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On the Structural Target Controllability of Undirected Networks
Jingqi Li , Graduate Student Member, IEEE, Ximing Chen , Member, IEEE, Sérgio Pequito ,

George J. Pappas , Fellow, IEEE, and Victor M. Preciado , Member, IEEE

Abstract—In this article, we study the target controllability prob-
lem of networked dynamical systems, in which we are tasked
to steer a subset of network nodes toward a desired objective.
More specifically, we derive necessary and sufficient conditions
for the structural target controllability of linear time-invariant (LTI)
systems with symmetric state matrices, such as those represent-
ing undirected dynamical networks with unknown link weights. To
achieve our goal, we first characterize the generic rank of symmet-
rically structured matrices, as well as the modes of any numerical
realization. Subsequently, we provide graph-theoretic necessary
and sufficient conditions for the structural target controllability of
undirected networks with multiple control nodes. In addition, we
show that these results can be extended and lead to a necessary
and sufficient condition of the structural output controllability.
However, different from structural target controllability, we prove
that verifying the proposed conditions on structural output con-
trollability in undirected networks is NP-hard.

Index Terms—Networked control systems, structured linear sys-
tems, target controllability.

I. INTRODUCTION

Complex networks are a powerful tool for modeling dynamical
systems [1]–[3]. In particular, when analyzing and designing networked
dynamical systems, it is crucial to verify their controllability, i.e.,
the existence of an input sequence allowing us to drive the states
of the system toward arbitrary states within finite time. Nonetheless,
verifying such a property requires full knowledge of the parameters
describing the system’s dynamics [4]. However, in many applications
involving large-scale networks, those parameters are difficult, or even
impossible, to obtain [3]. Alternatively, it is practically more viable
to identify the existence or absence of dynamical interconnections
among the states of a network, without characterizing the strength of the
interactions. Subsequently, it is of interest to infer system properties,
such as controllability, using exclusively information about the system
structure and tools from graph theory [5].
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Seminal work on a graph-theoretic analysis of controllability can be
found in [6], in which the notion of structural controllability was intro-
duced. Following this work, in [7]–[10], necessary and sufficient con-
ditions for structural controllability of multi-input linear time-invariant
(LTI) systems using various graph-theoretic notions were provided.

Nonetheless, existing results on structural controllability assumed
implicitly that the parameters are either fixed zeros or independent free
variables. Such an assumption is often violated in practical scenarios,
for instance, when the system is characterized by undirected networks
[11], or when different interconnections in the system are strongly
correlated [12]. Consequently, it is of interest to provide necessary
and sufficient conditions for structural systems characterized by graphs
with special weight constraints, such as those considered in [13] and
[14]. However, the result in [13] is not applicable to systems modeled
by undirected graph, whereas the approach in [14] may suffer from
scalability issues in large-scale systems.

Recently, Menara et al. [15] and Mousavi et al. [16] proposed graph-
theoretic necessary and sufficient conditions for structural controllabil-
ity of dynamical systems modeled by a symmetric graph. Different from
their approaches, in this article, we provide a full characterization of
the controllable modes using structural information of an undirected
network via tools from algebraic geometry and graph theory, which fa-
cilitates a deeper understanding of structural controllability for systems
involving symmetric parameter constraints.

Nonetheless, in certain scenarios, it suffices to steer a subset of states
toward desired values, instead of the full set of states [17]. Given a subset
of states, the ability to steer this subset of states arbitrarily is termed
target controllability [17], [18]. The target controllability problem is
a particular case of the output controllability problem [19], where
we aim to steer the outputs of the system. Although graph-theoretic
conditions on the strong target controllability, a stronger notion of
target controllability, are proposed in [20] and [21], it is known that
there are no necessary and sufficient conditions of structural target
controllability and structural output controllability—see [18] and [22]
for details.

In this article, we provide necessary and sufficient conditions for
target and output controllability for undirected networks, which extend
the results in a preliminary version of our work [23]. Furthermore, we
provide a computational complexity analysis of assessing structural
output controllability for general linear systems involving symmetric
state matrices. In summary, the main contributions of the article are
fourfold: We first provide full characterizations of the generic spec-
tral properties of symmetrically structured systems. Leveraging those
generic properties, we then show that the symmetry of the state matrix
allows us to generalize the PBH test to characterize structural target
controllability, which in turn enables us to provide graph-theoretic
necessary and sufficient conditions for structural target controllability.
Subsequently, we show that those results can be extended to a necessary
and sufficient condition for structural output controllability. Finally, we
explore the computation complexity of verifying these graph-theoretic
conditions.
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The rest of the article is organized as follows. In Section II, we
formulate the problems under consideration. Some preliminaries in
linear systems and graph theory are recalled in Section III. In Section IV,
we derive main results, of which proofs are relegated to the Appendix.
Illustrative examples are depicted in Section V. Finally, we conclude
the article in Section VI.

II. PROBLEM STATEMENTS

Consider an LTI system whose dynamics is captured by

ẋ = Ax+Bu, y = Cx (1)

where x ∈ Rn, y ∈ Rk, and u ∈ Rm are the state, output and input
vectors, respectively. We refer to the matricesA ∈ Rn×n,B ∈ Rn×m,
and C ∈ Rk×n as the state, input, and output matrix, respectively. In
this article, we consider the following assumption.

Assumption 1: The state matrix A ∈ Rn×n is symmetric, i.e., A =
A�.

This symmetry assumption is motivated by control problems arising
in undirected networked dynamical systems [15], [16], [24]. Hereafter,
we use the 3-tuple (A,B,C) to represent the system (1). In particular,
we use the pair (A,B) to denote a system without a measured output.

When we aim to study the system properties in (A,B), in general,
it is required to have access to the values of the entries in A and
B [25]. However, in certain scenarios, only the presence/absence of
interactions between inputs and states, or among states, are available.
In other words, only the sparsity patterns of the matrices A and B are
available. Consequently, we focus on studying the relationship between
the sparsity pattern of the 3-tuple (A,B,C) and the controllability of
the system. To do so, we first introduce few definitions from structural
system theory.

Definition 1 (Structured and Symmetrically Structured
Matrices): A matrix M̄ ∈ {0, �}n×m is called a structured matrix, if
[M̄ ]ij is either a fixed zero or an independent free parameter, typically
denoted by �. In particular, we define a matrix M̄ ∈ {0, �}n×n to be
symmetrically structured, if the value of the free parameter associated
with [M̄ ]ij is constrained to be the same as the value of the free
parameter associated with [M̄ ]ji for all j < i.

Example 1: Consider the matrices

M̄ =

[
0 m12

m21 0

]
and Ā =

[
0 a12
a12 0

]

where m12,m21, and a12 are independent parameters. In this case, M̄
is a structured matrix, whereas Ā is symmetrically structured.

In addition, we refer to M̃ as a numerical realization of a (symmet-
rically) structured matrix M̄ , i.e., M̃ is a matrix obtained by indepen-
dently assigning real numbers to each independent free parameter in
M̄ .

Given a 3-tuple (A,B,C),we use (Ā, B̄, C̄) to denote its structural
counterpart; more specifically, [Ā]ij = � if [A]ij �= 0 and [Ā]ij = 0
otherwise. By Assumption 1, we assume that the structural matrix Ā
is symmetrically structured. In this article, we are interested in the
following system property.

Definition 2 (Structural Controllability [6]): A structural pair
(Ā, B̄) is structurally controllable if there exists a numerical re-
alization (Ã, B̃), such that the controllability matrix Q(Ã, B̃) :=
[B̃, ÃB̃, . . . , Ãn−1B̃] has full row rank.

While controllability is concerned about the ability to steer all the
states of a system, in certain cases, we are only interested in steering a
subset of states. More specifically, given a set T ⊆ [n] := {1, · · · , n},
which we refer to as the target set, we are interested in steering the states
indexed by the target set arbitrarily. This does not exclude the possibility

of states in [n] \ T being steered as well. If given a system described by
the pair (A,B), we are able to arbitrarily steer the states indexed by T ,
we say that the pair (A,B) is target controllable with respect to T [17].
Furthermore, it is possible to consider a more general problem in which
we are interested in steering the outputs, i.e., weighted combinations of
system states of a system described by the 3-tuple (A,B,C). Similar
to the definition of structural controllability, we can define structural
target controllability and structural output controllability in the context
of structured systems.

Definition 3 (Structural Output Controllability and Structural Tar-
get Controllability [18]): Given a target set T = {i1, . . . , ik} ⊆ [n],
define the target matrix CT ∈ Rk×n by

[CT ]�j =

{
1, if j = i�, i� ∈ T
0, otherwise.

(2)

The structural system (Ā, B̄, C̄) is structurally output controllable
if there exists a numerical realization (Ã, B̃, C̃) such that output
controllability matrixQ(Ã, B̃, C̃) := C̃[B̃, ÃB̃, . . . , Ãn−1B̃] has full
row rank. Similarly, the structural pair (Ā, B̄) is structurally target
controllable with respect to T if there exists a numerical realization
(Ã, B̃), such that Q(Ã, B̃, CT ) has full row rank.

Notice that structural target controllability is a special case of struc-
tural output controllability, provided that C̃ takes the particular form
in (2). Thus, necessary and sufficient conditions for structural output
controllability characterize structural (target) controllability. Hence, in
this article, we seek to address the following problem.

Problem 1 (Structural Output Controllability Problem): Given a
structured system (Ā, B̄, C̄), where Ā is symmetrically structured, find
necessary and sufficient conditions for (Ā, B̄, C̄) to be structurally
output controllable.

Additionally, provided such necessary and sufficient conditions ex-
ist, we would like to understand the computational complexity of the
problem under consideration.

III. NOTATION AND PRELIMINARIES

In this section, we recall some useful concepts related to linear
structural system theory and graph theory.

A. Structural System Theory

Consider a pair (A,B) whose dynamics is captured by (1). (A,B)
is called reducible [9] if there exists a permutation matrix P , such that

PAP−1 =

[
A11 0

A21 A22

]
, PB =

[
0

B2

]
(3)

where A11 ∈ Rq×q and B2 ∈ R(n−q)×m, 1 ≤ q < n. The pair (A,B)
is called irreducible otherwise.

Let λ be an eigenvalue ofA and let v ∈ Rn be the associated eigen-
vector. By PBH test [25], an eigenpair (λ, v), which is also called a mode
of the pair (A,B), is a controllable mode if rank([λI −A,B]) = n,
where the [·] denotes the matrix concatenation operator.

Consider a (symmetrically) structured matrix M̄ . Let nM̄ be the
number of its independent �-parameters and associate with M̄ a
parameter space embedded in RnM̄ . Subsequently, we use a vector
pM̃ = (p1, . . . , pnM̄

)� ∈ RnM̄ to encode the values of the indepen-

dent �-entries of M̄ in a particular numerical realization M̃ .
A set V ⊆ Rn is called a variety if there exist polynomials

ϕ1, . . . , ϕk, such that V = {x ∈ Rn : ϕi(x) = 0, ∀i ∈ [k], and V is
proper when V �= Rn. We denote by V c = Rn \ V its complement.
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The term rank [5] of a (symmetrically) structured matrix M̄ , denoted
as t–rank(M̄), is the largest integerk such that, for some suitably chosen
distinct rows {i�}k�=1 and distinct columns {j�}k�=1, all of the entries
{[M̄ ]i�j�}k�=1 are �-entries. Additionally, a (symmetrically) structured
matrix M̄ ∈ {0, �}n×m is said to have generic rank k, denoted as
g–rank(M̄) = k, if there exists a numerical realization M̃ of M̄ , such
that rank(M̃) = k. It is worth noting that, if g–rank(M̄) > 0, then
the set of parameters describing all possible realizations form a proper
variety when rank(M̃) < g–rank(M̄), [10]. We remark here that the
term rank of a symmetrically structured matrix M̄ is an upper bound
of the generic rank of M̄ . Additionally, the term rank ignores the
dependency among entries of M̄ whereas the generic rank considers
them.

B. Graph Theory

Given a digraph D = (V, E), a path P in D is an ordered se-
quence of distinct vertices P = (v1, . . . , vk) with {v1, . . . , vk} ⊆
V and (vi, vi+1) ∈ E for all i = 1, . . . , k − 1. A cycle is either a
path (v1, . . . , vk) with the additional edge (vk, v1) (denoted as C =
(v1, . . . , vk, v1)), or a vertex with an edge to itself (i.e., self-loop,
denoted as C = (v1, v1)). We denote by VC ⊆ V the set of vertices
in C, and EC ⊆ E the set of directed edges constituting the cycle C. The
length of a cycle C, is defined as the number of distinct vertices in C,
i.e., the cardinality of VC , denoted by |VC|. Given a set S of vertices
in D, we let DS = (S,S × S ⊂ E) be the subgraph of D induced by
S [26]. We say that DS can be covered by disjoint cycles, if there
exists{Ci}li=1 such thatS =

⋃l
i=1 VCi andVCi ∩ VCj = ∅, for all i �= j,

i, j ∈ [l]. Given a set S ⊆ V , we define the in-neighbor set of S as
N (S) = {vi ∈ V : (vi, vj) ∈ E , vj ∈ S}.

Given a directed graph D = (V, E) and two sets S1,S2 ⊆ V , we
define the associated bipartite graph of D by B(S1,S2, ES1,S2),
whose vertex set isS1 ∪ S2 and edge set ES1,S2 = {(s1, s2) ∈ E : s1 ∈
S1, s2 ∈ S2}. Given B(S1,S2, ES1,S2), and a set S ⊆ S1 (or S ⊆ S2),
we define the bipartite neighbor set of S as NB(S) = {j : (j, i) ∈
ES1,S2 , i ∈ S}. A matching M is a set of edges in ES1,S2 that do
not share vertices, i.e., given edges e = (s1, s2) and e′ = (s′1, s

′
2),

e, e′ ∈ M only if s1 �= s′1 and s2 �= s′2. A matching is said to be
maximum if it is matching with the maximum number of edges among
all possible matchings. Given a matching M, two vertices s1 and s2
are matched if e = (s1, s2) ∈ M. The vertex v is said to be right-
unmatched (respectively, left-unmatched) with respect to a matching
M associated with B(S1,S2, ES1,S2) if v ∈ S2 (respectively, v ∈ S1)
and v does not belong to an edge in the matchingM. We say a matching
M is a perfect matching if there is no right-unmatched vertex.

IV. GRAPH-THEORETIC CONDITIONS FOR STRUCTURAL OUTPUT

CONTROLLABILITY

In this section, we provide graph-theoretical conditions for structural
output controllability. Instead of taking graph-theoretic approaches as
in [17] and [22], we study the problem from an algebraic geometry
perspective and then interpret those conditions from a graph-theoretic
perspective.

To achieve this goal, we first investigate the modes of numerical
realizations of a structural pair involving symmetrically structured
matrices and establish a connection with its controllability. Based on
this connection, we propose graph-theoretic conditions for structural
target controllability and structural output controllability in Theorems 1
and 2, respectively. Finally, in Theorem 3, we establish the NP-hardness
of verifying conditions for structural output controllability.

A. Generic Properties of Symmetrically Structural Pairs

According to the definition of structural output controllability, a
structured system (Ā, B̄, C̄) is structurally output controllable if the
output controllability matrixQ(Ã, B̃, C̃) is generically full rank. Since
we assume that any numerical realization Ã is a symmetric matrix, we
have Ã is diagonalizable. Hence, in the view of PBH test [25], showing
that the output controllability matrix is (generically) full rank and is
equivalent to showing that generically the subspace S = {v�C̃ ∈ Rn :
v ∈ Rk} is spanned by the eigenvectors associated with the controllable
eigenvalues of Ã. In this section, we first provide a characterization of
the zero modes of numerical realizations of a structural pair in Lemma 1.
Following this, we provide an algebraic condition for nonzero modes
being generically controllable in Lemma 2.

As a first step toward characterizing the role of zero modes, we
notice that the concatenation of matrices [Ã, B̃] is degenerate if and
only if there exists a nonzero vector v such that v�[Ã, B̃] = 0. In
other words, given a target set T , if CT [Ā, B̄] is generically full rank,
then any numerical realization has (almost surely) no vector v with
v�CT [Ã, B̃] = 0. In Lemma 1, we first characterize the generic rank
of [Ã, B̃], which lays the foundation for the further characterization of
spectral properties on nonzero modes of numerical realizations.

Lemma 1: Consider a structural pair (Ā, B̄), where Ā is sym-
metrically structured, and a target set T = {i1, . . . , ik} ⊆ [n]. Let
D(Ā, B̄) = (X ∪ U , E(Ā) ∪ EU,X ) be the digraph representation of
(Ā, B̄), and XT ⊆ X be the set of vertices indexed by T . If |N (S)| ≥
|S|, ∀S ⊆ XT , then g–rank(CT [Ā, B̄]) = k.

If we letT = [n], then Lemma 1 provides a sufficient condition under
which g–rank([Ā, B̄]) = n. If [Ā, B̄] has the full generic-rank, then
there does not exist a nontrivial vector v ∈ Rn such that v�[Ã, B̃] = 0
for almost all numerical realization of (Ā, B̄), i.e., generically all the
zero modes of a numerical realization (Ã, B̃) are controllable. Since
we aim to derive necessary and sufficient conditions on structural
controllability, what remains to be shown is when the nonzero modes
of a numerical realization (Ã, B̃) are generically controllable.

As proved in [9], when a structural pair (with no parameter con-
straints) is irreducible, all the nonzero modes of almost all its numerical
realizations are simple and controllable. In Lemma 2, we investigate the
relationship between irreducibility and nonzero modes for structured
pairs with symmetrical parameter constraints.

Lemma 2: Given a structural pair (Ā, B̄), where Ā is symmetrically
structured, and t–rank(Ā) = k, if (Ā, B̄) is irreducible, then there exists
a proper variety V ⊂ RnĀ+nB̄ , such that for any numerical realization
(Ã, B̃)with [pÃ,pB̃ ] ∈ V c, Ã has k nonzero, simple, and controllable
modes.

Remark 1: The challenge in the proof of Lemma 2 is to construct
a finite number of nonzero polynomials, i.e., the polynomials of where
not every coefficient is zero, such that the numerical values assigned
to free parameters of Ā in a numerical realization Ã, where Ã does
not have k nonzero simple uncontrollable eigenvalues, are the zeros
of those polynomials. Since the set of zeros of a nonzero polynomial
has Lebesgue measure zero [27], it follows that for any numerical
realization Ã, Ã has almost surely k nonzero simple uncontrollable
eigenvalues.

B. Solution to Problem 1

So far we have a graph-theoretic condition ensuring that all the zero
modes of a numerical realization (Ã, B̃) are controllable generically,
and an algebraic condition on irreducibility leads to controllability of
nonzero simple modes almost surely. When these two conditions hold,
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the controllability matrix Q(Ã, B̃) is full rank generically. Next, we
extend this idea to provide conditions for the nondegeneracy of the
output controllability matrix.

By leveraging Lemmas 1 and 2, we will establish conditions under
which the subspaceS = {v�C̃ ∈ Rn : v ∈ Rk} is generically spanned
by the eigenvectors of controllable eigenvalues of Ã, which implies that
for any nonzero v ∈ Rk, we have v� ·Q(Ã, B̃, C̃) �= 0 generically. We
first formalize the previous reasoning as a graph-theoretic necessary and
sufficient condition for structural target controllability:

Theorem 1: Consider a structural pair (Ā, B̄), where Ā is sym-
metrically structured, and a target set T ⊆ [n]. Let XT be the set of
state vertices indexed by T in D(Ā, B̄). The structural pair (Ā, B̄) is
structurally target controllable with respect to T , if and only if, the
following conditions hold simultaneously in D(Ā, B̄).
1) All the states vertices in XT are input-reachable1.
2) There is no right-unmatched vertex inB(S1,S2, ES1,S2) associated

with D(Ā, B̄), where S1 = X ∪ U and S2 = XT .
Remark 2: Condition 2) in Theorem 1 can be verified using local

information in a graph. Moreover, such a matching condition can be
verified in a polynomial time O(

√
|S1 ∪ S2||ES1,S2 |) [28, Sec. 23.6].

By letting T = [n], Theorem 1 recovers the following graph-
theoretic necessary and sufficient condition for structural controllability
[15].

Corollary 1 (see [15]): The structural pair (Ā, B̄), where Ā is
symmetrically structured, is structurally controllable, if and only if,
the following conditions hold simultaneously in D(Ā, B̄).
1) All the state vertices are input-reachable.
2) There is no right-unmatched vertex inB(S1,S2, ES1,S2) associated

with D(Ā, B̄), where S1 = X ∪ U and S2 = X .
Our characterization of structural target controllability relies on the

assumption that the state matrix A is symmetric. More specifically,
since the state matrix is symmetric, its eigenvectors form a complete
basis of the state space, which allows us to generalize the PBH test
in the context of target controllability. Such generalization cannot be
applied when the state matrix is nondiagonalizable; hence, Theorem 1
is generally not true when Assumption 1 is violated (see [22, Example
3] for reference).

Notice that structural target controllability is a special case of struc-
tural output controllability [18]. More specifically, in the context of
output controllability, each output is a weighted linear combination
of states. To derive necessary and sufficient conditions for structural
output controllability, we leverage Theorem 1, as shown in the following
theorem.

Theorem 2: Consider a structural system (Ā, B̄, C̄), where Ā is a
symmetrically structured matrix, whereas B̄, C̄ are structured matrices.
The structural system (Ā, B̄, C̄) is structurally output controllable, if
and only if, the following conditions hold simultaneously.
1) There exists a target set T ⊆ [n] such that (Ā, B̄) is structurally

target controllable with respect to T .
2) There is no right-unmatched vertex in B(XT ,Y, EXT ,Y), where

Y = {yi}ki=1, XT = {xi ∈ X : i ∈ T }, and EXT ,Y = {{xj , yi} :
[C̄]ij = �}.

The conditions in Theorem 2 require us to find a target set T for
which a matching condition in a bipartite graph B(XT ,Y, EXT ,Y) is
satisfied. Naively, there are exponentially many possible target sets T ,
implying that it may be computationally challenging to verify structural
output controllability through the conditions in Theorem 2. Indeed, we
show in Theorem 3 that verifying those conditions is NP-hard.

1We say a state vertex xi ∈ X is (input)-reachable if there exists a path from
an input vertex uj ∈ U to xi.

Fig. 1. (a) Mixed graph representation of the structural pair (Ā, B̄),
where the red and black vertices represent input and state vertices,
respectively. The black lines and arrows represent edges in G(Ā, B̄).
(b) Bipartite graph B(XT ,Y, EXT ,Y ), where XT = {x2, x4, x6} and Y =
{y1, y2, y3}. The black and blue vertices are target vertices XT and
output vertices Y, respectively.

Theorem 3: Consider a structural system (Ā, B̄, C̄), where Ā ∈
{0, �}n×n is a symmetrically structured matrix. The problem of veri-
fying the necessary and sufficient conditions in Theorem 2 is NP-hard.

V. ILLUSTRATIVE EXAMPLES

In this section, we consider a few examples to illustrate Theorems 1
and 2.

We consider a symmetrically structured system with 7 states, 2
inputs, and 3 outputs. Let the target set be T = {2, 4, 6}. The structural
representations of the state, input, output, and target matrices are as
follows:

Ā =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a12 a13 a14 0 0 0
a12 0 0 0 0 0 0
a13 0 0 0 0 0 0
a14 0 0 a44 0 0 0
0 0 0 0 0 a56 a57
0 0 0 0 a56 0 a67
0 0 0 0 a57 a67 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 0
0 0
0 0
0 b42
0 b52
0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

C̄ =

⎡
⎣0 c12 0 c14 0 0 0
0 0 0 c24 0 0 0
0 0 0 c34 0 c36 c37

⎤
⎦ , and CT =

⎡
⎣0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0

⎤
⎦ .

We also associate the structural pair (Ā, B̄) with the mixed graph
G(Ā, B̄) = (X ∪ U , Eu(Ā), EU,X ), depicted in Fig. 1, where X =
{xi}7i=1, U = {u1, u2} and XT = {x2, x4, x6}. Since all the vertices
in XT are input-reachable, and |N (S)| ≥ |S|, ∀S ⊆ XT , by Theo-
rem 1, (Ā, B̄) is structurally target controllable with respect to T . This
example also shows that if the input-reachability of the vertices in XT
is guaranteed, then the structural target controllability in undirected
networks can be verified by only local topological information. Finally,
to verify the structural output controllability, we notice that there
exists a target set T = {2, 4, 6} such that (Ā, B̄) is structurally target
controllable with respect to T and there is no right-unmatched vertex
with respect to any maximum matching in B(XT ,Y, EXT ,Y), where
Y = {y1, y2, y3} is the set of output vertices. By Theorem 2, (Ā, B̄, C̄)
is structurally output controllable.

VI. CONCLUSION

In this article, we study the problem of characterizing structural out-
put controllability in structured systems with symmetric state matrices,
such as undirected networks. To address this problem, we first character-
ized the generic properties of symmetrically structured matrices. Based
on this, we derived necessary and sufficient conditions for structural
target controllability and structural output controllability of undirected
networks. Although verifying the proposed conditions on structural
target controllability is in polynomial time, we showed that verifying
the proposed conditions on structural output controllability is NP-hard.
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APPENDIX

A. Proof of Lemma 1

Before we proceed to the proof of Lemma 1, we introduce Proposi-
tion 1 and Lemma 3, which lay the foundation for the proof of Lemma 1.

Proposition 1 ([5, Sec. 1.2]): Given a (symmetrically) struc-
tured matrix M̄ ∈ {0, �}n×m and B(S1,S2, ES1,S2), where S1 =
{v1, . . . , vm}, S2 = {v′1, . . . , v′n}, and ES1,S2 = {{vi, v′j} : [M̄ ]ji �=
0, vi ∈ S1, v

′
j ∈ S2}, then t–rank(M̄) = n if and only if |NB(S)| ≥

|S| for all S ⊆ S2.
Lemma 3: Consider an n× n symmetrically structured matrix Ā,

and a set T = {i1, . . . , ik} ⊆ [n]. Let D(Ā) = (X , EX ,X ) be the di-
graph representation of Ā, XT ⊆ X be the set of vertices indexed by
T , and CT be defined as in (2). The generic-rank of CT Ā equals k if
and only if |N (S)| ≥ |S|, ∀S ⊆ XT .

Proof of Lemma 3: First, we show the sufficiency of the theorem.
Notice that the generic-rank ofCT Ā equals k, if and only if, there exists
a k-by-k nonzero minor in CT Ā; hence, it suffices to find that minor.
Since |N (S)| ≥ |S|, ∀S ⊆ XT , there exist k entries that lie on distinct
rows and distinct columns of CT Ā according to Proposition 1. As a
result, we can select rows indexed by T = {i1, . . . , ik} and columns
indexed j1, . . . , jk in Ā such that {[Ā]i�j�}k�=1 lies on distinct rows
and distinct columns. Next, we consider the following two cases.

On one hand, if {j1, . . . , jk} = {i1, . . . , ik}, then M = CT ĀC
�
T

is a square submatrix of Ā. We consider a particular numerical real-
ization Ã of Ā, as follows. Let [Ã]ij �= 0 for all (i, j) /∈ {(i�, j�) :
� ∈ [k]}, [Ã]ij = [Ã]ji, and [Ã]ij = 0 otherwise. Subsequently, by
computing the determinant, det(CT ÃC

�
T ) = sgn(σ1)Π

k
�=1[Ã]i�j� +

sgn(σ2)Π
k
�=1[Ã]j�i� , where sgn(σ1) and sgn(σ2) are the signatures

of the permutations σ1 = {(i�, j�) : � ∈ [k]}, and σ2 = {(j�, i�) : � ∈
[k]}, respectively. Notice that if sgn(σ1) = sgn(σ2), then it follows
that det(CT ÃC

�
T ) �= 0. Furthermore, if {Ã : det(CT ÃC

�
T ) = 0} is

a proper variety, we have that M admits an k-by-k nonzero minor
generically. Thus, the generic-rank of CT Ā equals k.

On the other hand, when {j1, . . . , jk} �= {i1, · · · , ik}, it suffices to
show there exists a numerical realization Ã such thatdet([Ã]j1,...,jki1,...,ik

) �=
0. We consider a numerical realization Ã by assigning distinct real val-
ues to �-entries corresponding to {[Ā]i�j�}k�=1 while keeping [Ã]ij =

[Ã]ji, and assigning 0 otherwise. Without loss of generality, we can per-
mute {�}k�=1 such that for each [Ā]i�r j�r

∈ {[Ā]i�r j�r
}pr=1, [Ā]j�r i�r

is not in matrix [Ā]j1,...,jki1,...,ik
, and for each [Ā]i�r j�r

∈ {[Ā]i�r j�r
}kr=p+1,

[Ā]j�r i�r
is in matrix [Ā]j1,...,jki1,...,ik

. We declaim that there is only one
nonzero entry in either the i�r th row or j�r th column, ∀r ∈ [p], other-
wise it contradicts that {[Ā]i�j�}k�=1 are in distinct rows and distinct
columns of [Ā]. Thus, we compute det([Ã]j1,...,jki1,...,ik

)

det
(
[Ã]j1,...,jki1,...,ik

)
=

(
p∏

r=1

[Ã]i�r j�r

)
· det

(
[Ã]

j�p+1
,...,j�k

i�p+1
,...,i�k

)
�= 0

(4)

where det([Ã]
j�p+1

,...,j�k
i�p+1

,...,i�k
) �= 0 is true because of the reasoning in

the first case {i1, . . . , ik} = {j1, . . . , jk}. Thus, there exists numerical
realization such that det([Ã]j1,...,jki1,...,ik

) �= 0.
Next, we show the necessity of the theorem by contrapositive. We

assume that there exists S ⊆ XT , such that |N (S)| < |S|. Then, by
Proposition 1, there does not exist k entries that lie on the distinct rows
and distinct columns of CT Ā, which implies g–rank(CT Ā) < k. �

Proof of Lemma 1: Suppose |N (S)| ≥ |S|, ∀S ⊆ XT , then, by
Proposition 1, there exist k entries, {[Ā, B̄]i�j�}k�=1, such that they
are all �-entries that lie on distinct rows and distinct columns of [Ā, B̄].
Among those k entries, suppose {[Ā, B̄]i�j�}

q
�=1 are in columns of Ā,

and {[Ā, B̄]i�j�}k�=q+1 are in the columns of B̄. By Lemma 3, there

exists a numerical realization Ã, such that det([Ã, B̃]
j1,...,jq
i1,...,iq

) �= 0.

Since B̄ is a structured matrix, there exists a numerical realization
B̃ such that det([Ã, B̃]

jq+1,...,jk
iq+1,...,ik

) �= 0 Hence, there exists a numerical

realization [Ã, B̃] with

det([Ã, B̃]
j1,...,jk
i1,...,ik

) = det([Ã, B̃]
j1,...,jq
i1,...,iq

) det([Ã, B̃]
jq+1,...,jk
iq+1,...,ik

)

�= 0

which implies that g–rank(CT [Ā, B̄]) = k.

B. Proof of Lemma 2

We introduce Proposition 2, Proposition 3, Lemma 4, Lemma 5, and
Lemma 6 to support the proof of Lemma 2.

Proposition 2 ([29, Sec. 2.1]): Letϕ1(s) andϕ2(s) be polynomials
in swithϕ1(s) =

∑n1
i=0 ais

n1−i, andϕ2(s) =
∑n2

i=0 bis
n2−i, respec-

tively. Let R(ϕ1, ϕ2) be defined as

R(ϕ1, ϕ2) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an1
an1−1 · · · a0 0 · · · 0

0 an1
· · · a1 a0 · · · 0

...
...

. . .
...

...
. . .

...
0 0 · · · an1

an1−1 · · · a0
0 0 · · · · · · b0
...

... ···
...

... ···
...

0 bn2
· · · b1 b0 · · · 0

bn2
bn2−1 · · · b0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

If an1
�= 0 and bn2

�= 0, then ϕ1(s) and ϕ2(s) have a nontrivial
common factor if and only if the R(ϕ1, ϕ2) = 0.

Proposition 3 (Hoffman–Wielandt Theorem [30, Sec. 6.3]): Given
n× n symmetric matricesA andE, let λ1, . . . , λn be the eigenvalues of
A, and λ̂1, . . . , λ̂n be the eigenvalues ofA+E. There is a permutation
σ(·) of the integers {1, . . . , n} such that

n∑
i=1

(λ̂σ(i) − λi)
2 ≤ ‖E‖2F (6)

where ‖E‖F =
√

tr(EE�).
Lemma 4: Let Ā be an n× n symmetrically structured matrix,

and let D(Ā) = {X , EX ,X } be the digraph associated with Ā. Assume
t–rank(Ā) = k, and denote {[Ā]i�j�}k�=1 as the k entries that lie on dis-
tinct rows and distinct columns. We define S = {xi1 , . . . , xik} ⊆ X .
Then, DS can be covered by disjoint cycles.

Proof of Lemma 4: We approach the proof by contradiction. Suppose
DS cannot be covered by disjoint cycles, then at least one vertex xi ∈ S
can only be covered by cycles intersecting with other cycles in DS ,
which implies that there does not exist k edges in which no two edges
share the same “tail” or “head” vertex in D(Ā), i.e., there does not exist
k entries that lie on distinct rows and distinct columns of Ā, which, by
Proposition 1, contradicts t–rank(Ā) = k. �

Lemma 5: Given an n× n symmetrically structured matrix Ā, if
t–rank(Ā) = k, then there exists a proper variety V1 ⊂ RnĀ , such that
for any numerical realization Ã, where the numerical values assigned
to free parameters of Ā are encoded in the vector pÃ ∈ RnĀ \ V1, Ã
has k nonzero simple eigenvalues.

Proof of Lemma 5: We expand the characteristic polynomial of a
matrix Ã as

det(sI − Ã) = sn + an−1s
n−1 · · ·+ an−ks

n−k + · · ·+ a0. (7)
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Besides, we have

aq = (−1)n−q
∑

1≤k1<...<kn−q≤n

det([Ã]
k1,...,kn−q

k1,...,kn−q
) (8)

where q = 0, 1, . . . , n− 1. Since t–rank(Ā) = k, there exists a nu-
merical realization Ã and a set of indexes, {i1, . . . , ik} ⊆ [n], such that
det([Ã]i1,...,iki1,...,ik

) �= 0. Furthermore,V0 := {pÃ ∈ RnĀ : an−k = 0} is
a proper variety. Since the maximum order of principle minor is at most
the term rank of a matrix, we have an−k−1 = · · · = a0 = 0. Thus, to
characterize nonzero eigenvalues, we define the polynomial ϕÃ(s) as

ϕÃ(s) = sk + an−1s
k−1 + · · ·+ an−k. (9)

In the rest of the proof, we show that there exists a numerical real-
ization pÃ ∈ V c

0 such that Ã has k nonzero simple eigenvalues. Since
t–rank(Ā) = k, we define the set S as in Lemma 4. By Lemma 4, there
exist disjoint cycles C1, . . . , Cl covering DS . Let us denote by Ci the ith
cycle in {C1, . . . , Cl}. Moreover, without loss of generality, we let the
length of cycleCi be either |Ci| = 2q, or |Ci| = 2q + 1, for some q ∈ N.
Note that by definition, there is a one-to-one correspondence between
the edge inD(Ā) and the �-entry in Ā. From this observation, we denote
by Āi ∈ {0, �}|Ci |×|Ci| the square submatrix formed by collecting rows
and columns corresponding to the indexes of vertices in VCi of the
cycle Ci. We let all the �-entries of Ā be zero, except for �-entries
corresponding to edges in {ECi}li=1. Hence, there exists a permutation
matrix P and numerical realization Ã, such that PÃP−1 is a block
diagonal matrix

PÃP−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ã1 0 · · · 0 0

0 Ã2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Ãl 0

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

If |Ci| = 2q, without loss of generality, we could assume Ci =
(xi1 , xj1 , xi2 , xj2 , . . . , xiq , xjq , xi1). Since DVCi is a subgraph of the

digraph D(Ā) associated with the symmetrically structured matrix Ā,
there exist q disjoint cycles of length-2 covering DVCi , i.e., cycles
(xi1 , xj1 , xi1), (xi2 , xj2 , xi2), . . . , (xiq , xjq , xiq ). We assign distinct
nonzero weights to �-entries of Āi that correspond to edges in the q
cycles of length-2, and assign zero weights to other �-entries in Āi. As
a result, we have

Ãi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ai1j1
ai1j1 0

· · · 0 0

· · · 0 0
...

...
. . .

...
...

0 0 · · ·
0 aiqjq

aiqjq 00 0 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ai1j1 , . . . , aiqjq are q nonzero distinct weights. Thus, Ãi has 2q
simple nonzero eigenvalues.

If |Ci| = 1, then the eigenvalue of Ãi ∈ R1×1 can be placed to any
value. If |Ci| = 2q + 1 and q > 0, then there are 2q vertices in Ci that
can be covered by q cycles of length-2, and one vertex that cannot
be covered by any length-2 cycle in a vertex-disjoint way in DVCi .
Assign distinct nonzero weights to �-entries corresponding to the q
cycles of length-2, and zero to other �-entries in Āi. As a result, the
constructed numerical realization Ãi has2q nonzero simple eigenvalues

and one zero eigenvalue. Denote by λj(Ãi), the jth eigenvalue of Ãi,
j ∈ {1, . . . , |Ci|}.

By Proposition 3, given a sufficiently small ε > 0, ∃δ > 0 and
permutation σ(·) of integers {1, . . . , |Ci|}, such that for two nu-
merical realizations of Āi: Ãi and Ãip, if ||Ãip − Ãi||F < δ, then
max{|λσ(j)(Ãip)− λj(Ãi)|} < ε. Perturb�-entries of Ãi correspond-
ing to edges in ECi , such that Ãip, which is derived by this perturba-
tion of Ãi, satisfies ||Ãip − Ãi||F < δ. Moreover, since t–rank(Āi) =
2q + 1, by Lemma 3, g–rank(Āi) = 2q + 1. The above analysis shows
that we can perturb Ãi, such that rank(Ãip) = 2q + 1, and

min
j �=r,j,r∈{1,...,|Ci |}

|λj(Ãip)− λr(Ãip)| >

min
j �=r,j,r∈{1,...,|Ci |}

|λj(Ãi)− λr(Ãi)| − 2ε.

It implies that there exists Ãip which has 2q + 1 nonzero simple
eigenvalues. Notice that Ãip is also a numerical realization of Āi.
Hence, for either |Ci| = 2q, or |Ci| = 2q + 1, there exists a numerical
realization Ãi such that Ãi has |Ci| nonzero simple eigenvalues. Also,
there exists Ã that has

∑l
i=1 |Ci| = k nonzero simple eigenvalues.

Denote by ϕ′
Ã

the derivative of ϕÃ with respect to λ. If pÃ ∈ V c
0 ,

and Ã has repeated nonzero modes, then ϕÃ and ϕ′
Ã

have a common
nontrivial zero (i.e., by Proposition 2, R(ϕÃ, ϕ

′
Ã
) = 0). Define V1 =

{pÃ ∈ RnĀ : an−k = 0 or R(ϕÃ, ϕ
′
Ã
) = 0}, where an−k = 0 and

R(ϕÃ, ϕ
′
Ã
) = 0 are both polynomials of �-entries of Ā. Since we have

shown that there exists Ã,which has k nonzero simple eigenvalues, i.e.,
∃pÃ ∈ RnĀ such that an−k �= 0 and R(ϕÃ, ϕ

′
Ã
) �= 0, we conclude

that V1 is proper.
Remark 3: To characterize the generic rank of [Ā, B̄], which is cru-

cial in the derivation of Lemma 2, we should consider the proper variety
in parameter space RnĀ+nB̄ . Since each �-entry of Ā is independent
of those in B̄, V1 is also a proper variety in RnĀ+nB̄ . Let us redefine
V1 as

V1 = {[pÃ,pB̃ ] ∈ RnĀ+nB̄ : an−k = 0 or R(ϕÃ, ϕ
′
Ã
) = 0}. (11)

Lemma 6: Consider an irreducible structural pair (Ā, B̄), where
Ā ∈ {0, �}n×n is a symmetrically structured matrix with t–rank(Ā) =
k. LetV1 ⊂ RnĀ+nB̄ be defined as in (11). There exists a proper variety
V2 ⊂ RnĀ+nB̄ such that if [pÃ,pB̃ ] ∈ V c

1 , then there exists a nonzero
uncontrollable mode of Ã if and only if [pÃ,pB̃ ] ∈ V2.

Sketch of Proof of Lemma 6: We will first prove that V2 exists.
Suppose [pÃ,pB̃ ] ∈ V c

1 , by a similar reasoning as in Lemma 5, all the
k nonzero eigenvalues of Ã are simple. Let λ be a nonzero eigenvalue
of Ã, and ϕÃ(s) be defined as in (9), then we have

ϕÃ(λ) = λk + an−1λ
k−1 + · · ·+ an−k = 0. (12)

Let us further assume that (λ, v) is an uncontrollable mode of Ã; in
other words

v�Ã = λv�, v�B̃ = 0. (13)

Since all the nonzero eigenvalues λ are simple, recall the fact in [9] that
the left eigenvector v� equals (apart from a constant scalar) any of the
nonzero row of the adjugate matrix adj(λI − Ã). Hence

adj(λI − Ã)B̃ = 0n×m. (14)

Equations (12) and (14) imply that the two polynomials (15) and (16)
have a common zero λ, namely

ϕÃ(s) = sk + an−1s
k−1 + · · ·+ an−k = 0 (15)

ψÃ,B̃(s) = tr([adj(sI − Ã)B̃][adj(sI − Ã)B̃]�) = 0. (16)
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The variety V2 is defined as follows:

V2 = {[pÃ,pB̃ ] ∈ RnĀ+nB̄ : R(ϕÃ, ψÃ,B̃) = 0} (17)

where R(ϕÃ, ψÃ,B̃) = 0 is a polynomial of the �-entries in Ā and B̄.
The properness of V2 can be shown by contradiction by adapting the
proof in [9, Th. 2]. Conversely, suppose [pÃ,pB̃ ] ∈ V2 ∩ V c

1 , by the
definition of V1 and V2, ϕÃ and ψÃ,B̃ have a common zero λ �= 0.

Since λ is a zero of ϕÃ, λ is also an eigenvalue of Ã, which is an
uncontrollable eigenvalue. �

Proof of Lemma 2: Define V = V1 ∪ V2, where V1 and V2 are
defined as in (11) and (17), respectively. We can prove V1 is proper by
a similar reasoning as the one in Lemma 5. By Lemma 6, V2 is proper.
Hence, V = V1 ∪ V2 is proper. If [pÃ,pB̃ ] ∈ V c, Ã has k nonzero
simple controllable modes. �

C. Proof of Theorem 1

We first introduce Lemma 7, which lays the foundation for the proof
of Theorem 1.

Lemma 7: Consider a structural pair (Ā, B̄), and a target set T . Let
XT ⊆ X be the set of target vertices in D(Ā, B̄). Let CT be defined
as in (2). Then, for any numerical realization (Ã, B̃) , we have that
rank(CTQ(Ã, B̃)) ≤ |N (XT )|.

Proof of Lemma 7: Suppose we have a numerical realization (Ã, B̃).
By Cayley–Hamilton theorem

rank(CT [B̃, Ã ·Q(Ã, B̃)]) = rank(CT [B̃, ÃB̃, . . . , Ã
nB̃])

= rank([CT ·Q(Ã, B̃), CT · ÃnB̃])

= rank(CT ·Q(Ã, B̃)). (18)

InD(Ā, B̄), letm1,m2 be the number of input, state vertices inN (XT ),
respectively. Then, (18) yields

rank(CT ·Q(Ã, B̃)) = rank(CT [B̃, Ã ·Q(Ã, B̃)])

≤ rank(CT B̃) + rank(CT Ã ·Q(Ã, B̃))

≤ m1 +min(rank(CT Ã), rank(Q(Ã, B̃)))
≤ m1 +m2 = |N (XT )|.

�
Proof of Theorem 1: We first show the necessity of the two condi-

tions. Let CT be defined as in (2). On one hand, suppose there exists a
vertex vi ∈ XT that is not input-reachable, then the ith row of controlla-
bility matrix will be zero row, which implies that rank(Q(Ã, B̃, CT )) <
|T |, for any numerical realization of the pair (Ā, B̄). On the other hand,
recall that by Proposition 1, the condition 2) is satisfied if and only if
|N (S)| ≥ |S|, for ∀S ⊆ XT . Suppose that there exists a set S ⊆ XT ,
such that |N (S)| < |S|, then by a similar reasoning used in Lemma 7,
rank(Q(Ã, B̃, CT )) < |T |, for any numerical realization of the pair
(Ā, B̄). Hence, the violation of Condition 1) or Condition 2) implies
that generically Q(Ã, B̃, CT ) has rank lower than |T |, i.e., (Ā, B̄) is
not structurally target controllable with respect to T . The necessity is
proved.

What remains to be shown is their sufficiency. It suffices to show
that Conditions 1) and 2) result in that generically the left null space of
Q(Ã, B̃, CT ) is trivial. Suppose there exists an input-unreachable state
vertexxi ∈ X \ XT . Since all the vertices inXT are input-reachable, for
∀xj ∈ XT , there is no path from xj to xi, and there is also no path from
xi to xj due to the symmetry in D(Ā). This implies in model (1) that
the ith state has no impact on the dynamics of T corresponding states.
Omitting the ith state from the system will not change the dynamics
of T corresponding states. Hence, we could assume that (Ā, B̄) is

irreducible. By Lemma 2, there exists a proper variety V ⊂ RnĀ+nB̄ ,
such that if [pÃ,pB̃ ] ∈ V c, then all the nonzero modes of Ã are
controllable. In the rest of the proof, we assume [pÃ,pB̃ ] ∈ V c. Denote
by e1, . . . , el the left eigenvectors corresponding to zero modes of Ã,
and el+1, . . . , en the left eigenvectors for nonzero modes. Denote the
left null space of a matrix M as N(M�).

From Lemma 2, we have that if [pÃ,pB̃ ] ∈ V c, then
N((Q(Ã, B̃))�) ⊆ span{e�1 , . . . , e�l }. For the target set T , define
the matrix CT according to (2). By the assumption |N (S)| ≥ |S|,
∀S ⊆ XT , and Lemma 1, we have that g–rank(CT [Ā, B̄]) = |T |,
which implies that there exists a proper variety W ⊂ RnĀ+nB̄ ,
such that if [pÃ,pB̃ ] ∈ V c ∩W c, then rank(CT [Ã, B̃]) = |T |, i.e.,
N((CT [Ã, B̃])�) = 0. Define Î ∈ Rn×n as

[Î]ij =

{
1, if j = i, i ∈ T
0, otherwise.

(19)

We claim that there does not exist a nontrivial vector e ∈ Cn such that
Îe = e, e�Ã = 0e� and e�B̃ = 0. Otherwise, e�[Ã, B̃] = 0, which
contradicts N((CT [Ã, B̃])�) = 0.

Hence, if [pÃ,pB̃ ] ∈ V c ∩W c, then there is no nontrivial vec-
tor v ∈ C|T |, such that v�CT ∈ span{e�1 , . . . , e�l }. Thus, generically,
N((CTQ(Ã, B̃))�) = 0. The (Ā, B̄) is structurally target controllable
with respect to T . �

D. Proof of Theorem 2

Proof: (⇐=)Suppose there exists a target set T = {ti}ki=1 ⊆ [n]
such that there is no right-unmatched vertex in B(XT ,Y, EXT ,Y), and
(Ā, B̄) is structurally target controllable with respect toT . We construct
C̃ ∈ {0, 1}k×n such that [C̃]iti = 1 and

∑n
j=1[C̃]ij = 1, ∀i ∈ [k].

Since (Ā, B̄) is structurally target controllable with respect to T , there
exist numerical realizations Ã, B̃ such that C̃ ·Q(Ã, B̃) is full row
rank. Thus, (Ā, B̄, C̄) is structurally output controllable. �

(=⇒)We approach the proof by contraposition. Suppose for all
target sets T ⊆ [n] with respect to which (Ā, B̄) is structurally tar-
get controllable, there exists at least one right-unmatched vertex in
B(XT ,Y, EXT ,Y). Then, by taking a similar reasoning used in the proof
of Lemma 7, we can show that rank(C̃ ·Q(Ã, B̃)) ≤ k, ∀C̃ ∈ Rk×n,
which implies (Ā, B̄, C̄) is not structurally output controllable.

E. Proof of Theorem 3

Proof: The NP-hardness can be proved by reducing a general in-
stance of 3-D matching problem [31, p.46] to an instance of the struc-
tural output controllability problem. More specifically, the elements in
the three dimensions S1 × S2 × S3 of the three-dimensional matching
problem are recast as vertices in U × X × Y , where U ,X , and Y are
input, state, and output vertices, respectively. The links in S1 × S2

and in S2 × S3 are recast as edges in EU,X , and EX ,Y , respectively.
We let [Ā]ij = 0, for ∀i, j ∈ [|X |]; [B̄]ij = � if (uj , xi) ∈ EU,X and
[B̄]ij = 0 otherwise; [C̄]ij = � if (xj , yi) ∈ EX ,Y and [C̄]ij = 0 oth-
erwise. By Theorem 2, the constructed structural system (Ā, B̄, C̄)
is structurally output controllable if there exists a three-dimensional
matching in S1 × S2 × S3. Since such a reduction can be completed
in polynomial time, the problem of verifying conditions in Theorem 2
is NP-hard.
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