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A B S T R A C T   

This paper introduces a thermo-hydro-mechanical finite element model for energy piles subjected to cyclic 
thermal loading. We address four particular features pertaining to the physics of energy piles: three-di-
mensionality, embedded heat exchangers, soil constitutive modeling and pile–soil interface. The model is de-
signed to capture the strong coupling between all important physical and thermomechanical processes occurring 
in a concrete pile embedding U-tubes heat exchangers and surrounded by a saturated soil mass. It encompasses 
solid and fluid compressibility, fluid and heat flow, thermoplastic deformation of soil, buoyancy, phase change, 
volume change, pore expansion, melting point depression, cryogenic suction and permeability reduction due to 
ice formation. The model is distinct from existing energy pile models in at least two features: (1) it can simulate 
the detailed convection-conduction heat flow in the heat exchanger and the associated unsymmetrical thermal 
interactions with concrete and soil mass; and (2) it can simulate cyclic freezing and thawing in the system and 
the associated changes in physical and mechanical properties of the soil mass that likely lead to thermoplasticity 
and deterioration of pile shaft resistance. The performance of the model is demonstrated through a numerical 
experiment addressing all its features.   

1. Introduction 

An energy pile (also known as thermal pile) is a dual-purpose 
structural element, functioning as a structural foundation and a ground 
source heat exchanger. This technology is appealing because it makes 
use of shallow depths to extract renewable energy suitable for heating 
and cooling of buildings. It reduces the use of fossil fuels and mitigates 
CO2 emissions, and, compared to the conventional borehole heat ex-
changer, reduces installation costs and saves space. Nonetheless, con-
struction companies are reluctant to apply this technology in daily 
practice because engineers are yet striving for more insight into the 
consequences of adding heat exchangers inside the pile on its structural 
functionality and the integrity of the pile–soil interface. Furthermore, 
so far, there is no compelling understanding of the long term behavior 
of energy piles when subjected to extreme operational scenarios leading 
to cyclic freezing and thawing. Current design methods do not account 
for the detailed thermal interaction between the heat exchangers and 
concrete, neither for the cyclic thermal loading and its effect on the 
thermo–hydro–mechanical behavior of soil and pile–soil interface. 

Despite the increasing use of this technology, there are relatively 
few numerical models designed to study the thermo–hydro–mechanical 

(THM) behavior of energy piles and their surrounding soil mass. Several 
notable THM studies have been introduced, including those by Yavari 
et al. [35], Di Donna and Laloui [12], Gawecka et al. [16] and An-
ongphouth et al. [3]. They model energy piles with different levels of 
physical complexity, material constitutive relationships and pile–soil 
interaction. 

A common feature of these studies is that they simulate the heat 
exchanger as a line heat source with a constant heat flux or a prescribed 
temperature. Normally, the heat exchanger is a U-tube, ~25 mm in 
diameter, made of high-grade polyethylene, fixed on the reinforcement 
cage inside the concrete pile. The heating (cooling) system works by 
circulating a fluid through the U-tube that collects (rejects) heat arising 
from a series of thermal interactions between the fluid, pipe wall, 
concrete and surrounding soil mass. These distinct geometrical and 
physical features are ignored in the line heat source approach, eliciting 
three main shortcomings: (1) it ignores the conductive-convective heat 
flow in the U-tube that varies following the daily and seasonal thermal 
load demands; (2) it ignores the three-dimensionality of the problem 
which results from the U-tubes configuration and their associated un-
symmetrical heat flow and thermal stresses; and (3) it does not allow 
assessing the energy efficiency of the energy pile, which constitutes the 
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main goal of using this technology. 
The effect of temperature on the soil material parameters and its 

structural behavior constitutes the main disparity of energy piles from 
the conventional concrete piles, and hence given a special treatment in 
these studies. Yavari et al. [35], Gawecka et al. [16], and Anongphouth 
et al. [3] adopt constitutive relationships similar to those used in con-
ventional soil mechanics; i.e. without specifically taking the tempera-
ture effects on the soil material parameters into account. However, the 
thermo-hydro-mechanical behavior of the soil mass is considered via 
the balance equations. Laloui and his co-workers [18,24,14,25], on the 
other hand, do consider the temperature effect on the soil material 
parameters. They introduced a phenomenological constitutive mod-
eling approach based on continuum thermoplasticity. We briefly discuss 
this approach in Section 2. 

The pile–soil interaction is another important aspect in energy pile 
design, currently treated with different levels of complexity. Gawecka 
et al. [16] and Yavari et al. [35] do not model the interface between the 
pile and soil. The pile finite elements share the same nodes with the soil 
elements, inhibiting thus any relative displacement between them. 
Anongphouth et al. [3], on the other hand, model the interface between 
the pile and soil, but adopt a constitutive model for the interface ele-
ment similar to the surrounding soil mass, i.e. the soil in the interface 
has the same strength as the soil mass, but can exhibit relative dis-
placement. Suryatriyastuti et al. [32] employ frictional interface ele-
ments based on the Mohr-Coulomb failure criterion. Sutman et al. [33] 
use thin-layer elements with elastic properties to model the pile–soil 
interface. Di Donna and Laloui [12] use a thin-layer element based on 
their ACMEG-T model (Advanced Constitutive Model for Environ-
mental Geomechanics), but the same constitutive parameters as those 
used for the surrounding soil. Rotta Loria et al. [29], Rotta Loria et al.  
[30], and Di Donna et al. [13] have employed more advanced thin-layer 
elements based on the thermo-elastoplastic Mohr-Coulomb failure cri-
terion with reduced mechanical properties compared to the sur-
rounding soil. 

In this paper, we address these three aspects of energy piles: heat 
exchangers, soil constitutive behavior and pile–soil interaction, to-
gether with the three-dimensionality of the problem. We introduce a 3D 
finite element model describing the THM behavior of an energy pile 
system subjected to cyclic thermal loads. Details of the modeling ap-
proach are given hereafter. 

2. Modeling approach 

In a previous work, the authors introduced a detailed thermo-hydro- 
mechanical computational model for freezing and thawing in porous 
media [5]. It is formulated based on the averaging theory and dis-
cretized using axial-symmetric finite elements. The model is capable of 
capturing the strong coupling between all important phenomena and 
processes occurring in the porous domain, including solid and fluid 
compressibility, fluid and heat flow, buoyancy, phase change, volume 
change, pore expansion, melting point depression, cryogenic suction 
and permeability reduction due to ice formation. Here, this model is 
customized to be used for energy piles, and tailored to consider four 
particular features: three-dimensionality, embedded heat exchangers, 
soil constitutive modeling, and pile–soil interface. 

The energy pile is by definition three-dimensional (3D), pertaining 
to the configuration of the U-tube heat exchanger inside it (Fig. 1a). The 
temperature in pipe-in at cross sections along the pile is different than 
that in pipe-out (Fig. 1b). As the pile diameter is relatively large com-
pared to the U-tube, the temperature gradient between pipe-in and 
pipe-out gives rise to radially unsymmetrical thermal stresses and 
strains in the pile and the surrounding soil mass. Furthermore, piles are 
usually installed in groups with arbitrary configurations, and thus, 
detailed modeling of pile groups must be three-dimensional. In this 
work, 3D brick and wedge finite elements are utilized for this purpose. 

Heat flow in the heat exchanger is conductive–convective arising 

from the thermal interaction between the circulating fluid in the U- 
tubes and the surrounding concrete and soil mass. The U-tube heat 
exchanger is relatively small in diameter ( 25 mm) which entails that 
the heat flow inside it is nearly one-dimensional (1D). This allows 
modeling heat flow in the U-tube by a line element with its thermal 
interaction with the pile expressed explicitly in the governing heat 
equation [1]. Here, the embedded finite element method is utilized to 
discretize the heat exchanger. Elements of this kind, can go through the 
host 3D elements, avoiding the need for fine meshes and keeping the 
mesh structured. 

The soil is by definition a multiphase material constituting, basi-
cally, a solid matrix phase and a water phase. Within the temperature 
range of this application, the solid matrix, except for thermal expansion 
and contraction and its Young’s modulus, is not significantly affected by 
the temperature variation. Rather, it is the water phase that is being 
affected: the temperature alters its mass density, heat capacity, thermal 
conductivity and viscosity. Additionally, the water might change phase, 
leading to changing soil strength, permeability and volume. Based on 
this, we adopt a multiphase mixture approach to formulate the con-
stitutive relationships for the soil material. This approach is different 
than the phenomenological approach of Laloui and his co-workers  
[18,24,14,25], who consider the soil as a homogeneous porous matrix. 
The behavior of the soil in their approach is described by a thermo- 
elastoplastic model with a yield function expressed in the stress-tem-
perature space, as shown schematically in Fig. 2a. This kind of models is 
basically appropriate for the soils under investigation, and any other 
type of soils must be examined experimentally to establish its para-
meters dependency on temperature. In our multiphase mixture ap-
proach, however, the soil is described by its constituents: a solid matrix 
and a water phase (Fig. 2b). Following this, the conventional con-
stitutive relationships for soil can be utilized to model the solid matrix, 
and the equations of state (EOS) can be utilized to describe the water 
phase. We model the solid matrix using the modified Cam-Clay yield 
function, and the water using equations of state describing its pressure- 
temperature-volume relationships and the dependency of its physical 
parameters on temperature. The thermal dependency of soil is thus 
included fundamentally via the water EOS, together with the thermal 
expansion coefficient and temperature dependent Young’s modulus of 
the solid matrix. 

Understanding the behavior of the pile–soil interface is essential to 
prevent the deterioration of the pile shaft resistance and bearing ca-
pacity under the effect of cyclic thermal loads. We adopt the Desai thin- 
layer approach [11], but extending it to a multiphase mixture ex-
hibiting sliding, debonding and volume change pertained to the in-
duced thermo-hydro-mechanical forces. The interface material beha-
vior is expressed using the Drucker-Prager yield function and the water 
EOS. 

Fig. 1. Energy pile geometry and temperature: (a) typical energy pile cross 
section; (b) typical temperature profile in U-tubes. 
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3. Governing equations 

The physical domain consists of a concrete energy pile embedded in 
a soil mass and subjected to mechanical and cyclic thermal loads. The 
pile embeds U-tube heat exchangers exhibiting conduction-convection 
heat transfer due to the thermal interaction between the circulating 
fluid in the U-tube and the surrounding concrete. The concrete pile 
exhibits thermo-mechanical behavior due to the applied mechanical 
loads, the thermal interaction with the heat exchangers and the thermo- 
mechanical interaction with the surrounding soil mass. The soil mass 
exhibits thermo-hydro-mechanical behavior arising from the thermo- 
mechanical interaction with the concrete pile and the fluid flow due to 
consolidation, buoyancy and cryogenic suction in the soil body. The 
field equations governing these processes in the soil mass, concrete, 
pile–soil interface and heat exchanger are given hereafter. 

3.1. Soil mass 

The soil mass is considered saturated, isotropic and non-isothermal 
with local thermal equilibrium. It constitutes a multiphase mixture 
composing a solid matrix and water, which can change phase between 
liquid water and ice. The soil exhibits solid and fluid compressibility, 
heat and fluid flow, thermo-elastoplasticity, buoyancy, volume change, 
pore expansion, permeability change, cryogenic suction and melting 
point depression. The three phases (solid matrix, liquid water and ice) 
interact physically with each other and exchange mass, momentum and 
energy. The governing balance equations describing the conserved 
quantities in a multiphase porous medium domain are given in detail in 
Arzanfudi and Al-Khoury [5]. Here, we state the balance equations 
together with the constitutive relationships relevant to the energy pile 
system. They are expressed in terms of the primary state variables: solid 
matrix displacement u, water mixture pressure pm, water mixture spe-
cific enthalpy hm, solid matrix temperature Ts, and cryogenic suction sc. 

3.1.1. Conservation of momentum 
The averaged macroscopic linear momentum balance equation of a 

multiphase mixture constituting a solid matrix, a liquid water phase 
and an ice phase, and subjected to thermo-hydro-mechanical forces can 
be expressed in an incremental form as 

+ =m gp·[d d ] d 0s eff (1) 

where = + m p' s is the effective stress, with being the total stress; 
is Biot’s coefficient; =m [1, 1, 1, 0, 0, 0]T ; g is the gravitational 

vector;ps is the pressure exerted by the water phase on the solid matrix, 
defined as 

= +p S p S ps lw lw ice ice (2) 

where plw and pice are the liquid water and ice pressures, and Slw and Sice
are their degrees of saturation; and eff is the effective mass density, 
defined as 

= + +S S(1 )eff s ice ice lw lw (3) 

in which is the porosity, s, lw and ice are the mass density of solid 
matrix, liquid water and ice, respectively. 

The dependent variables in Eq. (1) are functions of the primary state 
variables, such that =p p p h s( , , )s s m m c , and = p h( , )eff eff m m , with the 
subscript m denoting the water mixture (liquid water and ice). Using 
the chain rule, the derivatives of these dependent variables can be ex-
pressed as 

= + +
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(4)  

Substituting Eq. (4) into Eq. (1) gives 

+ + + +

=

m

g

p
h

h
p
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p
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h
p

p· d d d d d d

0

s

m
m

s
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s

c
c
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m
m
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m
m

(5)  

Eq. (5) is the equilibrium equation of the volume-averaged, com-
pressible multiphase mixture of solid matrix, liquid water and ice.   

Constitutive relationships 
The effective stress increment in Eq. (5) is described as 

= D L u m Td d 1
3

dep
s s (6) 

in which s is the volumetric thermal expansion coefficient of the solid 
matrix, L is the differential operator, and Dep is the tangential elasto-
plastic stiffness matrix of the solid matrix, described, as 

=
+

D D
D D

D

Q F

F Q F Q
ep e

e
T

e

p

T T
e

(7) 

where F is a yield function, Q is a potential plastic function, p is the 
plastic strain tensor, and De is the tangential elastic stiffness matrix, 
expressed, for a three-dimensional solid matrix, as 

Fig. 2. Phenomenological versus multiphase mixture constitutive modeling approaches.  
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=
+
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(1 )(1 2 )
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2
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0
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e
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in which is Poisson’s ratio, and E T( ) is a temperature-dependent 
elastic modulus, defined here as 

=E T E e( ) b T T
0

( )s 0 (9) 

where E0 is the Young’s modulus at a reference temperature, T0, and b is 
a material parameter. 

For the relatively small thermo-hydro-mechanical strain level gen-
erated by the cyclic thermal loading, it is reasonable to assume that the 
soil behavior is governed by an isotropic hardening/softening rule with 
an associated flow rule, giving =Q F in Eq. (7). The modified Cam-Clay 
yield function is utilized for this purpose. In the p q stress space, it is 
expressed as 

= + =F q
M

p p p( ) 0
2

cs
2 c (10) 

in which p is the mean normal stress, q is the deviatoric stress, Mcs is the 
slope of the critical limit state line, pc is the instantaneous consolidation 
pressure, defined as [26] 

=p p e nc c0
1 ( )v

p
v
p
0 (11) 

where pc0 is the pre-consolidation pressure, n is a material constant 
related to the hardening and softening of the material, v

p
0 is the initial 

volumetric plastic strain, and = mv
p T p is the volumetric plastic strain. 

The yield surface is smooth with an initial size governed by the mag-
nitude of the pre-consolidation pressure (pc0). The yield surface expands 
in size due to strain hardening arising from compaction, and shrinks in 
size due to strain softening resulting from volume increase. More details 
can be found in Chen and Baladi [9] and Lewis and Schrefler [26]. 

The consistency condition of the yield surface, Eq. (10), is 

+ =F d F d 0
T
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T
p

(12) 

where 
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and 

=d d Fp
(14) 

which is the plastic strain increment defining an associated flow rule, 
with 

=d F d
F F
( )

( ) ( )
T

p T (15)  

The other constitutive relationships in Eq. (5) ( p hs m, p ps m, 

p ss c, heff m, peff m) can be found in Appendix C.   

Momentum field equation 
Substituting the constitutive equations into the momentum balance 

equation, Eq. (5), gives the momentum field equation of the solid ma-
trix. 

3.1.2. Conservation of mass 
The averaged macroscopic mass balance equation for the multi-

phase soil mixture is formulated by summing the mass conservation 
equations of the individual phases. Solid matrix 

The mass balance equation for a homogeneous solid matrix phase 
can be described as 

+ =m L u
t t t

(1 ) (1 ) 0
s

s T
(16)  

Following Lewis and Schrefler [26], the solid matrix mass density 
can be described as 

= m L u
t K

p
t

T
t t

1 1
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s

s

s

s
s

s T

(17) 

in which Ks is the bulk modulus of the solid grains. 
Using Eq. (4) for =p p p h s( , , )s s m m c , and substituting into Eqs. (16) 

and (17), gives 

= + +
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This equation reveals that the porosity is not constant and can be 
altered by the thermo-hydro-mechanical forces in the soil.   

Liquid water phase 
The mass balance equation for the liquid water phase can be ex-

pressed as 

+ + + + =v m L u
t t S

S
t S t

m
S

1 ·( )
lw

lw

lw

lw

lw lw
lw lw

T lw ice

lw lw

(19) 

in which vlw is the extrinsic averaged velocity of liquid water, and 
mlw ice is the mass exchange rate arising from the phase change be-
tween the liquid water and ice. 

Inserting Eq. (18) into Eq. (19) and expressing the liquid water 
density and saturation in terms of the state variables: 

p h S p h( , ), ( , )lw m m lw m m , yields 

+ +
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+
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lw lw lw ice (20) 

Ice phase 
Similar to the liquid water phase in Eq. (20), the mass balance 

equation of the ice phase can readily be derived to give 
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in which vice is the extrinsic averaged velocity of ice, considered to be 
zero in this application ( =v 0ice ).   

Water mixture (liquid water and ice) 
Considering the following identities: 

+ =
= +

S S
S S

1lw ice

m lw lw ice ice (22) 

and by summing Eqs. (20) and (21), assuming that the liquid water flow 
rate is governed by Darcy’s law, and defining the water mixture pres-
sure as = +p p sm lw c, gives [5]: 
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where µlw is the dynamic viscosity of liquid water, k is the absolute 
permeability, and krlw is the relative permeability. Eq. (23) is the con-
tinuity equation of the volume-averaged, compressible multiphase 
mixture of solid matrix, liquid water and ice with phase change.  

Constitutive relationships:   

Water equation of state (EOS) 
The thermodynamic state variables and properties of the liquid 

water, ice and the water mixture, m, Tm, ice, lw, Sice, Slw, µlw are ob-
tained from the equation of state of water, adopted from IAPWS [21] 
and other relevant literature, given in Appendix A.   

Melting point depression 
Kurylyk and Watanabe [23] presented an interesting review de-

scribing different forms of the Clapeyron equations and empirical re-
lationships for soil freezing curves (SFC). Here, we adopt an exponential 
function of the form: 

= +S S S e(1 )lw
a T T( )m f (24) 

in which S is the residual unfrozen water content at a relatively cold 
condition, Tf is the bulk freezing temperature, and a is a material 
constant.   

Cryogenic suction 
The cryogenic suction, sc, exhibits a substantial change for each 

degree Celsius below zero. As a consequence, the cryogenic suction is 
considered here a primary state variable, to have it directly computed 
from solving the finite element equations, rather than being calculated 
in the post processing (see Arzanfudi and Al-Khoury [5] for more de-
tails). The computed quantity has to satisfy the Clausius-Clapeyron 
relation [26]: 

=s L T
T

lnc ice f
m

f (25) 

where Lf is the latent heat of fusion of water. To satisfy this condition, 
the following constraint is imposed: 

=L T
T

sln | 0ice f
m

f
c

Clausius - Clapeyron
computed

(26) 

Relative permeability 
Even though the domain is fully saturated, the water exhibits a 

phase change during freezing and thawing, giving rise to a quasi-par-
tially saturated condition within the water phase. As for the partially 
saturated conditions, the relative permeability of liquid water is de-
scribed based on the Brooks and Corey relationship [8]: 

= +k Srlw lw
(2 3 ) (27) 

where is a material constant.   

Mass field equation 
Substituting the constitutive relationships from Eqs. (24)–(27) and 

Appendices A and C into the macroscopic mass balance equation, Eq.  
(23), gives the mass field equation. 

3.1.3. Conservation of energy 
The averaged macroscopic energy balance equation for a multi-

phase mixture in local equilibrium is formulated by summing the heat 
equations of the solid matrix and the water mixture.  

Solid matrix 

+ + =v
t

c T p c T T[ (1 ) (1 ) ] ·( ) ·(1 ) · 0s s sm s s s s sm s sm

(28) 

in which Tsm is the solid matrix temperature and s is its thermal con-
ductivity.   

Water mixture 

+ + =v
t

h p h T[ ] ·( ) · · 0m m m m m m m m (29)  

Summing Eq. (28) to Eq. (29) and considering a thermal local 
equilibrium, = =T T Tm sm s, yields 

+

+ + + =v v
t

c T h p p

c T h T

[ (1 ) (1 ) ]

·( ) · · 0
s s s m m s m

s s s s m m m eff s (30) 

where 

= +(1 )eff s m (31) 

is the effective thermal conductivity of the porous domain, with s
denoting the thermal conductivity of the solid matrix, and 

= +S Sm lw lw ice ice, with lw and ice denoting the thermal con-
ductivity of liquid water and ice, respectively. 

Considering =v m L u
t

· s
T , utilizing Eqs. (17) and (18), expressing 

Eq. (30) in terms of the primary state variables, and expanding the 
derivatives, leads to 

+

+ + + +

+ + +

+ +

+ +

+ + + =

m L u

k k k g

c h p p T
t

h
h

h p p
K

p
h

h
t

h p p
K

p
p

h
p

p
t

K h p p
t

h p p
K

p
s

s
t

h k
µ

p h k
µ

s T h k
µ

[(1 ) ( )( )]

( )

( )

[(1 ) ( ) ( )( )]

( )

· 0

s s s m m m s
s

m m
m

m
m m m s

s

s

m

m

m m m s
s

s

m
m

m

m

m

T m m m s
T

m m m s
s

s

c

c

lw lw
rlw

lw
m lw lw

rlw

lw
c eff s lw lw

rlw

lw
lw

(32) 
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where KT is the bulk modulus of the solid skeleton.   

Energy field equation: 
Substituting the involved constitutive equations of water from 

Appendix A into Eq. (32) gives the energy field equation. 

3.2. Concrete 

In this study, the concrete of the pile is considered non-porous, 
linear elastic material. Though, it is worth mentioning that concrete is a 
porous material and might exhibit damage due to freezing [22,17], but 
the focus in this paper is on the effect of freezing on the soil mass and 
the pile-soil interaction. 

The relevant conservation laws are the momentum and energy 
equations.   

Momentum field equation 
The momentum field equation for concrete can be expressed as 

+ =D Lu m gT· 1
3

0c c c c (33) 

where Tc is the concrete temperature, c is the volumetric thermal ex-
pansion coefficient, c is the mass density, and Dc is the linear elastic 
stiffness matrix, similar to that for soil, Eq. (8), but its elastic modulus 
Ec is constant (not function of temperature).   

Energy field equation 
The energy field equation for concrete can be expressed as 

+ =c T
t

T·( · ) 0c c
c

c c (34) 

where cc denotes the specific heat capacity of concrete, and c is its 
thermal conductivity. 

3.3. Heat exchanger 

The heat exchanger is considered a 1D, non-deforming conductive- 
convective heat source. It is governed only by the energy equation.   

Energy field equation 
The energy field equation of the heat exchanger is expressed as 

+ =c T
t

T
s

c v T
s

b T T( )r r
r

r
r

r r r
r

cr r c
2

2 (35) 

where Tr , r , cr , r , and vr denote the temperature, mass density, specific 
heat capacity, thermal conductivity, and velocity of the circulating 
fluid, respectively, and bcr is the thermal interaction coefficient between 
the circulating fluid and concrete, described in Appendix B. It is worth 
noting that the inclusion of the thermal interaction term in the differ-
ential equation allows embedding the heat exchanger element in the 3D 
concrete element. 

3.4. Pile–soil interface 

Accurate estimate of the load–deformation behavior of the pile–soil 
interface is essential for determining the integrity of the interaction 
between the pile and the soil. Most current numerical models for pi-
le–soil interaction use interface elements based on the joint element, 
first introduced by Goodman et al. [36]. This element is of zero thick-
ness, and formulated based on the relative displacements of solid ele-
ments surrounding the interface, Fig. 3. It is expressed in terms of stress- 
displacement relationship, as 

= C u{d } [ ]{d } (36) 

in which d is the incremental stress, C is the stiffness matrix and ud
is the increment of the relative displacements between the two sides of 
the interface. 

This kind of elements can describe slip/no-slip conditions at the 
boundary between solid elements. They are basically suitable for piles 
with mainly axial loading and exhibiting nearly no volume deformation 
at the interface with the soil mass. However, for energy piles, the in-
duced thermo-mechanical forces give rise to thermal expansion and 
contraction in and around the pile, leading to changes in volume. 
Furthermore, cyclic thermal loading can lead to slip, debonding and 
rebonding at the pile–soil interface. The volume change becomes more 
significant with thermal loads leading to cycles of freezing and thawing. 
Hence, for energy piles, it is more appropriate to utilize a solid element 
which exhibits volume change. This kind of elements was first proposed 
by Zienkiewicz et al. [37] who utilized an isoparametric finite element 
to model the interface of jointed rock systems. Based on this, Desai et al.  
[11] introduced a thin-layer element for modeling interfaces with dif-
ferent deformation modes, including slip, no-slip, debonding and re-
bonding. This element describes the soil at the interface as a homo-
geneous solid matrix. Here, we extend this element to a multiphase 
porous mixture. 

The thin-layer element is basically formulated similar to the solid 
elements, and its constitutive relationship is expressed in the usual 
stress-strain space, as 

= C{d } [ ]{d } (37)  

Similar to the soil momentum balance equations, Eqs. (5) and (6), 
the momentum balance equation for the thin-layer interface can be 
expressed as 

+ +

+ + =

C L u m m

g

T
p

h
h

p
p

p
p
s

s

h
h

p
p

· d 1
3

d d d d

d d 0

ep
i i

s

m
m

s

m
m

s

c
c

eff
i

m
m

eff
i

m
m

(38) 

in which Cep is the elastoplastic stiffness matrix of the interface mate-
rial, i is the volumetric thermal expansion coefficient, Ti is the interface 
temperature, and eff

i is the effective mass density, defined as 

= + +S S(1 )eff
i

i si i ice ice i lw lw (39) 

where i is the porosity of the interface, and si is the mass density of the 
interface solid matrix. The porosity change of the soil at the interface is 
governed by Eq. (18). 

The stiffness matrix, Cep, is described in Eq. (7) with an associated 
yield and potential functions, Fi, governed by the Drucker-Prager elas-
toplastic criterion: 

= =F q p ctan 0i (40) 

where is the friction angle and c is the cohesion, described as [26] 

=c c e n0
1 ( )i v

p
v
p
0 (41) 

in which c0 is the initial cohesion and ni is an empirical constant for 

Fig. 3. Joint interface element.  
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hardening or softening. The consistency condition of the Drucker- 
Prager yield surface is as given in Eq. (12), with its derivatives: 

= +

=

F
q

F c
n

tan
3

1
1
1
0
0
0

1
2

2
2
2

6
6
6

1
1
1
0
0
0

x y z

y z x

z x y

xy

yz

zx

p i

(42)   

3.5. Initial and boundary conditions 

At =t 0, the primary state variables are described by their initial 
values, as 

=x xg g( , 0) ( )0 (43) 

where g x( , 0) can be any of the primary state variables u, pm, hm, hs, Ts, 
Tc, Tr , or sc, and g x( )0 is their initial values. 

The Dirichlet boundary conditions are expressed as 

=x xg t g t( , ) ^ ( , ) on u (44) 

where g denotes the prescribed values of the state variables at their 
relevant boundary locations, u. 

The Neumann boundary conditions are expressed as:  

Soil mass: 

=
=

=

t n
v nq

Q b T T

^ ·
^ ·
^ ( ^ )

onlw lw lw

sa s

q

soil - air air (45) 

where q is the Neumann boundary; t̂ is a prescribed traction; qlw is a 
prescribed mass flow rate of liquid water; and Qsoil air is the convective 
heat transfer between the ground surface and air, with Tair the air 
temperature, and bsa the associated thermal interaction coefficient, 
given in Appendix B.   

Pile: 

=
=

t n
nQ T

^ ·
^ ·

on
c c

q
cond (46) 

Pile–heat exchanger: 

= =Q Q b T T( )cr rc
cr c r (47) 

where bcr is the thermal interaction coefficient between the heat ex-
changer and the pile concrete, given in Appendix B. This equation in-
dicates that this heat flux is equal in magnitude and opposite in di-
rection to Qrc (right-hand side of Eq. (35)).   

Pile–soil: 

= =Q Q b T T( )cs sc
sc c s (48) 

in which Qcs is the heat transfer between the soil and concrete pile, with 
bsc the associated thermal interaction coefficient, given in Appendix B. 

4. Finite element discretization 

The governing equations are linearized using the modified Newton- 
Raphson method and discretized using the Galerkin finite element 
method. The linearization and discretization procedures are given in detail 
in Arzanfudi and Al-Khoury [5]. Here, we present the finite element 
equation, tailored to the energy pile system, and we discuss in detail the 
discretization of the embedded 1D element for the heat exchanger. 

The global finite element equation for the energy pile can, symbo-
lically, be described as 

where the subscripts/superscripts s c i, , denote the soil matrix, concrete 
and interface, respectively, and the subscripts m r, represent the pore 
water mixture and circulating water, respectively. The vector on the 
right-hand side represents the THM force vector, including heat fluxes 

+ + + + + + +
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=
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+
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T
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(49) 
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due to the thermal interactions at the interface boundaries between the 
heat exchanger, pile and soil mass. The matrix entries of Eq. (49) re-
present 3D and 1D element matrices, expressed hereafter. 

4.1. 3D element 

The matrix and vector entries for 3D soil, concrete and interface 
elements, including C K,ij

s
ij
s, fi

s, C K,ij
c

ij
c, fi

c, fi
cs, fi

sc, Cij
i and Kij

i , are given 
in Appendix D. 

4.2. Embedded 1D element 

The heat exchanger is discretized using a linear embedded 1D ele-
ment. This element can go through the host 3D elements without af-
fecting the underlying structure of the mesh, Fig. 4. The essence of this 
kind of elements is that the host and embedded elements are discretized 
in the usual manner, except for their interaction terms; f cr and f rc (Eq.  
(49)). This enables a simpler discretization of the problem. 

The finite element terms of the host concrete element, Kij
c, Cij

c, and 
fi

c, are given in Eq. (D.2). The finite element terms for the embedded 
heat exchanger element, K r

77, C r
77 in Eq. (49), can readily be derived by 

applying the Galerkin method to the left-hand side of Eq. (35), leading 
to 

= +
=

K B B N B
C N N

c v dV
c dV

( )r
V e

T
r e e

T
r r r e

r
V e

T
r r e

77

77 (50) 

where the subscript e stands for the embedded element, =B Ne e, and 
V is the volume of the heat exchanger. 

Applying the weighted residual method to the thermal interaction 
forces, f cr and f rc, Eq. (47), yields 

=
=

f
f

w Q dS
w Q dS

cr
S

cr

rc
S e

cr
(51) 

in which S is the surface area of the heat exchanger, = N xw ( ) and 
= N xw ( )e e are the finite element weighting functions for the host ele-

ment and embedded element, respectively, and Qcr is the coupling term 
between the two elements, Eq. (47), expressed as 

x N x QQ s t s t( , , ) ( , ) ( )cr
eh

cr (52) 

in which 

=
=

N x N x N x
Q T T

s
t b t t¯ ¯ ¯
( , ) [ ( ) ( )]
( ) [ ( ) ( )]

eh e
cr

cr c r
T (53) 

where Neh is embedded–host coupled shape function. For a two-node 1D 
element embedded in an 8-node 3D element, Fig. 4, using the Gauss 
quadrature, Eq. (51) can be expressed as 
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2 (54) 

where n is the number of Gaussian integration points in the 1D element 
( =n 3 in Fig. 4), wk is the Gaussian quadrature weight, and 

=xN j( ); 1, , 8j and =xN j( ); 1, 2ej are the weighting and shape 
functions of the host and embedded elements at sampling point , re-
spectively. 

5. Model verification against London energy pile experiment 

There are relatively few well-documented full-scale energy pile 
experiments in the literature. Here, the results of the well-known 
London energy pile experiment presented by Bourne-Webb et al. [7], 
and Amatya et al. [2] are utilized to verify the proposed model. 

5.1. Physical domain 

The London energy pile experiment is conducted using a single 
energy pile, 23 m in length, in which a double U-tube heat exchanger is 
embedded. The lower 18 m of the pile is 0.55 m in diameter, and the 

Fig. 4. Embedded 1D element in a host 3D element.  

Fig. 5. London energy pile geometry.  
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upper 5 m is cased in two diameters: 0.61 m for 4.1 m and 0.9 m for 
0.9 m, Fig. 5. The configuration of the U-tubes inside the pile is shown 
in Fig. 1a. The energy pile is embedded in a soil mass consisting of three 
layers: 1.5 m of made ground, 2.5 m of sandy gravel, and the rest is 
London clay. The physical and thermal parameters of the system are 
given in Table 1. 

5.2. Initial and boundary conditions 

Initially, the temperature in the domain, as reported in Bourne-Webb 
et al. [7], is 19.5 °C. 

Mechanical boundary condition: The pile is subjected to two me-
chanical vertical loading/unloading forces: 1200 kN and 1800 kN. 

Thermal boundary conditions: The system is subjected to 31 days of 
cooling, followed by 12 days of heating. Fig. 6 shows the input tem-
perature which ranges between −6°C and 40 °C, applied at the inlet of 
the U-tube. According to the literature of this experiment, a power 
failure occurred after 36 days and lasted for 4 days. 

5.3. Computational domain 

The physical processes in the system are three-dimensional, but the 
geometry is planar symmetric with respect to the plane that passes 

through the middle of the pile, Fig. 7. Accordingly, only half of the 
geometry is considered. The computational domain is 100 m in dia-
meter and 70 m in depth, divided into three soil layers resembling made 
ground, sandy gravel and London clay (Table 1). An energy concrete 
pile, embedded in which double U-tubes, is located at the axis of 
symmetry. 

The mesh consists of 1548, 3D linear hexahedron and wedge-shaped 
elements for the pile and the soil mass; 84, 3D hexahedron elements for 
the pile–soil interface; and 26, embedded 1D linear finite elements for 
the heat exchanger. The thickness of interface is 0.02 m. A view of the 
finite element mesh at the proximity of the pile is given in Fig. 7. 

The prescribed initial and boundary conditions are:  

Initial conditions: 
= = =T T T 19.5s c r0 0 0 °C 
=p 700 kPac0

= =p p gzlw hydrostatic lw0 0

= +gz pz s lw0
'

0
where z is the depth. 

Boundary conditions: 
Thermal boundary conditions: 

=T 19.5air °C 
=T 19.5s bottom °C 

Table 1 
Material properties.            

Soil Layer 1 Soil Layer 2 Soil Layer 3 Concrete Interface Circulating fluid Pipe material Air  

Depth (m): 0 1.5 1.5 4 >4 – – – – – 
Mechanical:         
ρ (kg m−3) 1940 2040 2040 2550 1940 1052 – 1.2466 
E (MPa) 36 140 70 40,000 70 – – – 

( ) 0.3 0.3 0.3 0.15 0.3 – – – 
K (MPa)s 500 500 500 – – – – – 
b (K )1 0.1 0.1 0.1 – – – – – 
M ( )cs 1.33 1.42 0.98 – – – – – 
p (kPa)pc0 700 700 700 – – – – – 

Φ (°) – – – – 10 – – – 
c (kPa) – – – – 15 – – – 
n ( ) 0.006 0.006 0.006 – −9 – – – 
Thermal:         
c (J kg K )p 1 1 1200 1200 1500 800 1200 3795 – 1006 

(W m K )1 1 2 2 1.5 1.8 2 0.48 0.42 0.02572 

(10 K )6 1 15 15 15 25.5 15 – – – 
Hydraulic:         
µ s(10 kg m )6 1 1 – – – – – 5200 – 17.6488 

v (m s )1 – – – – – 0.2 – 0.16667 
Porous:         

( ) 0.3 0.3 0.3 – 0.3 – – – 
mDk ( ) 1160 1160 0.0116 – 1160 – – – 

( ) 7.5 7.5 7.5 – – – – – 
S ( ) 0 0 0 – – – – – 
a (K )1 0.03 0.03 0.03 – – – – – 

Fig. 6. Boundary conditions: (a) Heat exchanger input temperature, (b) Pile head mechanical load.  
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=Tr inlet varying, see Fig. 6a 
where the ground surface heat flow is prescribed based on Eq. (45) with  

=b W0.6 m Ksa 2 1. 
Hydraulic boundary conditions: 

Top/side boundaries: drained 
Bottom boundary: undrained 

Mechanical boundary conditions: 

=F pilehead varying, see Fig. 6b 
Top boundary: no constraints (free to move) 
Bottom boundary: fully constrained 
Side boundaries: horizontally constrained  

5.4. Experiment-computation comparison 

The computed and measured temperatures are compared at a point 
in the pile 9 m below the surface and 0.2 m from the axis of symmetry; 
and two points in the soil mass 9 m in depth, and 0.5 m and 2 m ra-
dially. The angular coordinates of the sensors are not indicated in the 
literatures, and hence, the computational results are presented at five 
angular positions, = ° ° ° ° °0 , 45 , 90 , 135 , and180 , Fig. 8a. 

Fig. 8b shows the measured and computed temperatures in the pile, 
and Fig. 8c and Fig. 8d show those in the soil mass. In general, the 
figures display a good match between the two results. Though, due to 
power failure at time, =t 36 40days, there is some mismatch between 
the computed and measured data in the pile. The power failure has 
been modeled as switching off of the heat pump (see Fig. 6), but the 
exact consequences of this failure on the measurement devices are not 
clear. Therefore, the comparison is not reliable in this period. 

Fig. 9 shows the computed thermo-mechanical pile head displace-
ment as compared to the measured data. The figure shows a good match 
between the two results, especially before the power failure. 

Fig. 10 shows the computed mechanical and thermo-mechanical 
axial strain along the pile, together with the measured data. Fig. 10a 
shows that there is a good agreement in the axial strain due to me-
chanical loading. Fig. 10b displays the thermal strain at the end of 
cooling ( =t 35 days). This figure shows a reasonable matching be-
tween the computed and measured results, though, there is some de-
viation between the two results, which might be attributed to the mo-
bilization of the pile–soil interface due to the thermal contraction of the 

Fig. 7. Finite element mesh in the proximity of the pile (scale 10:1 in radial 
direction): (a) pile, thin-layer interface (green) and surrounding soil, and (b) 
embedded heat exchanger elements (red). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this 
article.) 

Fig. 8. Computed and experimental evolution of temperatures, 9 m below the surface: (a) angular indicator of inspected points; (b) energy pile; (c) soil, 0.5 m away 
from pile; (d) soil, 2 m away from pile. 
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concrete and soil. The behavior of the pile–soil interface of the London 
energy pile is not reported in the literature. 

Fig. 10c shows the strain at the end of heating ( =t 47 days). Even 
though the computed results are not matching the measured data, they 
exhibit a similar trend. The mismatch can be attributed to the power 
failure and the uncertainty at the pile–soil interface. Other literatures 
reveal a similar mismatch, see [35,16,3]. 

It is worth mentioning that the observed reversibility in the axial 
strain in Fig. 10 occurs due to a combination between the reversibility 
of the elastic strain and the change of stress direction between the 
heating mode and the cooling mode. However, its magnitude is influ-
enced by the configuration of the heat pipes inside the pile and their 
temperature gradient along the pile; the pile-soil interaction; and the 
type of the surrounding soil mass and its mechanical, thermal and hy-
draulic properties. Therefore, detailed description of the physics is of 
paramount importance to describe the behaviour of energy pile sys-
tems. Mimouni and Laloui [27] and Rotta Loria and Laloui [31], among 
others, highlighted the issue of reversibility of the axial and radial 
strains in energy piles. 

6. Numerical energy pile experiment 

The verification example given in the previous section indicates that 
the proposed multiphase thermo-hydro-mechanical modeling approach 
can provide reasonably accurate computational results describing the 

behavior of typical energy pile set-ups. However, this is not exceptional 
as many other computational approaches, including Yavari et al. [35], 
Di Donna and Laloui [12], Gawecka et al. [16], and Anongphouth et al.  
[3], are capable of simulating full-scale experiments to a practically 
accepted level of accuracy. This is feasible since the boundary condi-
tions adopted in most full-scale experiments are restrained to a limited 
range. The heating system in these experiments is usually operated with 
relatively low heat extraction rates to make sure that the soil does not 
freeze. This makes the simulation of the thermo-hydro-mechanical 
processes feasible via standard constitutive models and numerical dis-
cretization procedures. However, in practice, such a constraint can lead 
to limiting the energy efficiency of the system in at least two important 
engineering scenarios:  

1. Limiting the operation of the system to relatively low circulating 
flow rates would lead to low heat harvest, and  

2. Limiting the system operation to above freezing level would lead to 
shorter operation time, and hence less efficiency. 

The proposed model, on the other hand, is designed to simulate 
conditions that go beyond the current operation constraints to allow for 
higher energy extractions and longer periods of operation. To examine 
these capabilities, we extended the London energy pile experiment 
numerically to attain cycles of freezing and thawing conditions in the 
system. 

6.1. Initial and boundary conditions 

The initial and boundary conditions are the same as those for the 
verification example in Section 5, except the following:   

Initial condition: 
The temperature in the system is assumed 10 °C. This relatively low 

temperature was chosen to accelerate the freezing condition in the 
system.   

Mechanical boundary condition: 
A mechanical load of 1200 kN is applied at the pile head prior to the 

thermal loading.   

Thermal boundary conditions: 
The upper boundary of the soil mass is subjected to a constant air 

temperature of 10 °C, and the bottom boundary is prescribed at 10 °C. 

Fig. 9. Computed and experimental evolution of pile head vertical displace-
ment. 

Fig. 10. Computed and experimental vertical strain along pile axis: (a) mechanical, (b) end of cooling, (c) end of heating.  
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The heat exchanger is subjected to a cyclic thermal load, ranging 
between 0 and 7 kW. Eight cycles of switching on and off for 2 h are 
applied at the inlet of the heat exchanger for 16 h, followed by 8 h 
switching off, Fig. 11a. The cycles are repeated for 30 days, after which 
the heat pump is switched off for 5 months, as shown in Fig. 11b. Ac-
cording to current specifications this thermal load is not realistic, but 
adopted to study the feasibility of using the proposed model for high 
energy extraction rates and cyclic freezing and thawing conditions. 

The cyclic heat pump power is converted to a prescribed inlet 
temperature, Tin, utilizing the heat pump–heat exchanger set-up sche-
matically given in Fig. 12. Depending on the HVAC design, the heat 
pump extracts a required amount of heat from the fluid coming out of 
the heat exchanger outlet, and returns it to its inlet. The amount of 
power extracted from the heat pump can be calculated by 

=P mc T T( )r out
p

in
p (55) 

in which m is the mass flow rate of the circulating fluid, cr is the specific 
heat capacity of the circulating fluid, T p

in is the fluid temperature en-
tering the heat pump and T p

out is the fluid temperature leaving the heat 
pump. Ignoring the heat loss in the pipes, which carry the circulating 
fluid, T p

in is equal to Tout (temperature leaving the heat exchanger); and 
T p

out is equal to Tin (temperature entering the heat exchanger). Having 
this heat exchange set-up between the heat pump and the heat ex-
changer, Tin can be calculated from Eq. (55). 

6.2. Physical and computational domains 

The geometry and material parameters of the physical domain, to-
gether with the types of the finite elements and the finite element mesh 
size are identical to those of the verification example in Section 5. 

6.3. Results and discussion 

The behavior of the system is presented in terms of deformation at 
the head and toe of the pile, temperature at the inlet and outlet of the 
heat exchanger, and temperature in the soil mass, 9 m below the sur-
face, 0.3 m in the radial direction, with angular coordinates: 

= ° ° ° ° °0 , 45 , 90 , 135 , and 180 . To highlight the cyclic loading, the 
diagrams are presented in a semi-log format. 

Fig. 13a shows the temperature variation with time in the soil. It 
shows that freezing starts after 14 days of operation and the tempera-
ture reaches −33 °C after 30 days. A closer look at the figure reveals 
that in the period between day 28 and day 30 the temperature exhibits 

a sudden drop. This occurs due to the accumulation of ice in the soil.  
Fig. 13b shows the ice volume fraction during this period. It reveals that 
in day 14, with the onset of freezing, the ice volume fraction in the 
pores was 1%. According to Eqs. (A.5) and (A.8) in Appendix A, the 
thermal conductivity for this water mixture is 0.56 W/m⋅K. However, in 
day 30, the ice content became 9% and the thermal conductivity of the 
pore water rose to 0.70 W/m⋅K. This increase in the thermal con-
ductivity allows more heat to transfer between the soil and the pile 
leading to this drop in temperature. 

Fig. 13c shows the temperature profiles at the inlet and outlet of the 
heat exchanger. It reveals that with this relatively large heat pump 
power, the temperature in the circulating fluid dropped to below 0 °C 
from the first day, and in 30 days the temperature dropped to nearly 
−20 °C. The figure also reveals that the sudden drop in temperature in 
the soil in the period between day 28 and 30 has been reflected on the 
circulating fluid. 

Fig. 13d shows the pile head and toe displacements. The displace-
ment at the head generated by the mechanical load is 2.2 mm and at 
the toe is 0.9 mm. Upon the start of the cyclic thermal loading, the 
displacement in the pile exhibits ups and downs due to the thermal 
expansion and contraction of concrete and its interaction with the 

Fig. 11. Applied thermal load: (a) during a day, and (b) during 6 months.  

Fig. 12. Heat pump – heat exchanger set-up.  
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surrounding soil mass. This can be clearly seen in the sketch given in  
Fig. 14. This figure shows the pile at its initial condition, upon the 
application of the mechanical load and during the thermal load cycles. 
The ups and downs of the pile are scaled to the amount of displacement 
at the head and toe of the pile, and the arrows indicate the movement 
direction. The following can be observed:   

=t 0day: upon mechanical loading, both head and toe moved in the 
direction of the applied force.   

=t 18days: four days after the onset of soil freezing on day 14, the 
pile exhibits contraction.   

=t 28days: with the increase of ice content in the soil (see Fig. 13b), 
the pile exhibits lifting up due to the soil heave at the toe.   

=t 30days: the pile temperature drops due to its thermal interaction 
with the heat exchanger and soil, causing the pile to contract again.   

=t 40days: during thawing, the pile exhibits expansion.   
=t 55days: with the increase of plastic deformation in the soil (see  

Fig. 15f), the soil exhibits settlement around the pile, causing the 
pile to lift up.   

=t 180days: at the end of thawing, the pile exhibits expansion again. 

Fig. 15 presents three-dimensional plots for the temperature dis-
tribution and fluid flow, the effective plastic strain, and the deformation 
in the proximity of the pile on day 30 (maximum freezing) and day 180 
(end of thawing). Fig. 15a shows the 3D temperature distribution in the 
pile and the soil around it, together with the fluid flow velocity vectors. 
The figure shows that the concrete and approximately 0.1 m of the 
surrounding soil have been frozen on day 30. It also shows the water 
flow towards the frozen zone due to cryogenic suction. (Note that the 
flow pattern is not symmetric because the temperature distribution in 

Fig. 13. Temperature, ice fraction and pile displacement: (a) temperature in soil, (b) ice fraction in soil, (c) temperature at inlet and outlet of heat exchanger, and (d) 
pile head and toe displacements. 
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and around the pile is not symmetric due to the unsymmetric config-
uration of the heat exchanger inside it (Fig. 1a). Fig. 15b reveals that 
upon switching off the heat pump for 5 months, the temperature in the 
system has recovered as a result of the heat flow between the soil mass 
and its boundaries. 

Fig. 15c to f show the deformed mesh and their associated effective 
plastic strains. Fig. 15e shows that the plastic strain has already began 
in the first 30 days and increased considerably after thawing, Fig. 15f. 
This can be noticed from the deformed mesh on day 180 (Fig. 15d) as 
compared to day 30 (Fig. 15c). The relatively large deformation in the 
soil can be attributed to the fact that, upon freezing, the soil stiffness 
increases due to ice formation, accompanied by expansion of pores. 
Upon thawing, the soil stiffness reduces significantly in regions where 
excessive pore expansion has occurred, causing the soil above it to 
collapse under gravity. 

Fig. 14. Schematic presentation of pile movement (scaled).  

Fig. 15. Energy pile behavior upon freezing ( =t 30 days) and thawing ( =t 180 days).  
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7. Conclusions 

Current energy pile design procedures put a limit to the amount of 
extracted energy to make sure that operating the energy pile for heating 
would not lead to soil freezing. This constraint is good for safety of 
buildings, but short on the economy. It lessens the energy efficiency of 
the system because it requires low flow rates and shorter operation 
time. One of the reasons for this constraint is attributed to lack of un-
derstanding of the coupled thermo-hydro-mechanical forces arising 
from freezing and thawing of porous media and their effects on the soil 
properties and the pile–soil interface. Freezing and thawing in a soil 
mass gives rise to solid and fluid compressibility, fluid and heat flow, 
thermo-elastoplasticity, buoyancy, phase change, volume change, pore 
expansion, melting point depression, cryogenic suction and perme-
ability reduction due to ice formation. None of the existing numerical 
tools used for energy piles design and analysis is capable of capturing 
the coupling of these processes. This paper addresses this issue and 
demonstrates that the proposed model is capable of capturing these 
processes and their coupling effects on the integrity of the energy pile 
systems. 

The paper addresses four particular features pertaining to the phy-
sics of energy piles: three-dimensionality, embedded heat exchangers, 
soil constitutive modeling and pile–soil interface. It highlights several 
aspects related to the physics of energy piles and their operation that 
need to be considered in energy pile design.  

1. A concrete pile exhibits deformation and movement under cyclic 
thermal loading with magnitudes related to its thermo-mechanical 
properties and the thermo-hydro-mechanical properties of the pi-
le–soil interface and the soil mass. Fig. 14 clearly illustrates how the 
pile can expand and contract locally or move as a rigid body during 
cyclic thermal loads, leading ultimately to deteriorating the in-
tegrity of the pile–soil interaction. This signifies the fact that the 
thermo-hydro-mechanical properties of the system can alter during 
daily and seasonal operation of the energy pile, requiring special 
attention during design.  

2. Freezing in soil leads to pore expansion which, upon thawing, might 
lead to weakening the strength of the pile–soil interface. Fig. 15d 
shows how the thawing has led to weakening part of the interface 

that caused the collapse of the soil above it. This emphasizes the 
need of taking the likely occurrence of freezing and thawing into 
consideration during the design. Even if current design procedures 
prohibit reaching to the freezing point, freezing might occur due to 
malfunctioning in the mechanical parts, misuse of the system or 
unexpected change in weather.  

3. Heat conduction-convection in the heat exchanger gives rise to axial 
and unsymmetrical radial thermal strain gradients in the pile and 
the surrounding soil mass. The numerical experiment has shown 
that such gradients can lead to localized damage that can affect the 
pile–soil shaft integrity. This effect cannot be captured by the line 
heat source model, requiring thus revaluating the validity of this 
model in designing energy piles. 
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Appendix A:. Water equations of state 

The water equations of state (EOS) is established by adopting subcooled liquid water EOS from IAPWS [21], and ice–supercooled water mixture 
EOS from other relevant literature, given hereafter. 

Liquid water: 
Specific enthalpy [34,21]: 

=
+

×
+ <

h p T
R T T

p
T T

h T dT T T
( , )

| 1
18.01528 10

0.044
222

1 74.3
lw m m

m m
m

m f

lw T T
T m

m f

H2O
2

3
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f f
m

(A.1) 

in which RH2O is the specific gas constant for water, = ×p p 16.53 10m m
6, =T T1386.0m m and 

=
=

p T n p T( , ) (7.1 ) ( 1.222)m m
i

i m
I

m
J

1

34
i i

(A.2) 

where ni, Ii and Ji are material constants. 
Density [20,21]: 

=

+ <

p T

p

R T p
p

T T

T T T T

( , )

0.0228( 273.15) 0.1176( 273.15) 999.9
lw m m

m

m m
m

m f

m m m f

H2O

2
(A.3)  

Viscosity [19,10]: 
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where Y , Hi and Hij are material constants. 
Heat conductivity [6,28]: 

=
+

+ <
T

T T T T

T T T
( )

0.6065 1.48445 4.12292
298.15

1.63866
298.15
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(A.5)  

Ice: 
Specific enthalpy [15]: 

= + +

=

h T h T dT

h h L

( ) | [185.0  6.89( 273.15)]

| |
ice m ice T T

T
m

ice T lw T f

f f
m

f f (A.6)  

Density [15]: 

= ×T T( ) 917.0(1. 1.17 10 ( 273.15))ice m m
- 4 (A.7)  

Heat conductivity [15]: 

= × + ×T T T( ) 1.16(1.91 8.66 10 ( 273.15) 2.97 10 ( 273.15) )ice m m m
3 5 2 (A.8)  

Appendix B. Thermal interaction coefficients 

Heat exchanger–Pile 
The thermal interaction coefficient between the heat exchanger and the pile concrete is calculated as [4] 

=
+

b
R R

1
cr

conv cond (B.1) 

where Rconv and Rcond are the thermal resistances, expressed as 

= =R
r r h

R r r r1 , ln( )
conv

o i
cond

o o i

p (B.2) 

in which ri and ro are the inner and outer radius of the U-tube, p is the thermal conductivity of the U-tube material, and h̄ is the convective heat 
transfer coefficient, described as 

=h Nu
r2

r

i (B.3) 

where Nu is the Nusselt number, which might be defined as 

=
>

Nu Re Pr Re
Re Pr Re

0.664 2000
0.023 2000

1 2 1 3

0.8 0.4 (B.4) 

in which Pr and Re are the Prandtl and Reynolds numbers, described as 

= =Pr
µ c

Re
v r
µ

,
| |(2 )r r

r

r r i

r (B.5) 

where r , cr , µr , r and vr , denote the density, specific heat capacity, dynamic viscosity, thermal conductivity and velocity of the circulating fluid, 
respectively. 

Pile–Soil 
The thermal interaction coefficient the pile–soil interface is: 

=b
R
1

sc
sc (B.6) 

where Rsc are the thermal resistances, described as 

=R r r rln( )
sc

2 2 1

interface (B.7) 

in which r r2 1 represents the thickness of interface. 
Soil–Air 
The soil–air thermal interaction can be described as 
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=b Nu
Lsa

a
(B.8) 

in which a denotes the thermal conductivity of air, L is the length of the ground surface in the direction of air flow, and Nu is the Nusselt number, 
with relevant parameters for air. 

Appendix C. Derivatives of constitutive terms 

A sample derivation, namely for p hs m, is given here. Other derivatives can be obtained in a similar way. 
Eq. (24) indicates that Slw and Sice are functions of the mixture temperature, i.e. 

=
S S T
S S S T

( )
1 ( )

lw lw m

ice lw ice m (C.1)  

By definition, the liquid and ice pressures are function of mixture pressure and cryogenic suction, as: 

=
= +

p p s p p s
p p s p p s

( , )
( , )

lw m c lw m c

ice lw c ice m c (C.2)  

Similarly, Appendix A indicates that the specific enthalpy and mass density are functions of mixture pressure and temperature, as 

h h p T
h h T

p T
T

( , )
( )
( , )
( )
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ice ice m

lw lw m m

ice ice m (C.3)  

Eq. (C.3) indicates that the mixture temperature is a function of mixture pressure and specific enthalpy, as 

T T p h( , )m m m m (C.4)  

Following these identities, the derivative on of Eq. (2) with respect to hm can be described in terms of the constitutive relationships, as 
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Appendix D. FE matrices and vectors for 3D elements 
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