interaural parameters of the binaural
envelope signal have been analyzed at combinations of auditory-based carrier and
modulation frequency bands. Our findings correspond to psycho-acoustical data in
several points.

In the first place, the envelope ITD (or equivalently the envelope IPD) contains
directional information in free-field conditions above the F0 modulation frequency
of approximately 100 Hz, in our implementation. This parameter of temporal inter-
aural difference is much more susceptible to noise than the fine-structure equivalent
and, therefore, it has been observed that no information of direction can be deduced
at an SNR of 0 dB, under the diffuse canteen condition analyzed.
This conclusion is supported by the study of Rakerd and Hartmann (2010), who
found that a top-level binaural envelope coherence is needed to yield a distinct
envelope-based interaural temporal difference cue. In addition, Rakerd and Hart-
mann (2010) demonstrated that the envelope ITD never achieves the accuracy of
the fine-structure ITD. The latter cue has shown to offer a maximum resolution of
1 deg, whereas the envelope ITD offers a resolution limit of about 6 deg. This is ap-
proximately the resolution that is provided by the ILD cue in free-field experiments
(Stern et al., 2006).
Our analysis shows a certain amount of fuzziness of the interaural envelope param-
eters, especially for lateral source positions, as expressed through a considerable
standard deviation of the short-time parameters in free-field conditions.12 Finally,
the main advantage of the envelope ITD parameter over its fine-structure counter-
part is, of course, its applicability above the spatial Nyquist limit under free-field

12As it has been already pointed out, the reason for the fuzziness of envelope cues is assumed to
originate in the short-time processing of algorithm ELT, especially in the assessment of interaural
level differences.
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conditions, with and without coherent interference.

With respect to the applicability of the interaural differences of the envelope in the
noise suppression task of algorithm ELT, we propose the utilization of the envelope
ITD instead of the envelope IPD. The envelope ITD parameter was found to be a
better directional indicator at low modulation frequencies as well as to be indepen-
dent of frequency at higher modulation frequency bands. Furthermore, the envelope
ITD does not show side maxima, which is a limitation for the applicability of the
fine-structure ITD (Nix and Hohmann, 2006).

The ILD, when calculated from the envelope, corresponds to the fine-structure re-
sults with the exception that it remains a parameter of direction at low frequency
bands with an m� (maximum range of the mean) that is twice as high, even at an
SNR of 0 dB in the analyzed diffuse canteen condition. Hence, in these low SNR and
diffuse noise conditions, the ILD has shown to be the only interaural envelope pa-
rameter that offers a moderate indication of direction over all frequencies. Therefore,
and under these conditions, it can be considered the dominant interaural envelope
parameter, which was confirmed in psycho-acoustical cue trading experiments (Rak-
erd and Hartmann, 2010).

Similar to its fine-structure equivalent, a disadvantage for the envelope ILD parame-
ter is found at the output of the beamforming front-end of the HG (low directivity).
Due to the directional weighting, the envelope ILD is shown to be pulled to the mid-
line, a characteristic which is best observed in anechoic and coherent interference
situations. As the ILD parameter gains importance in complex noise fields for a
successful cocktail party processing in the auditory system, the absence of binaural
level differences at the output of a hearing aid will likely have a detrimental effect on
speech intelligibility. Therefore, the front-end and the post-processor should at least
compensate this disadvantage in terms of an overall speech intelligibility gain. To
counteract the compressive nature of the ILD parameter in the frontal hemisphere
at the output of the HG (low directivity), a technique known as magnification of
interaural parameters has been introduced for a cue expansion (i.e an improved cue
range m�). By such means, we aim to improve the binaural processing of algorithm
ELT as well as the auditory system.

In summary, we find that the interaural temporal parameters of the envelope in the
range of F0 modulations are less robust in noise than it was initially expected during
the development of algorithm ELT (Kollmeier and Koch, 1994). Our observations
are corroborated by Blauert (1997, p. 333) who summarizes: “It apprears to have
been conclusively proven that the mechanism that evaluates interaural envelope time
differences is significantly more susceptible to noise than the mechanism that eval-
uates interaural time differences in the fine-structure of the signal.”
As the binaural resolution deteriorates, the hearing system will discount equivocal
cues of binaural difference, in favour of timbre and modulations in the range of the
syllabic rate of speech (Barker, 2006). Also the envelope-based F0 and its harmon-
ics, based on quasi-invariant speech sections, are likely a more stable cue in noise
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than its short-term derived binaural instants. To date, these model processes are,
however, not yet successfully combined in a single CASA-based speech processor.
As a step towards a pattern-based application of signal features, the following sec-
tion introduces a method to employ optimally binaural parameters in the speech
enhancement task under different noise conditions.

3.3.3 Pattern-driven source separation

This subsection covers the establishment of pattern-driven weighting functions, which
are used in the CASA algorithms ELT and CLP, for the separation of the target
speech and noise. The introduction of the chapter already referred to the short-
comings of bottom-up CASA methods in the binding process of a speech stream.
Barker (2006) concluded that bottom-up cues merely activate neural structures from
which top-down schemata (or hypotheses) are bootstrapped. A simplified analogy
of such a top-down schema-driven process in the domain of interaural parameters is
presented in the following, based on a Bayesian classification method.

The approach of a principled and robust binaural source separation technique was
introduced by Harding et al. (2005) for the design of a CASA front-end in automatic
speech recognition systems. The method generates time-frequency soft-masks, based
on the probability that the interaural parameter of a certain time-frequency bin is
caused by the target source. The strategy is similar to the data-driven mask gen-
eration of Madhu (2009b) and Boone et al. (2010); however, as the target source
is considered to be fixed at zero azimuth, the processing is much simplified and
the probabilities are directly derived from training data, rather than a parametric
model.

To calculate soft-masks with a Bayesian a posteriori estimator, the short-time binau-
ral parameters are considered to be a stochastic process with �∆ being a time-variant
feature vector of binaural parameters at d DFT bins and realizations in, for example,
the range of ±π for the IPD. The basis for the stochastic nature of binaural parame-
ters is given by the algorithmic short-time processing and the varying and nonlinear
superposition of multiple sources in the binaural domain, as it was identified in the
first two parts of the current chapter.

Based on this assumption, it is possible to determine the a posteriori probability
of the presence of the target source, if the underlying stochastic process is well ap-
proximated by means of an empirical estimation process. This estimation process
has to generate a priori knowledge in form of possible feature distributions, i.e. the
distributions of binaural parameters of sound from all directions p(�∆) and the dis-
tributions when only the target p(θt) is present, with θt being the target direction.
The application these a priori distributions for an optimal (a posteriori) soft-decision
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rule can be calculated with the conditional probability:

p(θt|�∆) =
p(�∆ ∩ θt)

p(�∆)
. (3.3.8)

With the expansion of the total probability in the denominator, the equation is
rewritten in the familiar form of the Bayesian a posteriori calculation method:

p(θt|�∆) =
p(�∆|θt)p(θt)�
θ p(

�∆|θ)p(θ)
. (3.3.9)

The posterior distribution p(θt|�∆) can be directly read at the sample observation
�∆. To simplify the notation, we denote the numerator of Equation (3.3.9), which is
dominated by target signal, PDFt, and indicate the denominator, which is reflecting
binaural parameters of all sources, PDFa.

Introducing the probabilistic approach to the binaural weighting process greatly
simplifies the algorithm and, more importantly, improves the performance of the
binaural source separation. While Gaik and Lindemann (1986) and Bodden (1993)
already accounted for some of the interactions between competing sources in the bin-
aural domain, the majority of binaural weighting approaches use a clean binaural
parameter reference for the establishment of weighting functions in noise (Kollmeier
and Koch, 1994; Wittkop and Hohmann, 2003). As previously mentioned, the suc-
cess of these approaches is severely hindered in complex sound fields.

Binaural parameter statistics have also been applied to sound localization by using a
maximum a posteriori (MAP) approach (Nix and Hohmann, 2006). In a side study
of the present work (Ketwaru, 2010), this localization approach has been reassessed
and applied to different binaural front-ends with and without directivity. In a com-
parative study with auditory-based anechoic reference or no-reference models (e.g.,
Albani et al., 1996; Liu et al., 2000; Elzinga, 2010; Opdam, 2010), the statistical ap-
proach demonstrated to be superior to every other binaural localization algorithm
and, in addition, allowed further improvement in localization accuracy through the
application of a beamforming front-end.

As afore-mentioned, in the field of speech intelligibility enhancement, Madhu (2009b)
applied a parametric a posteriori approach to establish a data-dependent time-
frequency mask with the information delivered from an array-based localizer. In
the work of Boone et al. (2010) this approach has been adopted and is applied to
a binaural output of the HG (low directivity). Therein an implementation of the
localization processor of Albani et al. (1996) is combined with algorithm ELT, which
is widely based on the algorithmic details as given in Kollmeier and Koch (1994).13

Essentially, Boone et al. (2010) applied the localizer to define the aperture and

13At the time of the development of this algorithm, we were not aware of the implications the
algorithmic details in (Kollmeier and Koch, 1994), which are discussed and revised in Chapter
2.4.3. The algorithm was nevertheless able to increase speech intelligibility (i.e., the Better Ear I3,
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subsequently accessed clean binaural reference parameters to perform a directional
filtering. In effect, the approach successfully mitigates the loss in speech quality
at a given intelligibility gain, based on the scene adaptive procedure that adjusted
the aperture of the binaural algorithm to the interference. Nevertheless, binaural
parameters obtained by this clean reference approach are not optimal.
The approach taken here constitutes a leap in terms of simplicity and efficiency by
matching the binaural differences with a real-world reference of these parameters in
a particular situation. The questions that arise with respect to a future application
in hearing aids are: first, will it be possible to classify scenes sufficiently accurately
in order to determine which reference maps to use, and, secondly, does a particular
binaural speech processor adapt to scenes if no perfect matching between a real-
world scene and a reference lookup table exists. The second question is addressed
in Chapter 5.

In the following, the probabilistic pattern-driven source separation approach is exam-
ined by means of sound scene examples. Therefore, we first analyze the classification
approach with algorithm CLP, i.e. the binaural carrier-based speech processor. The
algorithmic details have been given in Table 2.2. An analysis of binaural differences
is performed at 257 DFT bins. To that end, the fine-structure IPD and ILD are
calculated and, as a result, the feature vector �∆ accounts for 2d, i.e. 514 variables.
Thus, for the two binaural parameters at their respective DFT bins, a priori his-
tograms have to be generated. Consequently, a priori PDFs are constructed with
an empirical approximation, by measuring the time series of the short-time binaural
parameters in a particular sound scene. Specifically, the time sample values �∆ of
each DFT coefficient d is binned to the PDFs (i.e. PDFt and PDFa) with 500 bins
in the range of ±π for the fine-structure IPD parameter and with 500 bins in the
range of ±40 dB for the fine-structure ILD parameter.

Prior to the estimation process, connected discourse with a length of two minutes
was composed of concatenated utterances, separately spoken by both sexes. Male
speakers comprised two thirds of the speech material. The sentence material of the
Dutch language is taken from the Multilingual TNO Human Factors database (TNO,
2000). The mixtures were composed in twelve spatial configurations. While the tar-
get was fixed at 0 deg in all mixtures, the interfering speaker alternately resided at
−90, −50, −30, −20, −10, −5, 5, 10, 20, 30, 50 and 90 deg, and the global SNR was
set to 0 dB.
When a lookup table in a particular background, e.g. the canteen ambiance, was
generated, a mix with one coherent interferer was generated, and the global SNR was
set to 0 dB between the scene and the interferer. In this fashion, twelve augmented
scenes were generated and subsequently mixed with the target speaker. That way,
we aimed to decrease moderately the diffusion of binaural parameters, which would

see Chapter 4), mainly in sustained vowel-sections, which corroborates our assumption of the dom-
inance of the statistical penalty weight in this setting (see Chapter 2.4.3). In informal listening, we
considered the algorithmic distortions to be lower than found with the implementation of algorithm
ELT, proposed in the present work.
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result from a plain mix with a background scene, while keeping the global SNR be-
tween the total interference and the target signal at 0 dB.

Although it is as an artificial concept, we continued to determine the SNR at the
ear-level, including the linear average between the ears. In view of the findings in the
first parts of this chapter, the rationale behind this approach is given by the strong
correlation between the statistics of binaural parameters and the SNR at the ear-
level. This finding, furthermore, gave rise to the assessment of the binaural speech
processors using the ear-level SNR, later in the present work. In spite of the fact that
this approach excludes the directional level differences of beamforming front-ends,
it allows for a better comparison with omni-directional receivers and between CASA
post-processors.
Notwithstanding the fact that the idea of directional level independence has no basis
in reality, we equalize this property to isolate characteristics that would otherwise
not be easily identifiable. Hearing aids using the approach proposed here should,
of course, reflect the directional level dependence of the binaural front-end in the a
priori PDFs.

In order to identify binaural cues of the target in the presence of an interferer,
Harding et al. (2005) proposed the application of an IBM, as introduced in Equa-
tion (2.3.15), which, in the following application, includes and excludes STFT bins
like a logical operator prior to the binning process. IBMs were preferred over soft-
masks, as they weight the target signal close to 0 dB at the local time-frequency
SNR equally strong as high energy portions. Thereby the convolution-like mixtures
in the binaural domain are unravelled in a ground-truth based fashion, i.e. a pattern,
instead of assigning soft-mask weights and, hence, emphasizing sparsely scattered
bins of dominant target speech, which will be tending towards binaural parameter
values of free-field conditions. For the utilization of algorithm CLP, the local cri-
terion ε of Equation (2.3.15) has been set to an SNR of 0 dB. The global mixing
SNR is set to an SNR of 0 dB. This choice should lead to an approximate equal
energy distribution for the target speaker and one interfering speaker in anechoic
conditions. However, using the global mixing SNR, much less bins will be labeled
with the value one in, for example, the canteen situation (cf. Figure 2.6).

Figure 3.13 shows the a priori histograms of the fine-structure IPD parameter (let-
ter A and B denote the PDFt and PDFa, respectively) and the resulting probability
lookup histogram (letter C), for which a certain histogram threshold �hist (cf. Table
2.2) is chosen to prevent a division by zero and to adjust the aperture of the binaural
filter. This particular threshold value is held constant in the subsequent illustration
of the lookup PDFs of the algorithms CLP and ELT in the Figures 3.13 and 3.15.
At a later point in this work, the threshold �hist is optimized to achieve a maximum
speech intelligibility in a particular situation.
Returning to the upper plots in Figure 3.13, the anechoic mixture PDFs expose a
symmetrical pattern with respect to the midline for both the Aachen head and the
HG (low directivity). The traces are well resolved in those histograms, implying
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Figure 3.13: PDFs and weighting lookup tables of the fine-structure IPD as a function of
centre frequency, which are used in algorithm CLP for pattern-based source segregation.
The letters A, B and C left to the subplots denote the PDFt, PDFa and the lookup table,
respectively. Values close to zero are coded in black, whereas higher probability or weighting
values are coded in white.

a strong disjointness in the time-frequency plane. Darker shades of grey indicate
mixtures at the time-frequency bin level. Hence, the probability lookup tables in
the lower row are not zero off the midline.
Lookup tables of IPD target probabilities may facilitate the usage of IPD cues be-
yond the spatial Nyquist limit in controlled acoustic setups. However, natural head
movements, as they normally occur when facing a target speaker, will probably lead
to distortions due to small wavelengths when using the IPD weighting at higher
frequencies.
The right-hand side column of Figure 3.13 shows the PDFs in the (augmented,
see above) canteen situation. As can be seen, the pattern of traces dissolves, only
the midline response is vaguely maintained, resulting in a fuzzy midline weighting.
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Figure 3.14: PDFs and weighting lookup tables of the fine-structure ILD as a function of
centre frequency, which are used in algorithm CLP for pattern-based source segregation.
The letters A, B and C left to the subplots denote the PDFt, PDFa and the lookup table,
respectively. Values close to zero are coded in black, whereas higher probability or weighting
values are coded in white.

Although the last result is clearly demonstrating the limitation imposed by the fine-
structure IPD weighting in unfavourable situations, it also represents the best result
that can be gained in this separation process with the help of the here applied prob-
abilistic approach.14

Figure 3.14 presents the PDFs and probability lookup table results for the fine-
structure ILD. The outliers of the interaural transfer function of the HG (low di-
rectivity) above 4 kHz expose a strong difference with the Aachen head. In spite

14It has to be considered that the composition of the a priori distributions followed a set of
heuristic rules. Their influence on the optimality of the classification approach has not been fully
tested yet.
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of that, the a posteriori lookup table (Row C) accounts for this characteristic and
shows a rather narrow midline weighting. In the canteen situation, the right-hand
side column of Figure 3.14, the ILD-based weighting can only suppress binaural
level differences of great magnitude, which is expected from the statistical analysis
of interaural cues of the fine-structure, presented earlier.

In the following, the probabilistic weighting method for noise suppression is ana-
lyzed in view of utilization in algorithm ELT. As it has been introduced, the main
difference to algorithm CLP lies in the binaural rendering of the classification and
weighting method in a joint carrier and modulation domain. Therefore, based on
the algorithmic details in Table 2.3, vector �∆ in Equation (3.3.9) contains (basically,
see below) for each binaural envelope cue, combinations of 64 carrier and 27 modu-
lation frequency bins. This results into 3456 variables, or features, for which the a
posteriori probability is calculated during the weighting process every 8 ms.

Although the implementation of the classification method is conceptually similar to
algorithm CLP, it differs in a couple of details. The a priori PDFs have only 150 bins
and span the range of ±50 dB and ±2 ms for the envelope ILD and the envelope
ITD, respectively. The details of algorithm ELT are conform the details given in
Table 2.3, including the binaural level magnification approach described above in
this chapter. While we provide for this ILD increase with a wider PDF range, the
coarser PDF increments are to reduce the computational cost. Furthermore, the
local criterion ε in the IBM process is adjusted to an SNR of 5 dB. By preliminary
inspection, we discovered an improved suppression of interference with this setting.

Figure 3.15 shows the PDFs of Equation (3.3.9) at three different modulation fre-
quency bins, corresponding to 31, 141 and 297 Hz. In comparison to the PDFs
of algorithm CLP, less discrimination of the binaural parameter traces is found for
the envelope ILD as well as for the envelope ITD parameter. The PDFs of the
envelope ILD cue are rather compact in the anechoic situation, whereas the PDFs
of the envelope ITD cue show a high standard deviation, as it has been previously
found. Nonetheless, compact midline weighting functions are generated in anechoic
interference conditions with both parameters.
A breakdown of the ITD-based midline weighting is observed in the (augmented,
see above) canteen situation. The PDF counts of the envelope ITD are at these fre-
quency bins below the applied threshold value �hist, which was introduced to prevent
a division by a small number in Equation (3.3.9). During the optimization of this
parameter, shown in Chapter 5.2, the threshold is adjusted over a range that allows
for the prevention of such a breakdown of the cue-based weighting.
Another drawback of the ITD-based weighting is seen in the plots of the anechoic
situations at the low modulation frequency of 31 Hz. At this frequency the envelope
ITD parameter shows no lateralization for sources from the side. To repair this,
it has been chosen to apply the envelope ITD weighting only above the DFT bin
mxo = 6, which is associated with a modulation band centred at a frequency of
78 Hz (see Chapter 2.4.3).
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Conclusion

In this chapter the statistics of binaural parameters of the fine-structure and the
envelope have been studied over a wide range of acoustical conditions. In this con-
text, the binaural fine-structure parameters of different beamforming front-ends of
hearing aids have been compared to an omnidirectional hearing aid under free-field
conditions. In addition, the similarities and dissimilarities with the model-based bin-
aural parameters of an artificial head have been identified throughout all presented
noise conditions.

Our findings are supported by psycho-acoustical studies, in which binaural cues and
thereby localization were found to be strongly affected in the event of interference.
The physiologically motivated decomposition of the envelope in modulation spectra
and a subsequent binaural comparison has not delivered the breakthrough in the
problem of reliably isolating speech from noise, in particular in diffuse interference.
As a temporal interaural disparity cue, the IPD of the fine-structure has shown to
be more robust in diffuse noise, yet is by no means a sufficient indicator of direction
in these conditions. In incoherent noise conditions, both the fine-structure and the
envelope-based ILD parameter should gain importance during the classification by
possessing statistical properties that are less affected. Nevertheless, as it has been
shown, even optimal classification reduces to a coarse differentiation between target
and noise under diffuse conditions.
Overall, the statistical study explains why binaural speech processors that employ
binaural parameters for noise estimation generally fail in diffuse sound fields.

In order to achieve the best possible application of binaural parameters in changing
acoustics, a Bayesian classification approach has been applied to their a priori dis-
tributions in different noise conditions. The method allows for the establishment of
soft-masks based on the probability that a certain analyzed binaural parameter was
caused by the target source. To that effect, the approach replaces former heuristic
strategies of soft-mask formation by a methodical approach that accounts in an op-
timal and elegant way for the utilization of a pattern-based source separation at the
output of a particular hearing aid.

So far the algorithmic principles of the binaural speech processors of the present
work have been defined. Prior to the application of the processors in speech intelli-
gibility enhancement, an optimization of their algorithmic parameters is necessary.
To face this challenge with appropriate means, an objective measure of speech in-
telligibility for binaurally and nonlinearly processed speech needs to be specified.
The following chapter summarizes our efforts in finding such an objective measure.
Chapter 5 subsequently returns to the optimization and assessment of the binaural
speech processors.
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4

The instrumental evaluation of
speech intelligibility

Together with the, here ignored, amplification and compression tasks in hearing
aids, there exists a multitude of parameters and boundary conditions whose com-
plex interdependency and effect on speech intelligibility exceeds the manageability
of the development and optimization of binaural speech processors. Therefore, the
instrumental evaluation of speech intelligibility is a requirement for the development
of binaural speech processors. Chapter 2.4 introduced three binaural CASA filters.
Each algorithm contains a set of parameters, which have to be defined for a range
of acoustical surroundings, in a manual or algorithmic optimization procedure. In
the longer term, individual hearing thresholds have to be included, to tailor CASA
techniques properly for the hearing impaired.
The current chapter summarizes our efforts in finding an algorithmic measure that
calculates speech intelligibility at the output of binaural nonlinear speech proces-
sors. The chapter is divided into two parts. The first part presents and evaluates
a binaural and speech-based Speech Transmission Index (STI), which describes the
binaural advantage, but fails in the prediction of the effect of nonlinear noise sup-
pression on speech intelligibility. The second part of this chapter is dedicated to
this particular problem of nonlinear speech intelligibility enhancement. Finally, a
coherence-based and level-weighted Speech Intelligibility Index (SII) is defined as a
better ear measure, i.e. taking the ear offering the best intelligibility per critical
band, and evaluated to guide the optimization processes and assessment tasks in the
remainder of this work.
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4.1 A speech-based and binaural Speech Transmission Index1

A speech-based and binaural STI is presented and evaluated in a variety of acoustical
complexities and spatial conditions. The proposed method facilitates the assessment
of speech intelligibility in classical room acoustics and electro-acoustics by simply
comparing a binaural speech recording in unfavourable conditions with its clean
original. Both the binaural processing stage and the speech-based STI method have
effective and computationally fast realizations. The central part of the binaural
processor forms a cross-correlation stage that is designed to replicate psycho-acoustic
data of binaural interaction. Supplemented with the head shadow effect, which is
generated in a better-ear fashion, a fair amount of the binaural advantage in speech
intelligibility is modeled.
An evaluation of the method was performed in a suite of listening tests. These tests
incorporated different disturbances, such as stationary noise and fluctuating noise,
a set of nonlinear signal alterations, including a CASA post-filter, a multitude of
spatial configurations with different room acoustics, and with up to four interferers.
As a result, the objective method offers a stable prediction of the subjective results
in binaural speech intelligibility under most of the linear disturbances. In spite
of this, the full amount of the binaural advantage is not achieved by the current
implementation of the method, which suggests further research.

4.1.1 Introduction

Fair speech intelligibility (SI) can be considered as the main acoustical requirement
in enclosed spaces. There are several acoustical measures that predict SI in rooms.
Most used in practice is the reverberation time, RT. Although robust in an isotropic
sound field, RT cannot be directly linked to SI. A measure that was developed for
this purpose is the energy measure Definition, D50. It is based on the room impulse
response, and it is calculated as the ratio of the direct sound and supporting early
reflections, arriving within 50 ms after the direct sound, and the late impairing re-
verberant sound that follows after 50 ms. The D50 measure is prone to fluctuations
due to the early, anisotropic part of the sound field. Caused by the interference of
early reflections, D50 has shown to fluctuate by a factor of two when altering the
recording position only slightly (De Vries et al., 2001).
A robust measure of SI is the Speech Transmission Index (STI). The STI calculates
the reduction in modulation depth of a signal that is sent over a channel, e.g. a room
(Steeneken and Houtgast, 1980). In the classical approach, the STI uses a set of ar-

1Most parts of this chapter were already published in Schlesinger, A., Ramirez, J.-P., Van
Dorp-Schuitman, J. and Boone, M. M., “Report on a binaural extension of the Speech Trans-
mission Index method for nonlinear systems and narrowband interference”, International Sympo-
sium on Auditory and Audiological Research, 2009, Marienlyst, Denmark and in Schlesinger, A.,
Ramirez, J.-P. and Boone, M. M.,“Evaluation of a speech-based and binaural Speech Transmission
Index”, Proceedings of the AES 40th Conference on Spatial Audio, 2010, Tokyo, Japan.
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tificially modulated noises as stimuli. Recent methods of the STI are speech-based.
These measures are partly capable of taking nonlinear disturbances, the influence
of fluctuating noise and the influence of speaking style on a phoneme-level into ac-
count (Goldsworthy and Greenberg, 2004; Payton et al., 2002; Payton and Shrestha,
2008). Thereby the general speech-based calculation method simply compares the
clean signal with the degraded signal. For this reason, it is an intrusive measure.
A survey on current STI techniques has been given by Goldsworthy and Greenberg
(2004).

Predicting SI monaurally lacks the strong impact of binaural hearing on intelligibil-
ity. In spatial configurations, as e.g. S0N120 (the abbreviation stands for a speaker
S at 0 deg and a noise source N at 120 deg), the binaural advantage of unmasking
the target signal can be as high as 12 dB at the 50% intelligibility level, in con-
tinuous noise and in anechoic conditions (Bronkhorst, 2000). Two binaural effects
contribute to the advantage. These are the binaural interaction process, which is
based on temporal difference cues, and the head shadow effect, that increases the
SNR at the contralateral ear with respect to the noise source.
The gain obtained from binaural unmasking, generally known as the release from
(spatial) masking, is basically independent of the speech material and the long-term
spectrum of the masker. However, the advantage is somewhat diminished in condi-
tions of interfering speech and speech modulated maskers as compared to continuous
masking noise (Bronkhorst, 2000).
The contributions of the binaural interaction process and the head shadow effect
were found not to be additive. Additionally, a tradeoff as a function of frequency
between these two effects is observed. At low frequencies, the main portion of bin-
aural unmasking is caused by binaural interaction and is in the order of 7 dB. The
lower portion that amounts to the total benefit is allocated to the head shadow ef-
fect. At higher frequencies, the ratio inverts (Bronkhorst, 2000).
In real-life conditions of reverberation and diffuse background noise, the binaural
advantage diminishes. However, tests in reverberation revealed a small but signif-
icant binaural advantage that, in comparison with anechoic conditions, is mainly
determined by the speaker and masker distances (Bronkhorst, 2000).

The two leading models that answer the question of how the auditory system per-
forms binaural interaction, are the coincidence model by Jeffress (1948), which can
be formulated as a cross-correlation process, and the Equalization-Cancelation (EC)
model by Durlach (1960). Both approaches can be mathematically related (Verhey,
2008) and have shown to capture most of the psycho-acoustic effects that are asso-
ciated with the binaural interaction process.
In recent years these models, with variations, have been incorporated in techniques of
SI prediction. Widespread attention found the SI prediction method by Beutelmann
and Brand (2006), who combined the EC model with the Speech Intelligibility Index
(SII), a spectral SI measure. Recently, their model was revised and newly evaluated
in a variety of acoustical situations (Beutelmann et al., 2010). In order to predict SI
in reverberation, a disturbance that rather acts on the time evolution of the wave-
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form than on the spectrum, the EC stage has been also linked to an extended SII,
which incorporates the modulation transfer function (Rennies et al., 2010).
Another method of binaural SI prediction was developed by Van Wijngaarden and
Drullman (2008), who combined a cross-correlation stage for the binaural interac-
tion process (along with the head shadow processing) with the classical STI method.
Their method demonstrated a high accuracy in SI prediction in rooms, the realm of
the classical STI.

When it comes to the effect of nonlinear distortions on SI, neither of these meth-
ods will be successful. The SII method, as implemented in Beutelmann and Brand
(2006), requires the speech and the noise to be separated after the EC stage, in order
to calculate the SNR. The classical STI method suffers from the problem of inter-
modulations, either in nonlinear channels or due to modulated interferers, and the
very general stimulus approach that suffices for the SI prediction in room acoustics
but is not adequate in speech processors. In principle, a speech-based version of the
STI offers a solution to these problems. Based on the comparison of the deteriorated
speech with its original, intermodulations will not have a detrimental effect on the
prediction quality of the measure. However, as it turned out, the determination of
nonlinear distortions is not a trivial problem (Christiansen et al., 2010; Taal et al.,
2010; Schlesinger and Boone, 2010). Although much work has been devoted to ex-
tend the STI method to the measurement of nonlinear distortions (Ludvigsen et al.,
1990; Goldsworthy and Greenberg, 2004), we believe that the success will remain
limited, as long as mere signal-based approaches are pursued which do not include
a top-down context constitutive weighting on a phoneme or sub-phoneme level (see
the following Subsection 4.2).
Our position is based on a comparative analysis2 of a speech-based STI using the re-
vised envelope regression method of Goldsworthy and Greenberg (2004), a coherence-
based SII (Kates and Arehart, 2005b) and the Spectro-Temporal Modulation Index
(STMI), similar to Elhilali et al. (2003), but using the revised envelope regression
method of Goldsworthy and Greenberg (2004) for calculating the similarity between
the spectro-temporal response fields (STRFs) of the clean signal and the STRFs of
the degraded signal (Schlesinger and Boone, 2010).3 The outcomes show for none
of these objective measures a single functional relationship between subjective and
objective results for a collection of linear and nonlinear envelope-thresholding dis-
tortions.4 As the STMI is based on a high-level model of the STRFs in the auditory
cortex, our findings support the need for the inclusion of hypothesis driven processes
when modeling SI at the output of mask-based, i.e. nonlinear, speech enhancement
processors.

Preliminary to these findings, the speech-based STI in the revised envelope-regression

2See Appendix C for a reprint of the results.
3The Neural Systems Laboratoy toolbox (URL http://www.isr.umd.edu/Labs/NSL/ ) was used

for this purpose.
4Envelope-thresholding, also termed centre-clipping, is a nonlinear distortion of speech enhance-

ment processors using a varying gain function. See Appendix D.
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version of Goldsworthy and Greenberg (2004) originally had been chosen by the au-
thor for its computational efficiency, its quality in a multitude of linear distortions
(including reverberation) and the (at that time anticipated) possibility for the pre-
diction of nonlinear mask-based distortions. In the implementation presented here,
the speech-based STI is linked to a binaural processing stage, which is based on the
coincidence model of Jeffress (1948). Although Van de Par et al. (2001) showed that
the EC model is physiologically more plausible, the coincidence model is more prac-
tical when implemented as an efficient cross-correlation process. In order to assess
narrow-band distortions and to prepare for the incorporation of elevated thresholds
of the hearing impaired (Holube and Kollmeier, 1996), a Gammatone filterbank with
a filter channel density of approximately one on the ERB scale is used for the pe-
ripheral frequency analysis.

The aim of the following sections is to give a more elaborate introduction and eval-
uation of the speech-based and binaural STI. Thereby the evaluation relates not
only to the binaural processing of the method, it also accounts for the analysis in a
multitude of nonlinear disturbances, i.e. peak clipping, envelope thresholding and
phase jitter. We will also consider a binaural hearing aid algorithm for speech en-
hancement and different kinds of maskers, e.g. a fluctuating masker.
We continue with the introduction of the algorithm. Subsequently, the binaural STI
method is evaluated, discussed and conclusions are drawn.

4.1.2 Algorithm

The fundamental processing structure of the algorithm is shown in Figure 4.1. The
inputs to the algorithm are the binaural, time aligned clean and deteriorated speech
samples, which are analyzed in blocks. The central part of the algorithm consists
of the linkage of a binaural processor and a speech-based STI envelope-regression
method. Hence, the envelope regression method analyses the modulation depth
across the internal binaural representation of the input and selects the trace as a
function of the interaural delay that offers the highest modulation depth. In the
frequency range of the head shadow effect, the processing is effectively reduced to
the comparison and the maximization of the modulation depth at both ears. The
proposed method can be subdivided in the following steps.

(1) The applied binaural speech material is low-pass filtered at 9.5 kHz and sam-
pled at 22.05 kHz. Silent gaps, defined as the level of −50 dB in frames of
10 ms, are determined in the clean signal with a VAD procedure, and are
subsequently discarded in the clean and the degraded signal at equal time
positions.

(2) A peripheral frequency analysis is performed with a Gammatone filter bank of
4th order using 30 ERB bands with centre frequencies ranging approximately
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Figure 4.1: Block diagram of the speech-based and binaural STI method. The dashed lines at
the left-hand peripheral stage indicate that no hearing thresholds are modeled in the current
implementation.

logarithmically from 0.1 to 8 kHz on the linear frequency axis, i.e., linearly
on the ERB scale. The implementation of the filters is taken from Wang and
Brown (2006). No middle ear filter model is included in the calculation.

(3) A Hamming window of 10 ms length is convolved with the squared output of
the Gammatone filter bank to yield the intensity envelope below 50 Hz.

(4) Prior to the binaural processing, the intensity envelope is downsampled by the
factor of 7 and subsequently partitioned into samples of 30 ms length using
the cross-correlation and auto-correlation in the binaural processing stage (see
below). The windows have an overlap of 75 %, which results in a sampling
frequency of 132 Hz.

(5) The central binaural processing stage was motivated by the work of
Van Wijngaarden and Drullman (2008). Therein, the binaural advantage is
split into the contribution from the binaural interaction processing, which is
calculated between 0.5 to 2 kHz by the cross-correlation of the binaural signals
at increments of 0.1 ms between −0.8 and 0.8 ms (�), and the contribution
from the head shadow effect, realized in a better ear fashion below 0.5 kHz
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and above 2 kHz. Since the mean square value of the cross-correlation and
the auto-correlation (the latter is performed to yield a common sampling for
the two binaural effects) is taken to sample the time evolution of internal
binaural envelope, the square root has to be applied to the output of the
binaural processing stage in order to recover the intensity representation. The
choice of � = 0.1 ms is in the range of the model-based coincidence intervals
of approximately 50 to 150 µs (Blauert, 1997, p. 342.).

(6) The location of the target source is calculated every 0.25 s from the clean
binaural input through a band-wise maximum search across the binaural cor-
relation at all increments of �. In the frequency range of the head shadow
effect, the direction is inferred from the intensity maximum in the same time
interval.

(7) As a modulation metric, the stochastic reformulation of the envelope regression
method of Goldsworthy and Greenberg (2004) is chosen. Assuming sb(ι) to
be the binaural clean and xb(ι) the binaural contaminated intensity envelope
of 0.5 s length, where ι is a discrete time sample and ω is the short-time
window index, which is dropped for notational convenience in the following.
Subsequently, the modulation ζ is calculated in each band b and for a set of
lateral differences (�) through:

ζb(�) =
µsb

µsb + µzb
· E{(sb(ι)− µsb)(xb(ι, �)− µxb)}

E{(sb(ι)− µsb)2}
, (4.1.1)

where µsb, µxb and µzb are the intensity means, and zb(ι) = |xb(ι, �) − sb(ι)|.
The Equation is a linear regression of the contamined envelope onto the clean
envelope. It is based on an MMSE criterion and uses estimates of the means
and variances. The stochastic formulation makes the method preferable over
other speech-based methods, as it relies only on running averages in windows
of short duration. Goldsworthy and Greenberg (2004) expanded the normal-
ization fraction in Equation (4.1.1) to account for nonlinear operations—in
particular for cases when the modulation depth is abnormally increased.
ζ(�) is calculated in analysis frames with index ω of 0.5 s, which overlap 50 %.
The threshold of perceptible changes is therefore 250 ms, which is about 50 to
150 ms higher than found in psycho-acoustic experiments (Blauert, 1997, p.
323). For each window, the maximal modulation is calculated by searching for
the maximum modulation depth across the increments:

ζb = argmax�∈[−0.8 ms,0.8 ms]
{ζb(�)}. (4.1.2)

The better-ear effect is calculated similarly, by choosing the ear offering the
highest modulation depth.

(8) Subsequently, the band-wise modulation metric is related to the apparent SNR
in bands:

aSNRb = 10 log
10

ζb

1− ζb
. (4.1.3)
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The band-wise results are further processed according to the classical STI
method (Steeneken and Houtgast, 1980), i.e. clipped below -15 dB and above
15 dB, transformed to the transmission indices, which are weighted with an
adapted band importance function of Pavlovic (1987) for average speech, and
summed to the binaural STI. Finally, the STI values are averaged across the
analysis frames ω.

The challenge in designing the binaural stage above revolves around finding an op-
timal sampling and frame length ω that allows for an accurate regression-based
modulation transfer calculation from cross-correlation based mean square values.
To demonstrate that the quality is equivalent to the calculation of the modulation-
transfer of the unprocessed intensity envelopes, both methods are compared to the
theoretical RMS based modulation-transfer:

ζ̂ω,b =

�
1 + 10

−SNRω,b
10

�−1

. (4.1.4)

Therefore 50 sentences of the Semantically Unpredictable Sentence (SUS) test cor-
pus of Ramirez et al. (2009) were used and the SNRω,b was set to 0 dB. A continuous
masker was generated with the long-term speech spectrum of the SUS corpus as the
noise signal. Standard envelope regression analysis was performed on windows of 0.5
s with intensity envelopes sampled at 150 Hz. The modulation-transfer at the output
of the binaural stage was simulated in a simplified manner with an auto-correlation
computation (and a subsequent calculation of the square root, see above), using the
parameters of item 4 in the list above.

Figure 4.2 shows the results of a regression analysis with the r2 measure, indicating
the amount of variance that is modeled by the envelope regression method. Good
r2 values are observed from about 500 Hz, where the bands are associated with
the maximum perceptual weighting for SI (Pavlovic, 1987; Yoo et al., 2007). This
excludes the low frequency channels of moderate r2 quality and, overall, leads to
a high predictive power of the envelope regression based STI, as it was shown by
Payton and Shrestha (2008). The regression analysis is subsequently repeated with
the envelope regression of the auto-correlated signal. As it is shown in Figure 4.3,
the regression analysis of the processed signals is comparable to the previous results.
Consequently, it can be concluded that no lowering of the predictive power is intro-
duced by the binaural stage.

Returning to Figure 4.1, the diagram of the STI method also shows the inclusion
of the left and right ear hearing threshold. This method offers the possibility to
predict SI for the hearing impaired, whose ILD differences are expected to deviate
from natural ILDs (Durlach and Colburn, 1978). Alternatively, one could also model
the hearing loss at a central level of the STI procedure, i.e. after the binaural stage,
similarly to the classical approach (Steeneken and Houtgast, 2002). Holube and
Kollmeier (1996) calculated a speech-based STI with a bank of 22 critical filters for
hearing impaired people and showed that the provision for the elevated threshold
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Figure 4.2: A regression analysis, using the r2 measure, of the modulation transfer in
30 ERBs, centred at the frequencies given in the upper left-hand side corner of each sub-
plot. ER−M denotes the envelope regression modulation transfer calculation method of
Goldsworthy and Greenberg (2004) and RMS−M is the theoretical modulation transfer,
given in Equation (4.1.4). The window length for the calculation of the short-time modu-
lation metrics was adjusted to 0.5 s.

leads to good proficiency in modeling the hearing loss, compared to other audiolog-
ical measures. Elevated hearing thresholds have not been included in the present
implementation, since the method has only been evaluated against normal hearing
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Figure 4.3: A regression analysis, using the r2 measure, of the modulation transfer in
30 ERBs, centred at the frequencies given in the upper left-hand side corner of each sub-
plot. ER/AC−M denotes the auto-correlated envelope regression modulation transfer, cor-
responding to Equation (4.1.1), and RMS−M is the theoretical modulation transfer, given
in Equation (4.1.4). The window length for the calculation of the short-time modulation
metrics was adjusted to 0.5 s.

people. The following section gives the results of the evaluation.
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4.1.3 Evaluation

The proposed method for a speech-based and binaural STI had been evaluated in an
earlier work by the author and colleagues (Schlesinger et al., 2009). In the present
work the analysis is extended to a diverse series of monaural and binaural conditions,
which were subjectively evaluated in four listening tests. Throughout the evalua-
tion, the algorithmic parameters of the STI method were kept constant to ensure
comparability among the conditions and with the results of the previous study of
Schlesinger et al. (2009).
The SUS corpus of Ramirez et al. (2009) was used in the subjective tests. The sen-
tences were composed of four main key words in German in a syntactically coherent
frame, but with no semantic coherence. Consequently, the predictability of the mes-
sage to be retrieved by the listener is minimized. Throughout the binaural tests, the
SUS samples were convolved with the HRTFs of an artificial head (Schmitz, 1995)
and corrected for the headphones (type Sennheister HMD 46-3-6) that were used
in the listening test. The sampling frequency of the SUS set is 44.1 kHz and the
presentation level was adjusted to 70 dB (A) SPL. The recordings were stored for
the analysis with the proposed STI method. Four listening tests were performed to
draw a comprehensive picture of the proposed STI method.

(1) A percent-correct score test was conducted to analyze the operation in con-
stant background noise, fluctuating background noise and on nonlinearly processed
speech. Table 4.1 lists the conditions. Eight students of normal hearing with a
hearing threshold below 15 dB HL took part in the test. The monaural stimuli were
presented to the right ear.

Figure 4.4 (A-F) gives the results of the test. The conditions cover up to about 90 %
of SI. In order to link all tests presented with their different conditions to a common
reference, a second order polynomial is fitted to the linear disturbances (condition
1 to 26) in Figure 4.4 A. The verification of a narrow distribution of monaural and
diotic conditions along a common SUS word score - STI curve is a feasible approach
to evaluate the quality of a binaural STI method (Van Wijngaarden and Drullman,
2008).5 As a figure of merit of the polynomial fit, the r2 measure indicates a fair
predictability for the STI method in long-term as well as short-term stationary noise
and across differing spectral characteristics of the maskers. The r2 measure could
be improved when excluding the fluctuating noise conditions, or when setting the
STI transmission indices of fluctuating noise according to a flatter psychometric
function. The second approach has been demonstrated by Rhebergen and Versfeld
(2005) with the Speech Transmission Index (SII) as a means to assess the effect of
fluctuating noise. Herein, we exclude a modification of the transmission indices in
favour of a universal measure for different kinds of disturbances.
Figure 4.4 B gives the results of the nonlinear conditions 27 to 41. The envelope

5With respect to a monaural word score - STI relation, Van Wijngaarden and Drullman (2008)
showed that dichotic conditions coherently shift to lower SI values, if the binaural advantage is not
calculated.
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Table 4.1: Conditions of speech distortion as evaluated in the percent-correct score test 1.
The abbreviation SSN (i.e., Speech Shaped Noise) refers to the applied noise, which is
spectrally shaped with the long-term average speech spectrum of the target speaker. The am-
plitude modulated noise, i.e. the short-term fluctuating noise, was generated by extracting
the speech envelope of arbitrary speech samples from the target speaker and by modulating
the long-term spectrum of the target speaker with this envelope. The CASA post-filter is a
binaural mask-based speech processor, operating on the waveform fine-structure, similar to
algorithm CLP of this work. The abbreviation bw. indicates the bandwidth employed in the
stimuli. Wide-band (wb.) represents a frequency range from 0.05 to 7 kHz and narrow-band
(nb.) comprises a range from 0.35 to 3.4 kHz.

cond. pres. bw. noise type SNR (dB)

1 diotic wb. inf

2—10 diotic wb. amplitude modulated noise [-4,-3,-2,-1,0,1,2,4,6]

11—14 diotic nb. SSN male identical to speaker [-5, - 3, -1, 1]

15—18 diotic wb. SSN male identical to speaker [-5, - 3, -1, 1]

19—22 diotic wb. SSN female [-5, - 3, -1, 1]

23—26 mon. wb. SSN male identical to speaker [-5, - 3, -1, 1]

27—31 mon. wb. envelope thresholding [60, 75, 80, 85, 90]

32—34 mon. wb. peak clipping [60, 70, 80]

35—37 mon. wb. phase jitter [0.2, 0.3, 0.4]

38—39 dicho. wb. SSN/S0N90 [-12, -9]

40—41 dicho. wb. SSN/S0N90 and CASA post-filter [-12, -9]

thresholding (also known as centre clipping) and peak clipping conditions were gen-
erated as described in Kates and Arehart (2005b), and the phase jitter conditions
were simulated as described in Elhilali et al. (2003) (see Appendix D). As can be
seen, for all disturbances, the STI method correctly assigns the trend according to
the severity of the distortion. While peak clipping conditions are lying close to
the common SUS-STI curve, the phase jitter conditions are less close, and envelope
thresholding conditions are clearly off the curve due to an overestimation of SI by
the STI method. To define the nonlinear processing of a mask-based binaural hear-
ing aid algorithm for SI enhancement, which is conceptually similar to the binaural
speech processor of Gaik and Lindemann (1986), two binaural conditions were tested
in this setting.6 Condition 38 and 39 are S0N90 arrangements and feature SNRs of
-12 and -9 dB, respectively. Conditions 40 to 41 are the same arrangements but were

6The algorithm has been applied with clean binaural reference maps and with a heuristic tuning
of the algorithmic parameters. In addition, a heuristically adjusted cepstral smoothing post-filter
has been connected downstream to suppress musical noise.
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Figure 4.4: Results of the listening test 1. A: linear degradation of monaural and diotic
signals and a second order polynomial fit, that serves as a common reference for the quality
of the proposed method throughout all SUS-STI evaluations, B: nonlinear conditions, C:
pure monaural conditions, D: fluctuating noise conditions, E: narrow- and broad-band
conditions and F: male and female SSN masker conditions. See Table 4.1 for a description
of the test conditions.

processed by the SI enhancement algorithm. Spatialization had been performed by
convolving the sources with the respective HRTFs of the Aachen head (see Chap-
ter 3.2).
No improvement, and no considerable decline, of SI is yielded by the binaural pro-
cessor, probably due to its conservative implementation and the rather difficult con-
ditions that an SSN masker constitutes at very low SNRs. As expected, the SI en-
hancement is overestimated by the STI method and the nonlinear processing clearly
reveals its envelope thresholding nature.
Figure 4.4 C shows how well the monaural conditions 23 to 26 fit the polynomial.
The conditions only slightly deviate from the polynomial with an increased slope.
In general, the release from binaural masking is smaller than 1 dB for diotic pre-
sentations with respect to monaural listening conditions (Bronkhorst, 2000). The
difference in slope is mainly due to the fluctuating noise conditions, which result in
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an inclination of the polynomial.
Figure 4.4 D shows the quality of the STI method to assess the impact of a fluctu-
ating masker on SI. Despite the afore-mentioned slight underestimation of SI, the
conditions lay closely to the polynomial.
A comparison between wide band and narrow band (see Table 4.1 for the information
on bandwidths) is shown in Figure 4.4 E. At last, Figure 4.4 F contrasts subjective
and objective results for SSN conditions using either the spectrum of male or the
spectrum of female speech. As can be seen, all of these conditions scatter narrowly
along the polynomial.

(2) In order to evaluate the binaural processing of the proposed STI method, a
percent correct-score test with the target speaker and one long-term stationary in-
terferer at mutually permutated positions was conducted. The spatial arrangements
consisted of free-field conditions and simulated room-acoustics with the reverbera-
tion times of 0.4 and 1.5 s, corresponding to reverberation radii of 8.5 and 4.4 m,
respectively. The MISM of Van Dorp Schuitman (2009) was used for the room sim-
ulation. The room size was set to 20x30x15 m. The sources were located at a radius
of 5 m around the receiver, which was located slightly off the centre of the room and
at a height of 2 m. The first and second order reflections were modeled with the
MISM technique, whereas higher order reflections were appended to the IR using
statistical modeling. The virtual sources were omnidirectional.
Eight students with normal hearing participated in the test. Figure 4.5 gives the
results and an explanation of the individual test setups. For each spatial SN con-
figuration, the SUS word score at an averaged SRT ± a certain margin,7 i.e. a pair
of conditions, was measured and subsequently averaged over all participants. The
method had been adopted from Brand and Kollmeier (2002).
The analysis of the word-scores at the approximated 25% and 75% intelligibility
levels in Figure 4.5 shows on the whole correctly adjusted SNR levels. However, at
the S0N60 and S0N120 conditions the influence of reverberation on spatial unmask-
ing was underestimated and therefore most conditions were unintelligible. What
can be noticed with respect to a possible failure in the measurement procedure (we
assume an annotation failure), is the fact that the S0N120 condition with a RT of
1.5 s scored higher than in the condition with a RT of 0.4 s, although the SNRs were
equal. Despite that, we display these conditions, since the STI method follows the
same trend.
Ideally, the binaural STI method should place all binaural conditions along the
monaural/diotic polynomial. This is observed for most of the conditions to a fair
degree. At a closer look, an overestimation at low SI scores and an underestimation
at high SI scores of the objective method can be observed with respect to the poly-
nomial. This result is in line with the outcomes of monaural and diotic conditions
in Figure 4.4 C, E and F, which feature long-term SSN, while the polynomial was
fitted to a mix of fluctuating and non-fluctuating SSN conditions. Consequently,
(non-parallel, see next paragraph) deviations of the condition pairs from the poly-

7The SRT was measured individually and averaged.
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Figure 4.5: Results of the listening test 2. The first row of the plots gives the results for
estimated SRTs ± 2 dB in anechoic playback conditions. The second row gives the results
for estimated SRTs +0 and +4 dB in reverberation with RT = 0.4 s. The last row of plots
features the results of conditions using averaged SRT +0 and +4 dB with RT = 1.5 s. In
each subplot, the noise source N rotated over the discrete angles of 0◦ (square), 60◦ (plus
sign) and 120◦ (circle). S refers to the target speaker angle (see the annotations). The
distracter N throughout all conditions was composed of the long-term SSN of a male voice.

nomial might be attributed to the nature of the noise rather than the binaural
processing.
Furthermore, we observe a correctly predicted trend of SI for the pairs of each par-
ticular spatial condition. However, when comparing the word-score STI relation
over all conditions, especially in the anechoic setup, the trends are not always cor-
rectly reflected by the STI. This indicates a lack in binaural processing, specifically,
because the slopes of condition pairs are in most of the cases horizontally shifted
(Van Wijngaarden and Drullman, 2008). Thereby, this horizontal shift is subject to
the spatial configuration, which, again, indicates most probably a lack of binaural
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Figure 4.6: Results of the listening test 3. A: 2 distracters and RT = 0 s, B: 2 distracters
and RT = 0.4 s, C: 3 distracters and RT = 0.4 s and D: 4 distracters and RT = 0 s. In
every subset, the target rotated over the discrete angles of 0◦ (square), 60◦ (plus sign), 90◦

(cross) and 120◦ (circle). The distracters throughout all conditions were composed of the
long-term SSN of different male voices.

processing.

(3) In a third binaural test, multi distractor scenarios were analyzed. The target
speaker was placed at different angles in the mixtures of equally distributed dis-
tracters and the reverberation time was either set to 0 or 0.4 s, using the simulated
setup of listening test 2. The target speaker was spatialized at 0, 60, 90 and 120
degrees. In the two distractor scenario, distractor one and two were spatialized at
the target angle −120 and +120 degrees, respectively. In the three distractor sce-
nario, distractor one, two and three were spatialized at the target angle −90, +90
and +180 degrees, respectively. Lastly, in the four distractor scenario, the distractor
one, two, three and four were spatialized at the target angle −144, −72, +72 and
+144 degrees, respectively. The SNRs of each spatial test condition were adjusted
after estimating the average SRT. The averaged SRT was subsequently defined as a
condition and an SNR margin of ±2 dB was added for generating the second and
third condition in each spatial setup.
Again, eight students with normal hearing participated in the test. See Figure 4.6 for
the results. Although the test did not fully sample the whole intelligibility scale, the
results give an insight into the behavior of the method in these complex conditions.
With respect to the SRT, the overall reduction in scores across all conditions might
be attributed to facilitation effects in the SRT method. As regards the results of the
STI method, there, first, appears to be a horizontal shift, i.e. an underestimation of
SI similar to the findings in test 2, as the target speaker changes its position from 0
to 120 deg. This probably indicates a shortcoming in binaural processing. Second,
the more complex the situation becomes, the more fuzzy the binaural STI method
gets. In Figure 4.6 D, for example, the algorithm misses the trend under the N60

conditions.

(4) In a final analysis, the proposed instrumental evaluation method is applied to
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predict the Binaural Intelligibility Level Difference (BILD) for mutually permutated
target/masker conditions (see Blauert, 1997, p. 265ff.). Therefore, the SRTs across
a wide range of spatial configurations of 24 normal hearing students were measured
in the standard way (Plomp and Mimpen, 1979). To calculate the objective BILD,
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Figure 4.7: Results of the listening test 4 of BILD measurements and predictions at
A: S0N[0 60 90 120], B: S60N[0 60 90 120 180], C: S90N[0 60 90 120 180] and D: S120N[0 60 90 120 180].
The distracter throughout all conditions was the long-term SSN of male speech. The confi-
dence intervals equal two times the standard deviation.

we proceeded in the following way: Based on a maximum likelihood fit, the psycho-
metric function of the applied SUS corpus is approximated with:

ps(SNR) =

�
1

1 + e(Ω−SNR)/Ψ

�
, (4.1.5)

where Ω is the SRT, Ψ the steepness8 and p the probability of the correct response,
which depends mainly on Ω in free-field conditions. When identifying p with a para-
metric SUS-STI approximation for S0N0 conditions (in here the above introduced
polynomial fitted through the monaural/diotic conditions) and when setting Ω = 0,
the SNR in Equation (4.1.5) predicts the BILD. Figure 4.7 gives the subjective and
objective results. For all conditions analyzed, the objective method follows the trend.
However, an underestimation of the binaural STI is observed the more orthogonal
the target/masker angle gets.

4.1.4 Monaural and binaural intelligibility in rooms

To evaluate differences between the monaural and binaural STI on various positions
in an acoustic environment, a virtual room was simulated with the MISM of Van
Dorp Schuitman (2009). The room is shoebox-shaped with dimensions W x L x H

8The parameter Ψ of the applied corpus equals 2.1, corresponding to a slope of 12% per dB for
stationary SSN.
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Figure 4.8: The monaural (left-hand plot), binaural (centre plot) STI values for all receiver
positions in the virtual room. The difference between binaural and monaural STI values,
relative to the monaural STI is given in the right-hand plot. The source is denoted by a
closed dot. The simulated room has a reverberation time of 1.25 s at low to mid frequencies.

= 15 x 20 x 5 m (V= 1500 m3). A virtual source (omnidirectional) was positioned
in the front of the room, off centre and at a height of 2 m (see Figure 4.8). A total
of 225 receivers were located in the room at the same height as the source, spaced
1 meter apart in the x- and y-directions. For each receiver location two impulse
responses were simulated: First, a monaural impulse response, as it would have
been measured in a real room using an omnidirectional microphone and second, a
binaural impulse response, as it would have been measured using the Aachen head.

The configuration was such that image source modeling was used for reflections up to
the second order. For the simulation of higher order reflections statistical modeling
was performed. The binaural room impulse responses were generated by convolving
the sound field with HRTFs of the artificial head as measured in an anechoic room.
It was chosen to set a uniform absorption coefficient for the room boundaries, leading
to a reverberation time of 1.25 s in low to mid frequencies and a reverberation radius
of approximately 2 m. Above mid frequencies, a roll-off at higher frequency bands
is modeled due to sound absorption through air. For each receiver position both
the monaural and binaural STI values were determined with the envelope regression
method. The results are shown in Figure 4.8.

As expected, the STI values are highest for receiver positions close to the source.
Further away from the source, the late reverberation of the room can mask the direct
sound, leading to a decrease in speech intelligibility. However, the human auditory
system is capable of suppressing sound coming from directions other than that of
the source, as discussed earlier. Therefore the monaural STI will underestimate
the perceived intelligibility. As can be seen in Figure 4.8 the binaural STI indeed is
generally higher, because it takes this suppression effect into account. The difference
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between the monaural and binaural STI values is most apparent at locations far from
the source, where the room reverberation is considerably higher than the direct
sound level. To demonstrate this, the difference ∆STI = STIbin − STImon is shown
in Figure 4.8 (right-hand side plot). In diffuse fields, the difference can be as high
as 50%, and sometimes even higher.

4.1.5 Discussion

In the first section of this chapter on assessing SI, we presented and evaluated a
speech-based and binaural STI method. The STI method uses a Gammatone fil-
terbank as an approximation of the peripheral auditory frequency decomposition.
Subsequently a coincidence model of the binaural interaction process is applied along
with head shadow processing, to establish an interaural representation. Based on
an internal representation of the binaural target envelope and the degraded binaural
envelope of the target in a sound scene that is to be analyzed, an efficient envelope
regression method calculates the modulation transfer across different spatial direc-
tions. Ultimately, the direction offering the highest modulation transfer is selected
for calculating SI in the standard way.

The method is capable of predicting monaural and binaural speech intelligibility
under all of the here tested linear conditions with fair to good quality. Even fluctu-
ating noise, a masker that has been addressed with a much more elaborated monaural
model of SI by Rhebergen and Versfeld (2005), can be assessed with good accuracy.
This capability is for the main part a consequence of the STI intrinsic time domain
analysis, as opposed to a purely spectral measure like the SII (Payton et al., 2002).
Despite that, the STI approach lacks fundamental stages of the auditory system.
E.g. the modulation filterbank of the lower auditory system that is responsible for
the TMTF is not modeled. The STRF analysis is not included either. These de-
ficiencies are expected to lead to an underestimation of SI in e.g. co-modulation
masking conditions (see Moore, 2003, p. 100) and to an overestimation if the carrier
under an intact envelope is destroyed (Elhilali et al., 2003). Accordingly, we may
find a slight but constant underestimation of the binaural STI in fluctuating masker
conditions because of these simplifications of the STI method (see Figure 4.4 D).

The evaluation of nonlinearly processed speech revealed that the proposed STI
method is insufficient in describing SI for this signal degradation, in particular in
envelope thresholding conditions that typically occur in time-varying filter func-
tions. This finding was expected, because, as previously mentioned, also high level
SI models like the STMI fail in these conditions (Schlesinger and Boone, 2010). In
Figure 4.4 B, the similarity between artificial envelope thresholding distortions and
the CASA post-filter distortion was demonstrated. The observed slight deterioration
of subjective speech intelligibility with the CASA processed scene is a consequence
of the low SNR and a rather conservative implementation of the algorithm of Gaik
and Lindemann (1986), who did not incorporate the probability based weighting
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approach, as introduced in the previous chapter.
The second part of this chapter discusses the idea of using a high-level informa-
tional weighting based on the contextual importance of sub-phoneme bits on SI.
In addition to an improved rendering of nonlinear distortions, this approach might
also solve the very same problem described by Payton and Shrestha (2008) with the
speech-based STI: “. . . the metric values are driven by voiced sounds in words such
as vowels and, despite strong vowels, some key words have low probability of correct
identification.” A statistical approach to include context related information (on a
sub-phoneme level) was developed by Kates and Arehart (2005b), whose method
labels the importance of 32 ms long speech frames to SI according to their relative
SPL and implements a three-level time domain weighting of a coherence based SII.
Unfortunately, such a short-time labeling is questionable for the STI, since it ana-
lyzes the intensity envelope of the syllabic rate, which is in the range of 4 Hz.

The polynomial of the second order that was fitted to the linear conditions reminds
us of the polynomials that were usually fitted to word-score/STI curves (Steeneken
and Houtgast, 2002). In view of recent work on the problem, a psychometric func-
tion could be used to transform the results to a linear relation between subjective
and objective results (see e.g., Christiansen et al., 2010). This approach is adopted
in the following section.

Throughout all binaural listening conditions, the model shows a fair agreement with
subjective results. However, the predictions are not free of errors across different
spatial configurations in anechoic conditions, reverberation and multi-speaker sce-
narios, as it has been shown in listening tests two and three. The quality of the
binaural STI is especially apparent in the prediction of the BILD of test four. The
model renders the trend of the evaluation, although the predicted binaural unmask-
ing underestimates the psychoacoustical results when the speaker and masker are
spatialized with 90◦ separation. There may be several reasons for this observation.
First, we find the results to be dependent on the fitting polynomial (of test one)
that was used in calculating the BILD. Changing this polynomial, by for example
excluding the fluctuating noise conditions, leads to a moderate nonlinear increase
of the predicted BILD values. Furthermore, the binaural stage in the STI method
is a simplified approach of the underlying neural process. As an additive super-
position of the contributions that result in the overall release from masking, i.e.
temporal disparity and the head shadow effect, is not observed in perceptual studies
(Bronkhorst, 2000) and, generally, as the underlying neural mechanisms are not fully
understood, the present binaural model will have difficulties with obeying all per-
ceptual phenomena. Further research should analyze the influence of a non-uniform
arrangement of increments in the cross-correlation stage. For example, the model
of Dietz et al. (2009) accounts for the angular-dependent distribution of ‘best IPDs’
(to which neurons are tuned) that show a maximum around ± 60◦ with respect to
the median plane. A better approximation of the binaural STI model prediction to
the evaluation results might be efficiently accomplished with an optimization routine
and a cost function, as e.g. the r2 measure, as it is done in the following section.
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What is missing in the evaluation of the binaural listening conditions with the bin-
aural STI is a juxtaposition with the monaural STI, similar to the approach of
Van Wijngaarden and Drullman (2008). Despite that, the advantage of the binau-
ral STI over the monaural STI in unmasking, was qualitatively demonstrated by
calculating monaural and binaural SI in a simulated room. The outcome reveals
a deviation of SI in favour of binaural listening, even in the absence of competing
sources. This deviation increases the more diffuse the sound field becomes, i.e. in
the far-field of the source, as shown in the simulation of a large room.

Conclusion

A speech-based and binaural STI method has been presented and evaluated. The
evaluation shows fair model predictions in the majority of the tested conditions,
including conditions of fluctuating noise, reverberation and a multitude of spatial
configurations. The speech-based and binaural STI is therefore appropriate in de-
scribing a wide range of speech intelligibility reductions. Although the functional
relationship between subjective and objective assessment is not valid for combina-
tions of linear and nonlinear disturbances, the measure indicates generally for each
particular SI reduction a correct trend and can, therefore, be practical in the SI
prediction of separate signal distortions.
Binaural listening can provide good improvement of SI through spatial unmasking of
the target speaker. The results of the evaluation validate the conceptual approach of
the method, although the full binaural advantage cannot be provided by the model.
In spite of the fact that the model presented is not suited to reflect SI consistently
across all conceivable distortions, future research should improve the accuracy of the
method in the fields of room acoustics and linear distortions. These fields are the
classical domains of the STI method. The linkage with a binaural processing stage
may provide a thorough SI measure for natural binaural listening conditions. In
addition, the application of a speech-based version may simplify the measurement
procedure in room acoustics and simulation.

In the remainder of this work the STI method is left behind because of its mentioned
shortcomings in predicting mask-based envelope-thresholding distortions. The fol-
lowing section attempts to formulate an algorithm that reflects SI of linear and
nonlinear distortions in accordance with subjective speech perception.



128 The instrumental evaluation of speech intelligibility

4.2 The characterization of the relative information content by
spectral features for the objective intelligibility assessment
of nonlinearly processed speech9

The objective intelligibility assessment of nonlinearly enhanced speech is a very gen-
eral problem. Nonlinear speech enhancement processors operate primarily on the
low-level and transient components of speech. As these sections contain impor-
tant acoustic cues as well as context-constitutive information, they dominate speech
intelligibility. For that reason, short-time intelligibility measures at low-level and
transient components are weighted by their contribution to the overall intelligibility.
In this section, spectral features are calculated from auditory sub-bands and are
used to label these sections of high information content. A genetic optimization is
performed to adapt the spectral feature measures to the linearly and nonlinearly
processed speech material of a listening test. The results demonstrate the general
capability of the approach; however, the method is not as good as the I3 measure
of Kates and Arehart (2005b). In addition, it will be shown, that this level based
method can be further improved for the applied speech distortion corpus.

4.2.1 Introduction

One of the important questions in nonlinear speech enhancement asks for the bal-
ance between the SNR improvement and the introduced distortion introduced that is
most beneficial for speech intelligibility (Kjems et al., 2009). While linear algorithms
are often applied in speech processors, such as hearing aids, they generally represent
a suboptimal solution in constantly changing acoustics. Nonlinear processors aim at
approximating the MMSE, i.e. the optimal filter, in changing acoustics and can be
realized as time-frequency mask-based approaches (see Chapter 2.3.1). It is yet the
nonlinearity that constitutes a challenge for the subjective and objective evaluation
of the audiological benefit.
In the subjective evaluation of speech processors, SRT tests are preferred over
percent-correct scores, which show a limited basis for generalization of the audi-
ological benefit (Greenberg and Zurek, 2001). SRT tests, on the other hand, require
an invariant SNR improvement in order to quantify the algorithm’s effect on speech
intelligibility. Nonlinear algorithms do not satisfy this condition (Greenberg and
Zurek, 2001). Moreover, subjective listening tests are laborious tasks and are not
feasible during the development of complex algorithms, which are equipped with
parameter sets that depend on the acoustic scene and, when considering hearing
aids, on the particular auditory performance of a hearing impaired person.

9Apart from minor changes, the content of the present section was published in Schlesinger, A.
and Boone, M. M., “The characterization of the relative information content by spectral features
for the objective intelligibility assessment of nonlinearly processed speech,” Proceedings of the In-
terspeech conference 2010, Tokyo, Japan.
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Objectively, speech intelligibility can be calculated from the sum of the audible con-
tributions in different frequency bands. This forms the empirical basis of the well-
known Articulation Index (AI) theory. The Speech Intelligibility Index (SII) and
the Speech Transmission Index (STI) are based on this concept and are successful in
predicting intelligibility for a large number of linear distortions (ANSI/ASA, 2007;
Steeneken and Houtgast, 2002). In spite of this, the classical SII and the classical
STI are not adequate to assess disturbances due to nonlinear speech enhancement.
Nonlinearity violates the principle of superposition and, therefore, the requirement
of the classical SII approach to calculate the SNR from the isolated spectra of speech
and noise cannot be met. The classical STI employs artificially modulated tones and
calculates the SNR in bands, from the modulation depth of the intensity envelope.
The principle of superposition would again be needed to derive an overall result
from these test signals. Furthermore, nonlinear speech processors tend to increase
the modulation depth abnormally. The classical STI mistakes this deterioration for
an increase in speech intelligibility.
Intrusive measures have been developed to deal with nonlinear distortions. These
are measures that relate degraded speech to its clean reference by calculating the
difference or the correlation (Kates and Arehart, 2010). Some evolve along the
same line as the methods of SII (Kates and Arehart, 2005b) and STI (Goldsworthy
and Greenberg, 2004), others build on sophisticated perceptual models, as such the
Perceptual Evaluation of Speech Quality (PESQ) model adapted for SI (Beerends
et al., 2009) or the Dau model, as applied in Christiansen et al. (2010). Most of
these methods correctly predict the perceptual trends for gradual changes of addi-
tive noise and nonlinear distortions. However, for the comparison between the input
and output of a nonlinear speech enhancement algorithm, a functional relationship
for these different kinds of distortion between subjective perception and objective
prediction is essential.
The application of complex perceptual models could not solve this problem as long
as the time-variant nonlinear processing was not taken into account. As it has
been demonstrated in the previous section, speech enhancement is usually associ-
ated with an envelope thresholding distortion and merely modifies the low-level and
transitional components of speech. Yoo et al. (2007) found that these portions hold
only 2 % of the energy of the original speech but are almost equally intelligible. In
order to compensate for this characteristic, Kates and Arehart (2005b) developed
a coherence based SII (CSII) that includes a time-domain weighting based on the
short-time RMS level. They showed that short-time sequences of −10 to 0 dB with
respect to the overall RMS have a major contribution to speech intelligibility.
On the contrary, Taal et al. (2011a) recently made progress with a purely speech-
based approach of an intrusive short-time measure for mask weighted noisy speech.
Their model is based on equally contributing transitional intelligibility scores, cal-
culated in windows of 400 ms length. As the analysis windows overlap by half, this
particular window-length is in the order of the syllabic rate of speech. In predicting
speech intelligibility of ideally binary masked (IBM) speech, the objective intelli-
gibility measure of Taal et al. (2010) demonstrated to be superior to other recent
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models for this problem (Christiansen et al., 2010; Boldt and Ellis, 2009).

In this section, it is investigated whether spectral feature measures can be applied
to identify transitional components of speech and to what extend these are suitable
to weight short-time intelligibility predictions with respect to the varying, i.e. rel-
ative information content. The utilization of spectral features in speech processing
is not new. Spectral features are, by way of example, successfully used to improve
automatic speech recognition tasks (You et al., 2004; Housseinzadeh and Krishnan,
2007).
We proceed now in the following way. First, four spectral feature measures for the
separation of speech into voiced and unvoiced segments are presented. Adapted to
the occurance of relative high information content, these short-time measures form
feature vectors that are applied as weighting to the time-course of the short-time
CSII method of Kates and Arehart (2005b). Thereafter, a parameter optimization
of the measures to psycho-acoustical data is given and a comparison to the results
of state-of-the-art speech intelligibility measures is provided. Finally, we draw a
conclusion and select an objective measure, which will be applied in the binaural
speech processor optimization and evaluation of the following chapter.

4.2.2 Algorithms

The algorithmic approach is divided into two parts. In the first part, the extrac-
tion and adaptation of the spectral features is examined. In the second part, the
coherence based SII method is presented.

Extraction of source information with spectral features

The source-filter model is a widely applied method in speech processing, to separate
the excitation characteristics of the vocal chords from the resonator characteristics of
the mouth. In this model, speech is assumed to be short-time stationary in the range
of 10 to 30 ms. Accordingly, the model can be formulated as a linear convolution:

s(ι) = υ(ι) ∗ ς(ι), (4.2.6)

where υ(ι) is the source and ς(ι) is the filter that forms the speech signal s(ι) as
a function of discrete time sample number ι. Linear prediction and cepstrum tech-
niques are often used to separate ς(ι) from υ(ι). In here, the main interest lies
simply on the differentiation whether the glottis produces white noise for unvoiced
speech or a periodic stimulation for voiced speech. This feature can be directly
calculated from s(ι). In a preliminary study, four spectral measures were identified
that correlate with this change of articulation. These are the Renyi Entropy (RE),
the Shannon Entropy (SE), the Spectral Band Energy (SBE) (Housseinzadeh and
Krishnan, 2007) and the Madhu Flatness Measure (MF) (Madhu, 2009c). As the
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Figure 4.9: Graphs of the differentiated spectral feature measures, exemplarily applied to label
the transitional parts of a sentence, whose positive waveform is plotted in the background
(grey shaded).

transitions between phonemes and formants, i.e. the low-level and transient compo-
nents of speech, are essential for intelligibility, the first order derivative with respect
to the short-time frames was taken to flag these segments of speech. In Figure 4.9
the four differentiated spectral feature measures are shown. For comparability, the
waveform of the analyzed sentence is plotted in the background (grey shaded). In de-
tail, the measures were calculated from the clean speech waveform that was sampled
at 22.05 kHz. An analysis window of 706 samples (32 ms) was Hanning weighted
and padded with zeros prior to a 1024-point DFT. With a window-overlap of 50 %,
a new spectrum was calculated every 16 ms. The STFT spectra with frequency
coefficient d were filtered block-wise with centre frequencies and bandwidths of the
auditory critical bandwidth filters, as given in Table I of ANSI/ASA (2007). Prior
to the calculation of the entropy measures the sub-band amplitude spectrum was
normalized to obtain the probability density functions:

ŝı,b(d) =
|sı,b(d)|�du

d=dl
|sı,b(d)|

, (4.2.7)
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where sı,b(d) is the STFT representation of frame ı that was subdivided in non-
overlapping critical bands b, with a lower DFT coefficient frequency bound dl and
an upper coefficient frequency bound du. RE was then calculated with:

REı,b =
1

1− β
log

2

�
du�

d=dl

[ŝı,b(d)]
β

�
. (4.2.8)

The order β was set to 3 throughout this study. SE was calculated as:

SEı,b = −
du�

d=dl

ŝı,b(d) log2 ŝı,b(d), (4.2.9)

and the MF measure as:

log
2
(MFı,b + 1) = − 1

log
2
(N�

d)

du�

d=dl

ŝı,b(d) log2 ŝı,b(d), (4.2.10)

where N�
d is the amount of DFT frequency bins in frame b. The SBE, which is no

information theoretic measure, displays the relative energy distribution, is calculated
as:

SBEı,b =

�du

d=dl
|sı(d)|2�

d |sı(d)|2
. (4.2.11)

Thereafter, the results in sub-bands were weighted with the band importance func-
tion for average speech (Pavlovic, 1987) and summed. This resulted in short-time
feature vectors.

To adapt these to the transitions of high information content in an optimization
routine, the feature vectors were either compressed, or expanded by an exponent
e. Subsequent to the differentiation, a first order recursive smoothing was ap-
plied to allow the feature vectors to align with the phonemic transitions. With
ρı ≡ [∆REe

ı /∆ı,∆SEe
ı /∆ı,∆MFe

ı /∆ı,∆SBEe
ı /∆ı], the smoothed output was calcu-

lated as:
ρı = (1− α̈)ρı + α̈ρı−1, (4.2.12)

where α̈ = e−∆T/τ̆ , ∆T is the frame shift and τ̆ is the time constant. This procedure
of contrast enhancement was finalized with the introduction of a threshold value
according to:

ρı =

�
ρı, ρı > �v

0, ρı ≤ �v
. (4.2.13)

The coherence SII

The intrusive CSII predicts the segmental SNR, i.e. the SNRseg between the input
s(ι) and the output x(ι) of a system by calculating the signal power fraction that
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is linear related. This is possible through the magnitude squared coherence (MSC)
function:

|∆γ(d)|2 =
|
�Mı

ı=1
sı(d)x∗

ı (d)|2�Mı

ı=1
|sı(d)|2

�Mı

ı=1
|xı(d)|2

, (4.2.14)

where sı(d) and xı(d) are the STFT representation of the input and the output
signal, respectively, and the asterisk denotes the complex conjugate. Subsequently,
the SNRseq

10 per critical band b can be calculated:

SNRseg,b =

�Nd

d=1
Πb(d)|∆γ(d)|2

�Mı

ı=1
|xı(d)|2�Nd

d=1
Πb(d)(1− |∆γ(d)|2)

�Mı

ı=1
|xı(d)|2

, (4.2.15)

where Πb is a matrix of rounded-exponential filters that are described in Kates and
Arehart (2005b). To include the weighting with the feature vectors ρı, the summa-
tion terms over Mı frames in the Equations (4.2.14) and (4.2.15) were replaced with�Mı

ı=1
�ρı, where � is either the cross-spectral density or the auto-spectral density.

After the calculation of the SNRseg,b in Equation (4.2.15), the CSII index calculation
is conform the standard ANSI/ASA (2007).

4.2.3 Fitting of feature vectors to subjective data

In order to adapt the weighting of the feature vectors to subjective intelligibility
scores, a nonlinear optimization was performed. The listening test set comprised five
conditions of additive speech shaped noise and five conditions of envelope threshold-
ing, which is a nonlinear distortion that occurs in speech enhancement processors
(see the previous section). Details on the implementation of the envelope threshold-
ing conditions are found in Kates and Arehart (2005b) and in Appendix D. Eight
people with normal hearing (< 15 dB HL) participated in a percent-correct score
test that uses the SUS corpus in German of Ramirez et al. (2009). The subjects had
to respond to three versions of each condition, which were presented to the right
ear. The participants were paid for their services and trained. The entire set of
conditions was subsequently used for the objective index calculation. To account for
the nonlinear relation between subjective and objective results, a logistic function
was applied to the objective results Υ:

Λ(Υ) =
1

1 + eψ+ϕΥ
. (4.2.16)

The parameters ψ and ϕ together with the parameters of the feature vectors α̈, �v
and e were optimized with the r2 measure as a cost-function of a linear regression.
A genetic algorithm was applied to the non-monotonic optimization problem (Houck
et al., 1995). The optimized parameters are given in Table 4.2.

To compare the results with existing measures, the Short Time Objective Intelligi-

10Kates and Arehart (2005b) used the term speech distortion measure and showed the equiva-
lence of this metric with the RMS-based SNR.
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Table 4.2: Results of the parameter optimization for adjusting the spectral feature measures
to the applied speech material and subjective scores.

feature ψ ϕ �v e α̈

SBE 4.1 6.2 0.33 1.6 0.69

SE 3.6 5.3 0.27 1.5 0.79

MF 3.8 5.1 0.33 1.17 0.79

RE 2.4 9.1 0.39 3.45 0.02

bility (STOI) measure of Taal et al. (2010), the CSII of Kates and Arehart (2005b),
the three RMS level weighted CSII of Kates and Arehart (2005b) and an optimized
one RMS level CSII were included in the evaluation. The optimization of the one
RMS level CSII was additionally executed with a genetic algorithm. In this pro-
cedure, two level ranges and their weighting in a logistic function were provided
for the algorithm (in total six parameters). As the combination of two level ranges
and their logistic weighting can be expressed as a linear combination, the algorithm
converged to one optimal level with an upper dB bound of -4.9 dB and a lower dB
bound equal to -7.7 dB (for ψ = 1 and ϕ = 8).

The results of the optimization are shown in Figure 4.10. As figures of merit, the
r2 measure and Kendall’s τ , a rank statistic, are given. As can be seen, none of
the spectral feature measures yield a frame-weighting that improves the correlation,
compared to the existing measures. Only RE shows some improvement over the
unweighted CSII, at the cost of a higher standard deviation. This result was con-
firmed by others, who found an RE weighting to be beneficial for enhancing the
performance in automatic speaker identification tasks (Housseinzadeh and Krish-
nan, 2007). Good results were achieved with the STOI measure, the RMS three
level CSII and the one RMS level optimized CSII. However, before applying the one
RMS level CSII, the measure has to be studied in more exhaustive listening tests
before a general judgment on its quality can be made. The STOI measure already
experienced comprehensive testing in Taal et al. (2010) and showed a correlation
coefficient of 0.95 on IBM processed speech data.

4.2.4 Discussion

The application of the analyzed spectral measures did not yield an advantage over
existing methods in labeling speech sections of high information content. In spite of
that, the spectral feature measures presented, showed from their first inspection to
their adaptation in the short-time frame weighting of speech intelligibility, a fair de-
gree of conformity. In particular the differentiated SBE, MF and SE measures show
similar patterns, responding strongly to changes from voiced to unvoiced speech (see
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Figure 4.10: The first row shows the word-score/prediction relation of the short-time mea-
sures STOI and CSII, as well as the short-time weighted measures CSII− 3 level Kates, also
known as the I3 measure. The upper right-hand plot gives the results of the optimized
CSII− 1 level. The lower row shows the results of herein analyzed short-time weighting
CSII methods, which are based on differentiated spectral feature measures SBE, SE, MF and
RE. ✷ denotes envelope thresholding conditions and × the additive noise conditions (SSN).
A regression line was fitted to the data. The r2 measure and Kendall’s τ are given to assess
the quality of the SI models.

Figure 4.9). Their sensitivity to these changes is confirmed by low threshold values,
�v < 0.33, and small expansion values, e < 1.6, as found in the optimization (see
Table. 4.2). Their first order low pass filter time constants τ̆ are in the range of 40 to
70 ms. Apparently, the smoothing corrected consistently for the misalignment of the
feature vectors with the transitional parts in speech. Even though no improvement
over the unweighted CSII was achieved, the spectral measures proved to label speech
information fairly well. This is obvious when remembering that envelope threshold-
ing acts mainly on low level regions. If a spectral feature measure would consistently
miss these speech sections, speech intelligibility would be strongly overestimated.

RE is less sensitive to the changes of voiced and unvoiced speech. Nevertheless, the
differentiated RE reveals steep slopes in speech sections of high information content,
which is expressed through a small filter coefficient in Table 4.2. The absence of a
clear feature pattern, however, leads to a high threshold and expansion exponent,
which results into a low r2 value due to the increased deviation from the regression
line.
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In view of the good performance of the level-weighted CSII measure, it can be stated
that the observed feature measures are less adequate predictors of the relative speech
information content. Since the feature measures were simply extracted from auditory
critical filters, it is questionable whether better results can be achieved by applying
these to the source signal, or the filter signal alone, in Equation (4.2.6). If, e.g. en-
tropy measures are calculated from the slow changing transfer-function of the vocal
tract, an increased local stability and a better identification of transitional speech
parts might be yielded.

Here entropy was only used to discriminate between voiced and unvoiced passages.
Leijon (2007) makes the observation that the acoustic speech information rate and
the performance of speech perception are coupled. He further showed that there is
no direct relation between information rate in frequency bands and the empirical
additivity-concept of audible contributions in different frequency bands of the AI
theory.

In terms of the CSII, our findings are different from the results reported by Taal
et al. (2011b). There, a STOI-like magnitude spectral correlation coefficient outper-
forms a series of recent objective measures, including the level-weighted CSII. The
reason lies for the most part in the difference of the speech data that were used,
and the manner in which the objective measures respond to the phase of the sig-
nal. While our test material comprises envelope thresholding distortions, which set
the waveform to zero once the envelope of the signal falls below a certain thresh-
old, Taal et al. (2011b) used IBM processed speech with strong implications for the
phase of the target speech. In IBM processed speech the original phase information
may be largely, if not completely, discarded and replaced with a different uniformly
distributed phase. Under these circumstances the magnitude squared coherence
function, on which the CSII is based, is biased to zero, although the IBM processed
speech may be fully intelligible (Taal et al., 2011b). A striking example is the IBM
separation of a mixture at −60 dB, i.e. essentially pure noise, that shows a speech
intelligibility of 100 % (Kjems et al., 2009). Consequently, the results of this section
are only valid for speech material that is similar to the one assessed here.

In the context of the present work, we still have to evaluate the objective intel-
ligibility measures on CASA enhanced speech. These speech processors generally
establish a soft-mask weighting and approximate the Wiener-filter. Furthermore,
these filters optimally operate at favourable SNR ratios, i.e. when the target signal
has significant energy. Therefore, the original phase of the target signal is substan-
tially included in the distribution of sources across time-frequency bins. For this
reason the previously assessed envelope thresholding conditions and the soft-mask
approaches in terms of conserving the original phase, are approximately compati-
ble. Therefore, preservation of the original target phase at the output of the here
analyzed binaural CASA processors provides scope for the application of the level
based CSII in the remainder of this work.

For binaural processing, a better ear three RMS level based CSII for speech intelligi-
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Figure 4.11: The intelligibility index I3 and quality index Q3 of (Kates and Arehart, 2005a),
extended with a “better ear” decision stage for the I3 index and a “mean ear” averaging for
the Q3 index. The working principles are shown for a range of SNR conditions in white
Gaussian noise. The confidence intervals equal two times the standard deviation.

bility and a mean ear three RMS level based CSII for speech quality were developed.
Following the development of their monaural counterparts by Kates and Arehart
(2005a), these measures are denoted ‘Better Ear I3’ and ‘Mean Ear Q3’, respec-
tively. For the calculation of the mean ear and better ear effect, Equations (4.2.14)
and (4.2.15) are expanded such that the segmental SNR is calculated per critical
band b and RMS weighted MSC values at both ears, using the same window size
for the time course weighting of 32 ms. As the MSC function of Equation (4.2.14)
tends to be faulty (cf. Chapter 2.4) when calculated from a single STFT bin across
the clean and the degraded signal, a longer time series (a window of 1.7 s length is
used for calculating the mean of the MSC in the present implementation) is neces-
sary to maintain the accuracy of the monaural index. Subsequently, the maximum
segmental SNR per critical band b and per window for calculating the mean MSC,
using a 50 % frame shift of 850 ms, is chosen for calculating the binaural advantage
in terms of the better ear effect. Hence, the binaural image is updated every 850 ms.
As regards the mean ear effect, a binaural averaging is performed per critical band
b and per window of the mean MSC calculation. A final averaging of the segmental
SNRs is executed for both instrumental measures to calculate the overall indexes.

The similarity between the monaural and the binaural measure is demonstrated
through the standard deviation in Figure 4.11 for a range of mixing SNRs. For the
purpose of this experiment, 100 SUS sentences of the Ramirez et al. (2009) corpus
were spatialized with a frequency-independent ILD of −14 dB to generate these
plots. As can be seen, the Better Ear I3 is equal to the monaural I3 at the left ear.
The loss in binaural intelligibility unmasking is considered to be in the order of 2 to
3 dB, when excluding the effect of temporal differences, i.e. binaural interaction
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(Bronkhorst, 2000; Van Wijngaarden and Drullman, 2008).
Due to the nonlinear three RMS level weighting, the result of the Mean Ear Q3 is
tending towards the quality of the ipsilateral ear, for the observed signal degrada-
tion. Although data on binaural quality perception seems to be missing in literature,
our choice of an equal averaging across the ears for binaural algorithms is in line
with the binaural quality assessment of Rohdenburg (2008).
As mentioned above, the three level RMS weights of Kates and Arehart (2005b)
have been applied in previous experiments and are applied in the remainder of this
thesis. Although the one-level weighting found in this work outperforms the method
of Kates and Arehart (2005b) for the speech material used here, we prefer gener-
alizability and comparability as well as a well established measure, over a possible
moderate gain in accuracy.

Finally, a clarifying remark to a question that may arise at this point. The sim-
plification of the binaural stage with respect to the binaural stage of the proposed
binaural STI model is due to incompatibility with the CSII measure and the lim-
ited amount of time the author could spend on the problem of objective speech
intelligibility enhancement in the context of the overall aim of this work, i.e. the
enhancement of speech intelligibility. Furthermore, the fact that the SII is intrinsi-
cally not suitable for the assessment of reverberated speech (Schlesinger and Boone,
2010), is circumvented in the majority of acoustical situations, assessed in this work.
That is, most mixtures are an additive superposition of clean target speech and a
real-world background or another coherent interferer.
If, however, the target speech is reverberated, the better ear decision stage will be ap-
plied to the segmental SNR, as previously described, however, without a time-course
weighting. The instrumental measure is subjected to an intelligibility weighting, with
the band-importance function for critical bands given in ANSI/ASA (2007), and will
be referred to as the Better Ear SNRseg in the remainder of this work. Although it is
a central message of the present work that an SNR measure that is indifferent to ar-
ticulatory features in speech, is inappropriate to assess nonlinearly processed speech,
we return to this general manner of objective assessment in case of reverberation,
since we are lacking better means.

Conclusion

This second section of the objective assessment of speech intelligibility dealt with
the objective assessment of linearly and nonlinearly processed speech. It has been
analyzed whether spectral feature measures can be utilized to label the relative in-
formation content in short-time frames of speech, in order to establish an improved
time-course weighting for an SI prediction of nonlinearly processed speech. Although
the analyzed spectral feature measures are capable of labeling transitional sections,
which substantially affect SI, these measures do not represent an alternative to the
existing RMS level-based weighting method of the short-time CSII measure. Further
optimization has shown that only a small level range in speech, predominantly tran-
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sients and articulatory hubs, contribute to intelligibility. This result corresponds to
the findings of Yoo et al. (2007).

For the purpose of predicting binaural speech intelligibility of nonlinearly processed
speech, the three RMS level weighted CSII was implemented in a better ear fash-
ion and introduced as the Better Ear I3. Based on the observations made in the
present chapter, the Better Ear I3 measure is employed for evaluating and optimizing
binaural CASA speech processors in the following chapter.
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5

Optimization and assessment

This chapter deals with the optimization and the assessment of binaural CASA
speech processors that are connected in series to different binaural front-ends with
and without beamforming. Based on the tools and types of enhancement and assess-
ment of speech intelligibility that were presented in the previous chapters, it is the
aim to assess objectively the audiological benefit of binaural CASA speech proces-
sors, in various acoustical environments. Prior to this assessment, the algorithmic
parameters of the three binaural speech processors of this thesis are optimized with
a genetic algorithm. Subsequently, the assessment of these processors will address
the questions of generalizability of optimized filter solutions in changing acoustics,
the influence of the front-end and a performance comparison of the processors. In
addition, as the applied binaural speech processors approximate different modes of
the binaural processing in the model hearing process, we will pursue the general
question which strategy offers the best source separation power in a given sound
scene.

5.1 Introduction

In order to define the scope of this chapter, we will briefly recapitulate the relevant
findings of the previous chapters and draw conclusions, for the following setups.

The theoretical introduction of this work shows that MVDR beamformers can be
combined with CASA-based post-filters to achieve an MMSE solution. Three bin-
aural CASA post-filters have been introduced in Section 2.4. Each of them uses a
binaural measure, or a combination of binaural measures, to separate speech from
noise. More specifically, algorithm CC is conceptually similar to the algorithm of
Allen et al. (1977), and separates speech from noise by a primitive classification
scheme based on the binaural waveform coherence. Algorithm CLP is based on
the binaural filter of Gaik and Lindemann (1986) and utilizes binaural cues of the
fine-structure waveform in a pattern-driven separation processes. The third post-
processor, algorithm ELT of Kollmeier and Koch (1994), also applies binaural cues
in a pattern-based fashion, to improve speech intelligibility. This algorithm sup-
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presses interference in a joint centre and modulation frequency domain and applies
the binaural cues of the envelope waveform as a directional classifier.

Binaural cues are considered the only low-level cues that are independent of artic-
ulatory and speaker-dependent features. This constitutes a great advantage over
monaural speech enhancement approaches, which have to account for these depen-
dencies. Moreover, the presented binaural speech processors offer a binaural output
signal, thereby enhancing the audiological benefit, and they can be implemented as
real-time processors.

In a statistical attempt to define the problem of speech enhancement using a time-
varying filter, in Chapter 2.3.2, it has been shown that the SNR of the acoustic
waveform is an incomplete measure for defining the problem of speech intelligibility
enhancement. The local SNR at time-frequency units has been found to be a better
means for this task. However, to facilitate the comparability with the majority of
similar work (e.g. Wittkop et al., 1997), we have consistently referenced and will
reference the speech-in-noise problems to a waveform-based SNR.
In order to limit the scope of the following study, the optimization will be performed
at an SNR of 0 dB through different acoustic conditions, and subsequently be as-
sessed over a varying SNR range. An SNR of 0 dB is considered to be typical in
a cocktail-party situation (Bronkhorst, 2000). This situation determines the base-
line environment in terms of the here applied binaural CASA processors without a
beamforming front-end. For binaural speech processors that are serially connected
to bilaterally applied front-ends, the source level SNR can be much lower. How-
ever, because the statistics of the binaural parameters have shown to be mainly
determined by the ear-level and binaurally averaged SNR, the present study on op-
timization and assessment is further confined to an ear-level SNR and binaurally
averaged setup definition.
Chapter 3 shed light on the characteristics of binaural parameters of the waveform
fine-structure as well as of the corresponding envelope in distorted wave fields. The
results reflect psycho-acoustical findings, stating that binaural temporal difference
cues of the envelope are more susceptible to noise than the carrier analogue.
Additionally, realistic binaural parameters, measured at the entrance of the ear-
channel of a mannequin head, have been compared to the modified binaural pa-
rameters at the output of bilaterally applied hearing aids. In the following, it is
a central question whether the binaural parameter modifications as a consequence
of the hearing aid transfer function, will have an effect on the separation power of
post-processors.
The application of commercially available hearing aids in this work allows for the
incorporation of manufacturing and fitting imperfections as well as the entire digital
processing chain. Consequently, the following study aims at a realistic picture of
the audiological benefit, albeit the mixing setup, given in Chapter 3.2, poses a set
of restrictions to the simulated realism in the following section.
The probabilistic weighting approach that has been introduced in Chapter 3.3.3,
represents an elegant and efficient means to take account of the peculiarities of a
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certain binaural front-end and the acoustics it is applied to. The strategy greatly
increases the applicability of binaural cues in noise, although, needless to say, it can-
not cancel out their physical deterioration in adverse situations. The probabilistic
weighting method is used in the following study. To that purpose, the histograms
of the lookup tables were built as described in Chapter 3.3.3.

The problem of assessing intelligibility of binaural and nonlinearly processed speech
has been covered in Chapter 4. A better ear version of the I3 measure of Kates
and Arehart (2005a) has been developed for the optimization and the assessment of
the binaural and non-linear CASA processors. Alternatively and where necessary,
use will be made of the here derived mean ear version of the quality measure Q3 of
Kates and Arehart (2005a), and of the underlying coherence-based and intelligibility-
weighted Better Ear SNRseg measure.
As these objective metrics are based on speech segments of 32 ms length (with 50 %
overlap), these are considered to be capable of the assessment of fluctuating speech
(Eneman et al., 2008, p. 446). Accordingly, fluctuating speech (without low-level
sections using a simple VAD method) will be applied during coherent interference
situations. To demonstrate this possibility, a linear regression of the I3 measure
against the SUS word scores for fluctuating and stationary noise was performed.
For the test procedure and test conditions, see listening test one in Section 4.1.3 and
Table 4.1. The resulting regression analysis is given in Figure 5.1. The r2 statistic
indicates that 70 % of the variance in the data is expressed by the I3 measure.

The level for understanding speech by 50 % in noise is generally determined with the
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Figure 5.1: Regression analysis of the percent-correct scores versus the I3 measure for sta-
tionary and fluctuating noise conditions, which were introduced in listening test one in
Section 4.1.3.

SRT method. For people with normal hearing in the presence of stationary noise,
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this threshold is usually found at −4 to −5 dB (monaural presentation). The SII
of the standard ANSI/ASA (2007) predicts this threshold for stationary noise at an
SII value of 0.33 (George, 2007, p. 117). However, as it can be seen in Figure 5.1,
this I3 threshold at the SRT depends on the character of the noise. For example, in
fluctuating noise the threshold of 50 % intelligibility is found at around an I3 of 0.25.
For non-fluctuating maskers, on the other hand, the I3 is inclined towards higher
values. This deviation has to be considered in the analysis of different acoustical
situations.

The fusion of the algorithmic results of the previous chapters forms the basis of
the current chapter. A universal procedure is consequently established, in which
binaural CASA processors are combined with specific front-ends with and without
beamforming, and in which these are optimized and analyzed in realistic conditions
with an objective measure of speech intelligibility.

The following chapter is split into two parts. In the first part, the CASA post-
processors are optimized in order to adapt the parameters of the algorithms to a
specific binaural front-end as well as to a specific acoustic scene. In the second part,
the optimized CASA algorithms are assessed in changing acoustic environments.

5.2 Parameter optimization of post-filters

A unifying problem to many fields of science is the optimization of algorithms or
processes. In acoustics, the speech processing branch faces an increasing algorith-
mic complexity which makes the optimization challenging. In fact, a deterministic
search for an optimum performance is often not possible, as an exhaustive enumera-
tion of a multidimensional search space demands, even for relatively small problems,
an impractical computational effort. At the expense of accuracy, stochastic search
algorithms reduce the calculation effort. In general this trade-off strongly reduces
the time of convergence while yielding a good solution. The problem of optimiza-
tion is well known in hearing aid design. Influences of the individual pathology and
listening preferences, on the performance of particular hearing aid features, like the
insertion gain, compression or feedback cancellation pose a difficult optimization
problem.
Several approaches of user specific adaptation of hearing aid parameters exist (Dil-
lon, 2001, p. 312 ff.). However, as the algorithms advance in complexity, it is likely
that users are streched by the decisions they have to take.
Therefore, stochastic optimization using a genetic algorithm (GA), was introduced
in the optimization of acoustic feedback cancelation (Durant et al., 2004) and the
optimization of cochlear implants (Baskent et al., 2007). In both of these studies,
the GA optimizes algorithmic parameter sets with subjective feedback. The results
prove the qualification of a GA in these tasks.

For the current problem of optimizing complex CASA processors, the approach of
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using a subjective input as a fitness assignment in the GA procedure is desirable.
However, a subjective test would require great efforts to discretize the search spaces
according to perceptual scales, as it has been done by Durant et al. (2004). More-
over, in order to keep the optimization manageable, parameter sets would have to be
confined to a small number for each GA iteration. Additionally, efficient SRT tests
are excluded in the assessment of nonlinear processors and percent-correct score tests
are laborious and lack generalizability (Greenberg and Zurek, 2001). The present
work, therefore, adopts the idea of the model-based improvement and the model-
based assessment of speech intelligibility, which was formulated as a future means
for an efficient hearing aid design by Hohmann (2008).
By utilizing a GA in the optimization of CASA processors, this idea is further
developed on the grounds of evolutionary model processes. The outcome of the
optimization does not only produce an optimum parameter set for each CASA pro-
cessor in a controlled listening setup, it also shows how the model hearing might
utilize the different cues in the best possible way. The validity of this approach,
however, has to be qualified. That is, the results of the optimization are subject to
the degrees of freedom that are made in the model assumptions, such that these are
not unconditionally equivalent to the neural functionalities.

5.2.1 Genetic optimization framework

The parameter optimization using a GA is based on the evolutionary principles of
the survival of the fittest strategy. Therefore, a biological individual with a certain
sequence of genes (a chromosome) can be abstracted, for our task, as a CASA speech
processor with a certain set of algorithmic parameters. The GA selects good and
best individuals based on an objective function that defines the respective fitness
in a certain domain. Besides the selection of good solution candidates, the GA
incorporates the principles of genetic mutation and crossover. Together, these are
the three genetic operators that create new solutions. Principally, the optimization
can be written as a maximization approach over a search space L. Considering
ℵ : L → R to be an objective function that assigns to each solution ℘ ∈ L a fitness
value, the GA maximizes this fitness-value with:

ℵ(℘♣) = max{ℵ(℘) | ℘ ∈ L}, (5.2.1)

where ℘♣ is the final parameter solution of a GA run. Here, the objective speech
intelligibility measure I3 in a better ear fashion was applied as the objective function
(Better Ear I3), unless another one is mentioned.

Many variants of genetic operators exist and often these are tailored to specific prob-
lems, as e.g. done by Durant et al. (2004) and Baskent et al. (2007). In the present
work, no such predefined GA algorithm was applied. Instead the Genetic Algorithms
for Optimization Toolbox by Houck et al. (1995) was used. This toolbox offers a
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variety of genetic operator versions and has demonstrated to be efficient in many
different optimization problems (Houck et al., 1995). Throughout the optimizations
performed in this work, we applied the defaults of the GAOT that were found to
perform well for a wide range of optimization tasks (Houck et al., 1995). This ad-
ditionally accounts for the more natural representation of parameters with floating
point numbers, which speeds up the convergence of the optimization by an order of
magnitude in terms of CPU time (Houck et al., 1995).
Here, we will not give a thorough analysis of the quality of the GA solutions and the
general suitability of the GA procedure with respect to the genetic operators and
their functional parameters. To get a general indication of the optimization com-
plexity, we examined the reproducibility of GA solutions, by running several GA
optimizations for particular setups. Additionally, the GA-optimized parameter-sets
are applied in changing acoustic environments, which gives information about the
robustness and generalizability of a certain solution. Whether the best solutions of
the GA, found here, are perceptually insignificantly deviating from the optimum so-
lutions, as e.g., shown by Baskent et al. (2007), cannot be inferred—mainly because
the optimum solutions are not known.

For the optimization task, the additive mixtures of simulated anechoic recordings
with real-world scenes of Chapter 3.2 are utilized. Silent gaps in the clean speech
material, defined as a drop of the RMS level by −50 dB relative to the overall RMS
level in frames of 10 ms, were excluded with a VAD procedure. To introduce target
speaker diversity in the parameter set evaluation, tokens of 5 s length of one fe-
male speaker and two male speakers from the TNO (2000) database were randomly
selected and concatenated to 15 s of diverse speech material. Interfering speakers
acquired their sentence material from the same database (including the same VAD
procedure). Care was taken that no overlap with the target speaker existed and no
repetition within the 15 s of target speech occurred. In conditions where the influ-
ence of reverberation was to be assessed, the MISM setup of Figure 3.1 in Chapter
3.2 was used.
The size of the initial population, that seeds the GA search space with random, but
bounded, parameter values, as well as the number of iterations, i.e. the termination
condition of the GA, were set according to the complexity of the optimization prob-
lem. Thereby the reproducibility of overall GA solutions served as an indicator.
No effort was made to discretize the search-space for integer parameters. Therefore,
the floating point numbers of certain parameters were rounded to the nearest integer
value.

The following subsections treat the optimization of the three binaural speech pro-
cessors at the output of different front-ends and in different acoustical situations.
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5.2.2 Optimization of the CC algorithm

In Chapter 2.4 the binaural coherence-based post-processor of Allen et al. (1977),
in here abbreviated as algorithm CC, was introduced. Four algorithmic parameters
were selected to fine-tune the coherence-based separation scheme with respect to
the front-end and the acoustic scene, in which the post-processor is applied. The
optimization using the introduced GA framework was started with an initial random
sampling of parameters, i.e. an initial population of 1000 parameter sets and 300
iterations of the GA. This optimization was performed for a set of front-ends and
the real-world scenes that are introduced in Chapter 3.2. Additionally, the post-
processor was optimized for quality in the canteen environment, for which the Mean
Ear Q3 index served as the objective function in the GA process.
In order to analyze the effect of reverberation, the binaural output of the Aachen
head in the above-introduced MISM-simulated room with a reverberation time of
0.2 s was utilized to generate the S0N90 condition for an optimization. The intel-
ligibility weighted Better Ear SNRseg was applied in the GA optimization and the
final assessment.1

Figure 5.2 gives the results of the optimizations. The outcomes are described below
with respect to a set of specified characteristics. This facilitates the comparison with
the optimization results of the other binaural speech processors.

Attenuation of diffuse noise: When optimized for the Better Ear I3 measure,
the CC processor gains a moderate improvement of speech intelligibility in the
canteen, the workshop and the bus environment. As can be seen, in the bus
environment, the Aachen head already offers maximum speech intelligibility
at an SNR of 0 dB. The reason for this could be a wide dynamic range, a flat
omnidirectional frequency-transfer at low frequencies and no nonlinearities in
the processing chain of the mannequin. In addition, the low-frequent bus
noise might leave enough undistorted speech energy in mid- to high-frequency
ranges. It is well-known that speech can be fully intelligible, even if it is audible
in a band-limited presentation as narrow as one-third of an octave (see e.g.,
Barker, 2006, p. 318).
As indicated by the lowest algorithmic results during the GA runs, and as
expected by the efficient working range of the MSC function, the CC post-
processor appears to work fairly robust in diffuse sound fields, where it offers
interference suppression in the mid- to high-frequency range.
Hardly any improvement is seen for the quality optimization with the Mean
Ear Q3 measure in the canteen situation, despite the fact that similar sets of

1As mentioned in the previous chapter, the I3 measure, which is a version of the SII, is generally
an inaccurate measure to assess the impact of reverberation on speech intelligibility (Schlesinger
and Boone, 2010). The underlying coherence-based SNRseq in the method of Kates and Arehart
(2005b) lacks a high predictive power of speech intelligibility under these conditions too. However,
as a remedy for the assessment of reverberated and nonlinearly processed speech, the intelligibility
weighted Better Ear SNRseq is used as a measure.
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Figure 5.2: Parameter optimization using a GA of the coherence-based post-processor CC
at the output of A, the HG (low directivity), B, the HG (high directivity), C, the BTE
(omnidirectional), D, the BTE (directional) and E, the Aachen head. Sequentially, each bar
in the plots refers to the algorithmic parameters of these front-ends, with the exception of
the last row of the plots, where five repeated GA optimization runs are plotted for the Aachen
head front-end in the simulated room setup with one interfering speaker at 90 deg and RT
= 0.2 s. The optimized parameters are the αγ the MSC smoothing constant, dx the lower
cutoff frequency of the coherence weighting, e the compression/expansion exponent and
Amin the maximum suppression (for further explanation see Chapter 2.4). The right-hand
column of plots gives the results of the applied objective function for each front-end/scene
combination. The results of the optimization of the HG modes in the canteen environment
have to be considered with care due to a recording failure. See Chapter 3.2 for further
information.

℘♣ (excluding the BTEs) resulted in comparable Q3 variations between worst
and best solutions.
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Interestingly, the estimation of the MSC by averaging the auto and the cross
power spectra is accomplished with a relatively small value of the time constant
αγ , i.e. τ̆ = −∆T

logn αγ
is in the range from about 10 ms to 40 ms. This might be

attributed to the fact that the MSC-weighted mask is eventually applied to the
modulus of the STFT representation. An increase of αγ results in a smoothing
of the target speech, which is interpreted as a decline of speech intelligibility
by the intrusive speech intelligibility measure.
This observation is in contrast with the algorithmic settings of Peissig (1992),
who reported a time averaging αγ in the range of the syllable and phoneme
rate, i.e. up to a value of αγ which is an order of magnitude higher than found
in the present GA optimization. His approach led to a subjective quality
improvement in a highly reverberant environment. By informal listening, we
confirm the qualitative benefit of a higher smoothing constant. The quality
measure Mean Ear Q3 used in the GA optimization, however, produces also
a relatively small αγ , because it is an intrusive measure. Consequently, the
quality perception associated with a longer time constant cannot be predicted.
See also the discussion at the end of this chapter.

Attenuation of coherent noise: A small improvement in terms of Better Ear
SNRseg is found for the attenuation of one interfering source at 90 deg in a
simulated room with RT = 0.2 s, using the Aachen head as a front-end.
As the STFT components in algorithm CC are calculated per blocks of 16 ms
length, the MSC at zero-lag is effectively incapable of distinguishing between
coherent signal components from the front and from the sides (see also the ex-
amples given in Chapter 2.4). Moreover, since the interfering source is inside
the reverberation radius at one meter distance (rRT = 1, 2 m), only part of
its energy is diffused by reverberation and could consequently be labeled as
diffuse through a low MSC value. It stands to reason to exclude algorithm CC
from further attempts of improving speech intelligibility in coherent interfer-
ence conditions in the following. Furthermore, preliminary inspection showed
that no speech intelligibility enhancement can be achieved in fully coherent in-
terference conditions. Therefore, this scene setting was already excluded from
the GA optimization task presented here.

Comparison of directional and non-directional front-ends: Using the ear-
level SNR as a common reference among the front-ends, no clear difference
can be observed in the GA selection of optimal algorithmic parameters. The
moderate variation of the enhancement results (cf. the lowest scores in the GA
solution sampling in the right-hand column of plots) should be an indication
of the robustness of the algorithm.
To improve the direct-to-reverberation ratio, hence to increase the direct sound
energy of a target speaker, Martin (2001) suggested to employ directional
front-ends as a pre-processor to algorithm CC. The anticipated benefit refers
to the overall gain, which is not computed here. However, the improvements
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are unmistakeably realized, as expressed in the balanced benefits across the
different directional front-ends, despite the fact that the SNRs at the source-
level are much lower for the directional aids.
The parameter sets are qualitatively comparable. Nevertheless, these are to
some extent specific to each binaural front-end across different environments.
See, e.g. the parameter sets of the HG (high directivity) front-end across
different conditions.

Reproducibility of solutions by the GA: To test the quality of the GA solu-
tion, five GA runs were conducted for the coherent interferer condition in mild
reverberation and using the output of the Aachen head. The test condition can
be considered difficult, because algorithm CC can hardly suppress the inter-
fering source or diffuse signal components in this scene setting. Consequently,
the improvement of the Better Ear SNRseg is small. In any case, the GA re-
alized the application of algorithm CC without a loss in terms of Better Ear
SNRseg, which supports the necessity for an algorithmic optimization. Finally,
the parameter sets of the best solutions indicate by visual inspection that two
maxima have been found in the search space. Despite the difficult optimization
task, the close similarity of the two referring parameter set solutions indicate
a considerable degree of accuracy for the observed GA optimization.

5.2.3 Optimization of the CLP algorithm

This section presents the optimization of the binaural processor of Gaik and Lin-
demann (1986), denoted algorithm CLP in this work. The working principle of the
algorithm was introduced in Chapter 2.4. For each front-end and scene combination
a GA optimization was executed with an initial population of 2000 parameter sets
and 300 genetic cycle iterations. The results are given in Figure 5.3. Similar to
the previous analysis, the observations are subsumed under the previously defined
categories.

Attenuation of diffuse noise: In the analyzed canteen and workshop environ-
ment the improvement of speech intelligibility is in the range of 20 %.2 When
comparing these results of the canteen environment with algorithm CC, there
is slight improvement, nonetheless the gain remains moderate. In the work-
shop environment, on the other hand, the improvement at the output of the
BTE in two directivity modes, is lower than attained with algorithm CC (row
three in Figure 5.3).
Noticeable is that the ILD parameter is not used in both the canteen and the
workshop environment at the output of omnidirectional receivers, as expressed

2In a first approximation, we may speak of a linear relationship between I3 and subjective
speech intelligibility.
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Figure 5.3: Parameter optimization using a GA of the CLP speech processor. Each bar
of the plots refers to a parameter with a certain front-end (see headline for each row).
The right column gives the speech intelligibility results of the GA procedure. In the lower
row, the reproducibility of the GA solution is checked with the Aachen head in a MISM-
simulated room with an interfering speaker at 90 deg and a reverberation time of 0.2 s
(assessed with the Better Ear SNRseg, for the reasons mentioned above). The optimized
parameters of the algorithm are nL the bin-size of a 2D filter the ILD domain is smoothed
with, nϕ (nφ in the plot) the bin-size of a 2D filter the IPD domain is smoothed with, �hist the
threshold of the probability weighting, dxL the lower cutoff frequency of ILD-based weighting,
dxϕ the upper cutoff frequency of the IPD-based weighting, ξ the ILD/IPD tradeoff in the
weighting process, e the compression/expansion exponent of the weighting function and Amin

the maximum suppression in the weighting process.
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through a high value of parameter dxL. In case of directional front-ends, how-
ever, the ILD is used in the weighting process above 2 kHz.
The bus situation has previously shown to be difficult to evaluate across differ-
ent front-ends. Speech intelligibility at the output of the Aachen head remains
high, even at a global-mixing SNR of −10 dB, which was chosen to lower the
speech intelligibility for the optimization as a special exception. However, a
strong fluctuation of the GA solutions indicates a sensitivity of the algorithm
with respect to the parameter sets ℘. Finally, an almost negligible improve-
ment is achieved under this condition with either front-ends (fourth row of
plots in Figure 5.3). The limited speech enhancement gain is certainly im-
posed through saturation effects, in terms of noise suppression, at high levels
of intelligibility in the unprocessed situation. However, the benefit of the GA
optimization can be seen in both optimization setups, in which possible pa-
rameter set solutions sample the wide range of speech intelligibility.

Attenuation of coherent noise: The improvement of speech intelligibility in the
canteen environment is slightly higher than observed with algorithm CC. This
advantage is likely a consequence of the presence of a couple of coherent speech
sources in this environment, which are more efficiently suppressed with algo-
rithm CLP.3

In the presence of two interfering sources at ±90 deg (second row of the bar
charts in Figure 5.3), the algorithm achieves an absolute intelligibility improve-
ment of 40 % with both the HG (low directivity) front-end and the Aachen
head. The parameter values show that some sequential and spectral clustering
of sound objects is performed in either of the cases in the binaural domain,
as expressed with nL and nϕ. A histogram threshold �hist of zero and two for
the HG (low directivity) and the Aachen head, respectively, indicates resolved
(or separated) binaural parameter distributions in the probability weighting
function (see Chapter 3.3.3). Both binaural parameters are relevant through-
out the entire spectrum, as expressed by a low dxL and a high dxϕ for the ILD
and IPD, respectively. In both final parameter sets the ILD is included in the
weighting process by a ratio of approximately 1/2 with respect to the IPD pa-
rameter, see parameter ξ. The upper cut-off frequency of the IPD parameter
is possibly resulting from the circumvention of the spatial Nyquist limit with
lookup tables.
The attenuation of a coherent source in slight reverberation demonstrates how
the algorithm is tuned to a certain default state (fifth row of plots in Fig-
ure 5.3). The ILD and IPD parameters are equally smoothed. Furthermore,
no smoothing of the histograms is performed (�hist of zero); the ILD parameter

3In Figure 2.10 of the introduction, both scenes, the canteen and the workshop environment,
were compared using the long-term averaged MSC. The comparison indicated that both environ-
ments are equally coherent (or the opposite), when using a common smoothing constant for binaural
recordings of 20 s length. Not shown in this figure is the MSC average on shorter spans, which
might be (at times) higher (and lower) for the canteen environment because of coherent interferer
in the proximity of the recording position.
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is used at frequencies higher than 0 or 2 kHz (dxL) and the IPD cue is em-
ployed up to at least 4 kHz (dxϕ). Moreover, both directional cues are equally
important in the weighting, as indicated by a ξ ≈ 0.5. Even though no GA
parameter set ℘♣ is found twice in the reverberation setup, the final solutions
show no random fluctuation and realize in each case an improvement in the
range of 4 dB.

Comparison of directional and non-directional front-ends: No distinct dif-
ference can be seen between the directional and non-directional front-ends in
terms of speech intelligibility. With respect to the parameter sets, a close
qualitative similarity can be found between the first row and the third row in
Figure 5.3. Under these similar conditions, the front-end characteristics ap-
pear to have an influence on the parameter choice.
Overall, the parameter sets adapt considerably to the peculiarities of the front-
ends for all environments and generate a (on average similar) benefit indepen-
dent of the front-end.

Reproducibility of GA solutions: The search space has eight dimensions in the
current optimization. The repetition of three GA runs in the coherent interferer
situation in slight reverberation, produced three different parameter set solu-
tions. Nonetheless, the solutions result in similar maximum Better Ear SNRseg

outcomes. As compared to algorithm CC, the final GA solutions lead to a
higher benefit, while the worst GA solutions are as low as found with algo-
rithm CC. Although this is a consequence of a lower algorithmic robustness,
it also shows the potential of the algorithm that needs to be activated by
scene-dependent algorithmic parameters.

5.2.4 Optimization of the ELT algorithm

Finally, the algorithm of Kollmeier and Koch (1994), in this work named ELT al-
gorithm, is optimized. The algorithm was introduced in Chapter 2.4. As the search
space has 12 dimensions, the solution sampling was increased to an initial population
of 3000 parameter sets and 500 GA iterations. Besides, three optimization runs were
performed for each front-end/environment combination, to minimize the chance of
non-optimal GA solutions.
The optimized conditions, that are presented here, were restricted to the front-ends
of the HG (low directivity) and the Aachen head. Additionally, the free-field noise
condition of coherent interference was simplified such that it possessed only one in-
terfering source at 90 deg, instead of two at ±90 deg, as used for the optimization of
algorithm CLP. The choice was made to assure a high disjointness of sources in the
carrier and modulation frequency domain of algorithm ELT, which is coarser than
the carrier frequency domain of algorithm CLP. In addition, the histograms of the
weighting function are coarser in terms of the standard deviation of the binaural
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parameters. Therefore, more than two sources show an increased potential to over-
lap (see Chapter 3.3.2). An overlap, be it in the carrier and modulation frequency
domain, or in the binaural representation, would hamper speech enhancement under
the free-field test conditions that are optimized here.

To focus this analysis on the most salient effects, the optimizations of the workshop
and the bus environment are not given here, as preliminary inspection showed no
advantage in terms of speech intelligibility.4 In addition, the optimization outcomes
in the canteen environment are limited to reporting the HG (low directivity) front-
end results. The GA optimization of the Aachen head will be compared to the GA
results of the HG (low directivity) front-end, in the coherent noise condition only.

The outcomes of the optimizations are given in Figure 5.4. The observations are
again summarized with respect to the above introduced four characteristics.

Attenuation of diffuse noise: The threefold optimization attempt of the algo-
rithm in the canteen condition (first row of plots in Figure 5.4) does not result
in an improvement of speech intelligibility. In the process no identical pa-
rameter sets of ℘♣ are found by the GA. Likely due to the inadequacy of the
algorithm in this situation, the search presumably takes place across a rather
flat landscape of solutions. At a closer look, however, we observe a sound pa-
rameter balancing.
The first two optimization runs, for instance, show a considerable application
of the ITD cue in the canteen condition. The clustering across the ITD plane is
small, nt = 4, demonstrating the attempt at directional sensing. This purpose
appears to be confirmed by an increased threshold of the weighting histograms,
�hist = 4. Moreover, the standard deviation weighting is active, as indicated
by a high eσt exponent. Finally, a high compression of the weighting function

Ḿ ft

elt
in Equation (2.4.46), expressed by small e values, demonstrates that a

rather soft weighting is applied. Hence, the masks are presumably applied to
suppress carrier modulation frequency bins that hold outliers across the ITD
representation.
Overall, the results, including the GA results for the Aachen head front-
end/canteen combination, which are not shown here, suggest that the algo-
rithm does not introduce a deterioration of speech intelligibility in these situ-
ations through an adaptation and a reduction of the weighting.
The reduction of the weighting based on binaural cues can change the al-
gorithm’s functioning in such a way, that it is only driven by the binaural
parameter standard deviation weighting. Based on the algorithmic parame-
ters given by Kollmeier and Koch (1994), we believe that an active standard
deviation weighting has been the main reason for the 2 dB SNR improvement

4Despite the absence of these diffuse field conditions in the present section on the optimization
of algorithm ELT, the following section will provide the overall optimized performance of this speech
processor in the workshop environment in Figure 5.7.
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Figure 5.4: Optimized parameters using a GA of the ELT speech processor for different
front-ends and acoustic conditions (see titles in each row). The right column gives the
results of the optimization in terms of speech intelligibility and in terms of the Better
Ear SNRseg for the reverberation condition. For each environment, the optimization was
repeated three times to observe the reproducibility of individual parameters and set solutions.
The parameters of the optimization are nL the bin-size of a 2D filter the ILD domain is
smoothed with; nϕ, the bin-size of a 2D filter the ITD domain is smoothed with; eσL and
eσt are exponents for the compression/expansion of the ILD and IPD standard deviation
masks, respectively. ξ is the ILD/IPD tradeoff in the weighting process; Nlp and dxϕ are
the filter order and the cutoff frequency of an envelope lowpass filter, respectively; e is
the compression/expansion exponent of the weighting function and � a small constant for
preventing a division by zero; Amax and Amin are the upper and lower bound of the mask
M ft

elt, respectively, and �hist is the histogram threshold of the probability weighting.
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the authors found (see the introduction of the algorithm ELT in Chapter 2.4
and the discussion at the end of this chapter). In the current implementation
of the algorithm, this standard deviation weighting is only loosely defined. To
tighten the definition of this weighting function, one could, for example, nar-
row the level and time ranges in Equation (2.4.43) and (2.4.44), respectively.
Probably the loosely defined standard-deviation based penalty weighting of our
implementation and the negative implications of a less resolved modulation de-
composition, result in a lower SNR gain in diffuse conditions, than achieved by
Kollmeier and Koch (1994). As previously described, the lower resolution of
the modulation spectrum in our implementation of algorithm ELT is required
to allow for a directional weighting based on the binaural parameters of the
envelope.

Attenuation of coherent noise: Indicated by the efficient suppression of a single
noise source in anechoic conditions (second and third row of plots in Fig-
ure 5.4), but offering no benefit in slightly reverberating condition (fourth row
of plots in Figure 5.4), algorithm ELT is shown to be merely able to suppress
highly coherent noise sources. Throughout all GA parameter set solutions,
the magnified ILD cue (see Chapter 3.3.2) is preferred over the ITD cue. The
choice is in accordance with the observed characteristics of binaural envelope
cues in noise in Chapter 3.3.2. As compared to the ITD cue, a lower standard
deviation of the magnified ILD cue has been detected in this study.
The repetition of the optimization did not yield quantitatively identical pa-
rameter set solutions. However, the parameter sets converge qualitatively and
achieve similar intelligibility scores. Low nL and nt values, as well as a low
�hist testify that the probability weighting functions show a clear directional
pattern.
Whereas the final mask is compressed and as such rather smooth in the canteen
enhancement task, a parameter e of approximately 1 for the HG (low directiv-
ity) front-end and value around 1.5 to 2 for the Aachen head front-end, shows
that the directional mask filtering is highly active in the weighting process.

Comparison of directional and non-directional front-ends: The comparison
between the front-ends has been limited to the coherent noise condition, as this
is the only condition in which the algorithm achieves an improvement in terms
of speech intelligibility. Overall, the GA finds similar solutions for both front-
end types. A difference exists for the expansion of the masks. Probably due to
the fact that natural binaural parameters show less overlap (and thereby little
ambiguity), the weighting function can be aggressively applied at the output of
the Aachen head. Additionally, more fluctuation in finding optimal lower and
upper bounds of the weighting function (Amin and Amax, respectively) exists
in the GA optimization of the Aachen head output.

Reproducibility of GA solutions: As a consequence of the increased dimension-
ality of the search space and the search across a likely shapeless optimization
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function, the genetic search did not yield identical parameter set solutions for
the four conditions tested. This also holds for the coherent noise condition,
in which the algorithm offers a clear benefit and should show dominant max-
ima of speech intelligibility across the parameter space. Nonetheless, the GA
search resulted in qualitatively similar results for each front-end in coherent
noise conditions.

Discussion

The GA optimization of algorithmic parameter sets produces practical, optimal and
logical solutions. While the efficiency of the GA procedure is a consequence of the
survival of the fittest strategy, the logic that has emerged from the solutions, is a
product of the interplay between CASA algorithms in the improvement and assess-
ment of speech intelligibility in particular environmental arrangements. Moreover,
this algorithmic logic validates the underlying model assumption that it compares
well with psycho-acoustic findings.
The GA approach offers a great benefit in the tuning of parameter sets, as natural
processes are often too complex to be efficiently analyzed and described. Moreover,
the GA approach provides solution strategies that may underly natural ranking pro-
cesses of low-level cues. Of course, the solutions will only reflect what the system
allows.

Throughout the optimization of the three CASA speech processors it was found
that parameter sets show generally a high variation across possible solutions (as
indicated by the lowest GA solution in each optimization run). For this reason, the
optimization itself is necessary to gain, in the best case, an improvement of speech
intelligibility and, in the worst case, not to introduce deterioration. A scene detec-
tor, similar to the ones introduced by Wittkop and Hohmann (2003) and Bach et al.
(2011), could be applied in future hearing aids to switch between optimal param-
eter sets and programmes, or to turn off the processing when no improvement is
expected.
With respect to reproducibility we found that smaller optimization problems can
be comprehensively calculated with the GA in order to find identical solutions. If
the optimization problem becomes more complex and the algorithm lacks suitable
means to deal with a scene, a lot of variation in algorithmic parameter sets is ob-
served as a consequence. Nevertheless, no deterioration of speech intelligibility has
been introduced by the binaural processors under any condition.
With respect to the applicability of binaural parameters in adverse conditions, we
find the observations of Chapter 3.3 on their statistics in noise verified. The tem-
poral difference parameter of the fine-structure (here the IPD) has shown to be the
most important parameter in both incoherent and coherent conditions. For front-
end/scene combinations in which the carrier ILD is more dominantly included in the
directional weighting process, the ILD never gains more than half of the ‘attention’
used in the total directional decision taking process. Using only binaural envelope
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cues, the envelope ILD is favoured over the envelope ITD in coherent interference
conditions. In diffuse interfering scenarios, as the here observed canteen environ-
ment, the ratio can be the inverse.
In the second part of this chapter, it is observed whether the optimal solutions, found
here, lead to robust improvements under changing acoustics. Before we proceed with
that question, the present section is completed with the results of the optimization
of the smoothing parameters that are used in the cepstral smoothing process.

5.3 Optimization of cepstral smoothing constants

The technique of cepstral smoothing is treated in this thesis to reduce the percep-
tually annoying phenomenon of musical noise in mask-based approaches. For an
introduction to the method see Chapter 2.3.4. The following paragraphs deal with
the GA optimization of the time constants and the maximum mask-based suppres-
sion constant used in the cepstral smoothing process. We start with a description
of the optimization setup.

Prior to the optimization, mixtures with audible artifacts were generated. The tar-
get speech material was a 10 s long concatenated series of sentences, spoken by three
speakers (one female and two males). Three sentences of the TNO (2000) corpus
were selected for every speaker. Pauses in the speech material, defined as a drop
of the SNR of −50 dB relative to the overall equalized RMS sentence level in 10
ms frames, were excluded with a VAD technique. Subsequently, the speech material
was mixed with the ambiance recording of the canteen (the Aachen head recording
was made monaural, without an equalization for the HRTFs) and mixed at SNRs
between −15 and 15 dB using increments of 5 dB.
As it has been illustrated in Figure 2.6 in Chapter 2.3.2, the above-mentioned mix-
ture violates the disjointness property of Equation (2.3.18) as the energy of the
target signal is not dominating in well-separated time-frequency areas, but rather
in a smooth balance with the noise. If speech enhancement with an IBM approach,
presented in Equation (2.3.15), is performed for such a mixture, audible artifacts oc-
cur as a consequence of: sparsely scattered binary weighting values, the discrepancy
between the actual energy proportion between target signal and the interference, and
the nonlinear IBM approach. Hence, the generated mixtures and the IBM weighting
method offer a suitable approach for inducing the musical noise phenomenon. To
counteract musical noise, the Equations (2.3.20) through (2.3.24) present the cep-
stral smoothing technique used in the present speech enhancement strategy.

To sample a great variety of IBMs, the local criterion ε in Equation (2.3.15) was
added to the mixing SNR: η = SNR + ε, where ε ranged from −15 to 5 dB with
increments of 5 dB. The sum η constitutes a relative criterion that is based on the
observation that the IBM is widely unaffected by the covariation between the local
criterion and the mixture SNR (Kjems et al., 2009). The IBM as well as the cep-
strum method of Chapter 2.3.4, using identical algorithmic parameters, were applied
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in the present study. A couple of algorithmic modifications were introduced to yield
general results with the present study. The first modification relates to the recursive
smoothing time constant, αPSD, for estimating the power spectral densities during
the IBM calculation (see Equations (2.3.16) and (2.3.17)). αPSD was set to 8, 20 and
30 ms. Secondly, as it is common practice to average a small set of temporally adja-
cent cepstral coefficients before extracting the pitch estimate with Equation (2.3.23),
we have analyzed the influence of two implementations: one with an averaging over
three temporally adjacent cepstral bins and one without averaging.
Accordingly, for 35 SNR/ε combinations per time constant and pitch estimation
technique, a GA optimization was performed. The genetic search tries to optimize
the time-constants αloE, αhiE, αp, αn and the maximum suppression Amin, i.e. the
lower bounding of the mask. The initial population was performed on 1000 sets of
randomly chosen parameter sets and the GA was terminated after 500 cycles.

Regarding the choice of an objective function for speech intelligibility, we proceeded
as follows. With the aim of finding optimal time constants of the cepstral smoothing
operation, one should test the processing on two perceptual scales. One dimension
should reflect to what extent the perceptual effect of musical noise is reduced. For
that purpose Scholz (2008) developed a multidimensional quality measure that pre-
dicts the perception of musical noise. On a second dimension, and in the context of
the present work, the influence of cepstral smoothing on speech intelligibility has to
be analyzed. Since the first scale could not be studied in the scope of this work, we
relate the optimization of the cepstral smoothing technique solely to speech intelli-
gibility.
In order to determine the optimal cepstral time constants in terms of speech intelligi-
bility the STOI measure of Taal et al. (2011a) has been applied. The STOI measure
shows a high degree of conformity with subjective data of intelligibility for IBM
processed speech. A comparison with the I3 measure of Kates and Arehart (2005b)
is not given here, as the I3 measure has not been designed for IBM processed speech
(see Taal et al. (2011b) and the discussion in Section 4.2 for further information).

The averaged results of the cepstral smoothing optimization for every η are given in
Figure 5.5. There, the outcomes are compared to the lower bounded IBM processed
speech, specifically M = max[MIBM, 0.1]. Overall, the results indicate no decline in
speech intelligibility after the application of cepstral smoothing. The different SNR
mixing values produce conformal intelligibility plateaus, with maxima depending
on the local criterion. With respect to the cepstral time constants in the range of
η = 0 dB, the optimization shows that only very small quantities of smoothing are
allowed if the objective is pure speech intelligibility enhancement.

Concerning the power spectral density averaging constant, αPSD, for estimating the
IBM, we find that a higher αPSD results in a small decrease of the pitch smoothing,
αp. At the same time, we observe an increase of the αhiE constant towards higher η.
No clear dependence of αn on αPSD can be observed and Amin is found independent
of αPSD.
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Figure 5.5: The upper row gives the intelligibility prediction of IBM processed speech-in-
noise mixtures in comparison to cepstrally optimized and smoothed IBMs for the same
mixtures, using the STOI measure. The plots below present the averaged optimized cepstral
smoothing constants for a direct DFT/IDFT analysis/synthesis and IBM speech enhance-
ment approach with different time constants of αPSD (8, 20 and 30 ms, see titles). The
right-hand column gives the results of the pitch estimation technique without averaging tem-
poral adjacent quefrency bins (1p), whereas the three columns at the left-hand side used an
averaging over three adjacent bins (3p). η is a relative SNR criterion used in the calculation
of the IBMs.

The comparison between the different pitch estimation techniques, i.e. using one
or three adjacent time bins, is limited to a medium difference between the respec-
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tive pitch smoothing constants, αp. Although the average parameter curves are
conformal, the averaged pitch smoothing constant is higher if no averaging of the
cepstral power density estimates is performed. Omitting the averaging may have a
detrimental effect on the cepstral smoothing technique in unvoiced passages. Yet,
overall, a negligible quantitative difference is found in terms of the STOI measure.
The observation that the pitch estimation technique mainly results in changes of the
pitch smoothing constant αp, is an indication of the cepstral separation power of
different signal components.
Furthermore, the study shows a couple of global trends. Regarding high SNR/ε com-
binations, a strong growth of the αhiE, αp, αn and Amin is observed. This means
that Amin is the most critical parameter. It clearly shows the difficulty of the varying
gain-based speech intelligibility enhancement task. Only a small suppression of the
interference is found to be critical for maintaining a certain level of intelligibility
or for achieving a slight improvement. An interesting finding is the increase of the
αhiE smoothing constant, which might be an indication for an improved tracking of
speech components that form fine-scale articulatory contours. This feature of the
cepstral smoothing technique was recently used for the speech intelligibility assess-
ment of nonlinearly processed speech (Schlesinger, 2012).
On the other hand, at low SNR/ε combinations, only a strong growth of the αp and
αn parameters results in an improvement of the STOI prediction. At low mixing
SNRs, the IBM unity gain strongly deviates from the actual energy proportion of the
target signal in the mixture. The fluctuating signal parts at higher quefrencies are
smoothed through αp and αn, while the envelope of the target signal is maintained
through low values of αloE and αhiE. Consequently, the envelope is shown to be very
important for intelligibility, while an increased smoothing in the higher quefrency
bins leads to a suppression of the interference.

To summarize, the reduction observed here of the cepstral smoothing constants in
the intelligibility optimization problem typifies the discrepancy between quality and
speech intelligibility at the outmost extremes of the trade-off. As mentioned before,
a quality dimension of musical noise perception should be introduced to balance the
opposing aims carefully.

In Section 5.4.5, it will be studied whether cepstral smoothing constants that have
been determined heuristically in a quality optimization, generalize to different acous-
tical setups. Furthermore, it will be analyzed to what extent cepstral smoothing
affects speech intelligibility and quality at the output of a binaural speech processor.

5.4 Assessment of binaural speech processors

This section presents the assessment of binaural CASA processors in changing acous-
tics. We are addressing several questions in this study. First, we want to clarify what
the benefit is for speech intelligibility, of a particular front-end/post-processor com-
bination in a certain interference setup. Secondly, we want to analyze whether the
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optimized parameter sets of the binaural post processors always guarantee a benefit
in changing acoustics. Thirdly, we want to study the influence of the front-end on
the enhancement power of the post-processors.

Throughout the following analysis of coherent and incoherent interference condi-
tions, the speech material consisted of 45 s of concatenated sentences, for both the
target and coherent noise signals taken from the TNO (2000) corpus. The material
was spoken by a female and two male speakers of Dutch origin and in the Dutch
language. The male/female proportion was set to 2/3. The sentences were RMS
equalized and pauses, defined as the RMS level of −50 dB in frames of 10 ms rela-
tive to the overall RMS level, were excluded. The spatialization of the target speaker
at zero azimuth and the interferers at different azimuths, as well as the ear-level SNR
mixing of those, or alternatively the mixing of real-world background recordings, was
performed in accordance with the method presented in Chapter 3.2.
As regards the optimization setups prior to this analysis, (exclusively) GA results
at a mixing SNR of 0 dB and the concomitant weighting functions were applied (see
Chapter 3.3.3). From several GA optimization runs for a specific front-end/post-
filter and scene combination at an SNR of 0 dB, an arbitrary parameter set was
selected for further investigation.
Based on preliminary inspection and the results of the GA optimization, a selection
of CASA processors for a particular interference environment was made. Whereas
all processors were used in diffuse noise conditions, the study of coherent interference
conditions was limited to the application of algorithm CLP and ELT. In a prelimi-
nary analysis, algorithm CC was found to be applicable only for the suppression of
incoherent noise. This is obvious, considering that the binaural waveform coherence
at zero lag (i.e., the weighting function of algorithm CC) is a poor indicator to dis-
tinguish between frontal and lateral sources.
To limit the scope of the entire study further, no across environment analyses were
performed for particular front-end/environment-optimized parameter sets.
As a general aim, acoustic scenes were chosen to analyze the algorithms of speech
enhancement across the spectrum of possible interference conditions. Care was taken
to omit redundancy. Therefore, only a subset of the scene/front-end combinations
that are introduced in Chapter 3.2 are analyzed.

5.4.1 Canteen environment

The canteen environment is the first condition under which the three binaural pro-
cessors CC, CLP and ELT are applied to the output of several front-ends, in order to
enhance speech intelligibility. First, a GA optimization of the parameter sets, at an
SNR of 0 dB in the canteen environment of the analyzed front-end/post-processor
combinations was executed. The results of this parameter optimization have been
partly presented in the previous section. In the following, these respective front-
end/post-processor parameter sets were held constant during the assessment, in a
level range between −10 and 10 dB with increments of 5 dB. Figure 5.6 gives the
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results. Our observations are classified with respect to the above-mentioned ques-
tions of this section.
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Figure 5.6: Speech intelligibility enhancement of different front-end/post-processor combina-
tions in the canteen environment at different mixing SNRs, assessed with the Better Ear I3
measure. Additionally, the intelligibility weighted Better Ear SNRseg is given for algorithm
CLP and ELT. The target speaker was fixed at 0 deg throughout the assessment.

Improvement of speech intelligibility: The predicted absolute improvement of
speech intelligibility in the canteen situation is in the range of 15 % at the
output of algorithm CC. The speech processor CLP slightly increases the im-
provement to maximally about 20 %, as already concluded from the Figures
5.2 and 5.3. No improvement is obtained by algorithm ELT.

Robustness: Apart from algorithm ELT, each algorithm operates best around an
SNR of 0 dB, i.e. the condition for which the post-processors were optimized.
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Hence, generally, towards lower and higher SNRs the intelligibility gain de-
clines. A small deviation from this rule is observed for algorithm CC at the
output of the HG (low directivity). Algorithm ELT is essentially switched off
by a low compression/expansion value (see the optimization results in Fig-
ure 5.4) and therefore does not affect the original level of speech intelligibility.

Effect of front-end: None of the particular front-ends show a marked benefit at
the ear-level SNR. This includes the comparison between directional and non-
directional front-ends. However, we have to recall that the SNR at the source-
level is much lower in this comparison when using the directional front-ends.
Therefore, the front-ends allow for the successful application of the post-
processors under SNR conditions smaller 0 dB, measured at the source-level.
With respect to the optimal performance range, a small advantage is seen for
the HG (low directivity) front-end, likely due to the more favourable Better
Ear I3 values of the unprocessed conditions. Serially connected to this front-
end, the processors CLP and CC have their optimal performance over an SNR
range of −5 to 0 dB.

5.4.2 Workshop environment

The workshop environment offers the highest diffuseness in this study. Consequently,
the performance of the coherence-based algorithm CC should increase.
With respect to the front-end recordings in this environment, a recording failure
led to only one channel being recorded with the HG in the low directivity and high
directivity mode. The monaural recording was subsequently applied to both channels
and made binaural by a temporal decorrelation between the channels. Although this
approach does not reconstruct the original spatial scene, preliminary listening gave
the impression of a well externalized scene, meaning the spatial events are located
outside the head. Therefore, it has been included in the present front-end/post-
processor comparison. The results have, of course, to be considered with care.
The optimized parameter sets were chosen for each front-end/post-processor in the
workshop condition at an SNR of 0 dB and held constant throughout the assessment.

Figure 5.7 gives the results. What follows are our observations.

Improvement of speech intelligibility: Algorithm CC enhances the speech in-
telligibility estimation by maximally 25 % in the 0 dB SNR condition. The
improvement tapers off towards lower and higher SNRs. Algorithm CLP shows
an improvement at the output of the HG (low directivity) of maximally 10 %,
and even less at the output of the Aachen head. Likely due to the intensified
statistical penalty mask processing in algorithm ELT (the GA optimized pa-
rameters, not shown here, are comparable to the canteen-optimized parameters
in Figure 5.2), a small increase of objective speech intelligibility is observed.
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Figure 5.7: Speech intelligibility enhancement of different front-end/post-processor combi-
nations in the workshop environment at different mixing SNRs, assessed with the Better
Ear I3 measure. Additionally, the intelligibility weighted Better Ear SNRseg is given for
algorithm CLP and ELT. The target speaker was fixed at 0 deg throughout the assessment.

Robustness: All processors show a high degree of robustness through varying SNR
conditions. In all cases, the maximum speech intelligibility improvement is
reached under the 0 dB SNR condition.

Effect of front-end: No difference between directional and non-directional front-
ends is observed at the output of algorithm CC. However, when using the BTE
as front-end, the benefit of algorithm CC is slightly lower.

The above-mentioned temporal decorrelation between both channels of the HG
recordings of the workshop scene shows to have at the most a small influence on
the overall algorithmic performance (cf. the Aachen head at the output of algorithm
CC). Implicitly, this observation also supports the assumption of high diffuseness of
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the workshop scene recordings.
Among the binaural speech processors studied, it has been shown that algorithm
CC is best suited for the suppression of the diffuse interference. Algorithm CLP and
ELT, which are designed to suppress coherent interference from lateral directions,
are rather ineffective in the suppression of diffuse interference.

5.4.3 One and two interferers in an anechoic environment

The next analysis examines the performance of the directional processors CLP and
ELT in the presence of one, or two coherent interferers. The parameter sets of the
previous optimization at an SNR of 0 dB and one interferer at 90 deg in Chap-
ter 5.2.4 were used for the following assessment of algorithm ELT. For the execution
of algorithm CLP, the two-interferer parameter set optimizations at an SNR of 0
dB of Chapter 5.2.3 were used. The reason for this difference with respect to the
optimization setup has been given in Chapter 5.2.4.
We first analyze the results of algorithm CLP in the presence of one coherent in-
terferer at different spatial positions. The outcomes are given in Figure 5.8.5 Our
observations on the above-introduced items, are given below.

Improvement of speech intelligibility: Speech intelligibility increases consider-
ably across lower SNRs and noise azimuths. At many interference angles and
mixing SNRs below 0 dB, an improvement of more than 40 % is observed.
The optimal working range shows to be between a mixing SNR range of 0 and
−10 dB for the directional receivers, and below −5 dB for the omni-directional
receivers.

Robustness: If the unprocessed speech intelligibility is not too high, and if the
interferer angle does not coincide with the target speaker, algorithm CLP
generates a considerable improvement of speech intelligibility. Overall, the
relative Better Ear I3 improvement (third row in Figure 5.8) shows no decline
of speech intelligibility of the processed signal below a mixing SNR of 5 dB
for all front-ends. An exception is seen for one angular interference position
at −90 deg at the output of the BTE in the directivity mode.

Effect of front-end: The directionality of the front-end impacts several aspects
found in the post-processing of algorithm CLP. Without regard to particular

5The figures in the remainder of this chapter are contour plots in order to observe the algorithmic
performance of the binaural speech processors throughout a great many of spatial conditions and
mixing SNRs. The ordinate of the subplots gives the mixing SNR, whereas the abscissa gives the
location of the noise azimuths. The introduced Better Ear I3 measure comprises a range between
0 and 1 for no and full speech intelligibility, respectively. If the above-mentioned Mean Ear Q3
parameter is given, the scale from 0 to 10 renders the range from no speech quality to full speech
quality. To evaluate the influence of reverberation or to facilitate the comparison with other studies,
additionally the intelligibility weighted Better Ear SNRseg is given.



5.4 Assessment of binaural speech processors 167

0.2

0.4

0.6

0.8

S
N
R
  (d
B
)

HG  (low  directivity)
Original  situation  /  Better  Ear  I3

0.2
0.4
0.6

0.8

1

HG  (high  directivity)

0.4
0.60.6
0.8

0.8

BTE  (omni)

0.2
0.8

1 1

BTE  (directivity)

0.4

0.6

0.8

1

Aachen  head

0.6
0.8

0.8S
N
R
  (d
B
)

Processed  situation  /  Better  Ear  I3

0.40.6

0.8
0.8

0.80.8

0.8

0.8

0
0.2

0.2

0.4

0.4

S
N
R
  (d
B
)

Relative  improvement  /  Better  Ear  I3

0
0

0.2
0.2

0.4

0.40.4

0

0

0.2
0.4

0.4 0.4

0
0 0

0.2

0.2

0 0

0

0

0.2

0.4 0.4

1

1

2.5

2.5

4

4

5.5
5.5

7

S
N
R
  (d
B
)

azimuth  N  (deg)

Relative  improvement  /  Better  Ear  SNRseg (dB)

1

1
1

1

2.5
2.52.5

4

44

4

5.5
5.5 7

7 8.5

azimuth  N  (deg)

1

1

1

1

2.5

2.5 2.5

2.5
4

4

4

4

5.5

5.5
5.5

5.5

7

7
7

7 7 8.58.5 8.5

azimuth  N  (deg)

1

1

2.5

2.5 4

4

5.5

azimuth  N  (deg)

1

1

1

1

2.5

2.5

2.5

2.5
4

4 4

4

5.5 5.5

7
78.5 8.5

azimuth  N  (deg)

Figure 5.8: Assessment of the speech intelligibility improvement of the speech processor CLP
in the presence of one azimuth-variant interferer N and at the output of different front-ends
(see the headings). The target speaker was fixed at 0 deg throughout the assessment. The
improvement is assessed with the Better Ear I3 measure and the intelligibility weighted
Better Ear SNRseg. See the introduction of Chapter 5.4.3 for further explanation of the
contour plots.

exceptions, it can be seen that the performance of the binaural processor CLP
is mainly determined by the ear-level SNR. A second dependency on the shape
of the binaural parameters can be inferred.
Generally, it can be observed that omni-directional front-ends give a symmet-
rical intelligibility pattern with respect to the frontal plane (see the upper row
in Figure 5.8). As already mentioned, the optimal working point of the CLP
processor resides at higher mixing SNRs, when applying directional front-ends.
Thereby a more azimuth-independent processing is observed.

Compared to the omni-directional BTE, the pinnae of the Aachen head in-
troduce an advantage for lateral interference at ±90 deg in the unprocessed
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case (first row in Figure 5.8). This observation might by explained by the
diffraction effects of the head. At the contralateral BTE a pressure antinode
exists at higher frequencies as a consequence of the frequency-dependent wave
diffractions around the head. Following this rationale, the head shadow ef-
fect is reduced and speech intelligibility declines. This phenomenon is also
observed with the Aachen head mannequin and the ear simulator, but smaller
and rather flattened, possibly due to multiple diffractions within the pinna.

The directional hearing aids show an intelligibility pattern that is only roughly
symmetrical with respect to the frontal plane. In fact, there is an asymmetry
of speech intelligibility as a consequence of small directional differences among
the bilateral beamformers, anatomical differences between the pinnae, fitting
variation and interactions. The results of the original situation (see the top
row in Figure 5.8) should be qualified, however, such that a source-level SNR
definition would increase speech intelligibility in the frontal direction relative
to lateral and retral directions, depending on the directionality of the beam-
formers. The application of the post-processor illustrates that the performance
is mainly determined by the ear-level SNR, where the asymmetry of the input
intelligibility is roughly maintained.

Due to the symmetry of binaural cues with respect to the frontal plane, i.e.
the cone-of-confusion phenomenon in three dimensions, there is hardly any
advantage in terms of binaural unmasking if the target speech is coming from
the front and the noise is coming from the back, an observation that has also
been made by Bronkhorst (2000). For bilaterally applied omni-directional re-
ceivers, this outcome, using the Better Ear I3 as a figure of merit, is generally
reproduced, due to the absence of the head shadow effect.
The application of processor CLP to omnidirectional front-ends can hardly
compensate for this effect, as the binaural cues of frontal and retral incidence
resemble each other. Nevertheless, the results indicate that the confusion area
has shrunk, i.e. it takes up a smaller angular volume after application of the
post-processing to the BTE (omni-directional) and the Aachen head signals.
A different observation is made for the directional front-ends. Due to the fact
that binaural level cues differ for fontal and retral incidence at the output of
the HG front-ends applied here, there exists a spatial unmasking benefit (using
the Better Ear I3 as a figure of merit) for coherent interference from the rear
at 180 deg (top row in Figure 5.8). Moreover, as depicted in the second row
of Figure 5.8, the CLP processor can exploit the difference of binaural cues
between frontal and retral incidence, and consequently reduces the interference
from behind the head.

Considering the average benefit of the algorithm CLP, a special case in this
series of tests is formed by the results of the BTE (directional) front-end/CLP
combination. Ambiguous binaural cues of the front-end, as shown in Fig-
ure 3.3, and a limited and binaurally unsymmetrical frequency transfer, as
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Figure 5.9: Assessment of the speech intelligibility improvement of the speech processor CLP
at the output of different front-ends (see the headings) in the presence of one static interferer
(N1) at 90 deg and one azimuth-variant interferer (N2) in the range of −180 to 180 deg.
The target speaker was fixed at 0 deg throughout the assessment. The improvement is
assessed with the Better Ear I3 measure and the intelligibility weighted Better Ear SNRseg.
See the introduction of Chapter 5.4.3 for further explanation of the contour plots.

shown in Figure 2.4, may account for the difficulty to enhance speech intelligi-
bility equally well with the other front-ends. The probability-based weighting
function is shown to adapt the CLP processing to the asymmetries of the
front-end, however, optimally.

In the following analysis, the CLP processor is applied to the simultaneous sup-
pression of a directionally invariant interferer N1 at 90 deg and an azimuth-variant
interferer N2 that rotates across azimuths between −180 and 180 deg. The interferes
are combined at an SNR of 0 dB, prior to the mixing with the target signal. Again,
optimized algorithmic parameter sets of front-end/CLP combinations at a mixing
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SNR of 0 dB are chosen. The results are given in Figure 5.9.

Generally, the findings with respect to speech intelligibility enhancement, robust-
ness and the influence of the front-end correspond to the single interferer situations.
Therefore, a detailed analysis is omitted. A difference is observed, however, with
respect to the symmetry of the pre-processing and post-processing. If the interferers
are located on opposite sides of the head the particular head-shadows cancel and
speech intelligibility gets lower. Consequently, if both interferers are on the same
side of the head, the head-shadow leads to an improvement of speech intelligibility.
Furthermore, as a result of the increased acoustical complexity, the decrease of dis-
jointness of sources in the time-frequency domain and the increased distortion in the
estimated CLP weighting gain, the benefit of the enhancement is 5 to 10 % lower
when compared to the single interferer test.

The next study assesses speech intelligibility at the output of algorithm ELT, in the
presence of one and two simultaneous coherent interfering sources. The comparison
between the front-ends is confined to a differentiation of the HG (low directivity)
and the Aachen head. Figure 5.10 gives the results. The scene setups are identi-
cal to the previous experiments. Our observations are compared with the results
of algorithm CLP, and are summarized under the categories of speech intelligibility
enhancement, robustness and the influence of the front-end.

Improvement of speech intelligibility: On the whole, the performance of algo-
rithm ELT is comparable to the performance of algorithm CLP. For most
angular positions and lower mixing SNRs with a single interfering source, a
speech intelligibility improvement of up to 40 % is observed. The optimal
working range of algorithm ELT generally resides below an SNR of −5 dB and
0 dB at the output of the Aachen head and the HG (low directivity), respec-
tively, in the single interferer case (left-hand columns in Figure 5.10).
Also in the presence of two interferers, algorithm ELT shows a robust im-
provement of speech intelligibility, a bit less powerful than algorithm CLP.
The coarser directional lookup histogram resolution of algorithm ELT in com-
parison to algorithm CLP, as well as the elusive nature of envelope parameters
in noise may account for this deterioration in performance.
The broader beamwidth of the ELT processor, constitutes another difference
to algorithm CLP. This outcome is most likely a result of the lower directional
resolution of envelope parameters. Furthermore, it has to be remembered
that mainly the envelope ILD is used in the classification process, which has
been shown to offer much less directional distinctness than the carrier IPD in
psycho-acoustic tests (Stern et al., 2006).

No general advantage due to the modulation filterbank, ideally giving a co-
modulation unmasking release gain, is observed. If the SNRseq gain of algo-
rithm CLT is subtracted from the gain of algorithm ELT (data not shown
here), only at azimuths smaller than −90◦ and higher than 90◦ a small but
consistent improvement is found. However, the overall lack of a co-modulation
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Figure 5.10: Assessment of the speech intelligibility improvement of post-processor ELT in
the presence of one static interferer at 90 deg, left columns, or one static interferer (N1) at
90 deg and one azimuth-variant interferer (N2) between −180 and 180 deg, right columns,
at the output of different front-ends (see the headings). The target speaker was fixed at 0 deg
throughout the assessment. The improvement is assessed with the Better Ear I3 measure
and the intelligibility weighted Better Ear SNRseg. See the introduction of Chapter 5.4.3
for further explanation of the contour plots.

unmasking effect in comparison with algorithm CLP might be explained by the
fact that the modulation spectra are not sufficiently resolved in order to exploit
the combination of monaural and binaural cues optimally (see the discussion
at the end of this chapter).

Robustness: The robustness of algorithm ELT is high throughout all conditions
analyzed and comparable to algorithm CLP. The somewhat fluctuating Better
Ear I3 dependency on the azimuth of the interferer (top row in Figure 5.10)
might be caused by modulation transfer functions that to some degree overlap
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with the modulation transfer-function of the target (see Figure 3.12 in Chapter
3.3.2).

Effect of front-end: Considering the directivity of the front-ends, an increased
performance in the two-interferer situation is observed at the output of the HG
(low directivity) front-end. Consequently, binaural parameters of the envelope
at the output of the HG (low directivity) offer a better means to separate
sources. To a lesser extent, a similar difference is seen in the single interference
test, although the optimal working point is shifted towards lower SNRs, at the
output of the mannequin.

5.4.4 Coherent interference in reverberation

In the final speech intelligibility enhancement test, the three binaural speech pro-
cessors CC, CLP and ELT are assessed and compared in the MISM-simulated en-
vironment with one azimuth-variant interferer and a reverberation time of 0.2 s.
The GA optimizations in the previous sections have already shown that it is only
algorithm CLP that achieves a moderate enhancement in terms of SNRseg in the
MISM-environment at an SNR of 0 dB. The other two binaural speech processors
have demonstrated to gain only a small Better Ear SNRseg increase in the range of
0.5 to 2 dB in the same environment.
The present analysis now questions whether the respective binaural processors work
robustly for different interferer azimuths and different mixing SNRs, even though
the Better Ear SNRseg gain is low in the condition for which the algorithms are
optimized. As mentioned above in Chapter 4.2.4, the results are assessed with the
intelligibility weighted Better Ear SNRseg, because the Better Ear I3 measure is not
suitable when the target speech is distorted of reverberation. However, the SNRseg

merit is also biased due to the influence on reverberation and cannot directly be
translated to speech intelligibility. Therefore, the results of the current test have to
be looked at carefully.
Similarly as in previous studies, GA-optimized parameter sets at a mixing SNR of
0 dB were chosen for the present assessment of each algorithm.

Figure 5.11 gives the results of speech enhancement in the simulated environment
at the output of the Aachen head.

It can be seen that the relative Better Ear SNRseg improvement is evenly distributed
over noise angles and mixing SNRs. A laminar distribution of the Better Ear SNRseg

proves the robustness of all three binaural speech processors. Moreover, the proces-
sors CLP and ELT are able to enhance the Better Ear SNRseg at lower mixing SNRs.
The CLP processor offers the largest gains with more than 4 dB at mixing SNRs
smaller than −5 dB. A small improvement of the Better Ear SNRseg is observed at
the output of processor CC at lateral positions, thereby showing a coarse directional
differentiation by the binaural waveform coherence at zero lag.
Although the Better Ear SNRseg reflects the functioning of the processors at low
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Figure 5.11: Assessment of the speech enhancement of the binaural speech processors CC,
CLP and ELT in the MISM-simulated environment with an RT of 0.2 s and an azimuth-
variant interferer. The target speaker was fixed at 0 deg throughout the assessment. Both
the target and the interfering speaker are in one meter distance from the Aachen head, which
served as a front-end, while the reverberation radius is at 1.2 m. The algorithmic improve-
ment is assessed with intelligibility weighted Better Ear SNRseg. See the introduction of
Chapter 5.4.3 for further explanation of the contour plots.

mixing SNRs, it is unclear whether these enhance speech intelligibility or whether
the trade-off between speech enhancement and distortion is inclined towards the
latter.



174 Optimization and assessment

5.4.5 The application of cepstral smoothing for quality enhancement

In the final study in this section, the musical noise suppression through the above-
introduced cepstral smoothing technique is applied to the output of the binaural
speech processor CLP and assessed.
A problem with assessing the impact of musical noise on intelligibility and quality
is the fact that the objective measures of the present work were neither developed
nor tested with the cepstral smoothing processing technique. Consequently, the out-
comes of the following analysis have to be considered with caution.

We first briefly recapitulate the GA optimization of cepstral smoothing constants
of Chapter 5.3. The results of the optimization have been given in Figure 5.5 for
different algorithmic settings. For the purpose of the optimization, IBM processed
speech has been subjected to cepstral smoothing. Instead of the I3 measure, which
has been the standard intelligibility measure in this section, the STOI measure has
been applied as an objective function in the GA optimization. The choice has been
made to prevent an I3-related overestimation of a phase-loss to speech intelligibility,
which has been observed with IBM processed speech at low SNR mixing SNRs (Taal
et al., 2011b).
As a general optimization result, the STOI measure indicates no deterioration of
speech intelligibility for the smoothed IBM masks, using different mixing SNR and
mask-based local criteria combinations and a series of algorithmic variations. In an
attempt to extract general cepstral parameter results from all IBM mask optimiza-
tions, the mean of the respective cepstral smoothing constants and the maximum
mask attenuation has been obtained by averaging over all parameter results at par-
ticular mixing SNRs and mask-related local criteria combinations. For mixing SNRs
and mask-related local criteria around 0 dB, the cepstral smoothing constants are
essentially reduced to zero.

In the present analysis, the cepstral smoothing technique is applied to the soft-masks
of algorithm CLP. Following the reasoning for the applicability of the Better Ear
I3 and the Mean Ear Q3 measure in soft-mask speech enhancement tests, given in
Chapter 4.2, the following analysis is based on these two metrics. It remains ques-
tionable, however, whether these measures reflect significant perceptual relevance of
the cepstral smoothing technique.

Since it would render the effect of the cepstral processing useless if one applies the
small-valued optimized cepstral smoothing constants of Chapter 5.3 around SNRs
and mask-based local criteria of 0 dB, a set of heuristically found smoothing param-
eters are applied, which generate a considerable improvement of speech quality. The
parameters are identical to the ones given in the lower right-hand plot of Figure 2.8
and have been found in preliminary listening. Hence, the algorithmic parameters
of the cepstral smoothing technique are αloE = 0, αhiE = 0.2, αp = 0.3, αn = 0.8.
Additionally, Amin = 0.1. Consequently, by means of the application of an intense
cepstral smoothing at the output of the CLP processor, the proof-of-concept shall
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Figure 5.12: Speech intelligibility and quality assessment of different front-end/CLP proces-
sor arrangements (see headings) with and without the cepstral smoothing technique, and as
a function of mixing SNRs and noise-azimuths N. The target speaker was fixed at 0 deg
throughout the assessment. The instrumental evaluation is based on the Better Ear I3 and
the Mean Ear Q3 measure. See the introduction of Chapter 5.4.3 for further explanation
of the contour plots.

be given by studying the algorithmic robustness in terms of speech intelligibility
and quality. To that purpose, the combined processing scheme was applied in an
anechoic environment with a single azimuth-variant interferer. The CLP processor
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used the optimized parameter sets of the two-interferer setup at ±90◦ and an SNR
of 0 dB of Chapter 5.2.3.
The results of the musical noise suppression technique are given in Figure 5.12 and
are compared with the outcomes of algorithm CLP without cepstral smoothing.

The first row of Figure 5.12 depicts the Better Ear I3 difference for the CLP en-
hancement with the downstream application of cepstral smoothing, relative to the
CLP output without cepstral smoothing. A moderate decrease of speech intelli-
gibility is seen at lower mixing SNRs. Despite that, at some spatial locations of
the interference the decrease of predicted speech intelligibility can be as high as
20 %, especially at the output of the highly directional HGs at low mixing SNRs.
However, a small increase of intelligibility is also observed at higher mixing SNRs.
Overall, at a mixing SNR of 0 dB, the decrease of speech intelligibility is negligible,
also for the HGs. Consequently, the algorithmic robustness of the cepstral smooth-
ing technique—using the heuristically tuned parameters for a forceful application
of cepstral smoothing—is high, and in most of the cases not detrimental to speech
intelligibility.

Furthermore, Figure 5.12 presents the Mean Ear Q3 results at the output of algo-
rithm CLP with and without cepstral smoothing. There the mean ear quality metric
shows a moderate decrease of quality at lateral interference positions for most of the
front-ends. The optimal working range of algorithm CLP in terms of quality is
higher than found for speech intelligibility. As it was generally observed with the
intelligibility improvement due to binaural processing under coherent interference
conditions, the directional speech quality reveals conformal contours of the Mean
Ear Q3 measure at the input and the output of the CLP processor. The difference
of input and output quality at the CLP processor indicates an improvement of 15
to 25 % without cepstral smoothing applied.
Finally, the bottom row in Figure 5.12 gives the Mean Ear Q3 difference after ap-
plication of the cepstral smoothing downstream to algorithm CLP, relative to the
quality output without cepstral smoothing. At low mixing SNRs, a decline in quality
is observed that lies in the range of 5 % and is, therefore, comparable to the loss of
speech intelligibility if cepstral smoothing is applied. With respect to the influence
of the front-end, however, the quality seems hardly affected.6

5.4.6 Discussion and conclusions

This section assessed and compared the capabilities of fifteen binaural front-end and
binaural CASA speech processor combinations, under a variety of noise conditions.
The improvement in terms of speech intelligibility due to the binaural speech pro-

6An exception from this observation represents the BTE (directivity) front-end, that has been
shown to allow only for a moderate improvement of speech intelligibility in coherent interference
conditions. As can be seen, the quality gain is equally affected. No decline of quality is observed
when applying cepstral smoothing—possibly due to the low gain speech enhancement of algorithm
CLP at the output of this front-end.
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cessors at the output of different bilaterally applied front-ends with and without
beamforming has been objectively predicted.

First, the hypothesis of Chapter 2 has been confirmed: binaural CASA-based speech
processors are appropriate for the suppression of coherent interference. If applied
as a post-filter to diffuse field optimized beamforming front-ends, a complementary
working principle for a high improvement of speech intelligibility can be realized.
Contrary to the suppression capabilities of up to 40 % in terms of speech intelligibil-
ity, when suppressing coherent interference, in diffuse noise the benefit is not given
when applying processor ELT and small to moderate when applying the algorithms
CLP and CC. Hence, none of the three binaural algorithms presented generate a
high improvement of speech intelligibility under diffuse conditions. This observation
was made in the tested canteen and workshop environment.
As far as a ranking of the post-filters in these conditions is concerned, it was shown
that algorithm CLP performs best in the canteen environment and reaches a speech
intelligibility enhancement of approx. 20 % at a mixing SNR of 0 dB. In the highly
diffuse workshop environment algorithm CC is in the lead, in particular as it has
shown to be only slightly affected by the directionality of the front-end at a given
ear-level SNR. Algorithm ELT could not reach a benefit in terms of speech intelli-
gibility in diffuse noise conditions. Nevertheless, the small to moderate algorithmic
performance in diffuse noise conditions can become very beneficial around the 50 %
intelligibility level, i.e. the SRT, because every dB of noise reduction at this level
can improve the absolute speech intelligibility by 15 % (Plomp, 1978).
In anechoic and coherent interferer environments the qualifications of the respective
algorithms are reversed. That is, algorithm CLP and ELT yield speech intelligibility
improvements of up to 40 %, while algorithm CC is unable to give improvements
under such noise conditions.

None of the post-processors presented introduce a considerable loss of speech in-
telligibility in any of the noise conditions analyzed. This is a result of the GA
optimization of the parameter sets, in which the binaural processors have shown to
adapt well to particular acoustic environments.
In addition, the processing of the optimized binaural algorithms has shown to stay ro-
bust in situations where the mixing SNR, or the directions and amount of interferers
changed. However, it remains an unanswered question whether the post-processors
with certain parameter sets keep their robustness across completely different envi-
ronments.

With respect to typical (diffuse-field like) cocktail-party problems, an SNR of 0 dB
can be assumed (see e.g., Bronkhorst, 2000). Therefore we have opted to centre the
optimization and the analysis of the binaural processors around this SNR. However,
compared to an estimated SNR of 0 dB in a diffuse sound field, the coherent interfer-
ence setups at an SNR of 0 dB used in this chapter pose a much easier speech-in-noise
task, due to the disjointness of the sources across the transform domains. As it was
previously described, using an invariant SSN interference and monaural presenta-
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tion, the SRT of the normal hearing is usually found at −4 to −5 dB (George, 2007).
If speech and noise are spatially separated and binaurally presented, this SRT can
be further reduced by −12 dB (Bronkhorst, 2000).
Consequently, the optimization results in coherent interferer conditions at an SNR
of 0 dB rather reflect an SRT bottom line adjustment for the hearing impaired, than
for the normal hearing. The results of the assessment reveal that the favourable
working points of the algorithms CLP and ELT lie much below 0 dB, although these
were optimized at an SNR of 0 dB. Future research should therefore optimize and
analyze the processors at lower SNRs in coherent noise environments. By those
means, it is likely that the speech intelligibility gain at low SNRs and in coherent
interference environments, can further be improved.

A general dependency of the binaural post-filters’ performance on the binaurally
averaged ear-level SNR is a further important finding. Consequently, a directional
front-end may linearly enhance speech intelligibility and a binaural post-processor
will, irrespective of the actual SNR at the source-level, improve the overall intelligibil-
ity gain further, for the greatest part based on the ear-level SNR and approximately
independent of the front-end.
Future tests should assess the overall benefit of a particular front-end and back-end
combination. As far as the HG front-end is concerned, we may refer to the subjective
and objective evaluation of Merks (2000) and Boone (2006). For instance, Boone
(2006) measured an intelligibility weighted DI of 7.2 dB at the output of the HG (high
directivity)7. As the HG are optimized in an ideal diffuse noise field, the front-end
will be the main contributor to the overall benefit. Under coherent noise condi-
tions this benefit will deteriorate and the contribution of a binaural post-processor,
e.g. algorithm CLP, will increase. However, as above-mentioned, the derivation of
an SNR value at the output of a nonlinear speech enhancement algorithm can not
fully explain the actually intelligibility gain. In a first approximation we may con-
clude from the findings of the present chapter that the SNR loss of the front-end in
the presence of coherent interference can be roughly compensated for by a binaural
post-filter, as demonstrated by the intelligibility weighted Better Ear SNRseg. As a
consequence, the combined processing scheme makes few assumptions on the noise
condition and is, therefore, universally applicable, provided an appropriate parame-
ter set is used in the CASA-based post-filter. Choosing the right parameter set may
only be a minor problem in future applications, considering recent progress in scene
classification (Bach et al., 2011).

In conclusion, the potential of the analyzed CASA speech processors in diffuse con-
ditions falls short of expectation, if we consider the cocktail-party performance of
the model ASA process. The reason for the unsatisfactory separation was revealed
in the statistical analysis of binaural parameters in noise, given in Chapter 3. There
it was demonstrated that interaural differences, be it the binaural waveform or bin-
aural envelope parameter, are severely degraded if the sound field has a diffuse

7The hearing aid programme is termed “high1” in Boone (2006); it provides a benefit of 7.2 dB,
as assessed with the directivity index method of the ANSI S3.35- 2005 standard.
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character and the mixing SNR is below or equal 0 dB. Also the binaural waveform
coherence, which is applied in algorithm CC, could not efficiently be exploited for
several physical reasons (see below). On the other hand, the separation power of
concurrent speakers in anechoic situations is higher than provided by the model
ASA process. This finding has already been made by Peissig (1992) in subjective
testing, by comparing word scores of spatial configurations with and without the
processing of an algorithm similar to the here applied CLP processor. Consequently,
for the suppression of coherent interferers, the application of the CLP processor can
be recommended.

Summary and outlook algorithm CC

The binaural waveform coherence was not the subject of a thorough theoretical anal-
ysis in this thesis. Such a study had been undertaken by, e.g. Martin (2001). In the
present work, the delimiting factors of the MSC application in the source separation
process have been mentioned and can be summarized as being the distance between
the receivers, i.e. the distance between the ears, the reverberation radius, the radial
distance of the target signal as well as the noise sources, and the time-frequency
trade-off in the implementation of algorithm CC.

With the exception of a moderate intelligibility improvement in diffuse environments,
algorithm CC could not deliver an improvement in coherent interferer situations.
This result is in agreement with subjective tests performed by Peissig (1992), who
found that algorithm CC is merely beneficial in highly reverberating conditions in
terms of speech quality. In a similar fashion, Jeub et al. (2009) demonstrated a
moderate gain of 1.39 dB (using a segmental SNR measure) in the suppression of
reverberation by employing a binaural implementation of algorithm CC.
For the suppression of reverberation, Peissig (1992) applied a time constant τ̆ for
the averaging of the MSC in the range of 48 to 333 ms, which is in the range of
the syllable to the phoneme rate of speech (i.e. approximately from 3 to 20 Hz).
The genetic optimization of the present work led to values of τ̆ between 10 ms and
40 ms. The Q3 measure, which was originally developed to reflect the perceptual
quality perception of additive noise, centre-clipping and peak-clipping on speech
quality (Kates and Arehart, 2005a), has shown to be not ‘aware’, i.e. not developed,
for an improved quality perception at τ̆ > 35 ms. Further research should analyze
different time constants for transitional and steady-state parts in speech.

There are several possibilities to refine the MSC-based weighting approach by the
calculation of the coherence at a range of (possibly auditory plausible) increments.
Such an approach would establish a more complete image of the acoustical scene.
Hence, it may enable the algorithmic suppression of an interferer at lateral positions.
With an MSC implementation at zero lag the algorithm is generally not capable to
suppress lateral sources. Nevertheless, by dint of the genetic adaption of the al-
gorithmic parameters to a scene with coherent interference and slight reverb, see
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Figure 5.11, a robust improvement of up 1.5 dB at the output of the Aachen head
was achieved.
Furthermore, a multi-lag approach for calculating the binaural coherence was shown
to be of use in modelling localization phenomena (Faller and Merimaa, 2004). The
precedence effect (p. 253 ff., Moore, 2003), which can give an important source
grouping cue, would be contained in these feature spaces. For example, Opdam
(2010) extended the model of Albani et al. (1996) by a first-wavefront extraction ap-
proach and demonstrated how sources can be located correctly even in highly rever-
berating circumstances. Based on these possibilities, (possibly parametric) decision
rules may be extracted from a multi-feature localizer and relayed to a mask-based
weighting approach.

Summary and outlook algorithm ELT

The poor performance of algorithm ELT in diffuse conditions is a consequence of the
application of elusive binaural envelope parameters in the source separation process.
The noise susceptible nature of these parameters has been demonstrated in Chap-
ter 3.3.2 and is corroborated by a series of related works (see e.g. Blauert, 1997).
Especially time differences of the binaural envelopes have to have a strong binaural
envelope coherence in order to contribute to a consistent directional image. The
binaural envelope coherence shows, however, even in moderately noise-corrupted
stimuli, to be strongly degraded (Rakerd and Hartmann, 2010).

Conceptually, the four-dimensional feature space (a time-varying sound power repre-
sentation in a binaural carrier and modulation frequency domain) allows separation
and target source enhancement in accordance with the conjectured physiological or-
ganization of the basal model ASA process (Kollmeier and Koch, 1994). However,
the current means to implement this multi-dimensional feature space are likely to
be too simple. Remember that algorithm ELT uses a subset of binaural parameters
and, therefore, a subset of all cues that are available for the model ASA process.
Moreover, the model ASA process is a mutual bottom-up and top-down process that
binds available cues based on hypotheses. Given the flexibility of the ASA process,
the here observed shortcomings of algorithm ELT under diffuse noise conditions con-
stitute no surprise.

One important achievement of the present work, is the redesign of algorithm ELT
such that it has been made able to suppress laterally coherent noise sources. We
think this feature was not in the initial implementation of algorithm ELT of Kollmeier
and Koch (1994). The main reason for this improvement lies in the analysis/synthesis
window length of the STFT bandpass-filtered signal.
This finding is a result of the study of binaural parameters in modulation spectra.
It turns out that the analysis window of STFT bandpass-filtered signals must be
short, in order to maintain the disjointness property of concurrent sources in the
modulation spectra. However, this requirement is in conflict with the fact that the
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decomposition of modulation frequencies of the envelope needs longer analysis win-
dows, in order to yield stable and well-resolved modulation power spectral density
estimates. By using an analysis window length of 16 ms (Table 2.3) we have found
a compromise between these two requirements.
Kollmeier and Koch (1994) opted for a frame length of 40 ms for the modulation
frequency analysis. The implications of this choice are revealed by a looking at
the weighting function A7 in Kollmeier and Koch (1994), which demonstrates that
mainly the statistical penalty measures of the ILD and IPD are applied in the noise
suppression process, instead of the binaural parameters (see Chapter 2.4.3). Our as-
sumption is further supported if one considers that Kollmeier and Koch (1994) have
assessed their algorithm at SNRs between −10 to −2 dB, in partly babble noise,
with and without a reverberation time of 1.33 s, and by using anechoic ILD and
IPD reference recordings (of a different artificial head than used in the enhancement
setup) for the segmentation process. In the light of the findings in Chapter 3.3.2 on
the statistics of binaural envelope parameters in noise, it seems justified to conclude
that algorithm ELT was originally not designed to take decisions based on correct
localization judgments, but rather on variations of spatial cues around the midline.
Although our implementation strictly followed the intended working principle of al-
gorithm ELT, as it was proposed by Kollmeier and Koch (1994), it differed in a vari-
ety of functional features. As it has been mentioned, the envelope ITD was applied
instead of the envelope IPD, and the envelope ILD parameter was magnified. Both
actions have been brought in to increase the separation power of algorithm ELT. For
the same reason, a pattern-based a posteriori probability weighting method has been
incorporated. This approach, which functionally mimics top-down processes of the
conjectured binaural pattern-driven model hearing, allows for an efficient adaptation
to the binaural parameters at the output of a particular front-end.
The performance of algorithm ELT has shown to be on a par with algorithm CLP
in single coherent interferer conditions, which, however, offers a doubled bandwidth
and a higher quality output, due to directional energy-based masks rather than di-
rectional F0-based masks.

However, what has been found to be a requirement in the suppression of lateral
coherent noise sources, turns out to be a disadvantage in diffuse noise conditions.
Mainly because the modulation spectra are not well resolved in analysis/synthesis
windows of 16 ms length, the algorithm shows an increased susceptibility to diffuse
interference and renders any improvement of speech intelligibility impossible under
such conditions. Therefore, the GA optimization reduces in the filtering power of
algorithm ELT such that no deterioration of speech intelligibility is generated. Al-
though, the ELT has been optimized at an SNR of 0 dB in these diffuse conditions,
it has been shown that the GA optimization yields results that generalize well to
the observed range of an SNR of −10 to 10 dB.
Using a higher resolution of the modulation filterbank, Kollmeier and Koch (1994)
reported benefit in the range of an SNR of 2 dB in diffuse noise conditions. In
a similar study, Wittkop et al. (1997) reported a moderate success under adverse
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conditions with the implementation of Kollmeier and Koch (1994). Beyond that,
it is not known to the author of the present work whether supplementary develop-
ments of algorithm ELT have been undertaken by the group of Kollmeier or others.
However, a publication of Woods et al. (1996) reflects an effort to construct a bin-
aural and modulation-based separation algorithm in a different way. In this work,
speech enhancement was based on the combination of a binaural carrier algorithm
and a monaural envelope algorithm. To this end, a binaural algorithm, similar to
algorithm CLP of this work, was combined with monaural cepstral pitch detection
and a modulation-based algorithm. As a result, a multi-feature representation of the
binaural signal was used to obtain estimates of the target energy at a certain time-
frequency bin. Consequently, two enhancement algorithms were efficiently combined
and they generated a complementary benefit, as assessed with a correlation-based
SNR measure8.
Recently, Woodruff et al. (2010) advanced in the same direction, by combining bin-
aural and several monaural cues (including a pitch estimation) for an enhanced
separation performance in adverse conditions. The authors have demonstrated an
SNR improvement of up to 3.6 dB (measured as the SNR of the estimated signals
relative to signals produced by IBMs). As their method aims to estimate masks as
a whole, meaning across a great many of time-frequency bins, it yet remains to be
clarified, whether a real-time application of such an approach is realizable.

Despite the poor performance of algorithm ELT in diffuse noise, the general ap-
proach is neat in its appearance. Therefore, we think that algorithm ELT will not
fall into disuse, since it provides a link between the spatial location and the pitch of
concurrent speakers. Therefore, conceivably, one could use algorithm ELT in a su-
pervised fashion for estimating the pitch when two or more speakers are overlapping
on the tonotopic axis, i.e. excite the same carrier frequencies, or when speech is un-
voiced and general pitch estimation methods are weak. As an example, a version of
algorithm ELT was combined with versions of algorithm CLP and CC (Schlesinger
and Boone, 2008). Based on the STI as an objective measure of speech intelligibility,
which turned out in later works not to be well correlated with the speech intelligibil-
ity of nonlinearly processed speech (Schlesinger et al., 2010), the overlay of multiple
algorithms was shown to offer the possibility for an enhanced noise suppression. In
future work, a revision of such a combination appears worthwhile.

Another approach to an enhanced noise suppression in the modulation domain was
recently presented by So and Paliwal (2010), in which a Kalman filter approach was
monaurally applied. The Kalman approach offers the advantage to filter the am-
plitude and the phase spectrum based on an adaptive MMSE criterion. As it was
recently shown by Paliwal et al. (2011), including the phase in the range of the low
frequencies in the filtering process, can contribute to speech intelligibility. In this
study Paliwal and colleagues examined the influence of the modulation magnitude
and phase spectrum to speech intelligibility. The results suggest that the modulation

8See e.g. Goldsworthy and Greenberg (2004) for a description of this correlation-based SNR
measure.
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phase spectrum is more important to speech intelligibility than the phase spectrum of
the waveform carrier. However, combining the modulation magnitude spectrum with
the phase of the carrier before reconstructing the waveform, as it is also implemented
in the ELT algorithm, was shown to enhance intelligibility. Moreover, Paliwal and
colleagues found that short frames of the modulation analysis-synthesis filterbank,
as short as 32 ms in their study, contribute to intelligibility, if the modulation mag-
nitude spectrum is retained and the modulation phase spectrum is discarded. In
contrast, if the modulation phase spectrum is retained and the modulation mag-
nitude spectrum is discarded, longer frames, typically in the range of 250 ms, are
needed to maintain a certain amount of speech intelligibility. In conclusion, these
results give valuable guidelines for successful application of the modulation-based
noise suppression approach.

In order to avoid a metallic sounding output signal, which has been observed in the
present work and which was reported by others, Schimmel et al. (2007) transformed
the modulation mask into a time-varying filter, with which the degraded input signal
is subsequently enhanced in the time domain.

Summary and outlook algorithm CLP

Algorithm CLP is demonstrably the most efficient binaural CASA processor under
all test conditions. The binaural temporal difference parameter of the carrier wave-
form, which is applied in the noise suppression process of algorithm CLP, has shown
to be the most decisive and robust binaural criterion in noise. Psycho-acoustic tests
widely support this result (Stern et al., 2006). Consequently, algorithm CLP is well
suited for the directional noise suppression approach. As a result, the algorithm
has demonstrated to be very beneficial in coherent noise conditions, and moderately
effective in diffuse noise conditions.
We expect that the present implementation of algorithm CLP with the a posteriori
probability weighting approach, as well as the GA-based parameter optimization pro-
cess, outperforms the classical implementations of algorithm CLP of Peissig (1992),
Kollmeier et al. (1993) and Wittkop and Hohmann (2003), which lack a pattern-
based separation and the here proposed model-based optimization approach.
A subjective evaluation of the CLP processor was conducted by Gaik and Linde-
mann (1986) and Peissig (1992).9 In both studies the algorithm’s quality in anechoic
and coherent interference conditions was demonstrated. Moreover, by a combination
with algorithm CC, Peissig (1992) measured a subjective speech intelligibility im-
provement of up to 25 % under reverberant conditions. Therefore, and as previously
mentioned, the combination of algorithm CLP and algorithm CC is a good option
for future investigations.

9Note that Kollmeier et al. (1993), Wittkop et al. (1997) and Wittkop and Hohmann (2003)
evaluated a combination of the CC and CLP algorithm. Therefore, a direct comparison with the
results of algorithm CLP (or CC) is not possible.
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A remark on the reverberation test setup

Although reverberation was considered throughout the assessment of the binaural
speech processors in this chapter, it has to be emphasized that the results have to
be considered with care. For instance, the reverberation time in the study of Peissig
(1992) was in the range of 2 to 3 s (the recordings were performed in a damped re-
verberation chamber) and, therefore, it was considerably higher than in the present
simulated reverberation environment with an RT of 0.2 s. For this reason and with
respect to localization experiments that have been performed in MISM-simulated
and real-world reverberation conditions at our institute (Opdam, 2010), we believe
that the speech intelligibility enhancement results of the MISM-simulated reverber-
ation conditions are underestimated.
As the MISM used here calculates the first two reflections and subsequently adds
a random exponentially decaying energy tail, any spatial correlation with the tar-
get signal is lost, except the first early reflections. Hence, the spatial correlation in
higher order reflections, which might be useful in a directional separation approach,
cannot be exploited.
In fact, the influence of reverberation on speech is not yet fully understood. There-
fore, it may be a flawed to base solutions in the field of speech enhancement solely
on (possibly inadequately) simulated environments.
Depending on the interference effects with reflections, for example, certain speech
modulations may increase, while others are damped. An MISM-approach that does
not account for standing waves, i.e. a non-diffuse sound field, will not provide these
effects. George (2007) analyzed the influence of reverberation and noise, separately
and jointly, on speech perception for normal hearing and hearing impaired peo-
ple. Reverberation, as the author found, degrades speech quality and leads to a
smearing of the modulation of the target and the masking signal. Consequently, the
co-modulation masking release as well as the chance of listening in the gaps, are
reduced. As hearing impaired people severely suffer from a reduced temporal acuity
and an elevated auditory threshold (together with other auditory and non-auditory
effects), future research should extend the statistical analysis of binaural parameters
of Chapter 3 as well as their application in noise suppression tasks to real-world
reverberant environments.
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Conclusions and Outlook

6.1 Conclusions

A revision of binaural computational auditory scene analysis (CASA) processors,
and their serial combination with non-adaptive beamforming front-ends of different
degrees of directivity has been given. The approach offers an approximation of the
minimum mean square error solution to the speech-in-noise problem.
The main intention of this study has been to establish a comprehensive understand-
ing of the possibilities that the presented combined processing scheme provides for
the enhancement of noise-corrupted speech. Three binaural speech processors have
been studied. Their basic designs refer to the algorithm of Gaik and Lindemann
(1986), here referred to as algorithm CLP, to the algorithm of Kollmeier and Koch
(1994), here referred to as algorithm ELT, and to the algorithm of Allen et al. (1977),
here referred to as algorithm CC. By means of a model-based improvement and a
model-based assessment of speech intelligibility, the study pursued the optimal ap-
plication of binaural speech processors in varying sound scenes.

The main question of this research can be affirmed, in that the proposed combina-
tion of bilaterally applied diffuse-field optimized beamforming filters and an adaptive
binaural speech processor allows complementarily for the attenuation of diffuse noise
and coherent noise, respectively.

Subsequent to the introduction of the algorithmic concepts in Chapter 2, the work
has been subdivided into three parts. In Chapter 3 the statistics of binaural pa-
rameters have been analyzed and a soft-decision classification approach has been
presented. In Chapter 4 a study on objective measures of speech intelligibility for
binaurally and nonlinearly processed speech has been given. In Chapter 5 the tech-
niques of a model-based improvement and assessment of speech intelligibility have
been combined to yield an optimal solution for the speech-in-noise problem. The
main findings of each chapter are summarized below.
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Statistics of binaural parameters in noise

The source separation power of binaural speech processors depends on the distinct-
ness of binaural parameters. This distinctness is strongly related to the strength and
spatial distribution of the interference. In order to study this dependence, the bin-
aural parameters of the fine-structure of the waveform as well as the corresponding
parameters of the envelope at the output of different directional and non-directional
hearing aids have been analyzed under varying noise conditions. Reference experi-
ments have been conducted with an artificial head.

The study provides an understanding of natural as well as artificial binaural pa-
rameters in noise. A first salient insight of the statistical results is that directional
hearing aids alter the front-back ambiguity around the interaural axis of natural
binaural cues. This natural ambiguity is, in three dimensions, well-known as the
cone of confusion artifact for narrow-band sounds. As it has been shown, besides
the attenuation of sounds from the side and the rear due to the directional process-
ing of a beamformer, the cone of confusion is warped.

In diffuse noise fields and low SNR conditions, it has been demonstrated that bin-
aural parameters of both the fine-structure of the waveform and the corresponding
envelope are weak indicators of directivity. No clear difference has been found in
terms of the directivity characteristics of directional front-ends under the same con-
ditions, using the ear-level and binaurally averaged SNR in the mixing process. The
study thereby explains why the presented binaural speech processors offer only a
modest performance in diffuse interference conditions. Nevertheless, when concur-
rent sources are coherent in space, i.e. a condition that allows for high degree of
separability through the signal transformations, binaural parameters have shown to
be an accurate source classifier.

As it has been shown, the binaural parameters are not equally affected by signal
degradation. The fine-structure IPD and the envelope ILD can be considered the
most reliable parameters in noise. The envelope IPD parameter and the envelope
ITD analogy were revealed to be the most sensitive parameters to noise. With
respect to the effect of the front-end, the directional hearing aids demonstrated a
positive effect on the fine-structure IPD, especially at low frequencies. The ILD of
the carrier of the waveform as well as of the corresponding envelope, on the other
hand, evinced less variation, and hence less separation power, as a consequence of
the directional processing of the front-ends.

The challenge of binaural speech processors remains in the optimal activation of bin-
aural parameters in a schema-based fashion. Using Bayes’ statistics, a soft decision
approach was introduced by Harding et al. (2005) and has been adopted for the
binaural algorithms of Gaik and Lindemann (1986) and Kollmeier and Koch (1994)
in the present work.

In view of the unfavourable characteristics of binaural parameters for a source sep-
aration in diffuse noise fields, we have to consider that the model hearing process
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combines many more cues in demanding circumstances. Consequently, it may dis-
count equivocal cues of binaural disparity in favour of timbre and modulation. Fu-
ture CASA-based systems might advance in the source separation problem through
a combination of multiple cue-based separation strategies as well as a weighted
activation of these in a supervised fashion. Universal concepts underlying such a
development have been proposed (Blauert, 2011; Kolossa, 2011).

Assessment of speech intelligibility of binaural and nonlinearly processed speech

The instrumental speech intelligibility assessment of binaurally and nonlinearly pro-
cessed speech is a relatively young field. Therefore a universal measure is still miss-
ing. The instrumental evaluation is driven by the necessity that subjective evaluation
offers little active insight during the development of speech processors due to the
high complexity of the task. In the present work, for instance, each binaural speech
processor comprises a set of algorithmic parameters that need to be tuned to a spe-
cific acoustical scene as well as to the peculiarities of a certain front-end. Therefore,
a set of instrumental measures has been analyzed and tested against subjective in-
telligibility scores of binaurally and nonlinearily processed speech.

A binaural and speech-based STI has been developed. For the purpose of copying
the binaural processing, the coincidence model of Jeffress (1948) has been applied to
calculate the binaural interaction effect. In frequency regions where the head-shadow
effect dominates, a better ear approach has been chosen. Both effects contribute to
the binaural advantage that is observed when listening with two ears instead of one.
In comprehensive listening tests of the speech intelligibility of binaurally processed
speech, the proficiency of the developed STI-version in mimicking the binaural pro-
cessing has been widely confirmed. Despite this success, the metric has shown to fail
in the assessment of nonlinear distortions, in particular in the assessment of envelope
thresholding distortions which are a simulation of varying filter-gain functions, i.e.
CASA-based post-filters.

In a follow-up study, several speech intelligibility measures, which label the relative
information content, have been proposed and compared to existing measures, e.g.
the I3 measure of Kates and Arehart (2005b) or the STOI measure of Taal et al.
(2010). In a listening test of the intelligibility of linearly and nonlinearly processed
speech, the potential of the proposed measures has been ruled out by the I3 measure,
among others. Furthermore, the I3 measure could be improved in the prediction of
nonlinearly processed speech, on the basis of the applied speech material. How-
ever, in order to operate with a well-established measure, the original I3 metric has
been chosen for the optimization and assessment of binaural speech processors in
this work. To account for the dominating binaural effect, the I3 metric has been
extended to incorporate the head-shadow effect, which is calculated in a better ear
fashion per combination of short-time frame and critical band.
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Optimization and assessment of binaural post-processors

The present work proposes the application of a genetic algorithm (GA) in the holistic
framework of model-based improvement and model-based assessment of speech in-
telligibility. To that end, the Genetic Algorithms for Optimization Toolbox of Houck
et al. (1995) has been applied in its default settings and the Better Ear I3 measure
served as a cost-function. To obtain an indication of the optimization complexity,
the reproducibility of the GA solutions has been examined by running several GA
optimizations for each test setup. Additionally, the GA-optimized parameter sets
have been applied in changing acoustic environments, which yields an indication of
the robustness and the generalizability of a certain solution.
Overall, the GA optimization of algorithmic parameter sets produces practical, op-
timal and psycho-acoustically relevant solutions. While the efficiency of the GA
procedure is a consequence of the survival of the fittest strategy, the regularity of
the solutions is a product of the interplay of CASA algorithms in the improvement
and assessment of speech intelligibility. Therefore, the GA approach has proven
to be a very efficient means for the parameter adjustment. Moreover, the holistic
optimization method provides solution strategies that may underly the ranking of
low-level cues in the model hearing process, as shown here for the ranking of bin-
aural cues. By way of example, for front-end and scene combinations in which the
fine-structure ILD is significantly included in the directional weighting process, the
ILD never gained more than half of the algorithmic weight in the total directional
filtering process. By trend, these results correspond to psycho-acoustic tests about
the trading of binaural cues in noise (Rakerd and Hartmann, 2010).

The subsequent assessment of the combined processing schemes provided the un-
derstanding that binaural speech processors are approximately independent of the
directivity of the front-end. In accordance with the nature of binaural statistics, a
main dependence of the performance on the ear-level and binaurally averaged SNR
has been isolated. As a consequence, when employed as a post-processor, a speech
intelligibility improvement of a binaural speech processor adds to the improvement
gained by the directional processing of the front-end. A limited frequency transfer
and equivocal binaural cues of the front-end, however, have been shown to detract
from the separation power.

The comparison of different binaural speech processors demonstrated the superiority
of algorithm CLP under diffuse and in coherent noise conditions. For instance, in
the babble noise of a lively canteen the CLP algorithm reaches an absolute and ob-
jectively estimated improvement of approximately 20 % of intelligibility, as assessed
with the Better Ear I3. In coherent noise conditions, algorithm CLP can achieve
an absolute improvement of more than 40 % of speech intelligibility. The gain has
shown to be independent for a wide range of target/masker angles, SNR conditions
and front-ends.

Due to the susceptibility of the interaural temporal differences of the envelope to
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diffuse noise fields, as it has been demonstrated in Chapter 3, algorithm ELT showed
to be merely beneficial under highly coherent noise conditions. Nevertheless, in these
sound scenes it offers a separation power that is comparable to algorithm CLP in
the attenuation of one competing sound source.
The ability of algorithm ELT to suppress lateral sources indicates the proper appli-
cation of binaural parameters of the envelope in the source separation task. This
result contrasts with the findings of Kollmeier and Koch (1994), in which no strong
attenuation of coherent interference from lateral directions was reported. The im-
proved operation in coherent interference followed from our revision of the algorithm
ELT, a statistical study of binaural parameters and an optimal pattern-based appli-
cation.
However, following the strict objective in this work of employing binaural parame-
ters in the noise suppression process, our implementation of algorithm ELT lost the
benefit of an estimated SNR of 2 dB that was gained by Kollmeier and Koch (1994)
in negative SNR as well as diffuse noise conditions. The present study led to the
conclusion that this benefit in diffuse sound fields appears not to be a consequence
of a direct spatial filtering, but a result of the second weighting function of algorithm
ELT. This weighting function is based on the standard deviation of binaural enve-
lope parameters in a joint centre and modulation-frequency domain. In application,
its working principle comes down to the deviation of binaural envelope parameters
from the median plane. Therefore, a diffuse-field gain can be observed, basically
indicating the audiological benefit when filtering in the modulation domain.
Although the present implementation employs a weighting function based on a sta-
tistical penalty measure too, it has not been possible to verify the diffuse-field benefit
with the present implementation. The reason for this shortcoming can be attributed
to coarser modulation spectra given by a decreased analysis frame-length, which is
necessary for the suppression of lateral interference.

With respect to algorithm CC, almost no improvement of speech intelligibility under
coherent noise conditions has been gained. This finding has been expected, since
the grouping scheme of this algorithm is inappropriate to differentiate the angular
positions of coherent sound sources. Nevertheless, under highly diffuse noise condi-
tions, as e.g. a workshop environment, an objective absolute improvement of speech
intelligibility of up to 25 % has been achieved.

Finally, the results of the stochastic optimization reflect the need for an adjustment
of the model-based algorithms in changing acoustics. As it has been shown, in the
worst case, the GA optimization prevents a deterioration of speech intelligibility
through the binaural filtering process. In all observed cases, the optimization pro-
cess adapts the binaural speech processors in the best possible way to the boundary
conditions and allows for robust speech intelligibility gains, even when the SNR or
the angular positions of maskers change.
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6.2 Outlook

The motivation behind this work has been to give a revision of binaural speech pro-
cessors, which are connected in series to binaural front-ends. For the purpose of a
structured analysis, the binaural speech processors have been analyzed in its basic
algorithmic design and no combination has been considered.

As far as a refinement of this study is concerned, the following factors could be
varied: the influence of the global mixing SNR used in the optimization has not
yet been defined on the overall performance of the post-processor as well as the
resulting robustness in changing SNR conditions. Furthermore, the SNR criterion
of the IBMs used in the classification task of algorithm CLP and ELT could be
studied, and compared to the choices made here. In addition, the overall gain of the
combined processing scheme needs to be studied by defining diffuse and non-diffuse
sound scenes with a source-dependent SNR.
As long as instrumental measures constitute a compromise for a small set of particu-
lar degradations and a certain dimension of speech perceptions, e.g. speech intelligi-
bility, subjective evaluations are mandatory to verify the benefit of certain solutions
to the speech-in-noise problem. Consequently, the results given here should be eval-
uated in a listening test. In addition, subjective tests should incorporate higher
cognitive factors of speech perception, such that the overall ease of listening will be
evaluated. As it has been discussed, the ease of listening combines several perceptual
dimensions and complements the prediction of the aid’s benefit.

In a next step, binaural processors could be combined, as e.g. done with algorithm
CLP and CC in the works of Peissig (1992) and Wittkop and Hohmann (2003), and
analyzed, updated and compared to the fundamental algorithms of this work.
Analogously, combinations of binaural with monaural modulation-based approaches
have shown to be beneficial in terms of an SNR improvement (Woods et al., 1996;
Woodruff et al., 2010). It appears worthwhile to combine these multi-cue algorithms
with the advanced methods in pattern recognition, as recently proposed by Weiss
et al. (2011), for prospectively bridging the gap between CASA and ASA.

There are several potential studies in terms of signal-dependency that can be car-
ried out. To begin with, a redesign of the presented binaural speech processors with
varying signal-dependent filterbanks can be suggested as an approach to increase the
time-resolution of the filterbank in the presence of transients or to increase the spec-
tral resolution in the presence of harmonic speech. Thereby, the constraint imposed
by the uncertainty principle that results in a compromise in a fixed analysis-synthesis
approach can be alleviated.
The DFT has been applied in this work, leading to a constant frequency resolution.
In future work, this approach should be compared to highly resolved auditory fil-
terbanks, as e.g. a gammatone filterbank applied in the processor of Roman et al.
(2003).
In addition, the incorporation of signal-dependency in the estimation of the power
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spectral densities proved to be beneficial (see e.g. Thiergart et al., 2010), and should
be applied to the algorithms presented here.
Furthermore, a signal-dependent enhancement of transients demonstrated to im-
prove speech intelligibility considerably (Yoo et al., 2007). For single channel speech
enhancement, Mauler (2010) recently proposed the amplification of transients, and
verified an improvement of speech intelligibility for cochlear implant users.

In the present work, pattern-driven decision rules and scene-optimized parameter
sets are employed for the noise suppression task. In order to employ this lookup
data in an optimal way across different backgrounds, classification and scene analy-
sis algorithms have to be used. Such a combination of a binaural localizer that steers
a binaural post-processor to yield an optimal speech quality output was proposed in
Boone et al. (2010). Future classifiers should advance to combine background clas-
sification as well as scene analysis. As shown in Boone et al. (2010), a scene analysis
offers the parametric description of varying nature of binaural parameters with e.g.
a Gaussian-mixture model. The comparison of such parametric lookup tables with
histogram-based methods, as presented here, is deemed an important future task.

The instrumental measure of speech intelligibility that was applied throughout the
assessment of binaural processors constitutes a compromise that has been achieved
in the scope and context of the presented work. As such, the measure is not sat-
isfying. Future work should undertake efforts to derive a measure that accounts
more precisely for the binaural advantage as well as the effect of nonlinear noise-
reduction on speech intelligibility. We believe that simple physical measures are
incapable of attaining that goal. Higher processes of speech perception need to be
included in a comprehensive model of speech intelligibility. Prospectively, we hope
to refine the speech-based and binaural STI, in order to obtain a comprehensive
model for predicting the intelligibility of binaurally as well as nonlinearly processed
speech. An attempt is shown in Schlesinger (2012), in which a transient-based STI
is developed and optimized against perception. On untrained data, this transient-
based STI method shows to be well suited to predict the intelligibility of linearly
and nonlinearily processed speech.
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Appendix: Algorithmic definitions

A.1 Formulation of the Wiener filter

In the following a simplified derivation of the Wiener filter in the frequency domain
and in the notation of this work is given. A more thorough derivation of the Wiener
filter can be found in Hänsler and Schmidt (2004).
The filter assumes short-time stationarity of the signals and that the power spectral
densities are known. For the reconstruction of the time series y(ι) of a target signal
from a noise-corrupted signal x(ι) through a filtering process with w(ι):

y(ι) = w(ι) ∗ x(ι), (A.1.1)

the Wiener filter is the MMSE solution of:

wopt(ι) = argmin
w

E
�
(s(ι)− y(ι))2

�
, (A.1.2)

where s(ι) is the original target signal. After calculating the Fourier Transform of
the time series, this expression becomes:

wopt(d) = argmin
w

E
�
(s(d)− w(d)x(d))2

�
, (A.1.3)

and by separating the target signal and noise v(d):

wopt(d) = argmin
w

E
�
(s(d)− w(d)(s(d) + v(d)))2

�
. (A.1.4)

After minimization with w(d) as a variable and the replacement of the expectation
operator with linear operations, one gains the Wiener filter in the frequency domain:

wopt(d) =
φss(d)

φss(d) + φvv(d)
, (A.1.5)

where φss(d) and φvv(d) denote the power spectral density of the signal and noise,
respectively.
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A.2 The direct DFT-IDFT filter approach in speech enhancement

The DFT is generally applicable for stationary and deterministic signals. In speech
processing the DFT is usually calculated over segments of short durations (15 to
35 ms), in which speech is approximately stationary. The approach is widely known
as short-time Fourier transform (STFT) and constitutes a very efficient means in
the filtering process. In here, we give the windowed analysis and the overlap-add
synthesis method, in brief the DFT-IDFT approach.

The discrete time sequence of a speech signal x(ι) of length Nι, sampled at fs,
is partitioned into overlapping frames of length Nχ using a window function χ(ι)
to reduce spectral leakage. Throughout this work the Hanning window χ(ι) = (1−
cos(2πι/Nχ)) with ι = 0, 1, . . . , Nχ has been applied. To avoid a circular convolution
in the filtering process, the window function χ(ι) is (for example) appended with
an array of zeros of length Nd −Nχ, with Nd being the length of the DFT and the
requirement that Nd ≥ 2Nχ − 1. Throughout this work, usually a frame shift of
50 %, i.e. ∆T = Nχ/2 is applied. Using these definitions, perfect reconstruction can
be approximated with the DFT-IDFT approach.

Analogously to Equation (2.1.1), the DFT of the time sampled speech sequence x(ι)
can be computed with:

x(d, n) =
Nd−1�

ι=0

χ(ι)x̃(n∆T + ι)e−j2πι d
Nd , (A.2.6)

where d = 0, 1, . . . , Nd − 1 and n are the frequency bin and the frame index, re-
spectively. Subsequent to a signal modification in the STFT domain, the stimulus
is reconstructed by the IDFT and overlap-add reconstruction (Loizou, 2007):

x̃(ι) =
∞�

n=−∞

1

Nd

Nd−1�

d=0

x(d, n∆T )ej2πd
ι

Nd , (A.2.7)

therein the frame shift ∆T is multiplied with n to align the short-time frames in
the reconstructed signal. For real-world implementations, the DFT length can be
shortened by a factor of two, if instead of zero padding a synthesis window is applied
prior to the overlap-add synthesis procedure (Mauler, 2010).
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A.3 Range and mean standard deviation

This appendix presents the calculation methods of the range parameter m� and the
mean standard deviation σ�, as used in Chapter 3.3.

The calculation starts with a sample value ǒǐ of a stochastic variable Ǒ, which is
given through:

ǒǐ = E{Ǒ}+ �̌, (A.3.8)

where the expectation of the error �̌ is:

E{�̌} = 0. (A.3.9)

The arithmetic mean is calculated with:

ō =
1

ň

ň�

ǐ=1

ǒǐ. (A.3.10)

Given ō represents the mean of a binaural cue at a certain angle of incidence θ, the
range (i.e. the width of the cue variation) m� of this binaural cue is calculated as:

m
� = max[ō(θ)]−min[ō(θ)]. (A.3.11)

The standard deviation σ of the sample value is calculated as:

σ =

���� 1

ň− 1

ň�

ǐ=1

(ǒǐ − ō)2. (A.3.12)

Consequently, the mean standard deviation σ� of a binaural cue is computed as:

σ
� =

1

Nθ

Nθ�

u=1

σθ, (A.3.13)

in which Nθ is the number of discrete target source positions and σθ is the standard
deviation of a certain binaural parameter at one target direction.
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A.4 Statistics of the model-assessment

The r2 measure calculates the quotient of the variance in the model to the original
variance in the data. Thereby, r2 gives the amount of variance of the original data
that is explained by the model, also known as the ‘Bestimmtheitsmaß’ (Bortz, 2005).
It can be calculated as:

r
2 =

σ2

s − σ2

s−ŝ

σ2
s

, (A.4.14)

where σ2

s is the original variance of, for instance, the subjective scores sǐ and σ2

s−ŝ is
the variance of the residuals, i.e. the differences between the measurements sǐ and
the model-predictions ŝǐ.

Kendall’s τ is a rank statistic and calculates the monotonic relation between intel-
ligibility scores and objective scores. The statistic is calculated as:

τ =
p̌c − p̌d

1

2
ňp(ňp − 1)

, (A.4.15)

where p̌c, p̌d and ňp determine the concordant pairs, discordant pairs of conditions
and the amount of the tested conditions, respectively (Bortz, 2005).



B

Appendix: Interaural parameters of
the binaural envelope signal

This appendix extends the statistical analysis on interaural parameters of the en-
velope in Chapter 3.3. For a description of the figures, the reader is referred to
Section 3.3.2.

In addition, the binaural magnification method of Section 3.3.2 is analyzed in greater
detail. A comparison between the original envelope ILD calculation method with
the magnification method at the output of the HG (low directivity) is given in the
Figures B.5 and B.6, respectively. The results indicate an approximate doubling of
all m� values. Finally, Figure B.7 shows the magnified envelope ILD in the canteen
situation at an SNR of 0 dB.
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Figure B.1: The PDFs with mean (solid line) and standard deviation (dashed line) of the
envelope-based ILD parameter at the Aachen head as a function of source direction, analyzed
in carrier and modulation band combinations that are centred at the specified frequencies
(cf and mod. cf, resp.). The SNR was set to 60 dB.
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Figure B.2: The PDFs with mean (solid line) and standard deviation (dashed line) of the
envelope-based IPD parameter at the Aachen head as a function of source direction, analyzed
in carrier and modulation band combinations that are centred at the specified frequencies
(cf and mod. cf, resp.). The SNR was set to 60 dB.
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Figure B.3: The PDFs with mean (solid line) and standard deviation (dashed line) of the
envelope-based ILD parameter at the Aachen head as a function of source direction, analyzed
in carrier and modulation band combinations that are centred at the specified frequencies
(cf and mod. cf, resp.). The SNR was set to 0 dB and the interference is a lively canteen.
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Figure B.4: The PDFs with mean (solid line) and standard deviation (dashed line) of the
envelope-based IPD parameter at the Aachen head as a function of source direction, analyzed
in carrier and modulation band combinations that are centred at the specified frequencies
(cf and mod. cf, resp.). The SNR was set to 0 dB and the interference is a lively canteen.
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Figure B.5: The PDFs with mean (solid line) and standard deviation (dashed line) of the
envelope-based ILD parameter at the HG (low directivity) as a function of source direction,
analyzed in carrier and modulation band combinations that are centred at the specified
frequencies (cf and mod. cf, resp.). The SNR was set to 60 dB.
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Figure B.6: The PDFs with mean (solid line) and standard deviation (dashed line) of the
magnified envelope-based ILD parameter at the HG (low directivity) as a function of source
direction, analyzed in carrier and modulation band combinations that are centred at the
specified frequencies (cf and mod. cf, resp.). The SNR was set to 60 dB. The ILD magni-
fication procedure of Equation (3.3.7) was applied.
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Figure B.7: The PDFs with mean (solid line) and standard deviation (dashed line) of the
magnified envelope-based ILD parameter at the HG (low directivity) as a function of source
direction, analyzed in carrier and modulation band combinations that are centred at the
specified frequencies (cf and mod. cf, resp.). The SNR was set to 0 dB and the interference
is a lively canteen. The ILD magnification procedure of Equation (3.3.7) was applied.
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Figure B.8: The PDFs with mean (solid line) and standard deviation (dashed line) of the
envelope-based ITD parameter at the HG (low directivity) as a function of source direction,
analyzed in carrier and modulation band combinations that are centred at the specified
frequencies (cf and mod. cf, resp.). The SNR was set to 60 dB.
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Figure B.9: The PDFs with mean (solid line) and standard deviation (dashed line) of the
envelope-based ITD parameter at the HG (low directivity) as a function of source direction,
analyzed in carrier and modulation band combinations that are centred at the specified
frequencies (cf and mod. cf, resp.). The SNR was set to 0 dB and the interference is a
lively canteen.
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Appendix: A comparative study on
speech intelligibility measures for
nonlinearly processed speech

This appendix gives a comparison of three intrusive speech-based speech intelligibil-
ity measures.
For their assessment a subjective speech intelligibility test has been performed. The
speech material has been taken from the semantically unpredictable sentence (SUS)
corpus, which was developed by Ramirez et al. (2009). The speech files were recorded
and digitized at 44.1 kHz. The clean and distorted wave forms were convolved with
the HRTFs of an artificial head in a particular acoustical scene and corrected for the
headphones that were used in the listening test. The masking signal was presented
at a fixed level of 70 dB(A) SPL and the target level was changed to the respective
SNRs used in the different test conditions. The recordings were stored for further
analysis with the objective intelligibility measures. Four subjects of normal hearing
(< 15 dB (HL) for both ears) participated in the diotic test with three trials per
condition. The conditions ranged from no deterioration to several forms of linear
deteriorations using echo, reverberation and a single masker of speech shaped sta-
tionary noise. Situations 24 to 27 indicate nonlinear envelope threshold distortions
from soft to severe, respectively, which increase the modulation depth abnormally
and can therefore lead to an overestimation by a modulation-based intelligibility
measure (Goldsworthy and Greenberg, 2004). Table C.1 lists the conditions as-
sessed in this study.
The noise-corrupted and distorted sentences of the listening test were stored for
further analysis with objective intelligibility measures. Moreover, silent passages in
the speech files, in here defined as the RMS level lower than -50 dB in frames of
32 ms length relative to the overall RMS level, lead to an erroneous increase of the
STI with the envelope regression method (Payton and Shrestha, 2008) and were,
therefore, excluded with a VAD algorithm.
Three speech-based intelligibility measures have been applied in this study: the
STMI of Elhilali et al. (2003) in an optimized envelope regression version of Goldswor-
thy and Greenberg (2004), the STI in an optimized envelope regression version of



208 Appendix: A comparative study on speech intelligibility measures for nonlinearly processed speech

Table C.1: List of distortion conditions. The abbreviation bw. indicates the bandwidth
employed in the stimuli. Wide-band (wb.) has a frequency range from 0.05 to 7 kHz and
full-band (fb.) from 0 to 22.05 kHz.

cond. bw. noise type SNR (dB)

1 fb. inf

2—5 fb. white additive noise [−8, −4, 0, 0]

6—9 fb. pink additive noise [−8, −4, 0, 0]

10—13 fb. SSN male voice [−8, −4, 0, 0]

14—18 wb. SSN male voice [−8, −5, −2, 1, 4]

19 fb. Echo 50 ms inf

20 fb. Echo 50 ms plus SSN male voice 6

21 fb. Echo 150 ms inf

22 fb. Echo 150 ms plus SSN male voice 6

23 fb. Echo 150 ms plus SSN male voice 12

24—27 fb. Envelope thresholding [50, 60, 75, 90 %] inf

28 fb. Reverberation 0.4 s inf

29—31 fb. SSN male voice plus rev. 0.4 s [0, 3, 6]

32 fb. Reverberation 1.5 s inf

33—35 wb. SSN male voice plus rev. 1.5 s [6, 10, 15]

Goldsworthy and Greenberg (2004) and the coherence-based SII (CSII) of Kates and
Arehart (2005b). As it regards the implementation of the STMI, the Neural Sys-
tems Laboratoy toolbox (URL http://www.isr.umd.edu/Labs/NSL/ ) was used for
this purpose. The parameters of the NSL toolbox were set to 8 ms for the frame
length, 8 ms for the time constant, the critical level ratio followed a linear function,
NSL option −2, and the NSL octave shift option was set to 0. The STMI resolution
was set to 4, 6, 8, 12, 16, 24 and 32 Hz for analyzing the temporal modulation and
with 0.25, 0.375, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8 in cycles per octave for analyzing
the modulation along the frequency dimension (scale). Subsequent to the STRF
representations with the NSL toolbox, the optimized envelope regression method of
Goldsworthy and Greenberg (2004) has been applied to the clean and the deterio-
rated signal. Finally, the transmission indices of the frequency channels have been
weighted with the band-importance function of Pavlovic (1987) for average speech
and summed to our version of the STMI.
The STI has been analyzed with a frame-length of 0.5 s and with the envelope
regression method of Goldsworthy and Greenberg (2004). However, in our imple-
mentation, the modulation transfer in 30 auditory bands, as given in Chapter 4.1.2,
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Figure C.1: Analysis of three speech-based measures of speech intelligibility, the STMI, the
STI and the CSII. The specification opt. ER denotes the optimized regression method of
Goldsworthy and Greenberg (2004).

has been analyzed. The CSII was calculated according to the definition of Kates
and Arehart (2005b), see also Chapter 4.2.

Figure C.1 gives the results. As can be seen, all three measures correctly indicate
the distortion of additive noise. Moreover, reverberation distortions are correctly
predicted by the STMI and the STI. The CSII is a purely spectral measure and,
therefore, cannot account for the reverberation, which is a temporal distortion. In
addition, the STMI shows a smaller spread of linear distortions and some nonlin-
ear distortions along a common curve (phase jitter and peak clipping) than the
STI. Most important in the context of this thesis is the finding that none of these
objective measures is capable to predict the impact of nonlinear envelope threshold-
ing conditions. Chapter 4.2 departs from this observation with the development of a
measure that offers a functional relationship between subjective scores and objective
prediction for additive noise and envelope thresholding distortions.
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D

Appendix: Artificial nonlinear signal
distortions

This appendix gives the calculation methods of several nonlinear signal distortions.

D.1 Peak clipping

The peak clipping (symmetric) distortion used in the listening tests of this thesis has
been calculated according to Kates and Arehart (2005b). Peak clipping is associated
with amplifier and receiver saturation effects in hearing aids. The peak clipping dis-
tortion thresholds are calculated from the histograms of the magnitude of the signal
samples. Here, subsequent to exclusion of silent parts of the sentences at the be-
ginning and the end, the cumulative distribution of the magnitudes of the sentences
was calculated. The threshold �̂ was adjusted by a certain percent proportion of the
cumulative distribution (see test conditions) according to:

speak−clipping(ι) =






�̂ if s(ι) > �̂,

s(ι) if −�̂ ≤ s(ι) ≤ �̂,

−�̂ if s(ι) < −�̂,

(D.1.1)

where s(ι) is the clean input and speak−clipping(ι) is the distorted output.

D.2 Envelope thresholding

The envelope thresholding (symmetric) distortion used in the listening tests of this
thesis have been calculated according to Kates and Arehart (2005b). Envelope
thresholding is associated with nonlinear noise suppression methods, which reduce
the signal amplitude in low-level regions. The envelope thresholding distortion
thresholds are calculated from the histograms of the magnitude of the signal sam-
ples. Here, subsequent to exclusion of silent parts of the sentences at the beginning
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and the end, the cumulative distribution of the magnitudes of the sentences was
calculated. The threshold �̂ was adjusted by a certain percent proportion of the
cumulative distribution (see test conditions) according to:

senvelope−thresholding(ι) =






s(ι) if s(ι) > �̂,

0 if −�̂ ≤ s(ι) ≤ �̂,

s(ι) if s(ι) < −�̂,

(D.2.2)

where s(ι) is the clean input and senvelope−thresholding(ι) is the distorted output.

D.3 Phase jitter

The phase jitter distortion used in the listening tests in this thesis have been calcu-
lated according to Elhilali et al. (2003). Such a distortion can occur on telephone
channels if the power supply is fluctuating. Phase jitter destroys the carrier, while
leaving the envelope intact. For this reason, the distortion is interesting in relation
to the STI method. The STI analyzes the modulation depth of the envelope and
is, therefore, generally unaffected by phase jitter distortions. Elhilali et al. (2003)
showed that the classical STI method is absolutely unaffected by such distortion.
However, in own experiments (not shown here, but partly rendered in Figure 4.4)
using a speech-based STI, we have found a responsiveness of the method towards
this distortion, although not as strong as found with the STMI.
The phase jitter distortion can be calculated with:

sphase−jitter(ι) = �
�
s(ι)ejΩ(ι)

�
= s(ι) cos(Ω̂(ι)), (D.3.3)

where s(ι) is the clean input, sphase−jitter(ι) is the distorted output and Ω(ι) is the

phase jitter function modeled as a uniform random process over (0 : 2Ξ̂π) with
0 < Ξ̂ < 1. For Ξ̂ = 1 the signal becomes a modulated white noise carrier and the
intelligibility declines to zero.
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tungshörsystem für mobile Roboter in echoarmer Umgebung (A Binau-
ral Sound Localization System for Mobile Robots in Low-reflecting En-
vironments)”. at–Automatisierungstechnik/Methoden und Anwendungen der
Steuerungs-, Regelungs-und Informationstechnik, 51(9/2003), pp. 387–395.

Albani, S., Peissig, J. and Kollmeier, B. (1996). Psychoacoustics, Speech and Hearing
Aids, chapter Model of binaural localization resolving multiple sources and spatial
ambiguities, pages 227–232. World Scientific, Singapore.

Allen, J. B., Berkley, D. A. and Blauert, J. (1977). “Multimicrophone signal-
processing technique to remove room reverberation from speech signals”. The
Journal of the Acoustical Society of America, 62(4), pp. 912–915.

ANSI/ASA (S3.5-1997 (R2007)). “American National Standard Methods for Cal-
culation of the Speech Intelligibility Index”. Technical report, American National
Standards of the Acoustical Society of America.

Bach, J.-H., Anemüller, J. and Kollmeier, B. (2011). “Robust speech detection in
real acoustic backgrounds with perceptually motivated features”. Speech Commu-
nication, 53(5), pp. 690–706.

Barker, J. (2006). Computational Auditory Scene Analysis: Principles, Algo-
rithms and Applications, chapter Robust automatic speech recognition. IEEE
Press/Wiley-Interscience.

Barker, J., Josifovski, L., Cooke, M. and Green, P. (2000). “Soft decisions in missing
data techniques for robust automatic speech recognition”. In Sixth International



214 BIBLIOGRAPHY

Conference on Spoken Language Processing (ISCA) 2000, pages 373–376, Beijng,
China.

Baskent, D., Eiler, C. L. and Edwards, B. (2007). “Using genetic algorithms with
subjective input from human subjects: Implications for fitting hearing aids and
cochlear implants”. Ear and hearing, 28(3), pp. 370380.

Beerends, J. G., van Buuren, R., van Vugt, J. and Verhave, J. (2009). “Objective
speech intelligibility measurement on the basis of natural speech in combination
with perceptual modeling”. Journal of the Audio Engineering Society, 57(5), pp.
299–308.

Beutelmann, R. and Brand, T. (2006). “Prediction of speech intelligibility in spatial
noise and reverberation for normal-hearing and hearing-impaired listeners”. The
Journal of the Acoustical Society of America, 120(1), pp. 331–342.

Beutelmann, R., Brand, T. and Kollmeier, B. (2010). “Revision, extension and
evaluation of a binaural speech intelligibility model”. The Journal of the Acoustical
Society of America, 127(4), pp. 2479–2497.

Bitzer, J. and Simmer, K. U. (2001). Microphone Arrays: Signal Processing Tech-
niques and Applications, chapter Superdirective Microphone Arrays. Springer-
Verlag.

Blauert, J. (1997). Spatial Hearing: The Psychophysics of Human Sound Localiza-
tion. The MIT Press.

Blauert, J. (2011). “Epistemological bases of binaural perception - a constructivists’
approach”. In Forum Acusticum 2011, Aalborg, Denmark.

Bodden, M. (1993). “Modeling human sound source localization and the cocktail-
party-effect”. Acta Acustica, 1(1), pp. 43–55.

Boldt, J. B. and Ellis, D. P. W. (2009). “A simple correlation-based model of
intelligibility for nonlinear speech enhancement and separation”. In 17th European
Signal Processing Conference (EUSIPCO), pages 1849–1853, Glasgow, Scotland.

Boone, M. M. (2006). “Directivity measurements on a highly directive hearing aid:
the hearing glasses”. In AES 120th Convention, Paris, France.

Boone, M. M., Opdam, R. C. G. and Schlesinger, A. (2010). “Downstream speech
enhancement in a low directivity binaural hearing aid”. In Proceedings of 20th
International Congress on Acoustics, ICA, Sydney, Australia.

Bortz, J. (2005). Statistik für Human- und Sozialwissenschaftler. Springer, Mediz-
inverlag.



BIBLIOGRAPHY 215

Brainard, M. S., Knudsen, E. I. and Esterly, S. D. (1992). “Neural derivation of
sound source location: resolution of spatial ambiguities in binaural cues”. The
Journal of the Acoustical Society of America, 91(2), pp. 1015–1027.

Brand, T. and Kollmeier, B. (2002). “Efficient adaptive procedures for threshold
and concurrent slope estimates for psychophysics and speech intelligibility tests”.
The Journal of the Acoustical Society of America, 111(6), pp. 2801–2810.

Bregman, A. S. (1990). Auditory scene analysis: the perceptual organization of
sound. The MIT Press.

Breithaupt, C. and Martin, R. (2008). Advances in Digital Speech Transmission,
chapter Noise Reduction-Statistical Analysis and Control of Musical Noise. John
Wiley & Sons Ltd.

Bronkhorst, A. W. (2000). “The cocktail party phenomenon: a review of research
on speech intelligibility in multiple-talker conditions”. Acta Acustica united with
Acustica, 86, pp. 117–128.

Brown, G. and Wang, D. L. (2006). Computational Auditory Scene Analysis: Princi-
ples, Algorithms and Applications, chapter Neural and perceptual modeling. IEEE
Press/Wiley-Interscience.

Brown, G. J. and Palomaki, K. J. (2006). Computational Auditory Scene Anal-
ysis: Principles, Algorithms and Applications, chapter Reverberation. IEEE
Press/Wiley-Interscience.

Cherry, E. C. (1953). “Some experiments on the recognition of speech, with one and
two ears”. The Journal of the Acoustical Society of America, 25(5), pp. 975–979.

Christiansen, C., Pedersen, M. and Dau, T. (2010). “Prediction of speech intelligibil-
ity based on an auditory preprocessing model”. Speech Communication, 52(7-8),
pp. 678–692.

Dau, T., Kollmeier, B. and Kohlrausch, A. (1997). “Modeling auditory processing
of amplitude modulation. I. Detection and masking with narrow-band carriers”.
The Journal of the Acoustical Society of America, 102(5), pp. 2892–2905.

De Vries, D., Hulsebos, E. M. and Baan, J. (2001). “Spatial fluctuations in measures
of spaciousness”. The Journal of the Acoustical Society of America, 110(2), pp.
947–954.

Desloge, J., Rabinowitz, W. and Zurek, P. (1997). “Microphone-array hearing aids
with binaural output-Part I: Fixed-processing systems”. IEEE Transactions on
Speech and Audio Processing, 5(6), pp. 529–542.

Dietz, M., Ewert, S. D. and Hohmann, V. (2009). “Lateralization of stimuli with
independent fine-structure and envelope-based temporal disparities”. The Journal
of the Acoustical Society of America, 125(3), pp. 1622–1635.



216 BIBLIOGRAPHY

Dillon, H. (2001). Hearing aids. Thieme Medical Pub., Stuttgart.

Dörbecker, M. and Ernst, S. (1996). “Combination of Two–Channel Spectral Sub-
traction and Adaptive Wiener Post–Filtering for Noise Reduction and Dereverber-
ation”. In Proceedings of the European Signal Processing Conference (EUSIPCO)
1996, pages 995–998, Trieste, Italy.

Duquesnoy, A. J. (1983). “Effect of a single interfering noise or speech source upon
the binaural sentence intelligibility of aged persons”. The Journal of the Acoustical
Society of America, 74(3), pp. 739–743.

Duquesnoy, A. J. and Plomp, R. (1983). “The effect of Hearing Impairment on the
Speech-Reception Threshold of Hearing-Impaired Listeners in Quiet and Noise”.
The Journal of the Acoustical Society of America, 73(6).

Durant, E., Wakefield, G., Van Tasell, D. and Rickert, M. (2004). “Efficient per-
ceptual tuning of hearing aids with genetic algorithms”. IEEE Transactions on
Speech and Audio Processing, 12(2), pp. 144–155.

Durlach, N. I. (1960). “Note on the equalization and cancellation theory of binaural
masking level differences”. The Journal of the Acoustical Society of America,
32(8), pp. 1075–1076.

Durlach, N. I. and Colburn, H. S. (1978). Handbook of perception, volume 4, chapter
Binaural phenomena. New York: Academic Press.

Durlach, N. I. and Pang, X. D. (1986). “Interaural magnification”. The Journal of
the Acoustical Society of America, 80(6), pp. 1849–1850.

Elhilali, M., Chi, T. and Shamma, S. A. (2003). “A Spectro-Temporal Modulation
Index (STMI) for assessment of speech intelligibility”. Speech Communication,
41, pp. 331–348.

Ellis, D. (2006). Computational Auditory Scene Analysis: Principles, Algorithms and
Applications, chapter Model-based scene analysis. IEEE Press/Wiley-Interscience.

Elzinga, H. (2010). “Speech source localization with binaural CASA approaches”.
Master’s thesis, Technical University of Delft, The Netherlands.

Eneman, K., Leijon, A., Doclo, S., Spriet, A., Moonen, M. and Wouters, J. (2008).
Advances in digital speech transmission, chapter Auditory-profile-based Physical
Evaluation of Multi-microphone Noise Reduction Techniques in Hearing Instru-
ments. John Wiley & Sons Ltd.

Faller, C. and Merimaa, J. (2004). “Source localization in complex listening situa-
tions: Selection of binaural cues based on interaural coherence”. The Journal of
the Acoustical Society of America, 116(5), pp. 3075–3089.



BIBLIOGRAPHY 217

FCA (2007). “Federal Cartel Authority Germany: Resolution Administrative Pro-
cedure B3-578/06”.

Fels, J. (2008). From Children to Adults: How Binaural Cues and Ear Canal
Impedances Grow. PhD thesis, RWTH Aachen, Germany.

Gaik, W. and Lindemann, W. (1986). “Ein digitales Richtungsfilter, basierend auf
der Auswertung interauraler Parameter von Kunstkopfsignalen”. In Fortschritte
der Akustik–DAGA, volume 86, pages 721–724, Oldenburg, Germany.

George, E., Zekveld, A., Kramer, S., Goverts, S., Festen, J. and Houtgast, T. (2007).
“Auditory and nonauditory factors affecting speech reception in noise by older
listeners”. The Journal of the Acoustical Society of America, 121(4), pp. 2362–
2375.

George, E. L. J. (2007). Factors affecting speech reception in fluctuating noise and
reverberation. PhD thesis, Vrije Universiteit, The Netherlands.

Gnewikow, D., Ricketts, T., Bratt, G. and Mutchler, L. (2009). “Real-world benefit
from directional microphone hearing aids”. Journal of rehabilitation research and
development, 17(23), pp. 29–33.

Goldsworthy, R. L. and Greenberg, J. E. (2004). “Analysis of speech-based speech
transmission index methods with implications for nonlinear operations”. The
Journal of the Acoustical Society of America, 116(6), pp. 3679–3689.

Goupell, M. J. and Hartmann, W. M. (2007). Hearing–From Sensory Processing
to Perception, chapter Interaural Phase and Level Fluctuations as the Basis of
Interaural Incoherence Detection. Springer.

Greenberg, J. and Zurek, P. (2001). Microphone Arrays: Signal Processing Tech-
niques and Applications, chapter Microphone-Array Hearing Aids. Springer-
Verlag.

Hamacher, V., Kornagel, U., Lotter, T. and Puder, H. (2008). Advances in Digital
Speech Transmission, chapter Binaural Signal Processing in Hearing Aids. John
Wiley & Sons Ltd.

Handelsblatt (2010). Mafia-Methoden bei Hörgeräten: Ohr um Ohr, Zahn um Zahn.
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In 38. DGMP Tagung, Oldenburg, Germany.

Vorländer, M. (2008). Auralization: fundamentals of acoustics, modeling, simula-
tion, algorithms and acoustic virtual reality, volume 1. Springer.

Wang, D. and Brown, G. J. (2006). Computational Auditory Scene Analysis: Prin-
ciples, Algorithms and Applications, chapter Fundamentals of computational au-
ditory scene analysis. IEEE Press/Wiley-Interscience.

Weiss, R. J., Mandel, M. I. and Ellis, D. P. W. (2011). “Combining localization cues
and source model constraints for binaural source separation”. Speech Communi-
cation, 53(5), pp. 606–621.

Wittkop, T., Albani, S., Hohmann, V., Peissig, J., Woods, W. and Kollmeier, B.
(1997). “Speech processing for hearing aids: Noise reduction motivated by models
of binaural interaction”. Acta Acustica united with Acustica, 83(4), pp. 684–699.

Wittkop, T. and Hohmann, V. (2003). “Strategy-selective noise reduction for bin-
aural digital hearing aids”. Speech Communication, 39, pp. 111–138.

Woodruff, J., Prabhavalkar, R., Fosler-Lussier, E. and Wang, D. (2010). “Combin-
ing Monaural and Binaural Evidence for Reverberant Speech Segregation”. In
Proceedings of the Interspeech Conference, Makuhari, Japan.

Woods, W. S., Hansen, M., Wittkop, T. and Kollmeier, B. (1996). “A simple archi-
tecture for using multiple cues in sound separation”. In Fourth International Con-
ference on Spoken Language (ICSLP) 1996, pages 909–912, Philadelpha, United
States of America.

Yoo, S. D., Boston, R., El-Jaroudi, A., Li, C.-C., Durrant, J. D., Kovacyk, K. and
Shaiman, S. (2007). “Speech signal modification to increase intelligibility in noisy
environments”. The Journal of the Acoustical Society of America, 122(2), pp.
1138–1149.

You, H., Zhu, Q. and Alwan, A. (2004). “Entropy-based variable frame rate analysis
of speech signals and its application to ASR”. In IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), volume 1, pages 549–552.

Zhang, P. X. and Hartmann, W. M. (2006). “Lateralization of sine tones–interaural
time vs phase”. The Journal of the Acoustical Society of America, 120(6), pp.
3471–3474.

Zheng, Y., Reindl, K. and Kellermann, W. (2009). “BSS for improved interfer-
ence estimation for Blind speech signal Extraction with two microphones”. In
3rd IEEE International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), pages 253 –256, Aruba, Dutch Antilles.



226 BIBLIOGRAPHY

Zwicker, E. and Terhardt, E. (1980). “Analytical expressions for critical-band rate
and critical bandwidth as a function of frequency”. The Journal of the Acoustical
Society of America, 68(5), pp. 1523–1525.

Zwicker, E. and Zollner, M. (1987). Elektroakustik (Electroacoustics), 2nd Edition.
Springer, Berlin, Heidelberg.



List of Symbols and Abbreviations

Symbols (except definitions in the appendix)

α Smoothing constant
αx Cepstral time smoothing constant
αloE Cepstral time smoothing constant low-frequent speech envelope
αhiE Cepstral time smoothing constant high-frequent speech envelope
αp Cepstral time smoothing constant F0
αn Cepstral time smoothing constant noise
αγ Smoothing constant for estimating the coherence function
αPSD Smoothing constant PSD signal
α̊ Smoothing constant for estimating MPSD
α̈ Smoothing constant feature vector
β Order Renyi entropy
∆γ Normalized absolute magnitude coherence function
δ Band importance function (speech intelligibility)
� Lower bound envelope correction for preventing division by zero
�v Threshold value feature vector
�hist Threshold in histograms for ITD/IPD/ILD
�̂ Threshold of speech distortion
ε Mask criterion
ζ Modulation at the rate of speech
ζ̂ Theoretical modulation at the rate of speech calculated from an SNR
η Relative criterion mask
θ Azimuth angle
θt Direction of the target signal
ϑ Elevation angle
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ι Time sample time domain
κ Stabilization constant (MVDR beamformer)
λ Wave length [m]
µ Sample mean
µsb Sample mean of intensity envelope of s
µxb Sample mean of intensity envelope of x
µzb Sample mean of intensity envelope of z
ν Stabilization constant (Wiener filter)
ξ Balancing constant between IPD and ILD
o Crest factor
π Circle constant
ϕ Variable of logistic function
ρı Feature vector of relative information content (function of time)
� Time increments of interaural cross correlation (STI)
σ Sample standard deviation
σ� Averaged standard deviation over all incidence angles
σt Standard deviation IPD (envelope)
σL Standard deviation ILD (envelope)
ς Filter (pharynx)
τ Kendall’s τ
τ̆ Time constant [s]
υ Source (glottis)
φ Power spectral density
φss Power spectral density (target signal)
φvv Power spectral density (noise signal)
φ̊ Modulation power spectral density
∆ϕ IPD of the fine-structure
∆ϕ̊ IPD of the envelope
χ Analysis window function
χ̊ Analysis window function of analysis in STFT domain
ψ Variable of logistic function
ω Analysis window STI
Γvv Complex coherence matrix
�∆ Feature vector interaural parameters
Λ Logistic function
Ξ FIR filter (correction factor algorithm ELT)
Πb Matrix of rounded-exponential filters
Υ Mean objective score
Φ

−1

vv
Inverse cross power spectral density matrix (noise correlation matrix)

Ψ Steepness of the psychometric intelligibility function
Ω SRT
ℵ Objective function
ı Frame index CSII calculation
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 Speaker index
� Microphone index
℘ Arbitrary parameter solution
℘♣ Final parameter solution of the genetic algorithm
a Propagation vector
Amin Noise flooring constant
Amax Upper limitation of M ft

elt

b Critical band index
c Speed of sound [m/s]
d DFT coefficient
dx Algorithmic parameter of lower cutoff frequency of ∆γ in mask
dxϕ Upper cutoff frequency of IPD fine-struture
dxL Lower cutoff frequency of ILD fine-structure
dxo Upper cutoff frequency FIR filter (correction factor algorithm ELT)
dcb Critical band index subsequent averaging in STFT domain
dl Critical band lower bound in STFT domain
du Critical band upper bound in STFT domain
e Algorithmic parameter for compressing or expanding a mask
eσL Algorithmic parameter for compression / expansion of MσL

eσt Algorithmic parameter for compression / expansion of Mσt

E Envelope in the STFT domain
E � Lowpass filtered envelope
E Expectation operator
f Frequency [Hz]
fs Sampling frequency [Hz]
g Cepstral DFT coefficient
gloE Cepstral DFT coefficient low-frequent speech envelope
ghiE Cepstral DFT coefficient high-frequent speech envelope
gp Cepstral DFT coefficient F0 frequency
gp−low Cepstral DFT coefficient lower F0 frequency bound
gp−high Cepstral DFT coefficient upper F0 frequency bound
h Transfer-function
hpost Transfer-function post-filter
i One-third octave filter band index
I Identity matrix
j Imaginary unit
k Wave number [m−1]
l Distance between microphones [m]
L Search space
∆L Interaural phase differences of the fine-structure waveform
∆L̊ ILD of envelope
∆L̃ Magnified ILD parameter (envelope)
m Modulation frequency index
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mxo Lower cutoff frequency for application of ITD (envelope)
mcb Critical modulation band
ml Critical modulation band lower bound
mu Critical modulation band upper bound
m� Maximum interaural parameter range of the mean
Mı Amount of short-time frames (CSII)
Msoft Soft-mask
MIBM Ideal binary mask
M Mask
Mc Mask subsequent cepstral smoothing
Mcc Mask of algorithm CC
Mclp Mask of algorithm CLP
M ff

elt
Weighting function algorithm ELT in the modulation domain

M ft

elt
Weighting function algorithm ELT in the STFT domain

MσL Mask based on σL

Mσt Mask based on σt

M∆L Mask of algorithm ELT based on ILD (envelope)
M∆t Mask of algorithm ELT based on ITD (envelope)
n Short-time frame index STFT domain
nL Bin size of a two-dimensional matrix for smoothing ILD
nϕ Bin size of a two-dimensional matrix for smoothing IPD
nt Bin size of a two-dimensional matrix for smoothing ITD
nσt Bin size of a two-dimensional matrix for estimating σt

nσL Bin size of a two-dimensional matrix for estimating σL

N Amount of transducers
Nχ̊ Length of analysis window function of analysis in STFT domain
Ndd Length of DFT for transformation to modulation domain
Nd Length DFT
Nι Length of a speech token
Nχ Length of the analysis window function (prior zero padding)
N1/3 Amount of one-third octave band filters
Nθ Number of azimuthal angles
Nlp Order FIR filter (correction factor algorithm ELT)
N�

d Amount of DFT coefficients of a certain critical band
o Modulation frame index
p A posteriori probability
ps Likelihood of the psychometric function for understanding SUS
q Tab index FIR filter (correction factor algorithm ELT)
rRT Reverberation radius [m]
r2 Squared correlation measure
RT Reverberation time [s]
s Target speech signal
ŝ Probability density function
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∆t̊ ITD of envelope
∆T Frame shift analysis window
∆T̊ Modulation analysis window frame shift
u Index of azimuthal positions
v Noise signal
V Room volume [m3]
w Single-channel filter
wpost Single-channel post-filter
w Filter coefficients
x Single channel input signal (STFT domain)
x̃ Single channel input signal (time domain)
x̊ Centre frequency and modulation spectrum
y Speech enhanced signal
z Difference measure between clean and degraded envelope

Abbreviations

ASA Auditory Scene Analysis
aSNR apparent Signal to Noise Ratio
BILD Binaural Intelligibility Level Difference
BSS Blind Source Separation
BTE Behind The Ear
CASA Computational Auditory Scene Analysis
CC Carrier Coherence algorithm
CLP Carrier Level Phase algorithm
CSII Coherence based Speech Intelligibility Index
D50 Definition
DFT Discrete Fourier Transform
DI Directivity Index
EC Equalization Cancellation
ELT Envelope Level Time algorithm
ERB Equivalent Rectangular Bandwidth
F0 Pitch frequency of speech
FR Front Random index
GA Genetic Algorithm
GSC Generalized Sidelobe Canceler
HG Hearing Glasses
HL Hearing loss
HRTF Head Related Transfer-Function
I3 Three-level weighted Intelligibility measure
IBM Ideal Binary Mask
IDFT Inverse Discrete Fourier Transform
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ILD Interaural Level Differences
IPD Interaural Phase Differences
ITD Interaural Time Differences
ITE In The Ear
JND Just Noticeable Differences
LSO Lateral Superior Olive
MAP Maximum A Posteriori
MPSD Modulation Power Spectral Density
MF Madhu Flatness measure
MISM Mirror Image Source Model
MMSE Minimum Mean Square Error
MSC Magnitude Squared Coherence
MSO Medial Superior Olive
MVDR Minimum Variance Distortionless Response
PDFa Probability Density Function of all sources
PDFt Probability Density Function of the target source
PESQ Perceptual Evaluation of Speech Qualitiy
Q3 Three-level weighted Quality measure
RE Renyi Entropy
RMS Root Mean Square
RT Reverberation Time
SBE Shannon Band Energy
SE Shannon Entropy
SI Speech Intelligibility
SII Speech Intelligibility Index
SNR Signal to Noise Ratio
SNRl Local Signal to Noise Ratio (per time-frequency bin)
SNRseg Segmental Signal to Noise Ratio
SSN Speech Shaped Noise
SRT Speech Reception Threshold
SPL Sound Pressure Level
STI Speech Transmission Index
STIbin binaural Speech Transmission Index
STImon monaural Speech Transmission Index
STFT Short-Time Fourier Transform
STMI Spectro-Temporal Modulation Index
STOI Short Time Objective Intelligibility measure
STRF Spectro-Temporal Response Fields
SUS Semantically Unpredictable Sentence
TMTF Temporal Modulation Transfer-Function
VAD Voice Activity Detection
WNG White Noise Gain



Abstract

In Europe about one fifth of the population has difficulties with understanding speech
in noisy and complex environments. Improving speech intelligibility in these con-
ditions allows for the reintegration of the hearing impaired into a communication-
oriented society and restores individual well-being to a high degree.
Commercially available hearing aid solutions are generally based on the amplifica-
tion principle and successfully enhance speech understanding for severe grades of a
hearing loss in silence. However, current hearing aid solutions do not restore speech
intelligibility in noisy surroundings to an extent that is required by the majority of
the hearing impaired.
Successful solutions that reconstruct the intelligibility of noise-corrupted speech are
based on the principle of spatial sampling. By such means, a target speaker can be
enhanced, whereas interference can be suppressed.

In this thesis, a set of standard binaural speech processors, that are based upon
models of the auditory scene analysis, are revised, optimized and compared. The
binaural speech processors are, furthermore, applied at the output of hearing aids
with and without beamforming. As a result, two efficient spatial sampling schemes
are combined to gain a high improvement of speech intelligibility in noisy environ-
ments.

The conjunction of statistical principles with perceptually motivated algorithms is
one of the core focusses of this thesis. A broad statistical study on binaural pa-
rameters in different acoustic real-world scenes is given. Binaural parameters of the
fine-structure of the waveform are compared to the binaural parameters of the en-
velope of the waveform. In addition, natural binaural parameters are compared to
binaural parameters at the output of different hearing aids and directivity modes.
As a result, the study provides a comprehensive insight into the behavior of binaural
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parameters in noise, thereby sizing the possibilities of a binaural parameter-based
noise suppression.
While earlier approaches of binaural speech processors generally employed primitive
grouping schemes in the noise suppression task, a set of binaural speech processors
presented here is equipped with a pattern-based a posteriori classification approach.
By this approach, the auditory scene analysis is not only carried out in terms of dif-
ferent bottom-up approaches, but also with regard to a simplified top-down pattern-
driven method. It is well-known that both processes—in its full extent—form a
complement which underlies the unsurpassed capabilities of the auditory scene anal-
ysis.

Furthermore, a stochastic optimization of binaural speech processors at the output
of different front-ends as well as in different acoustic environments is performed. To
that end, a genetic algorithm is applied, which maximizes an objective function of
binaural speech intelligibility. Subsequently, the robustness of the optimized binau-
ral speech processors is assessed while changing acoustic scenes.
As will be shown, the holistic approach of a model-based improvement and a model-
based assessment of speech intelligibility offers an efficient and task-oriented means
for the improvement of speech intelligibility. However, an unsolved problem amounts
to the development of an objective function of binaurally and nonlinearly processed
speech. To date, there exists no comprehensive model of speech intelligibility.
In this thesis, a broad study on binaurally and nonlinearly processed speech is aimed
at making an advance towards such a model. Derived from a series of listening tests,
different models of speech intelligibility are presented, developed and compared.
In addition, the efficient cepstral smoothing technique is supplemented to the speech
enhancement methods in this work. Cepstral smoothing allows for a suppression of
musical noise, which is an unavoidable consequence of varying filter gain-functions.
The method will be optimized for speech intelligibility and assessed as a second
post-processor of the combined processing scheme.

Considering the results of this thesis, an important consequence for the application
of binaural speech processors constitutes the fact that these are predominantly capa-
ble to suppress lateral coherent sound sources. As it has been shown in the present
study, if binaural speech processors are applied at the output of beamformers, which
are generally optimized to suppress diffuse interference, a complementary process-
ing scheme can be designed. An estimate, which has been given in this study, of
the benefit of binaural speech processors in terms of speech intelligibility shows an
absolute improvement of more than 40 % in coherent interference conditions and an
absolute improvement of up to 20 % in diffuse noise conditions.
Furthermore, the study has shown that binaural speech processors, which use the
binaural differences of the fine-structure of the waveform as a classifier in the course
of source separation, outperform existing binaural modulation-based and binaural
coherence-based processors. No disadvantage to the performance of binaural speech
processors has been found when binaural beamforming front-ends are applied. More-
over, the pattern-based noise suppression approach and the genetic speech intelli-
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gibility optimization procedure have demonstrated to produce robust and efficient
binaural speech processors, which—similarly to the model hearing process—show
a high degree of plasticity with respect to a particular front-end and a particular
sound scene.

With regards to the formulation of a comprehensive speech intelligibility measure,
a binaural and speech-based Speech Transmission Index has been developed. Al-
though the measure widely corresponds to subjective scores of binaurally presented
speech by modeling the binaural interaction process as well as the head shadow
effect, the measure has been shown to fail in the assessment of nonlinear binaural
speech processors. In a follow-up study, a compromise for both of these objectives,
i.e. binaural processing and handling of nonlinearity, has been incorporated in one
measure, that was subsequently applied in the optimization tasks throughout this
work.

The present study has been incorporated into a research project on continuity pre-
serving signal processing (CPSP), that was supported by the Dutch Technology
Foundation (STW). The project has its origins in the collaboration of two schools,
the language, sound and cognition group at the KU Groningen and the sound con-
trol group at the TU Delft. The entire project comprises—besides the study at
hand—the fields of keyword spotting in automatic speech recognition, the objective
assessment of room acoustics and machine monitoring.

This thesis concludes a successful period of auditory research at the Section of Acous-
tical Imaging and Sound Control at TU Delft. Whereas former projects studied the
audiological benefit of array technology and resulted in a market-launch of a beam-
forming solution, well-known as the hearing glasses of Varibel Innovations BV, the
present study has broadened the scope to perceptually motivated principles. Due
to the heterogeneity of the research field, we have opted to deliver a basic study on
binaural speech intelligibility enhancement and assessment as opposed to a develop-
ment of solitary solutions that lack generalizability. This way, we hope the present
study lays the foundations for further advancements.
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Samenvatting

Eén vijfde van de bevolking van Europa heeft moeite met het verstaan van spraak
in lawaaiige en drukke omgevingen. Het verbeteren van de spraakverstaanbaarheid
onder deze omstandigheden geeft slechthorenden de kans te re-integreren in een
samenleving waar verbale communicatie zo belangrijk is, en herstelt het individueel
welzijn in sterke mate.
De werking van commercieel verkrijgbare hoortoestellen is over het algemeen ge-
baseerd op het versterkingsprincipe en is daarmee succesvol in het verbeteren van
de spraakverstaanbaarheid in rustige omgevingen. De huidige hoortoestellen zijn
echter voor de meeste slechthorenden niet afdoende om de spraakverstaanbaarheid
in lawaaiige omgevingen te verbeteren.
Effectieve oplossingen die de verstaanbaarheid van door omgevingsgeluid vervormde
spraak verbeteren, werken met het principe van ruimtelijke bemonstering. Op deze
manier kan de spraak van een bepaalde spreker worden versterkt en tegelijkertijd
omgevingslawaai worden teruggedrongen.

In dit proefschrift wordt een aantal standaard binaurale spraakprocessoren die be-
rusten op modellen voor auditieve omgevingsanalyse, bekend als ‘computational au-
ditory scene analysis’ (CASA), gereviseerd, geoptimaliseerd en vergeleken. De bin-
aurale processoren worden aansluitend toegepast op de uitgang van hoortoestellen
met en zonder richtingswerkende bundelvorming. Uiteindelijk worden twee efficiënte
ruimtelijke bemonsteringsmethoden gecombineerd om een grote winst in spraakver-
staanbaarheid in ruis (omgevingslawaai) te behalen.

De combinatie van statistische principes met perceptieve algoritmes is een van de
kernpunten van deze dissertatie. De binaurale parameters van verscheidene auditieve
scenario’s uit het dagelijkse leven worden uitgebreid statistisch onderzocht. Binau-
rale parameters van de fijnstructuur van het geluidsignaal worden vergeleken met de
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binaurale parameters van de omhullende. Ook worden natuurlijke binaurale parame-
ters vergeleken met die van de uitgangssignalen van hoortoestellen met verschillende
richtinggevoeligheid. Het resultaat is dat de studie een uitgebreid inzicht geeft in de
eigenschappen van binaurale parameters in ruis en daarmee een inschatting mogelijk
maakt in hoeverre onderdrukking van omgevingsgeluid met deze methode mogelijk
is.

Terwijl eerdere benaderingen van binaurale spraakprocessoren over het algemeen
primitieve groeperingsmethoden gebruikten voor ruisreductie, wordt hier een aan-
tal binaurale spraakprocessoren gepresenteerd die gebruik maken van a posteriori
classificatie. Op deze wijze wordt CASA niet alleen vanuit verschillende bottom-up
benaderingen, maar ook vanuit een vereenvoudigde top-down benadering verkregen.
Het is algemeen bekend dat beide processen elkaar aanvullen, wat daarmee grote
mogelijkheden biedt voor de toepassing van CASA.

Aansluitend wordt een stochastische optimalisatie uitgevoerd van binaurale spraak-
processoren op de uitgangssignalen van verschillende hoortoestellen die dienst doen
als front-ends. Om dit te doen is er een genetisch algoritme toegepast, dat de
binaurale spraakverstaanbaarheid maximaliseert. Vervolgens wordt de robuustheid
van de geoptimaliseerde binaurale spraakprocessoren geëvalueerd onder verschillende
akoestische omstandigheden.
Zoals zal worden aangetoond, is de holistische aanpak van verbetering en beoordel-
ing van modelgebaseerde spraakverstaanbaarheid een efficiënte en taakgebaseerde
methode. Toch blijft het objectief beoordelen van de binaurale en niet-lineair be-
werkte spraak een onopgelost probleem. Tot de dag van vandaag bestaat er geen
alomvattend beoordelingsmodel voor spraakverstaanbaarheid. In dit proefschrift
wordt een stap gezet naar zo’n model door een brede studie naar binaurale en niet-
lineair bewerkte spraak uit te voeren. Vanuit een aantal luisterexperimenten wor-
den verscheidene modellen voor spraakverstaanbaarheid gepresenteerd, ontwikkeld
en vergeleken.
Ook wordt de efficiënte cepstrale middelingsmethode toegevoegd aan de spraakver-
betermethoden in dit werk. Cepstrale middeling biedt mogelijkheden voor het
onderdrukken van tonale ruis; een niet te vermijden gevolg van de tijd- en fre-
quentieafhankelijke signaalversterking. De methode wordt geoptimaliseerd voor
spraakverstaanbaarheid en beoordeeld als een tweede postprocessor van het gecom-
bineerde verwerkingsschema.

De resultaten van dit proefschrift maken duidelijk dat het toepassen van binaurale
spraakverwerking voornamelijk geschikt is om laterale coherente geluidsbronnen te
onderdrukken. Zoals is aangetoond in deze studie, kan daarmee een effectief verw-
erkingsschema worden ontworpen voor binaurale spraakprocessoren die aanvullend
worden toegepast op het signaal van bundelvormende front-ends, aangezien bun-
delvormers over het algemeen geoptimaliseerd zijn in het onderdrukken van diffuse
interferentie. Een schatting die in deze studie wordt gegeven voor de mate waarin
binaurale spraakbewerking de spraakverstaanbaarheid ten goede komt, toont een
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absolute verbetering aan van ruim 40 % bij coherente ruis, en een absolute verbe-
tering tot 20 % onder diffuse ruiscondities.
De studie heeft ook aangetoond dat binaurale spraakprocessoren die de binaurale
verschillen in de fijnstructuur van de golfvorm gebruiken bij het uit elkaar halen van
de bronnen, beter presteren dan bestaande binaurale processoren die gebaseerd zijn
op de omhullende van het signaal en op coherentie. Er is geen verslechtering van de
spraakverstaanbaarheid geconstateerd wanneer binaurale spraakprocessoren worden
gecombineerd met richtinggevoelige front-ends. Bovendien hebben de op patronen
gebaseerde bronscheidingsaanpak en de genetische procedure voor het verbeteren
van spraakverstaanbaarheid bewezen robuuste en efficiënte binaurale spraakproces-
soren op te leveren, die—net als bij het modelgebaseerd hoorproces—een hoge mate
van flexibiliteit demonstreren bij verscheidene front-ends en geluidsscenarios.

Om een complete oplossing voor spraakverstaanbaarheid te formuleren, zijn een bin-
aurale en een spraakgebaseerde Speech Transmission Index ontwikkeld. Hoewel de
oplossing in de meeste gevallen overeenkomt met subjectieve resultaten van bin-
auraal gepresenteerde spraak door het binaurale interactieproces en de akoestische
schaduwwerking van het hoofd te modelleren, is aangetoond dat de oplossing teko-
rtschiet in het beoordelen van niet-lineaire binaurale spraakprocessoren. In een ver-
volgonderzoek is een compromis voor beide doelen—het binauraal verwerken en het
omgaan met niet-lineariteit—samengevoegd in één maat, die vervolgens is toegepast
in de optimalisatietaken in dit werk.

De huidige studie is ingepast in een onderzoeksproject over ‘continuity preserving
signal processing’ (CPSP), dat werd ondersteund door de Technologiestichting STW.
Het project heeft zijn oorsprong in de samenwerking tussen twee scholen, de lan-
guage, sound and cognition-groep aan de KU Groningen en de sound control-groep
aan de TU Delft. Waar vorige projecten de audiologische voordelen van array tech-
nologie bestudeerden en resulteerden in het op de markt brengen van een richt-
inggevoelige hooroplossing, welbekend als de hoorbril van Varibel Innovations BV,
heeft de voorliggende studie het werkgebied verbreed naar principes die zijn geënt
op perceptie. Door de breedte van het onderzoeksveld hebben we gekozen voor een
fundamentele studie naar het verbeteren en het beoordelen van binaurale spraakver-
staanbaarheid in plaats van het ontwikkelen van specialistische oplossingen die niet
breed toepasbaar zijn. Op deze manier hopen we dat de voorliggende studie de basis
legt voor toekomstige ontwikkelingen.
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