
 
 

Delft University of Technology

Unsupervised Physics-Informed Health Indicator Discovery for Complex Systems

Bajarunas, Kristupas; Baptista, Marcia; Goebel, Kai; Chao, Manuel Arias

DOI
10.36001/phmconf.2023.v15i1.3477
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the Annual Conference of the Prognostics and Health Management Society, PHM

Citation (APA)
Bajarunas, K., Baptista, M., Goebel, K., & Chao, M. A. (2023). Unsupervised Physics-Informed Health
Indicator Discovery for Complex Systems. In C. S. Kulkarni, & I. Roychoudhury (Eds.), Proceedings of the
Annual Conference of the Prognostics and Health Management Society, PHM (1 ed.). (Proceedings of the
Annual Conference of the Prognostics and Health Management Society, PHM; Vol. 15, No. 1). Prognostics
and Health Management Society. https://doi.org/10.36001/phmconf.2023.v15i1.3477
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.36001/phmconf.2023.v15i1.3477
https://doi.org/10.36001/phmconf.2023.v15i1.3477


Unsupervised Physics-Informed Health Indicator Discovery for
Complex Systems

Kristupas Bajarunas1,2, Marcia Baptista1, Kai Goebel3, and Manuel Arias Chao1,2

1 Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands
{k.v.b.bajarunas, m.lbaptista, m.a.c.ariaschao}@tudelft.nl

2 Zurich University of Applied Sciences, Zurich, Switzerland
{baja, aria}@zhaw.ch

3 Palo Alto Research Center, Palo Alto, California, USA
kgoebel@parc.com

ABSTRACT

Discovering health indicators (HI) is essential for prognos-
tics and health management of complex systems, as an HI en-
ables timely interventions and effective maintenance strate-
gies. However, most of the existing methodologies for HI
discovery rely on labeled data which is expensive and com-
plicated to obtain in the real world. In this paper, we propose
a novel, unsupervised physics-informed model structured af-
ter expert knowledge in the form of a graphical representation
of the expected relationships between sensor readings, oper-
ating conditions, and degradation. In addition, a soft con-
straint is used to guide the representation of the HI accord-
ing to generally available expert knowledge about degrada-
tion. We evaluated the model on a turbofan engine dataset
and conducted four experiments by manipulating the original
data to create realistic real-world scenarios. The proposed
method discovers an HI that exhibits better intrinsic quali-
ties than the current state-of-the-art methodologies, leading
to enhanced prognostic performance. Notably, in situations
where the initial health state of each system varies, the pro-
posed method achieves an average prognostic performance
improvement of approximately 20% compared to existing
state-of-the-art methods.

1. INTRODUCTION

The ability to predict when a system will fail can provide sig-
nificant benefits such as reducing maintenance costs, prevent-
ing unexpected downtime, and increasing safety. One essen-
tial tool in the realm of condition-based maintenance is the
health indicator (HI), which offers an interpretable means to

Kristupas Bajarunas et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

monitor a system’s health over time. HIs find utility in vari-
ous aspects, including fault diagnosis, anomaly detection, and
prognostics. For example, in prognostics, HIs prove crucial
in predicting the remaining useful life (RUL) by contrasting
degradation patterns among different units (Wang, Yu, Siegel,
& Lee, 2008). Moreover, alternative prognostic strategies
seek to establish predictive mappings between HI and RUL
(Yang et al., 2016).

However, HIs are rarely directly observed, which makes their
discovery complex. Many existing methodologies hinge on
labeled data for HI discovery. For instance, when deal-
ing with data that contains labeled failures, insights into the
degradation process can be extracted from the information
about RUL, aiding in HI discovery (Guo, Lei, Li, Yan, &
Li, 2018; Fu, Zhong, Lin, & Zhao, 2021; Cofre-Martel,
Lopez Droguett, & Modarres, 2021). Another approach in-
volves utilizing the residual technique, where a model learns
the system’s normal behavior and discovers the HI by cal-
culating reconstruction errors. Studies often leverage health
state labels to select healthy training data and then employ
residuals to discover the HI (Ye & Yu, 2021).

Nevertheless, obtaining labeled data to train supervised learn-
ing algorithms for HI discovery is often expensive or impos-
sible. Therefore, there is a growing interest in developing
unsupervised learning methods. To address the difficulty of
dealing with unlabeled data, a solution strategy within the
PHM research community is leveraging additional knowl-
edge about the degradation behavior of the system to con-
struct the HI. For instance, one study used prior knowledge
that degradation can be expressed as an exponential function
and estimated the parameters of the function by solving an
optimization task (Liu & Huang, 2014). However, relying on
such specific knowledge can pose challenges when attempt-
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ing to uncover unit-specific degradation patterns. By impos-
ing predefined assumptions about the degradation patterns,
the model may fail to capture the unique characteristics and
complexities of individual units. Furthermore, such specific
knowledge might not be applicable to different systems where
the degradation patterns differ.

We attempt to answer the question of how to effectively dis-
cover the HI of a system without relying on labeled data. Our
hypothesis is that an unsupervised learning method based on
an Autoencoder (AE), coupled with expert knowledge, can
discover HI patterns from condition monitoring (CM) data.
Unlike current methods that rely on system-specific degrada-
tion knowledge, our approach aims to use general knowledge.

To achieve this, we first introduce a new graphical representa-
tion that illustrates the relationship between sensor readings,
operating conditions, and degradation in a typical system. We
demonstrate how this representation can inform the design of
an AE’s architecture for the purpose HI discovery. Finally, we
incorporate an extra constraint based on expert knowledge of
the degradation process to guide the AE in generating results
that are consistent with the knowledge.

Our approach’s effectiveness is demonstrated by evaluating
it under realistic data scenarios commonly seen in the indus-
try. We examine uncertainties in the amount of healthy data
during training, significant variations in the initial health state
of each unit, disparities in the distribution of operating con-
ditions between training and test datasets leading to out-of-
distribution scenarios, and cases where the majority of the
data is healthy. Our results show that the proposed method
outperforms the residual approach in most situations, espe-
cially when the initial health state of each unit differs or when
performing out-of-distribution tests. These findings highlight
the effectiveness of integrating expert knowledge into a learn-
ing algorithm, which can lead to more accurate and robust
health indicators for prognostic models.

The paper is organized as follows: Section 2 presents the
problem of HI discovery, followed by Section 3, which intro-
duces the background knowledge. Section 4 proposes the un-
supervised physics-informed model, while Section 5 presents
the case study. In Section 6, the results are presented, and
Section 7 provides the conclusion and future work. Section 8
discusses the current limitations of the proposed approach.

2. UNSUPERVISED HEALTH CONDITION DISCOVERY OF
A FLEET OF TURBOFAN ENGINES

We consider the challenging problem of discovering the
health condition of a fleet of turbofan engines from CM data.
Our focus lies on the challenging scenario where the engines
operate under a wide range of flight conditions, and the direct
observation of component degradation is not possible. How-
ever, the effects of degradation manifest in the sensor read-

ings distributed throughout the engine. Specifically, we em-
phasize failure modes driven by cycle loading resulting from
flight cycles of varying duration, including take-off, cruise,
and descent operations.

The degradation trajectories of individual engines exhibit in-
herent differences attributed to various factors. Firstly, vari-
ations in the manufacturing process lead to different initial
health states for each engine. Secondly, the diverse operating
conditions experienced by each engine contribute to varying
levels of degradation. Lastly, maintenance activities carried
out at random intervals can improve the engine’s health state.

In this context, the goal is to discover the degradation pat-
terns for each engine given CM data. In particular, given the
importance of obtaining an interpretable degradation measure
for maintenance decision-making, we aim to discover an HI.
In fact, HI is a widely used metric in the literature, providing
a standardized and comprehensible representation of degra-
dation through a single numerical value (Zhou et al., 2022).

2.1. Problem formulation

Formally, we are given multi-variate time-series of CM sen-
sor readings Xu = [x1

u, ..., x
m
u ] of a fleet of N units (u =

1, ..., N) each with m observations. Each observation xi
u ∈

Rp is a vector of p raw measurements. We are also given the
history of operating conditions Wu = [w1

u, ..., w
m
u ] for each

unit, where each wi
u ∈ Rs. The goal is to discover the unob-

servable state of degradation Z of each unit at each point in
time ziu. For interpretation purposes, the history of degrada-
tion will be transformed into a sequence of health indexes h,
such that {hi

u ∈ R1|0 ≤ hi
u ≤ 1}.

3. BACKGROUND

Under specific circumstances, it is feasible to acquire system
health labels. For instance, healthy system condition labels
can be obtained through inspections conducted by mainte-
nance engineers who carefully assess and verify the system’s
health. In such a scenario, the residual approach (i.e., model-
ing of the healthy system) can be employed to discover hid-
den anomalies in the system’s health.

However, obtaining health labels for HI discovery is often
impractical, as it can be complex and expensive. Conse-
quently, in practice, unsupervised learning methods are usu-
ally needed. In the following section, both approaches for HI
discovery, i.e., residual and unsupervised, are further intro-
duced.

3.1. Residual approach

The residual approach is a semi-supervised method for HI
discovery that has been widely used in previous literature
(Zhai, Gehring, & Reinhart, 2021; Lee, Lim, & Chattopad-
hyay, 2021; Koutroulis, Mutlu, & Kern, 2022; Zgraggen,
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(a) AE (b) Regression

Figure 1. Residual model options

Pizza, & Huber, 2022). During training, a learning algorithm
is trained to reconstruct healthy data. At prediction time, the
trained model is evaluated by measuring the reconstruction
error for new data inputs. Under the hypothesis that the train-
ing dataset is fully representative of a healthy system, small
reconstruction errors are typically indicative of healthy in-
puts, while large reconstruction errors are typically indicative
of faulty operation that was not observed during training.

The residual approach typically employs the AE as the pre-
ferred learning algorithm. However, it is crucial to account
for changing operating conditions in order for the model to
distinguish the effects of degradation and operating condi-
tions. Figure 1 (a) illustrates the residual approach utilizing
the AE. The model reconstructs healthy sensor readings while
utilizing operating conditions as additional input (de Pater &
Mitici, 2023).

An alternative approach to using an AE is to directly predict
the sensor readings based on the operating conditions, with-
out an intermediate representation (Lövberg, 2021). The ap-
proach is illustrated in Figure 1(b). This approach may be
preferable in situations where data collection is limited, but
may not perform as well in cases where the sensor readings
contain outliers (Chalapathy & Chawla, 2019). Ultimately,
the choice of approach should depend on the specific charac-
teristics of the data and the problem being addressed.

In this study, the assumption is made that the health state of
the system is uncertain, and no health state labels are avail-
able for HI discovery. To address this challenge, the residual
model employed in this study relies on a specific assumption
that a certain number of the initial flight cycles of each engine
are healthy. This assumption is valid for brand-new engines,
but might not be good in a different situation. In our experi-
ments, we will demonstrate that the selection of the number
of healthy cycles has a significant impact on the quality of HI
produced by the residual approach.

3.2. Unsupervised approaches

In the absence of health state labels, unsupervised learning
methods become crucial as an alternative to semi-supervised

approaches. Notably, in systems where variations in sen-
sor readings are predominantly driven by degradation, em-
ploying an AE with reduced dimensions in the latent space
has demonstrated the ability to identify meaningful degrada-
tion patterns. For instance, this was demonstrated in an ex-
periment using a subset of turbofan datasets where the op-
erating conditions are kept constant (de Beaulieu, Jha, Gar-
nier, & Cerbah, 2022). However, it is important to recognize
that in systems where the impact of degradation is masked
by varying operating conditions, fully unsupervised HI dis-
covery methods are challenging. Therefore, alternative ap-
proaches have been proposed that emphasize the integration
of additional knowledge with unsupervised methods.

For instance, in (Magadán et al., 2023), an AE was trained
using features extracted by considering interesting frequen-
cies given by prior expert knowledge. Through this process,
the AE was able to uncover health indicators from the low-
dimensional latent space.

An alternative approach (Qin et al., 2023) leverages knowl-
edge about the shape of degradation and imposes constraints
on the functional form of degradation. By incorporating this
constraint, an HI can be effectively extracted from the latent
space representation of an AE.

These methods showcase the utilization of domain-specific
knowledge to guide the unsupervised learning process and
enhance the accuracy of the extracted health indicators.

Despite these advancements, there are still challenges with
the current unsupervised approaches which use additional
expert knowledge. Namely, relying on specific knowledge
can hinder the discovery of unit-specific degradation patterns,
limiting the model’s ability to capture unique characteristics.
Additionally, such knowledge may not apply to diverse sys-
tems with different degradation patterns.

4. METHODOLOGY

To discover an HI in situations where no information about
the health state is available, we propose an unsupervised
physics-informed model. In alignment with (Karniadakis et
al., 2021), the term “physics-informed” encompasses addi-
tional knowledge that becomes integrated within a machine
learning model. In our proposed methodology, we utilize
expert knowledge about the degradation process of complex
systems. This expert knowledge, inherently informal and
non-specific to a particular system, serves as the basis of our
approach. To be more precise, we use two pieces of expert
knowledge: we impose an inductive bias on a model’s archi-
tecture and a learning bias on the objective function.

The introduction of an inductive bias stems from a novel
graphical representation of the expected relationship between
sensor readings, operating conditions, and degradation in a
typical complex system. The graphical representation encap-
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sulates the expected dependencies between observable and
hidden factors involved in the degradation of turbofan en-
gines; thus corresponding to a causal graph (Pearl et al.,
2000). We embed the causal graph within the AE network’s
architecture as an inductive bias.

Furthermore, we extend the causal graph by introducing ad-
ditional expected dependencies related to the system’s failure
modes of interest. Specifically, we illustrate how knowledge
about failure mechanisms primarily influenced by operational
cycle loading can be integrated into the model’s objective
function. This knowledge serves as a learning bias modifying
the training objective function.

4.1. Causal graph of a degrading system

We present a graphical representation of the health discovery
problem for degrading turbofan engines. From the problem
description, it follows that the sensor measurements X are
influenced by the operating conditions W and the degradation
of the system Z.

Therefore, the different types of variables of the system can
be graphically represented in Figure 2. Links between ob-
servable variables are shown in a solid line, while links be-
tween hidden variables are shown in dashed lines. Although
the graphical representation was developed for the turbofan
dataset, the representation is generic enough to cover multiple
complex systems. For example, similar variable interactions
are expected to be found when modeling batteries, since the
evolution of voltage over time given the current demands are
changing based on the degradation of the battery.

Figure 2. Graphical representation of variables in a turbofan
engine

The graphical representation is explained by the expected be-
havior of the turbofan system. The association W → X can
be justified by observing that sensor readings for a unit with
a certain level of degradation vary significantly under differ-
ent operational conditions. For instance, an engine during
take-off experiences higher power input than during cruis-
ing, which impacts the sensor readings. The association be-
tween W → Z is included to reflect the way engines op-
erate influences the level of degradation. For example, short
flights, dominated by take-off and landing operations can lead
to accelerated degradation. Finally, the association between
Z → X is implicit in the definition of degradation. When
comparing two engines operating under the same conditions
but at different degradation states, a significant difference in

sensor readings is observed. Engine performance worsens
with degradation, leading to observable differences in sensor
readings.

When certain observations are assumed to be healthy and not
subject to degradation, the system can be represented graph-
ically with only the association of W → X . If a model is
trained solely with healthy data, then the difference between
the model prediction and the actual result will be exactly the
degradation of the system, as it is the only unaccounted vari-
able. Thus, the graphical representation also fits in the context
of the residual approach.

4.2. Inductive bias: Derived model architecture

To detect degradation and discover the HI, a data-driven
model can be created by incorporating the graphical knowl-
edge presented in Figure 2. One approach to incorporate de-
pendencies between different variables is to use an AE, as
depicted in Figure 3. The model is trained to not only recon-
struct sensor readings X in a supervised manner but, also to
predict W . This step involves partitioning the latent space
into two sections that represent W and Z, respectively, impli-
cating the associations W → X and Z → X . The effect of
degradation on sensor readings is essentially decoupled from
the effect of operating conditions. The overall training objec-
tive is given by:

LMSE = ||X − X̂||2 + ||W − Ŵ ||2 (1)

where || · ||2 represents the mean absolute error.

Figure 3. AE structure derived from the graphical representa-
tion

For the majority of systems, the effect of the association
W → X is much stronger than Z → X . As a result, given a
sufficiently strong decoder, the sensor readings can be recon-
structed regardless of the value of the unsupervised portion of
the latent space. Therefore, without explicit guidance of the
latent space Z, there is no guarantee that the latent space will
show a clear degradation pattern.
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4.3. Learning Bias: Modified objective function

In this paper, we propose to use additional knowledge about
degradation to enhance the graphical representation shown in
Figure 2. We argue that important degradation mechanisms in
turbofan engines such as friction, erosion, and fouling of the
rotating components are dominated by cycle operation. As
such, the change in degradation within an operational cycle t
is minor.

To capture the influence of the operation cycle time on the
degradation process, we propose that the association t → Z
must be included in the graphical representation, as shown in
Figure 4.

Figure 4. Modified graphical representation with additional
knowledge

In order to incorporate information about the operational cy-
cle time in the model, we implement a soft constraint on the
latent space of degradation. Specifically, this soft constraint
aims to minimize the correlation between operational cycle
time and the latent space Z, and is defined as follows:

Lcorr =

∑
(ti − t)(Zi − Z)√∑

(ti − t)2
∑

(Zi − Z)2
(2)

Our proposed approach is trained with the following objective
function:

L = LMSE + λLcorr (3)

By incorporating the soft constraint, we introduce additional
expert knowledge about degradation to the model. The soft
constraint serves as a guide to the latent space, allowing it to
uncover degradation without becoming overly restrictive and
compromising the model’s ability to function as an AE. In
essence, the constraint assists in shaping the latent space into
a more meaningful representation that can better capture the
hidden degradation of the system. The parameter λ controls
the importance of the constraint and is used to reduce the risk
of overfitting.

5. CASE STUDY

5.1. Dataset: A small fleet of turbofan engines

We demonstrate the proposed method for unsupervised HI
discovery on the new Commercial Modular Aero-Propulsion

System Simulation (N-CMAPSS) dataset (Arias Chao,
Kulkarni, Goebel, & Fink, 2021). The N-CMAPSS dataset
was created using a high-fidelity simulation model, which
was given real flight conditions as recorded on board a
commercial jet.

From the eight available data subsets, we consider the set
DS003 which is characterized by a single fault mode that af-
fects the low-pressure turbine efficiency and flows in com-
bination with the high-pressure turbine efficiency degrada-
tion. The training set contains 9 units, and the test set con-
tains 6 units. Each unit in the training set and testing set
contains 14 observable sensor measurements, denoted as X ,
which are recorded from the time of engine installation until
engine failure (run-to-failure data). In addition to the sen-
sor measurements, four operating conditions W are avail-
able. The operating conditions include altitude, Mach num-
ber, throttle-resolved angle, and total temperature at the fan
inlet. The units are divided into three flight classes depend-
ing on whether the unit is operating short-length flights (i.e.,
flight class 1), medium-length flights (i.e., flight class 2), or
long-length flights (i.e., flight class 3). The sensor signals and
operating conditions are sampled once per second (1Hz).

The N-CMAPSS dataset models degradation at the compo-
nent level through initial, normal, and abnormal degradation
stages. The ground truth HI was derived from a non-linear
mapping of multiple degradation variables and was used to
declare system failure when its value reached 0. More details
about degradation modeling in the N-CMAPSS dataset can
be found in the dataset description paper (Arias Chao et al.,
2021). The ground truth HI (hgt) will be used for evaluation
purposes only. An overview of the used dataset is provided in
Table 1.

Table 1. Summary of DS03 N-CMAPSS dataset. The table
provides information on the average number of healthy cycles
and end-of-life cycles for each flight class.

Flight Class Average of
Healthy Cycles

Average of
Total Cycles

Short 36.3 82.6
Medium 23.5 68.4
Long 17 66.2

5.2. Pre-processing

For all experiments, data were first normalized to the range
[0,1] using min-max normalization. Following the pre-
processing methodology in (Lövberg, 2021), the data sam-
pling frequency was reduced to 0.1Hz, and the float format
was changed to a half-float format.
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5.3. Constructing a health indicator with the reconstruc-
tion error

In this work, we resort to Principal Component Analysis to
convert the degradation patterns identified by the baseline
residual and our proposed methods into HIs. Specifically,
the dimensionality of the degradation signal is reduced us-
ing the first principal component. Subsequently, the training
sets’ 2.5% percentiles are employed to remove the smallest
and largest outliers. The final step involves normalizing the
HIs through min-max normalization and averaging observa-
tions per cycle.

5.4. Network Configurations

Residual model - AE. The asymmetric-AE residual model is
shown in Figure 1(a). The model is trained to reconstruct sen-
sor readings when operating conditions and the sensor read-
ings are concatenated. The architecture of the asymmetric-
AE residual model used here comprises 4 feed-forward layers
with ReLU activation functions. The input layer has a dimen-
sion size of 18, the hidden layers have a dimension size of
128, and the final layer has a size of 14.

Residual model - Regression. The regression type residual
model implemented in this study is shown in Figure 1(b). We
train a model to predict sensor readings given operating con-
ditions. The model contains 4 feed-forward layers with ReLU
activation functions. The input layer has a dimension size of
4, the hidden layers have a dimension size of 128, and the fi-
nal layer has a size of 14. The implementation is identical to
previous work in (Lövberg, 2021).

Proposed model - Physics-informed AE. The structure of
the proposed algorithm is shown in Figure 3. The model
is composed of two parts: an encoder and a decoder. Both
of these parts are built using feed-forward neural networks.
The encoder and decoder have the same structure but with re-
versed layer dimensions. Specifically, each model comprises
two hidden layers with dimensions of size 128 with ReLU
activation functions used throughout. After the input is pro-
cessed through the encoder, the output is then passed through
two fully connected layers with linear activation functions.
The first fully connected layer has the same dimensionality
as W , while the second has a dimensionality of 1. These
two layers are then concatenated before being fed into the de-
coder. The parameter λ is set to 1.

5.5. Training set-up

The optimization of the network’s weights is carried out with
mini-batch stochastic gradient descent (SGD) and with the
Adam algorithm. The batch size is set to 248 and the learn-
ing rate to 1e-5. The maximum number of epochs was set to
50. Early stopping was implemented for all models to stop

training once the AE loss was below 1e-5 for 5 epochs. Early
stopping was implemented to reduce the risk of overfitting.

5.6. Evaluation

Following the evaluation philosophy in (Nguyen & Medja-
her, 2021), we compare and analyze the performance of the
proposed method for HI discovery based on two evaluation
aspects: quality of the HI and impact on the prognostic per-
formance when the HI is used for an RUL estimation task.
For each of the two aspects, we consider evaluation metrics
that are defined in the following sections.

5.6.1. HI Criteria

There are several desirable properties that an HI should ex-
hibit to represent the degradation of a system accurately. Al-
though initial health conditions and operational modes can
cause some variability in the discovered HIs, it is still desir-
able for them to demonstrate consistent behavior.

In this work, we employ the following criteria for HI evalua-
tion:

Monotonicity measures the tendency for the HI to consis-
tently increase or decrease (Coble, 2010). The monotonicity
M of health index hu of unit u with m observations is ex-
pressed as

M =
1

m− 1

m−1∑
j=1

|I(hj+1
u − hj

u)− I(hj
u − hj+1

u ))| (4)

I(x) =

{
1 x > 0

0 x ≤ 0

Trendability is used to evaluate the degree to which the HIs
of a fleet of systems have a similar shape and underlying form
(Coble, 2010). Trendability T of health index hu of unit u
with cycles tu is expressed as

T = |corr(tu, hu)| (5)

Prognosability is used to evaluate consistent HI behavior to-
wards the end of life of units (Coble, 2010). Prognosability
P of all health indexes in a set Ed is given by,

P = exp(− σ(hend
u )

µ(|hend
u − h0

u|)
) u ∈ Ed (6)

Where the starting and ending HI values of unit u are denoted
as h0

u and hend
u , respectively, while σ and µ refer to the stan-

dard deviation and mean operators.

Mutual Information score quantifies the information ob-
tained about RUL by observing HI (Nguyen & Medjaher,
2021). Mutual information is a non-negative measure of de-
pendency between two random variables. In this study, the
negative exponential of mutual information I(hu, RULu) is
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used to obtain a score ranging from 0 to 1. Mutual Infor-
mation score MI between hu and RULu for unit u can be
expressed as:

MI =
1

m

m∑
i=1

[1− exp(−I(hu, RULu)] (7)

5.6.2. Prognostic Performance

A key objective of discovering HIs is to enhance the perfor-
mance of prognostic models. In order to validate the effec-
tiveness of the proposed HI discovery techniques, a baseline
prognostic model is needed. From the existing methods for
the turbofan dataset, a 1D-CNN- based model (Arias Chao,
Kulkarni, Goebel, & Fink, 2022) is chosen due to its good
performance. For more details about the implementation see
the original paper.

The sensor signals, operating conditions, and cycle numbers
are used as inputs to predict RUL. The model is given by:

G(X,W, t) = RUL

To test whether the constructed HI’s help prognostic perfor-
mance, HIs are used to augment the input space.

G(X,W, h, t) = RUL

Typical prognostic metrics, such as mean absolute error
(MAE), root mean squared error (RMSE), Mean absolute per-
centage error (MAPE), and the NASA score function (s) are
evaluated.

6. NUMERICAL EXPERIMENTS

To demonstrate the capabilities of the proposed method in
comparison to the baseline residual approach, we consider
four experiments performed by manipulating the original N-
CMAPSS data to reflect realistic data scenarios. Firstly, we
evaluate the effect of assuming varying amounts of healthy
observations for training the residual models. Secondly, we
represent a scenario where each unit of the fleet has a clearly
different initial health condition. Thirdly, we train and test
the model on non-overlapping flight classes to check the ro-
bustness of our method to out-of-distribution testing. Lastly,
we consider the case where most CM data is healthy.

The selection of experiments is based on two main objectives.
The first two experiments aim to highlight the shortcomings
of the baseline residual approach, aiming to emphasize issues
that our proposed method addresses more effectively. The
subsequent two experiments are focused on evaluating the
robustness of both models in addressing typical challenges
encountered in practical prognostic scenarios.

Finally, to evaluate the efficacy of our proposed approach,
we demonstrate the sensitivity of the model performance for
different λ parameters.

6.1. Unknown Initial Health State

In real-world scenarios, it is often not possible to have ac-
cess to the full health state of the system. Therefore, it is
necessary to make assumptions about the amount of healthy
data available for training. The proposed approach is insensi-
tive to the amount of healthy data, but the performance of the
residual approaches highly depends on this assumption. To
demonstrate this impact, we will assume that the first [5, 10,
20, 40, 60] cycles of each unit are healthy, and evaluate the
performance accordingly. The true number of healthy cycles
is shown in Table 1.

Table 2 presents the quantitative analysis results of the HI
criteria. The table indicates the mean and standard deviation
of the criteria values from 5 runs, along with an evaluation of
the true HIs used to generate the N-CMAPSS dataset.

The regression-based residual model outperformed the AE-
based residual model for all choices of the number of healthy
observations. Therefore, the evaluation will only consider the
regression-based residual approach going forward.

Moreover, the results indicate that the number of assumed
healthy cycles significantly affects the performance of the
residual approach. The best performance is achieved when
20 cycles are assumed to be healthy, which corresponds to
the true number of healthy observations in the training dataset
(on average 26 cycles). Assuming more than 40 healthy cy-
cles leads to a significant drop in the model’s performance.

Table 2. Quantitative results of the HI criteria under a vary-
ing amount of healthy observations. ha

re(H) health index
of AE residual approach assuming H healthy observations,
hb
re(H) health index of regression residual approach assum-

ing H healthy observations, hp health index of the proposed
approach, hgt ground truth health index.

HI M (Eq. 3) T (Eq. 4) P (Eq. 5) MI (Eq. 6)

ha
re5 0.31(0.06) 0.90(0.10) 0.86(0.01) 0.65(0.05)

ha
re10 0.33(0.03) 0.91(0.13) 0.87(0.01) 0.64(0.03)

ha
re20 0.35(0.08) 0.90(0.08) 0.94(0.01) 0.67(0.09)

ha
re40 0.27(0.06) 0.85(0.19) 0.92(0.01) 0.64(0.03)

ha
re60 0.10(0.06) 0.79(0.40) 0.71(0.03) 0.45(0.01)

hb
re5 0.38(0.03) 0.96(0.00) 0.90(0.05) 0.68(0.01)

hb
re10 0.39(0.04) 0.97(0.01) 0.91(0.04) 0.68(0.01)

hb
re20 0.40(0.03) 0.97(0.01) 0.91(0.01) 0.68(0.02)

hb
re40 0.33(0.04) 0.83(0.15) 0.91(0.00) 0.66(0.03)

hb
re60 0.21(0.06) 0.71(0.31) 0.90(0.02) 0.64(0.03)

hp 0.35(0.01) 0.98(0.00) 0.96(0.01) 0.70(0.01)

hgt 0.50 0.99 1.0 0.70
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(a) hb
re5

(b) hb
re20

(c) hb
re60

(d) hp

Figure 5. Discovered HI of test unit 10 by residual approach (a), (b), and (c)) and proposed approach (d)

In contrast, the proposed approach consistently outperforms
the residual approach in terms of all HI evaluation metrics
except monotonicity, regardless of the chosen number of
healthy observations. Furthermore, the proposed approach
can accurately discover HI values that align closely with the
ground truth (i.e. hgt). The better performance of the pro-
posed method can also be observed graphically in Figure 5
when comparing the discovered HIs for a single test unit. The
proposed method results in an HI (i.e. hip) showing a closer
match to the truth than the three residual models.

Table 3. Quantitative results of the prognostic prediction task
under a varying amount of healthy observations. G - neural
network, X - sensor readings, W -operating conditions, t -
cycles, hire(H) - health index of residual approach assuming
H healthy observations, hip health index of the proposed ap-
proach, higt ground truth health index.

Model MAE RMSE MAPE s (1e5)
G(X,W, t) 6.4(0.9) 8.4(1.3) 31.2(4.5) 1.5(1.0)

G(X,W, t, hb
re20) 5.9(0.4) 7.9(0.5) 27.0(2.2) 1.3(0.4)

G(X,W, t, hp) 5.6(0.3) 7.5(0.2) 26.5(3.5) 1.2(0.2)

G(X,W, t, hgt) 5.0(0.1) 7.2(0.1) 16.5(2.0) 1.1(0.2)

The results from a prognostic prediction task are given in Ta-
ble 3. Compared to a model which predicts RUL directly, the
model which utilized the ground truth HI improves prognos-

tic performance on average by 43%. This demonstrates that
the obtained HI is very informative for RUL prediction.

The proposed method’s discovered HI leads to better
prognostic performance than the best-performing residual
method’s HI. On average, the best-performing residual ap-
proach improves performance by 11% on average, while
the proposed approach increases performance by 17% on
average. These results suggest that the proposed approach is
able to discover an HI which is more informative for RUL
prediction.

6.2. Difference in the Initial Health State

A common situation in the real world is that the health state
of each unit can vary significantly when the health manage-
ment tool is first switched on. For instance, some engines
may have been in use for longer periods (and sometimes very
long periods) before sensor monitoring begins, creating un-
certainty about their health state. However, the N-CMAPSS
dataset does not reflect this fact, as each unit was generated
to have only minimal differences in initial health state.

In this experiment, the aim is to simulate a scenario where
the initial health state of each unit is significantly different
due to varying usage patterns. To achieve this, a certain num-
ber of initial cycles are randomly removed from the training
data for each unit in the dataset. The proportion of cycles to
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be removed is generated from a Uniform distribution with pa-
rameters [0, 0.75]. The resulting truncated cycles are [29, 54,
8, 42, 67, 43, 9, 25, 57] for each training unit, as illustrated in
Figure 6. The test data remains unchanged.

The results in Table 4 show that the residual approach is un-
able to construct a reasonable HI, resulting in a significant
drop in each HI metric’s performance. On the other hand, the
proposed approach is less sensitive to data truncation, as it
does not assume a portion of data to be healthy like the resid-
ual approach. Table 5 provides additional evidence of the
effectiveness of the proposed approach as it improves prog-
nostic performance through the discovered HI values. The
proposed method discovers an HI which has on average 20%
better prognostic performance than the residual approach.

Figure 6. Illustration of data truncation

Table 4. Quantitative results of HI criteria for different initial
health states of the system.

HI M (Eq. 3) T (Eq. 4) P (Eq. 5) MI (Eq. 6)

hb
re20 0.08(0.04) 0.36(0.21) 0.82(0.05) 0.50(0.03)

hp 0.25(0.01) 0.95(0.00) 0.96(0.01) 0.78(0.01)

hgt 0.49 0.99 1.0 0.75

Table 5. Quantitative results of prognostic prediction for dif-
ferent initial health states of the system.

Model MAE RMSE MAPE s(1e7)
G(X,W, t) 9.5(1.5) 17.4(5.8) 36.2(4.8) 3.3(2.3)

G(X,W, t, hb
re20) 8.7(1.0) 13.9(2.8) 30.1(1.6) 1.2(0.9)

G(X,W, t, hp) 7.8(1.3) 12.7(2.8) 26.4(3.6) 0.8(0.9)

G(X,W, t, hgt) 7.8(1.5) 12.2(2.6) 20.1(2.6) 0.8(1.2)

6.3. Out-of-Distribution Testing

The accuracy and reliability of prognostic prediction tech-
niques depend highly on the quality and representativeness of

the available time-to-failure data. Therefore, these methods
may not perform well when applied to data from new units
that operate under different conditions than those used during
training (Nejjar, Geissmann, Zhao, Taal, & Fink, 2023).

As previously mentioned, engine degradation is influenced
by operating conditions such as take-off and landing. The
N-CMAPSS dataset consists of engines classified into three
distinct flight classes, and it is reasonable to expect that
the degradation patterns between engines of different flight
classes may differ significantly. Furthermore, the sensor mea-
surements of units from different flight classes may also be af-
fected as the units reach different altitudes and speeds (Nejjar
et al., 2023).

To assess the robustness of the baseline residual approach
and the proposed approach to significant changes in operating
conditions, we propose to train the models using short-flight
class data and test them on medium to long-flight classes. The
residual approach was trained assuming the first 20 cycles of
each unit are healthy.

Table 6 shows the HI evaluation metrics. The results demon-
strate that the proposed approach yields an HI that closely
aligns with the ground truth HI, outperforming the HI dis-
covered by the residual approach. Table 7 suggests that the
proposed method is also able to discover an HI which is more
beneficial for prognostic performance than the HI discovered
by the residual approach.

Table 6. Quantitative results of the HI criteria out-of-
distribution testing.

HI M (Eq. 3) T (Eq. 4) P (Eq. 5) MI (Eq. 6)

hb
re20 0.12(0.02) 0.81(0.01) 0.88(0.03) 0.62(0.01)

hp 0.21(0.06) 0.94(0.01) 0.87(0.10) 0.78(0.04)

hgt 0.44 0.99 1.0 0.85

Table 7. Quantitative results of the prognostic prediction out-
of-distribution testing.

Model MAE RMSE MAPE s(1e6)
G(X,W, t) 11.4(3.2) 15.3(4.6) 43.7(9.2) 7.5(0.6)

G(X,W, t, hb
re20) 11.4(2.9) 15.2(4.0) 37.4(4.7) 6.9(5.3)

G(X,W, t, hp) 10.8(2.9) 13.8(3.9) 33.5(2.8) 2.0(1.8)
G(X,W, t, hgt) 8.5(1.2) 11.4(1.9) 31.4(1.2) 1.6(0.9)

6.4. Majority Healthy Data

In certain scenarios, the majority of the operational data col-
lected from an engine is healthy. This is because engines tend
to be in good working condition for the majority of their life-
time, and only experience significant degradation towards the
end of their useful life. We refer to this scenario as the “ma-
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jority healthy” situation. In theory, the experiment should fa-
vor the residual model since there is an abundance of healthy
data for training. The proposed model should have difficulties
in this experiment, since degradation remains constant for a
long period of time and does not correlate with cycle time.

To explore the performance of HI discovery models in the
scenario where the majority of data is healthy, an experiment
can be designed where the training and testing data are heav-
ily skewed towards healthy observations. For each training
and test unit, the amount of healthy data was augmented by
sampling the first 20 cycles with repetition 100 times. To train
the residual model, it was assumed that the first 100 cycles of
each flight are healthy.

The results of the HI evaluation are presented in Table 8, and
the discovered HIs are shown in Figure 7. The performance
of the two methods is almost identical, and it is difficult to
determine which model is preferable. Notably, the proposed
method performs equally well as the residual approach, even
in unfavorable conditions.

Table 8. Quantitative results of the HI criteria majority
healthy data.

HI M (Eq. 3) T (Eq. 4) P (Eq. 5) MI (Eq. 6)

hb
re100 0.17(0.02) 0.62(0.03) 0.92(0.02) 0.48(0.02)

hp 0.17(0.02) 0.65(0.00) 0.96(0.01) 0.50(0.01)

hgt 0.21 0.65 1.0 0.62

(a) hb
re100

(b) hp

Figure 7. Discovered HI of test unit 10. Majority healthy
experiment results

6.5. Sensitivity of the learning bias

In a final ablation study, we investigate the sensitivity of the
proposed approach to the choice of λ parameter. The λ pa-
rameter controls the trade-off between the importance of the
additional constraint and the ability of the model to function
as an AE. The results of the sensitivity analysis are shown in
Table 9

When setting λ = 0, the introduced additional constraint con-
cerning degradation within the latent space of the AE model

Table 9. Sensitivity of the proposed approach to given λ val-
ues

λ M (Eq. 3) T (Eq. 4) P (Eq. 5) MI (Eq. 6)

0 0.05(0.01) 0.05(0.02) 0.00(0.01) 0.05(0.02)

0.001 0.10(0.09) 0.21(0.37) 0.19(0.37) 0.18(0.25)

1 0.35(0.01) 0.98(0.00) 0.96(0.01) 0.70(0.01)

1000 0.33(0.02) 0.98(0.00) 0.96(0.01) 0.70(0.00)

is removed. We can observe that in the absence of this con-
straint, the model is no longer able to capture the degradation
patterns. Hence, this constraint, informed by expert knowl-
edge, serves as an effective guide for the discovery of degra-
dation.

With an increase of the λ parameter beyond 0.001, an en-
hancement in model performance becomes evident, as shown
by the favorable HI evaluation metrics. It is worth highlight-
ing that the model’s responsiveness to the λ parameter is min-
imal since the model is able to reconstruct degradation pat-
terns across a broad spectrum of λ parameter values. This
insensitivity to λ variations stems from the model’s training
procedure, where early stopping is employed based solely on
the AE loss.

7. CONCLUSION

In this paper, we introduce a novel physics-informed unsu-
pervised model for HI discovery. We propose to incorporate
general knowledge about the degradation process of complex
systems as both an inductive bias on the network architecture
and a learning bias on the objective function.

We present the effectiveness of our proposed approach
through a comparison with the residual approach using the
N-CMAPSS turbofan dataset. It becomes apparent that the
current HI discovery technique is sensitive to the availability
of healthy training data and the uniformity of initial health
states among units. In contrast, our novel approach displays
resilience against these challenges, showcasing superior per-
formance in detecting degradation patterns. Moreover, we
highlight the robustness of our method in typical real-world
scenarios where a substantial portion of the data is healthy or
diverges from the distribution. Simultaneously, we illustrate
the potential of the discovered HI in enhancing prognostic
model performance. These outcomes emphasize the value
of integrating expert knowledge into the learning algorithm,
resulting in more precise and robust health indicators for
prognostic models.

Future research will expand the proposed methodology by in-
corporating additional types of expert knowledge related to
degradation. The methodology will be applied to other com-
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plex systems, such as batteries, where degradation is depen-
dent on operational cycles.

8. LIMITATIONS

While we demonstrated excellent performance of the pro-
posed model there are still some limitations. An inherent
limitation of the proposed approach in its current form is that
we only investigate one case study where the failure modes
are dominated by cycle loading. In scenarios where the sys-
tem’s failure mechanism is governed by different factors, the
soft constraint used by our proposed approach might not be
suitable. We emphasise that an in-depth understanding of the
precise physics of degradation is not mandatory; rather the
main factors driving degradation need to be identified.

Furthermore, the proposed method inherits the general lim-
itation of any HI estimation methodology for validation in
certain real-world scenarios. In cases where degradation is
observable the estimated HI can be compared to ground truth
values. However, in many instances, the HI of the system can
only be inferred from simulators or with performance tests,
which makes validation challenging.
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