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ABSTRACT
Understanding and predicting mobility are essential for the
design and evaluation of future mobile edge caching and
networking. Consequently, research on human mobility pre-
diction has drawn significant attention in the last decade.
Employing information-theoretic concepts and machine learn-
ing methods, earlier research has shown evidence that human
behavior can be highly predictable. Whether high predictabil-
ity manifests itself for different modes of device usage, across
spatial and temporal dimensions is still debatable. Despite
existing studies, more investigations are needed to capture
intrinsic mobility characteristics constraining predictability,
to explore more dimensions (e.g. device types) and spatiotem-
poral granularities, especially with the change in human
behavior and technology.

We investigate practical predictability of next location vis-
itation across three different dimensions: device type, spatial
granularity and temporal spans using an extensive longitudi-
nal dataset, with fine spatial granularity (AP level) covering
16 months. The study reveals device type as an important
factor affecting predictability. Ultra-portable devices such
as smartphones have ”on-the-go” mode of usage (and hence
dubbed ”Flutes”), whereas laptops are ”sit-to-use” (dubbed
”Cellos”). The goal of this study is to investigate practical
prediction mechanisms to quantify predictability as an as-
pect of human mobility modeling, across time, space and
device types. We apply our systematic analysis to wireless
traces from a large university campus. We compare several
algorithms using varying degrees of temporal and spatial
granularity for the two modes of devices; Flutes vs. Cellos.
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Through our analysis, we quantify how the mobility of
Flutes is less predictable than the mobility of Cellos. In addi-
tion, this pattern is consistent across various spatio-temporal
granularities, and for different methods (Markov chains, neu-
ral networks/deep learning, entropy-based estimators). This
work substantiates the importance of predictability as an
essential aspect of human mobility, with direct application
in predictive caching, user behavior modeling and mobility
simulations.
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1 INTRODUCTION & RELATED WORK
In recent years, large-scale research on human mobility has
thrived due to the availability of location data collected from
portable computing and communication devices, such as
laptops, smartphones, smartwatches and fitness trackers [1].
One particular aspect of human mobility that has gained a
lot of attention lately is predictability. Prediction techniques
constitute fundamental mechanistic building blocks for many
mobile protocols and applications, ranging from resource
allocation to caching and recommender systems [2, 3]. In
addition, potential improvements to next-hop prediction can
lead to more accurate bandwidth predictions, which benefits
QoE for users of mobile networks [4].

The seminal work by [5], utilizing cellular network data,
established an approach towards understanding and mea-
suring the predictability of human mobility patterns, with
their equally important contribution with respect to the data-
driven analysis of large mobile populations, and their efforts
in devising a framework to study the theoretical limits of
predictability. The methods introduced in their framework
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are founded in information theory and have since been exten-
sively applied in the area of mobility modeling and prediction.
Later studies that built on [5] addressed either the specifics of
the prediction problem (e.g., different formulations [6] of the
individual’s change of location, analyzed different contexts
of mobility) or the shortcomings of the original approach
(that relied on coarse spatio-temporal granularity). Authors
in [7] used Wireless LAN (WLAN) traces from a university
campus network and reported multi-modal entropy distribu-
tions which can be partially explained by the demographics
of the population (i.e., age, gender, major of studies). Other
entropy based studies include vehicular mobility [8–10], on-
line social behavior [11, 12], complex systems [13], cellular
network traffic [14] and public transport utilization [15]. In
addition, the devices’ form factor affects the mode of usage
and varied traffic profiles ([16–19]), but these studies either
do not consider predictability or do not account for different
spatio-temporal resolutions. We have chosen our methods
based on the literature to measure and compare both theo-
retical and practical limits of predictability for ”on-the-go”
Flutes and ”sit-to-use” Cellos, with varying degrees of spatio-
temporal granularity, while also looking at the correlation of
prediction accuracy with mobility and network traffic profiles
using extensive fine-granularity traces (based on our earlier
work in [19]).

The main questions addressed in this study are: i. How
different are Flutes and Cellos in terms of predictability?
ii. How does the predictability of these device types change
with different spatio-temporal granularity (5, 15, 30 min, 1
hour and 2 hours; access point and building level)? iii. Does
the choice of method or predictor (e.g. Markov Chain, neural
networks such as LSTM, CNN and Transformer [20], BWT
or LZ based estimators, which are introduced in Section 2)
significantly alter the answers to aforementioned questions?

This study provides the following main contributions: 1.
Quantifying the differences of Flutes and Cellos for predic-
tion analysis, evaluated on a real-world large-scale dataset.
2. Comparison of several well-known algorithms (Markov
Chains, Neural Networks) and LZ/BWT-based theoretical
bounds across different time and space scales for Flutes and
Cellos. 3. Use of prediction accuracy as part of the user pro-
file for modeling, and investigation of its correlation with a
combination of network traffic and mobility features.

The paper is structured as follows: First, the main approach
and methods are presented in Sec. 2. Then, the details of
the dataset and experiment setup are discussed in Sec. 3.
The experiment results are presented in Sec. 4. Sections 5
and 6 present the discussion on potentials implications of the
findings and conclude the paper.

2 MAIN APPROACH & METHODS
We investigate two methods to measure predictability; a theo-
retical method based on entropy, and a systems method based
on practical predictor algorithms. Following we provide the
entropy estimation based definition and discuss the different
algorithms studied in this paper, including a reference-point

Markov Chains approach, and more sophisticated deep learn-
ing approaches.

2.1 Entropy Estimation
Entropy is defined as the level of order (or disorder) of a
system, and is founded on information theory. It has been
adopted in previous studies to establish bounds on predictabil-
ity under certain assumptions [5, 6]. We utilize it in our study
to gauge the performance of our practical predictors. For a
random process, this metric is sensitive to both the relative
frequency of events and their inter-dependencies [15]. To
estimate a baseline of predictability, we compute the time-
uncorrelated entropy (𝒮unc) which only takes into account
the frequency of the observed events. For the upper-bound
of predictability we compute two time-correlated estimators
based on compression algorithms (𝒮lz and 𝒮bwt) which also
consider the memory of the system. We define maximum
predictability as the probability of predicting the most likely
state of 𝑥𝑖 given a state 𝑥𝑗 , which is computed from the
entropy 𝑆 of a given sequence of events based on [5], with
the refinements proposed by [6]. For a complete description
on entropy estimation, we kindly refer the reader to [21, 22].

2.2 Predictors
Markov Chain-based predictor. A Markov chain (MC) with a
discrete state space has been applied for user mobility pre-
diction [23, 24]. In an order-𝑘 Markov predictor, the state
space consists of tuples of 𝑘 location names (e.g., AP), where
the next location prediction depends solely on the most re-
cent preceding 𝑘-tuple. We build the model on the data so
that observed k-tuples comprise the states. The transition
probabilities are learned based on the frequency of appear-
ances of such a transition in observations. The probability
for a transition from the current state 𝑆 = 𝑋𝑖𝑋𝑖+1...𝑋𝑗 to
𝑋𝑖+1𝑋𝑖+2...𝑋𝑗𝑋𝑗+1 where 𝑗 − 𝑖 = 𝑘 and each 𝑋𝑖 is the sym-
bol for each location, is represented as 𝑃 𝑋𝑗+1 = 𝑐 | 𝑆 =
𝑋𝑖𝑋𝑖+1...𝑋𝑗 for all 𝑐 observed in data and is learned based
on the reappearance frequency of such a sequence. If the
predictor of order 𝑘 encounters a new sequence that has
never seen before, it falls back to the lower, 𝑘 −1 order recur-
sively. The base case is O(0) which is simply the frequency
distribution of all symbols observed so far.

Deep learning. Recent approaches to sequence prediction use
deep Recurrent Neural Networks (RNN) or Convolutional
Neural Networks (CNN). Recurrent neural networks have
loops within their cells, allowing information to persist and
thus enabling the neural network to connect previous infor-
mation to make a reasonable prediction of the future state of
the modeled system. Certain types of RNNs are capable of
learning long-term dependencies. There are multiple variants
of RNNs, including Long short-term memory (LSTM) [25]
and Gated Recurrent Unit (GRU) [26]. These networks can
learn dynamic temporal patterns and have successfully been
applied in speech recognition, text-to-speech engines and
predicting next location [27, 28].
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CNNs learn convolutional filters to extract latent informa-
tion across the data (i.e. 1D CNNs learn different temporal
locality patterns) and use that information for predicting
the next location. CNNs have a local receptive field. The
receptive field is the region of the input that affects a specific
unit of the network, which can be increased by techniques
such as stacking more layers.

The Transformer [20] is a novel neural network architec-
ture that only uses self-attention, without any recurrence or
convolution, to learn global dependencies between input and
output. These networks can be parallelized better (a major
shortcoming of RNNs), and also have a global receptive field
(as opposed to the local receptive field of CNNs).

In our study, we use a multi-layer LSTM, 1D CNN and a
Transformer to predict movements of users based on similar
input tuples used for MC-based predictors, as described in the
next section. Neural networks are computationally expensive
and tend to require hyper-parameter tuning. Thus the deep
model is run only on a sample of users in this study. One goal
of this study is to analyze the payoff (and cost) of adding
complexity to the predictor (e.g. LSTMs), versus the simpler
MC-based predictors, while considering different temporal
and spatial bins for Flutes vs Cellos.

3 DATASETS & EXPERIMENTAL SETUP
To study the regularity of human behavior, we performed a
data-driven analysis applying our methods to a university
campus WiFi traces from the University of Florida (UF).
The dataset was collected from networks providing wireless
access to a large number of portable devices via access points
deployed in non-residential areas, including classrooms, com-
puter laboratories, libraries, offices, administrative premises,
cafeterias, and restaurants.

Every trace entry contains a unique user identifier (uuid),
time-stamp and an access point unique identifier (apid).
Based on the apid’s string we are able to identify the building
as well as the room in which an access point (AP) was located.
Only the geographical coordinates of buildings are known.
Table 2 contains a brief summary of the UF dataset with
mean (𝜇) and standard deviation (std), where 𝑁ap is number
of unique access points observed per device, 𝑁day number of
unique days with at least one record, 𝑁rec number of records
during data collection, and total number of devices available
for at least 7 days and accessed more than 5 APs.1

3.1 UF traces
The UF traces were collected for 16 months (September/2011-
December/2012) and contain over 1700 wireless access points
(APs) deployed in 140 buildings which were used by 300K
devices. A sample (sythentic) record is shown in Table 1. Its
raw records were captured from associations and sessions
timeout in which the unique user id (uuid) was the MAC
address. These uuid although hashed, still contained the
1Transient devices are not counted to ensure the analysis is carried
out on devices that are mobile and benefit from predictive systems the
most, while stationary devices (e.g. plugged-in Cellos) and guests that
never return to campus are ignored.

Organizationally Unique Identifier (OUI)2 allowing us to
distinguish Flutes and Cellos, as detailed in [19]. This dataset
was collected before MAC address randomization became
widely available. However, in most current implementations,
the randomization only happens in case of probe requests
for a network, and once connected to some SSID, the device
either presents its original MAC or a generated MAC that
does not change per association. Besides, many networks
require authentication that allows tracking on higher levels in
the network stack (e.g. application). This work is concerned
with wireless connectivity being provided to users, and it will
always come from discrete points (for example, access points),
as opposed to continuous movements in an open field. Thus,
all collected WiFi traces are processed as discrete time-series,
defined next.

3.2 Discrete-time Series
Given a set a of timely ordered events 𝑋 = {𝑥𝑡 : 𝑡 = 1, · · · ,𝑛},
where 𝑥𝑡 is the realization of 𝑋 at time 𝑡 for 𝑡 ∈ 𝑇 , we say
that a timeseries is discrete if 𝑇 are measurements taken at
successive times spaced at uniform intervals w, also referred
to as sampling rate (defining the temporal granularity).

Figure 1: Location of the device is sampled at a constant rate.

Figure 1 depicts an example of how the real location of a
device is sensed by the wireless management system through
AP associations (red stars) and finally how the discrete-
time series is obtained. For a given sampling time window
w, our discrete-time series may result in different sequences
depending on whether we choose an AP or a building as the
level of spatial resolution.

From Figure 1, for the first 4 time steps the device switched
its associated AP without a real location change. This switch
in AP association can be triggered by the mobile device
(e.g. stronger wireless signal) or by the network management
system (e.g. load balancing).

Note that it is important to define the resolution for space
and time, i.e., how big a location is in space (or point-of-
interest) and how often we are going to sample from the input
signal. In this example, larger values of w could eliminate this
2http://standards.ieee.org/faqs/regauth.html#17
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Table 1: AP logs sample data columns

User IP UUID AP name AP MAC Lease begin time Lease end time
10.130.90.3 00:11:22:00:00:00 b422r143-win-1 00:1d:e5:8f:1b:30 1333238737 1333238741

Table 2: Statistics per device available for at least 7 days &
accessed more than 5 APs.

𝑁ap 𝑁day 𝑁rec Total Devices
𝜇 std 𝜇 std 𝜇 std

UF 127.3 142.3 63.5 59.2 1861 5121 138028

ping-pong effect of switching between APs without actually
moving, but also cause loss of information when the user
transits from one location to another. On the contrary, very
small values of w could over-sample long periods when the
user is not moving. Similarly, different values of spatial reso-
lution could mitigate noise but eliminate information from
the traces. Choosing these parameters is often influenced
by the characteristics of the available dataset as well as the
targeted application of the study.

Step Value. A weighing mechanism is used to pick the cor-
responding location to represent a time step. During a time
interval, we weigh every observed location of the device with
the duration of time at that location and pick the one with
the highest weight to represent that step. We assign a user
to a specific location ℓ in the time interval 𝛿𝑡 between an
association at ℓ and the next association at any other loca-
tion, but only if 𝛿𝑡 < 𝑡max. After 𝑡max the device will be in
an unknown state [5] until the next network event which will
reveal its location for future steps.

3.3 Experiments
The design of our experiments is based on our study’s ques-
tions: i. How different are Flutes and Cellos in terms of
predictability? ii. How does the predictability of these device
types change with different spatio-temporal granularity? iii.
Does the choice of method or predictor significantly alter the
answers to the aforementioned questions? Thus, we evaluated
a matrix, involving combinations of the following dimensions:

∙ Device Types: Flutes vs. Cellos.
∙ Temporal Resolutions: 5 min, 15 min, 30 min, 1 hour

and 2 hours.
∙ Spatial Resolutions: Access Points, and Buildings.
∙ Methods: A. Well-known sequence prediction algo-

rithms from machine learning literature (Markov Chains,
Neural Networks) B. Entropy-based Estimations of pre-
dictability upper-bounds.

The temporal resolutions are chosen based on the related
literature, and the spatial resolutions are determined by the
granularity of the dataset. The experiments were implemented
in Python, the neural networks were implemented using Ten-
sorflow 3 and Keras. Training is carried out in an online
3TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org.

manner and the evaluation is through providing a sliding
window of 𝑘 observations to the predictor and testing the
prediction correctness of the next symbol. The fraction of cor-
rect next symbol predictions, or success rate, is the prediction
accuracy metric.

4 EXPERIMENTAL RESULTS
4.1 Spatio-Temporal Resolutions
To answer the first two questions of this study, particularly "ii.
How does the predictability of these device types change with
different spatio-temporal granularity?", Table 3 summarizes
the median accuracy of an LSTM predictor for Flutes and
Cellos with different spatial and temporal granularity.

The choice of granularity is application-dependent, for
example, to predict foot traffic at buildings and congestion
planning based on density, building level analysis is more
appropriate. Cellos show more predictable behavior overall,
as the fraction of correct next symbol predictions is higher
for Cellos across the board. At the AP level, with longer time
bins, the accuracy for both Flutes and Cellos decreases. This
observation is in line with previous findings [6]. At 15min
time intervals, the difference between Flutes and Cellos is
at its maximum, then drops and remains stable for longer
time intervals. At the building level, the accuracy follows
a less regular pattern but both Flutes and Cellos are most
predictable at 5min intervals (mainly due to long repeats of
the same location in the sequence). Cellos’ accuracy drops
for 30min bins and goes back up again. On the other hand,
Flutes are more predictable in 30min bins than 15min, 1h or
2h bins.

Looking across all temporal bins, Fig 2 presents the empir-
ical cumulative distribution function (ECDF) of prediction
accuracy at AP and building spatial granularity. The "sit-to-
use" Cellos show significantly higher predictability at every
percentile; this is reasonable given their lower mobility [19]
and mode of usage. In fact, prediction accuracy is highly
correlated with other mobility and network traffic features
of mobile wireless users, we will take a brief look at these
correlations in Section 5 and Fig 4.

4.2 Comparison of Methods
To answer the third question of this study, "iii. Does the
choice of method or predictor significantly alter the answers
to the aforementioned questions?", here we compare the
experiment results for different methods: 1) MC : Markov
Chain 2) LSTM : A type of recurrent neural network 3) CNN :
1D convolutional neural network 4) Transformer : A type
of self-attention neural network 4) Hr_LZ : Theoretical pre-
dictability based on the Lempel-Ziv (LZ) entropy estimator 5)
Hr_BWT : Theoretical predictability based on the Burrows-
Wheeler transform (BWT) entropy estimator. A summary of
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Table 3: Median accuracy percentages of LSTM (sequence len.
40) for Flutes vs Cellos, 5min-2h temporal and AP/Bldg spa-
tial granularity.

AP Building
F C F C

5 min 33.22 42.25 44 63.4
15 min 21.42 36.9 34.53 58.06
30 min 21.88 27.39 39.56 50.78
1 hour 19.67 24.33 32.62 52.03
2 hour 17.17 22.5 32.6 59.62

Figure 2: ECDF of LSTM Prediction Accuracy for Flutes &
Cellos at AP and Building spatial levels (all temporal levels
combined, vertical lines denote medians, sequence length 40).

comparisons is presented in Table 4, for temporal granularity
of 1h and 15min, highlighting the difference of Cellos - Flutes.

In all cases Cellos are more predictable than Flutes, re-
gardless of the choice of method (with a minor exception of
LZ predictor at 15 minutes time and building level which
might be due to intrinsic instability of LZ based estimator).
The difference in median accuracy for Flutes vs Cellos is
up to 25% (Building level, 15 minutes window, sequence
length 40, Flutes 33.97% vs Cellos 59.03%). Other temporal
choices result in a similar pattern. Another notable obser-
vation is that while the neural networks are more complex,
and require vastly more computing power, they only achieve
modest increase compared to Markov Chains in some scenar-
ios (e.g., Cellos, at the building level and sequence length
40, from 48.56% to 52.5%). This is a trade-off that needs to
be considered in the design of predictive caching systems. In
addition, increasing the sequence length 𝑘 (i.e. the number
of previous time steps available to the predictor) impacts the
Markov Chain model more than the neural networks. This
is particularly pronounced for 15 minutes time window, in
fact, the neural networks do not lose much accuracy from
increasing sequence length 5 to 40 in case of the 1 hour time
window. Also, the theoretical LZ and BWT based estimators,
show higher upper bounds compared with the best of the

algorithms, with sequence length 5 Markov Chains and CNNs
being the closest practical algorithms for the 15 minutes case.
The predictors are far behind in the 1h case, suggesting room
for improvement via tuning for specific time and space gran-
ularities. The run time of LSTM is the longest, followed by
CNN (not shown for brevity). In addition, in case of the
Transformer, at 1 hour temporal resolution, median accuracy
is slightly higher compared to LSTM in most cases. However,
in the shorter 15 minute resolution, the accuracy is signifi-
cantly better for Flutes (average accuracy ≈14% higher than
LSTM), and slightly better for Cellos. This shows the utility
of adapting advances in deep learning to mobility prediction.

4.3 Top 2 Locations
In order to improve the obtained success rate in predicting
the next location, we evaluated our prediction methods when
considering the top 2 possible locations. In other words, we
evaluate the accuracy of the predictors when considering not
only the best possible location but the two places where the
user is most likely to be found in the next time slot. In this
case, we are interested in assessing this improvement which
could be beneficial for preemptive caching systems.

Overall, we observe an increase of up to 20% in the median
accuracy of all predictors evaluated. Figure 3 depicts the
differences between the top 1 and top 2 for CNN’s in different
temporal and spatial levels. Interestingly, more pronounced
improvements were observed at higher spatial levels (build-
ings) where top 1 accuracy was already higher. The upward
trend continues when measuring the top 3 accuracy, though
it is less dramatic. The change in accuracy, of top 1 to top 3,
for LSTMs followed a similar pattern.

These improvements could be explained by the expected
uncertainty in choosing where to go next being better de-
scribed by more than one location. When deciding between
these multiple options, a user is likely to use information not
available in our mobility traces. Therefore, when asking our
predictor for the next step with the highest probability, these
top locations would seem random, and allowing even a small
number of top choices (> 1) greatly improves its success rate.

To numerically support this conjecture, we look into the
average uncertainty in picking a next location given by
𝑈next = 2𝑆rate , where 𝑆rate is the entropy rate estimated,
for which we used the BWT algorithm (𝑆bwt, see Section
2.1). For a user’s sequence of visited locations, this metric
summarizes the average uncertainty about the user’s next
step at every location, therefore the higher this number the
more random the next steps seem to be for a given pair of
spatial and temporal levels. Table 5 presents the expected
𝑈next, for both Flutes (F) and Cellos (C). Interestingly, these
values not only correlate with the obtained values for accu-
racy but also shows a clear correspondence with the increase
in accuracy when using the top 2. For example, at the AP and
1-hour levels we observe a high 𝑈next as well as a marginal
improvement from top 1 to top 2, while in contrast at building
and 15 minutes levels 𝑈next are lower and the improvements
for our predictor accuracy are more pronounced.

Session: Mobility Modeling  MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA

9



Table 4: Summary of Median Accuracy for Flutes vs Cellos with different methods (Diff is 𝐶𝑒𝑙𝑙𝑜𝑠−𝐹 𝑙𝑢𝑡𝑒𝑠) and sequence lengths
for 15min and 1h time windows.

AP, 1h Bldg., 1h AP, 15min Bldg., 15min
Seq Len Predictor F C Diff F C Diff F C Diff F C Diff

MC 21.05 25.95 +4.90 38.25 53.50 +15.25 61.72 70.30 +8.58 75.00 87.60 +12.60
LSTM 21.62 25.00 +3.38 35.03 50.00 +14.97 40.00 44.56 +4.56 52.44 65.56 +13.125
CNN 16.45 24.27 +7.82 34.94 50.00 +15.06 50.00 59.80 +9.80 64.60 76.94 +12.34
MC 17.98 25.6 +7.62 36.72 50.28 +13.56 52.25 61.97 +9.72 68.00 82.25 +14.25

LSTM 20.83 26.31 +5.48 37.50 50.66 +13.16 31.14 44.62 +13.48 45.38 64.56 +19.1810
CNN 18.06 22.62 +4.56 36.20 52.03 +15.83 49.20 58.80 +9.60 64.56 74.00 +9.44
MC 18.1 24.52 +6.42 36.28 49.94 +13.66 38.50 48.22 +9.72 57.30 74.94 +17.64

LSTM 21.22 24.19 +2.97 36.12 50.78 +14.66 29.17 41.00 +11.83 43.62 61.47 +17.8520
CNN 18.44 23.60 +5.16 35.28 50.00 +14.72 37.84 48.12 +10.28 50.00 65.00 +15.00
MC 17.88 23.61 +5.73 35.1 48.56 +13.46 27.97 31,00 +3.03 47.12 65.80 +18.68

LSTM 19.67 24.33 +4.66 32.62 52.03 +19.41 23.30 39.40 +16.10 33.97 59.03 +25.0640
CNN 18.75 23.97 +5.22 35.25 52.50 +17.25 27.62 44.70 +17.08 41.25 62.10 +20.85
LZ 46.90 52.60 +5.70 58.78 66.40 +7.62 72.70 76.06 +3.36 79.60 79.10 -0.50

BWT 66.44 69.44 +3.00 73.70 79.90 +6.20 83.30 88.06 +4.76 88.60 92.20 +3.60

Figure 3: CNN accuracy for top 1 and top 2 locations.

Table 5: User’s expected uncertainty 𝜇 when choosing next
location (𝑈next = 2𝑆rate ). Error given by standard deviation 𝜎.

AP Building
𝜇 ± 𝜎 95th-% 𝜇 ± 𝜎 95th-%

15 minutes F 3.10 ± 1.3 5.3 2.17 ± 0.7 3.3
C 2.05 ± 0.7 3.3 1.56 ± 0.4 2.2

1 hour F 5.50 ± 2.4 9.7 3.65 ± 1.7 6.5
C 3.48 ± 1.6 6.37 2.10 ± 0.9 3.7

These findings show one of the trade-offs a predictive
caching system would need to consider, that is to find the
balance between the number of places to prefetch assets and
the desired level of cache hit ratio.

5 DISCUSSION & FUTURE WORK
In this paper, we define our research problem as predicting
the next symbol in a discrete-time series for users with two
categories of devices. The next symbol either denotes the
next access point or building in the visitation sequence. The
accuracy is evaluated as the fraction of the next symbols
predicted correctly.

While some earlier studies investigated a similar problem
setup, our study has notable implications. For example, across
device types, predictability can vary significantly, with Cellos
showing typically higher predictability. Also, with larger time
windows such as 1 hour, it is easy to miss short stays (since
one location visit with a duration of 31 minutes would result
in other locations in that 1 hour window being ignored).
On the other hand, a short time window results in multiple
repetitions of the same location in the sequence, potentially
achieving high prediction accuracy even when the method
is not predicting the transitions well. Further, we also note
that allowing prediction algorithms to look further back does
not help prediction in most cases; this might be an artifact
of the users’ likelihood to stay in place over limited time
spans, which makes predicting a ’stay’ straightforward while
predicting a location transition remains challenging.

Our results highlight the importance of considering the
device type, context, and application in order to choose an
appropriate time and space granularity; the best performing
method differs across these dimensions. Furthermore, we ob-
serve a significant increase in accuracy, of up to 20%, when
considering the top 2 possible next locations compared to
only measuring top 1 accuracy, highlighting the complexity
of these predictions based only in the history of visits from
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a user. In some cases, such as 1 hour, access point level pre-
diction, the median of the top 2 accuracy of the population
is nearly twice as high as the median top 1 accuracy. Many
misclassifications occur because the prediction algorithm is
simply confused between only two places. For certain appli-
cations, such as predictive caching, it can be worthwhile to
consider preloading in more than one location to improve
the user experience at the expense of increased resource
consumption, a trade-off to measure in future studies.

Interesting possible problems yet to be addressed include,
taking the distance between possible locations into account
when selecting a future stop, as well as cluster users with
similar mobility patterns to further improve the prediction
accuracy of their movements.

All the findings here are based on the university dataset
(Sec. 3), which provides a peek into only a subset of the
population, so we emphasize the importance of reproducing
these analyses on other datasets in different settings.

Correlations with Mobility and Network Traffic. Figure 4 shows
the correlation of prediction accuracy with a sample of
features that describe the mobility or network traffic of
users. PDT(W/E) and TJ(W/E) are mobility features while
AAT(W/E) and AI(W/E) are traffic features. PDTW is the
time spent at the user’s preferred building (most common)
on weekdays (PDTE for weekends). TJW is the total sum
of jumps (distance) for the weekdays while TJE describes
the same feature for weekends. AATW is the average of ac-
tive time (as indicated by network usage) of the user for
weekdays (AATE for weekends). AIW stands for the average
inter-arrival time of flows on weekdays, and AIE for weekends
([19, 29]).

Figure 4: Pearson Correlation of Prediction Accuracy with
several Mobility and Network Traffic Features.

The results present significant correlations between the
prediction accuracy, with not only the mobility features, but
also network traffic features. These correlations vary across
device types (Flutes vs Cellos), and in time (Weekdays vs

Weekends). This is a very important observation for the de-
sign of predictive caching systems, importantly, it might be
possible to improve prediction of where the user is going
based on network traffic profile while noting the different
modes of usage based on device types. We leave the investi-
gation of incorporating this extra information and potential
improvements to future work.

Integrated Mobility-Traffic Modeling. Given the observed cor-
relations, we hypothesize that the use of predictability as
a feature in an integrated mobility-traffic generative model
could lead to more realistic synthetic traces. Such a data-
driven generative model would be an essential tool for network
simulations and capacity planning. Notably, it can also be
made privacy preserving, since collected traces would be re-
placed with realistic synthetic data that captures mobility,
network traffic, predictability, and their relationships. Fur-
ther study is beyond the scope of this work and is left for
future work.

6 CONCLUSION
In this work, we sought to answer three questions: i. How
different are Flutes and Cellos in terms of predictability?
ii. How does the predictability of these device types change
with different spatiotemporal granularity? iii. Does the choice
of method or predictor significantly alter the answers to the
aforementioned questions? For this purpose, we processed a
large-scale dataset from a campus environment, and grouped
the devices into two categories; and chose a set of meth-
ods for the comparisons including Entropy-based estimators
and popular algorithms such as Markov Chains and Neural
Networks.

The results of experiments show the movements of Cellos
("sit-to-use") are significantly more predictable than Flutes
(up to 25% difference in accuracy). This pattern is consistent
across various temporal granularities (5 min to 2 hours), spa-
tial granularities (Access Point and Building level), and for dif-
ferent methods (Markov Chains, Neural Networks, Entropy-
based Estimators). We illustrate that the performance of
predictors depends strongly on the span of temporal bins.
Markov Chains tend to outperform deep learning models
in shorter time-bins while LSTMs and CNNs usually show
a higher accuracy in longer time-bins. CNNs have mostly
similar accuracy to LSTMs in the latter case but have sig-
nificantly better run time on a modern GPU. Furthermore,
looking at the top 2 locations we observe an increase of up
to 20% suggesting that higher accuracy is achievable when
considering multiple possible next locations.

We also found significant correlations among prediction
accuracy, mobility features, and also network traffic features,
varying across device types, an important observation for the
design of predictive caching systems where it might be possi-
ble to improve mobility prediction based on network traffic
profile. We plan to further investigate the use of predictability
as a feature in an integrated mobility-traffic generative model,
and its application in state-of-the-art predictive caching sys-
tems.

Session: Mobility Modeling  MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA

11



ACKNOWLEDGEMENT
This work was partially funded by NSF Award 1320694. We
gratefully acknowledge the support of NVIDIA Corp. with
the donation of the Titan Xp GPU used for this research.

REFERENCES
[1] K. Jayarajah, R. K. Balan, M. Radhakrishnan, A. Misra, and

Y. Lee, “Livelabs: Building in-situ mobile sensing & behavioural
experimentation testbeds,” in MobiSys. ACM, 2016.

[2] V. Siris, X. Vasilakos, and D. Dimopoulos, “Exploiting mobility
prediction for mobility, popularity caching and dash adaptation,”
in WoWMoM, 2016.

[3] N. Lathia, “The anatomy of mobile location-based recommender
systems,” in Recommender Systems Handbook. Springer, 2015.

[4] T. Mangla, N. Theera-Ampornpunt, M. Ammar, E. Zegura, and
S. Bagchi, “Video through a crystal ball: Effect of bandwidth
prediction quality on adaptive streaming in mobile environments,”
in MoVid. ACM, 2016.

[5] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of pre-
dictability in human mobility,” Science, 2010.

[6] G. Smith, R. Wieser, J. Goulding, and D. Barrack, “A refined
limit on the predictability of human mobility,” PerCom, 2014.

[7] P. Cao, G. Li, A. Champion, D. Xuan, S. Romig, and W. Zhao,
“On human mobility predictability via WLAN logs,” in Proc.
INFOCOM, Apr. 2017.

[8] Y. Li, D. Jin, P. Hui, Z. Wang, and S. Chen, “Limits of pre-
dictability for large-scale urban vehicular mobility,” IEEE T-ITS,
2014.

[9] J. Wang, Y. Mao, J. Li, Z. Xiong, and W. X. Wang, “Predictability
of road traffic and congestion in urban areas,” PLoS ONE, 2015.

[10] R. Gallotti, A. Bazzani, M. D. Esposti, and S. Rambaldi, “Entropic
measures of individual mobility patterns,” JSTAT, 2013.

[11] T. Takaguchi, M. Nakamura, N. Sato, K. Yano, and N. Masuda,
“Predictability of conversation partners,” Physical Review X, 2011.

[12] R. Sinatra and M. Szell, “Entropy and the predictability of online
life,” Entropy, vol. 16, no. 1, pp. 543–556, 2014.

[13] R. Hanel and S. Thurner, “A comprehensive classification of
complex statistical systems and an axiomatic derivation of their
entropy and distribution functions,” Epl, vol. 93, no. 2, 2011.

[14] X. Zhou, Z. Zhao, R. Li, Y. Zhou, and H. Zhang, “The predictabil-
ity of cellular networks traffic,” in ISCIT 2012, 2012.

[15] G. Goulet-Langlois, H. N. Koutsopoulos, Z. Zhao, and J. Zhao,
“Measuring regularity of individual travel patterns,” IEEE T-ITS,
2017.

[16] G. Maier, F. Schneider, and A. Feldmann, “A first look at mobile
hand-held device traffic,” in PAM. Springer, 2010.

[17] X. Chen, R. Jin, K. Suh, B. Wang, and W. Wei, “Network per-
formance of smart mobile handhelds in a university campus wifi
network,” ACM IMC, 2012.

[18] U. Kumar, J. Kim, and A. Helmy, “Changing patterns of mobile
network (WLAN) usage: Smart-phones vs. laptops,” IWCMC,
2013.

[19] B. Alipour, L. Tonetto, A. Yi Ding, R. Ketabi, J. Ott, and
A. Helmy, “Flutes vs. cellos: Analyzing mobility-traffic corre-
lations in large wlan traces,” in IEEE INFOCOM, 2018.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in NIPS, 2017, pp. 5998–6008.

[21] H. Cai, S. R. Kulkarni, and S. Verdú, “Universal entropy estima-
tion via block sorting,” pp. 1551–1561, 2004.

[22] Y. Gao, I. Kontoyiannis, and E. Bienenstock, “Estimating the
entropy of binary time series: Methodology, some theory and a
simulation study,” Entropy, vol. 10, no. 2, pp. 71–99, 2008.

[23] L. Song, D. Kotz, R. Jain, and X. He, “Evaluating location pre-
dictors with extensive Wi-Fi mobility data,” in INFOCOM, 2004.

[24] X. Lu, E. Wetter, N. Bharti, A. J. Tatem, and L. Bengtsson, “Ap-
proaching the limit of predictability in human mobility,” Scientific
reports, vol. 3, 2013.

[25] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[26] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine
translation,” arXiv:1406.1078, 2014.

[27] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[28] A. Karatzoglou, A. Jablonski, and M. Beigl, “A seq2seq learning
approach for modeling semantic trajectories and predicting the
next location,” in ACM SIGSPATIAL, 2018.

[29] B. Alipour, M. Al Qathrady, and A. Helmy, “Learning the relation
between mobile encounters and web traffic patterns: A data-driven
study,” in ACM MSWIM, 2018.

Session: Mobility Modeling  MSWiM ’19, November 25–29, 2019, Miami Beach, FL, USA

12


	Abstract
	1 Introduction & Related work
	2 Main Approach & Methods
	2.1 Entropy Estimation
	2.2 Predictors

	3 Datasets & Experimental Setup
	3.1 UF traces
	3.2 Discrete-time Series
	3.3 Experiments

	4 Experimental Results
	4.1 Spatio-Temporal Resolutions
	4.2 Comparison of Methods
	4.3 Top 2 Locations

	5 Discussion & Future Work
	6 Conclusion
	References



