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"Never be so kind, you forget to be clever.
Never be so clever, you forget to be kind." [1]

For my grandmothers:
Johanna Braakman-Holsappel

Ans van Riggelen-Clemens





1
INTRODUCTION

"The single story creates stereotypes, and the problem with stereotypes is not that they are
untrue, but that they are incomplete. They make one story become the only story." [2]
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2 1. INTRODUCTION

1.1. ONE HUNDRED YEARS OF QUANTUM MECHANICS
A hundred years ago, in 1924, the term ‘quantum mechanics’ was introduced by physi-
cists at the university of Göttingen [3]. Quantum mechanics, the theory that helps us to
understand the physics of the microscopic world, has become one of the most exten-
sively tested physical theories. At the same time, this theory confronts physicist with the
most fundamental questions about nature and reality. Remarkably, although scientist
still do not have conclusive answers to all of those elemental questions, the technologi-
cal applications of quantum mechanics have changed the world.

Figure 1.1: Dr. Lucy Mensing (1901-
1995), later Lucy Schütz, was a German
physicist. She received her doctorate in
theoretical physics in 1925 under Wil-
helm Lenz. Thereafter, she worked in Göt-
tingen together with Pascual Jordan on
applying matrix mechanics to diatomic
molecules [4]. Later in her career she col-
laborated with Wolfgang Pauli, calculat-
ing the electrical polarizability of gases
from diatomic molecules [5]. Alfred Landé
offered her a position in Tübingen, where
she worked on the scattering of slow elec-
trons on atoms [6]. Her scientific career
ended in 1930. For more information see
Ref. [7], source image Ref [8].

Among the initial papers using the term quan-
tum mechanics were two publications [9, 10] that
introduced matrix mechanics[11] as a mathemati-
cal framework to formalize the ideas about quan-
tum physics that were developed in the years before.
One of the first demonstrations of the predictive
power of quantum mechanics, applied to the prop-
erties of a real physical system, was performed by
Lucy Mensing. She used the abstract mathematical
framework of matrix mechanics to calculate the ro-
tational vibration spectrum of diatomic molecules,
such as O2, N2 and CO. The results of her calcu-
lations matched the experimental band spectrum
(measured at the beginning of the twentieth cen-
tury) exactly and were published in the Zeitschrift
für Physik in 1926 [4]. As an additional result of these
calculations, she was the first person to find the per-
missible values of the quantum number l for orbital
angular momentum [7, 12].

Where the calculations of Mensing explained ex-
perimental results that could not be understood
with classical physics, applying quantum mechanics
to physical systems also resulted in predictions that
could not be tested experimentally until years later.
An example is the work by Maria Göppert in 1931.
In her doctoral thesis, at the university of Göttingen,
she proposed the possibility of, and developed the
theory on, two-photon absorption in atoms [13]. In
this process, two photons are absorbed (with either
different or the same frequency) to excite a molecule
from the ground state to a higher energy level. The experimental verification of the re-
sults in her thesis [14] was only possible with the invention of the laser thirty years later.

When the principles of quantum mechanics were established, they were used to
provide new explanations and new predictions of physical phenomena. Not long after,
quantum mechanics was applied to reevaluate existing theories, already (partly) based
on quantum mechanics, leading to their refinement or replacement based on new ex-
perimental findings and evolving understanding. For instance, in 1930 the liquid-drop
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model [15] was proposed. This theory treats the nucleus of an atom as a drop of high
density, incompressible fluid, where the protons and neutrons are bound by the nu-
clear force. A quantitative representation of the liquid-drop model is given by the semi-
empirical mass formula [16]. As the name suggests, it combines theory and empirical
measurements and could give a good approximation of the atomic mass of a nucleus.

Figure 1.2: Dr. Maria Göppert (1906-
1972), later Maria Goeppert-Mayer, was
a German-American physicist. She wrote
her doctoral thesis on the theory of two-
photon transitions [13], under supervi-
sion of Max Born. In 1930 she moved
to the USA, where she worked on topics
ranging from physical chemistry [17] to
nuclear physics [18–22]. During the Sec-
ond World War, she contributed to the
Manhattan Project. In 1963 she received
the Nobel prize, shared with Hans Jensen,
"for their discoveries concerning nuclear
shell structure" [23]. She was appointed
full professor in 1960 at the University of
California, where she continued to teach
and do research after receiving the Nobel
prize. For more information see Ref. [24,
25], source image Ref. [26].

This model was used to provide an explanation
for the effect of nuclear fission, as proposed by Lise
Meitner, together with a colleague, in 1939 [27]. She
calculated that the nuclear charge of a uranium nu-
cleus was large enough to compensate almost en-
tirely for its ‘surface tension’, so that the uranium
nucleus would resemble an unstable drop of liq-
uid. Furthermore, she realized that the sum of the
masses of the two nuclei formed by the nuclear fis-
sion process would be smaller than the mass of the
original uranium nucleus. Using the semi-empirical
mass formula and E = mc2, Meitner demonstrated
that this difference in mass could provide the energy
required for the two resulting nuclei to gain velocity
as they are pushed apart by their mutual electric re-
pulsion [28].

However, there were questions that the liquid-
drop model left unanswered. While studying the
properties of nuclear fission products, Göppert en-
countered one of those phenomena. In 1948 she
published an overview of experimental data which
showed evidence of the existence of ‘magical num-
bers’ [19], certain numbers of proton and neu-
trons in the nucleus of an atom for which the nu-
cleus is most stable. The liquid-drop model could
not give a satisfying explanation and Göppert pro-
posed an alternative theory: the nuclear shell model.
This model is similar to the atomic shell model
and proposes a structure of the atomic nucleus in
terms of energy levels, taking into account the ex-
clusion principle for particles with odd-half-integer
spin [29] and spin-orbit interaction. With the nu-
clear shell model, Göppert was able to reproduce the
magical numbers [20, 21] and it came to replace the liquid-drop model in describing nu-
clei. Among the later work of Meitner is the application of the nuclear shell model to
nuclear fission [30].

Although quantum mechanics can be used to correctly predict the characteristics of
microscopical systems, it has many aspects which are not intuitive. A typical example is
superposition: a quantum mechanical system can be in multiple states at the same time,
but the result of a measurement will be one of those states. For example, the spin of an
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electron can be in a superposition of spin-up and spin-down, but when measured, the
measurement outcome is either spin-up or spin-down. The wavefunction describing a
quantum state in a superposition can only give a statistical prediction of the measure-
ment, such as a 50% probability of observing spin-up and a 50% probability of observing
spin-down.

Figure 1.3: Dr. Lise Meitner (1878-1968)
was an Austrian-Swedish physicist. She
completed her doctoral dissertation in
1906, at the University of Vienna. After her
PhD, she went to work in Berlin, where she
started a long and successful collabora-
tion with chemist Otto Hahn. They discov-
ered the element protactinium in 1918 [31]
and studied nuclear isomerism [32]. In
1922 she discovered the Meitner-Auger ef-
fect [33, 34]. In 1938 Meitner (who was
from Jewish descend) fled from Germany
to Sweden with help from her colleague
physicists [35]. Together with Otto Frisch,
she correctly interpreted the results of an
experiment by Otto Hahn as the splitting
of a uranium nucleus [27]. She refused to
contribute to the Manhattan Project. Later
in her career, she contributed to the design
of Sweden’s first nuclear reactor. For more
information see Ref. [36, 37], source image
Ref. [38].

It becomes even more curious when applying
superposition to a two- (or multiple-) quantum
particle system with a conserved quantity. Taking
the example of electron spin once more: if two spins
are made to interact, their quantum state can no
longer be described as two separate systems. The
spin state of one electron becomes strongly cor-
related with the spin state of the other electron.
For instance, in the case of anti-parallel correlation,
if one spin is measured to be spin-down (which
cannot be known before the measurement, be-
cause the system is in superposition), the other will
instantaneously become spin-up, and vice versa.
This correlation holds, even if the distance between
the spins becomes very large. This phenomenon is
called entanglement. It was considered so extraor-
dinary, that physicists questioned whether quan-
tum mechanics actually provides a complete de-
scription of physical reality or if certain informa-
tion is missing, leading to the idea of ‘hidden vari-
ables’ [39].

At the beginning of the development of quan-
tum mechanics, many physicists were involved in
heated debates about the fundamental meaning of
quantum mechanics. Among them, bringing in a
sturdy philosophical background, was Grete Her-
mann. She wrote a manuscript in 1933 on how
to reevaluate the concept of causality given to the
recent progress in quantum mechanics [46]. She
communicated this paper to leading scientists in
the field and she was invited to stay in Leipzig
to discuss her ideas. These discussions resulted in
a paper in 1935 titled ‘Die naturphilosophischen
Grundlagen der Quantummechanik’ [40]. There are several points that make this pa-
per noteworthy [47]. Firstly, Hermann explains what problem is posed by the uncer-
tainty principle (which states that it is, for example, impossible to know the position
and momentum of a particle precisely and simultaneously). As a way of thinking about
this problem, she points to the concept that we would now call contextuality: the in-
formation that can be acquired about a physical system depends on the context of the
measurement device. More generally, she give a thorough explanation of ‘complemen-
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tarity’ [48, 49], this is the idea that combining two contrasting theories makes it possible
to explain a set of phenomena. According to her, complementarity applies to quantum
mechanics in three different but related ways: a) the description as wave and particle,
(b) the relationship between characteristic properties such as position and momentum,
and (c) the complementarity of the intuitively classical description and the quantum
mechanical formalism. Since the only way to obtain knowledge about the microscopic
world is by using classical measurement devices, there will be a ’cut’ between the two
complimentary descriptions, meaning the observer can always only learn part of the
reality of a physical system. Secondly, she gives one of the first clear descriptions in liter-
ature of entanglement between two particles. This phenomenon only got its name later
that year [50]. Thirdly, she presents a fatal flaw in a ‘proof’ [51] published in 1932 that
claimed to show that hidden variables are impossible. It was not until the 1960’s that this
became again the subject of scientific interest [52].

Figure 1.4: Dr. Grete Hermann (1901-1984),
later Grete Henry-Hermann, was a German
mathematician and philosopher. She was a
doctoral student of Emmy Noether and re-
ceived her PhD in 1926 in Göttingen. Af-
ter that, she worked for two years as an as-
sistant of the philosopher Leonard Nelson.
Her stay in Leipzig resulted in her main con-
tribution to the interpretation of quantum
mechanics [40]. Next to her work, she was a
political activist and socialist, and opposed
the Nazi party. As a result, she had to leave
Germany in 1936. After the Second World
War, the focus of her work shifted towards
ethics and political responsibility [41]. Be-
sides that, she was heavily involved in the
rebuilding of the educational system in Ger-
many. For more information see Ref. [42–
44], source image Ref. [45].

During the Second World War, the approach
to science in general and physics specifically be-
came more pragmatic. Due to the circumstances,
scientists started to collaborate in large interdis-
ciplinary projects aiming to develop certain tech-
nology, projects which were heavily government-
funded [53]. The Manhattan project is a very well
known example, but this was not the only project
in its kind. ‘Rad Lab’, short for the MIT Radiation
Laboratory, played a key role in the development
of radar technology [54]. The Second World War,
reinforced by the Cold War that followed, would
have a lasting influence on the organisation and
funding of science, and on the kind of research
topics scientists would pursue [53], particularly
in the United States. For quantum physics, this
‘shut-up-and-calculate’ mentality [55] resulted in
many scientists focusing on nuclear and solid
state physics. Although this approach proved very
productive in these areas, it also resulted in the
fact that thinking about the more fundamental
and philosophical questions of quantum mechan-
ics was regarded as a luxury, or even as pseudo-
science, and became marginalized [53, 56].

It was in this historical context, that the first
experimental demonstration of entanglement was
performed by Chien-Shiung Wu [61, 64, 65]. In
1949 she, together with her graduate student, per-
formed an experiment to proof the pair theory [66,
67]. When an electron and a positron annihilate
each other, this will result in two photons which
travel in opposite direction with equal momen-
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Figure 1.5: Dr. Chien-Shiung Wu (1912-
1997), was a Chinese-American experimen-
tal physicist. In 1936 she moved from China
to the USA to pursue her PhD, which she
obtained in 1940 at the University of Cal-
ifornia at Berkeley, under supervision of
Ernest Lawrence. During her PhD, she per-
formed her first experiments on beta-decay,
on which topic she would become an ex-
pert [57, 58]. She joined the Manhattan
Project at Columbia University, where she
stayed to work on nuclear physics after the
war. She is best known for the experimental
proof of the violation of parity conservation
for weak nuclear interactions [59]. For this
work she received the Wolf Prize in Physics.
In 1975 she became president of the Amer-
ican Physical Society. She retired as a pro-
fessor in 1981. For further information, see
Ref. [60–62], source image Ref. [63].

tum. According to pair theory, the polarization of
these photons is correlated: if one of the photons
is polarized in-plane, the other photon is linearly
polarized out-of-plane, perpendicular to the first
photon [66]. They were not the first ones to try
this experiment, but they were the first to gather
sufficient data to show a quantitative match to
the theory [64]. Indeed, they found that the pairs
of photons stayed consistently orthogonally polar-
ized, even when the photons moved further away
from each other. The results were published in
1950 [68]. These results were only much later in
time explicitly described as demonstrating entan-
glement, both by others [64, 69, 70] and by Wu
herself [71]. This experiment was not designed to
proof or disprove the existence of hidden vari-
ables, but it did inspire experiments with this pur-
pose [72, 73].

The ‘shut-up-and-calculate’ attitude proved to
be fruitful. In the two decades after the Second
World War, the pragmatic approach to quantum
mechanics led to some incredible applications,
such as transistors and lasers [74, 75]. These in-
ventions combined form the cornerstone of tech-
nologies like classical computers and the internet,
which shape our every day world. It is therefore
also called the first quantum revolution [76]. It was
in the 1970’s that the interpretation of quantum
mechanics slowly gained interest again [56]. Sci-
entist started to examine, both experimentally and
theoretically, concepts like entanglement [72], re-
sulting for instance in the ‘no cloning theorem’
(which states that making a perfect copy of a pure,
arbitrary quantum state is impossible) [56, 77, 78].
Around the same time, ideas were developed on
how quantum mechanics relates to information
processing and in the 1980’s it was proposed to use
quantum mechanics for computation purposes [79–81]. The advantage that quantum
computing offers with respect to classical computing, has everything to do with the con-
cepts of superposition and entanglement which make quantum mechanics so mind bog-
gling. The proof that an arbitrary quantum system can be simulated by a digital quan-
tum computer [82], combined with the establishment of the theoretical framework for
quantum error correction [83, 84], provided the motivation for serious research effort to
develop a quantum computer in the 1990’s [85].

The first quantum revolution used the improved understanding of nature to build
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devices of which the characteristics depend on the collective behavior of ensembles of
particles. It is suggested that quantum computing could be part of a second quantum
revolution, in which the quantum mechanical properties of nature are not only under-
stood, but also manipulated and engineered at the level of individual particles [76]. Even
understanding for which problems a quantum computer could give advantages over a
classical computer is still an active field of research, but among predicted applications
are the design of new materials [86], understanding complex chemical reactions [87],
prime number factorization [88] and searching of databases [89]. Given these develop-
ments, quantum mechanics will probably change our daily life just as much in the com-
ing hundred years as it did in the hundred years past.

1.2. THESIS OUTLINE
In this thesis, research is presented that explores the characteristics and possibilities
of hole spin qubits defined in quantum dots in a germanium/silicon germanium het-
erostructure. The results of the most important experiments are concerned with dis-
tributing quantum information: either by entangling three qubits as the basis for the
phase flip code or by shuttling quantum information encoded in a spin qubit. Chapter 2
gives a brief description of the experimental and theoretical background needed to un-
derstand the experiments presented in this thesis. The focus lies on the theory that is
specific for hole spin qubits in germanium/silicon germanium, in contrast to electron
spin qubits in other semiconductor platforms. In chapter 3, the properties of a two-by-
two quantum dot device that could facilitate hole spin qubits are discussed, including
shell filling and control over the tunnel coupling between the quantum dots. Chapter
4 provides a detailed discussion of the features of a two-by-two qubit system, showing
high-fidelity single qubit gates and the implementation of two-, three-, and four-qubit
gates. This two-by-two qubit system is used to implement the Phase flip code, of which
the results are shown in chapter 5. To facilitate this, the SWAP, CS−1 and the Toffoli-like
gate are demonstrated. Chapter 6 explores the possibilities of diabatically shuttling a
hole spin qubit through multiple quantum dots. The effects of spin-orbit interaction
and the shuttling performances are described. Chapters 3 - 6 describe work which is
published, either in a scientific journal (chapters 3, 4 and 5) or on open-access repos-
itory arXiv (chapter 6). The raw data supporting the conclusions in those publications
are made available in open repositories and a link to the raw data can be found with
the publication. Finally, Chapter 7 discusses the results presented in this thesis and pro-
vides an outlook. Hopefully, this work can play a very modest role in the story about the
development of quantum computers.





2
THEORETICAL BACKGROUND AND

EXPERIMENTAL METHODS

9



2

10 2. THEORETICAL BACKGROUND AND EXPERIMENTAL METHODS

2.1. PHYSICAL REALIZATION OF SPIN QUBITS
A qubit, short for quantum bit, is defined as a quantum mechanical two level system. It
is a conceptually simple system, however a series of coupled qubits can simulate all the
peculiar properties of quantum mechanics. There are many physical systems that can be
used to encode a qubit: atoms [90, 91], ions [92, 93], photons [94–96], electrons [97, 98]
and superconducting circuits [99, 100], just to name a few. One of the most conceptually
straightforward examples is a spin-1/2 system.

All physical implementations of a qubit have their pro’s and con’s and it is not trivial
to see if they would make a good building block for a quantum computer. Or to cite David
DiVincenzo, if they are ‘components that work the way they need to, in such a way that
they could potentially be stuck together to form a system’ [101]. He came up with the
following criteria to this end [102]:

1. A scalable physical system with well characterized qubits
2. The ability to initialize the state of the qubits to a simple fiducial state
3. Long relevant decoherence times, much longer than the gate operation time
4. A ‘universal’ set of quantum gates
5. A qubit-specific measurement capability

On top of these criteria, he define two more, in case these qubits are to be used not
only for quantum computing, but also for quantum communication:

6. The ability to interconvert stationary and flying qubits
7. The ability to faithfully transmit flying qubits between specified locations

The experiments presented in this thesis are performed with spin qubits defined on
charge carriers which are isolated in quantum dots in a semiconductor material. Since
the purpose for these qubits is primarily ‘just’ quantum computing, the first five crite-
ria have priority. The idea to use the spin state of a single charge as the physical system
to encode the qubit, was proposed by Loss and DiVincenzo in 1998 [98]. Their proposal
also included capturing this single charge in a quantum dot. A quantum dot is a semi-
conductor box that traps an integer number of charge carriers. In gate-defined quantum
dots, electric fields are used to confine individual charges, mimicking a small semicon-
ductor island. A quantum dot is sometimes called an artificial atom, because the en-
ergy levels inside are discrete. Furthermore, approximating the potential landscape with
a harmonic oscillator results in a separation of energy levels similar to shell filling of
atoms. The size of quantum dots is typically tens of nanometers. Detailed reviews have
been written describing the charge dynamics of quantum dots [103–105]. Details on how
quantum dots are formed for the research in this thesis is detailed in section 2.2 and
chapter 3.

The characterization of spin qubits (going back to the first criterion) depends heav-
ily on the semiconductor material, the method of confinement and the charge carriers
that are chosen to define the spin qubit. Pioneering work on semiconductor quantum
dots was performed using electrons confined in quantum dots in a gallium arcinide
(GaAs) heterostructure. In this platform it was possible to make fast progress in build-
ing quantum dot systems due to the high quality of the material and the small effec-
tive mass of the charge carriers. Single [106, 107], double [108–110] and larger quan-
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tum dot arrays [111–113] were realized. However, group III-V semiconductors contain an
abundance of isotopes with a net nonzero nuclear spin, which cause an effective time-
dependent magnetic field. Due to interaction with the nuclear spins, the so-called hyper-
fine interaction, spin qubits in GaAs dephase very quickly. The challenges in overcoming
the hyperfine interaction, motivated the study of materials with zero-nuclear spin iso-
topes and the focus of the research shifted towards silicon platforms. In this group IV
material, only a few percent of the nuclei have net nonzero spin, moreover this material
can be isotopically purified to decrease this fraction even further. This made it possible
to increase the dephasing time to about a hundred microseconds [114] and enabled high
fidelity single [115, 116] and two-qubit gates [117–120], making headway on meeting the
DiVincenzo criteria. The state of the art at the moment of writing is a Si device with six
well controlled spin qubits [121], which moreover shows a very good attempt to meet
multiple criteria in one device.

Now a few years ago, the first papers [122–124] were published on yet another promis-
ing platform for spin qubits in quantum dots. Germanium (Ge) is also a group IV mate-
rial, and similar to silicon, it has mostly isotopes with zero nuclear spin. In contrast to
previous platforms, the charge carrier that is used to encode the qubit is not an electron,
but a hole (an unoccupied state in the valence band). Similar to GaAs, the low effective
mass of holes in Ge allows for slightly larger quantum dots, which makes it easier to fab-
ricate working devices. Holes in Ge are subject to strong spin-orbit interaction, which is
a double edged sword. It provides a way to drive the spin fast, using electric fields to do
so, without the need for additional components on the chip, such as micromagnets or
striplines. On the other hand, spin-orbit interaction can couple charge noise to the spin,
which may cause decoherence. Because (and despite) these characteristics, spin qubit in
Ge have been able to catch up with the developments of Si [125–127]. Initial attempts to
make spin qubits in germanium were performed using various ways of confining holes,
such as quantum dots in nanowires [128] and hutwires [123]. The spin qubits used for the
experiments in this thesis are defined in high-quality Ge/SiGe heterostructures, which
are discussed in more detail in sections 2.2 and 2.4. This chapter will highlight the theo-
retical background and the experimental methods used to make hole spin qubits in Ge a
solid building block for a quantum computer.

2.2. QUANTUM DOTS ON GE/SIGE HETEROSTRUCTURES
The work that is presented in this thesis is obtained using two quantum dot devices
defined on a germanium/silicon-germanium (Ge/SiGe) heterostructure. There are a lot
of similarities and some differences between those two devices. The first device, which
we will call device A from now on, was used for the experiments of which the results
are shown in chapter 3 and the second device, the device B (falsely colored SEM image
shown in Fig. 2.1), was used in all the other chapters: chapters 4, 5 and 6. In this section,
we describe the devices and the processes used to fabricate them.

Fig. 2.1a shows a schematic of the Ge/SiGe heterostructure with the gate stack on top.
The heterostructure is grown on a natural silicon wafer in a reduced-pressure chemical
vapor deposition reactor (RP-CVD), as detailed in references [124, 129]. On top of the
silicon, a 1.6 µm relaxed Ge layer is grown, followed by a ‘virtual substrate’ which is com-
prised of a layer of SixGe1-x where gradually the ratio of Si is increased to Si0.2Ge0.8. By
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Figure 2.1: Heterostructure and gate stack. a Schematic of the Ge/SiGe heterostructure, indicating the dif-
ferent material layers, with the gate stack on top. Next to the diagram the band-structure of the Ge/SiGe het-
erostructure is sketched [124], in the case where a negative voltage (relative to the drain contact) is applied to
an electrostatic gate on top of the heterostructure. Holes are accumulated in the Ge quantum well. b Falsely
colored SEM image of a device identical to device B, which is used in the experiments detailed in chapters 4, 5
and 6. The colors correspond to the colors in a, the plunger gates are yellow, the barrier gates purple and the
ohmics green. The black dotted line indicates of which part a cross section is shown in a. The white scale bar
corresponds to 100 nm.

starting with a Ge layer and linearly increasing the Si concentration, most of the dis-
locations resulting from the lattice mismatch are buried in the virtual substrate, with-
out making the virtual substrate too thick. Grown on top is a 650 nm relaxed Si0.2Ge0.8

layer, followed by the 16 nm thick Ge quantum well. Due to the lattice mismatch between
Si0.2Ge0.8 and Ge, the quantum well has an in-plane compressive strain. On the quantum
well, a Si0.2Ge0.8 barrier is grown, with a thickness of 22 nm (device A) or 55 nm (device
B) and a thin Si cap (<2 nm).

One of the main differences between sample A and sample B is the thickness of the
barrier between the Ge quantum well and the Si cap [129]. A good metric for the qual-
ity of a material hosting quantum dots is the percolation density. The percolation den-
sity is defined as the critical charge carrier density for establishing metallic conduction
in the quantum well. It characterizes the disorder at low carrier densities, which is the
typical regime in which quantum dots are operated. For samples where the quantum
well was buried 22 nm below the surface (such as sample A), a percolation density of
pp = 1.2×1011cm−2 was measured [124]. By making the barrier 55 nm thick (sample B),
the percolation density can be reduced to pp = 2.14±0.03×1010cm−2 [129]. Additionally,
the charge noise was measured for devices fabricated on both types of heterostructures.
For devices with a quantum well buried 55 nm deep, an average detuning noise at 1 Hz ofp

SE = 0.6µeV/
p

Hz was found [129], where for a device with a 22 nm deep quantum well
this was measured to be

p
SE = 1.4µeV/

p
Hz [122]. These results make sense: the quan-

tum well was moved further away from the impurities at the semiconductor/dielectric
interface and provides a more quiet electrostatic environment for spin qubits.

The ratio of Si and Ge in the different layers of the Ge/SiGe heterostructure give rise to
a type-I band alignment [124], meaning that in principle either holes or electrons could
be confined in the quantum well. The heterostructure is undoped and in order to ac-
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cumulate holes, an negative external electric field is applied to an isolated top gate. A
sketch of the band-structure is shown in Fig.2.1. In this way, the wavefunction of the
hole is confined to the quantum well and 2D hole gas is created. This means that the
holes are confined in the z-direction, but act as free charge carriers in the plane. In or-
der to go from a 2D hole gas to quantum dots, the holes also need to be confined in
the x- and y-direction. For this purpose the device structure is fabricated on top of the
heterostructure. This process is described in detail in reference [130].

A SEM image of the gate layout similar to device B is shown in Fig 2.1b. First of all,
note the white scale bar, which indicates 100 nm. The size of the quantum dots is set by
the electrostatic gates. To define a qubit on the spin states of a hole inside a quantum
dot, the splitting between the energy levels of a hole in the quantum dot needs to be
sufficiently large. There are two terms that contribute to this energy splitting: the charg-
ing energy and the quantum confinement energy. The charging energy is the energy cost
for adding another hole to the quantum dot due to the Coulomb repulsion between the
holes. The quantum confinement energy is the result of the confinement in all three di-
rections. Assuming a harmonic potential and a strong confinement in the z-direction,
the quantum confinement energy is given by ∆E = πħ2/m∗A, where m∗ is the effec-
tive hole mass and A is the quantum dot area. For the Ge/SiGe heterostructure used
in this work, the effective hole mass can be as low as (0.048± 0.006) electron mass at
zero charge carrier density [131], which is low compared to the effective mass of elec-
trons in Si. This low effective mass allows for a relatively small quantum dot area, while
keeping the quantum confinement energy large. This relaxes the lithographic fabrica-
tion requirements for the gate stack of the devices and provides well defined quantum
dots with controllable tunnel couplings (as shown in Chapter 3).

The quantum well is contacted by ohmic contacts, as shown in green in both Fig. 2.1a
and b. For many metals, when brought into contact with Ge, the Fermi energy aligns with
the valence band of Ge, resulting in a direct ohmic contact [132]. In this way, a reservoir
of holes is created, allowing to occupy the available valence band states in the quantum
well and ultimately the quantum dots. This property of Ge simplifies the fabrication pro-
cess for the ohmics on the Ge/SiGe devices. Electron beam lithography is used to define
the ohmic contacts, after which the oxidized Si cap is locally etched and 30 nm of Al is
deposited [122]. Next an Al2O3 layer is grown using atomic layer deposition (ALD). This
fabrication step doubles as an annealing step for the ohmics, in order for the Al to diffuse
into the Si0.2Ge0.8 layer towards the quantum well, as schematically shown in Fig. 2.1.

The dotted black line in Fig 2.1b corresponds to the schematic cross section shown
in Fig. 2.1a. The quantum dots are formed by applying voltages to electrostatic gates
which come in two sorts: plunger gates (shown in yellow) and barrier gates (shown in
purple). The plunger gates are used to accumulate charge carriers, thereby forming a
quantum dot in the quantum well under the plunger. Moreover, with the plunger gates,
the energy levels in the quantum dots can be tuned. The barrier gates are used to control
the tunnel coupling between the quantum dots. The design of both devices A and B, in-
cludes a two-by-two array of (smaller) quantum dot plungers. These plungers define the
quantum dots in which the qubits are defined. Both devices also have two (larger) sensor
plungers to the side of the two-by-two array, under which multi-hole quantum dots are
formed, which function as charge sensors. The gates are fabricated in two overlapping



2

14 2. THEORETICAL BACKGROUND AND EXPERIMENTAL METHODS

layers (with thicknesses of 20 nm and 40 nm), using titanium-palladium (gray-yellow in
Fig 2.1a) as material for the gates. The gates are isolated from each other, the ohmics and
the substrate with a 7-nm-thick Al2O3 layer (dark blue). In this way it is possible to apply
different voltages to different gates, without leakage to other gates or the quantum well.
The barrier gates are fabricated in the first layer, closest to the heterostructure, followed
by the fabrication of the plunger gates. This order is chosen such that the barrier gates
have a stronger capacitive coupling to the quantum well, i.e. that they have a larger lever
arm. This optimizes the control over the tunnel coupling between the quantum dots.

For an intuitive picture on how the electrostatic gates shape the potential landscape
and control the quantum dots, see Chapter 3, especially Fig. 3.1b. Fig. 3.1a shows an
SEM image of a device which is identical to device A. Comparing this to Fig. 2.1b, the
second important difference between the two devices becomes clear: the charge sensors
in device A are in line with the two-by-two quantum dot array, whereas in device B they
are positioned diagonally. This change in the gate layout was made because in device A
it turned out to be challenging to tune the tunnel coupling between the two quantum
dots closest to the sensors, independently from the tunneling of the charge sensor to the
neighbouring quantum dot. Independent control over these couplings, however, is cru-
cial for tuning Pauli Spin Blockade (PSB) readout (for an explanation of the spin readout
technique, see section 2.7), resulting in the gate layout design of device B.

Being able to readout the spin state of a hole is a key asset for defining spin qubits,
as is having a quiet electrostatic environment with low charge noise. These differences
between device A and B, both in the depth of the quantum well and the design of the
gate layout, determine whether a system is a functional quantum dot device or a system
that can advance quantum computation with quantum dots.

2.2.1. DEVICE SELECTION

Once the devices are fabricated, a working device needs to be selected. The fabrication of
quantum devices is research in progress. As a consequence, yield is often far from 100 %.
An important mitigation strategy (as well as an important feed-back method for further
development) is therefore a good screening plan. A flow chart of the selection procedure,
as applied to device B, is shown in Fig. 2.2a. The devices that pass the visual test are
cooled down to 4.2 K and transport measurements are performed, of which the results
are shown in Fig. 2.2b. When performing transport measurements, a voltage difference
is applied via the ohmics to the quantum well. By applying negative voltages to the gates,
it is tested if a conducting channel can be turned on between the ohmics. Moreover, it
also becomes clear if the gates have the effect on the conducting channel which can be
expected from the device gate layout. During these measurements it will also become
clear if leakage of the current occurs between the gates or from the gates to the quantum
well.

2.3. EXPERIMENTAL SET-UP
When a device passes the selection procedure it is loaded into the experimental set-up
for qubit experiments. A schematic of this set-up as used for the experiments in chapters
4, 5 and 6 is shown in Fig. 2.3. It consists of a dilution refrigerator, several type of elec-
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Figure 2.2: Screening of qubit devices. a, The qubit devices undergo a visual screening as well as a transport
screening at a temperature of T = 4.2 K. Out of the full batch of 16 nominally identical devices, 15 passed visual
inspection. Seven of these devices were tested at T = 4.2 K and two devices were found to pass all testing,
of which one (device B) was mounted in a dilution refrigerator. b, 4.2 Kelvin transport data of device B. Three
different channels are turned on by sweeping all gates down to Vgate =−1500 mV (black), thereby accumulating
charge in the undoped strained Ge quantum well. Then the effect of the individual gates is tested by sweeping
them up and down to Vgate = 0 V (coloured lines). All channels turn on and the gates affect the transport
current as expected from the device layout.

tronic equipment and a computer. A detailed technical description of this experimental
set-up can be found in reference [133].

The temperature in the dilution refrigerator goes down in stages, the different tem-
peratures are indicated with dotted lines in Fig. 2.3. The device (device B, lower left of
Fig. 2.3) is bonded to a printed circuit board (PCB) and mounted on the cold finger which
is connected to the mK plate of a Bluefors LD-400 dilution refrigerator. In this way the
sample can be cooled down to a base temperature of 20 mK. The cold finger fits into a
superconducting magnet, which is used to apply an external magnetic field, varied in the
experiments in this thesis between 0.25 and 1.1 Tesla.

2.3.1. ELECTRONIC EQUIPMENT

The electronic equipment in the set-up has four different functionalities: defining the
electrostatic potential landscape (direct-current (DC) signals), fast control of the quan-
tum dots (alternating-current (AC) signals), charge readout (radio-frequency (RF) sig-
nals) and spin qubit control (microwave (MW) signals). To mitigate noise at the sample,
both from the environment of the fridge and the electronics itself, all lines connecting
the electronics to the sample are filtered or attenuated at different temperatures, as in-
dicated in Fig. 2.3.

Firstly, the potential landscape, i.e. the quantum dots, are defined by DC voltages ap-
plied to the plunger and barrier gates. Usually, these voltages are set to define the default
mode for the device: to have four quantum dots with a charge occupation of one hole
each (the (1,1,1,1) occupation) and to set the charge sensors in the multi-hole regime.
The DC voltages are applied using digital-to-analogue converters (DACs). These voltage
sources are battery powered and galvanically isolated from the other electrical equip-
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ment to prevent interference. The DACs are part of a serial peripheral interface (SPI)
measurement rack, which is build in house. In Fig. 2.3 the DC wiring looms connecting
the DACs with the sample are colored yellow.

Secondly, to have fast control (in the order of 1 ns) over the tunnel coupling between
the quantum dots, for fine tuning of the potential landscape and the initialization and
readout of spin states (see section 2.7), most of the gates of the sample are connected to
a Keysight M3202A arbitrary waveform generator (AWG). The connection is made using
coaxial cables (indicated with red and called ‘rf (pulsing)’ in Fig. 2.3), which pass through
a ferrite common mode choke, are attenuated as indicated in Fig. 2.3 and are combined
with the DC signals with Bias-tees. The typical pulses that are applied with the AWG are
also depicted in red and called ‘gates’ in Fig. 2.3.

Thirdly, to sense changes in the potential landscape, such as a hole tunneling from
one quantum dot to another, rf-readout is used. Large quantum dots, which are the
charge sensors, are located close to the quantum dots in the two-by-two configuration.
The resistance of the sensor is strongly dependent on the charge state in the spin qubit
quantum dots. The principle behind rf-readout is that a signal with a fixed frequency
is applied to one of the ohmics of the sensing dot and the reflected signal is measured.
The reflected signal is zero when there is impedance matching between the load of the
readout circuit and the rf-source. In other words, when the load impedance of the com-
plete circuit (including, among other things, the resistance of the sensor) is equal to the
output resistance of the rf-source. Given the resistance of the sensor, impedance match-
ing can be achieved by adding a matching circuit, which consists of an inductor and a
capacitor. The impedance of this LCR circuit is frequency dependent and will only re-
sult in impedance matching for a certain resonance frequency. This is the frequency of
the rf-signal send by the rf-module in the set-up. Now, when the resistance of the sensor
changes, there is no impedance matching anymore and the reflected signal changes. In
this way, changes in the potential landscape can be detected with a bandwidth of several
MHz.

The implementation of rf-readout in the set-up is shown in Fig. 2.3 in light blue. A
schematic of the RF-circuit is also shown in Fig. 3.1 in chapter 3. Two rf-tones are gener-
ated (rf src) in the in-house build reflectrometry set-up and are combined to one signal
(rf cmb) and send towards the PCB, via filtering, attenuation and a directional coupler.
The AWG is used to provide a trigger to make sure that the rf-tones are muted during
the qubit operations. Since there are two sensing quantum dots on the sample, there are
two rf-tones, each matching one LCR circuit connected to one sensor. The tank circuit
consists of a niobium-titanium-nitride kinetic inductor on a separate chip in combina-
tion with the parasitic capacitance of the device. The reflected signal is amplified and
demodulated (compared with a reference signal) at both the resonance frequencies sep-
arately (IQ mixer). Subsequently, the readout signal is filtered and send to the digitizer
(green lines in Fig. 2.3). In the digitizer, the signal can be averaged over time by the field-
programmable gate array (FPGA).

Finally, for the experiments presented in this thesis, high frequency (order of GHz)
signals are used to manipulate the qubits, indicated in dark blue in Fig. 2.3. These signals
are generated using three separate microwave (MW) vector sources (two Rohde&Schwarz
SFS100A sources and a Keysight PSG E8267D source). The amplitude, frequency, phase
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and duration of the MW pulses can be controlled by applying quadrature modulation,
using signals generated by the AWG. A sine wave with a phase difference of π/2 is ap-
plied to the in-phase (I) and quadrature (Q) input of the vector sources. In this way, the
frequency outputted can be varied around the base band frequency of the MW source.
The MW source signals are send to the plunger gates via the same coaxial lines as the
AWG signals used for the control of the potential landscape. To make this possible, high
bandwidth superconducting coaxial lines are used and the signals are combined using
room temperature diplexers. To suppress the microwave pulses when not driving the
qubits, a pulse modulation (PM) envelope is applied around the microwave pulses.

2.3.2. SOFTWARE

Advanced qubit operations require a good software framework. To this end, we have
taken many steps to write new software to facilitate and improve the qubit measure-
ments. The task can be summarized by the following: in order to control the qubits, all
the electronics described above need to be controlled in a synchronized way to optimize
the performance.

Software which is used in all the experiments presented in this thesis, is code to de-
fine virtual gates. Although the plunger gates are designed to control the energy levels in
the quantum dots and the barrier gate to control the potential barrier between them, this
is not how it works in practise. A voltage on an electrostatic gate influences the poten-
tial landscape in a more general way. It is therefore needed to, for example, compensate
the influence of a plunger gate on the barrier between two quantum dots. We label this
combination of several physical gates as a virtual gate. In practice, we find that a lin-
ear combination gives a reasonable approximation in a stability diagram covering a few
charge transitions. The virtual gate matrices used in the experiments in this thesis are in
the supplementary information of chapters 3 and 4.

Many software packages have been developed in the last few years to control the
AWG and MW pulses, which are needed to control and drive the qubits. Important pack-
ages include PulseLib and QConstruct. PulseLib is described in detail in reference [134]
and can be found on Github [135]. An example of the code that could be used for a
shuttling experiment using QConstruct is shown in Fig.2.4. QConstruct integrates the
functionalities of packages such as PulseLib and makes it possible to directly implement
single and two qubit gates, without detailing all the individual pulses. The qubit gates
are build-in and make use of calibrations stored for this purpose. More information on
QConstruct is also available on Github [136]. The measurement software is always a work
in progress and different versions have been used for the experiments in this thesis.

2.4. DEFINING A HOLE SPIN QUBIT IN GE/SIGE
A qubit is a quantum mechanical two level system in which the orthogonal computa-
tional basis states |0〉 and |1〉 can be encoded. A spin 1/2-system, such as an electron, is
very suitable for this. The spin of a particle is its intrinsic angular momentum and has a
specific and unchangeable value for every type of fundamental particle [137]. The com-
putational states can be encoded in the two eigenstates: ‘spin down’ |↓〉 and ‘spin up’
|↑〉. A superposition state takes the form α |↓〉+β |↑〉. The two spin states are degenerate.
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Figure 2.4: Example QConstruct code. The code shown in this example would implement a simple shut-
tling experiment. Different charge configurations (such as ‘_1100’ and ‘_1010’), pulse sequences (such as Init,
Kick_out_Q3Q4_sequence and ConfigureBarriersSequence) and single qubit gates (such as ‘X90’ and ‘Phase’)
are predefined and calibrated before the experiment. This simplifies the implementation of the experiment
enormously.

However, since the magnetic dipole moment of a particle is proportional to its spin angu-
lar momentum, applying a magnetic field will lift this degeneracy. The resulting energy
splitting is called the Zeeman energy and is given by:

EZ = h fL = gµB B (2.1)

Were EZ is the Zeeman splitting, h is Planck’s constant, fL is the Larmor frequency, g
is the Landé g-factor, µB is the Bohr magneton and B is the applied magnetic field.

This is a simple and elegant description of a spin qubit. However, for the spin qubits
used for the experiments presented in this thesis, the physics is more complicated. None-
theless, this simple description is still useful. All the complexity can be absorbed into
equation 2.1 by turning the g-factor into a g-tensor and taking the direction of the ap-
plied magnetic field into account:

hfL =↔
g µB B (2.2)

Where hfL sets the direction of the quantization axis of the qubit, |fL | is the Larmor
frequency and the Zeeman energy is given by EZ = h|fL |. The g-tensor can be described
as a rotated diagonal matrix [127]:

↔
g = R−1(ζ,θ,φ)diag(gx′ , g y ′ , gz ′ )R(ζ,θ,φ) (2.3)

where the intrinsic rotations around the z y z axes are described by the Euler angles
ζ,θ,φ and gx′ , g y ′ and gz ′ are the effective g-factors defined along the principle axes x’y’z’
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of the g-tensor. Now, there are two relevant questions to explore. Firstly, what might be
the source of this complexity? And secondly, what implications arise from having a g-
tensor instead of a g-vector?

The complexity originates from the fact that we define our spin qubit on a hole in a
quantum dot in a Ge/SiGe heterostructure as described in section 2.2. In bulk Ge, the
two highest energy levels are the heavy hole (HH) and the light hole (LH) band. Due to
the confinement in the 2D plane and the compressive strain in the quantum well, the
HH and LH bands have become separated from each other. As a result, in the quantum
well of a Ge/SiGe heterostructures, the HH band is the topmost valence band and will
be populated when a negative voltage is applied to the electrostatic gate on top of the
heterostructure. Details can be found in references [124, 125, 133, 138].

The spin-orbit interaction (SOI) plays a very important role in complicating the g-
tensor for a qubit defined on a hole in Ge quantum well. SOI is a relativistic effect which
couples angular momentum and the spin degree of freedom of a particle. The type of
spin-orbit interaction in this heterostructure is Rashba SOI. There are two conditions
that need to be met to have Rashba SOI in a quantum well: an intrinsic SOI and a bro-
ken structural symmetry. The intrinsic SOI emerges from the relativistic version of the
Schrödinger equation, the Dirac equation, which has a term linking the spin operator S
to the angular momentum operator L. This is relevant for holes in Ge because they have
a p-type wavefunction, i.e. l = 1, where l is the quantum number associated with the an-
gular momentum. Due to this intrinsic SOI, the spin and angular momentum cannot be
described separately anymore, instead we use the quantum number j for the effective
spin. The eigenstates for the effective spin for the HH hole band are j = ±3/2 and for
the LH band j = ±1/2. The structural symmetry in a Ge/SiGe heterostructure is broken
by applying a negative voltage on the electrostatic gate on top of the heterostructure. As
shown in Fig. 2.1, the resulting confining potential in the quantum well has a triangu-
lar shape, the hole wavefunction is drawn to the top of the quantum well by the electric
field.

The g-tensor for HH states is predicted to be very anisotropic, its out-of-plane com-
ponent can be a factor hundred larger than its component in plane of the quantum well.
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On the other hand, the g-tensor for the LH states is much more isotropic. Since the eigen-
states of holes confined in the quantum dots can be described quite well as HH, we ex-
pect the g-tensor to be highly anisotropic. However, the SOI will lead to a correction of
the HH g-tensor, making it less anisotropic. This process is related to the mixing of HH
and LH states.

To understand what the consequences are for defining the qubit, it is important to re-
alize that the SOI strongly depends on the electric field, i.e. the confinement of the hole.
This effect is captured in the g-tensor. The fact that the qubit is described by a tensor and
not a vector implies that the direction of the quantization axis is not necessarily aligned
with the applied magnetic field B. This effect is amplified by the strong anisotropy of the
HH g-tensor: a small difference between the direction of the applied B-field and the x’y’
plane of the g-tensor will cause a strong rotation of the quantization axis of the qubit into
the z’-direction. Since the SOI, and therefore the g-tensor, depends on the details of the
electric field which confine the quantum dots, both the direction and magnitude of the
quantization axis can very significantly per quantum dot. For all the experiments pre-
sented in this thesis, the external magnetic field is applied approximately in-plane of the
quantum well, and therefore approximately in the x’y’-plane of the g-tensor, and indeed,
we see large differences in the Zeeman energy between the quantum dots in chapters 4,
5 and 6. Furthermore, in chapter 6 we see differences between the direction of the quan-
tization axis of different quantum dots. The g-tensor not only is different for different
quantum dots, it can also be tuned with the voltages on the gates defining the quantum
dots, as shown in chapter 4. This has its advantages, since it can be used to provide indi-
vidual addressability of the spin qubits, but even more important, it can be used to drive
the spin, as described in the next section, section 2.5. The disadvantage is that it makes
the spin qubit more susceptible to charge noise, as described in detail in section 2.9.

2.5. IMPLEMENTATION OF SINGLE QUBIT GATES
In order to run any arbitrary quantum algorithm on a quantum processor, it should be
possible to perform operations on its qubits which bring them from any possible quan-
tum state to any possible quantum state. In other words, there should be a universal set
of quantum gates. A set of gates is universal when it is a minimal set of gates of which
all other qubit operations can be created. It is possible to compose a universal gate set
out of single- and two qubit gates. This section is dedicated to single qubit gates, how
they can be visualized in an abstract way for spin qubits in general and how they are
implemented for hole spin qubits in Ge specifically.

The states of a single qubit can be visualized with a Bloch sphere, as shown in Fig.2.6a.
The basis states |0〉 and |1〉 are at top and the bottom of the sphere. A superposition
|Ψ〉 = α |0〉+β |1〉 is represented by a point on the Bloch sphere (|α|2 +|β|2 = 0) and can
also be written as |Ψ〉 = cos(θ/2) |0〉+e iφsin(θ/2) |1〉, where θ is the amplitude and φ the
phase. A single qubit gate can bring a qubit in a certain state on the Bloch sphere to an-
other state on the Bloch sphere, for example a Xπ/2-gate (where X refers to the rotation
axis, and π/2 to the rotation angle) will bring a state in the |0〉 state to the equator of the
Bloch sphere, see Fig.2.6b.

As explained in the previous section, the basis states for a spin qubit are ‘spin down’
|↓〉 and ‘spin up’ |↑〉, which are separated by the Zeeman energy. Since the spin is placed
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2 superposition state. c In the lab frame, a spin in

superposition will precess about its quantization axis with the Larmor frequency. Viewed in the rotating frame,
the spin in the same superpostion state, will just be a point on the equator of the Bloch sphere.

in an external magnetic field, the spin will rotate with the Larmor frequency around its
quantization axis, which is set by the g-tensor and the direction of the external magnetic
field. For example, Fig. 2.6c shows the simple case where the quantization axis of the spin
qubit is oriented along the external magnetic field and the spin is in a superposition.
What happens in that case, is that the spin is presessing along the equator of the Bloch
sphere. This reference frame is called the ‘lab frame’ and is relevant for the interpretation
of the results presented in chapter 6 of this thesis.

However, when we are considering just the single qubit and how to implement single
qubit gates, it is more convenient to adopt the ‘rotating frame’ [139]. In this reference
frame, the observer follows the Larmor precession of the spin, i.e. since the frame is ro-
tating at the same frequency as the spin, it is like the state is ‘standing still’ in the Bloch
sphere. In the rotating frame, a superposition state as depicted in Fig. 2.6c is just a point
on the equator. The spin can be coherently rotated, i.e. single qubit gates can be imple-
mented, when an effective oscillating magnetic field is applied of which the frequency is
resonant with the Larmor frequency and the direction is perpendicular to the quantiza-
tion axis. In the rotating frame, this oscillating magnetic field will be static with respect to
the Larmor frequency and the spin will rotate about an axis perpendicular to the z-axis
of the Bloch sphere, describing a circular trajectory. This rotation is called Rabi oscil-
lation, its frequency depends on the strength and the rotation axis on the phase of the
oscillating magnetic field. In the rotating frame, an Xπ/2-gate can indeed be visualized in
the Bloch sphere as shown in Fig. 2.6b, instead of some complicated trajectory which is
a combination of the Larmor precession and the rotation around the X-axis.

For hole spin qubits in Ge, the effective oscillating magnetic field that drives the spin,
can be applied with an oscillating electric field mediated by the SOI. This method is
called Electric Dipole Spin Resonance or EDSR for short. Driving speeds that can be
achieved with hole spin qubits in Ge are quite high, ranging from tens to a hundred
MHz [126, 140, 141]. The physics behind this fast driving is still a field of active research.

One way how the oscillating electric field can couple to the spin is via the g-tensor,
since due to the SOI the g-tensor is susceptible to the electric field. A modulation in the
g-tensor δ

↔
g relates directly to a change in the Larmor vector fL : hfL = µBδ

↔
g . Changes
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parallel to the quantization axis of the spin (changes in the diagonal terms of the g-
tensor) will lead to a change in the Larmor frequency, which will lead to dephasing of the
spin qubit. Changes perpendicular to the quantization axis (changes in the off-diagonal
terms of the g-tensor) however, will lead to a change in the direction of the spin. This way
of driving is called g-tensor modulation resonance (g-TMR) [127, 142, 143]. By applying
an oscillating electric field, the confining potential of the spin changes shape. According
to recent theoretical work, non-separability of the confinement potential (the confine-
ment potential can not be described separately in-plane and out-of-plane), which leads
to coupling between the in-plane and out-of plane motion of the spin, plays a role [144].
Moreover, inhomogeneity of the electric driving field could also contribute [144], as well
local differences in strain in the quantum well, induced by the difference in thermal ex-
pansion coefficients of the metal of the electrostatic gates and the materials of the het-
erostructure, which become relevant when the device is cooled down to mK tempera-
tures [145].

In practice, driving the spin qubit using g-TMR means that we apply a microwave
pulse (resonant with the Zeeman energy) to a close-by gate, which can result in Rabi
oscillations. The phase and the duration of the microwave pulse give control over the
phase and the amplitude of the single qubit rotation, respectively. Since the g-tensor is
very sensitive to the electric fields and therefore unpredictable, tuning a hole spin qubit
is not trivial. Finding the resonant frequency requires scanning a large frequency range.
Moreover, finding the direction from which the qubit can be driven most efficiently is a
process of try-and-error by applying the microwave signal to different electrostatic gates
close to the quantum dot. These calibration efforts result, however, in hole spin qubits
which can be driven at high Rabi frequencies. More importantly, using g-TMR it is possi-
ble to implement high-fidelity single qubit gates (see chapter 4). Moreover, the fact that
the spin can be manipulated with electric fields, without extra components on the chip
(such as a micro magnet) is an advantage when scaling to larger qubit arrays.

2.6. A TWO-SPIN QUBIT SYSTEM
To understand the spin initialization, readout and of course the two-qubit gates that
we use in the experiments in this thesis, it makes sense to study a two-spin qubit sys-
tem. In a two-spin system, it becomes relevant that holes (like electrons) are fermions.
Since fermionic states are antisymmetric under interchange, it follows that two identical
fermions cannot be in the same quantum state. This we see in our experiments in two
forms: the first is the famous Pauli exclusion principle, which is used for spin qubit read-
out. The second is the exchange interaction, which is used to implement the two-qubit
gates in our system.
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Figure 2.7: Energy spectrum of spins qubits confined in a double quantum dot a Plotted are the eigenener-
gies of two spin qubits confined in a double quantum dot. Note, shown is the ‘electron picture’: the ground
state is plotted as the lowest level on the energy scale. The dotted lines indicate the energy levels in case where
there is no interaction between the two particles at all, i.e. the tunnel coupling terms (both spin conserving
and spin flip terms) between the quantum dots are zero. The charge anticrossing between the two quantum
dots is at the points where the detuning is equal to U or -U, where U is the energy needed to move both holes
in the same quantum dot. b Depicted here is a zoom in of the spectrum shown in (a), now with a finite amount
of spin-conserving tunnel coupling between the quantum dots. Indicated with a green arrow is the resulting
anticrossing between the anti-parallel spin states and the S(0,2) state. When there is finite tunnel coupling
between the quantum dots, there is finite exchange J. In the regime where the difference in Zeeman energy be-
tween the spin qubits is large compared to the coupling, this will effectively result in a shift of the anti-parallel
spin states compared to the parallel spin state (highlighted with the circle). c Energy spectrum including both
spin-conserving and spin-nonconserving tunnel coupling. The latter is due to the spin-orbit interaction and
couples also the parallel spin states to the S(0,2) state (highlighted with the circles). The yellow arrow indicates
how to initialize in the |↓↓〉 state.
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We operate our spin qubit system in the single hole regime, therefore to study a two
qubit system, we have to take into account a double quantum dot. The confinement
potential is used to control the interaction between the two qubits, i.e. the overlap of the
wavefunction of the two particles. There are two tuning knobs: the detuning energy ϵ
between the quantum dots (relative alignment of the potential of the two quantum dots)
or the tunnel coupling t0 between the quantum dots.

Plotted in Fig. 2.7a are the six lowest energy eigenstates of two spin qubits as a func-
tion of detuning, using realistic values: external magnetic field of 1.1 Tesla, effective
g-vectors of 0.18 and 0.22 and in the regime where the tunnel coupling is completely
turned off. The basis chosen is |↓↓〉 , |↑↓〉 , |↑↓〉 , |↑↑〉 S(0,2) and S(2,0), where the arrows in-
dicate the state of the spin in both quantum dots and S(0,2) and S(2,0) are the singlet
states of the different charge occupations. The triplet state for two holes in the same
quantum dots is much higher in energy and not shown in Fig. 2.7.

This basis is suitable when the difference in Zeeman energy between the two quan-
tum dots is relatively large compared to the coupling between the quantum dots [146].
For the experiments presented in this thesis, this is indeed the configuration that we are
working in. The difference in Zeeman energy is set by the difference in effective g-factor
between the quantum dots. In this picture we do not take into account that the g-tensor
depends on the confinement potential and can therefore be changed by the detuning.

Figure 2.7b shows a zoom-in of the energy diagram around the interdot charge tran-
sition (detuning = U), in the regime where the spin-conserved tunneling is turned to a
finite value. Close to the point where the detuning is zero (the two holes are well sepa-
rated in their own quantum dots), the eigenstates are mostly unaffected and their ener-
gies are still determined by the magnetic field and effective g-vectors. Moving closer to
the charge transition, the energy levels of parallel spin states do not change as a function
of detuning, since they are not coupled to the S(0,2) (or the S(2,0)) state. The anti-parallel
spin state however move down in energy, since they contain a S(1,1) component which
couples to the S(0,2) (and the S(2,0)) state. The width of the anticrossing, indicated in
Fig. 2.7b by a green arrow, increases with increasing tunnel coupling.

So far we have ignored the spin-orbit interaction (SOI) which plays an important role
for hole spin qubits in germanium. Since the SOI couples the spin of the particle to its
momentum, the SOI enables a tunneling process between the (1,1) and (0,2) charge state
for which the spin state is not preserved. In the basis used here, the SOI translates into
a coupling between the S(0,2) and S(2,0) singlet states and the parallel spin states [133,
146, 147]. These avoided crossing are highlighted in Fig. 2.7c with light blue circles. For
plotting the energy levels shown in Fig. 2.7c we choose the simplified case where the
tunnel coupling terms due to the SOI terms are all equal [133].

2.7. PAULI SPIN BLOCKADE READOUT AND INITIALIZATION
For spin qubits, the quantum information is encoded in the spin state of a single charge
carrier. The magnetic moment of a spin is very small and it is very challenging to measure
it directly. Therefore, to readout the state of the spin, we make use of spin-to-charge
conversion. The different spin states are mapped onto different charge states. The charge
state in turn is measured using a single-hole transistor, also called a sensing dot, located
close to the quantum dots confining the spin qubits. When tuned to a Coulomb peak, the
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capacitance of the single-hole transistor is very sensitive to the surrounding electrostatic
field. Moving a single charge will cause a small change in the capacitance, which can be
measured with an rf-circuit, as described in section 2.3.

An elegant way of performing spin-to-charge readout is by Pauli Spin Blockade (PSB)
readout. In this protocol we used the principle that two fermions cannot be in the same
quantum state, for example: two holes cannot occupy the same energy level in the same
quantum dot if they have the same spin state. As shown in the energy diagram depicted
in Fig. 2.7b, if there is a finite tunnel coupling between the two quantum dots, only if the
two spins are in the |↑↓〉 state, they can tunnel into the same quantum dot and form the
S(0,2) state. In an experiment it would work as follows: when two qubits are confined in a
quantum dot each, one of them is initialized in the |↓〉 state, the other one can be in any
state. By pulsing the detuning past the charge anticrossing into the (0,2) charge state,
a distinction can be made between the |↑↓〉 state, which will tunnel, and the other spin
states, for which the tunneling is blocked. Whether or not the charge carrier can tunnel
to the neighbouring quantum dot, can be measured with the sensing dot and thereby re-
alizing spin-to-charge conversion. PSB readout works within certain boundaries. Firstly,
the measurement window in terms of the detuning is set by the orbital energy, if a higher
energy level is available (not shown in Fig. 2.7), the blockade is lifted. Secondly, the inte-
gration time for the charge signal is limited by the time it takes for the blocked states to
decay to the S(0,2) state.

As discussed in the previous section, and shown in Fig. 2.7, SOI can introduce non-
spin conserving tunneling terms, resulting in anticrossings between the parallel spin
states and the S(0,2) state. The energy diagram shown in Fig. 2.7c is just an example, the
actual size of the anticrossings, both spin conserving and non-spin conserving, depend
on the tunnel coupling, the magnitude and direction of the external magnetic field, rel-
ative angle of the quantization axes and the effective g-factors. Realizing spin-to-charge
conversion using PSB in this system requires careful tuning of the tunnel coupling be-
tween the quantum dots and of all the ramp rates between the different detuning points
of the readout sequence.

How to initialize a spin qubit in this system depends on the size of the SOI anticross-
ing between the |↓↓〉 state and the S(0,2) state. When the SOI anticrossing is large, it is
possible to initialize in the |↓↓〉 state, by ramping adiabatically from the S(0,2) state to
the (1,1) charge state. This is indicated in Fig. 2.7c by the yellow arrow. When the SOI
anticrossing is small, ramping adiabatically will initialize the two spins in the |↑↓〉 state.
For the experiments presented in this thesis, initialization in the |↓↓〉 state was used.

An additional effect of the SOI is an increased decay rate from the different spin states
to the S(0,2) ground state, when close to the charge anticrossing in detuning [147, 148].
To increase the readout visibility, we make used of latched PSB readout [149, 150]. In this
readout protocol, the tunnel rates of the two quantum dots to their respective reservoirs
are tuned asymmetrically. Pulsing from the (1,1) charge state, to the (0,2) charge state
and then over the extended (1,1)-(0,1) charge transition line makes it possible for the
states blocked from tunneling into the (0,2) charge state to tunnel to the (0,1) instead.
The different spin states are now converted to either the (0,2) or the (0,1) charge state,
where the decay from the (0,1) to the (0,2) state is set by the tunnel rate to the reservoir.
This allows for a sufficiently long readout integration time to achieve spin readout with
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reasonable visibility. The downside of the latched PSB readout protocol is that a reservoir
close to the quantum dots is needed, which making this approach less suitable for large
qubit arrays. Since the rapid decay of the blocked states to the S(0,2) state depends on
the external magnetic field, it could be an option to work at lower magnetic field where
readout using the Pauli spin blockade is possible without resorting to the latched proto-
col [151].

2.8. TWO QUBIT GATES
The other crucial ingredient to obtain a universal gate set, besides single qubit gates, is
a two-qubit gate. For a two-qubit gate to complete the universal set, it needs to create
entanglement between qubits. An example is a controlled NOT (CNOT) gate, which im-
plements a spin flip on the target qubit if and only if the control qubit is in the |↑〉 state. In
general, what a two qubit gate needs to do is implement an operation on a qubit which
is conditional on the state of another qubit.

For spin qubits confined in quantum dots, two-qubit gates are usually implemented
using the exchange interaction J [98]. When there is a finite amount of tunnel coupling
between the quantum dots, the wavefunctions of the two charge carriers have some
overlap. Due to the fact that fermions are antisymmetric under interchange, the S(1,1)
state and the T0 state are decreased in energy. In the regime where the difference in
Zeeman energy is larger than the exchange, ∆ZE > J , which is the regime of the exper-
iments presented in this thesis, this is well approximated by lowering the anti parallel
spin states compared to the parallel spin states [146]. This is illustrated in the energy
diagram plotted in Fig. 2.7b, there is a clear difference between the energy levels when
the coupling between the quantum dots is zero (striped lines) and when the coupling is
finite (solid line), whereas the parallel spin states are unaffected. The antiparallel spin
states are shifted by J/2 where J = (4U t 2

0 )/(U 2−ϵ2). It is clear from Fig. 2.7b that J can be
tuned by the tunnel coupling and the detuning.

There are three types of two-qubit gates that can be implemented using exchange: a
controlled rotation (CROT), a controlled phase (CPhase) and the SWAP gate. The imple-
mentation of the CROT relies on the fact that when the energy levels of the antiparallel
spin states are shifted down, the Larmor frequency of the individual qubits become de-
pendent on the spin state of the other qubit, i.e. the energy difference between |↓↓〉-|↑↓〉
is different from the energy difference between |↓↑〉-|↑↑〉. The CROT is implemented by
driving resonant with one of these transitions. In chapter 4 the CROT gate is demon-
strated.

The two-qubit gate which is most suitable for (hole) spin qubits, is the CPhase gate.
To implement this gate, the value of the exchange is pulsed, from (practically) zero, to a
finite value, and back to zero. When doing this, the energy states of the anti parallel spin
states are lowered and than pulsed back to their original value. During this pulse, the anti
parallel spin states acquire a spin dependent phase shift with respect to the parallel spin
states. In other words, pulsing the exchange results in a phase gate on the target qubit,
conditional on the state of the control qubit, due to the temporary change in the reso-
nance frequency of the qubits. The amount of phase acquired depends to which value
the exchange is pulsed and on the length of the pulse. When the total phase acquired by
the two antiparallel states φ=φ|↓↑〉+φ|↑↓〉 = (2n +1)π, which n an integer, a CPhase gate
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is obtained.
To realize a high fidelity CPhase gate, it is important that the exchange is pulsed

adiabatically with respect to the difference in Zeeman energy between the two qubits.
Otherwise, the exchange pulse will induce SWAP oscillations between the |↓↑〉 and the
|↑↓〉 states. A full SWAP oscillation only occurs when the difference in Zeeman energy
between the qubits is much smaller than the exchange. However, when the difference
in the Zeeman energy is significant, partial SWAP oscillations can still be induced, in-
troducing an error in the CPhase gate. This can be mitigated by ramping the exchange
instead of tuning it on and off instantaneously. In the experiments presented in this the-
sis, the exchange is controlled by controlling the tunnel coupling between the quantum
dots using the barrier gate. Optimizing the CPhase gate therefore relies on calibrating
the depth, length and ramp time of the pulse on the barrier gate. Implementation of the
CPhase gate is shown in chapters 4 and 5.

Although the regime where ∆ZE > J is not suitable to implement a SWAP gate by
simply pulsing the exchange, it is possible to realize a resonant SWAP gate [152]. By driv-
ing the exchange on resonant with the energy difference between the |↓↑〉 and |↑↓〉 state,
Rabi rotations in the |↓↑〉, |↑↓〉 subspace are implemented. This can also be understood
as stroboscopically applying an exchange pulse whenever the phase evolution due to the
CPhase-like evolution is back at its initial state. In practise, we would implement the res-
onant SWAP gate by applying a drive to the barrier gate controlling the tunnel coupling
VB (t ), according to the formula: VB (t ) = V DC

B +V AC
B cos(2π f∆E(|↓↑〉,|↑↓〉)t +φ), where V AC

B
is the amplitude of the drive, V DC

B a DC off-set and f∆E(|↓↑〉,|↑↓〉) the frequency resonant
with the energy difference between the anti parallel spin states. SWAP oscillations can
be used to implement a

p
SWAP gate, which is an entangling gate, or to interchange the

spin state of to neighbouring qubits. The resonant SWAP gate is demonstrated in chap-
ter 5 and used for the latter purpose. For a universal gate set, only one type of entangling
two-qubit gate is needed, however, being able to implement more than one type will
increase the flexibility when compiling algorithms.

So far we have, again, ignored the effects of the SOI. As shown in Fig. 2.7c, among
these effects is the spin non-conserving tunneling, which couples the parallel spin states
to the S(0,2) state, causing a slight shift in the parallel spin states as well. The relative
shift between the parallel spin states and the anti parallel spin states depends there-
fore on the difference between the spin conserving tunnel coupling t0 and the non-spin
conserving tunnel coupling tSOI . As long as these two coupling terms are not equal, a
two-qubit gate based on the exchange interaction can be implemented. Moreover, re-
cent work [153] shows that the SOI can also give rise to an exchange interaction between
hole spin qubits which is anisotropic with respect to the external magnetic field. They re-
late this anisotropy of the exchange to the non-spin conserving tunnel coupling tSOI . Al-
though the SOI makes the interactions in the two-qubit system more complicated, their
work suggests that the anisotropy in exchange can be used to optimize the two-qubit
gate.

2.9. DECOHERENCE
In order to be able to implement any kind of (useful) quantum algorithm, the qubits
should be able to store their quantum information long enough, much longer than the
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time it takes to implement qubit gates. There is a fundamental problem however, if we
want to be able to manipulate the qubit, we need a way to interact with the qubit, but
this will also allow the environment to couple to the qubit. Interaction of the qubit with
the environment will lead to loss of quantum information, i.e. decoherence of the qubit.
A coherent qubit state is a point on the surface of the Bloch sphere and in this picture,
decoherence can be understood as shrinking of the Bloch sphere. There are two types of
decoherence: spin randomization and spin dephasing. Spin randomization can be un-
derstood as shrinking of the Bloch sphere along the z-axis. For this process to happen,
an exchange of energy with the environment is necessary. The kind of error that this in-
troduces is a spin flip error. Due to the low temperature at which we perform our experi-
ments, in most cases the randomization of the spin will be relaxation: the spin decays to
the ground state. Spin dephasing is the loss of phase coherence of a superposition state,
i.e. the phase of a superposition state is no longer well defined. In this case the Bloch
sphere becomes smaller along the equator. If the length of the quantization axis is varied
over time, i.e. the Larmor frequency is not constant, this will cause random phase shifts
over time. The kind of error that this process introduces is a phase flip error.

The spin randomization is characterized by the typical time T1. Spin randomization
can be caused by several mechanisms: hyperfine interaction, interaction with the hole
reservoir and phonons which can couple to the hole spin qubit via the SOI. The hyper-
fine interaction will be discussed in detail later in this section, but is not limiting T1 [154].
The interaction with the hole reservoir can easily be controlled by the tunnel coupling to
the leads. Since in all the experiments presented in this thesis, we used charge sensing
via a sensing dot, the qubits are always well isolated. Moreover, tight confinement in the
quantum dot leads to large energy splittings to the excited states, which in turn leads
to a long T1, because the phonon-hole interaction connects the orbital ground state to
excited state [154]. When the qubit is confined in a quantum dot, the randomization
process that takes place is almost always relaxation to the |↓〉 ground state. The T1 in this
regime is in the order of tens of milliseconds [155]. However, when the hole spin qubit is
not confined in a quantum dot, for example because it is moved from one quantum dot
to another (such as in chapter 6 of this thesis), it needs to pass the charge anticrossing.
The T1 at this point in detuning can be significantly smaller, because the hole is delo-
calized between the two quantum dots. Excitations to higher energy levels mediated by
the SOI are more likely to happen [156], which can randomize the spin state. Since single
qubit operations are performed with well isolated qubits, this process is not relevant for
implementing quantum algorithms and T1 is not the limiting time scale.

Similar to the spin randomization, the spin dephasing is characterized by a typical
time T2. In practise, the dephasing is measured using thousands of single shot measure-
ments, effectively taking the average over the fluctuations of the Larmor frequency dur-
ing the total measurement time. This is comparable to measuring the dephasing of an
ensemble of spins and the typical time is indicated by T∗

2 . Dephasing of hole spin qubits
in germanium is caused by two mechanisms: hyperfine interaction and charge noise
which can couple to the spin via the SOI. The hyperfine interaction is the coupling of the
spin of the qubit to the nuclear spins in the heterostructure. Of the natural germanium in
the quantum well, only 7.7% is 73Ge, which is the only isotope with a non-zero nuclear
spin. For electrons, the main contribution to the hyperfine interaction is the so called
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direct hyperfine interaction: the overlap of the wavefunction of the spin qubit with the
nuclei. The direct hyperfine interaction is isotropic. However, since the hole wavefunc-
tion is p-type, the overlap with the nuclear sides of the lattice is very small and the direct
hyperfine interaction is suppressed. There are additional hyperfine interaction terms,
arising from the dipole-dipole interaction between the hole spin and the nuclear spins
and from the interaction between the orbital momentum of the hole and the nuclear
spins. These terms are highly anisotropic, where the Ising term (i.e. out-of-plane of the
quantum well) for the 73Ge isotope is predicted to be about 50 times larger than the
in-plane terms [157]. Therefore, if a sufficiently large external magnetic field is applied
in-plane of the quantum well, the fluctuations due to these hyperfine interaction terms
are perpendicular to the quantization axis of the qubit. As a result, their effect on the Lar-
mor frequency of the qubit is limited and also these terms of the hyperfine interaction
are suppressed. However, due to the sensitivity of the g-tensor of the hole spin qubits
to the electric fields, the principle axis of the g-tensor might not align perfectly with the
axis of the heterostructure. Moreover, a small misalignment between the in-plane axis of
the g-tensor and the external magnetic field can lead to a significant tilt of the quantiza-
tion axis. Therefore, the hyperfine interaction can still have a measurable effect on hole
spin qubits in germanium, even when the external magnetic field is almost perfectly in-
plane [127, 158]. If the hyperfine interaction is the dominant mechanism causing the
dephasing of the spin qubits, we would expect the T∗

2 to increase with the value of the
external magnetic field.

Since the SOI for hole spin qubits in germanium is strong, it is expected that charge
noise has a significant effect on the phase coherence. Charge noise comes from ran-
domly fluctuating charge defects, which are present everywhere in the heterostructures,
but mostly at the semiconductor-oxide interface. A model often used for charge noise
is an ensemble of two-level fluctuators, which give rise to a 1/ f noise frequency spec-
trum, as shown in chapter 4. Due to the SOI, the g-tensor

↔
g is sensitive to the electro-

static confinement and can therefore be modulated by charge noise. This variation in
the g-tensor δ

↔
g will lead to change in the Larmor vector: hδfL = µBδ

↔
g B. Again, if the

fluctuation in the electric field are parallel to the quantization axis of the qubit, this will
lead to a change in the Larmor frequency, which will lead to dephasing. From this equa-
tion it is clear that if charge noise, coupling to the qubit via modulation of the g-tensor,
is the dominant noise source, we expect the noise to have a more severe effect when the
external magnetic field increases. Another way the charge noise can couple to the spin
qubits, is via the exchange interaction. The exchange depends on the detuning and the
tunnel coupling, which both depend on the electrostatic confinement, and the exchange
in turn can alter the Larmor frequency. The coherence of the single qubits can therefore
be improved by turning the exchange off.

Comparing results of T1 (≈ 1- 10 ms) and T∗
2 (≈ 300 - 500 ns) measurements, it is clear

that dephasing is the limiting decoherence process for hole spin qubits in germanium.
Measurements of T∗

2 as a function of external magnetic field show that dephasing in-
creases with magnetic field, which give a strong indication that charge noise is the main
noise source [127, 155]. This trend breaks at very low magnetic field, where the differ-
ences in frequencies of the nuclear spin in the substrate limit the phase coherence [127].
There are several measures that could be combined to increase the phase coherence,
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for example, operating at low magnetic field (which will limit the effect of charge noise)
and using isotopically purified germanium in the quantum well (which can eliminate
the hyperfine interaction [159, 160]). Moreover, since changes in the g-tensor parallel to
the quantization axis lead to dephasing, but modulation of the g-tensor perpendicular
to the quantization axis is required for driving, there might exist an orientation for the
quantization axis which minimizes decoherence and at the same time optimizes driv-
ing. Such a configuration in which the qubit is less sensitive to charge noise, but qubit
driving is still efficient, is called a sweet spot. For a given g-tensor, the direction of the
quantization axis is set by the direction of the external magnetic field. Therefore it might
be possible to find a sweet spot by carefully optimizing the direction of the external mag-
netic field [127]. However, for this optimization to be useful, there are two conditions that
need to be met. Firstly, to find a real sweet spot in the direction of the magnetic field, it is
important to work with purified germanium, to not be directly limited by hyperfine noise
when the magnetic field is not in-plane of the g-tensor. Secondly, when scaling to an ar-
ray with multiple qubits, the g-tensors need to be sufficiently uniform such that there is
a common sweet spot for all qubits. The first impression for hole spin qubits might be
that the stronger the interaction, the faster the spin qubit drive, the faster the decoher-
ence. However, it becomes clear from the mechanisms discussed above, that there are
ways around this.

2.10. QUANTUM ERROR CORRECTION
As described above, we try our best to make our qubits as ‘good’ as possible, minimize
the coherent errors: errors due to the operation of the single- and two-qubit gates, cross
talk i.e. errors on qubits due to the driving of the neighbouring qubits and incoherent
errors: errors due to charge noise and hyperfine interaction. Moreover, also errors in the
initialization and the read-out of the qubits need to be minimized. Despite these efforts,
optimizing the qubits and all the operations performed on them well enough to run long
and complicated algorithms, is an (almost) impossible task. Therefore, ways need to be
found to correct errors before they can accumulate and propagate throughout the qubit
register.

In classical computing error correction is widely used. The actual implementation
can be quite complicated but the basic idea behind it, is that the information is en-
coded [161]. For example, we can replace a bit with three copies of itself. If the bit was
0, the encoding becomes 000, if it was 1, it becomes 111. The bit strings 000 and 111 are
called the logical 0 and the logical 1. Now, when an error occurs on one of the bits, there
is redundancy in the system. For instance, if we start out with 000, and after some time
we find that we have 001, we can decode the information and apply a majority vote. It
becomes clear that the right value of our bit was 0. This method of error correction works
only if maximally one error occurred, in other words this error correction protocol will
only give an overall improvement if the probability of an error p is smaller than 0.5.

For quantum computing encoding information by introducing redundancy is much
harder to implement, since quantum error correction comes with additional challenges.
Firstly, it is not possible to perfectly clone a perfect unknown quantum state using an
unitary operation. For the proof see reference [161]. It is therefore impossible to create
redundancy in a quantum system by simply copying the state of the qubit. Secondly, a
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direct measurement of the state of a qubit will collapse the wavefunction, i.e. destroy the
quantum state. It will reduce the state with an amplitude and a phase to a single value.
So even if it would be possible to make copies of the quantum state, comparing them by
measuring the value, detecting where the error has occurred and correcting the quantum
state is impossible, because it was destroyed by the measurement. The third complica-
tion is that where a classical bit is a binary system, a qubit is an analogue system. For a
bit it is sufficient to determine if it is a 0 where it should have been a 1 (or the other way
around) and correct this: a bit flip. A quantum error correction protocol needs to be able
to correct an arbitrary error, there is an infinite amount of possible errors and it would
take infinite precision to correct them.
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Figure 2.8: Simple error correction codes a Shown here is a textbook version of a circuit diagram of the bit flip
code, using two helper qubits to perform syndrome measurements. b Truth table relating the error syndrome
to a bit flip error occurring on the different physical qubits making up the logical qubit. c Circuit diagram of
a different implementation of the bit flip code. Instead of performing syndrome measurements, a conditional
three qubit gate, the Toffoli gate, is used to correct a possible bit flip error. d Circuit diagram of the phase
flip code. This error correction code is very similar to the bit flip code, but due to the Hadamard gates in the
encoding and decoding, this code can correct for a phase flip error.

Remarkably, none of these complications makes quantum error correction funda-
mentally impossible. By explaining the simplest quantum error correction code, the bit
flip code, the solutions that were found to these challenges will become clear. Suppose
we have the situation where our qubit will remain untouched with a probability of (1−p)
and that there is a probability of p that it will experience aπ-rotation around the x-axis of
the Bloch sphere, i.e. a bit flip error. The code to detect for these type of errors is shown
in Fig. 2.8a. The first step in the error correction code is the encoding. The informa-
tion of one physical qubit, |Ψ〉 = α |0〉+β |1〉 is encoded in three physical qubits, forming
one logical qubit: |Ψ〉 = α |000〉+β |111〉. In the bit flip code, the encoding consists of two
CNOT gates, entangling the first qubit with the other two. This is the way in which redun-
dancy can be built into a quantum system: by entangling several physical qubits. Then
comes the part where possible bit flip errors are introduced (box with Ebit), followed by
the error-detection step (blue box in Fig. 2.8a). The error detection consists of two times
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a CNOT gate, between two of the physical qubits in the logical qubit (labeled qubits A,
B and C) and a helper qubit (qubits D and E). The measurement on the helper qubits
gives the error syndrome (Fig.2.8b), which will tell if the quantum state on the physical
qubits is different (measurement outcome 1) or the same (measurement outcome 0). In
this way, an error can be detected, without directly measuring the qubits and therefore
without collapsing the wavefunction. Note that the error syndrome does not contain any
information on the quantum state of the qubits, just on the differences between them.
Based on the error syndrome, the error can be corrected, since the quantum state on the
logical qubit is still intact. The error correction step happens via classical feedback. Since
it becomes clear from the error syndrome where/if a bit flip has occurred, this bit flip can
be undone by applying an X-gate. The final result of this version of the bit flip code, is the
encoded state, i.e. the logical qubit. The fact that this works, not only for full bit flips, but
any X-error, has to do with the quantum nature of the qubits. When an error occurs on
qubit A, B or C it is in a superposition of having a bit-flip error and of not having a bit flip
error. By entanglement with the helper qubit, and the subsequent measurement of the
helper qubit, the state of the qubit will be projected into having an error or not having
an error. Depending on the syndrome, the feedback can consist of a X-gate, instead of an
arbitrary correction.

A different version of the bit flip code, using only three qubits, is shown in Fig. 2.8c.
The encoding of the logical qubit is the same, however, the error correction and detection
are different. Instead of performing syndrome measurements using helper qubits, the
encoding of the logical qubit is reversed after a possible error has occurred. Two CNOT
gates are used to indicate on qubits B and C whether a bit flip error has occurred on
qubit A. Subsequently, a Toffoli gate is used to correct a potential bit flip error on qubit
A, based on the states of qubits B and C. A successful outcome of this version of the bit
flip code is when qubit A has the same quantum state |Ψ〉 as before the encoding step.
Since the three qubit bit flip code can correct for maximum one error, the chance of
getting the state |Ψ〉A back is 1−3p2 +2p3. The bit flip code gives an improvement over
not implementing an error correction code when (1−3p2 +2p3) > (1−p), which is true
for p = 0.5.

Fig. 2.8d shows the circuit diagram of the phase flip code with three qubits. The phase
flip code can correct the other fundamental error on a qubit: an error in the phase of the
qubit, i.e. a Z-error. The difference between the bit flip and the phase flip code is the
encoding for the logical qubit, which becomes |Ψ〉 = α |+++〉+β |−−−〉. As explained
in section 2.9, the lifetime of spin qubits is limited by dephasing. Therefore, correcting
phase errors is more of interest than correcting bit flip errors. An experimental imple-
mentation of the phase flip code is shown in chapter 5. The bit flip code and the phase
flip code can be combined to a quantum error correction algorithm that can correct for
both types of errors, the Shor code. The minimal implementation of this code requires
nine qubits.

Quantum error correction codes such as the bit flip code, phase flip code and Shor
code, are nice as a proof of principle, but in practise they are not very useful to mitigate
errors. This is mainly because these codes assume perfect initialization, encoding and
measurements. These schemes can only correct an error on the encoded qubit, but dur-
ing the encoding, decoding or syndrome measurements and the correction, the physical
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qubits are still vulnerable to errors. Looking at Fig. 2.8, an error can only be corrected
when it happens in the box marked ‘E’ in the circuit diagram. We need an error cor-
rection protocol that prevents errors from propagating from one qubit to another and
turning from an error on a physical qubit to an error on a logical qubit. When this is
achieved, the error correction code will have a better success rate when the number of
physical qubits used for the logical qubit is increased. Moreover, the ultimate applica-
tion of quantum error correction would not be the protection of the information stored
in logical qubits, but the protection of quantum information during the processes of
computation with these logical qubits. It turns out that it is possible to achieve arbitrar-
ily good computation, even using imperfect gates on logical qubits, as long as the chance
of an error on a gate operation is below a certain threshold [84]. This holds the promise
for fault-tolerant quantum computation. There are several error correction codes that
could be made compatible with spin qubits [162]. One which holds most potential, is
the surface code. It is favoured because it only requires nearest-neighbour coupling be-
tween the qubits and it has a relatively high threshold error rate. The development of
spin qubits has now reached the point where the first proof of principle experiments
with error correction codes can be done (see chapter 5 and similar work [163]). Hope-
fully, the development of error correction codes tailored to the properties of spin qubits,
will meet the developments of spin qubits half way on the road to fault tolerant quantum
computing.



3
A TWO-DIMENSIONAL ARRAY OF

SINGLE-HOLE QUANTUM DOTS

Quantum dots fabricated using methods compatible with semiconductor manufacturing
are promising for quantum information processing. In order to fully utilize the potential
of this platform, scaling quantum dot arrays along two dimensions is a key step. Here we
demonstrate a two-dimensional quantum dot array where each quantum dot is tuned
to single-charge occupancy, verified by simultaneous measuring with two integrated ra-
dio frequency charge sensors. We achieve this by using planar germanium quantum dots
with low disorder and small effective mass, allowing the incorporation of dedicated bar-
rier gates to control the coupling of the quantum dots. We measure the hole charge filling
spectrum and show that we can tune single-hole quantum dots from isolated quantum
dots to strongly exchange coupled quantum dots. These results motivate the use of planar
germanium quantum dots as building blocks for quantum simulation and computation.

This chapter has been adapted from F. van Riggelen, N.W. Hendrickx, W.I.L. Lawrie, M. Russ, A. Sammak, G.
Scappucci, M. Veldhorst, Applied Physics Letters 118 (4) (2021) [164].
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3.1. INTRODUCTION
Quantum information requires qubits that can be coherently controlled and coupled
in a scalable manner [102], while quantum error correction and scalable interconnects
strongly benefit from the ability to couple qubits along at least two dimensions [165,
166]. Across all the different qubit technologies, quantum dots [98] fabricated using tech-
niques compatible with standard semiconductor manufacturing are particularly promis-
ing [167]. Furthermore, realizing two-dimensional quantum dot arrays may allow to con-
struct highly scalable qubit tiles such as crossbar arrays [168] supporting quantum error
correction [169] for fault-tolerant quantum computation.

A key challenge is therefore to develop two-dimensional arrays of quantum dots
that exhibit a high level of uniformity, long quantum coherence, and that can be op-
erated with excellent control. Initial research centered around low-disorder gallium ar-
senide (GaAs) heterostructures [108, 110], which advanced to exciting demonstrations
such as coherent spin transfer across an array of quantum dots [170], and the opera-
tion of a two-dimensional quantum dot array [171]. Nonetheless, group III-V materi-
als suffer from hyperfine interaction, resulting in fast spin dephasing and reduced op-
eration fidelity. Instead, group IV materials can be isotopically enriched [159, 160] to
virtually eliminate dephasing due to a nuclear spin bath. This has stimulated research
on silicon and led to orders of magnitude improvement in coherence times [114, 172].
While advances in devices based on silicon heterostructures have led to the operation
of linear arrays containing up to nine quantum dots [173], the relatively large effec-
tive mass of silicon electrons, the presence of valley energy states, and the finite dis-
order complicates progress [174]. Though fabrication is advancing to complementary
metal–oxide–semiconductor (CMOS) foundry-manufactured devices [175, 176], demon-
strations on two-dimensional quantum dot arrays have been limited to reaching single-
electron occupancy in up to three dots within a 2x2 array [177–180]. Reaching simul-
taneously the single-charge regime with all quantum dots in a two-dimensional array
fabricated using CMOS foundry compatible materials remains thereby an outstanding
challenge.

Germanium is rapidly emerging as an alternative material to realize spin qubits [125],
since holes in germanium have favorable properties such as a small effective mass [131],
large excited-state energies due to the absence of valley degenerate states, and strong
spin-orbit coupling for electrically driven single-qubit rotations without the need for ex-
ternal components [123, 181, 182]. High-quality Ge/Si core-shell nanowires enabled the
construction of a triple quantum dot in a linear arrangement, albeit only in the multi-
hole regime [128]. The realization of high-quality strained Ge/SiGe quantum wells [124]
has led to the development of quantum dots [122, 130], demonstration of long hole spin
relaxation times [155], the operation of a single-hole qubit [140], and enabled the execu-
tion of two-qubit logic in germanium [141]. Furthermore, quantum dots in planar ger-
manium are realized using industry compatible techniques [176], promising large-scale
implementations provided that germanium quantum dots can be engineered beyond
linear arrangements.

Here, we realize a two-dimensional quantum dot array using materials compatible
with existing CMOS technology and demonstrate a quadruple germanium quantum dot.
We obtain excellent control over the charge occupancy and the interdot coupling. The
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Figure 3.1: A 2x2 germanium quantum dot grid with two integrated rf sensors (a) False colored SEM image
of a sample similar to the one on which the measurements are performed. The plunger gates of the quantum
dots P are colored in purple, the barrier gates B are colored in green and the aluminum ohmics in yellow, which
serve both as source and drain contacts for rf sensing, as well as charge reservoirs for the quantum dots. (b)
Schematic representation of the potential landscape, illustrating how the plunger and barrier gates control the
quantum dots. In the image, each quantum dot is occupied with a single hole (N=1), which is color coded per
quantum dot (yellow for Q1, green for Q2, blue for Q3, and red for Q4). The charge occupation in a quantum
dot is controlled by a plunger gate, symbolized by a slider above the image with the same color. The sensing
dots are tuned into the multi-hole regime, illustrated by the many energy levels drawn in the quantum dot.
The coupling between the quantum dots, indicated by the arrows, is controlled by a barrier gate, depicted by a
slider below the image.

device consists of the quantum dot grid and an additional two quantum dots on the sides
that are used for radio frequency (rf) charge sensing. We are able to tune each quantum
dot to the single-hole occupancy and we find shell filling as is expected for a circular
quantum dot and with spin degeneracy. This demonstrates a qubit state manifold with
large separation energy, since excited states, such as valley energy states, are absent. We
exploit the integrated barrier gates to gain independent control over the hole occupancy
and the tunnel coupling between neighboring quantum dots. We use this to demonstrate
the single-hole occupancy in the full quadruple quantum dot array as a stepping stone
toward two-dimensional arrays of quantum dot qubits.

3.2. A 2X2 QUANTUM DOT ARRAY IN GERMANIUM

Figure 3.1(a) shows a scanning electron microscopy (SEM) image of a quantum dot grid
and Figure 3.1(b) shows a schematic image of the potential landscape and the control
gates of the quantum dot system. Fabrication is based on a multilayer gate design [155]
and described in Supplementary Information section I. Holes in strained germanium
benefit from a low effective mass, low disorder, and absence of valley states. These assets
ease constraints in fabrication and relax the quantum dot design, which makes it pos-
sible to define a 2x2 quantum dot grid with only two overlapping gate electrodes. The
quantum dots are defined using plunger gates P and are coupled through barrier gates B.
We have fabricated the barrier gates as the first layer and the plunger gates as the second
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Figure 3.2: Charge filling in the individual quantum dots (a) Shown is a charge stability diagram of the double
quantum dot Q1 - Q3 with negligible tunnel coupling (See Supplementary Information section II for the quan-
tum dot pair Q2-Q4). Here, the results are shown as measured with sensor S1, the sensor closest to the quantum
dot pair. We can observe all transitions with both sensors, albeit with reduced sensitivity for the more remote
quantum dots, as shown in Figure 3.4. The hole occupation (NQ1, NQ3) is indicated in the charge stability
diagram. (b) Addition energy for the four quantum dots, extracted from the corresponding stability diagrams
and converted using a lever arm α= 0.19 eV/V. The dashed grey lines correspond to the hole fillings for which
increased addition energy is expected due to shell filling when considering a circular potential landscape and
spin degeneracy (also indicated by orange and blue arrows in (a) for Q1 and Q3 respectively).
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layer, which results in a good addressability of both the tunnel couplings and quantum
dot energy levels. The aluminum ohmics serve as hole reservoirs for the charge sensors.
Controllable loading of the quantum dots is obtained through an additional barrier gate
between the sensor and the quantum dots (BS1 and BS2). The charge occupation in the
dots is measured with the nearby sensing dots. We use rf reflectometry to achieve a high
measurement bandwidth of the sensor impedance, which allows for measuring charge
stability diagrams in real time.

3.3. HOLE FILLING OF QUANTUM DOTS
Figure 3.2(a) shows a charge stability diagram corresponding to quantum dot pair Q1-
Q3. See Supplementary Information, Note 2 for the stability diagram corresponding to
quantum dot pair Q2-Q4. In this measurement we preserve the sensitivity of the sen-
sor, by offsetting the effect of a change in voltage on the plunger gate of the quantum
dots with a small change in voltage on the plunger gate of the sensors. From the linear
charge addition lines in Figure 3.2(a) we infer that the capacitive coupling between the
plunger gate and the neighboring quantum dot is small and does not require compen-
sation. In Figure 3.2(b), we show the addition energies for each of the four quantum dots
in the few-hole regime. We define the addition energy as the energy required for adding
an extra hole to the quantum dot. The addition energies are extracted from the charge
stability diagrams, by analysing the spacing between the addition lines for all the dots.
The change in gate voltage is converted into energy, using a lever arm α = 0.19 eV/V.
Steps are observed for hole occupations N = 2 and N = 6 that are consistent with shell
filling for a circular quantum dot and considering the spin degree of freedom [184, 185].
These experiments also highlight the absence of low-energy excited states such as valley
states, which would give rise to a different shell filling pattern [186]. It is interesting to
observe that quantum dot Q1 and Q4 show shell filling as expected of circular quantum
dots, while for Q2 and Q3 the expected peaks in addition energy are less pronounced.
Moreover, Q2 and Q3 show an increased addition energy for N = 4. We ascribe this differ-
ence to Q2 and Q3 being positioned closely to the sensors quantum dots, which are op-
erated using relatively large negative potentials. The electric field from the sensors might
distort the circular potential to a more elliptical shape, which would in turn modify the
electronic structure and cause an increased addition energy at half-filling [187].

3.4. CONTROLLABLE TUNNEL COUPLING
Having shown control over the hole occupation of the individual quantum dots, we fo-
cus on the interdot tunnel coupling. Figures 3.3(a-c) show charge stability diagrams of
a double quantum dot defined by plunger gates P3 and P4 for different barrier gate po-
tentials, compensating the effect of the change in voltage on the sensor. We find that we
can tune the quantum dots from being fully isolated, to a strongly coupled regime, and
to merging quantum dots, indicating a high level of tunability. Importantly, we reach all
regimes while freely choosing the hole occupancy.

To quantify the tunnel coupling between the quantum dots we analyze the charge
polarization lines. Figure 3.3(d) shows the anticrossing corresponding to the (1,1)-(0,2)
charge configurations. We measure charge sensor response along the detuning axis and
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Figure 3.3: Controllable interdot tunnel coupling. (a,b,c) Charge stability diagram for quantum dot pair Q3 -
Q4 with barrier gate voltage VB34 = -1010.6 mV (a), VB34 = -1055.1 mV (b), and VB34 = -1137.1 mV (c). By varying
the barrier gate voltage we can freely tune the tunnel coupling over a large range. (d) Zoom-in on the relevant
(1,1)-(0,2) charge configuration where we quantify the tunnel coupling. (e) By fitting the charge polarization
line [183] we obtain the tunnel coupling, which is tC = 23.3 ± 0.2 GHz. (f) By varying the gate voltage VB34 we
can control the tunnel coupling up to 40 GHz. Reduced charge sensor sensitivity for higher tunnel coupling
causes the uncertainty in the measurement to increase. The trend of the tunnel coupling corresponds well to
a fit based on the WKB theory (see Supplementary Information section V for further details).
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Figure 3.4: Quadruple quantum dot in germanium (a,b) Charge stability diagram of the four quantum dot
system, obtained by simultaneous readout of S1 and S2. (a) Charge sensor response of sensor S1. (b) Charge
sensor response of S2. While we can observe all transitions with each sensor, we observe a significant larger
sensitivity to the quantum dots neighboring the sensor. (c) Derivative of the combined response signal, clearly
revealing the charge addition lines for each of the quantum dots. (d) Schematic representation explaining the
charge addition lines as measured in (c), confirming the absence of additional lines from spurious quantum
dots or traps and demonstrating a single-hole quadruple quantum dot array. Hole occupation in the dots (NQ1,
NQ2, NQ3, NQ4) is indicated for an empty system, single-hole occupation, and double hole occupation for all
four dots.
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determine the tunnel coupling by fitting the charge polarization lines [183], as shown in
Figure 3.3(e). By changing the barrier gate voltage we can control the tunnel coupling
and find that we can tune the interdot tunnel coupling over a range from completely off
to beyond 40 GHz. Note that we can set larger tunnel couplings, see for example Figure
3.3(c). However, in this regime we are not able to make reliable fittings of the charge
polarization line, due to the reduced charge sensitivity of the sensor, as a result of the
merging of Q3 and Q4.

3.5. A QUADRUPLE QUANTUM DOT
After focusing on the interdot coupling, we now show that we can form a quadruple
quantum dot in the 2x2 array, reaching single-hole occupation for all four quantum dots
simultaneously. With both sensors we can detect charge transitions of each quantum dot
within the array, although a significantly stronger sensitivity is obtained for the quantum
dots neighboring the sensor. In order to conveniently tune and demonstrate the single-
hole occupation for all quantum dots, another virtual gate set is defined (see Supplemen-
tary Information, Note 3), such that the addition lines of all four dots have a distinctive
slope. In Figure 3.4(a) and (b) we show the charge stability diagram as measured by the
individual charge sensors. Taking the derivative of the signal and summing them results
in Figure 3.4(c). The observed charge addition lines are explained in Figure 3.4(d).

3.6. CONCLUSION
In conclusion, we have demonstrated shell filling, tunable interdot coupling, and the
tuning of a quadruple quantum dot to the single-hole states. The shell filling experi-
ments underscore the high-quality of planar germanium quantum dots as a platform for
spin qubits. Moreover, this statement is supported by the demonstration that the tun-
nel coupling between single holes can be tuned over a large range, from isolated quan-
tum dots to strongly coupled and merging quantum dots. This tunability is promising
for quantum simulation with quantum dots such as simulating metal-insulator transi-
tions [169]. Simultaneously, the ability to turn the exchange interaction on and off is
highly advantageous for digital quantum computation and can be used to program two-
qubit logic at their sweet spots. The demonstration of a quadruple quantum dot posi-
tioned in a two-dimensional array is an important stepping stone toward quantum in-
formation processing using standard semiconductor manufacturing.

3.7. SUPPLEMENTARY INFORMATION

NOTE 1: CHARGE STABILITY DIAGRAM Q2-Q4

NOTE 2: VIRTUAL GATES

The data shown in Figure 3d-f of the main text was taken in a virtual gate space of detun-
ing and energy (ϵ34 and U34). The matrix defining the voltages on gates ϵ34 and U34 as a
linear combination of the voltages on gates P3 and P4 is the following:(

VP3

VP4

)
=

(
0.5 0.5
−0.5 0.5

)(
Vϵ34

VU 34

)
(3.1)
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Figure 3.5: Charge filling Q2 - Q4 Shown is a charge stability diagram of the double quantum dot Q2 - Q4 with
negligible tunnel coupling. Here the results are shown as measured with sensor S2, the sensor closest to this
quantum dot pair. The numbers added to the diagram (NQ2,NQ4) indicate the hole occupancy in quantum
dots Q2 and Q4 respectively. The colored arrows correspond to the hole filling for which one would expect a
peak in the addition energy due to the shell filling of a quantum dot with a circular potential and spin degen-
eracy.

For the data shown in Figure 4 of the main text, a virtual gate sets was defined such
that for all four quantum dots the filling of N=1 coincides and that the slope of the addi-
tion lines of all four dots can be distinguished from each other. The voltages on the two
virtual gates e1234 and U1234 were constructed as a linear combination of the voltages
on all the four plunger gates P1 - P4. The matrix defining the virtual gate space is the
following: 

VP1

VP2

VP3

VP4

=


0.65 1.92
−0.38 0.38
0.66 0.77
−0.14 0.42

(
Ve1234

VU 1234

)
(3.2)

During both of these measurements, the effect on the plunger gates of the sensors
were also compensated.

NOTE 3: LEVER ARM
The lever arm, used to convert the applied gate voltage to the detuning energy (meV) in
Figure 3e and 3f of the main text, isα= 0.19 eV/V. This value was obtained by performing
a photon assisted tunneling (PAT) measurement [188] at the (1,1)-(0,2) anticrossing in
virtual gate space of detuning and energy (ϵ34, U34). For a PAT measurement a microwave
field is used to induce the re-population of states. Resonance peaks are observed when
the frequency of the microwave source is equal to the energy difference between two
states, i.e. the resonance frequency is given by h f =

p
ϵ2 +4t 2, where h is Planck’s con-
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stant, f is the frequency of the microwave source, t is the interdot tunneling and ϵ is
the detuning which is given by αδϵ34. This measurement is taken in the regime where
the tunnel coupling was turned off, making the extracting of the lever arm α straight
forward.

To calculate the addition energies as plotted in Figure 1b from the main text, the
same lever arm α = 0.19 eV/V was used. Since the virtual gate matrix defining ϵ34 and
U34 is symmetric for the gates P3 and P4 (see previous section) and the capacitance of
the four plunger gates to the quantum dots underneath is similar (estimated from the
lope of the addition lines from the charge stability diagrams shown in Figure 3.2 and 3.5
in the Supplementary Information), we conclude this as a reasonable assumption.

NOTE 4: TUNNEL COUPLING
For fitting the extracted values for the tunnel coupling we use a model based on tunnel-
ing through a rectangular barrier. In the limit of weak tunneling the tunnel probability
can be approximated by the WKB approximation, which reads for a rectangular barrier
(see Supplementary Materials in Ref. [189]):

|t |2 = 16c
|VB −V0|

(VB −V1)2 exp

(
−2b

√
2mα

ħ2 |VB −V0|
)

. (3.3)

Here, V0 is the voltage when the barrier height is equal to the energy of the hole, V1 is
the voltage when the barrier height is zero,α is the lever arm which translates the barrier
voltage into energy units, b is the width of the barrier, m is the effective mass of the
hole, and c is an overall scaling factor. By fitting the experimentally determined values we

extract V0 = -17.6 mV, V1 =-25.2 mV, and b
p

2mα/ħ2 = 2.41 1p
mV

, and c = 2.82×109 GHz2

mV .
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A FOUR-QUBIT GERMANIUM

QUANTUM PROCESSOR

The prospect of building quantum circuits [87, 165] using advanced semiconductor man-
ufacturing makes quantum dots as an attractive platform for quantum information pro-
cessing [98, 167]. Extensive studies on various materials have led to demonstrations of two-
qubit logic in gallium arsenide [111], silicon [189, 191–196], and germanium [141]. How-
ever, interconnecting larger numbers of qubits in semiconductor devices has remained
an outstanding challenge. In this chapter, we demonstrate a four-qubit quantum pro-
cessor based on hole spins in germanium quantum dots. We find single-qubit gate fi-
delities as high as 99.99%. Furthermore, we define the quantum dots in a two-by-two
array and obtain controllable coupling along both directions. Qubit logic is implemen-
ted all-electrically and the exchange interaction can be pulsed to freely program one-qubit,
two-qubit, three-qubit, and four-qubit operations, resulting in a compact and highly con-
nected circuit. We execute a quantum logic circuit that generates a four-qubit Greenberger-
Horne-Zeilinger state and we obtain coherent evolution by incorporating dynamical de-
coupling. These results are an important step towards quantum error correction and quan-
tum simulation with quantum dots.

This chapter has been adapted from N.W. Hendrickx, W.I.L. Lawrie, M. Russ, F. van Riggelen, S.L. de Snoo, R.N.
Schouten A. Sammak, G. Scappucci, M. Veldhorst, Nature 591 (7851), 580-585 (2021) [126],
and W.I.L. Lawrie, M. Rimbach-Russ, F. van Riggelen, N.W. Hendrickx, , S.L. de Snoo, A. Sammak, G. Scappucci,
J. Helsen, M. Veldhorst, Nature Communications 14 (1), 3617 (2023) [190].
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4.1. INTRODUCTION

Fault-tolerant quantum computers utilizing quantum error correction [165] to solve rel-
evant problems [87] will rely on the integration of millions of qubits. Solid-state imple-
mentations of physical qubits have intrinsic advantages and remarkable progress has
been made using qubits based on superconducting circuits [99]. While the development
of quantum dot qubits has been at a more fundamental stage, their resemblance to
the transistors that constitute the building block of virtually all our electronic hardware
promises excellent scalability to realize large-scale quantum circuits [98, 167]. Funda-
mental concepts for quantum information, such as the coherent rotation of individual
spins [108] and the coherent coupling of spins residing in neighbouring quantum dots
[110], were first implemented in gallium arsenide heterostructures. The low disorder in
the quantum well allowed the construction of larger arrays of quantum dots and to real-
ize two-qubit logic using two singlet-triplet qubits [111]. However, spin qubits in group
III-V semiconductors suffer from hyperfine interactions with nuclear spins that severely
limit their quantum coherence. Group IV materials naturally contain higher concentra-
tions of isotopes with a net-zero nuclear spin and can furthermore be isotopically en-
riched [160] to contain only these isotopes. In silicon electron spin qubits, quantum co-
herence can therefore be sustained for a long time [114, 172] and single qubit logic can be
implemented with fidelities exceeding 99.9 % [115, 116]. By exploiting the exchange in-
teraction between two spin qubits in adjoining quantum dots or closely separated donor
spins, two-qubit logic could be demonstrated [189, 191–196]. Silicon, however, suffers
from a large effective mass and valley degeneracy [174], which has hampered progress
beyond two-qubit demonstrations.

Holes in germanium are emerging as a promising alternative host material for spin
qubits in quantum dots [125]. It combines favourable properties such as a host material
with a natural abundance of zero nuclear spin isotopes that can furthermore be enriched
for long quantum coherence [159, 181], low effective mass and the absence of low-energy
valley states [131] (allowing device design requirements to be relaxed), low charge noise
(providing a quiet qubit environment) [129], and low disorder (enabling reproducible
and well controlled quantum dots) [122, 130]. In addition, strained germanium quan-
tum wells defined on silicon substrates are compatible with semiconductor manufactur-
ing [176]. Furthermore, hole states in general can exhibit strong spin-orbit coupling that
allows for all-electric operation [123, 141, 175, 182] and that removes the need for micro-
scopic components such as microwave striplines [108, 191, 193, 196] or nanomagnets
[189, 192, 197, 198], which is particularly beneficial for the fabrication and operation of
two-dimensional qubit arrays. The realization of strained germanium quantum wells in
undoped heterostructures [124] has led to remarkable progress. In two years, germanium
has progressed from the formation of stable quantum dots and quantum dot arrays [122,
130, 164], to demonstrations of single qubit logic [140], long spin lifetimes [155], and the
realization of fast two-qubit logic in germanium double quantum dots [141].

4.2. A TWO-BY-TWO SPIN QUBIT DEVICE

Here we advance beyond beyond two-qubit logic in semiconductor quantum dots, exe-
cuting a four-qubit quantum circuit using a two-dimensional array of quantum dots. We
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Figure 4.1: Four germanium hole spin qubits. a, Scanning electron microscope image of the four quantum dot
device. We define qubits underneath the four plunger gates indicated by P1-P4. The qubits can be measured
using the two charge sensors S1 and S2. The scale bar corresponds to 100 nm. b, Schematic drawing of the
Ge/SiGe heterostructure. Starting from a silicon wafer, a germanium quantum well is grown in between two
Si0.2Ge0.8 layers at a depth of 55 nm from the semiconductor/dielectric interface. c, Four quantum dot charge
stability diagram as a function of two virtual gates. At the vertical and diagonal bright lines a hole can tunnel
between two quantum dots or a quantum dot and its reservoir respectively. As a result of the virtual axes ϵ12,34
and U1234 (for the definition see Supplementary Information), the addition lines of the different quantum dots
have different slopes, allowing for an easy distinction of the different charge occupations indicated in the white
boxes as (N1, N2, N3, N4), with Nm the hole occupation in the mth quantum dot. d, Energy diagram illustrating
the latched Pauli spin blockade readout. When pulsing from the (1,1) charge state to the (0,2) charge state, only
the polarized (P) triplet states allow the holes to move into the same quantum dot, leaving an (0,2)S charge
state (green). Interdot tunnelling is blocked for the two antiparallel (AP) spin states, since the (0,2)T state is
energetically unavailable. As a result the hole on the first quantum dot will tunnel to the reservoir leaving an
(0,1) charge state (red), thus locking the different spin states into different charge states. e, Readout visibility as
defined by the difference in readout between either applying no rotation and a π-rotation to Q2. The readout
point is moved around the (1,1)-(0,2) anticrossing of the Q1Q2 system and a clear readout window can be
observed, bounded by the different (extended) reservoir transition lines, as indicated by the dotted lines.
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achieve this by defining the four-qubit system on the spin states of holes in gate-defined
germanium quantum dots. Fig. 4.1a shows a scanning-electron-microscopy (SEM) im-
age of the germanium quantum processor. The quantum dots are defined in a strained
germanium quantum well on a silicon substrate [129] (Fig. 4.1b) using a double layer
of electrostatic gates and contacted by aluminium ohmic contacts. A negative potential
on plunger gates P1-P4 accumulates a hole quantum dot underneath that hosts qubits
Q1-Q4, which can be coupled to neighbouring quantum dots through dedicated barrier
gates. In addition, two quantum dots are placed to the side of the two-by-two array, and
the total whole system comprises six quantum dots. Via an external tank circuit, we con-
figure these additional two quantum dots as radio-frequency charge sensors for rapid
charge detection. Using the combined signal of both charge sensors [164], we measure
the four quantum dot stability diagram as shown in Fig. 4.1c. Making use of two vir-
tual gate axes U12,34 and ϵ12,34, we arrange the reservoir addition lines of the four quan-
tum dots to have different relative slopes of approximately −1 mV mV−1, +1 mV mV−1,
−0.75 mV mV−1, 0.75 mV mV−1 for Q1, Q2, Q3, and Q4 respectively. Well defined charge
regions (indicated by (N1, N2, N3, N4) in the white boxes, with Nm the number of holes
in the mth quantum dot) are observed, with vertical anticrossings marking the different
interdot transitions.

For the qubit readout we make use of Pauli-spin blockade to convert the spin states
into a charge signal that can be detected by the sensors. In germanium, however, the
spin-orbit coupling can significantly lower the spin lifetime during the readout process,
in particular when the spin-orbit field is perpendicular to the external magnetic field,
reducing the readout fidelity [140, 147]. Here, we overcome this effect by making use of
a latched readout process [149, 150]. During the readout process, shown in Fig. 4.1d and
e, a hole can tunnel spin-selectively to the reservoir as a result of different tunnel rates of
both quantum dots to the reservoir. After this process, the system is locked in this charge
state for the (long) reservoir tunnel time Tin. The high level of control in germanium al-
lows tuning Tin to arbitrarily long time scales by changing the potential applied to the
corresponding reservoir barrier gate. We set Tin, Q2 = 200 µs and Tin, Q4 = 2.4 ms (see
Supplementary Information, Fig. 4.10), both significantly longer than the signal integra-
tion time Tint = 10 µs. Furthermore, we project all qubit measurements on the Q1Q2 and
Q3Q4 readout pairs, such that the spin-orbit field is oriented along the direction of the
external magnetic field B0 = 1.05 T to minimize spin relaxation. The latched PSB readout
process is described in more detail in the Methods chapter of this thesis.

4.3. CHARACTERISING THE SINGLE QUBITS
Coherent rotations can be implemented by applying electric microwave signals to the
plunger gates that define the qubits, exploiting the spin-orbit coupling for fast driv-
ing [123, 182]. We initialize the system in the |↓↓↓↓〉 state by sequentially pulsing both
the Q1Q2 and Q3Q4 double quantum dot systems from their respective (0,2)S states
adiabatically into their (1,1)T− states. We then perform the qubit manipulations, after
which we perform the spin readout as described above. We observe qubit resonances at
fQ1 = 2.304 GHz, fQ2 = 3.529 GHz, fQ3 = 3.520 GHz, and fQ4 = 3.882 GHz, corresponding
to effective g -factors of gQ1 = 0.16, gQ2 = 0.24, gQ3 = 0.24, and gQ4 = 0.26. We note that
these g -factors can be electrically modulated using nearby gates as a means of ensuring
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Figure 4.2: Coherent Rabi rotations. The qubits can be rotated by applying a microwave tone resonant with
the Zeeman splitting of the qubit. Coherent Rabi rotations can be observed as a function of the microwave
pulse length tp for all qubits Q1-Q4. Pup indicates the single-shot spin-up probability.

individual qubit addressability [155], as can also be observed in Fig. 4.6. Fig. 4.2 shows
the single-shot spin-up probability P↑ for each of the four qubits after applying an on-
resonant microwave burst with increasing time duration tp, resulting in coherent Rabi
oscillations.

To quantify the quality of the single qubit gates, we perform benchmarking of the
Clifford group [199] (Supplementary Information, Fig. 4.12) and find single qubit gate fi-
delities exceeding 99 % for all qubits. The fidelity of Q3 reaches to 99.9 %, which is com-
parable to benchmarks for quantum dot qubits in isotopically purified silicon [115, 116].
We find spin lifetimes between T1 = 1−16 ms (Supplementary Information, Fig. 4.13a),
comparable to values reported before for holes in planar germanium [155]. Furthermore,
we observe T ∗

2 to be between 150-400 ns for the different qubits (Supplementary Infor-
mation, Fig. 4.13b), but are able to extend phase coherence up to T CPMG

2 = 100 µs by
performing Carr-Purcell-Meiboom-Gill (CPMG) refocusing pulses (Supplementary In-
formation, Fig. 4.14b), more than two orders of magnitude larger than previously re-
ported for hole quantum dot qubits [123, 141, 175]. This indicates the qubit phase co-
herence is mostly limited by low-frequency noise, which is confirmed by the predom-
inantly 1/ f α noise spectrum we observe by Ramsey and dynamical decoupling noise
spectroscopy (Supplementary Information, Fig. 4.15).

4.4. OPTIMIZING SINGLE QUBIT PERFORMANCE
In this section we take a small detour from the initial four qubit work and look into the
characterization of the single qubits and the single qubit gates at two different values for
the external magnetic field, Bext = 1 T and Bext = 0.65 T. We do this to provide a compar-
ison between the different regimes of coherence, qubit response, and qubit resonance
frequency spacing. Fig. 4.3 shows how the spin dephasing time of the qubits Q1-Q4
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(T ∗
2,Q1 −T ∗

2,Q4) performs at different magnetic fields, via Ramsey decay experiments.

To estimate the quality of each qubit, we perform randomized benchmarking. This
technique provides the average fidelity of a gate set applied to each qubit. Operations
randomly selected from the Clifford group are applied to each single-qubit initialised
in a known state. A final recovery Clifford C−1 is applied to bring the qubit back to its
original state. Imperfections in the applied gates and gradual qubit decoherence result
in a decay of the recovered state probability as the number of applied Clifford opera-
tors (NC ) is increased, allowing the extraction of a fidelity by fitting the decay [199]. Each
element of the Clifford group can be constructed from a variety of generator gates. We
construct a Clifford group from a minimal generator set Gi ∈ {Xπ/2, Yπ/2} (see Supple-
mentary Information). We find this set advantageous since it contains on average 3.217
qubit π/2 rotations (generators) per Clifford, that differ only by a software phase shift.
This means the estimated Clifford fidelity is a direct indicator of the generator fidelity,
by equally weighting the generators of the same length [200]. Working with generators of
equal length has the additional advantage of simplifying the experimental implementa-
tion of benchmarking qubits simultaneously [201].

Fig. 4.4a,b show the randomized benchmarking sequences for Q1-Q2 and Q3-Q4
respectively. A red (green) measurement window indicates PSB readout on the Q1Q2
(Q3Q4) double quantum dot pair. Each qubit is initialised in the spin down state. For
each sequence length NC , 32 random permutations of NC Cliffords are averaged to give
the final trace, each of which comprises 1500 single shot measurements. An exponen-
tial decay is fit to the resulting trace (see Supplementary Information), yielding a circuit
level fidelity FQi , from which an average generator fidelity Fπ/2

Qi
= 1− (1−FQi )/(2×3.217)

can be extracted for each qubit. Holes in germanium allow for very fast electrical driv-
ing, with Rabi frequencies exceeding hundreds of MHz [202, 203]. However, rapid qubit
manipulation is not always optimal for coherent qubit control, with high powers lead-
ing to enhanced systematic errors in qubit operation arising from effects such as sample
heating or pulse imperfections. Indeed we find a strong dependence of the single-qubit
fidelities on the drive speed. Fig. 4.4c-f show the generator infidelities (1-Fπ/2

Qi
) as a func-

tion of qubit drive speed. Despite being able to drive qubit rotations in as fast as 10 ns,
we find that the associated single-qubit fidelity suffers as a result, visible by a sharp de-
crease in the fidelity for qubits Q1 and Q3. Fidelity in these cases could be limited by a
number of mechanisms, such as quantum dot anharmonicities [143, 204] or systematic
Pauli errors due to gate tuning. We also observe change in the resonance frequency of
each qubit as a result of large applied microwave powers, where the single-qubit fidelity
is observed to be lower. From the analysis we obtain that there is an optimum in the
qubit driving speed (see Supplementary Information, Fig 4.16).

Fig. 4.4g-j show the randomized benchmarking data for the optimal tπ. We extract
generator fidelities above 99 % for each qubit in the array, with qubit Q3 performing the
best with F Q3

π/2 = 99.992(1) %, where the error on the last digit is given by the 95 % con-
fidence interval of the fit uncertainty. For single-qubit randomized benchmarking, we
expect a fully decohered state to exhibit a blocked state probability of about PBlocked ≈
0.5. However in the presence of finite exchange and classical cross-talk between the ac-
tive qubit and the readout qubit in the spin blockade pair, state leakage can occur to all
four states in the two-qubit subspace, resulting in a readout signal of about PBlocked =
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0.329. We find that for the case of qubit Q4, the plateau of the spin blocked probability
approaches the expected value of the fully depolarized two-qubit subspace for all driv-
ing powers. This is likely due to the high power required to drive Q4 via plunger gate
P2 as a consequence of the larger distance between qubit and drive-gate, resulting in a
large degree of cross-talk on qubit Q3. To account for state leakage, a second exponen-
tial decay is added for fitting randomized benchmarking traces for qubit Q4, yielding two
characteristic decay constants (see Supplementary Information). From this analysis, we
calculate a generator fidelity Fπ/2

Q4 = 99.7(2)%, containing a leakage rate of Lπ/2
Q4 = 0.07(2)%

per generator.
For further optimization of the single qubit gate fidelites, the operation amplitude

and angle of the external magnetic field are important factors. In this work, we bench-
mark single-qubit gate fidelities at in-plane external magnetic fields of 0.65 T and 1 T.
Spin dephasing times are higher at 0.65 T, however driving speeds and resonance fre-
quency spacings are lower. We observe that trying to drive faster at lower field results
in more frequency crowding due to the additional power required. This leads to larger
cross-talk effects and will ultimately limit fidelities when driving all qubits simultane-
ously, but allows for the highest single-qubit fidelities when driven sparsely owing to the
enhanced coherence.
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Figure 4.3: Spin dephasing time at 1 T and 0.65 T. a Ramsey sequences on qubits Q1-Q4 at magnetic field Bext
= 1 Tesla. Extracted spin dephasing times at 1 T for qubits Q1, Q2, Q3 and Q4 are T∗

2,Q1 = 186 ± 19 ns, T∗
2,Q2 =

119 ± 14 ns, T∗
2,Q3 = 323 ± 52 ns and T∗

2,Q4 = 147 ± 26 ns. b At 0.65 T the dephasing times increase to T∗
2,Q1 =

276 ± 22 ns, T∗
2,Q2 = 166 ± 14 ns, T∗

2,Q3 = 472 ± 31 ns and T∗
2,Q4 = 228 ± 15 ns.

4.5. CONDITIONAL ROTATIONS
Universal quantum logic can be accomplished by combining the single qubit rotations
with a two-qubit entangling gate. We implement a conditional rotation (CROT) gate [189,
192, 193, 196], where the resonance frequency of the target qubit depends on the state
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Figure 4.4: Single-qubit randomised benchmarking at 0.65 Tesla. a,b Random Clifford sequences applied to
each qubit. Each qubit in the array is prepared in the spin down state. NC -1 randomly selected Cliffords are
applied to a single qubit, after which a recovery Clifford (C−1) is applied bringing the system back to the | ↓↓>
state. Each sequence is repeated 32 times with different random permutations of Cliffords. Readout occurs via
PSB on one of the two readout pairs Q1Q2 (a, red) or Q3Q4 (b, green). c-f Dependence of qubit fidelity on tπ. An
optimal tπ occurs due to a trade-off between decoherence (high tπ) and errors introduced at low tπ including
gate calibration errors and driving non-linearities. Error bars reflect the fit uncertainty. g-j Best single-qubit
benchmarks for each qubit. All native π/2 fidelities except Fπ/2

Q4 exceed 99.9 %, with Fπ/2
Q3 exceeding four nines.

These traces correspond to the respective highlighted points in (c-f).

of the control qubit, mediated by the exchange interaction J between the two quantum
dots. The exchange interaction between the quantum dots is controlled using a virtual
barrier gate (details in the Supplementary Information), coupling the two quantum dots
while keeping the detuning and on-site energy of the quantum dots constant and close to
the charge-symmetry point. We demonstrate CROT gates between all four pairs of quan-
tum dots in Fig. 4.5, proving that spin qubits can be coupled in two dimensions. Because
the target qubit’s resonance frequency depends on the control qubit state, the CROT is
characterized by the fading in and out of the target qubit rotations as a function of the
control qubit pulse length. For driving the two separate transitions, the pattern is shifted
by a π rotation on the control qubit. When the control qubit is in a different readout pair
from that of the target qubit (rows 3 and 4 in Fig. 4.5), we can independently observe the
single qubit control and two-qubit target qubit rotations in the two readout systems. By
setting the pulse length at φQ = π, a fast controlled-X (CX) gate can be obtained within
approximately tp = 100 ns between all of the four qubit pairs.

The low effective mass and high uniformity in the material allow full control over the
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Figure 4.5: Controlled rotations between all nearest-neighbour qubit pairs. By selectively enabling the ex-
change interaction between each pair of qubits, we can implement two-qubit CROTs. The pulse sequence
consists of a single preparation gate with length θ on the control qubit (labelled green), followed by a con-
trolled rotation on one of the two resonance lines of the target qubit (labelled in red). Both qubit pairs Q1Q2
and Q3Q4 are read out in single-shot mode, and the position of the eye on top of each column indicates the
respective readout pair. Each of the four main columns corresponds to CROTs on a different qubit, as indi-
cated by the red dot. Rows one and two show the results for the horizontal interaction (dark green), while rows
three and four show the two-qubit interaction for the vertical direction (light green) with respect to the external
magnetic field, as indicated in the top left. Rows one and three correspond to driving the lower frequency flow
conditional resonance line, while rows two and four show driving of the other resonance line fhigh.
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Figure 4.6: Resonant one, two, three, and four-qubit gates. a, Circuit diagram of the experiment performed in
panels c-l. All eight permutations of the three control qubit eigenstates are prepared, with R being either no
pulse or a π-pulse on the respective qubit. Next, the resonance frequency of the target qubit is probed using
a π-rotation with varying frequency fq . Finally, the prepared qubits are projected back and the target qubit
state is measured. By changing the different interdot couplings J , we can switch between resonant single, two,
three, and four-qubit gates as indicated in the dashed boxes. b, Turning on the exchange interaction between
the different qubit pairs splits the resonance frequency in two, four, and eight for 1, 2 and 3 enabled pairs
respectively. The colours of the line segments correspond to the colours in panels c-l. c, By turning all exchange
interactions off, the qubit resonance frequency of Q2 is independent of the prepared state of the other three
qubits, resulting in an effective single-qubit rotation. d-e, By turning on a single exchange interaction J12 (d) or
J23 (e), the resonance line splits in two. The additional offset of the resonance frequencies is caused by electric
modulation of the hole g -factor. f-i, Turning on both exchange interactions to the neighbouring quantum dots
results in the resonance line splitting in four, for Q2 (f), Q1 (g), Q3 (h), Q4 (i) respectively. j, Turning on the
exchange interactions between three pairs of quantum dots J12, J23, J41 splits the resonance line in eight. k-l,
Resonant driving of the three-qubit gate (k) and the four-qubit gate (l) with Q2 being the target qubit, shows
Rabi driving as a function of pulse length tp, demonstrating the coherent evolution of the operation.
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interdot coupling, using dedicated tunnel barrier gates. To demonstrate this, we mea-
sure the qubit resonance frequency as a function of the eight possible permutations of
the different basis states of the other three qubits, as illustrated in Fig. 4.6a,b. Without
any exchange present, the resonance frequency of the target qubit should be indepen-
dent on the preparation of the other three qubits, as schematically depicted in Fig. 4.6c.
When the exchange interaction with one of the neighbouring quantum dots is enabled,
the resonance line splits in two (Fig. 4.6d,e), allowing for the operation of the CROT gate.
When both barriers to the nearest-neighbours are pulsed open at the same time, we ob-
serve the expected fourfold splitting of the resonance line (Fig. 4.6f-i). This allows us to
performing a resonant i -Toffoli three-qubit gate (Fig. 4.6k and Supplementary Informa-
tion, Fig. 4.17), which has theoretically been proposed as an efficient manner to create
the Toffoli, Deutsch, and Fredkin gates [205]. We observe a difference in the efficiency
at which the different conditional rotations can be driven, as can also be seen from the
width of the resonance peaks in Fig. 4.6f-i. This is expected to happen when the exchange
energy is comparable to the difference in Zeeman splitting and is caused by the mixing
of the basis states due to the exchange interaction between the holes [206] (see details in
the Supplementary Information). Finally, we open three of the four virtual barriers and
observe the resonance line splitting in eight, corresponding to all eight permutations
of the control-qubit preparation states (Fig. 4.6j). This enables us to execute a resonant
four-qubit gate and in Fig. 4.6l we show the coherent operation of a three-fold condi-
tional rotation (see Supplementary Information, Fig. 4.17 for the coherent operation of
the other resonance lines). The good control over the interdot coupling thus enables a
demonstration of the localized nature of the exchange interaction [98], coupling the dif-
ferent spins by electric gate pulses.

4.6. CONTROLLED PHASE GATES
While the demonstration of these conditional rotations can be beneficial for the sim-
ulation of larger coupled spin systems, the ability to dynamically control the exchange
interaction allows for faster two-qubit operations. We efficiently implement controlled
phase (CPHASE) gates [191, 192, 196] between the different qubit pairs by adiabatically
pulsing the exchange interaction with the respective virtual barrier gate. We control the
length and size of the voltage pulse (Fig. 4.7) to acquire a controlled-Z (CZ) gate, in which
the antiparallel spin states accumulate a phase of exactly θ =πwith respect to the paral-
lel spin states. We demonstrate this in Fig. 4.8a,b, where we employ a Ramsey sequence
to measure the conditional phase. After the exchange pulse UCZ, we apply a software Z
gate to both the target and control qubits to correct the individual single qubit phases.
The virtual barrier pulses enable fast CZ gates between all neighbouring qubit pairs, all
executed well within 10 ns (details in Table 4.3).

To prepare our system for quantum algorithms, we implement decoupling pulses
into the multi-qubit sequences to extend phase coherence [192], as is demonstrated in
Fig. 4.8c,d. We perform a CPHASE gate of length t between qubits Q2 and Q3 (Fig. 4.8d,
left, triangles) and compare the decay of the resulting exchange oscillations for the situ-
ations with (orange) and without (blue) a Y2 echo pulse. We observe an increased decay
time of τ= 220 ns for the decoupled CPHASE gate, as compared to τ= 130 ns for a stan-
dard CPHASE gate. Next, we entangle Q2 and Q3 by forming the |Ψ+〉 Bell state and let
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Figure 4.7: Tuning of the CZ-gates. a,b, The CZ-gates between all four qubit pairs are tuned using a Ramsey
sequence, as shown in Fig. 4.8, where the spin-up probability is measured as a function of the phase θ of the
final π/2 pulse as well as the depth of the exchange pulse VBmn , with m and n the relevant qubits (a). We
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of the exchange pulses (1 ns). The acquired phase θ0 is obtained by fitting each line to P = A cos(θ+θ0)+ y0,
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∆θ =π, for the situation where the control qubit is |↓〉 (blue) compared to |↑〉 (orange). The barrier gate voltage
at which this occurs is obtained from the intersection of two locally linear fits to the extracted acquired phase
(b).

the system evolve for time 2t (Fig. 4.8d, right, circles). We then disentangle the system
and measure the spin-up probability of Q3 as a function of the evolution time. Without
the decoupling pulse, we observe a loss of the two-qubit coherence after a character-
istic time τ = 200 ns. However, by applying an additional Y2 pulse to both Q2 and Q3,
we can extend this time scale beyond 2 µs, sufficient to perform a series of single and
multi-qubit gates, owing to our short operation times.

4.7. A FOUR-QUBIT ENTANGLED STATE

We show this by coherently generating and disentangling a four-qubit Greenberger-
Horne-Zeilinger (GHZ) state (see Fig. 4.9). Making use of the fast two-qubit CZ gates,
as well as a decoupling pulse on all qubits, we can maintain phase coherence through-
out the experiment. We perform parity readout on both the Q1Q2 (red) and Q3Q4 (green)
qubit system at different stages of the algorithm (I-IX). Both qubit systems are sequen-
tially readout after each experiment and the observed blocked state fraction is normal-
ized to the readout visibility. We prepare a varying initial state by applying a microwave
pulse of length tprep to Q3, as can be seen at point I. After applying CZ gates between
all four qubits, the system resides in an entangled GHZ type state at point IV/V, for a
X(π/2) preparation pulse on Q3. The effective spin state oscillates between the antipar-
allel |1010〉 and |0101〉 states as a function of tprep, resulting in a high readout signal for
all t . The small oscillation that can still be observed for the Q1Q2 system, is caused by
a small difference in readout visibility for the two distinct antiparallel spin states. Next,
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Figure 4.8: CPHASE gate and dynamical decoupling. a, Circuit diagram of the experiment performed in panel
b. The CPHASE gate is probed by performing a Ramsey sequence on the target qubit for both basis states of
the control qubit. The phase of the second X(π/2) gate (indicated by X) is swept by performing an update of
the microwave phase through quadrature modulation. Additionally, a phase update is performed on both the
target and control qubit to compensate for any single qubit phases picked up as a result of the gate pulsing
to achieve a CZ gate. b, The spin-up probability of the target qubit (in bold) as a function of the phase θ of
the second X gate for the control qubit initialized in the |↓〉 (blue) and |↑〉 (red) state. Measurements for the
inverted target and control qubits in Supplementary data Fig. 4.18c. By applying an exchange pulse and single
qubit phase updates, we achieve a CZ gate at θ = 0 rad. c, Circuit diagrams of the experiment performed in
panel d. The phase coherence throughout the two-qubit experiment is probed using a Ramsey sequence, both
for the case with J on (top) and off (bottom) and both with (orange) and without (blue) applying an echo
pulse. d, Spin-up probability as a function of the experiment length, for the situation with exchange on (left,
triangles) and off (right, circles). From the decay data we extract characteristic decay times τ of τon = 130 ns,
τon, echo = 220 ns, τoff = 200 ns, and τoff, echo = 2100 ns (details in the Supplementary Information).
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Next, a Y2 decoupling pulse is applied, after which we disentangle the GHZ state again (circuit diagram in a).
Pulses pictured in the same column are applied simultaneously. The initial state of Q3 is varied by applying
a preparation rotation of length tt ext pr ep. For different stages throughout the algorithm (dashed lines), we
measure the non-blocked state probability as a function of t for both the Q1Q2 and Q3Q4 readout system,
normalized to their respective readout visibility. At the end of the algorithm the qubit states correspond to the
initial single qubit rotation, and the clear oscillations confirm the coherent evolution of the algorithm from
isolated qubit states to a four-qubit GHZ state. (b).

we deploy a Y2 decoupling pulse to echo out all single qubit phase fluctuations during
the experiment (Supplementary Information, Fig. 4.19). After disentangling the system
again, we project the Q3 qubit state by applying a final X(π/2) gate, and indeed recover
the initial Rabi rotation as a demonstration of the coherent evolution of a multi-spin
entangled state (see Supplementary Information, Fig. 4.20).

4.8. CONCLUSION
The demonstration of a two-by-two array of four qubits shows that quantum dot qubits
can be coupled in two-dimensions and multi-qubit logic can be executed. The hole
states used are subject to strong spin-orbit coupling, enabling all-electrical driving of the
spin state, beneficial for scaling up to even larger systems. By optimizing the value of the
external magnetic field, the duration of the driving pulse and driving power it is possible
to reach generator fidelities up until Fπ/2 = 99.992(1) %. In future experiments the per-
formance of two-qubit gates can be further optimized, by making use of tailored pulses
and quantifying their performance using benchmarking sequences. The ability to freely
couple one, two, three and four spins using electric gate pulses has great prospects both
for performing high-fidelity quantum gates as well as studying exotic spin systems using
analog quantum simulations. Furthermore, we envision that the low-disorder in planar
germanium and the potential to leverage advanced semiconductor manufacturing will
be beneficial for the realization of scalable qubit tiles [168, 207, 208] for fault-tolerant
quantum processors.
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4.9. SUPPLEMENTARY INFORMATION

NOTE 1: VIRTUAL GATE MATRICES

In order to map out the transition lines of all four quantum dots in a single measure-
ment, we define the following virtual gates [209] as linear combination of the physical
gates P1-P4, as well as the sensor plunger gates PS1 and PS2. We write:

P1
P2
P3
P4

PS1
PS2

=



1 1
−1 1

0.75 1
−0.75 1
−0.1 −0.4
−0.05 −0.51


(
∆ϵ12,34
∆U1234

)

with ∆ϵ12,34 and ∆U1234 the virtual gates used in Fig. 4.1c of the main text.
In addition, we define a virtual gate system to allow independent control of the dif-

ferent interdot couplings and quantum dot detuning and on-site energy and write

P1
P2
P3
P4

B12
B34
B23
B41
PS1
PS2


=



1.2600 0.7400 0.3100 −0.1700 −0.5500 0 0 −0.4900
−1.3900 0.6100 −0.3600 −0.3600 −1.0300 0 −0.6000 0
0.2800 −0.2800 1.3900 0.6100 0 −0.4700 −0.6000 0
−0.3000 −0.3000 −1.3900 0.6100 0 −0.9100 0 −0.9200

0 0 0 0 1.0000 0 0 0
0 0 0 0 0 1.0000 0 0
0 0 0 0 0 0 1.0000 0
0 0 0 0 0 0 0 1.0000

−0.0900 −0.1500 0.0100 −0.0300 0 0 0 0
0 0 −0.0900 −0.1500 0 0 0 0





ϵ12
U12
ϵ34
U34
vB12
vB34
vB23
vB41



with ϵmn the detuning voltage and Umn the voltage controlling the on-site energy of
quantum dots m and n, vBmn the virtual barrier gate controlling the coupling between
quantum dots m and n, and Pn , Bmn and PS1−2 the various physical gates.

NOTE 2: LATCHED READOUT MECHANISM

To reduce readout infidelity as a result of spin relaxation, we make use of charge latching
through the reservoir [149, 150]. We achieve this effect by pulsing into the area in the
(0,2) charge region bounded by the extended (1,1)-(0,1) (fast) and the extended (1,1)-
(1,2) (slow) transitions (dotted lines in Fig. 4.1e). When the interdot tunnelling into the
(0,2) charge state is blocked, the hole in the first quantum dot will quickly tunnel into the
reservoir. This locks the spin state in the metastable (0,1) charge state, with the decay to
the (0,2) ground state governed by the slow tunnel rate Tin between the second quantum
dot and the reservoir.

We operate in a parity readout mode where we observe both antiparallel spin states
to be blocked (Extended Data Fig. 4.11a,c), opposite to conventional parity Pauli spin
blockade readout [148]. This may be explained by the strong spin-orbit coupling mixing
the parallel (1,1) states with the (0,2) state and causing strong relaxation of the upper
parallel spin state. We note that both singlet-triplet readout for single state discrimina-
tion and parity readout are compatible with the execution of quantum algorithms [148].
However, by both increasing the interdot coupling and elongating the ramp between
the manipulation and readout point, we can transition into a state selective readout
where only the |↓↑〉 state results in spin blockade (Extended Data Fig. 4.11b,d), with a
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slightly reduced readout visibility. Optimal parity readout is obtained for a ramp time of
tramp ≈ 20 ns, while single state readout is optimal at tramp ≈ 800 ns.

Each charge sensor can detect transitions in both qubit pairs, but is most sensitive
to their respective nearby quantum dots. We maximize the readout visibility as defined
by the difference between the readout of a spin-up and spin-down state by scanning
the readout level around the relevant anticrossing. This is illustrated for the Q1Q2 pair
in Fig. 4.1e, where a clear readout window with maximum visibility can be observed
bounded between the (extended) reservoir transitions of the two quantum dots.

NOTE 3: FITTING DECAY SINGLE QUBIT BANCHMARKING
Standard fitting of randomized benchmarking decays assumes a single exponential de-
cay of the form PBlocked = A × F Nc + c, where A represents the visibility of the system, F
is the circuit level fidelity, Nc is the number of Clifford sequences, and c should be equal
to the average signal of the |↓,↓〉 and |↑,↓〉 subspace (where the first index corresponds
to the qubit being benchmarked). However, for qubit Q4, and for the high power regime
of qubits Q1-3, we observe that the blocked signal plateaus to values corresponding to
the fully decohered two-qubit subspace, indicating state leakage. In this case, we fit with
two exponential decays PBlocked = A1 × (1−ϵ)Nc + A2 × (1−L)Nc + c, where c is set to the
average signal of the four two-qubit states in the readout pair. Here, ϵ and L correspond
to the leakage-free and leakage error rates respectively, from which a circuit level fidelity
can be extracted F = 1−ϵ−L [210]. The estimate for leakage error rate is always taken to
be the longer decay rate.

NOTE 4: GENERATION OF THE SINGLE-QUBIT CLIFFORD SET
We quantify the quality of the single-qubit gates on all qubits by performing random-
ized benchmarking using the Clifford group C 1 = {Cn ∈U1|Cn PC †

n = P } with the single-
qubit Pauli group P = {I, X, Y, Z}. All 24 elements of the Clifford group are generated from
a minimal set, Cn = ∏

gi∈G gi with G = {Xπ/2,Yπ/2}. The average number of elementary
gates per Clifford is 3.217. All 24 Clifford gates are provided in Table 4.1.

NOTE 5: CONDITIONAL ROTATION GATES
To characterize the CROT gates, we perform a series of qubit pulses, consisting of a sin-
gle qubit control pulse (green) and a target qubit two-qubit pulse (red), as indicated in
the diagram in Fig. 4.5. The length of both the control pulse θcontrol as well as the target
qubit pulse φQ1-Q4 are varied, with tp(φ=π) = 50−110 ns (details in Table 4.2). The con-
ditional rotations are performed on all four target qubits (four double columns) for both
the horizontally interacting qubits (rows 1 and 2), as well as the vertically interacting
qubits (rows 3 and 4), by driving the |↓↓〉-|↑↓〉 transitions with flow (rows 1 and 3), as well
as the inverse |↓↑〉-|↑↑〉 transitions with fhigh (rows 2 and 4), with |QtargetQcontrol〉. We then
perform a measurement on both readout pairs by sequentially pulsing the Q1Q2 (left
sub-columns), and the Q3Q4 qubit pairs (right sub-columns) to their respective readout
points. When driving the |↓↓〉-|↑↓〉 transition of the qubit pairs used for readout (row 1),
we apply an additional single-qubitπ-pulse to the preparation qubit to preserve symme-
try with the other measurements, as the control qubit also serves as the readout ancillary
qubit.
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Clifford Composition
C1 I
C2 Yπ/2

C3 Xπ/2

C4 Yπ/2Xπ/2

C5 Xπ/2Yπ/2

C6 Yπ/2Yπ/2

C7 Xπ/2Xπ/2

C8 Yπ/2Xπ/2Xπ/2

C9 Yπ/2Yπ/2Xπ/2

C10 Yπ/2Xπ/2Yπ/2

C11 Yπ/2Yπ/2Yπ/2

C12 Xπ/2Xπ/2Xπ/2

C13 Xπ/2Xπ/2Yπ/2

C14 Xπ/2Yπ/2Yπ/2

C15 Yπ/2Xπ/2Yπ/2Yπ/2

C16 Yπ/2Yπ/2Xπ/2Yπ/2

C17 Xπ/2Xπ/2Xπ/2Yπ/2

C18 Yπ/2Xπ/2Xπ/2Xπ/2

C19 Yπ/2Yπ/2Xπ/2Xπ/2

C20 Xπ/2Yπ/2Yπ/2Yπ/2

C21 Yπ/2Yπ/2Yπ/2Xπ/2

C22 Yπ/2Yπ/2Yπ/2Xπ/2Yπ/2

C23 Yπ/2Xπ/2Xπ/2Xπ/2Yπ/2

C24 Yπ/2Xπ/2Yπ/2Yπ/2Yπ/2

Table 4.1: Single-qubit Clifford sequences and their composition via the minimal generator set. We bench-
mark by selecting a random sequence of Cliffords from the table below excluding C1, and calculate the recov-
ery Clifford that projects the system back into its original state. We only use a gate set containing π/2 rotations
around the Bloch Sphere, so the gates Xπ/2 and Yπ/2 are explicitly referring to a rotation of π/2 around the x-
axis and y-axis of the Bloch sphere of a single-qubit respectively. A Yπ/2 rotation is just an Xπ/2 rotation with a
π/2 software phase correction. There are on average 3.217 generators per Clifford composition. The extracted
fidelity then corresponds exactly to the π/2 rotation fidelity.

The controlled phase gate is achieved by applying a voltage pulse to the virtual bar-
rier gate. This pulse consists of a ramp up, a plateau, and a ramp back to ensure adia-
baticity. The ramp and gate durations of the different controlled phase gates are indi-
cated in Table 4.3).

NOTE 6: SHIFT IN RABI FREQUENCY DUE TO EXCHANGE

When exchange interaction is present in the quantum dot system, the energy levels of
the qubit are modified and the qubit basis states hybridize. Conditional driving of the
spin states is a direct consequence of the shift of the energy levels, which allows for con-
trolled multi-qubit gates as previously employed to drive two-qubit gates [189, 191, 192,
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211]. The hybridization of the qubit states on the other hand gives rise to conditional
Rabi frequencies that also depend on the strength of the exchange interaction [211]. Fur-
thermore, the exchange interaction can become anisotropic in the presence of spin-orbit
coupling [206]. When only considering the exchange interaction between neighbouring
quantum dots, a general Hamiltonian can be written for the four quantum dots in the
(1,1,1,1) charge regime as:

H = ∑
〈i , j 〉

S i ·J i j S i +
4∑

i=1

(
B+Bac cos(2π f t +φ)

) ·S i , (4.1)

where the first sum runs along every neighbouring quantum dot pair 〈i , j 〉with the corre-
sponding tensorial exchange interaction J i j . We note that the term B consists of both
the Zeeman effect due to the external magnetic field, and the contribution due to the
spin-orbit interaction. We also explicitly separate the static Zeeman interaction from the
field induced by the electric driving.

We take D to be the unitary matrix which diagonalizes Hamiltonian (4.1) for Bac = 0,
e.g., D†H(Bac = 0)D = 1. Now, the effective Rabi amplitude between the eigenstates of
the undriven Hamiltonian |ξ〉 and |ζ〉 in the adiabatic limit of exchange is given by:

Ω|ξ〉→|ζ〉 =
1

4
〈ξ|D†BacD |ζ〉 , (4.2)

where the prefactor 1/4 is coming from the spin and the rotating wave approximation.
Therefore, the Rabi amplitude depends on the exact form of the exchange interaction, as
well as which transition is driven.

NOTE 7: FITTING OF THE TWO-QUBIT DECAY DATA
In order to extract the decay time scale in Fig. 4.8d of the main text, we fit the exchange
interaction data to the model function P = A cos(2π( f0 + tδ)t +φ0)exp(−t/τ)+ y0, with
amplitude A, frequency f0, phase offset φ0, and offset y0. We note that we allow for a
small linear shift of the precession frequency δ, typically of size δ = 10 MHz/µs, as a
result of pulse imperfections in these relatively large and extended exchange pulses.
We observe a small creep towards the final pulse amplitude to be present, most likely
caused by the skin effect in the coaxial lines, explaining the small observed frequency
shift throughout the experiment. The data for the situation with no exchange present is
fitted to the exponential decay P = exp(−t/τ)+y0, from which we deduce the decay time
scale τ.

NOTE 8: SPECIFICATION OF THE CROT AND CZ GATE TIMES
The different two-qubit gate times are listed below both for the CROT (Table 1) as well as
the CZ (Table 2) gates.
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target transition control tπ,control (ns) tπ,target (ns)

1 |↓↓〉-|↓↑〉 2 67 85
1 |↓↑〉-|↑↑〉 2 67 95
1 |↓↓〉-|↓↑〉 4 61 104
1 |↓↑〉-|↑↑〉 4 61 108
2 |↓↓〉-|↓↑〉 1 45 105
2 |↓↑〉-|↑↑〉 1 41 105
2 |↓↓〉-|↓↑〉 3 38 113
2 |↓↑〉-|↑↑〉 3 38 100
3 |↓↓〉-|↓↑〉 2 65 53
3 |↓↑〉-|↑↑〉 2 65 83
3 |↓↓〉-|↓↑〉 4 49 83
3 |↓↑〉-|↑↑〉 4 45 68
4 |↓↓〉-|↓↑〉 1 45 105
4 |↓↑〉-|↑↑〉 1 45 120
4 |↓↓〉-|↓↑〉 2 38 68
4 |↓↑〉-|↑↑〉 2 38 74

Table 4.2: CROT driving times used in Fig. 4.5 of the main text.

two-qubit system tramp (ns) tgate (ns)

Q1Q2 3 6
Q2Q3 10 4
Q3Q4 10 5
Q4Q1 3 6

Table 4.3: CZ gate details.
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Figure 4.10: Decay of the readout signal. We measure the difference in charge sensor signal between the
blocked and non-blocked states as a function of the measurement time at the readout point. An exponen-
tial decay can be observed related to the tunnel time Tin of Q2 (Q4) to the reservoir for the Q1Q2 (a) and Q3Q4
(b) readout system respectively.
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manipulation phase and the readout phase and measure the blocked state probability of the four different two
qubit basis states by applying preparation π pulses to the relevant qubits, both for the Q1Q2 readout system
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a single state readout (b,d). The dashed line corresponds to the optimized readout ramp time used for the
measurements in this work.
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spin relaxation time T1 is measured at the manipulation point by applying a πX -pulse separated by a wait-
ing time twait from the readout phase. By fitting the normalized spin-up fraction to P = exp(−twait/T1), we

find spin relaxation times of T Q1
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2 is measured using a
Ramsey sequence consisting of two X(π/2)-pulses separated by a waiting time τ. By fitting the data to P =
cos(2π∆ f τ+φ0)exp(−(τ/T∗

2 )α), with ∆ f the frequency detuning, φ0 a phase offset and α the power of the
decay, we find spin dephasing times of T∗

2,Q1 = 201 ns, T∗
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Q1 to Q4, respectively.



4

66 4. A FOUR-QUBIT GERMANIUM QUANTUM PROCESSOR

400

400

π/2 π π/2

τ τ

0 5 10

0.75

1
P

bl
oc

ke
d

0 5 10
0.5

0.75

0 5 10
2  ( s)

0.5

0.75

P
bl

oc
ke

d

0 5 10
2  ( s)

0.5

0.75

100 102

N

100

101

102

T 2C
PM

G
 (

s)

100 102

Total evolution time ( s)

0

0.5

1

N
or

m
al

iz
ed

 e
ch

o 
am

pl
itu

de

a b

Q1
Q2
Q3
Q4

1
10
150
1500

Nπ

πX/2 πX/2
τ/2τ/2

πY

N

Figure 4.14: Hahn echo and Carr-Purcell-Meiboom-Gill (CPMG) measurements on the different qubits.
a, Using a Ramsey sequence with an additional X(π)-pulse, low-frequency fluctuations of the qubit reso-
nance frequency can be echoed out, allowing to probe the Hahn-echo decay time T Hahn

2 . Fitting the data

to P = exp(−(τ/T Hahn
2 )α), we find Hahn echo times of T Hahn

2,Q1 = 4.3µs, T Hahn
2,Q2 = 5.5µs, T Hahn

2,Q3 = 3.8µs, and

T Hahn
2,Q4 = 2.9µs. b, Using a CPMG sequence of repeated Y(π) pulses, we can increase the echo bandwidth and

extend the phase coherence to over T CPMG
2,Q1 > 100 µs. The phase coherence can be observed to increase with

the amount of refocusing pulses Nπ (left), with exemplary decay traces for Q1 plotted in the right panel.
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Figure 4.15: Noise spectroscopy using Ramsey and CPMG measurements. We measure the effective noise
spectrum acting on the qubit, both tracing the resonance frequency using repeated Ramsey measurements
[115] (in blue), as well as by using the filter function of a dynamical decoupling measurement [172, 212] (in
red). Dashed blue and red lines are fits to the Ramsey and CPMG data respectively. The black line is a fit
to the combined data set, where the weight of both sets is normalized for the amount of data points. The
effective noise can be observed to increase towards low frequencies, consistent with the upwards trend of
T CPMG

2 observed in Supplementary Information Fig. 4.14b. The effective charge noise measured in this het-

erostructure is Scn( f ) = 6 µV/
p

Hz at 1 Hz [129]. Combining this with a typical resonance frequency slope of
d f /dV = 5 MHz/mV [155], results in an effective resonance frequency noise power of S( f ) = 9 ·108 Hz2/Hz,
comparable to what is observed experimentally, suggesting coherence is limited by charge noise in our system.
The effect of charge noise could be mitigated by careful optimization of the electric field environment [154] or
moving to a multi-hole charge occupancy, screening the influence of charge impurities [213], potentially en-
abling even higher fidelity operations. Alternatively, noise could originate in the nuclear spin bath present in
natural germanium, which could be overcome by isotopically enriching the material.
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Figure 4.17: Driving of all resonance lines of the coupled three- and four-qubit system. a, Both the coupling
between Q2 and Q1 as well as Q2 and Q3 are enabled, using the respective virtual barrier gates. This splits the
resonance line in four, as shown in Fig. 4.6 of the main text. Driving each of the separate lines, results in the
conditional rotation of Q2 depending on the states of Q1 and Q3. We measure the spin up probability Pup after
driving each of the four resonance lines for time tp, for all four permutations of the Q1 and Q3 basis states as
initial state, following the colour scheme of Fig. 4.6. The driving power is adjusted for each of the transitions
to synchronize the π-rotation times, with a f1

= 330 mV, a f2
= 500 mV, a f3

= 280 mV, and a f4
= 400 mV, for

f1 − f4 from low to high. b, Similarly, by additionally opening up the coupling between Q3 and Q4 as well, the
resonance line splits in four and we can drive all separate lines individually. The eight lines are driven using the
same microwave power in this figure and a strong difference in rotation frequencies can be observed for the
different transitions f1 − f8 from low to high. This also results in a small off-resonant driving effect for some of
the lines.
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Figure 4.19: Time evolution of the four-qubit GHZ state. a, Circuit diagram of the experiments performed in
panels b,c. We first apply a preparation pulse to Q3 and then generate a four qubit GHZ-state analogous to
Fig. 4.9. Next we let the entangled system evolve for time twait, then apply an optional Y2 decoupling pulse and
finally disentangle the GHZ-state again. b,c, We vary both the waiting time and preparation time tprep and plot
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decoupling pulse, the coherence of the entangled system can be maintained for a prolonged time scale, with a
characteristic decay time of τ= 390 ns.
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Figure 4.20: Dephasing of the four-qubit GHZ state. We model the quantum circuit performed in Fig. 4.9 and
account for qubit decoherence by applying a depolarizing channelΛλ(ρ) =λρ+[(1−λ/d)]1, with ρ the density
matrix, λ the depolarization parameter, d the dimension of the Hilbert space and 1 the identity operator. We
plot the expected measurement outcomes for qubit pairs Q1Q2 (blue) and Q3Q4 (orange). The top row corre-
sponds to the case of perfect coherence in each panel. In the centre row, we fit the depolarization parameter to
the measurement data. The finite rotations visible in panels IV and V in Fig. 4.9 can be reproduced by including
gate or readout errors in the model. Finally, the bottom row corresponds to a full depolarization of the state.
If the qubit system is completely dephased at any point in time, no recovery of the signal can be observed in
panel IX.





5
PHASE FLIP CODE WITH

SEMICONDUCTOR SPIN QUBITS

The fault-tolerant operation of logical qubits is an important requirement for realizing a univer-
sal quantum computer. Spin qubits based on quantum dots have great potential to be scaled to
large numbers because of their compatibility with standard semiconductor manufacturing. Here,
we show that a quantum error correction code can be implemented using a four-qubit array in ger-
manium. We demonstrate a resonant SWAP gate and by combining controlled-Z and controlled-S−1

gates we construct a Toffoli-like three-qubit gate. We execute a two-qubit phase flip code and find
that we can preserve the state of the data qubit by applying a refocusing pulse to the ancilla qubit.
In addition, we implement a phase flip code on three qubits, making use of a Toffoli-like gate for the
final correction step. Both the quality and quantity of the qubits will require significant improve-
ment to achieve fault-tolerance. However, the capability to implement quantum error correction
codes enables co-design development of quantum hardware and software, where codes tailored to
the properties of spin qubits and advances in fabrication and operation can now come together to
advance semiconductor quantum technology.

This chapter has been adapted from F. van Riggelen, W.I.L. Lawrie, M. Russ, N.W. Hendrickx, A. Sammak, M.
Rispler, B.M. Terhal, G. Scappucci, M. Veldhorst, npj Quantum Information 8 (1), 124 (2022) [214].
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5.1. INTRODUCTION

A universal quantum computer may be able to address a range of challenges [87–89], but will re-
quire many logical qubits for fault-tolerant operation [215]. While errors on individual qubits are
unavoidable, logical qubits can be encoded in multiple physical qubits, facilitating error correc-
tion codes that preserve the quantum state [165]. There are several ways to encode logical qubits
that allow for the correction of different errors using a variety of error-correction strategies. The
simplest error correction codes, the bit flip code and the phase flip code [216–220], correct for the
fundamental type of error after which they are named. One of the most promising error correc-
tion codes is the surface code [221], which can correct any error affecting a sufficiently low num-
ber of qubits. Using an error correction code, however, can only help to achieve low logical error
rates when all error rates on the physical qubits (of initialization, control and readout) are below a
threshold, dependent on the protocol.

The relevance of quantum error correction has spurred significant research in a multitude
of platforms and exciting progress has been made in superconducting qubits [222–225], solid-
state qubits using NV centers in diamond [226–228], and trapped-ion qubits [229, 230]. Semicon-
ductor qubits based on spins in quantum dots have not yet advanced to match the larger qubit
counts of competing technologies [231], but important progress has been made in achieving high-
fidelity operations. Fast and high-fidelity readout [149, 232], single-qubit control [115, 116, 126,
190], two-qubit logic [117–119], and resonant three-qubit and four-qubit gates [126] have been
demonstrated in separate experiments.

Quantum wells in planar germanium heterostructures (Ge/SiGe) can bring together advan-
tages of several semiconductor quantum dots platforms [125]. Like silicon, natural germanium
contains nuclear-spin-free isotopes and can be isotopically purified [159, 160]. Holes in Ge/SiGe
have a low effective mass [131], relaxing the fabrication requirements of nanostructures. More-
over, the strong spin-orbit interaction allows for fast and all-electric qubit operation [123, 141,
175, 182]. The spin-orbit interaction also creates a channel through which charge noise can cou-
ple to the spin states, currently limiting the coherence time. A dephasing time T∗

2 = 800 ns has
been reported for single spin qubits [141] and T∗

2 = 1 µs for singlet-triplet qubits operated at low
magnetic fields [233]. Using dynamical decoupling sequences, coherence times could be extended
up to T2 = 100 µs [126]. On the other hand, hole spin qubits in Ge/SiGe do not suffer from valley
degeneracy [131], which still presents a major challenge for electrons in silicon [174, 234]. Further-
more, advancements in heterostructure growth have yielded low disorder and charge noise [129].
These characteristics have facilitated the development of planar germanium quantum dots [122]
and quantum dot arrays [130], spin relaxation times up to 32 ms [155], single-hole qubits [140],
singlet-triplet qubits [233], two-qubit logic [141], and universal operation of a four-qubit germa-
nium quantum processor [126]. The spin-orbit coupling in germanium avoids the need to imple-
ment components such as striplines and nanomagnets, promising scalability in two dimensions
[126, 164], crucial for the implementation of error correction codes [165].

Here, we perform quantum error correction on a two-by-two array of spin qubits in germa-
nium. Similar to other spin qubit platforms, hole spin qubits have long relaxation times [155],
such that the dominant type of decoherence is dephasing. We therefore focus on the implemen-
tation of a rudimentary phase flip code. In order to realize this, we implement a controlled-Z (CZ)
gate, a controlled-S−1 (CS−1) gate and a native resonance SWAP gate [152]. Using the CZ and CS−1

gates, together with single qubit gates, we construct a Toffoli-like gate. Additionally, we show that
we can coherently transfer phase information between the data and ancilla qubits and implement
the majority vote for error correction of the phase flip code on three qubits.
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5.2. PHASE FLIP CODE

The error correction code considered here is a three-qubit phase flip code [161], the steps of which
are depicted in Figure 5.1a. At the start of the experiment, the data qubit could in principle hold
any quantum state |Ψ〉 = α |0〉+β |1〉 and both ancilla qubits start in the basis state |0〉. In the en-
coding step, the state of the data qubit is mapped to the ancilla qubits and the system is brought
into the state α |+++〉+β |−−−〉. After the encoding, we intentionally induce errors either by de-
terministically implementing a rotation around the Z axis of the Bloch sphere with angle ϕ (Z(ϕ)),
a full phase flip Z(ϕ = π) with a probability p, or by leaving the qubits idle for some time. In the
decoding step, we disentangle the logical qubit, where all single phase errors lead to a unique error
syndrome. In the final step of the code, a phase error is corrected. The ancillas are not measured,
but the data qubit is corrected using a three-qubit gate depending on the error syndrome of the
ancilla qubits [235]. This correction protocol is capable of correcting any phase error Z(ϕ) on a sin-
gle qubit, but it cannot correct phase errors that occur on different physical qubits simultaneously,
nor can it handle errors in the encoding, decoding and correction steps.
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Figure 5.1: Error correction circuit diagram and properties of the four spin qubit register. (a) Quantum error
correction circuit using one data qubit and two ancilla qubits. Qubits are encoded to a logical state (beige) in
which they are resilient against single-qubit phase errors (soft red), since these errors result in distinct states
of the ancilla qubits which, after the decoding (turquoise), can be used to correct the data qubit (grey). (b)
Schematic drawing giving an impression of the electrostatic potential of the quantum device. Using electro-
static potentials on metallic gates, four quantum dots are defined, each containing a single hole spin qubit.
The qubits are indicated with a color: qubit 1 (Q1) in blue, qubit 2 (Q2) in orange, qubit 3 (Q3) in yellow and
qubit 4 (Q4) in purple. The spin states are read out by spin-to-charge-conversion using latched Pauli blockade
using the two charge sensors, S1 and S2, indicated in red and green respectively. (c) Table showing the relevant
time scales of the four qubits used in this work. The spin relaxation time is measured on the same device but
at a higher magnetic field [126].
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5.3. PROPERTIES OF THE FOUR QUBIT REGISTER
The implementation of the phase flip code strongly depends on the design and properties of the
quantum device. The quantum dots are defined in a strained germanium quantum well, using two
layers of metallic gates and low resistance Ohmic contacts are made by diffusing aluminium con-
tacts directly into the quantum well [126, 130]. Figure 5.1b gives an impression of the potential
landscape which is formed by applying negative voltages on four plunger gates, forming quantum
dots underneath. Each quantum dot is occupied by a single hole spin. The coupling between the
quantum dots is controlled by dedicated barrier gates. We construct virtual barrier and plunger
gates at the software level, to independently control the detuning, on-site energy, and exchange
[126]. Two additional quantum dots (S1 and S2) act as charge sensors and are operated using ra-
dio frequency reflectometry for rapid readout [126]. Spin state readout is achieved using spin-to-
charge-conversion in the form of latched Pauli spin blockade (PSB) [126, 236] (see Supplementary
Information, Note 1). We can read out the spin state of Q1 and Q2 using S1 (readout system Q1Q2,
red) and the spin state of Q3 and Q4 using S2 (readout system Q3Q4, green).

An external magnetic field of 0.65 T is applied in plane of the quantum well, resulting in energy
splittings of 1.393 GHz, 2.192 GHz, 2.101 GHz and 2.412 GHz for Q1, Q2, Q3 and Q4 respectively,
between the spin down |↓〉 (which we define to be |0〉) and spin up (|1〉). Here, we use the conven-
tion of an X (Y) gate as a π/2 rotation, X2 (Y2) as a π rotation and X−1 (Y−1) as a −π/2 rotation
around the x̂ (ŷ) axis of the Bloch sphere [192]. Single qubit rotations are implemented by electric
dipole spin resonance.

The choice of two-qubit gate is also dictated by the properties of the device. Fast controlled-Z
(CZ) gates [191] are possible by controlling the exchange interaction using the barrier gates [126].
The CZ gate is calibrated using a Ramsey experiment [192], where we use a Tukey shaped pulse to
turn exchange on and off. Details of this experiment can be found in the Supplementary Informa-
tion, Note 2. We use CZ gates between Q1 and Q4 and between Q3 and Q4 for the entangling and
disentangling in the phase flip code.

5.4. TWO-QUBIT PHASE FLIP CODE
As a stepping stone towards the three-qubit phase flip code, we first implement a two-qubit phase
flip code. The two-qubit code consists of the same steps (encode, phase errors, decode, and cor-
rect) but differs from the three-qubit code in that a phase error can only be corrected on the data
qubit. However, it does demonstrate that information can be coherently transferred between data
and ancilla qubits.

The compiled gate set of the two-qubit phase flip code is depicted in Figure 5.2a. We use Q4
as data qubit and Q1 as ancilla qubit. The encoding (beige) is performed by a Hadamard-CZ-
Hadamard sequence [161], where the Hadamards are replaced by Y−1 gates. The phase errors are
induced by leaving the qubits idle for some time (soft red). Since this code should correct for a
phase error on the data qubit, one would expect that the dephasing time of the ancilla qubit Q1
is the limiting factor. Ramsey experiments (Figure 5.2e) yield pure dephasing times (T∗

2 ) of 0.28 ±
0.1 µs and 0.23 ± 0.1 µs for Q1 and Q4 respectively. These are comparable to the decay time (τ) of
0.26±0.01µs corresponding to the two-qubit phase flip code, shown in Figure 5.2b. The fact that
the phase errors on the ancilla qubit are limiting can be seen even more clearly when a refocus-
ing pulse is applied to the ancilla qubit (blue box in Figure 5.2a). The result of this experiment is
shown in Figure 5.2c and gives τ= 1.86 ± 0.05 µs. We have also run this experiment with the data
qubit starting in the basis state |↓〉 (see Supplementary Information, Note 4). The result is shown
in Figure 5.2d and gives τ= 2.31 ± 0.02 µs. For comparison, the results of a Hahn echo experiment
are shown for both Q1 and Q4 in Figure 5.2e. We extract THahn

2 = 2.72 ± 0.05 µs and 3.26 ± 0.04
µs for Q1 and Q4 respectively. The two-qubit phase flip code is also performed with Q3 as ancilla



5.5. RESONANT SWAP, CS−1 AND TOFFOLI-LIKE GATE

5

75

a

b

Y-1

Y-1Y-1

Z Y

Y Y

Z Z
twait twait

Y2

e

c d

|ψ〉

|↓〉

Q4

Q1

Figure 5.2: Two-qubit phase flip code. (a) Circuit diagram. The encoding, decoding and correction are imple-
mented using a combination of Y, Y−1 and CZ gates. By adding a wait time (twait) after the encoding, phase
errors will occur due to the dephasing of the qubits. Q4 is the data qubit and Q1 the ancilla qubit. (b-d) Pup as
a function of twait when executing the two-qubit phase flip code, which gives a decay time τ. Results for the
data qubit prepared in |Ψ〉 = X|↓〉 and through single qubit gates projected to a basis state for readout, without
an echo pulse Y2 (b), with an echo pulse Y2 (c), and with an echo pulse with the data qubit prepared to |Ψ〉 = |↓〉
(d). (e) For comparison we show the individual qubit dephasing T∗

2 and coherence THahn
2 times for Q1 (blue)

and Q4 (purple).

qubit instead of Q1 (see Supplementary Information, Note 4), in which case we find τ = 3.16 ±
0.03 µs. Note that when a different ancilla qubit is used (Q3 instead of Q1), but the same data qubit
(Q4), τ changes. The fact that τ is limited by the decoherence of the ancilla qubit, instead of the
data qubit, shows that the quantum information is indeed transferred to the ancilla qubit and we
implemented the two-qubit phase flip code successfully.

5.5. RESONANT SWAP, CS−1 AND TOFFOLI-LIKE GATE
Since we use PSB readout, we can only read out the state of an individual qubit when the state of
the other qubit in the readout system is known. Therefore, when using Q4 as data qubit and Q3 as
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one of the ancilla qubits, it is necessary to reinitialize Q3. We enable this by performing a SWAP gate
on Q3 and Q2, with Q2 initialized to the state |↓〉. Implementing a diabatic SWAP gate is difficult due
to the relatively large Zeeman energy difference between Q2 and Q3 [146, 211]. While a SWAP can
be compiled from a series of CZ gates and single-qubit operations, here we implement a resonant
SWAP [152] by applying an electric pulse as depicted in Figure 5.3a to the barrier gate. This pulse
is an oscillating exchange pulse, resonant with the difference in Zeeman energy of Q2 and Q3,
superimposed on a Tukey shaped pulse (see the Supplementary Information, Note 3 for details on
calibration). Figure 5.3a shows the circuit diagram to demonstrate resetting the state of Q3 using
the SWAP. The result is shown in Figure 5.3b, reading out either system Q1Q2 (red) or system Q3Q4
(green). This measurement shows that the states of Q2 and Q3 are swapped, but imperfections
in the readout and initialisation and in the calibration of the resonant exchange pulse result in a
small residual amplitude on Q3.

Figure 5.3c shows the circuit diagram to demonstrate the controlled-S−1 (CS−1) gate. The cal-
ibration of the CS−1 gate is similar to the CZ gate (see Supplementary Information, Note 2), how-
ever, for the CS−1 gate the exchange pulse is calibrated to give a phase difference of -π/2 between
the experiments with and without a preparation pulse on the control qubit. This is demonstrated
in Figure 5.3d, where the results of a Ramsey experiment are shown with (blue) and without (black)
an X2 pulse on the control qubit Q1.

The Toffoli gate is a three-qubit gate, also called Controlled-Controlled-NOT gate. In the three-
qubit phase flip code, the combination of the decoding step and the Toffoli gate performs the
majority vote. A resonant i-Toffoli was demonstrated in previous work [126], which would be the
fastest implementation when working in a regime where the exchange is on [205]. However, the
qubit states are also strongly sensitive to noise in this regime. Here, we implement a Toffoli-like
gate composed of CZ and CS−1 gates (Figure 5.3e). This is equal to a Toffoli gate up to single and
two-qubit rotations on the control qubits [237, 238], which are irrelevant in the protocol under
study [220]. The matrix representing of this gate is shown in the Supplementary Information, Note
6. We test the Toffoli-like gate by applying it to different input states, as shown in Figure 5.3e. Here a
Rabi pulse X(θ) is applied to control qubit Q1 and the state of the target qubit Q4 is measured using
readout system Q3Q4. Figure 5.3f shows the result with (pink) and without (black) an additional
preparation pulse on the second control qubit, Q3. If neither of the control qubits is in the |↑〉 state
(when X(θ = 0)) or when only one control qubit is in the |↑〉 state (when X(θ = π) on Q1), the target
qubit remains in the |↓〉 state. Only when both control qubits are in the |↑〉 state, the target qubit
flips. The result of a similar experiment, where a Rabi pulse X(θ) is applied to the other control
qubit, Q3, is shown in the Supplementary Information, Note 6. By applying a Rabi pulse X(θ) on
Q1 (Q3), it is shown that this implementation of the Toffoli-like gate works for all X(θ) |↓〉 of Q1
(Q3).

5.6. THREE-QUBIT PHASE FLIP CODE
We now turn to the three-qubit phase flip code, of which the circuit diagram is shown in Figure
5.4a. The four qubit system is initialized to the |↓↓↓↓〉 state, after which we prepare the data qubit,
Q4, in a state |Ψ〉. After the encoding step (beige), refocusing pulses are applied to all three qubits.
The errors are implemented by either sweeping the phase Z(ϕ) or by applying a full phase flip Z(ϕ
= π) with probability p (soft red). Subsequently, the qubits are decoded (turquoise). The correction
step (grey) is implemented with the Toffoli-like gate shown in Figure 5.3e. The data qubit state is
projected through single qubit gates to |↓〉, the states of Q3 and Q2 are swapped and finally the
data qubit, Q4, is read out using readout system Q3Q4.

This quantum error correction code corrects for a full phase flip as well as an arbitrary Z(ϕ)
rotation on a single qubit. When a phase error Z(ϕ) occurs on a qubit, it is in a superposition of
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Figure 5.3: SWAP, CS−1 and Toffoli-like gate. (a) A resonant SWAP gate is implemented by applying a Tukey
shaped pulse with an oscillation superimposed to the barrier gate between Q2 and Q3. It is tested using the
depicted circuit diagram. (b) To demonstrate the SWAP gate, a Rabi pulse X(θ) is applied to Q3, followed by a
SWAP gate between Q2 and Q3. Then, either Q2 is read out using readout system Q1Q2 (red) or Q3 is read out
using readout system Q3Q4 (green). (c) Circuit diagram of the experiment demonstrating the CS−1 gate. (d)
The CS−1 gate is obtained by calibrating the phase difference to be −π/2, for the experiments with (blue) and
without (black) a X2 gate on the control qubit Q1. (e) Circuit diagram of the Toffoli-like gate (gray) composed
of CS−1 and CZ gates. (f) Demonstration of the Toffoli-like gate with target qubit Q4 and control qubits Q1 and
Q3. An X(θ) pulse is applied to Q1 and the final state of Q4 is measured using readout system Q3Q4. Results of
the experiment in (e) with (pink) and without (black) a preparation pulse X2 on ancilla qubit Q3.

being in the correct state (with the ancillas indicating as such) and a state with a phase error (with
one or both ancillas being flipped), and the Toffoli-like gate will be able to correct this superpo-
sition state. Figure 5.4b and c show the state probability (Γ) (i.e. the chance that the data qubit is
successfully rotated back to the |↓〉 state) for errors implemented by sweeping the phase Z(ϕ). This
error is applied to one qubit at a time, the results are plotted in purple, blue and yellow for an error
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Figure 5.4: Three-qubit phase flip code. (a) Implementation of the three-qubit phase flip code. Q4 serves as
data qubit, Q1 and Q3 as ancilla qubits, and Q2 as reset qubit for Q3. The correction step is implemented with
the Toffoli-like gate as shown in Figure 5.3e. The data qubit is read out with readout system Q3Q4, which makes
it necessary to reset Q3 using a resonant SWAP operation with Q2. (b,c) Results of the phase error correction
while introducing a phase error Z(ϕ) on none of the qubits (gray), on Q4 (purple), Q1 (blue) or Q3 (yellow) or
on all three qubits simultaneously (dark blue). The initial state of the data qubit is |↓〉 in (b) and X|↓〉 in (c). (d)
Phase-error correction by introducing phase errors Z(ϕ = π) with probability p. The data qubit is prepared to
the state X|↓〉 and through single qubit gates projected to the |↓〉 state for readout. Plotted is the state probability
(Γ), the error bars indicate the standard deviation. The results are fitted using a model which takes into account
the readout and reset errors (see Supplementary Information, Note 9). The standard deviation of the fit is
indicated by the light blue area. The inset shows the curve for ideal phase flip correction (Γideal) and the linear
line for no phase flip correction (Γlinear).

implemented on Q4, Q1 and Q3 respectively. For comparison, the result is also shown when the
phase flip code is performed while implementing the error Z(ϕ) on all three qubits simultaneously
(dark blue) and without implementing an error at all (gray). These experiments are performed for
two different input states of the data qubit, a basis state (|Ψ〉 = |↓〉) and a superposition state (|Ψ〉
= X|↓〉), shown in Figure 5.3b and 5.3c respectively. Only when the data qubit is prepared in a su-
perposition state, does the encoding step entangle the data qubit with the two ancilla qubits. One
expects that when sweeping the phase Z(ϕ) on one of the qubits, the error is corrected and the re-
sult is a constant high Γ. For sweeping the phase on all three qubits simultaneously, it is expected
that the error is not corrected and Γ varies from high to low and back. It is apparent from the re-
sults in Figure 5.4b and 5.4c that for both input states the single-qubit errors are not corrected
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perfectly. This is due to unintentional errors, i.e. errors occurring in the encoding, decoding and
correction steps of the algorithm. These errors are caused by decoherence of the qubits, and are
coherent errors such as residual exchange between the qubits (see Supplementary Information,
Note 5 for measurements of the residual exchange), cross talk [190, 239] and imperfect two-qubit
gates. When comparing the results for the different input states of the data qubit, it becomes clear
that for an input state |↓〉 of the data qubit the visibility is higher and the correction of the single-
qubit errors is more successful. We ascribe this improvement to the decreased time during which
any unintentional errors can affect the data qubit when it starts in a basis state, and the fact that is
less sensitive to imperfections in the two-qubit gates. To gain further insight into the results of this
experiment, we performed a simulation (shown in the Supplementary Information, Note 7). We
ran the simulation with only coherent errors and with coherent errors plus decoherence, in order
to understand which of these unintentional errors are the main limiting factors for the implemen-
tation of the phase flip code. When including both coherent errors and decoherence, the simula-
tion results are in qualitative agreement with the measurement results. Both the experimental and
simulated data show that errors have a more profound impact when starting in a superposition
state compared to starting in a basis state. We can therefore conclude from the simulations that a
limiting factor for the implementation of the phase flip code is the decoherence of the qubits.

Furthermore, we study the three-qubit error phase flip code by inserting a full phase flip Z(ϕ
= π) with probability p. The data qubit starts in the state |Ψ〉 = X |↓〉 and before the data qubit
is measured, we project the state to |↓〉 by applying corresponding single qubit gates. In Figure
5.4d the state probability Γ is plotted against the probability of implementing a phase flip (p). Ide-
ally, the data is described by Γideal(p) = 1− 3p2 + 2p3 [161]. The ideal function shows a modest
improvement of the state probability for p < 0.5, compared to the linear line Γlinear(p) = 1− p
expected for no error correction (see inset Figure 5.4d). While the data in Figure 5.4d follows
the overall trend, there are some interesting differences. We first note that since the data qubit
starts in the |Ψ〉 = X |↓〉 state, the data qubit is very sensitive to unintentional errors, resulting
in a reduced visibility. Second, the data in Figure 5.4d does not show a trend symmetric around
Γ(p = 0.5). This asymmetry can be caused by errors in the reset of Q3 combined with asymme-
try in the readout scheme (illustrated in the Supplementary Information, Note 1). For example,
when the reset of Q3 using the SWAP is imperfect, the error that is introduced is not random,
but depends on the history of Q3. Due to the asymmetry of the readout, an imperfect reset of
Q3 affects the measurement results of zero or a single intentional error differently than the mea-
surement results for two or three intentional errors. This physical knowledge of the qubit sys-
tem is taken into account as boundary conditions for the fit and gives the fit function: Γ(p) =
b+a(0.95−1.73ϵp −2.79 p2 +3.9ϵp2 +1.86p3 −2.17ϵp3), where a is the visibility, b the offset and
ϵ the error parameter modeling asymmetry (see the Supplementary Information, Note 9 for the
derivation). We obtain the fit parameters a = 0.272±0.007, b = 0.394±0.003 and ϵ = 0.37±0.13.
As expected a and b reflect that the visibility is reduced and that the offset is significant. We note
that if ϵ = 0, the symmetric shape of Γideal is recovered, meaning that Γ is improved for p < 0.5
when comparing to Γlinear with similar visibility (dashed purple line in the main panel of 5.4d).
For ϵ= 0.37 as fitted here, the state probability still shows a small improvement for p < 0.27, com-
pared to Γlinear. When we insert the found fit parameters into the fit function, it simplifies to a
polynomial with a linear term of -0.17 ± 0.06. This corresponds to a modest flattening of the curve
for small error probability as is visible in Figure 5.4d.

When considering Figure 5.4d, it is important to realize that the experiment performed to ob-
tain this data is significantly different compared to prior works [219, 220]. In these works, the ef-
fective probability of a phase error was calculated using peff = si n2(ϕ/2), where the error Z(ϕ) is
implemented on all three qubits simultaneously. We instead run the phase flip code numerous
times and randomly implement a phase flip error with a certain probability on all three qubits.
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Rather than changing ϕ, we actually changed the probability of the error. This procedure requires
significantly more data and time, thus results in larger error bars, but it does capture the realistic
scenario in which it is not known a priori if an error would occur and on which qubit. For com-
pleteness, we used the data shown in Figure 5.4b and c to also plot Γ as a function of peff (shown in
the Supplementary Information, Note 8). This data is fitted using a polynomial and gives a linear
term of -0.07 ± 0.05. The conclusion we can draw from this analysis is similar to the conclusion
we draw from the data shown in Figure 5.4d: although not perfectly, the logical error rate has a
suppressed first order contribution in p, meaning that single errors are suppressed.

5.7. CONCLUSION
In summary, we have shown a rudimentary quantum error correction circuit. We have executed
a two-qubit phase flip code and confirmed that by applying an echo pulse to the ancilla qubit we
can preserve the state of the data qubit. We have demonstrated a resonant SWAP gate and have
implemented a Toffoli-like gate using CZ and CS−1 gates. Utilizing these gates has allowed us to
implement a three-qubit phase flip code. Though scaling quantum dots in two dimensions and
readout using Pauli spin blockade are central aspects in virtually all semiconductor qubit archi-
tectures [167], we have also observed that they affect the quantum gate compilation as well as the
correction itself. Running quantum error correction codes such as the surface code [221] will re-
quire significant advances. Both the quantity and the quality of the qubits will need to increase.
In particular, scaling the number of qubits in two dimensions will require the development of ar-
chitectures. The qubit coherence is currently limited, but this may be improved by several means.
First, by using purified germanium the hyperfine interaction can be avoided. Second, sweet spots
with respect to charge noise have recently been proposed and observed for hole qubits [240]. Fi-
nally, tailored pulsed will need to be implemented to optimize the initialization, readout and qubit
operation. While formidable improvements will have to be made to obtain fault-tolerant opera-
tion, we envision that the capability to test tailored quantum algorithms in real devices will serve
as a crucial link in developing scalable quantum technology.

5.8. SUPPLEMENTARY INFORMATION

NOTE 1: LATCHED PSB READOUT PROTOCOL

The readout and initilization fidelities strongly affect the visibility. To optimise the initialization
and readout, we make use of the same latched PSB protocol [148, 149] as used in previous works
[126, 190]. The aim is to reduce the readout infidelity which results from spin relaxation due to
spin-orbit interaction [140, 147]. The tunneling rates from the quantum dots to the reservoir are
tuned to be asymmetrical, resulting in a high tunneling rate for the (1,1)-(0,1) charge transition and
a low tunneling rate for the (1,1)-(1,2) charge transition, as depicted in Figure 5.5a. For the readout
we pulse from (1,1) to a spot in the (0,2) charge regime that is bounded by the extension of the
(1,1)-(0,1) and (1,1)-(1,2) charge transition lines. When the transition to the (0,2) state is blocked,
the (0,1) state is accessible and one hole will tunnel to the reservoir. Since the decay to the (0,2)
state from the (0,1) state is determined by the slow tunneling rate, the system is now locked in a
metastable charge state, thereby enabling spin-to-charge conversion. We use this readout method
on two pair of qubits, Q1 and Q2, using S1 as charge sensor (called readout system Q1Q2), and Q3
and Q4, using S2 as charge sensor (called readout system Q3Q4). Each sensor can measure both
pairs of qubits, however it is more sensitive to the quantum dots that are closest. We operate in
the regime where the |↓↓〉 state is blocked and the other spin states are (partially) non-blocked, as
shown in Figure 5.5c,e. The difference between the readout systems is due to differences in spin-
orbit interactions, as well as differences in the various tunnel rates [126].
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This readout method can only be used to determine the spin state of one of the qubits in the
readout pair when the state of the other qubit is |↓〉. The Q3Q4 readout system is used in the final
three-qubit phase flip experiment described in the main text. The fraction of tunneling that is
blocked for the different spin states influences how well we can read out the final results of this
experiment. If the desired output state is |↓↓〉 (as for no errors or a single error), any error will give
a different readout result. However, if the desired output state is |↓↑〉 (as for two or three errors), an
error is very hard to detect. This is what we call asymmetry in the readout. The effect of the readout
in combination with the SWAP gate is described in more detail in Supplementary Discussion, Note
9.
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Figure 5.5: Fraction of the tunneling that is blocked per spin state (a) Schematic drawing of the charge sta-
bility diagram showing the (1,1)-(0,2) anticrossing and indicating the readout window. (b) Circuit diagram de-
scribing the experiment to map out the fraction of the tunneling that is blocked per spin state in the two-qubit
subspace of the Q1Q2 readout system [130]. A Rabi experiment is performed on Q1 with Q2 either in the |↓〉
(without the X2 on Q2, indicated with the orange box) or |↑〉 state (with the X2 on Q2). (c) Results of the experi-
ment described in (b). The black data points correspond to the Rabi experiment with Q2 in the |↓〉 state and the
orange data points to the experiment with Q2 in the |↑〉 state. It shows that there is good contrast between the
|↓↓〉 state and the anti-parallel states, but the |↑↑〉 state can hardly be distinguished from the anti-parallel states.
(d) Circuit diagram describing the same experiment as in (b), but for the Q3Q4 readout system. (e) Shown are
the results of the experiment as described in (d). For the Rabi experiment performed on Q3 with Q4 in the |↓〉
state, the data is plotted in black, with Q4 in the |↑〉 state, the data is plotted in purple. It becomes apparent
that also for this readout system there is a clear contrast between |↓↓〉 and both anti-parallel spin states. The
|↑↑〉 state however is partially blocked.
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NOTE 2: CALIBRATION OF THE CZ AND CS−1 GATES

The CZ and CS-1 gates are calibrated using a Ramsey type experiment in which Pup is measured
as a function of the phase Z(ϕ) before the final X gate. Overall we follow the same strategy for
the calibration as in previous work [126]. For the CS-1 gate the circuit diagram of this sequence is
shown in Figure 3c of the main text. For the CZ between Q4 and Q3 the circuit is shown in Figure
5.6a, the same experiment was performed with Q1 as control qubit.

a b

Q3

X XZ

X2

Z(  )

|↓〉

Q4 |↓〉

X2

ϕ

c

Figure 5.6: Calibration and pulse shape CZ and CS-1 gates (a) Circuit diagram of a Ramsey type experiment
to measure the conditional phase. This experiment is performed with and without the preparation gate X2 on
the control qubit. The conditional-Phase gate is implemented with a pulse on the virtual barrier gate [126]
between the two relevant qubits (either gate vB34 or vB41). The length and depth of this pulse determines the
acquired phase and makes a CZ or CS-1 gate. (b) Tukey shape withα = 0.83 as is used for the implementation of
the CZ and CS-1 gates. Here we show the pulse with length (36 ns) and depth (-77.2 mV) on the virtual barrier
vB34 to implement the CZ gate between Q3 and Q4. The depth of the pulse on the virtual barrier is relative to
the value it has in the ‘exchange off’ regime. To implement the CZ (CS-1) between Q4 and Q1 a similar pulse
is applied to vB41 with a length of 34 ns (14 ns) and a depth of -74.6 mV (-73.6 mV). (c) Implementation of
a CPhase gate, using a Tukey shaped exchange pulse on the barrier gate. This experiment is performed with
(blue and yellow for target qubit Q1 or Q3 respectively) and without (purple) an X2 pulse on the control qubit.
The difference in acquired phase is calibrated to be π, thus implementing a CZ gate [126].

To calibrate the phase difference between experiments with and without a preparation pulse
on the control qubit, the depth and the length of the pulse on the virtual barrier are tuned. The
shape of this pulse is a Tukey window, also called a cosine-tapered window [241]. It is a pulse of
which the slopes are the shape of a cosine and in the middle it is flat like a rectangle, as shown
in Figure 5.6b. A factor α determines the precise shape of the pulse: the cosine lobe has width
N ·α/2, which is combined with a rectangular window of width N (1−α/2), where N is the length
of the pulse. For the CZ and CS-1 gates we used α = 0.83. We use the Tukey shape to optimize the
adiabaticity of the variation in exchange with respect to the difference in Zeeman energy between
the qubits. A CZ gate is obtained when the phase difference is π, for the situation where the control
qubit is in the |↓〉 state compared to when it is in the |↑〉 state. A CS-1 gate is obtained when the
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difference in acquired phase is -π/2. For both the calibration of the CZ as for the CS-1, after the
exchange pulse, a software Z gate is applied to both of the qubits, to compensate for acquired
single-qubit phases. For the CS-1 gate the result of this calibration is shown in Figure 3d of the
main text. For the CZ gate it is shown in 5.6c.

NOTE 3: CALIBRATION OF THE RESONANT SWAP GATE

a

b

c d

e

(tSWAP)
X2

Q2 |↓〉

|↓〉Q3

X(  )Q2 |↓〉

|↓〉Q3

θ

f

Figure 5.7: SWAP gate (a) Circuit diagram of the experiment used to calibrate the length and AC amplitude of
the exchange pulse which implements the resonant SWAP gate. An X2 gate is applied to Q3, after which the
SWAP gate is applied and Q2 is read out using the Q1Q2 readout system. (b) Result of the experiment in (a), it
shows SWAP oscillations which become faster when the AC amplitude of the exchange pulse is increased [152].
(c, d) Similar experiment as shown in (a), which a fixed value for the AC amplitude of 35 mV. (c) Result of the
experiment with an X2 gate on Q3 and using readout system Q1Q2, while (d) shows the result of the same
experiment but with an X2 gate on Q2 and using readout system Q3Q4. The decay of the SWAP oscillations is
asymmetric, slightly more so for the oscillation shown in (d) than in (c). A possible explanation is that spin
states in the qubit partially get swapped with down spins in Q1 and Q4, because the exchange between Q2 and
Q1 and between Q3 and Q4 is finite, as shown in section VI. (e) Circuit diagram of an experiment where we put
a Rabi oscillation on Q2, swap the states of Q2 and Q3 and read out either with readout system Q1Q2 (red) or
Q3Q4 (green). (f) Result of the experiment in (e). It demonstrates that the resonant SWAP gate can also be used
to reset Q2, similar to how the SWAP gate can be used to reset Q3, which is shown in Figure 3b of the main text.

To implement a resonant SWAP gate between Q2 and Q3, a Tukey shaped pulse with an oscil-
lation superimposed is applied to the virtual barrier vB23, as shown in Figure 3a of the main text.
The Tukey shaped pulse is discussed in detail in section II, for the implementation of the SWAP we
use α = 0.5. To correctly implement the SWAP the length and depth of the Tukey pulse and the AC
amplitude and frequency of the oscillation need to be calibrated. We start by choosing the depth of
the pulse on vB23 as -30 mV compared to the ‘exchange off’ regime. With this pulse on the virtual
barrier we first do a first rough measurement of the difference in resonance frequency between Q2
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and Q3. This value we use as the frequency of the oscillation and we vary the length of the SWAP

pulse (tSWAP) and the AC amplitude (Figure 5.7a), resulting in the measurement shown in Figure
5.7b. Based on this measurement we choose a length (80 ns) and AC amplitude (35 mV) of the
pulse. As a final step in the calibration, we fine tune the frequency of the oscillation. This we do
using the measurement depicted in Figure 3a of the main text, for various values of the frequency
and choosing the one where the amplitude measured on Q3 is smallest.

NOTE 4: ADDITIONAL DATA TWO-QUBIT PHASE FLIP CODE

a

c

d

e

f

Y-1

Y-1Y-1

Z Y

Y Y

Z
twait twait

Y2|↓〉

Q4

Q1

|↓〉

b

Q2

c)

Y-1

Y-1Y-1

Z Y

Y Y
twait twait

Y2Y2Q3 |↓〉

Q4 |↓〉

|↓〉

Z

Figure 5.8: Two-qubit phase flip code with input state |Ψ〉 = |↓〉 (a) Circuit diagram describing the experiment
for which the result is shown in Figure 2d of the main text. In this experiment both the data qubit, Q4, and
the ancilla qubit, Q1, start in the |↓〉 basis state. For this input state, the logical qubit after the encoding step is
|−−〉, which is not an entangled state. Therefore, the first CZ gate becomes obsolete and the algorithm can be
simplified. An echo pulse is applied to the ancilla qubit (indicated by the blue box), resulting in an experiment
that closely resembles a Hahn echo experiment, plus the decoding and correction step. (b) Circuit diagram
similar to the one shown in (a), but with Q3 as ancilla qubit. Since the spin state of Q4 is read out with respect
to the spin state of Q3, the state of Q3 is reset by applying a resonant SWAP gate between Q3 and Q2. The echo
on the ancilla is indicated with a yellow box. (c,d) Plotted here are the spin-up probability as a function of twait
when executing the circuit diagram in (b), without (c) and with an echo pulse Y2 (d). Individual qubit T∗

2 (e)

and THahn
2 times (f) for Q3.
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NOTE 5: RESIDUAL EXCHANGE
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Figure 5.9: Residual exchange (or ZZ crosstalk) (a) Circuit diagram of the measurement of the residual ex-
change between Q1 and Q2, i.e. the exchange in the regime where the single qubit gates are performed. We
execute a Hahn echo experiment on Q1 and apply a Y2 gate on Q4 simultaneous with the echo pulse Y2 on
Q1. We measure an oscillation due to the ZZ interaction as a function of twait. (b) Measurement result of the
residual exchange between Q1 and Q2. It was first measured to be 1.40 ± 0.01 MHz (gray). After decreasing the
detuning and increasing the voltage on the virtual barrier gate, the exchange was measured again and found
to be 0.26 ± 0.01 MHz (pink). For this qubit pair we chose to reduce the exchange because it was significantly
larger than between the other pairs. (c-g) Circuit diagram and results of measurement of the residual exchange
between Q3-Q2 (c,d), Q3-Q4 (e,f) and Q1-Q4 (g,h). Values found are 0.68 ± 0.1 MHz, 0.34 ± 0.01 MHz and 0.37
± 0.01 MHz for Q3-Q2, Q3-Q4 and Q1-Q4 respectively.
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NOTE 6: ADDITIONAL DATA ON THE TOFFOLI-LIKE GATE

X

X(θ)

Y-1 S-1 S-1Z Y-1 ZY Y

X|↓〉

|↓〉

|↓〉

Toffoli-like gate

=
Y Y-1

Y Y-1

Y Y-1Z Z Z

a

b

Figure 5.10: Toffoli-like gate (a) Circuit diagram of the Toffoli-like gate composed of CS-1 and CZ gates. Before
the readout, a SWAP operation is performed between Q4 and Q1. The SWAP gate is composed of three CNOT
gates, each one broken down into CZ and Y and Y−1 as shown below the circuit diagram. (b) Results of im-
plementing the Toffoli-like gate with target qubit Q4 and control qubits Q1 and Q3. A Rabi oscillation X(θ) is
applied to Q3 and the final state of Q4 is measured by swapping the state of Q4 with the state of Q1 and using
readout system Q1Q2. If ancilla qubit Q1 stays in the |↓〉 state, the target qubit Q4 also stays in the |↓〉 state,
as plotted in black. However, when Q1 is prepared in the state |↑〉, Q4 starts to oscillate like Q3, as plotted in
pink. With this experiment we demonstrate that the Toffoli-like gate also works for all possible input states of
Q3. The overall visibility is smaller compared to the results shown in Figure 3f in the main text, which can be
contributed to the SWAP operation, which is composed of multiple gates.

The matrix representation of the circuit diagram of the Toffoli-like gate (see Fig. 5.10 a) in the
basis {|↓〉Q4 , |↑〉Q4}⊗ {|↓〉Q1 , |↑〉Q1}⊗ {|↓〉Q3 , |↑〉Q3} reads

Toffoli-like gate =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −i 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −i 0
0 0 0 1 0 0 0 0


. (5.1)

Note, that this matrix corresponds to the real Toffoli-gate up to phases on the two control qubits
(here Q1 and Q3) which is irrelevant due to the imminent measurement.
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NOTE 7: SIMULATION OF THE PHASE FLIP CODE WITH ERROR Z(ϕ)
In order to improve our understanding of the result shown in Figure 4 of the main text, we ran sim-
ulations of the three qubit phase flip code. The results of this simulation are shown in Figure 5.11a,
b, c and d. When comparing the simulation which only takes into account the coherent errors (Fig-
ure 5.11a and c) with the simulation results taking into account the decoherence of the qubits as
well (Figure 5.11b and d), it is clear that for both input states the visibility is strongly reduced when
including decoherence. We also observe that like in the measured data, the visibility is more re-
duced when the data qubits starts in the superposition state then when the data qubit starts in the
basis state. Overall, when comparing the simulated data with the measured data, it is clear that
they are in qualitative agreement. Especially note the resemblance between the simulated data
(Figure 5.11d) and the measured data (Figure 5.11e) for which an error Z(ϕ) is implemented on all
three qubits simultaneously when starting in the superposition state (dark blue data points).

There are at least two possible explanations for the differences between the simulations and
the measurement results. Firstly, the coherent errors taken into account for the simulations shown
in Figure 5.11a and c are the coherent errors as estimated from individual qubit calibrations. The
joint operation of these gates in the phase flip code can cause additional errors, such that the co-
herent errors in the experiment are underestimated. Secondly, it is possible that the pulses applied
to implement the gates in the phase flip code have a negative influence on the coherence of the
qubits [121]. Overall we can conclude from these simulations that the limiting factor for imple-
menting the phase flip code is the decoherence of the qubits.
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Figure 5.11: Comparing numerical simulation and experiment of the phase flip code while sweeping the er-
ror Z(ϕ) (a) Result of simulating the phase flip code of which the implementation is shown in Figure 4a of the
main text, starting in the basis state |↓〉 and projecting back to |↓〉 at the end. An error Z(ϕ) is implemented
on the individual qubits and on combinations of qubits simultaneously as indicated in the legend of the fig-
ure. For this simulation, the following coherent errors are taking into account: residual exchange, cross-talk,
imperfections of the single and two qubit gates through realistic modeling of the pulse signals and filters and
imperfections in readout and initialization. (b) Similar to (a), but now also taking into account errors due to
decoherence of the qubits. Noise is modeled as quasi-static fluctuations of the resonance frequencies of each
qubit befitting the corresponding measured T∗

2 . Each data point is averaged on 250 initializations of the noise.
The low number of runs is due to limitations in computational power and causes some uncertainties in the
simulations. (c) Same measured data as shown in Figure 4b of the main text, plus the results of implementing
the error Z(ϕ) at two qubits simultaneously. (c, d, e) Similar to (a, b, c) respectively, however starting with the
data qubit in the superposition |Ψ〉 = X|↓〉.
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NOTE 8: EFFECTIVE PROBABILITY

a b

c

Figure 5.12: State probability versus effective probability (a) Plotted is the state probability versus the effective
probability of implementing a phase error while starting with the data qubit Q4 in the basis state |Ψ〉 = |↓〉. The
data shown here is the same as in Figure 4b of the main text and Figure 5.11c where we show Γ versus Z(ϕ).
However, here we use peff = si n2(ϕ/2) and the error bar is an indication for the difference between the value
Γ(Z(ϕ)) between 0 and π and Γ(Z(ϕ)) between π and 2π. We fit using a polynomial function giving Γ(peff) =
(0.67 ± 0.02) - (0.4 ± 0.2)peff + (0.2 ± 0.5)p2

eff - (0.2 ± 0.3)p3
eff. (b) Similar to (a), but with the data qubit starting

in the superposition state |Ψ〉 = X|↓〉. The data shown is the same as in Figure 4c of the main text and Figure
5.11c, plus two additional data sets. Fitted is Γ(peff) = (0.595 ± 0.004) - (0.04 ± 0.04)peff - (0.41 ± 0.08)p2

eff + (0.33

± 0.05)p3
eff. (c) Average of the data shown in (a) and (b). Fitted is Γ(peff) = (0.621 ± 0.004) - (0.07 ± 0.05)peff -

(0.64 ± 0.14)p2
eff + (0.47 ± 0.11)p3

eff.

In previous works [219, 220], instead of implementing a phase error on the qubits with a cer-
tain probability, an error Z(ϕ) on all three qubits is simultaneously implemented and an effective
probability of error per qubit peff = si n2(ϕ/2) is used. To compare with these experiments, we used
the data presented in Figure 5.4b and c of the main text and calculated peff using this method. The
results are shown in Figure 5.12, which are fitted with a polynomial function.

Figure 5.12a shows the result for running the three qubit phase flip code, while starting in
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the basis state |Ψ〉 = |↓〉. Figure 5.12b shows the results when the data qubit is prepared in the
superposition state |Ψ〉 = X|↓〉. This data can be reasonably fit using a polynomial function and we
find a linear term of 0.04 ± 0.04. In Figure 5.12c we show the combined results for starting in a basis
and superposition state. We can fit the data using Γ(peff) = (0.621 ± 0.004) - (0.07 ± 0.05)peff - (0.64
± 0.14)p2

eff + (0.47 ± 0.11)p3
eff. From this analysis we conclude that the linear term, although not

completely zero, is largely reduced. This is consistent with the expectation of suppression of single
qubit phase errors. The conclusion of a reduced linear term is also in agreement with the result of
the experiment presented in the main text, where we obtain Γ by implementing a full phase error
Z(ϕ = π) with a certain probability.

NOTE 9: DERIVATION OF THE FIT FUNCTION OF THE THREE-QUBIT PHASE

FLIP CODE
In this section we derive a model for the three-qubit phase flip code experimentally implemented
in the main text and the logical error probability fit function Γ(p). For simplicity the implemented
gates are assumed to be perfect and are described by their corresponding unitary matrix except
for the final SWAP gate. To follow the notation in the main text, we define an X (Y) gate as a π/2
rotation, X2 (Y2) as a π rotation and X−1 (Y−1) as a −π/2 rotation around the x̂ (ŷ) axis. Thus, the
unitaries of the single qubit gates read

Q = exp(−i
π

4
σq ) (5.2)

with Q = X ,Y , Z , q = x, y, z, the Pauli matrices σq , and Q−1 =Q† being it’s inverse. The unitary of
the CZ gate reads

CZ = diag(1,1,1,−1). (5.3)

Here, we additionally make use of indices to label the affected qubit(s), i.e., XQ1 corresponds to a
X -gate on Q1 and CZ12 corresponds on a CZ-gate between Q1 and Q2.

Moreover, we define the unitary of the two-qubit CS gate as

CS = diag(1,1,1, i ) (5.4)

and we model an imperfect SWAP gate by the following unitary

SWAP(ϵ) =


1 0 0 0

0 −i
p
ϵe

iπ
2

p
1−ϵ −i

p
1−ϵe

iπ
2

p
1−ϵ 0

0 −i
p

1−ϵe
iπ
2

p
1−ϵ i

p
ϵe

iπ
2

p
1−ϵ 0

0 0 0 1

 (5.5)

with an error probability ϵ = [0,1]. This mimics the time-evolution of a strongly driven resonant-
SWAP gate [152]. Note, that strong driving can yield errors similar to off-resonant driving due
to non-linear exchange J ∝ exp

[
2α(v0 + vD cos(2π fD t ))

] ≈ exp(2αv0)(1 + 2αvD cos(2π fD t ) +
α2v2

D [1+ cos(4π fD t )]) causing a shift in the resonance condition. Here, v0 is the voltage setting
during the AC drive, vD is the amplitude of the AC signal, α corresponds to the lever arm of the
barrier gate, and fD = fQ2 − fQ3 is the drive frequency of the AC SWAP gate between Q2 and Q3.

The density matrix ρ after each gate is then given by composing ρ1 =U ρ0 U † with the unitary
matrix U chosen from the set above. The uncorrelated probabilistic phase error of each qubit is
modelled via the Pauli-Z error channel

Λ(ρ) = (1−p)ρ+pσz ρσz (5.6)
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applied on each qubit independently with probability p. The logical error probability for the three-
qubit phase flip code Γ(p) is given by the probability to measure |Ψ〉Q4 = |↓〉. The probability to
measure |Ψ〉Q4 = |↓〉 after the PSB measurement of readout system Q3Q4 is given by the positive
valued operator (POVM) outcome

Γ(p) = tr(ρfinalF|Ψ〉Q4=|↓〉) (5.7)

with

F|Ψ〉Q4=|↓〉 = 12 ⊗ 12 ⊗


F↓↓ 0 0 0

0 F↓↑ 0 0
0 0 F↑↓ 0
0 0 0 F↑↑

 (5.8)

with the same parameters and definitions as above. For an ideal measurement Γ(p) = 1−3p2+2p3

directly shows the insensitivity of the three-qubit phase code to phase errors by suppressing terms
linear in p.

Coherent and incoherent unintentional phase errors will provide an additional reduced visi-
bility and an offset of the measurement outcomes which we will account for by introducing the
two fitting parameters a and b. The final formula to fit our data is then given by plugging in the
numbers F↓↓ = 0.95, F↑↓ = 0.085, F↓↑ = 0.02, F↑↑ = 0.24 in Eq. (5.7)

Γ(p) =a (0.95−1.73ϵp −2.79 p2 +3.9ϵp2 +1.86p3 −2.17ϵp3)+b. (5.9)

The strong suppression of phase errors for an ideal measurement is reduced for a erroneous SWAP-
gate ϵ> 0 by not suppressing all linear terms in Eq. (5.9).

Additionally, the symmetric behavior expected for a theoretical Γ(p) under the reflection on
the straight line l (p) through points (p,Γ(p)) = (0, a F↓↓) and (p,Γ(p)) = (1, a F↓↑) is broken through
the erroneous SWAP-gate [227]. Note, that (F↓↓−F↓↑) defines the visibility window of the measure-
ment. This symmetry is given by the fact that the code itself cannot distinguishes between no error
(p = 0) and an error on all qubits (p = 1). We want to note that in our case the imperfect SWAP-gate
combined with a finite dark signal (F↓↑ ̸= 0, F↓↑ ̸= 0, F↑↑ ̸= 0 or F↑↑ ̸= F↓↓) of the measurement signal
can leave the impression that this symmetry is broken. In short, a single error is detected with a
higher contrast (F↓↓−F↓↑) than two errors (F↑↑−F↑↓) giving rise to a skewing of the signal. As a final
remark, there are other errors which give similar correlations than the erroneous SWAP gate. Since
these errors cannot be distinguished in the measurement signal, the error probability ϵ considers
all of them and for simplicity are attributed to the dominating SWAP error.





6
COHERENT SPIN QUBIT SHUTTLING

THROUGH GERMANIUM QUANTUM

DOTS

Quantum links can interconnect qubit registers and are therefore essential in networked quantum
computing. Semiconductor quantum dot qubits have seen significant progress in the high-fidelity
operation of small qubit registers but establishing a compelling quantum link remains a challenge.
Here, we show that a spin qubit can be shuttled through multiple quantum dots while preserving its
quantum information. Remarkably, we achieve these results using hole spin qubits in germanium,
despite the presence of strong spin-orbit interaction. In a minimal quantum dot chain, we accom-
plish the shuttling of spin basis states over effective lengths beyond 300 µm and demonstrate the co-
herent shuttling of superposition states over effective lengths corresponding to 9 µm, which we can
extend to 49 µm by incorporating dynamical decoupling. These findings indicate qubit shuttling
as an effective approach to route qubits within registers and to establish quantum links between
registers.

This chapter has been adapted from F. van Riggelen-Doelman, C.-A. Wang, S.L. de Snoo, W.I.L. Lawrie, N.W.
Hendrickx, M. Rimbach-Russ, A. Sammak, G. Scappucci, C. Déprez, M. Veldhorst, in print with Nature Com-
munications (2024) [242].
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6.1. INTRODUCTION
The envisioned approach for semiconductor spin qubits towards fault-tolerant quantum compu-
tation centers on the concept of quantum networks, where qubit registers are interconnected via
quantum links [167]. Significant progress has been made in controlling few-qubit registers [121,
126]. Recent efforts have led to demonstrations of high fidelity single- and two-qubit gates [117,
118, 120, 190], quantum logic above one Kelvin [116, 196, 243] and operation of a 16 quantum dot
array [244]. However, scaling up to larger qubit numbers requires changes in the device architec-
ture [87, 166, 245, 246].

Inclusion of short-range and mid-range quantum links could be particularly effective to estab-
lish scalability, addressability, and qubit connectivity. The coherent shuttling of electron or hole
spins is an appealing concept for the integration of such quantum links in spin qubit devices.
Short-range coupling, implemented by shuttling a spin qubit through quantum dots in an array,
can provide flexible qubit routing and local addressability [168, 247]. Moreover, it allows to increase
connectivity beyond nearest-neighbour coupling and decrease the number of gates needed to exe-
cute algorithms. Mid-range links, implemented by shuttling spins through a multitude of quantum
dots, may entangle distant qubit registers for networked computing and allow for qubit operations
at dedicated locations [168, 207, 248, 249]. Furthermore, such quantum buses could provide space
for the integration of on-chip control electronics [167], depending on their footprint.

The potential of shuttling-based quantum buses has stimulated research on shuttling elec-
tron charge [250–252] and spin [113, 247, 253–259]. While nuclear spin noise prevents high-fidelity
qubit operation in gallium arsenide, demonstrations of coherent transfer of individual electron
spins through quantum dots are encouraging [113, 253–256]. In silicon, qubits can be operated
with high-fidelity and this has been employed to displace a spin qubit in a double quantum
dot [247, 257]. Networked quantum computers, however, will require integration of qubit control
and shuttling through chains of quantum dots, incorporating quantum dots that have at least two
neighbours.

Meanwhile, quantum dots defined in strained germanium (Ge/SiGe) heterostructures have
emerged as a promising platform for hole spin qubits [124, 125]. The high quality of the platform
allowed for rapid development of single spin qubits [140, 141], singlet-triplet qubits [151, 233, 260],
a four qubit processor [126], and a 4×4 quantum dot array with shared gate control [244]. While
the strong spin orbit interaction allows for fast and all-electrical control, the resulting anisotropic
g -tensor [125, 127] complicates the spin dynamics and may challenge the feasibility of a quantum
bus.

Here, we demonstrate that spin qubits can be shuttled through quantum dots. These experi-
ments are performed with two hole spin qubits in a 2×2 germanium quantum dot array. Impor-
tantly, we operate in a regime where we can implement single qubit logic and coherently transfer
spin qubits through an intermediate quantum dot. Furthermore, by performing experiments with
precise voltage pulses and sub-nanosecond time resolution, we can mitigate finite qubit rotations
induced by spin-orbit interactions. In these optimized sequences we find that the shuttling per-
formance is limited by dephasing and can be extended through dynamical decoupling.

6.2. COHERENT SHUTTLING OF SINGLE HOLE SPIN QUBITS
Fig. 6.1.a shows a germanium 2×2 quantum dot array identical to the one used in the experi-
ment [126]. The chemical potentials and the tunnel couplings of the quantum dots are controlled
with virtual gates (vPi, vBij), which consist of combinations of voltages on the plunger gates and
the barrier gates. We operate the device with two spin qubits in quantum dots QD1 and QD2 and
initialised the |↓↓〉 state (see Supplementary Information, Note 2). We use the qubit in QD1 as an
ancilla to readout the hole spin in QD2, using latched Pauli spin blockade [126, 149, 236]. The other
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Figure 6.1: Coherent shuttling of hole spin qubits in germanium double quantum dots - schematics and de-
tuning axes. a, False colored scanning electron microscope image of a representative quantum dot device. The
quantum dots are formed under the plunger gates (light blue) and separated by barrier gates (dark blue) which
control the tunnel couplings. A single hole transistor is defined by the yellow gates and is used as charge sensor.
The scale bar corresponds to 100 nm. Unless specified otherwise, an external magnetic field of 0.25 T is applied
in the direction indicated by the arrow. b, Schematic showing the principle of bucket brigade mode shuttling.
The detuning energy ϵ23/34 between the two quantum dots is progressively changed such that it becomes en-
ergetically favorable for the hole to tunnel from one quantum dot to another. c, e, Schematic illustrating the
shuttling of a spin qubit between QD2 and QD3 (e) and between QD3 and QD4 (i). d, f, Charge stability dia-
grams of QD2-QD3 (f) and QD3-QD4 (j). To shuttle the qubit from one site to another, the virtual plunger gate
voltages are varied along the detuning axis (white arrow), which crosses the interdot charge transition line.
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Figure 6.2: Coherent shuttling of hole spin qubits in germanium double quantum dots - measurement re-
sults. a, Schematic of the pulses used for the shuttling experiments shown in (b) and (c), where the resonance
frequency of the qubit is probed after the application of a detuning pulse using a 4 µs EDSR pulse. b, c Probing
of the resonance frequency along the detuning axis for the double quantum dot QD2-QD3 (b) and QD3-QD4
(c). The ramp time used to change the detuning is 40 ns for the measurement shown in (b) and 12 ns for the
measurement shown in (c). Nearby the charge transition, the resonance frequency cannot be resolved due to
a combination of effects discussed in Supplementary Information, Note 4. d, Schematic of the pulses used for
coherent shuttling experiments of which the results are shown in (e) and (f). The qubit is prepared in a super-
position state using a π/2 pulse and is transferred to the empty quantum dot with a detuning pulse of varying
amplitude, and then brought back to its initial position after an idle time. After applying another π/2 pulse we
readout the spin state. e, f, Coherent free evolution of a qubit during the shuttling between QD2-QD3 (e) and
QD3-QD4 (f). Since the Larmor frequency varies along the detuning axes, the qubit initialized in a superposi-
tion state acquires a phase that varies with the idle time resulting in oscillations in the spin-up P↑ probabilities.
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qubit starts in QD2 and is shuttled to the other quantum dots by changing the detuning energies
(ϵ23/34) between the quantum dots (Fig. 6.1.b, c and e). The detuning energies are varied by puls-
ing the plunger gate voltages as illustrated in Fig. 6.1.d and f. Additionally, we increase the tunnel
couplings between QD2-QD3 and QD3-QD4 before shuttling to allow for adiabatic charge transfer.
The hole carrying the spin remains in its orbital ground state and with increasing |ϵ|, the charge be-
comes localized in the quantum dot with the lowest chemical potential as displayed in Fig. 6.1.b. In
our experiments, we tune to have adiabatic evolution with respect to charge, and study adiabatic
and diabatic shuttling with respect to spin.

The g -tensor of hole spin qubits in germanium is sensitive to the local electric field. Therefore,
the Larmor frequency ( fL) is different in each quantum dot [140, 141, 233]. We exploit this effect
to confirm the shuttling of a hole spin from one quantum dot to another. In Fig. 6.2.a. we show
the experimental sequence used to measure the qubit resonance frequency, while changing the
detuning to transfer the qubit. Fig 6.2.b (c) shows the experimental results for spin transfers from
QD2 to QD3 (QD3 to QD4). Two regions can be clearly distinguished in between which fL varies
by 110 (130) MHz. This obvious change in fL clearly shows that the hole is shuttled from QD2
to QD3 (QD3 to QD4) when applying a sufficiently large detuning pulse. To investigate whether
such transfer is coherent, we probe the free evolution of qubits prepared in a superposition state
after applying a detuning pulse (Fig. 6.2.d) [257]. The resulting coherent oscillations are shown
in Fig. 6.2.e (f). They are visible over the full range of voltages spanned by the experiment and
arise from a phase accumulation during the idle time. Their frequency fosc is determined by the
difference in resonance frequency between the starting and end point in detuning as shown in
Fig. 6.9 in the Supplementary Information. The abrupt change in fosc marks the point where the
voltage pulse is sufficiently large to transfer the qubit from QD2 to QD3 (QD3 to QD4). These results
clearly demonstrate that single hole spin qubits can be coherently transferred.

6.3. THE EFFECT OF STRONG SPIN-ORBIT INTERACTION ON

SPIN SHUTTLING
The strong spin-orbit interaction in our system has a significant impact on the spin dynamics dur-
ing the shuttling. It appears when shuttling a qubit in a |↓〉 state between QD2 and QD3 using fast
detuning pulses with voltage ramps of 4 ns. Doing this generates coherent oscillations shown in
Fig. 6.3.b that appear only when the qubit is in QD3. They result from the strong spin-orbit inter-
action and the use of an almost in-plane magnetic field [158]. In this configuration, the direction
of the spin quantization axis depends strongly on the local electric field [127, 260–263] and can
change significantly between neighbouring quantum dots. Therefore, rapid shuttling of a hole re-
sults in a change of angle between the spin state and the local spin quantization axis. In particular,
a qubit in a basis state in QD2 becomes a qubit in a superposition state in QD3 when it is shut-
tled diabatically with respect to the change in quantization axis. Consequently, the spin precesses
around the quantization axis of QD3 until it is shuttled back (Fig. 6.3.a). This leads to qubit rota-
tions and the aforementioned oscillations.

While these oscillations are clearly visible for voltage pulses with ramp times tramp of few
nanoseconds, they fade as the ramp times are increased, as shown in Fig. 6.3.c, and vanish for
tramp > 30 ns. The qubit is transferred adiabatically and can follow the change in quantization axis
and therefore remains in the spin basis state in both quantum dots. From the visibility of the oscil-
lations, we estimate that the quantization axis of QD3 (QD4) is tilted by at least 42° (33°) compared
to the quantization axis of QD2 (QD3). These values are corroborated by independent estimations
made by fitting the evolution of fL along the detuning axes (see Supplementary Information, Note
5).

Fig. 6.3.d and Fig. 6.3.e display the magnetic field dependence of the oscillations generated
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Figure 6.3: Rotations induced while shuttling by the difference in quantization axes. a, Schematic explaining
the effect of the change in quantization axis direction that the qubit experiences during the shuttling process.
The difference in quantization axis between quantum dots is caused by the strong spin-orbit interaction. b, Os-
cillations induced by the change in quantization axis while shuttling diabatically a qubit in a |↓〉 state between
QD2 and QD3. Ramp times of 4 ns are used for the detuning pulses. Note that the oscillations have a reduced
visibility, meaning that the difference in quantization axes does not induce a full spin flip. The angle between
the quantization axes of the two quantum dots can be estimated from the amplitude of the oscillations, see
Supplementary Information, Note 5.c, Oscillations due to the change in quantization axis at a fixed point in
detuning, as function of the voltage pulse ramp time used to shuttle the spin. When the ramp time is long
enough, typically above 30 ns, the spin is shuttled adiabatically and the oscillations vanish. d, Magnetic-field
dependence of the oscillations induced by the difference in quantization axis. e, Frequency of the oscillations
fosc induced by the change in quantization axis as a function of magnetic field for different shuttling processes.
The oscillation frequency fosc for QD3 is extracted from measurements displayed in (d) (and similar experi-
ments for the other quantum dot pairs) and is plotted with points. fosc scales linearly with the magnetic field.
Comparing fosc with resonance frequencies measured using EDSR pulses (data points depicted with stars) re-
veals that fosc is given by the Larmor frequency of the quantum dot towards which the qubit is shuttled (black
label).
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by diabatic shuttling. Their frequencies fosc increase linearly with the field and match the Larmor
frequencies fL measured for a spin in the target quantum dot. This is consistent with the explana-
tion that the oscillations are due to the spin precessing around the quantization axis of the second
quantum dot.

6.4. SHUTTLING PERFORMANCE
To quantify the performance of shuttling a spin qubit, we implement the experiments depicted in
Fig. 6.4.a, c and d [247, 257] and study how the state of a qubit evolves depending on the number of
subsequent shuttling events. For hole spins in germanium, it is important to account for rotations
induced by the spin-orbit interaction. This can be done by aiming to avoid unintended rotations,
or by developing methods to correct them. An example of the first approach is transferring the
spin qubits adiabatically. This implies using voltage pulses with ramps of tens of nanoseconds,
which are significant with respect to the dephasing time. However, this strongly limits the shuttling
performance (see Fig. 6.16 in the Supplementary Information). Instead, we can mitigate rotations
by carefully tuning the duration of the voltage pulses, such that the qubit performs an integer
number of 2π rotations around the quantization axis of the respective quantum dot. This approach
is demanding, as it involves careful optimization of the idle times in each quantum dot as well as
the ramp times, as depicted in Fig. 6.4.b. However, it allows for fast shuttling, with ramp times of
typically 4 ns and idle times of 1 ns, significantly reducing the dephasing experienced by the qubit
during the shuttling. We employ this strategy in the rest of our experiments.

We first characterize the shuttling of a spin qubit initialized in a basis state. We do this by
preparing a qubit in a |↑〉 or |↓〉 state and transferring it multiple times between the quantum dots.
Fig. 6.5.a and b display the spin-up fraction P↑ measured as a function of the number of shut-
tling steps n. The probability of ending up in the initial state shows a clear exponential depen-
dence on n. No oscillations of P↑ with n are visible, confirming that the pulses have been suc-
cessfully optimized to account for unwanted spin rotations. We extract the characteristic decay
constants n∗ by fitting the data for the shuttling of qubits prepared in |↑〉 and |↓〉 states separately
as they originate from distinct sets of experiments. In all cases, we find a characteristic decay
n∗ ≃ 3000 shuttles between quantum dots, corresponding to a polarization transfer fidelities of
F = exp(−1/n∗) ≃ 99.97 % per shuttle within the sequence. This is similar to the fidelities reached
in silicon devices [118, 257], despite the anisotropic g -tensors due to the strong spin-orbit inter-
action in our platform.

The exponential decay of the spin polarization to approximately 0.5 can emerge from dif-
ferent effects. At the charge anticrossing, the spin polarization life time is strongly reduced (see
Fig. 6.10 in the Supplementary Information), due to high frequency charge noise and coupling to
phonons [156]. Passing the charge anticrossing repeatedly thus leads to a randomization of the
spin. Moreover, while the qubit starts in a basis state, it undergoes coherent rotations due to the
diabatic spin shuttling and thus it is in a superposition state in the second quantum dot. The qubit,
although initially in the spin basis state, then becomes sensitive to dephasing which can also lead
to an exponential decay of P↑. The experimental decay observed probably results from a combi-
nation of these mechanisms.

We emphasize that the exact impact of dephasing on the performances of the shuttling of spin
basis state depends on the difference in quantization axes of the quantum dots and on the pulse
sequence used (see Supplementary Information, Note 11). In our experiment, the dephasing is
probably mitigated by a decoupling effect induced by repeatedly waiting in the initial quantum
dot (see explanation Supplementary Information, Note 11). While extrapolating this result to a
long chain of quantum dots is not straightforward, similar noise-averaging effects may occur in
the presence of spatially correlated noise in the chain [264]. In the absence of decoupling effects
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Figure 6.4: Quantifying the performance for the shuttling of basis states in double quantum dots - pulse
sequences. a, Schematic of the pulse sequence used for quantifying the performance of shuttling basis states
(blue) or a superposition state (grey). The spin qubit is prepared in the quantum dot where the shuttling ex-
periment starts, by either applying an identity gate (shuttling a |↓〉 state), a (π)X pulse (shuttling a |↑〉 state)
or (π/2)X pulse (shuttling a superposition state, also referred to as Ramsey shuttling experiments). Detuning
pulses are applied to the plunger gates to shuttle the hole from one quantum dot to another, back and forth,
and finally the appropriate pulses are applied to prepare for readout. Moving the qubit from one quantum dot
to another is counted as one shuttling event n = 1. Since the hole always needs to be shuttled back for readout,
n is always an even number. The schematic shows an example for n = 6. b, Zoom-in on the detuning pulses
used for the shuttling. To make an integer number of 2π rotation(s) around the quantization axis of the second
quantum dot, all ramp and idle times in the pulse need to be optimized. c, Pulse sequence used for implement-
ing a Hahn echo shuttling experiment. In the middle of the shuttling experiment, an echo pulse (π)X is applied
in the quantum dot where the spin qubit was initially prepared. Example for n = 12. d, Pulse sequence for a
CPMG shuttling experiment. Two (π)Y pulses are inserted between the shuttling pulses. Example for n = 24.
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Figure 6.5: Quantifying the performance for the shuttling coherent spin states in double quantum dots -
results. a, b, Spin-up probabilities P↑ measured after shuttling n times a qubit prepared in a spin basis state
between QD2 and QD3 (c) and between QD3 and QD4 (d). The decay of P↑ as a function of n is fitted to an
exponential function P↑ = P0 exp(−n/n∗)+Psat. c, d, Performance of the shuttling of superposition state be-
tween QD2 and QD3 (g) and QD2 and QD3 (h) for different shuttling sequences. The decay of the coherent
amplitude A of the superposition state are fitted by A0 exp(−(n/n∗)α) whereα is a fitting parameter. The error
bars indicate one standard deviation from the best fits.
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and for the purpose of shuttling basis states, adiabatic shuttling still provides a good alternative
as we find n∗ to remain above 1000, corresponding to fidelities per shuttle within the sequence
above 99.90 % (see Supplementary Information, Note 11).

We now focus on the performance of coherent shuttling. We prepare a superposition state via
an EDSR (π/2)X pulse, shuttle the qubit, apply another π/2 pulse and measure the spin state. Im-
portantly, one must account for ẑ-rotations experienced by the qubits during the experiments and
the corresponding phase accumulation defined with respect to the qubit rotating frame in the ini-
tial quantum dots. The latter can be equivalently defined with respect to the lab frame. Therefore,
we vary the phase of the EDSR pulse ϕ for the second π/2 pulse. For each n, we then extract the
amplitude A of the P↑ oscillations that appear as function of ϕ [247, 257]. Fig. 6.5.c, d show the
evolution of A as a function of n for shuttling between adjacent quantum dots. We fit the exper-
imental results using A0 exp(−(n/n∗)α) and find characteristic decay constants n∗

23 = 64±1 and
n∗

34 = 77± 2. Remarkably, these numbers compare favourably to n∗ ≃ 50 measured in a SiMOS
electron double quantum dot [257], where the spin-orbit coupling is weak.

The exponents, α23 = 1.36±0.05 and α34 = 1.28±0.06, characterize the spectrum of the noise
experienced by the qubit while it is shuttled and suggest that the noise is neither purely quasi static
nor white. The non-integer values of α contrast with observations in silicon [247, 257], and sug-
gest that the shuttling of hole spins in germanium is limited by other mechanisms. Two types of
errors can be distinguished. Errors may occur during the diabatic part of the spin dynamics. On
the other hand, errors can also be induced by the dephasing experienced by the qubits during the
finite time spent in each quantum dot, including the ramp times (see Supplementary Information,
Note 11). To investigate the effect of dephasing, we modify the shuttling sequence and include a
(π)X echoing pulse in the middle as displayed in Fig. 6.4.d. We note that the echoing pulses are
defined with respect to the rotating frame of the qubit in the starting quantum dots. Fig. 6.5.c and
d show the experimental results and it is clear that in germanium the coherent shuttling perfor-
mance is improved significantly using an echo pulse: we can extend the shuttling by a factor of
four to five, reaching a characteristic decay of more than 300 shuttles. Similarly, the use of CPMG
sequences incorporating two decoupling (π)Y pulses (Fig. 6.4.d) allows further, though modest,
improvements. These enhancements in the shuttling performance confirm that dephasing is lim-
iting the shuttling performance, contrary to observations in SiMOS [257]. We speculate that the
origin of the difference is two-fold. Firstly, due to the stronger spin-orbit interaction, the spin is
more sensitive to charge noise, resulting in shorter dephasing times. Secondly, the excellent con-
trol over the potential landscape in germanium allows minimizing the errors which are due to the
shuttling itself.

6.5. SHUTTLING THROUGH INTERMEDIATE QUANTUM DOTS
For distant qubit coupling, it is essential that a qubit can be coherently shuttled through chains of
quantum dots. This is more challenging, as it requires control and optimization of a larger amount
of parameters while more noise sources may couple to the system. Within a chain, a quantum dot
will have at least two neighbours. To transport spin states from one site to another they have to
pass through intermediates quantum dots. Therefore, an array of three quantum dots could be
considered as the minimum size to explore the performance of shuttling in a chain.

We perform two types of experiments to probe the shuttling through chains of quantum dots,
labelled corner shuttling and triangular shuttling. Fig. 6.6.b shows a schematic of the corner shut-
tling, which consists of transferring a qubit from QD2 to QD3 to QD4 and back along the same
route. The triangular shuttling, depicted in Fig. 6.6.c, consists of shuttling the qubit from QD2 to
QD3 to QD4, and then directly back to QD2, without passing through QD3 (for the charge stability
diagram QD4-QD2 and a detailed description see Supplementary Information, Note 8).
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Figure 6.6: Coherent shuttling through quantum dots - free evolution and schematics. a, Results of free evo-
lution experiments, similar to those displayed in Fig. 6.2.e and f for the corner and triangular shuttling pro-
cesses. In these experiments, the amplitude of the detuning pulse is increased in steps, in order to shuttle a
qubit from QD2 to QD3 and back (top panel), from QD2 to QD3 to QD4 and back (second panel). The mea-
surement in the third panel is identical to the measurement in the second panel, but the final point in the
charge stability diagram is stepped towards the charge degeneracy point between QD2 and QD4. In the bot-
tom panel the qubit is shuttled in a triangular fashion: from QD2 to QD3 to QD4 to QD2. The ramp times for
this experiment are chosen in such a way that the shuttling is adiabatic with respect to the changes in quan-
tization axis. b, c, Schematic illustrating the shuttling of a spin qubit around the corner: from QD2 to QD3 to
QD4 and back via QD3 (b) and in a triangular fashion: from QD2 to QD3 to QD4 and directly back to QD2 (c).
The double arrow from QD4 to QD2 indicates that this pulse is made in two steps, in order for the spin to shut-
tle via the charge degeneracy point of QD4 - QD2 and avoid crossing charge transition lines.
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sequences. Shuttling performance for different processes are summarized in the Supplementary Information,
Table 6.1. The error bars indicate one standard deviation from the best fits.
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To probe the feasibility of shuttling through a quantum dot, we first measure the free evolution
of a coherent state while varying the detuning between the respective quantum dots. The results
are shown in Fig 6.6.a. We find a remarkably clear coherent evolution for hole spin transfer from
QD2 to QD3 to QD4 and to QD2. We observe one sharp change in the oscillation frequency for
each transfer to the next quantum dot. We also note that after completing one round of the trian-
gular shuttling, the phase evolution becomes constant, in agreement with a qubit returning to its
original position. We thereby conclude that we can shuttle through quantum dots as desired.

We now focus on quantifying the performance of shuttling through quantum dots by repeated
shuttling experiments. To allow comparisons with previous experiments, we define n as the num-
ber of shuttling steps between two quantum dots. Meaning that one cycle in the corner shuttling
experiments results in n = 4, while a loop in triangular shuttling takes n = 3 steps. The results
for shuttling basis states are shown in Fig. 6.7.a and Fig. 6.7.c. We note that the spin polarization
decays faster compared to the shuttling in double quantum dots, in particular for the triangular
shuttling. The corresponding fidelities per shuttle within the sequence are F ≃ 99.96 % for the cor-
ner shuttling and F ≥ 99.63 % for the triangular shuttling.

For the corner shuttling, the faster decay of the basis states suggests a slight increase of the sys-
tematic error per shuttling. This may originate from the use of a more elaborated pulse sequence,
which makes pulse optimization more challenging. Nonetheless, the characteristic decay constant
n∗ remains above 2000 and corresponds to effective distances beyond 300 µm (taking a 140 nm
quantum dot spacing). The fast decay for the triangular shuttling is likely originating from the di-
agonal shuttling step. The tunnel coupling between QD2 and QD4 is low and more challenging to
control, due to the absence of a dedicated barrier gate. The low tunnel coupling demands slower
ramp times (tramp ≃ 36 ns) for the hole transfer. This increases the dephasing experienced by the
qubit during each shuttle and also the time spent close to the (1,1,0,0)-(1,0,0,1) charge degeneracy
point, where fast spin randomization will likely occur.

Remarkably, we find that the performance achieved for coherent corner shuttling (as shown
in Fig. 6.7.b) are comparable to those of coherent shuttling between neighbouring quantum dots.
This stems from the performance being limited by dephasing. However, the performance for
the CPMG sequence appears inferior when compared to the single echo-pulse sequence. Since
the shuttling sequence becomes more complex, we speculate that it is harder to exactly com-
pensate for the change in quantization axes. Imperfect compensation may introduce transversal
noise, which is not fully decoupled using the CPMG sequence. Alternatively, simulations shown in
Fig. 6.21 in the Supplementary Information suggest that the decoupling achieved using a CPMG
sequence depends on the idle time in the initial quantum dots. For an idle time corresponding to
a (2k +1)π (with k an integer) phase accumulation, the decoupling achieved using either an ideal
echo or a CPMG sequence is very similar. In such a scenario, the effect of imperfect decoupling
pulses would become more apparent in a CMPG sequence and would lead to decreased perfor-
mance.

The performance of the coherent triangular shuttling, displayed in Fig. 6.7.d, fall short com-
pared to the corner shuttling. Yet, the number of shuttles reached remains limited by dephasing as
shown by the large improvement of n∗ obtained using dynamical decoupling. The weaker perfor-
mance are thus predominantly a consequence of the use of longer voltage ramps. A larger number
of coherent shuttling steps may be achieved by increasing the diagonal tunnel coupling, which
could be obtained by incorporating dedicated barrier gates.

6.6. CONCLUSION
We have demonstrated coherent spin qubit shuttling through quantum dots. While holes in ger-
manium provide challenges due to an anisotropic g -tensor, we find that spin basis states can be
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shuttled n∗ = 2230 times and coherent states up to n∗ = 67 times and even up to n∗ = 350 times
when using echo pulses. The small effective mass and high uniformity of strained germanium al-
low for a comparatively large quantum dot spacing of 140 nm. This results in effective length scales
for shuttling basis states of lspin = 312 µm and for coherent shuttling of lcoh = 9 µm. By includ-
ing echo pulses we can extend the effective length scale to lcoh = 49 µm. These results compare
favourably to effective lengths obtained in silicon [247, 257–259]. However, we note that, in general,
extrapolating the performance of shuttling experiments over few sites to predict the performance
of practical shuttling links requires caution. Quantum dot chains that would allow to couple spin
qubits over appreciable length scales will put higher demands on tuning, uniformity, and the abil-
ity to tune all the couplings, making the optimization of the shuttling more challenging. Moreover,
the spin dynamics and thus the coherent shuttling performance will depend on the noise in the
quantum dot chain. For example, if the noise is local, echo pulses may prove less effective. How-
ever, in that case, motional narrowing [253, 255, 259, 264–266] may facilitate the shuttling.

Furthermore, operating at even lower magnetic fields will boost the coherence times [127,
158, 190] and thereby increase the shuttling performance. Moreover, at lower magnetic fields the
Larmor frequency is lower, which eases the requirements for the precision of the timing of the
shuttling pulses. At very low fields, charge noise might not be the limiting noise source anymore
and even further improvements may be achieved exploiting purified germanium [127, 158, 190].
Finally, shuttling could help mitigate problems in qubit addressability which may arise at low mag-
netic field.

While we have focused on bucket-brigade-mode shuttling, our results also open the path to
conveyor-mode shuttling in germanium, where qubits would be coherently displaced in propa-
gating potential wells using shared gate electrodes. This complementary approach holds promise
for making scalable mid-range quantum links and has recently been successfully investigated in
silicon [259], though on limited length scales. For holes in germanium, the small effective mass and
absence of valley degeneracy will be beneficial in conveyor-mode shuttling. Rotations induced by
the spin-orbit interaction while shuttling in conveyor-mode could be compensated by applying
an appropriate EDSR pulse after the qubit transfer. Such methods could also be used in bucket-
brigade-mode shuttling, as suggested by preliminary experiments shown in Supplementary Infor-
mation, Note 12. It may allow for even faster qubit transfers and thus shuttling over longer dis-
tances.

Importantly, quantum links based on shuttling and spin qubits are realized using the same
manufacturing techniques. Their integration in quantum circuits may provide a path toward net-
worked quantum computing.

6.7. SUPPLEMENTARY INFORMATION

NOTE 1: EXPERIMENTAL PROCEDURE
To perform the experiments presented, we follow a systematic procedure composed of several
steps. We start by preparing the system in a (1,1,1,1) charge state with the hole spins in QD1 and
QD2 initialized in a |↓〉 state, while the other spins are randomly initialized. Subsequently, QD3
and QD4 are depleted to bring the system in a (1,1,0,0) charge configuration. After that, the vir-
tual barrier gate voltage vB12 is increased to isolate the ancilla qubit in QD1. The tunnel couplings
between QD2 and QD3 and, depending on the experiment, between QD3 and QD4 are then in-
creased by lowering the corresponding barrier gate voltages on vB23 and vB34. This concludes the
system initialization.

Thereafter, the shuttling experiments are performed. Note that to probe the shuttling between
QD3 and QD4, the qubit is first transferred adiabatically (with respect to the change in quantiza-
tion axis) from QD2 to QD3. To determine the final spin state after the shuttlings, the qubit is trans-
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ferred back adiabatically to QD2. Next, the system is brought back in the (1,1,1,1) charge state, the
charge regime in which the readout is optimized. This is done by first increasing vB23 and vB34,
then decreasing vB12 and finally reloading one hole in both QD3 and QD4. We finally readout the
spin state via latched Pauli spin blockade by transferring the qubit in QD1 to QD2 and integrating
the signal from the charge sensor for 7 µs. Spin-up probabilities are determined by repeating each
experiment a few thousand times. Details about the experimental setup can be found in section 2.3
of this thesis.

NOTE 2: SUB-NANOSECOND RESOLUTION ON VOLTAGE PULSES
For these experiments, we use voltage pulses applied to the electrostatic gates by the arbitrary
wave form generators (AWGs). These pulses are compiled as a sequence of ramps, using control
software. The ramps are defined by high precision floating points: time stamps and voltages. The
maximum resolution in time is set by the maximum sample rate of the AWGs, which is 1 GSa/s and
which translates to a resolution of 1 ns. Using this sample rate, the signal that is outputted by the
AWGs has discrete steps, as depicted in Fig. 6.8.a. Simply moving this sampled pulse in time is only
possible with a precision of 1 ns. However, it is possible to achieve sub-nanosecond resolution by
slightly adjusting the voltages of the pulse instead. As illustrated in Fig. 6.8.a, in this way it is pos-
sible to delay a pulse with less than 1 ns. Quantitatively: to achieve a time delay of τ, the voltages

forming the ramp are shifted by −τdVramp(t )
dt . The output of the AWGs has a higher order low-pass

filter with a cut-off frequency of approximately 400 MHz. This filter smoothens the output signal
and effectively removes the effect of the time discretization, as is shown in Fig. 6.8.b. The time shift
of the pulse is not affected by the filter, since it does not change the frequency spectrum of the
pulse. To summarize, combining the high precision in the voltages of the pulse with the output
filtering of the AWGs allows to output a smooth voltage ramp that is delayed by τ <1 ns, despite
the limited sampling rate. Applying this technique to all voltage ramps results in sub-nanosecond
resolution on the overall pulse sequence.
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start time: 1 ns
 ideal
 sampled
 filtered

start time: 2.2 ns
 ideal
 sampled
 fitered

Ideal and sampled pulse

Ideal and filtered pulseb

a

Figure 6.8: AWG pulses with sub-nanosecond precision. a, Ideal voltage pulse starting at 1 ns (dotted black)
and ideal voltage pulse delayed by 0.6 ns with respect to the first one (dotted blue). For both pulses, the dis-
cretized sampling is plotted in solid lines. The delay between the two pulses combined with the sampling,
leads to a shift of the voltage steps. b, Ideal pulses (starting at 1 ns and 1.6 ns) and pulses as outputted by the
AWG after filtering without (light grey) and with the 0.6 ns delay (light blue). The filtering clearly smoothens
the sampled pulses such that the outputted signals closely resemble the ideal pulses.
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QD3 QD3
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Figure 6.9: Evolution of the Larmor frequency for shuttling in double quantum dots. a, b, Larmor frequency

differences∆ f = fL(vP2, vP3)− f QD2
L (a) and∆ f = fL(vP3, vP4)− f QD3

L (b) measured along the detuning axis of
QD2-QD3 (a) and QD3-QD4 (b). The quantum dot where the shuttling experiment starts is taken as the refer-
ence point for the frequency. ∆ f is independently evaluated from measurements of the resonance frequency
using an EDSR pulse (data displayed in Fig. 1.g and k) and from the frequency of the coherent oscillations
that appear when a qubit is shuttled in a superposition state (data displayed in Fig. 1.h and l). Both sets of
data points overlap in (a) and (b), confirming that the coherent oscillations arise due to a change in Larmor
frequency along the detuning axis. For the free evolution experiments, the shuttling between QD2 and QD3
(shown in (a)) is completely adiabatic (ramp times of 40 ns) while the shuttling between QD3 and QD4 (shown
in (b)) is only partially adiabatic (ramp times of 4 ns). In the latter case, the frequency difference measured is
barely affected by the limited adiabaticity as the visibility M of the oscillations induced by the change in quan-
tization axes (M < 0.1 from Fig.6.11) is sufficiently small compared to that of the oscillations arising from the
phase evolution of the superposition state (V ≈ 0.5 when the hole is in QD4). Moreover, the Larmor frequency
of spins in both QD3 and QD4 are close to 1 GHz. The free evolution experiments were performed with a time
resolution of 1 ns, meaning that the oscillations due to the diabaticity of the shuttling only show up as an alias-
ing pattern and do not disturb the oscillations due to free evolution.
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n∗, |↓〉 transfer n∗, |↑〉 transfer n∗, |↓〉−i |↑〉p
2

transfer α, |↓〉−i |↑〉p
2

transfer

Ramsey: 64±1 1.36±0.05
QD2 ⇄ QD3 (3.36±0.09)×103 (3.2±0.1)×103 Hahn: 376±5 1.44±0.04

CPMG: (4.5±2)×102 1.14±0.06
Ramsey: 77±2 1.28±0.06

QD3 ⇄ QD4 (2.9±0.1) ×103 (3.1±0.1)×103 Hahn: 332±6 1.17±0.04
CPMG: (5.0±0.1) ×102 1.3±0.07

Ramsey: 67±2 1.11±0.06
Corner (2.23±0.08)×103 (2.28±0.07)×103 Hahn: (3.5±0.2)×102 1.2±0.1

CPMG: (2.6±0.2)×102 0.76±0.07
Ramsey: 19±1 1.08±0.07

Triangular (3.8±0.4)×102 (2.7±0.3)×102 Hahn: 78±3 1.07±0.05

Table 6.1: Summary of shuttling performance. For the spin basis state shuttling experiments, the spin polar-
ization decays are fitted by P0 exp(−(n/n∗))+Psat, with n the number of shuttles. For the coherent shuttling
experiments, the coherence decays are fitted by A0 exp(−(n/n∗)α), where n∗ represents the number of shut-
tles that can be achieved before the polarization or the coherence drops by 1/e.
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NOTE 3: SPIN RANDOMIZATION NEARBY THE INTERDOT CHARGE TRANSI-
TION
In Fig. 6.2.b and c, we show the evolution of the qubit resonance frequency fL along the detuning
axis of the QD2-QD3 quantum dot pair and of the QD3-QD4 quantum dot pair. fL is measured
by shuttling the spin and applying a 4 µs long EDSR pulse on one plunger gate. While fL can be
clearly determined when the hole is well-localized in one quantum dot, it cannot be measured
nearby the charge transition as the spin-up probability has a high value over the whole range of
frequency spanned. We think that this is the result of a combination of different effects.

Trandomize  = 21(1) ns 

Figure 6.10: Randomization of spin states around the QD2 - QD3 charge transition. a, Shown is the result of
the shuttling of a spin in the |↓〉 state while changing the detuning and the idle time. Note that in contrast to
the measurement shown in Fig. 6.3b of the main text, the time resolution on the x-axis is not large enough to
distinguish the oscillations with gigahertz frequency, instead what is visible here is an aliasing pattern. b, The
data plotted and fitted here correspond to a linecut of (a), taken at the dashed line. The typical time it takes
for the spin to randomize (while starting in the |↓〉 state) is 20±1 ns and is extracted by fitting an exponential
function. The error bar corresponds to one standard deviation from the best fit.

Since the two quantum dots have different quantization axes, the system effectively behaves
as a flopping-mode qubit nearby the charge transition [261, 267–269] and the EDSR driving is thus
expected to be more efficient. This appears, in Fig. 6.2.b, when the qubit is in QD2: along the res-
onance line, we observe an alternation of high and low spin-up probabilities that witness rapid
variations of the Rabi frequency. As a consequence, the power broadening increases significantly
in the vicinity of the charge transition which prevents us from resolving the qubit resonance fre-
quency. We have not observed such effects in the other quantum dots and speculate it is due to
the driving efficiency and the depahsing. In this studied device, the four qubits can usually be ef-
ficiently driven with one particular plunger gate. This drivability is likely the origin why the effect
disappears once the qubit is in in QD3 in Fig. 6.2b.

The gradient of shear strains induced by the thermal contraction of the gate electrodes can
lead to large increases of the Rabi frequency [145]. It is likely that this effect is enhanced in the
vicinity of the charge transition, as the hole is delocalized between the two quantum dots and its
wavefunction extends below the edges of several gates. Finally, nearby the charge transition, exci-
tations to higher energy states induced by charge noise are more likely to occur [156], especially
on the relatively long timescale of 4 µs. These transitions to higher energy states lead to a ran-
domization of the spin states, which explains the large spin-up probabilities observed over the full
frequency range.

This last argument is supported by the data shown in Fig. 6.10. This figure shows the result of
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shuttling a qubit in a |↓〉 state while changing the detuning and varying the idle time (similar to
Fig. 6.3a of the main text). It becomes clear that once the spin approaches the charge anticrossing
between QD2 and QD3 (indicated by the striped black line in Fig. 6.10a), the time it takes for the
spin state to be randomized decreases very rapidly to about Trandomize = 21 ± 1 ns (fit to an expo-
nential decay shown in Fig. 6.10.b). The randomization of the spin close to the charge anticrossing
could also be an explanation for the fact that the spin-up probability measured for shuttling basis
states decays to the value of 0.5 instead of 0.

NOTE 4: QUANTIFYING THE QUANTIZATION AXIS TILT ANGLE

ESTIMATION BASED ON THE VISIBILITY OF THE OSCILLATIONS INDUCED BY THE CHANGE IN QUANTI-
ZATION AXIS

The tilt angle θ between the quantization axis of two different quantum dots can be estimated
based on the amplitude of the oscillations induced by diabatically shuttling a qubit in the |↓〉 state.
This approximation relies on a simple geometric construction in the Bloch sphere.

Fig. 6.11.a shows the Bloch sphere projected on the plane defined by the quantization axes of
the two quantum dots (dark blue and dark green). At the beginning of the experiment, the qubit
is initialized in the |↓〉 state (red arrow). After shuttling to the neighboring quantum dot, the qubit
state changes due to the difference between the quantization axes. In the Bloch sphere, this can
be represented by rotations of the state vector around the second quantization axis. After half a
period (orange arrow), the state projection on the quantization axis of the quantum dot where the
experiment started differs maximally from that of the initial state. This sets the visibility M of the
oscillations induced by the change of quantization axis.

In practise, this visibility is reduced due to imperfect initialization and readout. This can be
taken into account by assuming that the state vectors have a norm V < 1 with V being the visi-
bility of Rabi oscillations measured in the quantum dot where the shuttling experiment starts. We
neglect relaxation which is irrelevant at the time scale of few nanoseconds [155] and thus assume
that the norm of the vector state stays constant during the rotations. We find that:

θ = 1

2
arccos(1−2M/V ) with 0 ≤ θ ≤π. (6.1)

We use this expression to evaluate θ23 (θ34), the tilt angle between the quantization axes of
QD2 and QD3 (QD3 and QD4). Fig. 6.11.b and c show the oscillations induced by the change in
quantization axis as function of the pulse ramp time tramp. The amplitude M/2 of these oscilla-
tions is fitted and plotted in 6.11.d. As discussed in the main text, the amplitude of the oscillations
drop rapidly to zero as tramp increases, because the shuttling becomes more adiabatic with respect
to the difference in quantization axis. For the evaluation of θ we use the amplitude M/2 = 0.14
(0.07) of the oscillations at the shortest tramp = 2 ns. We remark that there is no clear saturation of
M at the smallest ramp times, which suggests that the shuttling process is still not fully diabatic
and that higher visibilities could be achieved by shuttling faster. Rabi oscillations for the driving
of the qubit in QD2 (QD3) have a visibility of V = 0.61 (0.48) giving us θ23 ≥ 42° (θ34 ≥ 33°). These
large values for θ illustrate the strong influence of the local electric field on the direction of the
quantization axis in germanium hole spin qubits operated with an in-plane external magnetic
field.

ESTIMATIONS BASED ON FITS WITH A FOUR-LEVEL MODEL

To get an additional independent evaluation of the tilt angles, we can fit the evolution of the qubit
resonance with a four-level model. To derive such a model, we consider a single hole in a ger-
manium double quantum dot placed in an external magnetic field B . We assume that there is a
finite tunnel coupling tc between the two quantum dots QDA and QDB and their quantization
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Figure 6.11: Estimation of the tilt angle based on the amplitude of the oscillations induced by the difference
in quantization axis. a, Geometric construction in the Bloch sphere allowing to determine the tilt angle θ

between the quantization axes of adjacent quantum dots (blue and green). θ is determined from the visibility
M of the oscillations induced by the change in quantization axes and the visibility of the Rabi oscillations V . b,
c, Oscillations induced while shuttling a qubit in a |↓〉 state between QD2 and QD3 (b) and between QD3 and
QD4 (c) for increasing ramp times. d, Amplitude of the oscillations as function of the ramp times.

axes are tilted with respect to each other by an angle θ. This last assumption is sufficient to take
into account all effects of the spin-orbit interaction, providing a suitable basis transformation and
a renormalization of the tunneling terms.

The system can be described in the basis {|A,↑A〉 , |A,↓A〉 , |B,↑A〉 , |B,↓A〉}, where ‘A’ or ‘B’ indi-
cates the position of the hole (in quantum dot QDA or QDB) and ↑A or ↓A specifies its spin states
in the frame of quantum dot A. Its Hamiltonian is then given by:

Hmodel = Hcharge +HZeeman =


ϵ 0 tc 0
0 ϵ 0 tc
tc 0 −ϵ 0
0 tc 0 −ϵ

+ 1

2
BµB


gA(ϵ) 0 0 0

0 −gA(ϵ) 0 0
0 0 gB(ϵ)cos(θ) gB(ϵ)sin(θ)eiϕ

0 0 gB(ϵ)sin(θ)e−iϕ −gB(ϵ)cos(θ)

 , (6.2)

where ϵ is the detuning energy of the double quantum dot system (taken as zero at the charge
transition),µB is the Bohr magneton and gi are the g -factors in the different quantum dots,ϕ is the
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azimuthal angle between the two quantization axes. Note that, with this convention, ϵ corresponds
to half of the difference between the electrochemical potentials of the two quantum dots and a
tunnel gap of 2tc at the anticrossing. We remark that this model is similar to that of a flopping-
mode qubit [267]. Diagonalizing the Hamiltonian, we obtain the qubit resonance frequency fL
given by:

fL = µBB

h

√
(2ϵ2 + t 2

c )(gA(ϵ)2 + gB(ϵ)2)+2ϵ(gB(ϵ)2 − gA(ϵ)2)
√
ϵ2 + t 2

c +2gA(ϵ)gB(ϵ)t 2
c cos(θ)

2
√
ϵ2 + t 2

c

,

(6.3)
The evolution of fL along the detuning axes can then be fitted to extract the tilt angles and

the tunnel couplings between neighbouring quantum dots. For this purpose, we first express the
detuning energies in terms of gate voltages as ϵ23 = η23

2 (vP3 −vP0
3) and ϵ34 = η34

2 (vP4 −vP0
4) where

η23 = 0.166 meV/mV and η34 = 0.150 meV/mV are the effective lever arms along the detuning
axis. They are defined as η23 = β3 + β2γ23 and η34 = β∗4 + β∗3γ34 where β2 = 0.084 meV/mV,

β3 = 0.080 meV/mV (β(∗)
3 = 0.084 meV/mV, β(∗)

4 = 0.075 meV/mV) are the virtual gate lever arms
measured nearby the QD2-QD3 (QD3-QD4) charge transition via photon-assisted tunnelling ex-
periments [270] and where γ23 = |∆vP2/∆vP3|=1.026 (γ34 = |∆vP3/∆vP4| = 0.889) are the slopes of
the detuning axis. We extract the evolution of fL as function of vP3 (vP4) from the data displayed
in Fig. 6.12.a-b (Fig. 6.13.a-c) and fit it with eq.(Fig. 6.3).

Fig. 6.12.c-d display the evolution of fL along the ϵ23 detuning axis which is fitted to the above
model assuming a linear dependence of g with vP3. We observe that the model reproduces well
the measured evolution. This allows to estimate an interdot tunnel couplingtc of 4.4±0.2 GHz and
a tilt angle θ23 of 51.8±0.7°. The error bars correspond to one standard deviation from the best fit.
This evaluation is consistent with the lower bound found using the previous method.

Fig. 6.13.d-e display the evolution of fL along the ϵ34 detuning axis. In this case, fitting the data
does not allow to extract the tilt angle, even if we assume a quadratic dependence of the g -factor
with the gate voltage. Indeed, for 0° ≤ θ ≲ 40°, the shape of fL curve is nearly solely determined
by the tunnel coupling and the variation of the g -factor with vP4. Consequently, the data can be
equally well fitted by models where θ34 is fixed at 0°, 10°, 20°, 30°or 40°. This leads to such a large
uncertainty on the value of θ34 that it prevents us from extracting it. Nevertheless, the tunnel cou-
pling between QD3 and QD4 can still be estimated from these fits and, for θ34 fixed to 40°(30°), we
find tc = 8±1 (tc = 6.2±0.8) GHz.

What does become clear, however, is that we cannot obtain proper fits of the data with model
where θ34 is fixed to values larger than 40°. The underlying reason appears when plotting the ex-
pected evolution of fL in such model: for θ34 ≳ 50°, fL should display a minimum that we do not
observe experimentally. This suggests that θ34 is lower than 50°.

This analysis also allows us to estimate the degree of adiabaticity of the charge transfers
between the neighbouring quantum dots i and j . For that, we use the Landau-Zener formula

P
i j
LZ = exp(

−2πt 2
c tramp

2ħ∆ϵi j
) that gives us the probability of having a transition to the excited charge state

while changing the detuning linearly by ∆ϵi j =
ηi j

2 ∆vPi j in a time tramp. We emphasize that the
factor 2 in front of ∆ϵi j comes from our definition of ϵi j . Taking ∆vP3 = 19.5 mV for shuttling be-
tween QD2 and QD3, ∆vP4 = 18 mV for shuttling between QD3 and QD4 and tramp = 4 ns, we find
P 23

LZ ≃ 2×10−2 and P 34
LZ ≃ 2×10−7(9×10−5). The values obtained for the shuttling between QD3

and QD4 suggest that the charge transfer between these two quantum dots is adiabatic. In con-
trast, there is non-negligible probability of exciting higher charge states while shuttling between
QD2 and QD3 with these settings.
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Figure 6.12: Evaluation of the tilt angle between QD2 and QD3 quantization axes using a four-level model. a,
Free evolution experiments for shuttling a qubit in superposition state between QD2 and QD3 back-and-forth.
The superposition state is prepared in QD2. b, Zoom-in on the vicinity of the charge transition. The two data
sets are identical to those displayed in Fig. 1.h. c, d, Resonance frequency extracted from the oscillations along
the detuning axis in (a) and (b) and fit with the model of eq. (6.3).

To improve the fidelity of the shuttling process between QD2 and QD3, we increased the tun-
nel coupling by lowering the barrier gate voltage vB23 from −40 mV to −75 mV. Fig. 6.14 shows
the results of similar analysis performed after lowering the barrier gate voltage. Fitting the evo-
lution of the resonance frequency along the detuning axis, we find that tc = 16.1± 0.6 GHz and
θ23 = 54.2±0.6°. For these experiments,η23 = 0.164 and∆vP3 = 24 mV, thus we find P 23

LZ ≃ 2×10−19.
In this gate voltage configuration, the shuttling process is fully adiabatic with respect to the charge
degree of freedom. Consequently, we used these barrier gate voltage settings to have better shut-
tling performance and, in particular, for the experiments presented in Fig. 6.5 and Fig. 6.7.
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Data
Fit, θ34= 0°
Fit, θ34= 10°
Fit, θ34= 20°
Fit, θ34= 30°
Fit, θ34= 40°
Model with θ34= 50°
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Fit, θ34= 20°
Fit, θ34= 30°
Fit, θ34= 40°
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Figure 6.13: Evaluation of the tilt angle between QD3 and QD4 quantization axes using a four-level model. a,
b, c, Free evolution experiments for the adiabatic shuttling of a qubit in a superposition state between QD3 and
QD4 back-and-forth. In (a) the qubit is prepared in superposition in QD4, while in (b) and (c) the superposition
state is prepared in QD3. d, e, Evolution of the resonance frequency along the detuning axis, extracted from
the oscillations in (a), (b) and (c), and fits with models of eq. (6.3) where the tilt angle is fixed. The expected
evolution for θ34 = 50° is computed using the parameters extracted from the fit with θ34 = 40°.
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Figure 6.14: Evaluation of the tilt angle between QD2 and QD3 quantization axes using a four-level model at a
lower barrier gate voltage. a, Free evolution experiments for shuttling a qubit in a superposition state between
QD2 and QD3 back-and-forth. The superposition state is prepared in QD2. b, Zoom-in on the vicinity of the
charge transition. c, d, Resonance frequency extracted from the oscillations along the detuning axis extracted
from (a) and (b) and fit with the model of eq. (6.3). Compared to Fig. 6.12, here the barrier gate voltage vB23
is lower (−75 mV instead of −40 mV) leading to a higher tunnel coupling. These settings correspond to the
settings used to acquire the data displayed in Fig. 6.5 and Fig. 6.7.
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QD2 ⇄ QD3 QD3 ⇄ QD4 Corner Triangular

T ∗
2 in QD2(ns) (2.8±0.1)×102 N. A (2.8±0.1)×102 (2.8±0.1)×102

α in QD2 1.8±0.2 N. A 1.8±0.2 1.8±0.2
T ∗

2 QD3 (ns) (4.1±0.3 )×102 (5.0±0.3)×102 (4.1±0.3)×102 (4.1±0.3)×102

α QD3 1.6±0.2 1.8±0.3 1.6±0.2 1.6±0.2
T ∗

2 (ns) in QD4 N. A. (3.1±0.2)×102 (3.1±0.3)×102 (3.1±0.3)×102

α in QD4 N. A. 1.8±0.2 1.4±0.3 1.4±0.3
t∗ (ns) shuttling 339±5 408±9 (3.5±0.1)×102 (3.4±0.2)×102

α shuttling 1.41±0.05 1.30±0.07 1.13±0.07 1.11±0.08

Table 6.2: Dephasing times and decay coefficients for static and shuttled qubits. The dephasing times T∗
2

for static qubits are measured with standard Ramsey experiments (data shown Fig. 6.15), performed at the
starting and the end points of the shuttling pulses. The dephasing time t∗ for shuttled qubits are extracted by
fitting the amplitude as a function of the total time, as shown in Fig. 6.15. The error bars indicate one standard
deviation from the best fits. The voltages applied on the barrier gates vary between experiments, which can
lead to different T∗

2 and α values for a static qubit in a given quantum dot.

NOTE 5: SHUTTLING AS A FUNCTION OF TIME AND DEPHASING TIMES
To get some insight on how the shuttling performance compare to the typical coherence times in
the system, we plot in Fig. 6.15 the qubit dephasing times T∗

2 along side the results of the shuttling
experiments as function of time. We evaluate the T∗

2 of a static qubit at the locations in the charge
stability diagrams corresponding to the starting and the end points of the shuttling pulses. The
T∗

2 values are measured using a standard Ramsey protocol. The resulting oscillations are fitted by
A cos(2πt f +ϕ0)exp(−(t/T∗

2 )α)+A0 allowing to extract both T∗
2 and the decay coefficientsα. The

corresponding data and fits are shown in Fig. 6.15.a-b.
Moreover, for all the shuttling processes, we calculate for each number of shuttling events n

the total time between the two π/2 pulses of the Ramsey shuttling experiments. Fig. 6.15.c-f show
the results of shuttling experiments used to quantify the performances. These data are identical
to those shown in Fig. 6.5 and Fig. 6.7, but the amplitude decay is shown as a function of the time
duration of the shuttling experiments.

An overview of the fit parameters is shown in Table 6.2. Since the total measurement time for
the shuttling experiments (several thousands of seconds) is very different from that for the Ramsey
experiments (several hundreds of seconds), and therefore the type and amount of noise integrated
are different, some caution is required when comparing the decay parameters. However, it is clear
that the dephasing times of static and moving qubits are of the same order of magnitude.

NOTE 6: ADIABATIC SHUTTLING
For completeness, we also investigate the performance of the shuttling processes when the shut-
tling pulses are adiabatic, i.e. when there is no spin rotation induced by the difference between
the quantization axes of the quantum dots. Fig. 6.16 shows the results of such investigations for
the shuttling of basis states and for the shuttling of superposition states. In both cases, we obtain
significantly lower performance compared to those achieved with diabatic pulses (see Fig. 6.5).
According to our findings, dephasing can largely explain this difference in performance for the
coherent shuttling experiments. As the time required for each shuttling event is increased in the
adiabatic experiments, the qubit experiences more dephasing during each shuttling step and the
phase coherence is lost after a smaller number of shuttling steps n. The use of echoing pulses al-
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QD2⇆QD3⇆QD4 
t* = 3.5(1)e2 ns

QD2 T2* = 2.8(1)e2 ns  

QD3 T2* = 4.1(3)e2 ns  

QD2⇆QD3  
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QD3 T2* = 5.0(3)e2 ns  

QD4 T2* = 3.1(3)e2 ns 

QD3⇆QD4  
t* = 408(9) ns 

QD2→QD3→QD4→QD2
t* = 3.4(2)e2 ns 
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Figure 6.15: Comparison of the dephasing times for static and shuttled qubits. a, b, Results of Ramsey ex-
periments for a spin in QD2 and QD3 (a) (QD3 and QD4 in (b)) at the same plunger and barrier gate voltages
settings as the shuttling experiments between QD2 and QD3 (a) (QD3 and QD4 in (b)). c, d, The result of the
shuttling experiment, to assess the shuttling performance with a superposition state (without echo pulse), be-
tween QD2 and QD3 (c) (QD3 and QD4 in (d)), same as in Fig. 3g (3h) of the main text. However, here the
amplitude is plotted as a function of the total time between the two π/2-pulses. e, f, Similar to (a) and (b), but
for the corner shuttling and the triangular shuttling. The gate voltage settings for these experiments are the
same as for the Ramsey experiments shown in (a) for QD2 and QD3 and for QD4 shown in (b). The error bars
indicate one standard deviation from the best fits.

lows us to get an improvement of the coherent shuttling performance by a factor 6 to 8, larger than
those obtained for diabatic shuttling.

For shuttling basis states, the lower performance suggests that the probability of having a spin-
flip during a shuttle increases if the latter is performed adiabatically. This could originate from the
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QD2→QD3→QD4→QD3→QD2 QD2→QD3→QD4→QD3→QD2

Number of shuttles n Number of shuttles n

Figure 6.16: Performance of adiabatic shuttling. a, b, c, Spin polarization as a function of the number of shut-
tling steps n for a qubit initialized in the basis states. d, e, f, Amplitude as a function of the number of shuttling
steps n for qubits initialized in a superposition state, without (Ramsey) and with echo pulse (Hahn).

longer time spent in the vicinity of the charge transition, where spin randomization induced by
charge noise is enhanced [156]. Overall, the data in Fig. 6.16 clearly show that an approach based
on diabatic spin shuttling is preferable for hole spin qubits in germanium.
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NOTE 7: CHARGE STABILITY DIAGRAM OF PAIR QD2-QD4
The charge stability diagram of the quantum dot pair QD2-QD4, measured in a configuration iden-
tical to that of the triangular shuttling, is displayed in Fig. 6.17. No clear interdot charge anticross-
ing is visible, which suggests that the tunnel coupling between the two quantum dots is very low.
This is expected, considering the device geometry, and it forces us to split the final pulse for the
triangular shuttling in two parts. As depicted in Fig. 6.17, the voltages are first changed to bring
the system close to the (1100)-(1001) degeneracy point before applying a second pulse that brings
the system in the (1100) charge state. This reduces the probability that we excite the (1101) charge
state, while transferring the qubit.

(1100)

(1001)

Figure 6.17: Charge stability diagram of quantum dot pair QD2-QD4. No clear interdot transition can be dis-
tinguished. The shuttling of a spin qubit from QD2 to QD4 is performed using two voltage pulses (white ar-
rows). The labels (N1N2N3N4) represent the charge occupation in the quantum dots.

NOTE 8: OPTIMIZATION OF THE SHUTTLING PULSES TO MITIGATE THE EF-
FECTS OF SPIN-ORBIT INTERACTION
In this section, we illustrate and discuss the importance of careful pulse optimization. Fig. 6.18
shows the results of experiments where we probe the performance of the coherent shuttling be-
tween QD2 and QD3 using the Ramsey sequence depicted in Fig. 6.4.a. The detuning pulses used
for all these experiments are identical, except for the idle time tidle in QD3 (idle time 2 in Fig. 6.4.b).
This idle time in QD3 was optimized to 0.95 ns for the experiments displayed in the main text.

We observe that the evolution of amplitudes extracted at the end of the shuttling sequence is
strongly dependent on the idle time in QD3. For tidle = 0.9 and tidle = 1 ns, which are close to the
optimum, the amplitude shows a smooth and progressive decay. When tidle is increased, oscilla-
tions of the amplitude as function of the number of shuttling steps n appear and their periodicity
varies with tidle. These oscillations witness the rotations induced by the change of quantization
axes, which are imperfectly compensated for tidle ≥ 1.1 ns. They lead to coherent errors after each
shuttling event, which add up, and significantly modify the state of the qubit. For example, for
tidle = 1.6 ns, the superposition state is virtually transformed to a spin basis state after a few shut-
tling rounds. This emphasizes the necessity of optimizing the voltage pulses to compensate for the
effect of rotations induced by the spin-orbit interaction.
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Figure 6.18: Signatures of non-optimized idle times in Ramsey shuttling experiments. Results of coherent
shuttling experiments between QD2 and QD3 obtained using Ramsey sequences. The idle time spent in QD3
is different for the results shown in the different subplots, as indicated by the titles. For non-optimized idle
times, oscillations of the amplitude as function of the number of shuttles n appear and the amplitude can
saturate to a non-zero value at large n.
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The optimized idle times for each shuttling process can be found by performing measure-
ments similar to those displayed in Fig. 6.18, and by looking for a regular decay of the amplitude
as function of n. This optimization can also be done by studying the decay of the spin-up proba-
bilities in spin basis state shuttling experiments.

NOTE 9: QUBIT DYNAMICS DURING COHERENT SHUTTLING EXPERIMENTS

FOR NON-OPTIMIZED IDLE TIMES
In Fig. 6.18, we see that for non-optimized idle times, like tidle = 1.5 ns, the amplitude can saturate
to a finite value at large n. This is in contrast to what we observe for optimized idle times tidle =
0.9 ns and tidle = 1 ns, which decay to zero. To understand this feature, we carry out simulations

of the dynamics of a qubit initialized in the |↓〉−i |↑〉p
2

superposition state which is shuttled between

two neighboring quantum dots. Each shuttling step is modelled by a rotation. This rotation arises
from the precession around the quantization axis of the quantum dot towards which the qubit is
shuttled. We also calculate for every even n the expected measurement result, i.e. the amplitude of
the P↑ oscillations that appear when the phase ϕ of the second π/2 pulse is varied. This is shown
in Fig. 6.19.c, with two examples corresponding to a non-optimized idle time and an optimized
idle time.

Fig. 6.19.a displays the trajectory in the Bloch sphere of the qubit for the first 14 shuttling steps,
in the reference frame of the quantum dot where the shuttling experiment starts. The different
states of the qubit map a circle which is tilted compared to the equator. The product of the two ro-
tations generated by shuttling back-and-forth is equivalent to a single rotation around a fixed axis.
Consequently, multiple shuttling cycles can be seen as successive rotations around this fixed axis
which elucidates the trajectory observed in the Bloch sphere. This also explains the oscillations of
the amplitude as function of n seen in Fig. 6.18, as the distance between origin and the projection
of the state on x y-plane can vary significantly depending on the number of shuttles for an non-
optimized idle time. In contrast, when the idle times are well-optimized, the qubit states are on
the equator of the Bloch sphere and no oscillations of the amplitude with n can be observed.

Next, we include the effects of dephasing in the simulations, by assuming that the qubit fre-
quencies fluctuate between repetitions of a given experiment with a fixed n. We observe that the
state of the qubit is spread along a circle with a distribution that becomes more uniform as n in-
creases, meaning when the qubit experiences more dephasing. An example is shown in Fig. 6.19.b
for n = 98, corresponding to the data shown in Fig. 6.19.c. The center of the circle, which is equiv-
alent to the statistical average of the qubit state when the qubit is completely dephased, is not on
the equator on Bloch sphere. This explains the finite amplitude observed in the measurements
at large n. Except for the revival of the amplitude observed for tidle = 2.1 ns, these simulations
capture most of the features observed in Fig. 6.18.

NOTE 10: MODELLING OF THE QUBIT DYNAMICS

MODEL USED AND UNDERLYING ASSUMPTIONS

In general, the quantum process of 2n shuttles, between QD2 and QD3 back-and-forth n times, is
given by the sequential application of the individual processes:

U2n shuttles = 〈
n∏

j=0
U

( j )
QD2U

( j )
r,QD2U

( j )
QD3U

( j )
r,QD3〉 , (6.4)

where U
( j )
QD2(QD3) is the j -th superoperator describing the dynamics in quantum dot

QD2(QD3), U
( j )
r,QD2(r,QD3) is the j -th superoperator describing the dynamics of ramping to quan-

tum dot QD2 (QD3), and 〈·〉 denotes averaging over different noise initializations. The dynamics
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Figure 6.19: Simulation of the effect of non-optimized idle times. a, Distribution of the qubit states in the
Bloch sphere after an even number of shuttles, for an non-optimized idle time. b, Spread of the qubit state
after a large number of shuttles, when the qubit is dephased. c, Simulated measurement results, i.e. amplitude
of the oscillations appearing while varying the phase of the second π/2 pulse, as a function of n, for a non-
optimized idle time and an optimized idle time.

within the qubit subspace without decoherence is given by:

UQD2 = exp

(
−i

φQD2

2
σz

)
(6.5)

Ur,QD2UQD3Ur,QD3 = exp

(
−i

φQD3

2
(cos(θ23)σz + sin(θ23)σx )

)
, (6.6)

where θ23 is the effective tilt angle between the quantization axes that also takes the ramping time
into consideration, φQD2(QD3) are the effective phases accumulated around the corresponding
quantization axis and σx,y,z are the Pauli matrices in QD2. In the superoperator representation,
the unitary dynamics can be conveniently expressed by:

UQD2 =UQD2 ⊗U∗
QD2 (6.7)

= eHQD2 . (6.8)

Here, HQD2 = −iφQD2(σz ⊗ 12 − 12 ⊗σz )/2 and ⊗ denotes the Kronecker product. To describe
the effect of decoherence we consider for each process low-frequency charge noise (modelled as
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quasistatic fluctuations of accumulated phasesφQD2(QD3) →φQD2(QD3)+δφQD2(QD3)), and high-
frequency charge noise which causes dephasing and relaxation at the charge anticrossing. The
latter noise sources are modelled within a standard Lindblad equation (allowing us to drop the
index j ) and described by the following Lindblad operators in superoperator representation using
row-stacking convention [271]:

LQD2 =


−γr

QD2 0 0 γr
QD2

0 −γr
QD2 −γ

ϕ
QD2 γr

QD2 0

0 γr
QD2 −γr

QD2 −γ
ϕ
QD2 0

γr
QD2 0 0 −γr

QD2

 , (6.9)

Lr,QD2 =


−γr

r,QD2 0 0 γr
r,QD2

0 −γr
r,QD2 −γ

ϕ
r,QD2 γr

r,QD2 0

0 γr
r,QD2 −γr

r,QD2 −γ
ϕ
r,QD2 0

γr
r,QD2 0 0 −γr

r,QD2

 , (6.10)

LQD3 =
(
R(θ23)⊗R(−θ23)T

)


−γr
QD3 0 0 γr

QD3
0 −γr

QD3 −γ
ϕ
QD3 γr

QD3 0

0 γr
QD3 −γr

QD3 −γ
ϕ
QD3 0

γr
QD3 0 0 −γr

QD3


(
R(−θ23)⊗R(θ23)T

)
, (6.11)

Lr,QD3 =
(
R(θ23)⊗R(−θ23)T

)


−γr
r,QD3 0 0 γr

r,QD3
0 −γr

r,QD3 −γ
ϕ
r,QD3 γr

r,QD3 0

0 γr
r,QD3 −γr

r,QD3 −γ
ϕ
r,QD3 0

γr
r,QD3 0 0 −γr

r,QD3


(
R(−θ23)⊗R(θ23)T

)
, (6.12)

where R(θ) = e−iθσy /2 rotates the quantization axis by θ in the xz-plane. Here, γ
ϕ
QD2(QD3)

is the dephasing rate and γr
QD2(QD3) the relaxation/excitation rate for idling in QD2(QD3) and

γ
ϕ
r,QD2(QD3) is the dephasing rate and γr

r, QD2(QD3) the relaxation/excitation rate for shuttling from

QD3 to QD2 (QD2 to QD3). To simplify the expressions, we further assumed that the qubit is cou-
pled to a hot qubit bath at the anticrossing [156] giving rise to equal relaxation and excitation rates.
This assumption is justified by the fast randomization of the spin state at the anticrossing observed
in Fig. 6.10.

The basic repetition, a 2-shuttle process, can now be described as a Markov chain:

U2 shuttles = 〈eHQD2+LQD2 eLr,QD2 eHQD3+LQD3 eLr,QD3 〉 . (6.13)

Here, we make the following assumptions. Firstly, high-frequency noise, causing relaxation and
dephasing processes and described by γ

ϕ
r,QD2(QD3) and γ,r

r,QD2(QD3), is relevant only exactly at the

anticrossing and is instantaneous. Secondly, we neglect high-frequency noise during the idling in



6

126 6. COHERENT SPIN QUBIT SHUTTLING THROUGH GERMANIUM QUANTUM DOTS

QD2 and QD3 since idling dynamics is dominated by low-frequency noise. This allows us to add
the coherent part of the dynamics during the ramp before (after) reaching the anticrossing to the
dynamics described by HQD2 (HQD3). We note that this is a good approximation if 〈φQD3〉 is close
to an integer multiple of 2π, i.e. the shuttling rounds are well calibrated. Using the Zassenhaus
expansion formula, we can now further approximate the 2-shuttling process by a product of two
matrices:

U2 shuttles = 〈eC eD〉 . (6.14)

Here, the C -matrix only consists of the average phase accumulated 〈φQD2〉 and describes a unitary
process while all decoherence is included in the D-matrix. For n being an even integer, a 2n-shuttle
process can then be written as:

U2n shuttles =
〈

n/2∏
i=1

eD


1 0 0 0
0 e−i 〈φQD2〉 0 0
0 0 ei 〈φQD2〉 0
0 0 0 1

eD

〉
, (6.15)

with the decoherence matrix:

D ≈Lr,QD2 +Lr,QD3 +HQD2 +HQD3 −〈HQD2〉 . (6.16)

SHUTTLING OF SPIN BASIS STATES

The return probability of the basis states, which are identical for both basis states as the excitation
and relaxation rate are assumed to be equal close to the charge anticrossing, can be computed
from the superoperator 〈↑̃|U2n shuttle |↑̃〉, where |↑̃〉 is the vectorized density matrix of the |↑〉 basis
state. We now consider two extreme cases, 〈φQD2〉 = m with even or odd m multiple of π. If m

is an even multiple of π, we can simplify the expression to U2n shuttles = 〈enD〉, while for m be-
ing an odd multiple of π, the sequence corresponds to a Hahn echo experiment with a phase-flip
operation instead of a bit-flip operation. In Fig. 6.20, we have simulated the basis state decay for
varying m considering (a) uncorrelated and (b) correlated charge noise. While most cases shows
only a single, and slow exponential decay, the special case of m = 2πk (with k an integer) shows
a fast initial Gaussian followed by a slow exponential decay. Regardless of the chosen value of m,
the decay converges to 〈↑̃|Un→∞ |↑̃〉 = 1

2 . We find that for most m, the initial rapid decay is ab-
sent due to decoupling over potentially many shuttle rounds. Thus, the (partial) noise-decoupling
effect occurs for most choices of the waiting times in the initial quantum dot. We find that the
fast decay of the basis states can only be observed for 〈φQD2〉 = m ±δ with m being multiples of
2π and δ ≤ 0.02π. Since our experimental results do not show a fast Gaussian decay of the basis
states, we believe that our timing is chosen such that the fast initial Gaussian dephasing is echoed
out [264]. Consequently, we can fit the decay for the shuttling of spin basis states to an exponential
decaying function exp(−n/n∗). We note that the final slow decay can either originate from spin
randomization or from dephasing.

RAMSEY, HAHN-ECHO, AND CPMG DYNAMICAL DECOUPLING

The decay of the superposition states can be computed from the same superoperator via the am-
plitude

A = 1

2
max
ϕ

[〈ϕ̃+|U2n shuttle |φ̃+〉−〈ϕ̃−|U2n shuttle |φ̃+〉
]

, (6.17)

where |ξ̃±〉 is the vectorized density matrix of the state |ξ±〉 = 1
2 (|↑〉±eiξ |↓〉) with ξ=ϕ,φ. The initial

phase of the superposition state is in general unknown due to the unsynchronized clock between



6.7. SUPPLEMENTARY INFORMATION

6

127

Uncorrelated charge noise Correlated charge noiseba

m = 
π
π
π
π
π
π

Figure 6.20: Simulation of the basis state decay. Evolution of the spin-up probability P↑ as a function of the
number of shuttling events simulated using Eq. (6.4) for a, uncorrelated and b, correlated quasistatic fluc-
tuations for various 〈φQD2〉 = m. For both correlated and uncorrelated noise, the fast initial decay vanishes,
except when m is close to (a multiple of) 2π. In the simulation the following parameters were chosen: quan-
tization axis difference θ23 = 52◦, high-frequency dephasing rate γ

ϕ
r,QD2 = γ

ϕ
r,QD3 = 0.00125, relaxation rate

γr
r,QD2 = γr

r,QD3 = 0.000125, standard deviation of the quasistatic fluctuations σφQD2 =σφQD3 = 0.004. For un-

correlated fluctuations σφQD2 →p
2σφQD2 to get identical free induction decays. These parameters lead to a

pure dephasing after n∗ = 63 shuttles in absence of decoupling.

the AWG and the vector source (see section below) and may vary for each single shot measurement
of the experiment. However, the phase difference between initial and final state is fixed for each
shot. We have numerically confirmed that the dynamics is only slightly affected by an additional
averaging over the initial phase of the initial superposition state for 〈φQD2〉 = m with m being close
to multiples of 2π (same regime in which the fast initial decay can be observed for the basis state).
For other choices, the initial phase has a negligible impact and is averaged out after a few shuttling
rounds.

The quantum process of a dynamical decoupled 2n shuttles, shuttling between QD2 and QD3
back-and-forth n times, is given by the sequential application of the individual processes:

U Echo
2n shuttles = 〈

n/2∏
j=0

U
( j )
QD2U

( j )
r,QD2U

( j )
QD3U

( j )
r,QD3 Ux,π/2

n∏
j=n/2

U
( j )
QD2U

( j )
r,QD2U

( j )
QD3U

( j )
r,QD3〉 , (6.18)

U CPMG
2n shuttles = 〈

n/4∏
j=0

U
( j )
QD2U

( j )
r,QD2U

( j )
QD3U

( j )
r,QD3 Uy,π/2

3n/4∏
j=n/4

U
( j )
QD2U

( j )
r,QD2U

( j )
QD3U

( j )
r,QD3 Uy,π/2

n∏
j=3n/4

U
( j )
QD2U

( j )
r,QD2U

( j )
QD3U

( j )
r,QD3〉, (6.19)

where Ux,y,π/2 are superoperator representation of the spin-flips around the x and y axis. For
corner shuttling, shuttling between QD2 to QD3 to QD4 and back n times, one needs to make the
substitution:

U
( j )
r,QD2U

( j )
QD3U

( j )
r,QD3 →U

( j )
r,QD2U

( j )
QD3U

( j )
r,QD3U

( j )
QD4U

( j )
r,QD4U

( j )
QD3U

( j )
r,QD3, (6.20)

where U
( j )
QD4 is the j -th superoperator describing the dynamics in dot QD4, U

( j )
r,QD4 is the j -th

superoperator describing the dynamics of ramping to quantum dot QD4. The dynamics within
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the qubit subspace without decoherence is analogousely given by:

Ur,QD2UQD3Ur,QD3UQD4Ur,QD4UQD3Ur,QD3 = exp

(
−i

φQD3

2
(cos(θ23)σz + sin(θ23)σx )

)
×exp

(
−i

φQD4

2
(cos(θ34 +θ23)σz + sin(θ34 +θ23)σx )

)
×exp

(
−i

φQD3

2
(cos(θ23)σz + sin(θ23)σx )

)
,

where θ34 is the effective tilt angle between the quantization axes of QD3 and QD4 that also takes
the ramping time into consideration, φQD3,a(b) is the effective phases accumulated in QD3 before
(after) shuttling to QD4, and φQD4 is the effective phases accumulated in QD4.

Note that in general the quantization axes of QD2, QD3 and QD4 do not need to lay in the same
plane. To account for the misalignment we use the Euler-angle decomposition, i.e. by adding a ro-
tation around the quantization axis of QD3 before the shuttling to QD4 and adding the inverse ro-
tation after the shuttling back to QD3. The additional phase commutes (by design) with the idling
dynamics in QD3. Consequently, the additional rotation can be added/subtracted from the rota-
tion accumulated during idling in QD3 (care has to be taken with the relaxation decay dynamics).
Since we do not know the phase of the rotation in our experiment, we assume in our simulations
that all three quantization axes are in the xz-plane. We have numerically confirmed that the dy-
namics is only mildly affected by this choice and only close to 〈φQD2〉 = m with m being a multiple
of 2π.

In Fig. 6.21, we have simulated for the corner shuttling the evolution of the coherence, i.e.
the amplitude (see Eq. (6.17)) of the superposition state, for a (a) Ramsey, (b) Hahn-echo, and
(c) CPMG dynamical decoupling sequence for various m using uncorrelated quasistatic charge
noise. When m is a multiple of 2π, the dynamical decoupling for the CPMG sequence shows a
significant improvement compared to the Hahn-echo. In contrast, when m is a multiple of π, a
Hahn-echo sequence achieves a similar decoupling effect as the CPMG sequence because of the
interplay between the phase and spin flips in QD2. This could possibly explain the reduced effect of
CPMG measured in corner shuttling. We note that simulations considering time-correlated phase
fluctuations, instead of quasistatic phase fluctuations, show qualitatively similar results for the
improvement of decoupling using CPMG sequences compared to Hahn-echo sequences.

NOTE 11: DRIVING A SPIN QUBIT AFTER SHUTTLING TO COMPENSATE UN-
INTENDED ROTATIONS
Since the rotations induced by diabatic shuttling are coherent, it should be possible to compensate
these rotations by applying a microwave pulse. This requires the synchronisation of the internal
clocks of the arbitrary waveform generators (AWGs) and the microwave source. Fig. 6.22.a shows
the pulse sequence used to investigate this strategy. A spin prepared in the |↓〉 state is shuttled
back-and-forth once between QD2 and QD3. The idle time in QD3 is purposely chosen such that
the spin does not experience a 2πm rotation around the tilted quantization axis. As a result, after
the shuttling, the spin is not in the |↓〉 state anymore. Back in QD2, an EDSR pulse is applied of
which the phase ϕ and duration tMW are varied. Finally, the spin is readout.

Fig. 6.22.b and c show the result of this experiment, without and with synchronisation of in-
ternal clocks of the AWG and microwave source. From Fig. 6.22.b it is clear that, if the internal
clocks are not synchronized, the measured spin-up probability does not depend on the phase of
the microwave pulse. Due to the lack of synchronization, the phase of the EDSR pulse (with phase
ϕ and duration tMW) varies between the single shot measurements of a single experiment, viewed
in the lab frame. Therefore, the information about the phase of the spin after shuttling is lost and
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Figure 6.21: Simulation of the dynamics for the Ramsey, Hahn-echo and CPMG sequences for corner shut-
tling. Evolution of the superposition state for corner shuttling as a function of the number of shuttling events
using eq. (6.17) for uncorrelated quasistatic fluctuations for varying phases 〈φQD2〉 = m and assuming perfect
single-qubit gates Ux,y,π/2. The gain of implementing a CPMG dynamical decoupling sequence compared to
an echo is negligible. In the simulation the following parameters were chosen: quantization axis differences
θ23 = 52◦ and θ34 = 40◦, high-frequency dephasing rate γ

ϕ
QD2 = γ

ϕ
r,QD3 = γ

ϕ
r,QD4 = 0.00125, relaxation rate

γr
r,QD2 = γr

r,QD3 = γr
r,QD4 = 0.000125, standard deviation of the quasistatic fluctuations σφQD2 = σφQD3 =

σφQD4 = 0.009. These parameters lead to a pure dephasing after n∗ = 63 shuttles in absence of decoupling.

We note that the decay in these simulations are underestimated as they include only quasistatic noise.

it is not possible to coherently drive the spin. In Fig. 6.22.c, we recover an oscillation in spin-up
probability as a function of the phase of the microwave source, which indicates that the state of
the spin is well-defined after the shuttling. It is therefore possible to coherently drive the spin af-
ter shuttling. The results in Fig. 6.22.b and c illustrate the importance of the synchronization of
AWGs and microwave source clocks in the prospect of using a final EDSR pulse to compensate ro-
tations induced by shuttling. The experiments presented in the main text of the manuscript were
performed without synchronisation between the microwave source and the AWGs.
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Figure 6.22: Compensating shuttling-induced oscillations with a final EDSR pulse. a, Schematic of the pulse
sequence used for testing the effect of an EDSR pulse after shuttling a spin qubit. A spin qubit is initialized in
the |↓〉 state and shuttled back-and-forth between QD2 an QD3. Finally, a microwave pulse of duration tMW
and phase ϕ is applied. b, Results of the measurement sequence depicted in (a), in the case where the clock
of the AWGs and the microwave source are not synchronized. c, Results in the case where the clocks of the
AWGs and the microwave source are synchronized. The reduced visibility of the oscillations in the spin-up
probability, compared to the data presented in the main text, is due to a different tuning of the device.
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She told me
"A bit of madness is key

To give us new colors to see
Who knows where it will lead us?
And that’s why they need us"[272]
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7.1. CRITERIA FOR GOOD QUBITS, STATUS UPDATE
In the beginning of this thesis (see section 2.1) five criteria that define a good qubit [102] are
discussed. In short, (1) qubits should be scalable and well characterized, (2) it should be possi-
ble to initialize them, (3) they should have long coherence times, and (4) a universal gate set, and
(5) it should be possible to measure them. Significant progress has been made towards meeting
those criteria using hole spin qubits defined in quantum dots in germanium. Some of this progress
has been achieved both before and parallel to the work presented in this thesis. For instance (in
random order), in the development of the heterostructure [124, 129, 131], forming quantum dots
which can host the spin qubit [122, 128, 130], demonstrating a well defined qubit [123, 140], ini-
tialization and readout [140], implementing of single- and two-qubit gates [141, 202, 203] and in
measuring and improving coherence time [127, 155, 158]. The work in this thesis builds on those
results. Chapter 3 continues this work by increasing the number and the quality of the quantum
dots that could be used to host qubits. Properties of quantum dots that are important to facilitate
qubits, such as good control over the charge filling and the tunnel coupling between the quantum
dots, are demonstrated. Moreover, it is shown that four quantum dots can indeed be controlled
simultaneously. The work in chapter 4 presents a leap forward, defining four qubits and imple-
menting single qubit gates. Two qubit gates are implemented in a different way, a controlled-Z
rotation instead of a CROT. Additionally, a three- and a four-qubit gate are demonstrated. Chapter
5 contributes by introducing yet another way of performing a two-qubit gate: the resonant SWAP
gate, and by implementing a three-qubit gate by compiling it with single- and two- qubit gates.
Interestingly enough, the results presented in chapter 6 relate more to criteria 6 and 7 from the Di-
Vincenzo criteria than any of the first five. Criteria 6 and 7 come down to the following: the ability
to convert a stationary qubit into a flying qubit and bring this moving qubit to a specific destina-
tion. To call shuttling flying is a stretch, but a stationary qubit is transformed into a moving qubit
and coherently transported to a certain location (two quantum dots over) and back.

7.2. ADDITIONAL CRITERIA FOR SCALABILITY
The criteria described by DiVincenzo have been composed in 2000 and the research field of quan-
tum computing has been transformed since then. Presently, one of the most important challenges
has become the scalability of a qubit platform. Although this was mentioned in the DiVincenzo
criteria, it was not a criterion in itself. In the first place, scalability means increasing the number of
qubits. The execution of practical quantum algorithms will require many more qubits compared
to the current capacity available on any platform. How many qubits are needed depends on the
envisioned application and on how the algorithm can be implemented. However, just increasing
the qubit count will not be sufficient [273]. It is very likely that decoherence and the error rates in
qubit operations will limit the implementation of algorithms severely, especially when the number
of qubits increases.

Although there are ideas for noisy intermediate-scale quantum applications [274] using ap-
proximately 50-100 qubits, to reach the full potential of quantum computing, it will be necessary
to implement quantum error correction. How many physical qubits are required per logical qubit
depends on the specific error correction code, but also on the fidelity of the qubit operations (qubit
gates, initialization and readout). Moreover, scaling is not just a matter of the numbers, because
the full potential of the qubits is only accessible if the qubits are well connected to each other, i.e.
a two-qubit gate is possible between them. Furthermore, being able to implement qubit gates in
parallel instead of sequential can make a significant difference for how efficient an algorithm can
be implemented. Therefore, the criterion ‘scalable’, and consequently the necessity to implement
an error correction code, points to (at least) three additional criteria: high fidelity, high connectiv-
ity and high parallelism.



7.2. ADDITIONAL CRITERIA FOR SCALABILITY

7

133

Consider the results presented in this thesis with those three scalability criteria in mind. In
chapter 4 the fidelity of the single qubit gates is evaluated, resulting in 99.9% fidelity for three out
of four qubits. This is regarded as an important milestone, because 99.9% fidelity is often quoted
in relation to the surface error correction code [221]. This experiment also shows that connectiv-
ity, especially when the connection cannot be turned off completely, can compete with the high
fidelity. One of the qubits does not reach a single-qubit gate fidelity of 99.9%, which can be related
to finite exchange and cross talk to the neighbouring qubits. These effects also played a significant
role in the experiments presented in chapter 5. Moreover, the results in chapter 5 show that cali-
brating single qubit gates to have a high fidelity, in an experiment designed to qualify this fidelity,
is one thing. In the phase flip code, single-qubit gates are implemented parallel to each other. The
purpose is to make the implementation of the algorithm more compact, and therefore be less ef-
fected by the dephasing of the qubits. However, because there is finite connectivity between the
qubits, applying single qubit gates in parallel, makes maintaining high fidelity more challenging.

Where the fidelity of the single-qubit gate is quantified and a high value is found, the same
can not be said for the initialization, readout and two-qubit gates used for the experiments in
this thesis. Moreover, the results presented in chapter 6 (and other recent work [127]) about the
influence of strong spin-orbit interaction on hole spin qubits suggest that there is more physics
to explore. The quantization axis of the qubit strongly depends on the electrostatic environment
in which the hole is confined. This is related to the first DiVincenzo criterion, about the well de-
fined qubit. The ability to manipulate the direction of the quantization axis for all spin qubits in a
device requires understanding of the underlying physics, which presents an intriguing challenge.
Additionally, understanding and controlling the quantization axis will also be instrumental in op-
timizing the initialization and readout using Pauli spin blockade.

When it comes to fidelity, connectivity and parallelism, the results in this thesis do not only
highlights aspects still to be improve, but also provides suggestions on how to tackle these chal-
lenges. The shuttling experiments presented in chapter 6 shows that it is possible to increase
the connectivity between hole spin qubits beyond nearest neighbours. Furthermore, it is demon-
strated that the shuttling can be fast and the performances are decent. There are ample oppor-
tunities identified to improve the shuttling fidelity even further and follow-up experiments show
that it is possible to shuttle hole spin qubits with a fidelity of 99.992% [275].

High fidelity shuttling is an important step towards making hole spin qubits a scalable qubit
platform. A proposal, much cited throughout the spin-qubit community, is to have small dense
two-dimensional spin qubit arrays connected on chip via long-range qubit couplers [167]. This
would leave space on the chip to integrate classical control electronics and in this way minimize
the number of control lines that need to interface with the outside. Shuttling would be suitable
to facilitate such long-range couplers. Although, one could argue that conveyor-mode shuttling
would be more suitable to bridge the distance (in the order of tens of micrometers) required to
integrate control electronic on chip, in contrast to the bucket-brigade method used in chapter 6.

There are more advantages to extending the connectivity between spin qubits. The surface
code is an error correction code which is often proposed as a code that can be made applicable
for spin qubits, because it requires the integration of spin qubits in a two-dimensional array with
nearest neighbour connectivity and it has a relatively high error threshold [162, 221, 276]. However,
increasing the connectivity opens up possibilities for implementing other types of error correction
codes, such as the one recently proposed by IBM [277]. Error correction codes which make use of
higher connectivity between the qubits can operate with fewer physical qubits per logical qubit
and can suppress errors more efficiently.

The results in chapter 6 also demonstrate that when a hole spin qubit is shuttled diabatically
between two quantum dots with a difference in quantization axis coherent spin rotations will be
the result. This mechanism can be utilized to implement single qubit gates. Moreover, since it is
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possible using this method to operate the qubits at a very low magnetic field (in the order of few
tens of mT), the coherence time of the qubits increases to microseconds, while the time it takes
to implement a single-qubit gate stays in the order of a few tens of nanoseconds. Consequently,
in recent work we demonstrate high fidelity single qubit gates in this way [275]. With this mode of
operation, the power required for single-qubit gates is much lower than with EDSR driving. In this
same work, a two-qubit gate with a fidelity of 99.3% was demonstrated. An important milestone,
which was missing until recently. This high fidelity two-qubit gate is possible due to increased
coherence times at lower magnetic field and the fact that, despite the low magnetic field, the dif-
ference in Zeeman splitting between the qubits was still significant, due to the different g-tensors
of the spins. Furthermore, shuttling opens up possibilities for implementing a two-qubit gate in
a slightly different way. Where now the barrier gate between adjacent qubits is used to tune the
exchange interaction, it is also possible the use the distance between the two qubits to tune the
exchange [247]. These different ways of implementing single- and two-qubit gates show that it is
beneficial to keep an open mind and not only try to optimize the already existing strategies.

In order to make use of the advantages of increased connectivity between spin qubits, it is
necessary to choose an architecture which facilitates this connectivity. What could be a possibility
is to arrange the hole spin qubits in a sparse quantum dot array [168, 248]. In a sparse quantum
dot array, only part of the quantum dots are used to host spin qubits, while the other quantum
dots are not occupied with charge carriers. This type of architecture would provide several advan-
tages. Firstly, empty rows of quantum dots would function as shuttling lanes facilitating high con-
nectivity. Secondly, an empty quantum dot next to a spin qubit can be used to implemented the
single-qubit gate by shuttling. Thirdly, the empty quantum dots between the qubits would spatially
isolate them from each other, combined with the lower power required for the implementation of
single qubit gates, this could reduce residual exchange and cross talk and hopefully facilitate high-
fidelity parallel gates. Also in this architecture, control over the g-tensors of the qubits would be
beneficial. Although much more thought and consideration is needed to come up with an actual
design for a hole-spin qubit chip, it seems that a sparse qubit array can combine connectivity and
parallelism, while maintaining high fidelity operations.

7.3. TOWARDS A USEFUL QUANTUM COMPUTER

Figure 7.1: The quantum computing stack.
Source image see Ref. [278].

Now that many proof-of-principle concepts have
been demonstrated, a key challenge is to develop
a compelling architecture to scale spin qubits to
large numbers. The construction of a large qubit ar-
ray is far from sufficient to build a quantum com-
puter, and many advances are needed to integrated
the qubit chip in a full stack system, which will con-
sist of various different layers of hardware and soft-
ware. The image shown in Fig. 7.1 gives an impres-
sion. To build such a system requires many people
with different backgrounds and expertise. To name
a few: physicists specialized in materials to opti-
mize the semiconductor platform, physicists and
engineers to optimize the qubits, software engi-
neers to optimize and automate calibration, elec-
trical engineers to design the control electronics,
computer scientist to design the programming lan-
guage and invent the quantum algorithms to be im-
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plemented, etc.
In other words, building a full stack quantum computer requires a diverse and interdisci-

plinary group of people. People who are experts in their field, but know enough about the other
layers of the full stack and the other expertise involved to be able to effectively communicate with
their colleagues with a different background. Moreover, it requires people who have an open mind
and can appreciate the work and ideas of others. It would be beneficial if the talent pool from
which these people are chosen would be as large as possible and therefore include all different
genders and nationalities.

Having a diverse group of people working on the development of the quantum computer is
also important for another reason. Although, as discussed in the introduction, there are already
quite some ideas for the applications of quantum computers [85], it is probable that we at the
moment can only foresee a fraction of the tasks the quantum computer will be used for. This is
in some sense comparable to the invention of the laser. When in 1960 the first working laser was
demonstrated, people thought of it as ‘a solution looking for a problem’ [75]. However, the laser
was immediately used in scientific research, to gain better understanding of the working of lasers
themselves and soon it turned out to be a useful tool in other fields of science as well. Presently,
lasers are omnipresent in industry and in our daily lives, with applications ranging from scan-
ning a bar code in the supermarket to optical-fiber communication and from eye surgery to a
laser pointer for presentations. Since the possible applications of a quantum computer are still so
uncertain and unpredictable, there are still also many possibilities. Initially, quantum computers
might also be used for scientific research, to better understand quantum computers themselves
and other quantum systems. However, it is possible that in the more distant future, the range of
applications for the quantum computer will be as wide as they currently are for the laser. Therefore,
including many people with a diverse background in the development of the quantum computer
and in working towards useful applications, will help to ensure that a quantum computer will be
used to tackle a wide range of problems, benefiting as many people as possible.
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