MSc thesis in Geomatics

FlatCityBuf:
a new cloud-optimised
CityJSON format

Hidemichi Baba
June 2025

MSc thesis in Geomatics

FlatCityBuf: a new cloud-optimised
CityJSON format

Hidemichi Baba

June 2025

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master of
Science in Geomatics

Hidemichi Baba: FlatCityBuf: a new cloud-optimised CityJSON format (2025)
@@® This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

[. .

TU 3D geoinformation group
Delft Delft University of Technology

3Dgeoinfo

Supervisors: Dr. Hugo Ledoux
Dr. Ravi Peters
Co-reader: Dr. Martijn Meijers

http://creativecommons.org/licenses/by/4.0/

Abstract

Standardising data formats for 3D city models is crucial for semantically storing real-world
information as permanent records. CityJSON is a widely adopted OGC standard format
for this purpose, and its variant, CityJSON Text Sequences, decomposes large city objects
into line-separated objects to enable streaming processing of 3D city model data. However,
the shift towards cloud-native environments and the increasing demand for handling massive
datasets necessitate more efficient data processing methods across different platforms and on
the web. While cloud-optimised data formats such as PMTiles, FlatGeoBuf, Mapbox Vector
Tiles have been proposed for vector and raster data, options for 3D city models remain limited.
This research aims to explore optimised data formats for CityJSON tailored for cloud-native
processing and evaluate their performance and use cases. Specifically, the study implements
FlatBuffers for CityJSON, incorporating features like spatial indexing, spatial sorting, index-
ing with attribute values, and partial fetching via HTTP Range requests. The methodology
includes designing a complete binary representation of the CityJSON standard using Flat-
Buffers, conducting a comprehensive review of existing performance-optimised formats, and
benchmarking their performance. Successful implementation of this research will enable end-
users to download arbitrary extents of 3D city models efficiently. The research demonstrates
that FlatCityBuf achieves superior read performance compared to CityJSONSeq while gen-
erally producing smaller file sizes. The approach successfully encoded the entire Netherlands
dataset into a single 70GB file containing both spatial and attribute indices, demonstrating
scalability for national-scale applications. For developers, the optimised format enables single-
file containment of entire areas of interest, simplification of serverless cloud architecture, and
accelerated processing by software applications. Ultimately, this work improves the scalability
and usability of 3D city models in cloud environments, supporting advanced urban planning
and smart city initiatives.

Acknowledgements

This thesis marks the culmination of my journey in the MSc Geomatics program, which would
not have been possible without the support and guidance of many individuals and institu-
tions.

First and foremost, I would like to express my sincere gratitude to my primary supervisor,
Dr. Hugo Ledoux, for his exceptional guidance, unwavering patience, and continuous encour-
agement throughout this research. His deep expertise in 3D city models and geospatial data
formats has been invaluable, and his critical insights significantly shaped the direction and
quality of this work.

I am equally grateful to my secondary supervisor, Dr. Ravi Peters, who made preliminary work
on this project and whose pragmatic approach to problem-solving helped me tackle numerous
challenges in the development of FlatCityBuf. His constructive feedback consistently pushed
me to refine both my ideas and their implementations.

My heartfelt thanks extend to Dr. Martijn Meijers, who served as co-reader for this thesis.
His thoughtful comments and perspectives contributed substantially to improving the final
manuscript.

I would like to acknowledge Delft University of Technology, particularly the Faculty of Architec-
ture and the Built Environment and the MSc Geomatics program, for providing an exceptional
academic environment and resources. The administrative and technical staff deserve special
mention for their consistent support throughout my studies.

Beyond academia, I am grateful to my colleagues at Eukarya Inc., who showed remarkable
understanding and flexibility as I balanced professional responsibilities with academic pursuits.
Their support and accommodation made it possible for me to pursue both paths simultane-
ously.

My deepest appreciation goes to my family for their unconditional love, encouragement, and
belief in me. Their unwavering support has been my anchor throughout this journey, especially
during challenging periods.

Finally, a special acknowledgment to Chiharu, my partner, whose patience, understanding,
and constant encouragement have been my greatest source of strength. % . IfFehKZE %

EFHFENZEZTIVOIRENSIMEL TKNTEYICH I e). HEOLZ 1D -
T, SHETHE-TKBZ e TEXL

To everyone who has been part of this journey—thank you.

Hidemichi Baba
Delft, June 18, 2025

vii

viii

Contents

1. Introduction 1
1.1. Problem Statement 1
1.2. Research Objectives 2
1.3. Scope of the Research 3
1.4. Structure of the Thesis 3

2. Theoretical background 5
2.1. Strategies for Cloud-native GIS 5
2.2. Binary files L 6
2.3. WebAssembly 7
2.4. Row-based and column-based data storage 7
2.5. CPU Caches. o e 8
2.6. Serialisation and Deserialisation 0oL 9
2.7, ZETO-COPY . -« « v v v et i e e e e e e 9
2.8. Endiannesso 10
2.9. Binary Search L 10

2.9.1. Eytzinger Layout 11
2.10. Static B-tree (S+Tree) . . . v v v v i i 12
2.10.1. B-Tree/B+Tree Layout 12
2.10.2. SHTree . v v v v o e e e 13
2.11. FlatBuffers Framework o 14
2.11.1. Schema-Based Serialisation 14
2.11.2. Data Type System L 14
2.11.3. Schema Organisation Features 15
2.11.4. Binary Structure and Memory Layout 16

3. Related Work 17
3.1. Cloud-Optimised Geospatial Formats 17
3.2. CityGML, CityJSON and Its Enhancements 17

3210 CityGML . . o . oo 17
3.2.2. CityJSON e 18
3.2.3. CityJSON Text Sequences (CityJSONSeq) 21
3.2.4. 3DBAG API 23
3.2.5. Enhancements to CityJSON Performance 23
3.3. Non-Geospatial Formats in Cloud Environments 24
3.3.1. FlatBuffers 24
3.3.2. Protocol Buffers (Protobuf) 24
3.3.3. Apache Parquet 25
3.3.4. Comparison of Non-Geospatial Formats 25
3.4. Cloud-Optimised Geospatial Implementations 26
3.4.1. Mapbox Vector Tiles (MVT) 26
3.4.2. PMTiles o 26

ix

Contents

3.4.3. FlatGeobuf 27
3.4.4. GeoParquet L 27
345, 3D Tiles oo e 27
3.4.6. Comparative Analysis of Cloud-Optimised Geospatial Formats 27

3.5. Research Gaps 28
4. Methodology 31
4.1, OVerview 31
4.1.1. Methodology Approach, 31
4.1.2. Outcomes of the Methodology 31
4.1.3. File Structure Overview 32
4.1.4. Note on Binary Encoding 32

4.2. Magic Bytes 34
4.3. Header Section e 34
4.3.1. CityJSON Metadata Fields 34
4.3.2. Appearance Information o000 35
4.3.3. Geometry Templates 36
4.3.4. Extension Support Lo 36
4.3.5. Attribute Schema and Indexing Metadata 37
4.3.6. Implementation Considerations 38

4.4. Spatial Indexing L e 39
4.4.1. The packed Hilbert R-tree 39
4.4.2. Featuresorting e 40
4.4.3. Index structure L L 41
4.4.4. 2D vs 3D Indexing Considerations 42

4.5. Attribute Indexing L 43
4.5.1. Query Requirements Analysis 43
4.5.2. S+Tree Design and Modifications 44
4.5.3. Attribute Index Implementation 46
4.5.4. Construction of the Attribute Index 46
4.5.5. Serialisation of Keys in the Tree 47
4.5.6. Query Strategies 48
4.5.7. Streaming S+Tree over Hypertext Transfer Protocol (HTTP) 49

4.6. Feature Encoding L L 50
4.6.1. CityJSONFeature and CityObject Structure 50
4.6.2. Geometry Encoding o oo o1
4.6.3. Materials and Textures 54
4.6.4. Attribute Encoding oo o 55
4.6.5. Extension Mechanism 56

4.7. HTTP Range Requests and Cloud Optimisation 58
4.7.1. Principles of Partial Data Retrieval 58
4.7.2. Range Request Workflow 58
4.7.3. Optimisation Techniques. 60

5. Result 61
5.1 OVerview e e e 61
5.1.1. Web Prototype 61
5.1.2. Cross-Platform Implementation 62
5.1.3. Integration with Cloud Infrastructure 63

5.2, Datasets L e 63

5.3. File Size Comparison
5.3.1. Filesizeresults
5.3.2. Analysis of file size results L.

5.4. Benchmark on Local Environment
5.4.1. Test Environment
5.4.2. Measurement Parameters

5.4.3. Read Performance FlatCityBuf vs CityJSONSeq

5.4.4. Read performance FlatCityBuf vs CBOR
5.4.5. Read performance FlatCityBuf vs BSON
5.4.6. Summary of local environment benchmark
5.5. Benchmark over theweb oL
5.5.1. Benchmark environment
5.5.2. Feature ID query
5.5.3. Bounding box query L.

. Discussion
6.1. Use Cases of FlatCityBuf
6.1.1. Flexible Data Download
6.1.2. Data Processing
6.2. Impact on Server Architecture
6.2.1. Traditional Server Architecture
6.2.2. Cloud Architecture Advantages
6.3. Limitations L
6.3.1. Query Flexibility
6.3.2. Client-side Application Complexity
6.3.3. Update Complexity

. Conclusion and Future Work
7.1. Research Summary and Limitations
7.2. Future Work

. FlatCityBuf Schema

A.l. Headero
A2, Geometry
A3. Extension
A4 Feature

Contents

xi

List of Figures

2.1.

2.2.

2.3.
2.4.

3.1.
3.2.
3.3.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

4.7.
4.8.

5.1.

5.2.

5.3.

5.4.

6.1.

6.2.

Tile Map Service (TMS) standard for tiling geospatial data, derived from OGC

[2006]o 6
Eytzinger layout as conceptual representation as tree and actual data layout

(modified from Slotin [2021a]) 11
Binary search traversal pattern in Eytzinger layout (modified from Slotin [2021a]) 11
B-Tree and B+Tree e 12
CityGML 3.0 Module Overview i 18
CityJSONSeq Local Vertices i 22
Parquet Structure Lo 26
Physical layout of the FlatCityBuf file format, showing section boundaries and

alignment considerations for optimised range requests 32
Example of a Hilbert curve. Image sourced from Williams [2022a]. 40
Example of a packed R-tree structure. Image sourced from Williams [2022b]. . 42
Attribute index implementation in FlatCityBuf 46
Example of a triangle encoded as a hierarchical boundary. 52
Example of a cube encoded as a hierarchical boundary. 52
Example of attribute encoding in FlatCityBuf 56

HTTP Range Request workflow in FlatCityBuf showing the sequential process
of header retrieval, index navigation, and selective feature retrieval. The client
makes targeted requests for specific byte ranges rather than downloading the
entire dataset. L 59

Web prototype of FlatCityBuf demonstrating spatial and attribute query capa-

bilities on a 3.4GB dataset of South Holland. 62
Server architecture for FlatCityBuf. The client-side filtering approach elimi-
nates the need for dedicated server-side processing. 63

Simple cube model used for attribute testing. This basic geometric structure
provides a controlled environment for evaluating the impact of attributes on file
SIZE. . . e 66
Visual comparison of models with different geometric complexity. 67

Comparison between traditional and FlatCityBuf server architectures. The pro-
posed method eliminates the need for complex database infrastructure by lever-

aging static file hosting with built-in spatial and attribute indices. 7
Comparison of client complexity with Alesheikh et al. [2002]’s model and FlatC-
ityBuf’s architecture. 78

xiii

List

2.1.
2.2.

3.1.
3.2.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12
4.13.
4.14.
4.15.
4.16.

5.1.
5.2.

5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.

of Tables

FlatBuffers Scalar Data Types 15
FlatBuffers Complex Data Types 15
Comparative Analysis of Cloud-Optimised Geospatial Formats 28
Evaluation Criteria Color Legend 28
Material properties in the FlatCityBuf appearance model 35
Texture properties in the FlatCityBuf appearance model 36
Common query operators in geospatial standards 43
CityFeature properties in the FlatCityBuf feature encoding 50
CityObject properties in the FlatCityBuf feature encoding 50
Geometry properties in the FlatCityBuf feature encoding 51
SemanticObject properties in the FlatCityBuf feature encoding 51
Geometrylnstance properties in the FlatCityBuf feature encoding 51
Vertex properties in the FlatCityBuf feature encoding 52
Template Definition characteristics in FlatCityBuf geometry templates 53
Template Instantiation properties in FlatCityBuf geometry templates 54
. Appearance properties in FlatCityBuf feature encoding 54
Material properties in FlatCityBuf feature encoding 55
Texture properties in FlatCityBuf feature encoding 55
MaterialMapping properties in FlatCityBuf feature encoding 56
TextureMapping properties in FlatCityBuf feature encoding 56
The datasets used for the benchmark. 64
Comparison of file sizes across different levels of detail for the TU Delft BK
building model. 65
Comparison of file sizes with varying numbers of attributes for simple cube models. 66
Comparison of file sizes with varying geometric complexity. 67
Comparison of file sizes with varying coordinate scales. 68
Performance comparison between CityJSONSeq and FlatCityBuf 70
Performance comparison between CBOR and FlatCityBuf 71
Performance comparison between BSON and FlatCityBuf 72

Feature ID query performance comparison between FlatCityBuf and SDBAG API 74
Bounding box query performance comparison between FlatCityBuf and 3DBAG
APL . . e 74

XV

Acronyms

CityJSONSeq CityJSON Text Sequences
S+Tree Static B-tree
I/0 Input/Output from/to disk or network oL
CDN Content Delivery Network o o
ADE Application Domain Extension L oL
LoD Level of Detail
RDBMS Relational Database Management System
WASM WebAssembly L
CPU Central Processing Unit
API Application Programming Interface
GIS Geographic Information System L oL oL
HTTP Hypertext Transfer Protocol
OGC Open Geospatial Consortium
CRS Coordinate Reference System oo

xvii

1. Introduction

1.1. Problem Statement

Three-dimensional (3D) city models have evolved beyond mere visualisation tools to become
fundamental components in diverse application domains. As demonstrated by Biljecki et al.
[2015], these models now serve essential functions in urban planning, environmental simulation,
emergency response, and numerous other fields, highlighting their critical role in urban envi-
ronment representation and analysis. The widespread adoption of these models is evidenced by
significant national initiatives, such as the Netherlands’ comprehensive 3D building database
[Peters et al., 2022], Japan’s urban digital twin project [PLATEAU, 2020], the US Open City
Model [BuildZero.Org, 2025], and Switzerland’s SwissBUILDINGS3D [Swiss Federal Office of
Topography, 2024]. To support this adoption, the CityGML Conceptual Model [OGC, 2019b)]
provides a standardised framework for comprehensive urban environment representation, with
implementations including CityGML [OGC, 2019b], CityJSON [CityJSON, 2019a], and 3DC-
ityDB [Technical University of Munich, 2003] achieving substantial adoption in both research
and practical applications.

Concurrent with the growth of 3D city models, the geospatial industry has undergone a fun-
damental shift from desktop-based to cloud-native and web-based Geographic Information
System (C1S). Cloud-native GIS, as defined by Mell and Grance [2011], leverages cloud com-
puting infrastructure to deliver geospatial services over networks, enabling ubiquitous access
to shared computing resources with minimal management overhead. This paradigm shift of-
fers substantial advantages including global accessibility, multi-user scalability, cross-platform
compatibility, and support for diverse applications beyond traditional GIS workflows [Esri,
2025]. Popular examples such as Google Maps Platform [Google, 2005] demonstrate how web-
based geospatial services have become integral to modern applications, eliminating the need
for users to download complete datasets to local machines.

However, this transition introduces specific technical challenges for 3D city model implemen-
tations. Cloud-native GIS faces inherent constraints including network latency, bandwidth
limitations, and the need to serve hundreds or thousands of concurrent users [Alesheikh et al.,
2002]. Unlike desktop applications that benefit from high-speed local disk access, web-based
systems must efficiently transfer data over networks, necessitating strategies such as data sub-
setting, streaming, and selective access patterns. Traditional geospatial formats including
GeoJSON, Shapefile, and WKT do not inherently support these cloud-optimised access pat-
terns. For example, the CityJSON Text Sequences (CityJSONSeq) format, which is a variant
of CityJSON, is designed to enable streaming processing of 3D city model data, but it still
inherits the performance limitations of text-based formats.

The transition towards cloud-native GIS introduces specific technical requirements for 3D city
model implementations. These requirements encompass scalable processing capabilities, effi-
cient data transfer mechanisms, optimised query performance, and distributed access protocols

1. Introduction

[Cloud-Native Geospatial Foundation, 2023]. While CityGML and CityJSON provide compre-
hensive data models, their text-based implementations often result in slower processing times
and increased memory consumption [Van Liempt, 2020]. CityJSONSeq was developed as a vari-
ant of CityJSON to enable streaming processing of 3D city model data, but it still inherits
the performance limitations of text-based formats. Furthermore, although cloud-optimised
geospatial formats have emerged to address these challenges, they primarily focus on two-
dimensional data, leaving a gap in efficient cloud-native solutions for 3D city models. This gap
necessitates the development of specialised data formats that can effectively operate within
cloud computing environments while maintaining the semantic richness of 3D city models.

To address these challenges in the cloud-native environment, the geospatial community has de-
veloped several optimisation strategies including tiling and partitioning, spatial indexing, data
simplification with level-of-detail systems, and binary encoding with compression. These ap-
proaches, collectively referred to as cloud-optimised geospatial formats [Cloud-Native Geospa-
tial Foundation, 2023], enable on-demand access to geospatial data and have proven successful
for 2D geospatial applications. However, these optimisation techniques have not been compre-
hensively applied to 3D city model formats, creating a significant gap in cloud-native solutions
for urban digital twin applications.

1.2. Research Objectives

This research investigates the application of efficient data serialisation formats for 3D city
models, specifically examining the potential of FlatBuffers [Google, 2014a] as an encoding
mechanism for CityJSONSeq.

While CityJSONSeq (which will be explained in detail in Section 3.2.3) was designed to en-
able streaming processing of 3D city models, its text-based format results in suboptimal read
performance and lacks efficient indexing strategies for feature querying.

The main research question is: “How can the CityJSONSeq encoding be optimised for faster
access to features, lower memory consumption, and flexible feature querying in web environ-
ments?”

To answer this question, the following sub-questions are addressed:

¢ What data schema of FlatBuffers is most suitable for encoding all components of CityJSONSeq,
including geometry templates, materials, extensions, attributes, and CityJSONFeature
objects?

e How can feature querying with both spatial and attribute-based operations be achieved
within logarithmic time complexity?

e How can subsets of data be retrieved efficiently over the web while maintaining simplicity
of server architecture and handling high concurrent request loads that typically challenge
traditional database-backed servers?

The following aspects, while relevant to the overall system performance, are not primary focus
areas:

o File size reduction, provided the client can efficiently fetch or partially retrieve required
data

o Data update and deletion speed, as retrieval speed takes precedence

1.3. Scope of the Research

The resulting proposed data format, called FlatCityBuf, leverages FlatBuffers’ exceptional
read performance efficiency and random access capabilities, which are essential for fetching
subsets of data without processing the entire file—these advantages will be explained in detail
in Section 2.11. The proposed methodology combines FlatBuffers’ efficient binary serialisation
with HTTP Range Requests, enabling partial data retrieval over the web while facilitating
serverless architectures for enhanced scalability. The investigation aims to address the afore-
mentioned cloud-native requirements while maintaining the semantic richness of CityJSON’s
data model. Notably, the research prioritises read performance over update capabilities, as
read operations predominate in typical use cases. Furthermore, while file size optimisation
remains relevant, it is considered secondary to query efficiency and partial data accessibility.
The technical implementation strategy and preliminary findings are detailed in Chapter 4,
while the evaluation of cloud-optimised formats is presented in Section 3.1.

1.3. Scope of the Research

Since the primary focus of the research is to explore the potential of FlatBuffers as an encoding
mechanism for CityJSONSeq and achieve faster and flexible feature querying, the scope of the
research is limited to the following:

¢ Define the data specification of the proposed new encoding format, FlatCityBuf.

e Implement a Rust library for encoding and decoding operations for FlatCityBuf, with
WebAssembly (WASM) bindings for web-based decoding.

e Support spatial querying and attribute-based querying to achieve log-time complexity
for feature retrieval.

e Demonstrate how the proposed encoding format can be used over the web with HTTP
Range Requests.

o Evaluate the performance of the proposed encoding format compared to the other en-
coding formats.

On the other hand, the following aspects are considered secondary and are not within the
scope of the research:

e Implementing the library with other programming languages than Rust such as Python
or JavaScript.

o Implementing the library to encode with other serialisation frameworks such as Parquet
[Apache Software Foundation, 2013] or Protocol Buffers [Google, 2008].

¢ Optimising the encoding format for write operations.

1.4. Structure of the Thesis

This thesis is organised into the following chapters:

Chapter 2 establishes the fundamental knowledge of serialisation formats, algorithms, and
indexing strategies necessary for understanding the proposed solution.

1. Introduction

Chapter 3 provides a review of the relevant literature, focusing on cloud-optimised geospatial
formats and serialisation frameworks. It presents a comprehensive analysis of existing cloud-
optimised geospatial formats and their characteristics.

Chapter 4 details the methodology used to achieve the research objectives.

It explains the data specification of FlatCityBuf and other technical components designed to
address the research questions.

Chapter 5 presents the research findings, including file size comparisons, local benchmark
results, and web-based performance evaluations.

Chapter 6 elaborates on the results, discusses the implications of the research, and identifies
potential applications and limitations.

Chapter 7 concludes the thesis by answering the research questions and summarising the
contributions of the research.

2. Theoretical background

2.1. Strategies for Cloud-native GIS

The benefits and challenges of cloud-native GIS are explained in Section 1.1. This section
explains the general strategies employed for cloud-native optimisation.

To address cloud-native GIS challenges while leveraging its advantages, several strategies are
commonly employed:

o Tiling and partitioning: Large datasets are divided into small, manageable tiles or
chunks. Tile Map Service (TMS) exemplifies this approach by dividing maps into square
tiles for each zoom level. As users zoom in or out, new tiles are loaded and displayed, with
clients loading only necessary tiles. Figure 2.1 shows an example of TMS, a standard
for tiling geospatial data [OGC, 2006]. This technique requires either pre-generated
tiled data or dynamic tile generation by servers like GeoServer [Open Source Geospatial
Foundation, 2001]. Both raster and vector data are commonly tiled. This approach is
not limited to 2D geospatial data; it is also used for 3D city model data. For instance,
3DBAG divides the entire Netherlands into tiles for selective download [Peters et al.,
2022] and PLATEAU publishes tiled datasets as open data [PLATEAU, 2020].

e Spatial indexing: Spatial indexing techniques index geospatial data by spatial prop-
erties. R-trees [Guttman, 1984], quadtrees [Finkel and Bentley, 1974], and KD-trees
[Bentley, 1975] are commonly used indexing structures. These indices enable clients to
quickly locate data within specified extents, find nearest neighbours, or perform other
spatial queries. This technique requires pre-built spatial indices that must be updated
when data changes.

e Data simplification and Level of Detail: Also known as generalisation, this reduces
geospatial data complexity for visualisation, especially at smaller scales. This technique
is often combined with tiling and partitioning. For example, Cesium 3D Tiles [OGC,
2019a] implements level-of-detail systems where higher zoom levels load more detailed
data. GDAL’s Mapbox Vector Tile driver also supports geometry simplification for
smaller scales [Warmerdam et al., 2025].

e Binary encoding and compression: This technique reduces geospatial data size,
resulting in faster download and display times. While compression reduces file size, it re-
quires client-side decompression, creating a trade-off between file size and decompression
time. For example, glTF 2.0 [ISO, 2022], used internally by Cesium 3D Tiles, supports
Draco compression [The Draco author, 2017]. GeoParquet [GeoParquet Contributors,
2024] also supports various compression algorithms.

When incorporating these strategies, the optimisation approaches that enable on-demand ac-
cess to geospatial data are collectively referred to as cloud-optimised formats [Cloud-Native
Geospatial Foundation, 2023]. The properties and related work of these cloud-optimised
geospatial formats are discussed in detail in Section 3.1.

2. Theoretical background

Coarse resolution
Highest scale denominator

Detailed resolution
Lowest scale denominator

Figure 2.1.: Tile Map Service (TMS) standard for tiling geospatial data, derived from OGC
2006]

2.2. Binary files

A binary file represents a fundamental approach to data storage that uses sequences of bits
rather than human-readable text. Unlike plain text files that consist of characters interpreted
through common character sets like ASCII, binary files store data in a format optimised for
machine processing [The Linux Information Project (LINFO), 2006].

Binary encoding offers several key advantages: superior storage efficiency through data com-
pression and faster program execution. Binary files are commonly used for images, audio,
executable programs, and compressed data. However, binary encoding presents notable chal-
lenges. Binary files are not human-readable, making debugging, correction, or modification
complex without specialised tools. Many binary systems are proprietary and platform-specific,
creating portability issues and potential long-term accessibility problems. The Unix philoso-
phy advocates for plain text storage when practical, emphasising that text serves as a universal
interface enabling efficient program interoperability [The Linux Information Project (LINFO),
2006].

In geospatial domains, prominent examples of text-based formats include GeoJSON [Internet
Engineering Task Force, 2016] and Geography Markup Language (GML) [OGC, 2000] as text
representations for general geospatial data. For 3D city model data specifically, CityGML
[OGC, 2019b] and CityJSON [CityJSON, 2019a] (including its streaming variant CityJSON-
Seq [Ledoux et al., 2024]) represent the primary text-based standards. Conversely, binary
geospatial formats include GeoPackage [OGC, 2014] and GeoTIFF [OGC, 2019c¢]. Notably, no
widely adopted standard binary formats currently exist for 3D city model data, representing
a gap that this research aims to address.

2.3. WebAssembly

2.3. WebAssembly

WASM is a low-level assembly-like language with a compact binary format that enables near-
native performance execution in modern web browsers [the Mozilla Foundation, 2025]. Stan-
dardised by the W3C [2019, 2022], WASM provides a compilation target for languages such as
C/C++, C#, and Rust, allowing code written in these languages to run efficiently on the web
platform.

WASM is designed to complement and run alongside JavaScript rather than replace it. Through
the WebAssembly JavaScript APIs, developers can load WASM modules into JavaScript appli-
cations and share functionality between the two environments [the Mozilla Foundation, 2025].
This interoperability enables developers to leverage WASM’s performance characteristics for
computationally intensive tasks while maintaining JavaScript’s expressiveness and flexibility
for application logic and user interface development.

A key advantage of WASM is its ability to enable code reuse across platforms. Developers
can compile existing codebases written in languages like C/C++, Rust, and C# for browser
deployment, eliminating the need to rewrite performance-critical components in JavaScript.

In this research, WASM enables the compilation of Rust libraries for 3D city model processing
to run with near-native performance in web browsers. This approach bridges the performance
gap between desktop and web-based geospatial applications while maintaining the accessibility
and cross-platform benefits of web deployment.

2.4. Row-based and column-based data storage

Data storage systems can be broadly categorised into two fundamental approaches: row-based
and column-based storage. Row-based storage stores consecutive rows of a table sequentially,
while column-based storage stores consecutive columns of a table sequentially [ClickHouse,
2025].

To illustrate this distinction, consider the following example table:

id, city, country

» 1, Tokyo, Japan

s 2, London, UK

3, Amsterdam, Netherlands

Listing 2.1: Example table

Row-based storage organises the data sequentially by rows:

1, Tokyo, Japan, 2, London, UK, 3, Amsterdam, Netherlands
Listing 2.2: Row-based storage

Column-based storage organises the data sequentially by columns:

1, 2, 3, Tokyo, London, Amsterdam, Japan, UK, Netherlands
Listing 2.3: Column-based storage

2. Theoretical background

These different storage approaches exhibit distinct performance characteristics depending on
the query patterns. Row-based approaches perform well for single-row searches, such as query-
ing the record for Amsterdam. Conversely, column-based approaches excel at analytical queries
that involve aggregating or filtering columns [ClickHouse, 2025].

Abadi et al. [2008] provides a comprehensive comparison of column-stores versus row-stores,
highlighting that column-based storage offers advantages in terms of storage efficiency and
query performance for analytical workloads, while row-based storage is more suitable for Online
Transaction Processing (OLTP) systems that require frequent lookups and updates.

In the context of geospatial data, column-based storage is particularly well-suited for analytical
queries such as calculating the average height of buildings in a city or filtering buildings by
construction year. However, row-based storage remains preferable for operations that require
accessing entire records, such as retrieving all attributes of a specific building, as well as for
frequently updated datasets or transactional systems where individual records are modified
regularly.

2.5. CPU Caches

Modern computing systems face a fundamental challenge to software performance due to the
disparity between the speed of Central Processing Unit (CPU) and the latency of main memory.
CPU operates at clock speeds that far exceed the access speeds of dynamic random-access
memory (DRAM), which typically serves as main memory. Consequently, the CPU frequently
idles while waiting for data from the slower memory subsystem. To mitigate this performance
bottleneck, CPU caches were developed. These caches utilise a small amount of very fast Static
RAM (SRAM) to store temporary copies of data and instructions that are likely to be used
again soon [Drepper, 2007].

The effectiveness of CPU caches hinges on two fundamental principles of program behaviour:
temporal locality and spatial locality. Temporal locality refers to the tendency of a program
to access data that has been recently accessed again in the near future. Spatial locality refers
to the tendency of a program to access data that is located nearby in memory to previously
accessed data. In other words, small chunks of data that have been accessed recently or are
located nearby in memory are likely to be accessed again soon. Modern processors employ
multiple levels of caches to maximise the effectiveness of these principles. This hierarchy
typically consists of L1, L2, L3 caches, and main memory. The lower levels of the cache
hierarchy are faster and smaller, while the higher levels are slower and larger [Drepper, 2007].

Data is not loaded into caches byte by byte. Instead, it is loaded in blocks called cache lines,
typically 64 bytes in size. This design reduces the number of separate memory transactions
and effectively amortises the substantial latency involved in accessing main memory [Drepper,
2007].

The performance of a cache is fundamentally determined by its hit rate. A cache hit occurs
when the requested data is found within the cache, resulting in very fast access. In contrast,
a cache miss occurs when the requested data is not found within the cache, necessitating a
much slower retrieval from a higher-level cache or, in the worst case, main memory [Abayomi
et al., 2020].

Understanding these aspects of cache behaviour is crucial when designing binary data formats,
as cache-friendly data layouts can significantly improve application performance.

2.6. Serialisation and Deserialisation
2.6. Serialisation and Deserialisation

Before discussing the specific techniques used in the FlatCityBuf format, it is important to
understand the general principles of serialisation and deserialisation.

The terminology for data conversion processes varies across different programming ecosystems.
Terms such as serialisation, pickling, marshalling, and flattening are often used interchangeably,
though with subtle differences depending on the context. Standard C++ Foundation [2025]
describes it from an object-oriented perspective as converting objects in memory (in a data
structure) to a storable or transmittable format on disk. Python Software Foundation [2025]
refers to this process as "pickling" in the Python ecosystem. For clarity in this thesis, we adopt
the definition provided by Viotti and Kinderkhedia [2022]:

"Serialisation is the process of translating a data structure into a bit-string (a
sequence of bits) for storage or transmission purposes."

Deserialisation is the reverse process of serialisation, where the bit-string is converted back
into the original data structure (in memory).

2.7. Zero-copy

Zero-copy is a technique used to avoid copying data from one memory location to another. The
term "Zero-copy" is used in many contexts of computer science, Song and Alves-Foss [2012]
and Brose [2008] provide a detailed explanation of the concept.

In conventional I/O operations, data typically traverses multiple memory regions, each requir-
ing a separate copy operation:

e Data is copied from storage devices into kernel buffer cache
o From kernel buffer, data is copied to user-space application buffers

o For network transmission, data may be copied again to network buffers

This multi-stage copying introduces significant overhead, particularly for large datasets or high-
throughput applications. Each copy operation consumes CPU cycles, memory bandwidth, and
increases latency [Song and Alves-Foss, 2012]. For applications working with large 3D city
models, this overhead can substantially degrade performance.

Zero-copy approaches optimise this data path by eliminating unnecessary copy operations.
While "zero-copy" as a term suggests complete elimination of copying, in practice, different
techniques achieve varying degrees of copy reduction:

e Memory-mapped I/0: Maps files directly into process address space using mmap (),
allowing direct access without explicit read() operations and avoiding data copying
between kernel and user space.

e In-place parsing: Processes data structures without creating intermediate copies, en-
abling direct access to serialised data in its original memory location.

e Zero-copy system calls: sendfile() and splice() enable direct kernel-level data
transfer between file descriptors and sockets without user-space copying.

2. Theoretical background

e Shared memory: Provides common address space for inter-process communication,
eliminating the need for data copying between processes.

Modern serialisation formats like FlatBuffers implement zero-copy through carefully designed
memory layouts that allow direct access to serialised data without requiring a separate deseri-
alisation step. This approach is particularly valuable for geospatial applications that routinely
handle large datasets and benefit from avoiding the memory overhead of traditional parse-
then-access patterns.

2.8. Endianness

Endianness (or "byte-order") refers to the order in which bytes are stored in memory when
representing multi-byte values. The terminology was introduced by Cohen [1981].

In computing, endianness becomes significant when multi-byte data types (such as 16-bit
integers or 32-bit floats) must be stored in memory or transmitted across networks. There are
two primary byte ordering systems:

o Little-endian: Stores the least significant byte at the lowest memory address, followed
by increasingly significant bytes. This is the ordering used by Intel processors that
dominate desktop and server computing. For example, the 32-bit integer 0x12345678
would be stored in memory as 4 bytes: 0x78, 0x56, 0x34, 0x12.

e Big-endian: Stores the most significant byte at the lowest memory address. This
approach is often called “network byte order” because Internet protocols typically require
data to be transmitted in big-endian format. For example, the same 32-bit integer
0x12345678 would be stored as 0x12, 0x34, 0x56, 0x78.

A useful analogy is date notation: little-endian resembles the European date format (31 Decem-
ber 2050), while big-endian resembles the ISO format (2050-12-31), with the most significant
part (year) first [Mozilla Foundation, 2025].

2.9. Binary Search

Binary search is a fundamental algorithm for finding elements in a sorted array. The classic
implementation follows a simple approach: compare the search key with the middle element
of the array, then recursively search the left or right half depending on the comparison result
[Slotin, 2021a].

The time complexity of binary search is logarithmic—the height of the implicit binary search
tree is logy(n) for an array of size n. While this is theoretically efficient, the actual perfor-
mance suffers when implemented on modern hardware due to memory access patterns. Each
comparison requires the processor to fetch a new element, potentially causing a cache miss
(cache miss is explained in Section 2.5). In the worst case, the number of memory read opera-
tions will be proportional to the height of the tree, with each read potentially requiring access
to a different cache line or disk block [Slotin, 2021a).

10

2.9. Binary Search

This inefficiency is particularly problematic when binary search is implemented on external
memory or over HTTP, where each access incurs significant latency. The sorted array repre-
sentation with binary search does not take advantage of CPU cache locality, as consecutive
comparisons frequently access distant memory locations.

2.9.1. Eytzinger Layout

While preserving the same algorithmic idea as binary search, the Eytzinger layout (also known
as a complete binary tree layout or level-order layout) rearranges the array elements to match
the access pattern of a binary search [Slotin, 2021a]. Instead of storing elements in sorted
order, it places them in the order they would be visited during a level-order traversal of a
complete binary tree.

This layout significantly improves memory access patterns. When the array is accessed in the
sequence of a binary search operation, adjacent accesses often refer to elements that are in
the same or adjacent cache lines. This layout also proves beneficial for managing data fetched
over networks, as consecutive elements accessed during binary search are more likely to be
retrieved in the same HTTP range request, thereby reducing the number of network roundtrips
and overall latency. This spatial locality enables effective hardware prefetching, allowing the
CPU to anticipate and load required data before it is explicitly accessed, thus reducing latency
[Slotin, 2021a].

Figure 2.2 shows how the layout appears when applied to binary search. Figure 2.3 shows that
the algorithm starts from the first element and then jumps to either 2k or 2k + 1 depending
on the comparison result. The heatmap represents the expected frequency of comparisons for
search (the closer to the top, the more frequent the comparison).

7 B § B

6 3 7 1 5 8 9 0 2 4]

Figure 2.2.: Eytzinger layout as conceptual representation as tree and actual data layout (mod-
ified from Slotin [2021a])

Figure 2.3.: Binary search traversal pattern in Eytzinger layout (modified from Slotin [2021a])

11

2. Theoretical background

2.10. S+Tree

2.10.1. B-Tree/B+Tree Layout

While the Eytzinger layout improves cache utilisation for binary search, the number of mem-
ory read operations remains proportional to the height of the tree—logs(n) for n elements.
This is still suboptimal for large datasets, especially when the access pattern involves disk
Input/Output from/to disk or network (1/0) or remote data access [Slotin, 2021b].

B-Trees and their variants address this limitation by storing multiple keys in each node, effec-
tively reducing the height of the tree. In a B-Tree of order k (where each node can contain
up to k — 1 keys), the height of the tree is reduced from logy(n) to logy (n). This represents a
reduction factor of logy, / logy = logy (k) times compared to a binary search tree.

The key insight is that fetching a single node still takes roughly the same time regardless
of whether it contains one key or multiple keys, as long as the entire node fits into a single
memory block or disk page. By packing multiple keys into each node, B-Trees significantly
reduce the number of disk or memory accesses required to locate an element.

B+Trees are a variant of B-Trees specifically optimised for range queries and sequential access
patterns. In a B+Tree:

e Internal nodes contain up to B keys that serve as routing information, with each key
associated with one of the (B + 1) pointers to child nodes. Each key at position i
represents the smallest key in the subtree pointed to by the (i + 1)-th child pointer.

e Leaf nodes store the actual data with up to B key-value pairs and include a pointer to
the next leaf node, enabling efficient sequential traversal for range queries.

This linked structure of leaf nodes enables B+Trees to efficiently support range queries by
traversing from one leaf to the next without needing to return to higher levels of the tree.

As the figure 2.4 shows, the B4+Tree has pointers to the next leaf node, which enables efficient
sequential traversal for range queries. On the other hand, the B+Tree has duplicate keys in
the internal nodes, which is not the case for the B-Tree.

4
/ \ 5
/ \
2 7 8 3 7
a —
/ \ / \ \ 2 4 6 8
/ A\ 7z A\ A\ VAN
1 3 5 7 9 1122|2324 |25|26|27|>8]¢°
(a) B-Tree (branching factor 3) (b) B4+Tree (branching factor 3)

Figure 2.4.: B-Tree and B+Tree

12

2.10. S+Tree

2.10.2. S+Tree

The S+Tree (Static B4+Tree), introduced by Slotin [2021b], builds upon the B+Tree concept
but is specifically designed for static datasets where the tree structure never changes after
construction. Unlike traditional B+Trees that use explicit pointers between nodes, the S+Tree
uses an implicit structure where child positions are calculated mathematically. This is possible
because:

e The tree is constructed once and never modified (static)

e The number of elements is known in advance

e The tree can be maximally filled with no empty slots

e Child positions follow a predictable pattern based on the block size

For a S+Tree with block size B, a node with index k has its children at indices calculated by a
simple formula: child;(k) = k- (B+1)+i+1fori € [0, B] [Slotin, 2021b]. This eliminates the
need to store and fetch explicit pointer values, further reducing memory usage and improving
cache efficiency.

The S+Tree layout aligns with modern hardware characteristics where:

o The latency of fetching a single byte is comparable to fetching an entire cache line (64
bytes)

e Disk and network I/O operations have high initial latency but relatively low marginal
cost for additional bytes

e CPU cache lines typically hold multiple array elements (e.g., 16 integers in a 64-byte
cache line)

By loading a block of B elements at once and performing a local search within that block,
S+Trees reduce the total number of cache misses or disk accesses to logg(n) instead of
logs (n)—a significant reduction for large datasets.

The S+Tree layout achieves up to 15x performance improvement over standard binary search
implementations while requiring only 6-7% additional memory [Slotin, 2021b]. This makes
it particularly valuable for applications that perform frequent searches on large, relatively
static datasets, especially when accessed over high-latency connections. For more detailed
implementation strategies of S+Tree, Koekamp [2024] provides comprehensive explanations
and practical considerations.

13

2. Theoretical background
2.11. FlatBuffers Framework

FlatBuffers, developed by Google [2014a], is a cross-platform serialisation framework designed
specifically for performance-critical applications with a focus on memory efficiency and pro-
cessing speed. Unlike traditional serialisation approaches, FlatBuffers implements a zero-copy
deserialisation mechanism that enables direct access to serialised data without an intermediate
parsing step [Google, 2014c], as discussed in Section 2.7. This characteristic is particularly
advantageous for large geospatial datasets, where parsing overhead can significantly impact
performance (e.g., JSON parsing).

2.11.1. Schema-Based Serialisation

FlatBuffers employs a strongly typed, schema-based approach to data serialisation. The work-
flow involves:

1. Definition of data structures in schema files with the .fbs extension

2. Compilation of schema files using the FlatBuffers compiler (flatc) to generate language-
specific code for data access

3. Implementation of application logic using the generated code

This schema-first approach enforces data consistency and type safety, which is essential to be
processed in various programming languages and environments. The generated code provides
memory-efficient access patterns to the underlying binary data without requiring full deseri-
alisation. FlatCityBuf utilises this capability to achieve a balance between parsing speed and
storage efficiency.

The FlatBuffers compiler supports code generation for multiple programming languages, in-
cluding C++, Java, C#, Go, Python, JavaScript, TypeScript, Rust, and others, facilitating
cross-platform interoperability [Google, 2024b]. This extensive language support enables de-
velopers to work with FlatBuffers data in their preferred environment. For FlatCityBuf, Rust
was selected as the primary implementation language due to its performance characteristics,
memory safety guarantees, and excellent support for WASM compilation, which is beneficial
for web-based deployment scenarios.

2.11.2. Data Type System

FlatBuffers provides a comprehensive type system that balances efficiency and expressiveness
[Google, 2024a]:

e Tables: Variable-sized object containers that support:

Named fields with type annotations
— Optional fields with default values

Schema evolution through backward compatibility
— Non-sequential field storage for memory optimisation

e Structs: Fixed-size, inline aggregates that:

14

2.11. FlatBuffers Framework

— Require all fields to be present (no optionality)

— Are stored directly within their containing object

— Are less flexible than tables but provide faster access
— Optimise memory layout for primitive types

e Scalar Types: FlatBuffers supports a comprehensive range of primitive data types as
shown in Table 2.1.

Table 2.1.: FlatBuffers Scalar Data Types
Category Type Description
8-bit integers | byte Signed 8-bit integer (int8)
ubyte | Unsigned 8-bit integer (uint8)
bool Boolean value
16-bit integers | short | Signed 16-bit integer (int16)
ushort | Unsigned 16-bit integer (uint16)
32-bit values int Signed 32-bit integer (int32)
uint Unsigned 32-bit integer (uint32)
float 32-bit floating-point number
64-bit values long Signed 64-bit integer (int64)
ulong | Unsigned 64-bit integer (uint64)
double | 64-bit floating-point number

e Complex Types: FlatBuffers provides advanced data structures as outlined in Ta-

ble 2.2.
Table 2.2.: FlatBuffers Complex Data Types
Type Description
[T] Vectors (single-dimension arrays) of any supported type
string UTF-8 or 7-bit ASCII encoded text with length prefix
References | References to other tables, structs, or unions

e Enums: Type-safe constants mapped to underlying integer types

e Unions: Tagged unions supporting variant types

2.11.3. Schema Organisation Features

In addition to the data type system, FlatBuffers provides several key features for organising
complex schemas:

o Namespaces (namespace FlatCityBuf;) create logical boundaries and prevent naming
collisions

e Include Mechanism (include "header.fbs";) enables modular schema design across
multiple files

o Root Type (root_type Header;) identifies the primary table that serves as the entry
point for buffer access

15

2. Theoretical background

These features were essential for FlatCityBuf’s implementation, enabling modular schema
development with separate root types for header and feature components while maintaining
consistent type definitions across files.

2.11.4. Binary Structure and Memory Layout

FlatBuffers organises serialised data in a flat binary buffer with the following characteristics:

Zero-copy access through a carefully designed memory layout that allows direct access
to serialised data without intermediate parsing

Vtable-based field access where each table starts with an offset to its vtable, enabling
efficient field lookup and schema evolution. Listing 2.4 shows an example of a vtable.

Little-endian encoding for all scalar values, with automatic conversion on big-endian
platforms

Offset-based references for all non-inline data (tables, strings, vectors), allowing effi-
cient navigation within the buffer

vtable (AnnotatedBinary.Bar):

+0x00A0 | 08 00 | uinti16_t | 0x0008 (8) | size of this vtable
+0x00A2 | 13 00 | uinti16_t | 0x0013 (19) | size of referring table
+0x00A4 | 08 00 | VOffsetl6 | 0x0008 (8) | offset to field ‘a‘ (id: 0)
+0x00A6 | 04 00 | VOffsetl6 | 0x0004 (4) | offset to field ‘b‘ (id: 1)

Listing 2.4: Vtable of AnnotatedBinary.Bar sourced from Google [2014D)]

For complex data structures like 3D city models, FlatBuffers allows for modular schema com-
position through file inclusion. This capability enabled the separation of FlatCityBuf’s schema
into logical components (header.fbs, feature.fbs, geometry.fbs, etc.) while maintaining
efficient serialisation. In our implementation, the Header and CityFeature tables serve as
root types that anchor the overall data structure.

16

3. Related Work

This chapter reviews the pertinent literature relevant to the optimisation of CityJSON for
cloud-native environments. It highlights advancements and identifies existing gaps that this
research aims to address.

3.1. Cloud-Optimised Geospatial Formats

Cloud-optimised geospatial formats are data formats that are optimised for cloud environ-
ments by enabling efficient on-demand access to geospatial data in contrast to traditional GIS
formats [Cloud-Native Geospatial Foundation, 2023]. Cloud-Native Geospatial Foundation
[2023] defines four advantages of cloud-optimised geospatial formats:

¢ Reduced Latency: Facilitates partial data retrieval and processing without necessitat-
ing complete file downloads.

e Scalability: Supports parallel operations through metadata-driven access mechanisms
within cloud storage systems.

o Flexibility: Offers advanced query capabilities for selective data access.

o Cost-Effectiveness: Optimises storage and transfer expenditures through efficient ac-
cess patterns.

These include Cloud Optimised GeoTIFF, Cloud Optimised Point Cloud, GeoParquet, PMTiles,
and FlatGeobuf. Although not mentioned by Cloud-Native Geospatial Foundation [2023], 3D

Tiles [OGC, 2019a] and Mapbox Vector Tiles [Mapbox, 2014] can also be considered as cloud-

optimised geospatial formats since they were developed by Web GIS companies Cesium and

Mapbox respectively.

3.2. CityGML, CityJSON and Its Enhancements

3.2.1. CityGML

CityGML is an Open Geospatial Consortium (OGC) standard [OGC, 2019b] that defines a
comprehensive data model for representing 3D city models. The standard encompasses both
geometric properties and rich semantic information through a modular structure. From version
3.0.0, CityGML separates its conceptual model from its encoding standard. Figure 3.1 shows
an overview of its modules. The conceptual model defines the semantics and data model
through a Core module and eleven thematic extension modules (Building, Bridge, Tunnel,
Construction, CityFurniture, CityObjectGroup, LandUse, Relief, Transportation, Vegetation,
and WaterBody). Additionally, five extension modules (Appearance, PointCloud, Generics,

17

3. Related Work

Versioning, and Dynamizer) provide specialised modelling capabilities applicable across all
thematic modules. The encoding standard uses GML application schema for the Geography
Markup Language (GML) [OGC, 2000] to encode the data. This modular design allows im-
plementations to support specific subsets of modules based on their application requirements,
ensuring flexibility while maintaining standard compliance.

Appearance
Generics
Dynamizer
Versioning
PointCloud
E3 c
2 ° |2 2 S
sl Sl2l5/2] o = 5|3
T | © cll=(1O O o © | = o)
s(IE|| S| E||B|l2|2|E|l |l o
= o - =
m o = = K} he) 0] a ® o
Lila(ls||lc|l ol o=
20|l 3 < 9 |8
5 2 g2 =
Construction ©
(CityGML Core)

Figure 3.1.: Overview of CityGML 3.0 modules showing the Core module, thematic extension
modules, and additional extension modules. Source: [OGC, 2019b]

3.2.2. CityJSON

CityJSON is a JSON-based [ECMA International, 2013] encoding format that implements a
subset of the CityGML conceptual model [OGC, 2019b]. It is an official OGC community stan-
dard [OGC, 1994] currently at version 2.0.1, supporting CityGML 3.0.0. While both CityGML
and CityJSON implement the CityGML conceptual model, CityJSON exhibits several notable

differences.

The following properties of CityJSON are derived from Ledoux et al. [2019]:

Flattened City Objects Architecture

CityJSON implements a flattened architecture where each city object receives a unique identi-
fier, contrasting with CityGML’s hierarchical structure. While CityGML maintains a hierar-
chical organisation, CityJSON stores all objects at the same level (e.g., first and second-level
city objects are stored in the same dictionary). To preserve hierarchical relationships, CityJ-
SON uses a parents field to reference each object’s parent.

Geometry
CityJSON supports the same 3D geometric primitives as CityGML. However, instead of stor-

ing vertex coordinates directly within geometric primitives, CityJSON maintains a separate
vertices array containing all coordinates. Geometric primitives then reference vertex posi-

tions within this array.

18

20

3.2. CityGML, CityJSON and Its Enhancements

Semantic Surfaces

CityJSON stores semantic surfaces as separate objects, recognising that city objects often share
common semantics. This is implemented through semanticSurfaces fields and a values array
that maps surfaces to their corresponding semantic surface objects.

This is an example of how the semantic surfaces look like (derived from Ledoux et al. [2019]):

{

"type": "Solid",
"lod": 2,
"boundaries": [

[cfo,3,2,1,22]1, [[4,5,6,71], [[0,1,5,4]],
[[1,2,6,5]]1 1

1,
"semantics": {
"surfaces" : [
{ "type": "RoofSurface" 1},
{
"type": "WallSurface",
"paint": "blue"
¥o
{ "type": "GroundSurface" }
s
"values": [[0, 1, 1, 2] 1]
}

}
}

Geometry Templates

CityJSON implements CityGML’s Implicit Geometry concept through "geometry templates".
The format includes geometry-templates fields with a templates array that stores reusable
geometries. City objects utilising these templates specify "GeometryInstance" in their geom-
etry’s type field to indicate template reuse.

This code shows an example of a geometry template derived from Ledoux et al. [2019]:

{
"geometry-templates": {
"templates": [{

"type": "MultiSurface",
"lod": 2,
"boundaries": [

[o, 3, 2, 111,
[[(4, 5, 6, 711,
[[0, 1, 5, 4]]
]
1,

"vertices-templates": [...]

And this is how a city object references this template:

{
"type": "SolitaryVegetationObject",
"geometry": [
{

19

3. Related Work

"type": "GeometryInstance",

"template": O,

"boundaries": [372],

"transformationMatrix": [
2.0, 0.0, 0.0, 0.0,

o N O

0,
0,
0

0.0, 2.0, 0.0, O.
0.0, 0.0, 2.0, O.
0.0, 0.0, 0.0, 1.

Coordinate Quantisation

CityJSON employs coordinate quantisation to reduce geometry size. The transform field
contains scale and translate values for coordinate quantisation. The original coordinates
are recovered using the following formula (e.g., for the x component of vertex v):

T = v, - transform.scale, + transform.translate, (3.1)

This is an example of how the transform object looks like (derived from Ledoux et al. [2019]):

{
"transform": {
"scale": [0.01, 0.01, 0.01],
"translate": [4424648.79, 5482614.69, 310.19]
}
}

Extension Mechanism

CityJSON implements an extension mechanism using JSON Schema, similar to CityGML’s
Application Domain Extension (ADE). Biljecki et al. [2018] provides an overview of the devel-
opments of ADE in CityGML. While CityJSON’s extension mechanism maintains compatibility
with the core CityGML conceptual model, it has some limitations compared to CityGML’s
ADE, particularly in terms of inheritance and namespace support. The JSON Schema defines
the data structure of extensions and can be used to validate extended objects.

CityJSON supports four distinct ways to extend the data model:

o Adding new properties at the root level of a CityJSON object (property names must
start with "+", e.g., "+census")

 Defining additional attributes for existing city objects (attribute names must start with
"+ e.g., "+colour")

o Creating new semantic objects (object names must start with "+", e.g., "+ThermalSurface")

o Creating or extending new city object types (city object names must start with "+", e.g.,
"+NoiseBuilding")

20

I

G SN

3.2. CityGML, CityJSON and Its Enhancements

Each extension must be documented and validated using a JSON Schema file. This schema
file must contain specific properties that define the structure and constraints of the extension.
For example, an extension schema might look like this (derived from Ledoux et al. [2019]):
{
"type": "CityJSON_Extension",
"name": "Noise",
"uri": "https://someurl.org/noise.json",
"version": "O.1",
"description": "Extension to model the noise"
"extraRootProperties": {},
"extraAttributes": {},
"extraCityObjects": {}
}

These characteristics, particularly JSON’s absence of repetitive closing element tags and the
implementation of coordinate quantisation, result in significantly smaller file sizes compared
to CityGML, achieving compression factors of up to 7x [Ledoux et al., 2019].

The proposed data format I developed in this research, FlatCityBuf, inherits key concepts from
CityJSON including semantic surfaces, geometry templates, coordinate quantisation, and the
extension mechanism. The strategy for encoding city objects in FlatCityBuf will be explained
in Chapter 4.

3.2.3. CityJSON Text Sequences (CityJSONSeq)

Ledoux et al. [2024] optimises CityJSON for streaming applications by decomposing objects
into independent sequences. The fundamental unit of CityJSONSeq is the CityJSONFeature,
which represents a single feature encompassing a complete city object and its hierarchical
children. For instance, a CityJSONFeature representing a "Building" includes its associated
"BuildingPart" and "BuildingInstallation" objects. Unlike standard CityJSON objects
that share vertices and appearances across multiple features, each CityJSONFeature maintains
local vertex lists and appearance data, ensuring complete self-containment of geometric and
visual information. Throughout this research, CityJSONFeature objects are referred to simply
as "features". Figure 3.2 (sourced from Ledoux et al. [2024]) demonstrates how CityJSON-
Seq’s vertices are stored as local vertices arrays per each feature, contrasting with the shared
vertex approach of standard CityJSON.

CityJSONSeq adheres to the Newline Delimited JSON specification [ndjson, 2013], imple-
menting a structured file format with specific requirements. The first line of a CityJSONSeq
file must contain a CityJSON object that stores commonly used data shared across all fea-
tures, including coordinate transformation parameters (transform), format version informa-
tion (version), metadata (metadata), reusable geometry templates (geometry-templates),
and extension definitions (extensions). This initialisation object establishes the global con-
text for subsequent features. The example below shows how a CityJSONFeature is represented
(derived from Ledoux et al. [2024]):

{

"type": "CityJSONFeature",

IlidlI: Ilid_lll,

"CityObjects": {

"id-1": {
"type": "Building",
"attributes": {
"roofType": "gabled roof",

21

3. Related Work

"children": ["my balcony"]
Fo
"geometry": [...]
i
"my balcony": {
"type": "BuildingInstallation",
"parents": ["id-1"],
"geometry": [...]
}
Yo
"vertices": [... 1,
"appearance": { ... }
}
CityJSON file
C "vertices”: [
"type”: “CityJSON”, .- [217989,242969,24947,
nyersion”: “2.0" 216100,242849,24947,
rmetadats”: (). £ 1217779,238630, 24947,
rtransforn”: () [219649,238840,2494],
seityobiecte”: - [216100,242849,0],
B [217989,242969,0],
T [219649,238840,01],
“type”: "Building”, [217779,238630,0]
"a:.tr:i.hu:.es:: (. . [685389:280840:23&0] ,
owner”: “Elvis Presley [686259,278969,2320],
3, [691769,281539,2320],
7geometry”: [[690909, 283400, 23207,
{ [685389,280840,0],
"type”: “MultiSurfece’, o (690909, 283400, 01,
"boundaries”: [[[691769,281539,01,
rco, 3, 2, 111, (4, 5, 6, 711, ([0, 1, 5, 4]1] [686259,278969,0],
] [437607,387571,14595],
) [434595,374537,145957,
] [441375,372995,14595]7,
3, [444399,386119,14595],
7id-2": ([438311,387552,14595],
"type”: "Building”, [437639,387710,14595],
7attributes”: ([437639,387710,0],
"owner”: “Jan Smit” [444399,386119,01],
3, [441375,372995,0],
"geometry”: [[434595,374537,0],
¢ [437436,386830,14595],
"type”: "MultiSurface”, ; [437436,386830,14435],
"boundaries”: [.. ' (434595 374537 144351
(021, 24, 32, 1671, [[14, 53, 44, 7711, [[0, 13, 95, 41 [438311,387552,0],
] > [441375,372995,14505],
3} [444399,386119,14505],
] [437607,387571,15200],
), [437639,387710,15200],
nid-27: (), [437639,387710,150401],
[437607,387571,150401,
7id-2868": (.) [437436,386830,15200],
D] ~. [437436,386830,150401,
']

Figure 3.2.: Comparison of CityJSON and CityJSONSeq showing how vertices are stored.
Source: [Ledoux et al., 2024]

While CityJSONSeq generally provides improved compression and memory efficiency compared
to standard CityJSON, it may produce larger file sizes in scenarios where features share mini-
mal vertex counts or extensively share vertices and textures, due to the necessity of localising
previously shared resources.

22

3.2. CityGML, CityJSON and Its Enhancements

Despite CityJSONSeq’s improvements for streaming applications, its text-based JSON format
exhibits several limitations that impede optimal cloud-native performance. The format lacks
explicit data typing, storing all values as text strings irrespective of their semantic type (inte-
gers, floating-point numbers, booleans), resulting in increased storage overhead and requiring
additional parsing operations. Moreover, the JSON structure demands complete data pars-
ing and copying during processing operations, thereby constraining memory efficiency. The
absence of built-in indexing mechanisms further restricts efficient spatial and attribute-based
querying capabilities. These limitations create opportunities for enhanced cloud-native optimi-
sation through binary encoding schemes that preserve native data types and enable zero-copy
access patterns, complemented by integrated indexing mechanisms for efficient data retrieval
operations.

3.2.4. 3DBAG API

3DBAG is both a dataset and a project dedicated to generating 3D building models for the
entire Netherlands [Peters et al., 2022]. This open data initiative leverages the Register of
Buildings and Addresses (BAG) as building footprints and the Actueel Hoogtebestand Ned-
erland (AHN) [Ahn, 2007], which serves as the national height model (point cloud) of the
Netherlands. The 3DBAG data is automatically generated through the integration of BAG
and AHN datasets and is publicly available in multiple formats including CityJSON [Ledoux
et al., 2019], Wavefront OBJ [Wavefront Technologies, 1990], GeoPackage [OGC, 2014], and
FlatGeobuf [FlatGeobuf, 2020a].

The 3DBAG Application Programming Interface (API) [3DBAG, 2023] represents one of the
project’s key web services, providing programmatic access to the dataset by returning CityJ-
SONFeature objects as responses.

3.2.5. Enhancements to CityJSON Performance

Binary Encoding of CityJSON

Van Liempt [2020] conducted a systematic evaluation of binary encoding techniques for CityJ-
SON. This was done to address challenges associated with transmitting large-scale 3D city
models over the web. The study assessed various compression and encoding methodologies,
including CBOR, zlib, Draco and their combinations. It evaluated visualisation time, query-
ing time, spatial analysis time, editing time, file size compression and lossiness. The analysis
determined that the combination of CBOR and zlib offers optimal general-purpose efficiency
due to its implementation simplicity. Conversely, Draco exhibited superior performance for
pre-compressed data scenarios. However, the study identified limitations in Draco’s applicabil-
ity. Specifically, it noted the increased complexity and computational overhead when handling
smaller datasets. While these findings provide valuable insights for binary encoding implemen-
tations, they do not address optimisations tailored to cloud-native environments, particularly
partial data retrieval over the web without requiring complete file downloads.

23

3. Related Work

Experimental Implementation Using FlatBuffers

Peters [2024] explored the application of FlatBuffers [Google, 2014a] for encoding CityJSON-
Feature. This was done to enhance performance in cloud-native environments. The preliminary
implementation revealed potential advantages in several key areas:

o Faster feature access time.
¢ Lower memory consumption.

e Decreased storage requirements.

Building upon Peters’ initial work, which focused solely on basic CityJSONFeature encoding,
this research develops a comprehensive solution that incorporates essential capabilities includ-
ing spatial indexing, attribute indexing, extensions, textures, and geometry templates. The
implementation specifically targets cloud-native environments, prioritising both scalability and
efficient data processing to address the limitations of the preliminary approach.

3.3. Non-Geospatial Formats in Cloud Environments

Modern cloud-optimised geospatial formats leverage established non-geospatial data struc-
tures. These enhance efficiency in data transfer, storage and processing operations. Notable
implementations include GeoParquet [GeoParquet Contributors, 2024], which employs Parquet
[Apache Software Foundation, 2013] for optimised geospatial data management. FlatGeobuf
[2020a] is constructed on FlatBuffers [Google, 2014a]. Mapbox Vector Tiles [Mapbox, 2014]
utilise Protocol Buffers (Protobuf) [Google, 2008]. These underlying formats are meticulously
designed to improve performance metrics. These include serialisation/deserialisation speed,
memory utilisation and data compression.

3.3.1. FlatBuffers

FlatBuffers is a cross-platform serialisation library developed by Google [2014]. Tt is optimised
for efficient data access and transfer. The detailed characteristics and technical implementation
of FlatBuffers is explained in Section 2.11. Benchmark analyses [Google, 2014¢] indicate that
FlatBuffers outperforms alternative serialisation formats. These include Protobuf [Google,
2008] and JSON, in terms of deserialisation efficiency and memory utilisation.

3.3.2. Protocol Buffers (Protobuf)

Protobuf, developed by Google [2008], represents a binary serialisation framework. It employs
schema-based encoding mechanisms for data serialisation. This framework implements similar
fundamental operations to FlatBuffers. These include schema definition and binary encoding
processes. Notable differences between Protobuf and FlatBuffers include several operational
characteristics [Google, 2008]:

¢ Memory Limitations: Requires complete dataset loading into memory, thereby limit-
ing its applicability for large-scale data processing tasks.

24

3.3. Non-Geospatial Formats in Cloud Environments

e Data Parsing Requirements: Unlike FlatBuffers’ zero-copy access, Protobuf requires
data parsing during deserialisation, introducing additional computational overhead.

e Mutability Constraints: Protobuf allows data modification after deserialisation, whereas
FlatBuffers maintains immutable data structures, affecting performance characteristics.

o Language Support and Community: Protobuf benefits from broader language sup-
port and more extensive community adoption compared to FlatBuffers.

3.3.3. Apache Parquet

Apache Parquet [Apache Software Foundation, 2013] is a columnar storage format designed to
support high-performance compression and encoding schemes for managing extensive datasets.
The Parquet ecosystem includes the specification for the Parquet format [Apache Parquet
Contributors, 2013], and various libraries for encoding and decoding Parquet files.

Parquet employs the record shredding and assembly algorithm [Melnik et al., 2010] to effec-
tively flatten nested data structures. Additionally, it implements efficient compression and
encoding schemes tailored to column-level data, enhancing both storage efficiency and query
performance.

The format utilises a hierarchical data organisation structure consisting of multiple levels:
e File: The top-level container that includes metadata and may contain the actual data.

« Row Group: A logical horizontal partitioning of data into rows, with each row group
containing one column chunk per column in the dataset.

¢ Column Chunk: A contiguous chunk of data for a particular column within a specific
TOW group.

e Page: The smallest indivisible unit within column chunks, serving as the fundamental
unit for compression and encoding operations.

Figure 3.3 shows the structure of the Parquet format. This hierarchical organisation enables
efficient data access patterns and optimised compression strategies at different granularity
levels.

3.3.4. Comparison of Non-Geospatial Formats

Existing research has evaluated the performance characteristics of non-geospatial formats
within cloud environments. Proos and Carlsson [2020] conducted a comparative analysis
of FlatBuffers and Protobuf. This focused on metrics such as serialisation/deserialisation
efficiency, memory utilisation, and message size optimisation. Their investigation utilised
randomised message sizes to assess format performance in vehicle-to-server communication
scenarios. The analysis yielded the following observations:

e Processing Efficiency: Protobuf demonstrated superior serialisation performance but
exhibited reduced deserialisation efficiency relative to FlatBuffers.

¢ Memory Optimisation: FlatBuffers consistently displayed lower memory consumption
during both serialisation and deserialisation operations.

25

3. Related Work

Figure 3.3.: Parquet structure. Source: Apache Software Foundation [2013]

e Data Compression: Protobuf achieved greater message size reduction compared to
FlatBuffers.

These findings advocate for the selection of FlatBuffers in applications where deserialisation
performance and memory efficiency are paramount in data processing operations.

3.4. Cloud-Optimised Geospatial Implementations

Contemporary cloud-optimised geospatial implementations encompass formats such as Map-
box Vector Tiles [Mapbox, 2014], FlatGeobuf [FlatGeobuf, 2020a], PMTiles [Protomaps, 2022],
and GeoParquet [GeoParquet Contributors, 2024].

3.4.1. Mapbox Vector Tiles (MVT)

Mapbox [2014] implements a vector tile specification optimised for web-based data delivery.
The format utilises Protobuf [Google, 2008] for the serialisation of two-dimensional geospatial
data and adopts a tile pyramid structure to enhance data retrieval operations.

3.4.2. PMTiles

PMTiles offers a standardised format for managing tile data addressed through Z/X/Y coor-
dinates, supporting both vector and raster tile implementations. The format leverages HTTP

26

3.4. Cloud-Optimised Geospatial Implementations

Range Requests [Internet Engineering Task Force), 2014] to facilitate selective tile retrieval,
thereby optimising network resource utilisation.

3.4.3. FlatGeobuf

FlatGeobuf adheres to the Simple Features OGC [2011] specification by utilising FlatBuffers
[Google, 2014a] for serialisation. The architecture of FlatGeobuf enables efficient serialisation,
deserialisation, and data processing operations through its packed Hilbert R-tree spatial in-
dex. This indexing mechanism, combined with stream search capabilities, allows clients to
selectively retrieve and process specific geographic regions without necessitating the loading
of the entire dataset. Users and applications can effectively choose subsets of data based on
spatial queries, optimising both storage and retrieval operations. Williams [2022a] provides a
comprehensive guide for implementers of FlatGeobuf.

3.4.4. GeoParquet

GeoParquet integrates Parquet’s columnar storage architecture to facilitate optimised geospa-
tial data operations [GeoParquet Contributors, 2024]. The format promotes interoperabil-
ity across cloud data warehouse platforms, including BigQuery [Google, 2011], Snowflake
[Snowflake Inc., 2015], and Redshift [Amazon Web Services, 2012]. Key technical charac-
teristics of GeoParquet include:

e Compression Efficiency: Achieves superior compression ratios relative to alternative
storage formats through columnar data organisation.

e Optimised Read Operations: The columnar architecture enables selective column
access and efficient data filtering via predicate pushdown mechanisms, thereby enhancing
performance in read-intensive workflows.

3.4.5. 3D Tiles

3D Tiles, an OGC standard [OGC, 2019a], provides specifications for streaming and rendering
extensive three-dimensional urban models. The format implements GLTF [Khronos Group,
2015], a WebGL-optimised specification designed for efficient streaming in web environments.

The data structure employs spatial partitioning through bounding volumes, enabling selective
rendering based on camera viewpoint requirements. While this architecture demonstrates
optimal performance for visual rendering tasks, it presents limitations in two key areas: (1)
arbitrary spatial extent retrieval and (2) attribute-based feature querying capabilities.

3.4.6. Comparative Analysis of Cloud-Optimised Geospatial Formats

While acknowledging the inherent limitations of direct format comparisons due to their distinct
design objectives and application domains, Table 3.1 presents a systematic analysis of key
operational characteristics across various cloud-optimised geospatial formats. The evaluation
criteria and their corresponding scales are detailed in Table 3.2. This analysis facilitates the
understanding of format-specific capabilities within their respective operational contexts.

27

3. Related Work

This comparison provides a general overview but is inherently subjective. Direct compar-
isons may not be entirely fair as each format employs different optimisation strategies and
targets different use cases. For example, comparing serialisation performance across formats
with varying spatial indexing approaches may not yield meaningful insights, as the indexing
overhead varies significantly between implementations.

Table 3.1.: Comparative Analysis of Cloud-Optimised Geospatial Formats

Characteristics FlatGeobuf | MVT GeoParquet | GeoJSON 3D Tiles

Serialisation Perfor- .
mance

Deserialisation Per- .
formance

Storage Efficiency

Memory Utilisation

Implementation
Complexity

Spatial Indexing
Random Access .
Support

2 Optimised for GPU rendering

b Tile-based partitioning

¢ Random access to the internal chunks
d Volumetric hierarchical partitioning

Table 3.2.: Evaluation Criteria Color Legend

Color Performance Level Description
—. Red Poor Very slow performance, high resource usage, or not supported
Orange Below Average Slow performance or high complexity
Yellow Average Moderate performance, compression, or basic support
Green Excellent Very fast performance, high efficiency, or full support
—. Gray Not Applicable Feature not available or not applicable to this format

3.5. Research Gaps

While existing studies have made advances in optimising CityJSON through various encoding
techniques, there remains a deficiency in approaches specifically tailored for 3D city models
in cloud environments. Several geospatial data formats have successfully implemented cloud-
native optimisations (as discussed in Section 3.4).

Specifically, while advanced serialisation frameworks like FlatBuffers (detailed in Section 2.11)
have proven effective in cloud-optimised geospatial formats, their application to 3D city mod-
els has not been thoroughly investigated. For example, FlatGeobuf for Simple Features [Flat-
Geobuf, 2020a] has shown success. This research endeavours to address this gap by system-
atically evaluating and implementing encoding methodologies. These methodologies aim to

28

3.5. Research Gaps

enhance decoding efficiency and query flexibility within cloud infrastructures, with the poten-
tial to achieve file size reduction through optimised binary encoding. The proposed approach
is detailed in Chapter 4.

29

4. Methodology

This chapter presents the design and implementation of FlatCityBuf, a cloud-optimised binary
format for 3D city models based on CityJSONSeq. The proposed approach addresses the
limitations of existing formats through efficient binary encoding, spatial indexing, attribute
indexing, and support for partial data retrieval.

4.1. Overview

4.1.1. Methodology Approach

Current 3D city model formats like CityGML, CityJSON, and CityJSONSeq exhibit limita-
tions in cloud environments with large-scale datasets, including retrieval latency, inefficient
spatial querying without additional software support, and insufficient support for partial data
access.

This chapter addresses these limitations through three interconnected objectives:

1. Development of a binary encoding strategy using FlatBuffers that preserves semantic
richness while achieving faster read performance

2. Implementation of dual indexing mechanisms—spatial (packed Hilbert R-tree) and attribute-
based (S+Tree) that accelerate query performance

3. Integration of cloud-native data access patterns through HTTP Range Requests, enabling
partial data retrieval

4.1.2. Outcomes of the Methodology

Before delving into the methodological details, it is important to highlight the tangible research
outcomes produced through this work:

e Data format specification: FlatCityBuf, a cloud-optimised binary format for 3D city
models that maintains semantic compatibility with CityJSON while enabling efficient
cloud-based access patterns.

« Reference implementation: A comprehensive Rust library for encoding, decoding,
and querying FlatCityBuf files, accompanied by command-line interface (CLI) tools for
conversion and validation.

¢ Web demonstration: A web-based prototype application that showcases the partial
data retrieval capabilities of FlatCityBuf through HTTP range requests, demonstrating
practical performance improvements in real-world scenarios.

31

4. Methodology

¢ Performance evaluation: A comprehensive performance evaluation of the proposed
methodology, demonstrating the benefits of the proposed approach in terms of file size,
query latency, memory usage, and other relevant metrics.

These outcomes collectively address the research objectives by providing both a theoretical
framework and practical implementations that validate the approach to cloud-optimised 3D
city model storage and retrieval.

4.1.3. File Structure Overview

The FlatCityBuf format implements a structured binary encoding with five sequentially ar-
ranged components:

o Magic bytes: Eight-byte identifier F’, ’C’, ’B’,’0’, ’1’, 0, ’0’, ’0’) for format validation

e Header section: Contains metadata, attributes schema definitions, and CityJSON
properties

o Spatial index: Implements a Packed Hilbert R-tree [Kamel and Faloutsos, 1993] for
efficient geospatial queries

¢ Attribute index: Utilises a S+Tree for accelerated attribute-based filtering

o Features section: Stores features encoded as FlatBuffers tables

Spatial Index Attribute Index CityJSONFeature1 CityJSONFeature2 CityJSONFeature...
Magic

Head!
Bytes eader

Index CityJSONFeature

Figure 4.1.: Physical layout of the FlatCityBuf file format, showing section boundaries and
alignment considerations for optimised range requests

This sequence-based structure enables incremental file access through HTTP Range Requests—critical
for cloud-based applications where minimising data transfer is essential.

4.1.4. Note on Binary Encoding

FlatCityBuf follows two key conventions for encoding binary data throughout the file format:

1. Size-prefixed FlatBuffers: All FlatBuffers records (header and features) include a
4-byte unsigned integer prefix indicating the buffer size. This enables programs to know
the size of the record without parsing the entire content. The FlatBuffers APT implements
this through finish_size_prefixed or equivalent language-specific methods.

2. Little-endian encoding: For data encoded outside FlatBuffers records (particularly in
spatial and attribute indices), little-endian byte ordering is consistently applied, match-
ing the endianness convention used within FlatBuffers records. This includes numeric
values such as 32-bit and 64-bit integers, floating-point numbers, and offset values within
indices.

32

4.1. Overview

These conventions ensure consistency across the file format and maximise compatibility with
modern CPU architectures, most of which use little-endian byte ordering. The size-prefixing
mechanism is particularly important for cloud-based access patterns, as it facilitates precise
HTTP Range Requests when retrieving specific file segments.

33

4. Methodology

4.2. Magic Bytes

The magic bytes section comprises the first eight bytes of the file:

o The first three bytes contain the ASCII sequence 'FCB’ for FlatCityBuf (0x46 0x43
0x42), serving as an immediate identifier

e The remaining five bytes represent the version number of the file format, compliant with
Semantic Versioning (SemVer) [SemVer, 2013]. As the current version is 0.1.0, the magic
bytes are 'FCB01000’ (0x46 0x43 0x42 0x30 0x31 0x30 0x30 0x30). The last two bytes
are reserved for future use and must be set to zero.

This signature design enables applications to validate file type and version compatibility with-
out parsing the entire header content. The approach was directly inspired by FlatGeoBuf’s
methodology, which uses 'FGB’ (F, G, B characters) in its magic bytes to indicate 'FlatGeoBuf’
[Williams, 2022a].

4.3. Header Section

The header section encapsulates metadata essential for interpreting the file contents, imple-
mented as a size-prefixed FlatBuffers-serialised Header table. The header serves a dual pur-
pose: it maintains compatibility with CityJSON by encoding the equivalent of the first line
of a CityJSONSeq stream [Ledoux et al., 2024]—which contains the root CityJSON object
with metadata, coordinate reference system, and transformations—while adding FlatCityBuf-
specific extensions for optimised retrieval and indexing. The full schema definition for the
header can be found in Appendix A.

In a CityJSONSeq file, the first line contains a valid CityJSON object with empty CityObjects
and vertices arrays but with essential global properties like transform, metadata, and
version. The FlatCityBuf header encodes these same properties alongside additional indexing
information required for cloud-optimised access patterns.

4.3.1. CityJSON Metadata Fields

Here are the core header fields with their data types and significance:

 version - string (required) - CityJSON version identifier (e.g., "2.0"), required field from
CityJSON specification [CityJSON, 2024]

o transform - Transform struct - Contains scale and translation vectors enabling efficient
storage of vertex coordinates through quantisation, derived from CityJSON’s transform
object [CityJSON, 2024]

o reference__system - ReferenceSystem table - Coordinate Reference System (CRS) in-
formation including:

— authority - string - Authority name, typically "EPSG"
— code - string - Numeric identifier of the CRS

— version - string - Version of the CRS definition

34

4.3. Header Section

» geographical__extent - GeographicalExtent struct - 3D bounding box containing min/-
max coordinates for the dataset [CityJSON, 2024]

o identifier - string - Unique identifier for the dataset

e title - string - Human-readable title for the dataset

o reference__date - string - Date of reference for the dataset

« point of contact - Contact table - Contact information for the dataset provider [CityJ-

SON, 2024], containing;:

— poc__contact__name - string - Name of the point of contact

— poc__contact__type - string - Type of contact (e.g., "individual", "organisation")

n n

— poc__role - string - Role of the contact (e.g., "author", "custodian")

— poc__email - string - Email address of the contact

— poc__website - string - Website for the contact

— poc__phone - string - Phone number of the contact

— poc__address_ * - string - Address components including thoroughfare number,
name, locality, postcode, country

4.3.2. Appearance Information

Fields storing global appearance definitions:

« appearance - Appearance table - Container for visual representation properties, follow-
ing CityJSON’s appearance model [CityJSON, 2024], containing;:

— materials - Array of Material tables with properties defined in Table 4.1

Table 4.1.: Material properties in the FlatCityBuf appearance model

Property Data Type Description

name string Required string identifier for the material
ambient__intensity double Double precision value from 0.0 to 1.0
diffuse_ color Array of double Array of double values (RGB) from 0.0 to 1.0
emissive_ color Array of double Array of double values (RGB) from 0.0 to 1.0
specular__color Array of double Array of double values (RGB) from 0.0 to 1.0
shininess double Double precision value from 0.0 to 1.0
transparency double Double precision value from 0.0 to 1.0
is_smooth boolean Boolean flag for smooth shading

— textures - Array of Texture tables with properties defined in Table 4.2

— vertices__texture - Array of Vec2 structs - Array containing UV coordinates (u,v),
each coordinate value must be between 0.0 and 1.0 for proper texture mapping

— default__theme__material - string - String identifying default material theme for
rendering when multiple themes are defined

35

4. Methodology

Table 4.2.: Texture properties in the FlatCityBuf appearance model

Property Data Type Description

type TextureFormat enum TextureFormat enum (PNG, JPG)

image string Required string containing image file name or URL
wrap_mode WrapMode enum WrapMode enum (None, Wrap, Mirror, Clamp, Border)
texture type TextureType enum TextureType enum (Unknown, Specific, Typical)
border_ color Array of double Array of double values (RGBA) from 0.0 to 1.0

— default__theme__texture - string - String identifying default texture theme for
rendering when multiple themes are defined

The appearance model standardises visual properties of city objects, with materials defining
surface properties and textures mapping images onto geometry. This separation from geometry
allows efficient storage through shared material and texture references.

4.3.3. Geometry Templates

Fields supporting geometry reuse:

o templates - Array of Geometry tables - Reusable geometry definitions that can be
instantiated multiple times, following CityJSON’s template concept [CityJSON, 2024]

o templates_ vertices - Array of DoubleVertex structs - Double-precision vertices used
by templates, stored separately from feature vertices for higher precision in the local
coordinate system [CityJSON, 2024]

The templates mechanism enables significant storage efficiency for datasets containing repet-
itive structures such as standardised building designs, street furniture, or vegetation. The
detailed structure of geometry encoding, including boundary representation and semantic sur-
face classification, will be explained further in Section 4.6.2.

4.3.4. Extension Support

Fields enabling to accommodate CityJSON’s extension mechanism:

o extensions - Array of Extension tables - Definitions for CityJSON extensions [CityJ-
SON, 2024], each containing:

— name - string - Extension identifier (e.g., "+Noise")

— url - string - Reference to the extension schema

— version - string - Extension version identifier

— extra_ attributes - string - Stringified JSON schema for extension attributes

— extra__city__objects - string - Stringified JSON schema for extension city objects

— extra_ root__properties - string - Stringified JSON schema for extension root
properties

36

4.3. Header Section

— extra_ semantic__surfaces - string - Stringified JSON schema for extension se-
mantic surfaces

Unlike standard CityJSON [CityJSON, 2024], which references external schema definition files
for extensions, FlatCityBuf embeds the complete extension schemas directly within the file as
stringified JSON. This approach creates a self-contained, all-in-one data format that can be
interpreted correctly without requiring access to external resources.

The embedding of extension schemas follows FlatCityBuf’s design principle of maintaining file
independence while preserving full compatibility with the CityJSON extension mechanism.
The specific implementation details of how extended city objects and semantic surfaces are
encoded in individual features will be explained further in Section 4.6.

4.3.5. Attribute Schema and Indexing Metadata

Fields supporting attribute interpretation and efficient querying:

e columns - Array of Column tables - Schema definitions for attribute data. This metadata
is used to interpret the values of the attributes in the features. Each containing:

— index - int - Numeric identifier of the column

— name - string - Name of the attribute (e.g., "cityname", "owner", etc.)

— type - DataType enum - Data type enumeration (e.g., "Int", "String", etc.)

— nullable - boolean - Optional metadata for validating and interpreting values
— unique - boolean - Optional metadata for validating and interpreting values
— precision - int - Optional metadata for validating and interpreting values

e semantic__columns - Array of Column tables - Schema definitions for semantic sur-
face attributes. Similar to the columns field, but specifically for interpreting attribute
data attached to semantic surfaces in the geometry. This separation allows for different
attribute schemas between city objects and their semantic surfaces.

o features_ count - ulong - Total number of features in the dataset, enables client appli-
cations to pre-allocate resources

¢ index_ node_ size - ushort - Number of entries per node in the spatial index, defaults
to 16, tuned for typical HTTP request sizes

o attribute__index - Array of AttributeIndex structs - Metadata for each attribute index,
containing:

— index - int - Reference to the column being indexed

— length - ulong - Size of the index in bytes

branching_factor - ushort - Branching factor of the index, number of items in
each node is equal to branching factor — 1

— num__unique__items - ulong - Count of unique values for this attribute

37

4. Methodology

The attribute schema system in FlatCityBuf is designed to efficiently interpret binary-encoded
attribute values. The Column table structure is directly adopted from FlatGeoBuf’s approach
[Williams, 2022a], which provides a flexible and extensible way to define attribute schemas.
While optional fields such as nullable, unique, and precision are currently not utilized, they
are included in the schema to accommodate potential future use cases.

4.3.6. Implementation Considerations

The header is designed to be compact while providing all necessary information to interpret the
file. The size-prefixed FlatBuffers encoding enables efficient skipping of the header when only
specific features are needed, important for cloud-based access patterns where minimising data
transfer is essential. All numeric values in the header use little-endian encoding for consistency
with modern architectures.

38

4.4. Spatial Indexing
4.4. Spatial Indexing

Efficient spatial querying is a critical requirement for 3D city model formats, particularly in
cloud environments where minimising data transfer is essential. FlatCityBuf implements a
packed Hilbert R-tree spatial indexing mechanism [Roussopoulos and Leifker, 1985] to enable
selective retrieval of city features based on their geographic location. This section details
the implementation approach, design decisions, and performance characteristics of the spatial
indexing component.

4.4.1. The packed Hilbert R-tree

The spatial indexing mechanism implemented in FlatCityBuf directly adapts the packed Hilbert
R-tree approach developed for FlatGeoBuf [Williams, 2022a]. The design combines several key
features:

e A Hilbert curve-based spatial ordering strategy, inspired by Vladimir Agafonkin’s flat-
bush library, which optimises data locality for spatially proximate features

e A "packed" R-tree implementation, where the tree is maximally filled with no empty
internal slots, optimised for static datasets

e A bottom-up tree construction methodology that builds the index from pre-sorted fea-
tures

o A flattened tree storage format that enables efficient streaming and remote access

The implementation details, including the Hilbert curve encoding algorithm and tree construc-
tion process, were sourced from FlatGeoBuf’s reference implementation [FlatGeobuf, 2020b].
Also, FlatGeoBuf’s implementation is also inspired by Vladimir Agafonkin’s flatbush library
written in JavaScript [Agafonkin, 2010]. The Hilbert curve encoding algorithm, which converts
2D coordinates into a 1D space-filling curve, is based on a non-recursive algorithm described in
Warren [2012]. This approach, known as "2D-C" in spatial indexing literature [Warren, 2012],
ensures that features with high spatial locality also have high storage locality, optimising 1/0
operations for both local and remote access patterns.

The spatial indexing system is designed to support cloud-native access patterns, allowing
efficient retrieval of data directly from cloud storage without requiring a persistent server
process. This is achieved through a combination of the Hilbert-sorted feature ordering and the
packed R-tree structure, which enables piecemeal access to both the index and feature data
over HTTP requests.

It is important to explicitly acknowledge that the spatial indexing code in FlatCityBuf is
a direct adaptation of FlatGeoBuf’s implementation, with modifications primarily focused
on integration with the 3D city model data structure rather than fundamental algorithmic
changes. The original implementation by Bjorn Harrtell and other FlatGeoBuf contributors
[FlatGeobuf, 2020a] provided an excellent foundation that has been proven effective for cloud-
optimised geospatial data.

While the original FlatGeoBuf implementation targets 2D vector geometries, FlatCityBuf ex-
tends this approach to work with 3D city models by using two distinct spatial representations:
the 2D bounding box centroid for Hilbert curve ordering, and the full 2D bounding box for

39

4. Methodology

spatial intersection tests. This dual representation allows efficient spatial indexing while main-
taining accurate spatial query results. The decision to reuse this proven approach rather than
developing a novel indexing mechanism was based on FlatGeoBuf’s demonstrated effectiveness
for cloud-optimised geospatial data formats.

4.4.2. Feature sorting

A key optimisation in FlatCityBuf’s indexing strategy is the spatial ordering of features using
a Hilbert space-filling curve. This technique enhances data locality by ensuring that features
which are spatially proximate in 2D (and 3D) space are also stored close together in the file,
thereby optimising both disk access patterns and HTTP range requests [Williams, 2022a].

The Hilbert curve encoding process for FlatCityBuf follows these steps:

1. For each feature, determine its 2D footprint by calculating the axis-aligned bounding
box (minimum and maximum X,Y coordinates) from all vertices across all contained
CityObjects

2. Calculate the geometric centroid of this 2D footprint

3. Apply a 32-bit Hilbert encoding algorithm to this centroid, converting the 2D spatial
position into a 1D ordering value

4. Sort all features according to their computed Hilbert values in ascending order

5. During serialisation of the sorted features, record both the 2D bounding box and the
byte offset (relative position from the start of the feature section) for each feature

150

] L

Figure 4.2.: Example of a Hilbert curve. Image sourced from Williams [2022a].

40

4.4. Spatial Indexing

These recorded bounding boxes and byte offsets become the foundation for constructing the
bottom layer of the R-tree index. The Hilbert encoding implementation uses a non-recursive
algorithm described in Warren [2012], which has been adapted from the FlatGeoBuf imple-
mentation [FlatGeobuf, 2020b], which in turn was inspired by a public domain implementation
by Rawlinson and Toth [2016].

This approach differs from traditional R-tree construction where nodes are built based on
spatial proximity alone. By pre-sorting features along a space-filling curve before constructing
the R-tree, FlatCityBuf achieves more predictable and efficient 1/O patterns when performing
spatial queries [Williams, 2022b].

4.4.3. Index structure

The spatial index in FlatCityBuf is implemented as a packed Hilbert R-tree, with a flat-
tened, level-ordered storage structure optimised for efficient traversal over HTTP range re-
quests [Williams, 2022a]. The index is built bottom-up from the sorted features, creating a
hierarchical structure where each node represents a spatial region containing its children.

Each index node in the spatial index is represented by a fixed-size binary structure contain-
ing:

e Bounding box coordinates: 4 little-endian double values (4 bytes each) defining the
minimum and maximum X,Y coordinates of the node’s bounding box

« Byte offset: A 64-byte unsigned integer pointing to either:
— For leaf nodes: The position of the corresponding feature in the features section

— For interior nodes: The position of the node’s first child in the index section

This results in a fixed node size, allowing for predictable memory layouts and efficient search
within each node level.

The tree is built using the following process:

1. Create the bottom layer (leaf nodes) using the bounding boxes and byte offsets recorded
during feature serialisation

2. Group these leaf nodes according to their Hilbert-sorted order into parent nodes, with
each parent node containing up to index_node_size children (configurable)

3. Compute the bounding box of each parent node as the union of its children’s bounding
boxes

4. Continue building upward, level by level, until a single root node is reached

5. Serialise the entire tree in level order, starting with the root, then its children, and so
on, following the Eytzinger layout pattern (described in Section 2.9.1) to optimise cache
line utilisation during tree traversal

41

4. Methodology

This "packed" structure ensures that the R-tree is maximally filled (except potentially for the
rightmost nodes at each level), which is possible because the tree is built in bulk from a known
static dataset. The total size of the index is deterministic and based solely on the number of
features and the chosen node size.

Unlike traditional R-trees which support dynamic updates, the packed R-tree in FlatCityBuf is
immutable after creation. This trade-off prioritises read performance and structural efficiency
over the ability to modify the dataset, aligning with the file format’s primary use case as a
cloud-optimised geospatial data delivery mechanism [Williams, 2022b)].

Example Packed RTree with
4 features and Node Size 2

¥ For storage, tree

will be flattened, in
L1,NO L1,N1 “breadth-first" order.
(0-0, 1-0, 1-1, 2-0,

2-1 ...etc)

Y]
Bottom Tree level contains L2,NO L2,N1 L2,N2 L2,N3
features in Hilbert-sorted order (Feature A) (Feature B) (Feature C) (Feature C)

Figure 4.3.: Example of a packed R-tree structure. Image sourced from Williams [2022D].

4.4.4. 2D vs 3D Indexing Considerations

Although FlatCityBuf is designed for 3D city models, the spatial indexing mechanism delib-
erately uses a 2D approach rather than a full 3D implementation. This design decision was
based on several key observations:

o Horizontal Distribution: Most 3D city models are primarily distributed horizontally
in global scale, with limited vertical extent relative to their horizontal footprint

e Query Patterns: Typical spatial queries for city models focus on horizontal regions
(e.g., retrieving buildings within a district), rather than volumetric queries

o Standards Compatibility: OGC API - Features - Part 1: Core [OGC, 2019¢] and
similar standards primarily support 2D spatial querying

o Implementation Efficiency: 2D indexing is computationally simpler and more storage-
efficient than 3D alternatives

Conceptually, the generalization to 3D indexing is possible and would be beneficial for verti-
cally dense metropolitan areas such as Tokyo or New York, where high-rise buildings create
vertical distribution of features. In such environments, 3D spatial indexing could improve
query performance for volumetric queries that consider height constraints or multi-level ur-
ban analysis. However, for the majority of urban environments and current use cases, the
2D approach seems to be sufficient and provides an optimal balance between implementation
complexity and query performance.

42

4.5. Attribute Indexing

4.5. Attribute Indexing

Attribute indexing is a fundamental component of the FlatCityBuf format, enabling efficient
filtering and retrieval of city objects based on their non-spatial properties. This section de-
tails the requirements, design considerations, and implementation of the attribute indexing
system.

4.5.1. Query Requirements Analysis

The attribute indexing system in FlatCityBuf was designed to support query patterns com-
monly encountered in geospatial applications. The prioritization of query operators was deter-
mined through analysis of established standards in the geospatial domain and common usage
patterns in existing GIS software.

Common Query Operators in Geospatial Standards

Two major OGC standards provide guidance on common query operators: Filter Encoding
Standard [OGC, 2010] and Common Query Language [OGC, 2024]. These standards define
operators in several categories, as summarized in Table 4.3.

Table 4.3.: Common query operators in geospatial standards

Category OGC Filter Encoding OGC CQL
Logical Opera- AND, OR, NOT AND, OR, NOT
tors
Comparison Op- PropertylsEqualTo, Prop- =,! =, <, <=, >, >=, LIKE,
erators ertylsNotEqualTo, Proper- IS NULL, BETWEEN, IN
tylsLessThan, Propertyls-
GreaterThan, Propertyls-

LessThanOrEqualTo, Proper-
tylsGreaterThanOrEqualTo,
PropertylsLike, PropertylsNull,

PropertylsBetween
Spatial Opera- BBOX, Equals, Disjoint, INTERSECTS, EQUALS, DIS-
tors Touches, Within, Overlaps, JOINT, TOUCHES, WITHIN,
Crosses, Intersects, Contains, OVERLAPS, CROSSES, CON-
DWithin, Beyond TAINS
Temporal Opera- After, Before, Begins, BegunBy, AFTER, BEFORE, BEGINS,
tors During, TContains, TEquals, BEGUNBY, DURING, TCON-

TOverlaps, Ends, EndedBy, TAINS, TEQUALS, TOVER-
Meets, MetBy, OverlappedBy, LAPS, ENDS, ENDEDBY,

AnylInteracts MEETS, METBY, OVER-
LAPPEDBY, ANYINTER-
ACTS
Additional Capa- Resourceld Functions, Arithmetic Expres-
bilities sions, Array Operators

43

4. Methodology
Priority Operators for FlatCityBuf

Based on this analysis and the practical constraints of optimising for cloud-based access,
FlatCityBuf prioritises support for the following operators:

1. Primary Comparison Operators: Operators with direct index support
o Equality (=)
o Inequality (! =)
e Less than (<)
o Less than or equal (<=)
o Greater than (>)
¢ Greater than or equal (>=)
« BETWEEN (implemented as combined > and <)
2. Logical Combinations: Supported at the query execution level
o AND (intersection of result sets)

e NOT (negation of result sets)

While typical SQL supports more various operators (e.g., LIKE operators), these were not
prioritised in the initial implementation as they are not part of either OGC Filter Encoding
or OGC CQL standards, or because they require more complex index structures that are less
commonly used in typical 3D city model queries.

By focusing on these high-priority operators, FlatCityBuf’s attribute indexing system aims
to support the most common query patterns while maintaining efficient performance for
cloud-based access. This approach provides capabilities that exceed current offerings such
as the 3DBAG API, which primarily supports feature retrieval by identification attribute
(identificatie) and is still working toward full OGC compliance [3SDBAG, 2023].

4.5.2. S+Tree Design and Modifications

After evaluating alternatives, a S+Tree with significant modifications was adopted for FlatC-
ityBuf’s attribute indexing. S+Tree is a variant of the Static B4+Tree that is specialised for
read-only access patterns. Its theoretical background is described in Section 2.10. This decision
was based on the following considerations:

e 1/0 Efficiency and Balanced Performance: B+trees organise data into fixed-size
nodes matching common CPU cache sizes, offering O(loggn) search complexity where
B is the branching factor. This significantly reduces both the number of 1/O operations
and network roundtrips compared to binary search, making it ideal for HTTP Range
Requests where each roundtrip incurs substantial latency.

44

4.5. Attribute Indexing

e Query Versatility: Unlike specialised data structures such as hash tables (optimised for
exact matches) or sorted arrays (better for range queries), the B+tree structure provides
a balanced performance across both exact match and range queries. While not achieving
the optimal performance of specialised structures for specific query types, this balanced
approach makes it well-suited for the diverse query patterns common in 3D city model
applications.

S+Tree Characteristics

A S+Tree differs from a traditional B+tree in several important aspects:

e Immutability: Once constructed, the tree structure remains fixed, eliminating the need
for complex rebalancing operations.

e Perfect Node Fill: All nodes except possibly the rightmost nodes at each level are
filled to capacity, maximising space efficiency.

o Predictable Structure: The tree shape is determined solely by the number of elements
and the node size, making navigation more efficient.

e Bulk Construction: The tree is built bottom-up in a single pass from sorted data,
rather than through incremental insertions.

The original S+tree algorithm as described by Slotin [2021b] provides an excellent foundation
for read-only indexing. However, several significant modifications were necessary to adapt it
to the specific requirements of FlatCityBuf:

e Duplicate Key Handling: 3D city model attributes often contain numerous duplicate
values (e.g., hundreds of features with "Delft" as the value for "city name"). The S+Tree
implementation described in literature [Slotin, 2021b] does not address the case of having
duplicate values. The modified implementation incorporates a dedicated payload section
that efficiently stores multiple feature references for identical attribute values without
compromising the tree structure or search performance.

For handling duplicate keys in indexing structures, Elmasri and Navathe [2015] outlines
three main approaches: (1) including duplicate entries in the index, (2) using variable-
length records with a repeating pointer field, or (3) keeping fixed-length index entries with
a single entry per key value and an extra level of indirection to handle multiple pointers.
FlatCityBuf adopts the third approach, which is "more commonly used" according to
Elmasri and Navathe [2015], by implementing a payload section that stores the collection
of feature offsets for each duplicate key. This design choice was made to maintain a
simple implementation for search algorithms while efficiently handling attributes with
potentially high duplicate cardinality. The fixed-length entries in the tree structure
preserve the binary search efficiency, while the separate payload section accommodates
the variable number of references without complicating the tree traversal logic.

e Multi-type Support: The index structure was extended to handle various attribute
data types commonly found in 3D city models, including numeric types (integers, floating-
point), string values, boolean flags, and temporal data (dates, timestamps).

45

4. Methodology

o Explicit Node Offsets: While the original S+tree uses mathematical calculations to
determine node positions, FlatCityBuf’s implementation stores explicit byte offsets to
child nodes. This modification simplifies the implementation without compromising per-
formance. The parent node item has a 64-bit offset to the first child item of left child
node.

o Payload Pointer Mechanism: To efficiently handle duplicate keys, the implementa-
tion uses a tag bit in the offset value to distinguish between direct feature references
and pointers to the payload section. When the most significant bit is set, the remaining
bits encode an offset to the payload section where multiple feature offsets are stored
consecutively. This approach minimises both the storage overhead and redundant HTTP
requests for unique keys while enabling support for duplicate keys.

These modifications ensure that the S+tree implementation is optimised for the specific char-
acteristics of 3D city model data while preserving the performance advantages of the original
algorithm.

4.5.3. Attribute Index Implementation

The attribute indexing system in FlatCityBuf is implemented as a binary encoded structure
with four main components:

1. Index Metadata: Contains metadata about the index, including the column being
indexed, branching factor, and number of unique values. This is stored in the header
section of the file Section 4.3.5.

2. Tree Structure: A hierarchical arrangement of nodes with keys and pointers. Though
it’s called as "tree", it’s conceptual structure. The actual structure is a linear sequence
of nodes. Both internal and leaf nodes are stored consecutively in the "flat" structure.

3. Payload Section: Stores arrays of feature offsets for duplicate key values. Each payload
entry has a 32-bit length prefix that indicates the number of feature offsets that follow.

Nodel

Node2 Node3
3 6 9 15 18

Noded NodeS5 Node6 Node7 Node8 Node9 Node10
0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16 17 18

StTree Payload Features

Payloadi Payload N
12 3 6 9 15 18 0 1 2 3 4 5 6 7 8 9 10 M 12 13 14 15 16 17 18 - o Featurel Feature N

offsett | offset2

Nodel Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9 Node10

Figure 4.4.: Attribute index implementation in FlatCityBuf

4.5.4. Construction of the Attribute Index

The construction of the attribute index follows these processes:

1. Create pairs of attribute values and their corresponding feature offsets.

46

4.5. Attribute Indexing

2. Sort the pairs by the attribute values.
3. Create the payload section by grouping the feature offsets for duplicate attribute values.

4. Build the tree structure from the bottom layer up, using the configured branching factor
and number of unique values to determine the tree’s height and the array ranges for each
level.

e Leaf nodes: branching factor — 1 items are grouped together as one leaf node. Each
item has a key and a u64 offset to either the feature or payload section.

o Internal nodes: branching factor — 1 items are grouped together as one internal
node. The key value of an internal node is the minimum key of the subtree of its
right child node.

5. Structure the tree from bottom to top and write it to the file in the order from top to
bottom.

4.5.5. Serialisation of Keys in the Tree

Key serialisation in the attribute index is a critical aspect of the implementation, directly af-
fecting both storage efficiency and query performance. FlatCityBuf implements type-specific
serialisation strategies that balance storage requirements, comparison efficiency, and imple-
mentation complexity.

Fixed-Length Value Serialisation

Fixed-length values offer significant advantages for tree structures, enabling predictable node
sizes and efficient binary search within nodes. FlatCityBuf serialises fixed-length values using
the following strategies:

o Integer Types: Primitive integer types (i8, i16, 132, i64, u8, ul6, u32, u64) are serialised
directly in their native binary format using little-endian byte order. For example, a u64
value occupies exactly 8 bytes in the index structure.

o Floating-Point Types: IEEE 754 floating-point values [IEEE SA, 2019] use their
native binary representation, with special handling for NaN values to ensure consistent
ordering semantics. Since Rust’s native floating-point types do not implement ordering
traits, the implementation uses the OrderedFloat wrapper type from the Rust ecosystem
to provide total ordering for floating-point values while preserving their binary efficiency.

e« Temporal Types: Date and timestamp values are serialised using a normalised repre-
sentation that preserves chronological ordering. Timestamps are encoded as a composite
of two components: an i64 representing seconds since the epoch, followed by a u32 rep-
resenting nanosecond precision, both in little-endian order. This 12-byte representation
supports the full range of ISO 8601 datetime values with timezone information [ISO,
2017).

47

4. Methodology

o Boolean Values: Boolean values are encoded as a single byte (0 for false, 1 for true),
aligning with common binary encodings while ensuring consistent sort order. Since
boolean attributes can only have two possible values (true or false), this results in a
degenerate tree structure with just a single root node containing both values. While
this implementation maintains consistency with the general indexing approach, boolean
attributes are rarely used as index keys in real-world 3D city model applications due to
their limited discriminative power.

This direct serialisation approach for fixed-length types minimises both computational over-
head during tree traversal and storage requirements in the index structure.

Variable-Length Value Serialisation

Supporting variable-length keys in B+tree structures presents significant implementation chal-
lenges. As Elmasri and Navathe [2015] notes, variable-length keys can lead to unpredictable
node sizes and uneven fan-out, complicating both the tree construction and traversal algo-
rithms. This issue is particularly relevant for string attributes in 3D city models, where key
lengths can vary substantially.

Modern database systems typically address this challenge through techniques such as prefix
compression, where only the distinguishing prefix of each key is stored in non-leaf nodes. For
example, when indexing last names, a non-leaf node might store only "Nac' and "Nay" as the
discriminating prefixes between "Nachamkin" and "Nayuddin" [Elmasri and Navathe, 2015].

While implementing a full prefix compression scheme would be ideal, it would significantly
increase the complexity of both the indexing algorithm and the format specification. After
evaluating the trade-offs between implementation complexity and the practical requirements
of 3D city model attribute data, FlatCityBuf adopts a pragmatic approach using fixed-length
strings with a maximum length of 50 bytes. This length was selected based on analysis of
common attribute values in 3D city datasets, where typical string attributes such as identifiers
("NL.IMBAG.Pand.0363100012345678"), city names ("Delft"), building types ('residential"),
and similar values rarely exceed this length.

For strings shorter than the fixed length, padding with space characters ensures consistent key
sizes throughout the tree structure. This approach simplifies implementation while still sup-
porting the most common use cases found in 3D city model datasets. The space overhead from
padding is generally acceptable given the relative infrequency of string attributes compared to
numeric attributes in typical datasets.

4.5.6. Query Strategies

The attribute index implementation provides two core functions that enable efficient query
execution:

o find__exact__match: Traverses the tree structure to locate an exact match for a spec-
ified key value.

o find_ partition_ point: Identifies the boundary positions within the tree for a given
query value, essential for range-based operations.

48

4.5. Attribute Indexing

These fundamental functions support both exact match and range queries. Range queries are
implemented by determining lower and upper bounds using find_partition_point and then
retrieving all results within those boundaries. For inequality queries, the implementation uses
find_exact_match to identify the target item and then returns all items except the matched
one. This query functionality aligns with the standard operators defined in OGC [2010]:

e PropertyIsEqualTo

e PropertylIsNotEqualTo

e PropertylsLessThan

e PropertyIsGreaterThan

e PropertyIsLessThanOrEqualTo

e PropertylsGreaterThanOrEqualTo

e PropertyIsBetween

For complex logical operations, the implementation supports compound queries by executing
multiple index lookups and combining the results. For AND operations, it computes the inter-
section of result sets, while OR operations would use the union of results. Currently, only the
AND logical operator is fully implemented.

4.5.7. Streaming S+Tree over HTTP

The index is structured to optimize for HTTP Range Requests, with several techniques em-
ployed to minimize network overhead:

e Streaming search: The search algorithm operates in a streaming fashion, requesting
only the nodes necessary for query evaluation in sequential order. This approach ensures
that even with large indices, the system avoids loading the entire tree structure into
memory, significantly reducing resource requirements.

o Payload Prefetching: Proactively caches parts of the payload section during initial
query execution, reducing HTTP requests for duplicate keys.

o Batch Payload Resolution: Collects multiple payload references during tree traversal
and resolves them with consolidated HTTP requests.

¢ Request Batching: Groups adjacent node requests to minimise network roundtrips.

e Block Alignment: Nodes are aligned to fixed size boundaries to match typical file
system and HTTP caching patterns.

During query execution, the system interprets the provided condition (e.g., building_height
> 25) and traverses the appropriate attribute index to find matching features. The search al-
gorithm selects between find_exact_match for equality conditions or find_partition_point
for range queries, adapting the traversal strategy accordingly. Results are returned as a set of
feature offsets, which can then be used to retrieve the actual feature data from the features
section of the file.

49

4. Methodology

4.6. Feature Encoding

The feature encoding section of FlatCityBuf is responsible for the binary representation of 3D
city objects and their associated data. This component preserves the semantic richness of the
CityJSON model while leveraging FlatBuffers’ efficient binary serialisation. The full schema
definition for feature encoding can be found in Section A.4.

4.6.1. CityJSONFeature and CityObject Structure

FlatCityBuf implements the core structure of CityJSONSeq using the following FlatBuffers
tables:

o CityFeature - table (root object) - The top-level container for city objects: The CityFea-
ture properties are detailed in Table 4.4.

Table 4.4.: CityFeature properties in the FlatCityBuf feature encoding

Property Data Type Description

id string (key, required) Required string identifier, marked as a key field for fast
lookup

objects Array of CityObject tables Collection of individual 3D features

vertices Array of Vertex structs Quantised X,Y,Z coordinates (int32)

appearance Appearance table Optional visual styling information

e CityObject - table - Individual 3D city objects with properties detailed in Table 4.5

Table 4.5.: CityObject properties in the FlatCityBuf feature encoding

Property Data Type Description

type CityObjectType enum Object classification (Building, Bridge, etc.) fol-
lowing CityJSON types

id string (key, required) Required string identifier, marked as a key field

geographical__extent GeographicalExtent struct 3D bounding box of the object

geometry Array of Geometry tables Shape information

attributes ubyte array Binary blob containing attribute values (inter-
pretable via columns schema)

columns Array of Column tables Schema defining attribute types and names

children Array of string IDs referencing child objects

children__roles Array of string Descriptions of relationship roles

parents Array of string IDs referencing parent objects

extension_ type string Optional type for extended objects (e.g.,

"+NoiseBuilding")

This structure maintains CityJSON’s hierarchical organisation while taking advantage of Flat-
Buffers’ binary encoding and zero-copy access capabilities, with the exception of attributes
which are self-encoded as binary blobs.

50

4.6. Feature Encoding

4.6.2. Geometry Encoding

Geometry in FlatCityBuf follows CityJSON’s boundary representation (B-rep) model with
flattened arrays for FlatBuffers encoding:

e Geometry - table - Container for geometric representation with properties detailed in
Table 4.6

Table 4.6.: Geometry properties in the FlatCityBuf feature encoding

Property Data Type Description

type GeometryType enum Geometric dimension type (0D-Point, 1D-
LineString, etc.)

lod float Level of Detail value

boundaries Array of uint32 Indices referencing vertices

strings Array of uint32 Counts defining vertex groups

surfaces Array of uint32 Counts defining string groups

shells Array of uint32 Counts defining surface groups

solids Array of uint32 Counts defining shell groups

semantics__boundaries Array of uint32 Parallel arrays to boundaries for semantic
classification

semantics_ values Array of SemanticObject tables Semantic information for surfaces

¢ SemanticObject - table - Semantic classification of geometry parts with properties
detailed in Table 4.7

Table 4.7.: SemanticObject properties in the FlatCityBuf feature encoding

Property Data Type Description

type SemanticSurfaceType enum Surface classification (WallSurface, RoofSurface,
etc.)

extension_ type string Optional extended semantic type name

attributes ubyte array Binary blob containing semantic-specific attributes

columns Array of Column tables Schema defining attribute types and names

parent uint32 Index to parent semantic object

children Array of uint32 Indices to child semantic objects

¢ GeometrylInstance - table - Reference to template geometry with properties detailed
in Table 4.8

Table 4.8.: Geometrylnstance properties in the FlatCityBuf feature encoding

Property Data Type Description

transformation TransformationMatrix struct 4x4 transformation matrix

template uint32 Index referencing a template in the header section

boundaries Array of uint32 Single-element array containing reference point in-
dex

e Vertex - struct - Quantised 3D coordinates with properties detailed in Table 4.9

o1

4. Methodology

Table 4.9.: Vertex properties in the FlatCityBuf feature encoding

Property Data Type Description

x int32 X coordinate, converted using header transform
y int32 Y coordinate, converted using header transform
z int32 Z coordinate, converted using header transform

Hierarchical Boundaries as Flattened Arrays

A key challenge in adapting CityJSON’s recursive boundary representation to FlatBuffers is
that FlatBuffers does not support nested arrays. FlatCityBuf addresses this by implementing
a dimensional hierarchy encoded as parallel flattened arrays:

The encoding strategy follows a dimensional hierarchy from lowest to highest dimension:

1. boundaries: A single flattened array of integer vertex indices

2. strings: Array where each value indicates the number of vertices in each ring/boundary
3. surfaces: Array where each value indicates the number of strings/rings in each surface
4. shells: Array where each value indicates the number of surfaces in each shell

5. solids: Array where each value indicates the number of shells in each solid

Figure 4.5.: Example of a triangle encoded Figure 4.6.: Example of a cube encoded as
as a hierarchical boundary. a hierarchical boundary.

For example, a simple triangle would be encoded as:

1 boundaries: [0, 1, 2] // Indices of three vertices
> strings: [3] // Single string with 3 vertices
s surfaces: [1] // Single surface containing 1 string

Listing 4.1: Hierarchical boundary encoding for a simple triangle

A more complex structure such as a cube (a solid with 6 quadrilateral faces) would be encoded
as:

52

4.6. Feature Encoding

. boundaries: [0, 1, 2, 3, 0, 3, 7, 4, 1, 5, 6, 2, 4, 7, 6, 5, 0, 4, 5, 1,
2, 6, 7, 3]

> strings: [4, 4, 4, 4, 4, 4] // 6 strings with 4 vertices each
;s surfaces: [1, 1, 1, 1, 1, 1] // 6 surfaces with 1 string each
1 shells: [6] // 1 shell with 6 surfaces

5 solids: [1] // 1 solid with 1 shell

Listing 4.2: Hierarchical boundary encoding for a cube structure

Semantic Surface Encoding

Semantic surface information is encoded using a similar approach:

« semantics_ values: Array of SemanticObject tables containing type classifications, at-
tributes, and hierarchical relationships

o semantics__boundaries: Array of indices that reference entries in semantics wvalues,
with a parallel structure to the geometry boundaries

This parallel structure allows each geometric component to have associated semantic informa-
tion without requiring deeply nested structures. For example, in a building model where each
face has a semantic classification (wall, roof, etc.), the semantics _boundaries array would have
the same structure as the boundaries array, with each surface having a corresponding semantic
value.

Through this flattened array approach, FlatCityBuf preserves the rich hierarchical structure of
CityJSON geometries while conforming to FlatBuffers’ efficiency-oriented constraints on data
organisation.

Geometry Template Encoding

FlatCityBuf implements CityJSON’s template mechanism for efficient representation of re-
peated geometry patterns, a common requirement in urban environments where many build-
ings, street furniture items, vegetation, or other objects share identical geometric structures.
The template approach separates the geometry definition from its instantiation:

o Template Definition: Templates are defined once in the header section as full Geom-
etry objects with characteristics detailed in Table 4.10

Table 4.10.: Template Definition characteristics in FlatCityBuf geometry templates

Characteristic Description

Geometry format Templates use the same Geometry table format described previously for standard

geometries

Vertex precision Template vertices are stored with double-precision coordinates (DoubleVertex)
to maintain accuracy in the local coordinate system

Vertex storage All template vertices for all templates are stored in a single flat array

(templates_vertices)
Index referencing Indices within template boundaries reference positions in this dedicated template
vertex array

93

4. Methodology

o Template Instantiation: CityObjects reference templates through GeometrylInstance
tables with properties detailed in Table 4.11

Table 4.11.: Template Instantiation properties in FlatCityBuf geometry templates

Property Data Type Description

template uint A single unsigned integer index referencing a specific tem-
plate in the header

boundaries Array of uint Contains exactly one index referencing a vertex in the fea-
ture’s vertex array, which serves as the reference point for
placement

transformation TransformationMatrix A 4x4 transformation matrix (rotation, translation, scal-
ing) that positions the template relative to the reference
point

FlatCityBuf preserves CityJSON’s template mechanism, which provides significant storage
efficiency by storing repeated geometries once and referencing them with transformation pa-
rameters.

4.6.3. Materials and Textures

FlatCityBuf supports CityJSON’s appearance model through the following structures:

e Appearance - table - Container for visual styling information with properties detailed
in Table 4.12

Table 4.12.: Appearance properties in FlatCityBuf feature encoding

Property Data Type Description

materials Array of Material tables Surface visual properties definitions
textures Array of Texture tables Image mapping information
vertices_ texture Array of Vec2 structs UV coordinates for texture mapping
material _mapping Array of MaterialMapping tables Links materials to surfaces
texture__mapping Array of TextureMapping tables Links textures to surfaces

default_ theme_material string Default material theme identifier
default_ theme_ texture string Default texture theme identifier

e Material - table - Surface visual properties with properties detailed in Table 4.13
e Texture - table - Image mapping information with properties detailed in Table 4.14

e MaterialMapping - table - Links materials to surfaces with properties detailed in Ta-
ble 4.15

o TextureMapping - table - Links textures to surfaces with properties detailed in Ta-
ble 4.16

This implementation prioritizes efficient storage by referencing external texture files rather
than embedding image data directly, enabling selective loading based on application require-
ments while maintaining full compatibility with CityJSON’s appearance model.

54

4.6. Feature Encoding

Table 4.13.: Material properties in FlatCityBuf feature encoding

Property

Data Type

Description

name

string (required)

ambient__intensity double

diffuse color
emissive color
specular__color

Array of double
Array of double
Array of double

Unique material identifier
Value from 0.0 to 1.0

RGB values from 0.0 to 1.0
RGB values from 0.0 to 1.0
RGB values from 0.0 to 1.0

shininess double Value from 0.0 to 128.0
transparency double Value from 0.0 to 1.0
is_smooth boolean Flag for smooth shading
Table 4.14.: Texture properties in FlatCityBuf feature encoding
Property Data Type Description
type TextureFormat enum Format type (PNG, JPG)
image string (required) Image file name or URL

wrap_ mode
texture_ type
border__color

WrapMode enum
TextureType enum
Array of double

Wrapping option (None, Wrap, Mirror, Clamp, Border)
Type classification (Unknown, Specific, Typical)
RGBA values from 0.0 to 1.0

Texture Storage Design Rationale

FlatCityBuf stores texture references rather than embedding texture data directly for several
strategic reasons:

e Performance Priority: Enables rapid loading of geometric and semantic data without
the overhead of large texture files when not required.

¢ On-demand Loading: Supports selective texture loading based on application needs,
beneficial for analysis-focused use cases.

e Size Management: Maintains reasonable file sizes for large-scale datasets.

« Web Efficiency: Individual texture files can be cached by browsers or Content De-
livery Network (CDN)s, significantly improving performance for repeated access in web
applications.

This approach follows established patterns in formats like glTF, OBJ, and I3S, prioritizing
operational efficiency over self-contained packaging for city-scale datasets.

4.6.4. Attribute Encoding

Attributes in FlatCityBuf are encoded as binary data with a schema defined through Column
tables, which were detailed previously in Section 4.3.5. Rather than repeating column structure
information, this section focuses on the binary encoding strategy:

e Attribute Binary Encoding - Efficient type-specific serialisation:

— Numeric types - Native binary representation (little-endian)

95

4. Methodology

Table 4.15.: MaterialMapping properties in FlatCityBuf feature encoding

Property Data Type Description

theme string Theme identifier (e.g., "summer", "winter")
values Array of uint32 Indices to surfaces or boundaries

material uint32 Index to the referenced material

Table 4.16.: TextureMapping properties in FlatCityBuf feature encoding

Property Data Type Description

theme string Theme identifier (e.g., "summer", "winter")
values Array of uint32 Indices to surfaces or boundaries

texture uint32 Index to the referenced texture

uv_indexes Array of uint32 Indices to UV coordinates

String - Length-prefixed UTF-8 encoding

Boolean - Single byte (0 = false, 1 = true)
— Date/DateTime - Standardised binary format

— Buyte array - Length-prefixed binary data

Nested JSON - Length-prefixed JSON string encoding of complex nested structures

Null - Not encoded to save space (null attributes are omitted from the binary
representation)

FlatCityBuf encodes attributes as type-specific binary values with a corresponding schema
definition. Each attribute is stored as a key-value pair where the key is the column index and
the value is the binary representation of the attribute. This approach balances flexibility with
reasonable performance while maintaining compatibility with the original CityJSON semantic
model. The figure below illustrates how different attribute types are encoded in the binary
format.

5 (u32, 4 bytes,

0 20.05 (f32, 4 byt Delft (byte array of Stri
(f32, ytes) lengthiprefix) elft (byte array of String)
index of column value of “height” attribute length prefix of “cityName” attribute value of “cityName” attribute

Figure 4.7.: Example of attribute encoding in FlatCityBuf

4.6.5. Extension Mechanism

FlatCityBuf provides comprehensive support for CityJSON’s Extension mechanism, which
was previously detailed in Section 4.3.4. While the Extension structures are defined in the
header, their implementation within actual city features requires specific encoding strategies
that balance extensibility with performance.

56

4.6. Feature Encoding

Encoding of Extended City Objects

Extended city object types (those prefixed with "+") are encoded using a two-part strategy:

e A standard enum value ExtensionObject is used for the type field to distinguish whether
the extended object or core object

o The actual extension type name (e.g., "+NoiseCityFurnitureSegment") is stored in the
extension_type string field (This will be null for core objects)

Encoding of Extended Semantic Surfaces

Similarly, extended semantic surface types follow the same pattern:

e The type field uses the enum value ExtraSemanticSurface

o The specific type (e.g., "+ThermalSurface") is stored in the extension_type field (This
will be null for core objects)

Extension Attribute Encoding

Extension-specific attributes are encoded using the same binary serialisation mechanism as
core attributes:

o Extension attributes are included in the same binary representation as standard at-
tributes

o The schema for these attributes is stored alongside the columns of the Header table (See
Section 4.3.5)

During decoding:
e The same decoding logic is applied as for core attributes

o If needed, the application can identify extension attributes by checking if the column
name begins with "+"

Adding New Properties at the Root of a Document

Adding new properties at the root level follows the same principle as adding extension at-
tributes to existing City Objects. Since root-level extensions are also arbitrary structured
JSON objects, fields starting with "4" are treated as extension attributes. The attribute en-
coding mechanism does not distinguish whether attribute keys start with "+" or not, so no
special treatment is required.

However, since each City Object can already have extended attributes, this approach is rarely
needed in practice. Consequently, we have not yet implemented this functionality.

Unlike CityJSON, which references external schema files for extensions, FlatCityBuf’s self-
contained approach ensures that all extension information is available within a single file.
This approach maintains the cloud-optimised philosophy of minimising external dependencies
while preserving full compatibility with the rich extension capabilities of CityJSON.

o7

4. Methodology

4.7. HTTP Range Requests and Cloud Optimisation

A critical component of cloud-optimised geospatial formats is their ability to support selec-
tive data retrieval without downloading entire datasets. FlatCityBuf achieves this capability
through strategic implementation of HTTP Range Requests [Internet Engineering Task Force),
2014], enabling efficient partial data retrieval. This section details the technical implementa-
tion, optimisation strategies, and cross-platform compatibility of this mechanism.

4.7.1. Principles of Partial Data Retrieval

HTTP Range Requests, defined in RFC 7233 [RFC, 2010], allow clients to request specific
byte ranges from server resources instead of entire files. This capability is fundamental to
FlatCityBuf’s cloud-optimised design. Since each feature in FlatCityBuf is length-prefixed,
once the client knows the byte offset to a specific feature, can request precisely the bytes
needed. While data access patterns vary—from sequential access to spatially or attribute-
indexed retrieval—the core principle remains consistent: fetch only the necessary data.

4.7.2. Range Request Workflow

The HTTP Range Request workflow in FlatCityBuf follows a carefully optimised sequential
process:

1. Header Retrieval: The client first requests the magic bytes (8 bytes) and Header
(described in Section 4.3.5). This initial request provides essential metadata including
coordinate reference systems, transformations, the total number of features, and index
structure information etc..

2. Index Navigation: Based on query parameters (spatial bounding box or attribute
conditions), the client selectively navigates the appropriate index structures:

o For spatial queries, the client traverses only the relevant nodes of the packed Hilbert
R-tree along the query path

e For attribute queries, the client similarly traverses only the necessary portions of
the appropriate S+Tree indices

3. Feature Resolution: Using byte offsets obtained from the indices, the client makes
targeted range requests for specific features. The size of each feature is determined
implicitly by the difference between consecutive offsets. The absolute byte offset of a
feature within the file can be calculated by summing the size of the Magic bytes, the
size of the Header, the size of the indices, and the relative offset of the feature.

4. Progressive Processing: Features are processed incrementally as they arrive, allow-
ing applications to begin rendering or analysis before all data is received, significantly
improving perceived performance.

This workflow enables efficient partial data retrieval by leveraging indexing strategies to min-
imize both the number of HTTP requests and the total data volume transferred.

58

4.7. HTTP Range Requests and Cloud Optimisation

Client Server

GET /data.fcb Range: bytes=0-7

Magic Bytes + Header Size
ISP
GET /data.fcb Range: bytes=8-{8+HeaderSize-1}
Header Data
I
Process header and decide query
GET /data.fcb Range: bytes={SpatiallndexOffset}-{SpatiallndexOffset+X}
Part of Spatial Index
I PP
Traverse spatial index to find features
GET /data.fcb Range: bytes={Feature10ffset}-{Feature10ffset+Feature1Size-1}
Feature 1 Data
@+ <ot e e e e e e e e et eoeoeeeeaeeasoeososoasosscseasoaeoaeoneed
GET /data.fcb Range: bytes={Feature20ffset}-{Feature20ffset+Feature2Size-1}
Feature 2 Data
I PP
Client Server

Figure 4.8.: HTTP Range Request workflow in FlatCityBuf showing the sequential process of
header retrieval, index navigation, and selective feature retrieval. The client makes targeted
requests for specific byte ranges rather than downloading the entire dataset.

99

4. Methodology

4.7.3. Optimisation Techniques

Network latency often dominates performance when accessing data over HTTP, with each
request incurring significant overhead regardless of payload size. FlatCityBuf implements
several techniques to minimise this overhead:

¢« Request Batching: Multiple feature requests are grouped into larger, consolidated

HTTP requests rather than making individual requests for each feature. This approach
significantly reduces the number of HTTP round trips, improving overall performance
while minimising network overhead.

Payload Prefetching: As explained in Section 4.5.7, when an attribute index is about
to be used, the implementation proactively downloads a portion of its payload section.
This anticipatory approach reduces latency for subsequent operations by having relevant
data already available in memory when needed.

Streaming Process of Indices: Both spatial and attribute indices implement a stream-
ing approach where only the necessary node items in the tree structure are loaded when
needed. Rather than loading entire index structures upfront, the system traverses the
tree on demand, requesting only the relevant portions required for the current query.

Buffered HTTP Client: The implementation leverages a buffered HTTP client library
developed by Kalberer [2021] that efficiently caches previously fetched data ranges, avoid-
ing redundant requests when overlapping ranges are accessed.

These optimisations work in concert to minimise the number of HTTP requests, resulting in
significantly improved performance for cloud-based 3D city model applications.

60

5. Result

5.1. Overview

This chapter presents comprehensive evaluations of the FlatCityBuf format, demonstrating
its performance characteristics and practical applicability through multiple assessment ap-
proaches. The evaluation encompasses both technical performance metrics and real-world
implementation scenarios to provide a holistic understanding of the format’s capabilities.

The chapter is structured around several key evaluation components. First, a web prototype
implementation is presented to demonstrate FlatCityBuf’s practical capabilities in browser
environments, showcasing how the format enables partial data access for large 3D city models
through HTTP Range Requests.

Second, the datasets used throughout the evaluation are described, including both the es-
tablished benchmark datasets from Ledoux et al. [2024] and additional PLATEAU datasets
from the Takeshiba district of Tokyo, providing context for the performance comparisons and
ensuring reproducibility of results.

Third, file size comparisons are conducted across different encoding formats to evaluate stor-
age efficiency and compression characteristics of FlatCityBuf relative to existing CityJSON
variants.

Finally, web environment evaluations demonstrate real-world performance characteristics by
measuring data retrieval times and network efficiency in browser-based scenarios. These tests
specifically evaluate the effectiveness of HTTP Range Requests for selective data access, pro-
viding insights into bandwidth optimisation and response times critical for web-based 3D city
model applications.

The following sections present detailed results from each evaluation component, culminating
in integrated analyses that synthesise findings to provide comprehensive insights into FlatCi-
tyBuf’s performance characteristics and practical benefits for 3D city model applications.

5.1.1. Web Prototype

To demonstrate FlatCityBuf’s capabilities in web environments and illustrate practical user in-
teractions with the data, a functional web prototype was developed. The prototype is publicly
accessible at https://fcb-web-prototype.netlify.app/. It leverages the WebAssembly
module of FlatCityBuf combined with TypeScript and React for the frontend implementation,
with Cesium serving as the 3D map rendering engine.

The prototype operates on a substantial dataset covering approximately 20km x 20km of
South Holland, Netherlands, stored as a single 3.4GB FlatCityBuf file. This file is delivered
directly from Google Cloud Storage[Cloud, 2010], a serverless storage service, where it exists as
a static file similar to images or videos, requiring no specialized server-side processing. Despite

61

https://fcb-web-prototype.netlify.app/

5. Result

this large file size, the application remains responsive by utilising the HTTP range request
capabilities described in Section 5.1.3. Users can interact with the data through several query
mechanisms:

o Spatial queries: Users can filter features either by defining a spatial bounding box or by
placing a point on the map to retrieve features based on intersection or nearest-neighbor
relationships.

e Attribute queries: The interface supports filtering features through attribute condi-
tions (e.g., building id = 1, height > 10m), demonstrating the attribute index ca-
pabilities.

e Data export: Users can download the filtered subset of features in CityJSONSeq format,
showcasing the format conversion capabilities.

This prototype effectively demonstrates how FlatCityBuf enables browser-based applications
to work with large 3D city models without downloading the entire dataset, providing responsive
performance even on consumer-grade hardware and network connections.

Z/& “a WG v X A\ s

Data Fetch Controls

7 FetchMode

O spatial Attribute Condition
Spatial Query Type
© BBox Point Intersect Nearest Neighbor

Load Next Batch (41/529480)

X\

Export Options

Download CJSeq

AV) "'\4'».

Datai'© 3DBAG | Map: © Potered by Geoaplfy | OpenMapTiles | © OpenStr
. a “a m

CityJSONSeq Overview

CityJSON Information CityJSONFeature Statistics of selected features

vor{ Statistic Value
" g "City)SONFeature"

“NL. IMBAG. Pand. 0273100000006069"
tMap{...}

Total Features 529480

’ Selected Features M

City)SONFeature"
AG. Pand. 0273100000006071"

e I

~"metadata”: {
>"geographicalExtent": [...] yObj Map {...
>'vertices": [...]

Figure 5.1.: Web prototype of FlatCityBuf demonstrating spatial and attribute query capabil-
ities on a 3.4GB dataset of South Holland.

5.1.2. Cross-Platform Implementation

FlatCityBuf provides range request capabilities across multiple platforms to maximise acces-
sibility and integration options:

FlatCityBuf is implemented primarily as a Rust library that can be used in both native envi-
ronments and web browsers. The same codebase is compiled to:

o Native Rust library for server-side applications and desktop GIS tools

62

5.2. Datasets

e WASM module for browser-based applications with JavaScript interoperability

This cross-platform approach enables FlatCityBuf to work with both Rust’s native HTTP
clients and browser-based Fetch API implementations. The WASM implementation has one
notable limitation: current browser WASM implementations use a 32-bit memory model (4GB
limit), which may constrain processing of country-level datasets. This limitation will be re-
solved with the upcoming WASM Memory64 proposal [W3C, 2022].

5.1.3. Integration with Cloud Infrastructure

The HTTP Range Request mechanism integrates seamlessly with modern cloud infrastruc-
ture. FlatCityBuf files can be served from standard object storage services like AWS S3,
Google Cloud Storage, or Azure Blob Storage, all of which support range requests without
additional server-side processing. This enables a serverless architecture where the client-side
filtering approach eliminates the need for dedicated server-side processing. This infrastructure
compatibility ensures that FlatCityBuf can be deployed in cost-effective cloud environments
without requiring specialised application servers and databases.

HTTP Client Static file server
HTTP client
(Rust native
G HTTP requests % 3D city model
JavaScript with WASM built) (FlatCityBuf)

Static server

Figure 5.2.: Server architecture for FlatCityBuf. The client-side filtering approach eliminates
the need for dedicated server-side processing.

5.2. Datasets

To evaluate file sizes and conduct both local and web-based benchmarks, we employed a
diverse range of datasets from Ledoux et al. [2024] supplemented with additional datasets
from PLATEAU [PLATEAU, 2020]. PLATEAU employs its own data specification combining
CityGML 2.0 [OGC, 2019b] with a custom ADE. The CityGML-encoded 3D city models were
converted to CityJSON using citygml-tools, a command-line utility developed by Nagel [2018].
Note that PLATEAU’s ADE components are not included in the converted datasets since they
are not compatible with the current CityJSON implementation.

To comprehensively evaluate FlatCityBuf, we utilised diverse PLATEAU models including
buildings, bridges, transport, tunnels, and vegetation. The dataset collection spans various

63

5. Result

Table 5.1.: The datasets used for the benchmark.

dataset size of file attributes

CityObj CityFeat app.®) CityJSONSeq FlatCityBuf compr.® verts avg(c) obj(®) sem(®)

3DBAG 2221 1110 6 MB 6 MB —6% 82612 74 37 1
3DBV 71634 71634 317MB 281 MB 12% 4992893 69.70 64 0
Helsinki 77267 77231 412 MB 345 MB 16% 3039107 39.35 27 9
Helsinki__tex 77267 77231 tex 644 MB 545 MB 15% 3039107 39.35 28 9
Ingolstadt 379 55 4MB 3MB 19% 88001 1600 33 13
Montréal 294 294 tex 5MB 5MB —4% 32242 110 0 0
NYC 23777 23777 95 MB 76 MB 20% 1044145 44 3 3
Rotterdam 853 853 tex 3MB 3MB —4% 26679 31 5 0
Vienna 1322 307 5MB 4MB 14% 47229 154 7 4
Ziirich 198699 52834 247 MB 189 MB 24% 3564542 6.6 8 0
PLATEAU (Building) 10405 4307 77T MB 79 MB —3% 147754 34 14 2
PLATEAU (Bridge) 60 8 5MB 5MB —9% 16357 2045 5 2
PLATEAU (Railway) 412 412 4MB 4MB —2% 5846 14 3 2
PLATEAU (Transport) 8136 8136 26 MB 26 MB —1% 45992 5.65 3 2
PLATEAU (Tunnels) 21 3 5MB 5MB 4% 12306 4102 4 1
PLATEAU (Vegetation) 936 936 2MB 2MB —-31% 2567 2.74 3 0

a appearance: ‘tex’ indicates textures are stored; ‘mat’ indicates materials are stored

b : ... CityJSONSeq—FlatCityBuf "
compression factor is City JSONSeq (positive values indicate size reduction)

¢ average number of vertices per feature
d number of attributes in city objects
€ number of semantic surface attributes in city objects

urban environments from small-scale architectural models to large metropolitan areas across
European and Japanese cities, enabling evaluation across different feature types, geometric
complexities, and data modeling approaches. !

5.3. File Size Comparison

5.3.1. File size results

Table 5.1 presents a comparison of datasets in both CityJSONSeq and FlatCityBuf formats.
The results demonstrate that FlatCityBuf encoding achieves superior compression for several
datasets, including Helsinki, Ingolstadt, and New York City, with compression factors of 16%,
19%, and 20% respectively. Conversely, the PLATEAU datasets exhibit the opposite trend,
with CityJSONSeq format demonstrating better storage efficiency.

5.3.2. Analysis of file size results

Although Section 5.3.1 provides a summary of file size comparisons, the factors influencing
these outcomes require further investigation. This section analyses the underlying causes
through controlled experiments with simplified datasets.

1The datasets used in this evaluation are publicly available at https://github.com/HideBa/
flatcitybuf-data.

64

https://github.com/HideBa/flatcitybuf-data
https://github.com/HideBa/flatcitybuf-data

1

>

+

5.3. File Size Comparison

Level of detail

To examine how Level of Detail (LoD) affects file size, I conducted a series of tests using the TU
Delft BK building model at various LoD levels. Each LoD variant was systematically extracted
from the original model, with attributes and semantic information deliberately removed to
isolate the effect of geometric complexity. Table 5.2 presents the results of this analysis.

Since each test dataset contains only a single city feature, we compare feature sizes rather than
total file sizes. This approach is necessary because FlatCityBuf incorporates a larger header
structure, which would disproportionately affect comparisons involving minimal features.

The results demonstrate that while file sizes increase with higher levels of detail, the com-
pression factor remains largely independent of LoD. Both formats show similar proportional
growth in size as geometric complexity increases, with FlatCityBuf consistently achieving ap-
proximately 25% size reduction compared to CityJSONSeq regardless of the LoD level. This
suggests that the compression efficiency is determined by the underlying format design rather
than the geometric complexity of the data.

Table 5.2.: Comparison of file sizes across different levels of detail for the TU Delft BK building
model.

Dataset FlatCityBuf(a) CityJSONSeq(b) Compression Vertices
TUD BK All 140kB 189 kB 26% 4549
TUD BK LoD0 13kB 21kB 38% 785
TUD BK LoD1.2 37kB 49kB 25% 1350
TUD BK LoD1.3 45kB 60kB 25% 1600
TUD BK LoD2.2 62kB 83kB 25% 2168

Total FlatCityBuf size

Number of features
Total CityJSONSeq size
Number of features

Average feature size in bytes in FlatCityBuf:

Average feature size in bytes in CityJSONSeq:

Attributes

To assess the impact of attributes on file size, we tested simple cube models from [CityJSON,
2019b] with varying numbers of attributes. We systematically generated random attributes
for each test case, examining both integer and string data types to determine their effect on
compression efficiency. Table 5.3 presents the results of this analysis.

The randomly generated attributes in our test datasets followed a consistent pattern, as shown
in the example below:

{

"type": "Building",

"geometry ": [...],

"attributes ": {
"attr_1": "value_ 1",
"attr_2": "value_2",
"attr_3": "value_3",
"attr_4": "value_ 4",
"attr_5": "value_5",

65

5. Result

"attr n'": "value n'

}

.}

Listing 5.1: Example of a CityJSON feature with attributes

Table 5.3.: Comparison of file sizes with varying numbers of attributes for simple cube models.

Dataset FlatCityBuf (@) CityJ SONSeq(b) Compression
10 attributes (int) 580B 611B 5%
100 attributes (int) 2kB 2kB 33%
1000 attributes (int) 12kB 22kB 44%
10 attributes (string) 530 B 611B 5%
100 attributes (string) 2kB 2kB 33%
1000 attributes (string) 12kB 22kB 44%

£ Total FlatCityBuf size

Number of features
Total CityJSONSeq size

Number of features

Average feature size in bytes in FlatCityBu

Average feature size in bytes in CityJSONSeq:

For integer attribute tests, all values were randomly generated integers between 0 and 1000.
For string attribute tests, values were randomly generated strings of varying lengths between
5 and 15 characters. This approach ensured a realistic representation of typical attribute data
while maintaining controlled test conditions.

Figure 5.3.: Simple cube model used for attribute testing. This basic geometric structure
provides a controlled environment for evaluating the impact of attributes on file size.

The results reveal a clear pattern: FlatCityBuf’s compression advantage over CityJSONSeq
increases substantially with the number of attributes. With only 10 attributes, the compression
benefit is minimal at 5%, but rises markedly to 33% with 100 attributes and reaches 44% with
1000 attributes.

This efficiency stems from FlatCityBuf’s architectural design, which stores the attribute schema
once in the file header. Each feature subsequently references attributes using only a 2-byte
(ul6) index, while CityJSONSeq must replicate identical attribute keys across all features.
Although additional attributes increase the header size, this overhead is distributed across all
features in the dataset. The header remains relatively compact—even with 1000 attributes, it
occupies only a few tens of kilobytes.

66

5.3. File Size Comparison

These characteristics render FlatCityBuf particularly advantageous for datasets containing
numerous attributes. The same efficiency applies to semantic surface attributes, where the
schema-based approach provides similar compression benefits when features contain multiple
surfaces with rich semantic information.

Geometry complexity

To evaluate how geometric complexity influences file size, we analysed models with varying
numbers of vertices. The test utilised two geometrically distinct models from the TU Delft
campus dataset—one simple and one complex. To isolate the effect of geometry, attributes and
semantic information were removed, leaving only the essential geometric components required
by CityJSON. Table 5.4 presents the numerical results of this analysis, while Figure 5.4 provides
visual comparisons of the models.

Table 5.4.: Comparison of file sizes with varying geometric complexity.

Dataset FlatCityBuf (@) CityJS ONSeq(b) Compression Vertices/Feature
TUD BK 140kB 189kB 26% 4549
TUD Simple 13kB 15kB 15% 340

Total FlatCityBuf size

Number of features
Total CityJSONSeq size

Number of features

Average feature size in bytes in FlatCityBuf:

Average feature size in bytes in CityJSONSeq:

(a) TUD Simple model (340 vertices/feature) (b) TUD BK model (4549 vertices/feature)

Figure 5.4.: Visual comparison of models with different geometric complexity.

The results demonstrate that geometric complexity significantly affects compression efficiency,
with FlatCityBuf achieving better compression for more intricate models. The TU Delft BK
building model, containing 4549 vertices per feature, exhibits a higher compression rate of 26%
compared to the simpler model with 340 vertices at 15%.

This differential appears to result from the expanding boundary field as geometry becomes
more complex. FlatCityBuf employs a strongly typed representation of boundaries (using
u32 integers) that maintains a constant size for encoding each vertex, whereas CityJSONSeq
requires additional bytes due to its text-based format. This fundamental difference in geometry
encoding becomes increasingly advantageous for FlatCityBuf as geometric complexity rises.

67

5. Result

Vertices and coordinates

To investigate how coordinate scale affects file size, I conducted tests using identical cube ge-
ometries with different coordinate magnitudes. All test models represent the same simple cube
shape with identical geometric complexity (8 vertices per feature), but the coordinate values
are scaled to different magnitudes—ranging from single digits to millions—while maintaining
the same spatial relationships. Table 5.5 presents the results of this analysis, utilising the same
base cube geometry as in Section 5.3.2.

Table 5.5.: Comparison of file sizes with varying coordinate scales.

Dataset FlatCityBuf(a) CityJSONSeq(b) Compression Scale
Cube (1) 476 B 370B —29% 1
Cube (10) 476 B 459 B —4% 10
Cube (1k) 476 B 507B 6% 1,000
Cube (1M) 476 B 579B 18% 1,000,000

£ Total FlatCityBuf size

Number of features
Total CityJSONSeq size

Number of features

Average feature size in bytes in FlatCityBu

Average feature size in bytes in CityJSONSeq:

The results reveal an intriguing relationship between coordinate scale and file size in both for-
mats. FlatCityBuf maintains a consistent size of 476 bytes regardless of coordinate magnitude,
demonstrating its fixed-size binary encoding for numeric values. In contrast, CityJSONSeq’s
file size increases proportionally with larger coordinate values, growing from 370 bytes with
single-digit coordinates to 579 bytes with million-scale coordinates.

This behaviour occurs because both FlatCityBuf and CityJSONSeq use integer values as co-
ordinates, which are quantised by the Transform field as explained in Section 3.2.2. However,
FlatCityBuf stores these coordinates as fixed-size 32-bit integers, while CityJSONSeq, be-
ing a text-based format, requires more characters to represent larger numbers. Consequently,
FlatCityBuf transitions from being less efficient than CityJSONSeq for small coordinate values
(-29%) to substantially more efficient for large coordinate values (18%).

This characteristic explains the pattern observed in Section 5.3.1. FlatCityBuf demonstrates
lower storage efficiency for PLATEAU datasets, likely because these datasets employ geo-
graphic coordinate systems with values typically between -180 and 180. Since CityJSON
quantises coordinates through the Transform field, latitude and longitude values can be rep-
resented as relatively small integers. Conversely, datasets where FlatCityBuf performs bet-
ter—such as NYC and Helsinki—use local coordinate systems (in metres) with larger internal
values, resulting in improved compression efficiency with FlatCityBuf.

Summary of File Size Analysis

The comprehensive analysis of various factors affecting file size reveals distinct patterns in the
compression performance of FlatCityBuf compared to CityJSONSeq:

e Level of Detail: The analysis demonstrates that geometric detail levels have minimal
impact on compression efficiency. While file sizes naturally increase with higher LoDs,
the compression advantage of FlatCityBuf remains relatively consistent at approximately
25% across different levels of geometric complexity.

68

5.4. Benchmark on Local Environment

e Attribute Quantity: The number of attributes significantly influences compression
performance. FlatCityBuf’s efficiency increases dramatically with attribute count, from
minimal compression (5%) with 10 attributes to substantial compression (44%) with 1000
attributes. This progressive advantage stems from FlatCityBuf’s schema-based approach
that eliminates redundant attribute key storage.

¢ Geometric Complexity: More intricate geometries benefit from improved compression
with FlatCityBuf. As boundary fields expand with geometric complexity, FlatCityBuf’s
fixed-size numeric representation provides greater efficiency compared to the text-based
encoding of CityJSONSeq, increasing compression from 15% for simple geometries to
26% for complex models.

o Coordinate Scale: The magnitude of coordinate values has a significant impact on
compression efficiency. FlatCityBuf’s constant-size integer representation maintains con-
sistent file sizes regardless of coordinate scale, while CityJSONSeq requires more space
for larger values. This creates a transition from inferior compression (-29%) with small
coordinate values to superior compression (18%) with large coordinate values.

These findings elucidate the observed variations in compression performance across different
datasets in Table 5.1. FlatCityBuf demonstrates optimal performance for datasets with numer-
ous attributes, complex geometries, and large-scale coordinate systems, while CityJSONSeq
may retain advantages for simpler datasets with limited attributes and smaller coordinate
values.

5.4. Benchmark on Local Environment

This section presents a comprehensive performance evaluation of the FlatCityBuf format con-
ducted in a controlled local environment. The analysis focuses on critical metrics including
read operations, memory utilisation, and processing efficiency to establish a thorough under-
standing of the format’s performance characteristics.

5.4.1. Test Environment

All benchmarks were executed within a consistent hardware and software configuration to
ensure reliability and reproducibility:

e Hardware: Apple MacBook Pro with M1 Max chip, 32GB unified memory
e Operating System: macOS Sequoia 15.4
e Storage: 1TB SSD with approximately 200GB available capacity

¢ Runtime Environment: Rust 1.86.0, with optimised release builds

69

5. Result

5.4.2. Measurement Parameters

The benchmark framework captured multiple performance dimensions through the following
key indicators:

¢ Read Performance: Time required to deserialise the file and map the data into memory
using zero-copy techniques, measured in milliseconds with microsecond precision

e Memory Efficiency: Peak Resident Set Size (RSS) during file processing, providing
an accurate measurement of maximum memory requirements

These parameters were systematically measured across all encoding formats—CityJSONSeq,
CBOR, BSON, and FlatCityBuf—to facilitate direct performance comparisons. CBOR and
BSON were selected as additional comparison formats because they are JSON-compatible bi-
nary encoding formats, providing a meaningful intermediate comparison between text-based
CityJSONSeq and the custom FlatCityBuf implementation. For CBOR and BSON evaluation,
single CityJSON files were encoded, which serve as the source for the corresponding CityJ-
SONSeq datasets. Other data formats such as Protocol Buffers or GeoParquet would require
developing dedicated libraries similar to the FlatBuffers implementation, making them less
suitable for this comparative analysis. The subsequent sections present a detailed analysis of
these measurements and their implications for practical applications.

5.4.3. Read Performance FlatCityBuf vs CityJSONSeq

The performance comparison between FlatCityBuf and CityJSONSeq was conducted across
multiple datasets, measuring processing time, and memory consumption as key metrics. Ta-
ble 5.6 presents these results.

Table 5.6.: Performance comparison between CityJSONSeq and FlatCityBuf

‘ Processing Time ‘ Memory Consumption
Dataset ‘ cjseq® FlatCityBuf Ratio® ‘ cjseq® FlatCityBuf Ratio®
3DBAG 56.3 ms 6.6 ms 8.6 % 23.9MB 5.1 MB 4.7
3DBV 3.99s 122.5 ms 32.6x 283.8 MB 63.2 MB 4.5%
Helsinki 4.05s 132.2 ms 30.6x 15.3MB 5.2MB 2.9%
Ingolstadt 37.2ms 0.5 ms 75.8% 30.1 MB 6.9 MB 4.4%x
Montréal 50.3 ms 0.6 ms 81.6x 36.3 MB 5.7MB 6.4 %
NYC 887.6 ms 42.9 ms 20.7x 20.6 MB 5.0MB 4.1x
Rotterdam 22.2ms 1.3ms 17.6x 9.2MB 4.4MB 2.1x
Vienna 45.9 ms 1.9ms 24.0x 14.6 MB 5.2MB 2.8%
Zirich 1.88s 151.9 ms 12.4x 31.3MB 5.1MB 6.2x
PLATEAU (Building) 861.4 ms 32.5ms 26.5 % 220.9MB 64.4 MB 3.4x
PLATEAU (Bridge) 83.9ms 0.3 ms 256.8x 75.0 MB 12.0MB 6.3 %
PLATEAU (Railway) 37.9ms 2.0ms 18.5x 19.0 MB 5.1 MB 3.8%
PLATEAU (Transport) 244.0 ms 13.3ms 18.4x 76.7 MB 20.2MB 3.8%
PLATEAU (Tunnels) 47.9 ms 1.9ms 24.9% 70.6 MB 12.6 MB 5.6%
PLATEAU (Vegetation) 852.3 ms 32.9ms 25.9% 189.8 MB 56.9 MB 3.3%

2 CityJSONSeq
b Ratio = CityJSONSeq metric / FlatCityBuf metric (higher values indicate better FlatCityBuf performance)

The performance comparison reveals significant advantages for FlatCityBuf in both processing
time and memory consumption. FlatCityBuf demonstrates consistently superior performance,
processing data between 8.6x and 256.8x faster than CityJSONSeq across all datasets. The
most dramatic improvements are observed for the PLATEAU bridge model and Ingolstadt

70

5.4. Benchmark on Local Environment

datasets, which suggests that FlatCityBuf exhibits lower overhead when handling smaller
datasets. Memory consumption is also consistently reduced compared to CityJSONSeq, with
FlatCityBuf showing particularly notable advantages for certain datasets, including Montréal
and the PLATEAU Bridge model.

5.4.4. Read performance FlatCityBuf vs CBOR

The performance comparison between FlatCityBuf and CBOR, was conducted using the same
datasets and measurement methodology. Table 5.7 presents these results.

Table 5.7.: Performance comparison between CBOR, and FlatCityBuf

| Processing Time | Memory Consumption
Dataset | CBOR FlatCityBuf Ratio® | CBOR FlatCityBuf Ratio®
3DBAG 74.0 ms 6.6 ms 11.2x 194.1 MB 5.1 MB 38.1x
3DBV 6.34s 122.5ms 51.8% 4.96 GB 63.2 MB 80.3x
Helsinki 7.97s 132.2ms 60.3 x 5.14GB 5.2MB 1011.2x
Ingolstadt 46.9 ms 0.5 ms 95.7% 187.5 MB 6.9 MB 27.3%x
Montréal 58.4 ms 0.6 ms 94.7x 257.1 MB 5.7MB 45.3 %
NYC 1.33s 42.9 ms 31.0x 1.65GB 5.0MB 337.4%x
Rotterdam 30.8 ms 1.3ms 24.4x 140.0 MB 4.4MB 31.9%x
Vienna 58.8 ms 1.9ms 30.7x 179.8 MB 5.2MB 34.7x
Zurich 3.53s 151.9ms 23.3% 4.51 GB 5.1 MB 913.2%
PLATEAU (Building) 1.06s 32.5ms 32.4x% 1.83GB 64.4 MB 28.4 %
PLATEAU (Bridge) 63.6 ms 0.3 ms 194.7x 305.4 MB 12.0MB 25.6x
PLATEAU (Railway) 46.3 ms 2.0 ms 22.7% 141.0 MB 5.1MB 27.9%
PLATEAU (Transport) 316.1ms 13.3 ms 23.8% 614.5 MB 20.2 MB 30.5%
PLATEAU (Tunnels) 147.7ms 1.9ms 76.7 % 400.2MB 12.6 MB 31.8x%
PLATEAU (Vegetation) 997.8 ms 32.9ms 30.3%x 1.97GB 56.9 MB 35.3%

& Ratio = CBOR metric / FlatCityBuf metric (higher values indicate better FlatCityBuf performance)

The benchmark results demonstrate that FlatCityBuf consistently outperforms CBOR across
all tested datasets. When compared to CBOR, FlatCityBuf achieved processing time im-
provements ranging from 11.2x to 194.7x, with particularly significant speedups observed for
smaller datasets such as the PLATEAU bridge model and Ingolstadt. This pattern reflects
FlatCityBuf’s zero-copy deserialization advantage, which provides proportionally greater ben-
efits when parsing overhead dominates the total processing time in smaller datasets.

Memory consumption was reduced by factors ranging from 25.6x to 1011.2x, with the most
dramatic improvements observed in larger datasets such as Helsinki and Ziirich. This trend
occurs because CBOR requires loading the entire dataset into memory during deserialization,
while FlatCityBuf’s zero-copy approach allows selective access without full memory allocation.
As dataset size increases, this fundamental difference in memory management strategy becomes
increasingly pronounced.

5.4.5. Read performance FlatCityBuf vs BSON
The performance comparison between FlatCityBuf and BSON followed the same methodology
as the previous comparisons. Table 5.8 presents the detailed results.

The benchmark results show that FlatCityBuf significantly outperforms BSON across all tested
datasets. Processing time improvements ranged from 17.8x to 541.8x, with the most dramatic
speedup observed for the PLATEAU bridge model. The exceptional performance gain for

71

5. Result

Table 5.8.:

Performance comparison between BSON and FlatCityBuf

Processing Time

Memory Consumption

Dataset | BSON FlatCityBuf Ratio® | BSON FlatCityBuf Ratio®
3DBAG 117.1 ms 6.6 ms 17.8% 276.8 MB 5.1 MB 54.3%x
3DBV 9.97s 122.5ms 81.4x 6.38 GB 63.2 MB 103.4x
Helsinki 14.64s 132.2 ms 110.7x 6.77GB 5.2MB 1331.7x
Ingolstadt 79.9 ms 0.5 ms 163.1x 267.3 MB 6.9 MB 38.9%
Montréal 151.3 ms 0.6 ms 245.5% 445.5 MB 5.7MB 78.6 %
NYC 1.78s 42.9 ms 41.5% 2.50GB 5.0MB 510.7x
Rotterdam 67.6 ms 1.3ms 53.5% 265.1 MB 4.4MB 60.4x
Vienna 82.0ms 1.9ms 42.9% 239.8 MB 5.2MB 46.2%
Zurich 5.80s 151.9ms 38.2x 6.97 GB 5.1 MB 1409.0x
PLATEAU (Building) 2.37s 32.5ms 72.7x 3.76 GB 64.4 MB 58.4 %
PLATEAU (Bridge) 177.0 ms 0.3 ms 541.8% 500.2 MB 12.0MB 41.9%
PLATEAU (Railway) 80.5 ms 2.0 ms 39.4% 294.0 MB 5.1 MB 58.1x
PLATEAU (Transport) 603 ms 14 ms 43.1x 1.0GB 23.0 MB 46.0x
PLATEAU (Tunnels) 251 ms 2ms 125.5% 618.4 MB 14.2MB 43.5%
PLATEAU (Vegetation) 2.07s 33 ms 65.3% 3.99GB 70.4 MB 71.8%

a Ratio = BSON metric / FlatCityBuf metric (higher values indicate better FlatCityBuf performance)

smaller datasets like PLATEAU bridge model reflects FlatCityBuf’s zero-copy deserialization
advantage, where parsing overhead represents a larger proportion of total processing time.

Memory consumption was reduced by factors ranging from 38.9x to 1409.0x, with the largest
improvements seen in datasets such as Ziirich and Helsinki. This substantial memory efficiency
stems from BSON’s requirement to deserialize the entire document into memory structures,
while FlatCityBuf enables direct access to data without full memory allocation. The perfor-
mance gains are generally more pronounced than those observed in the CBOR, comparison.

5.4.6. Summary of local environment benchmark

To summarise the results of the local environment benchmark, FlatCityBuf demonstrates
significant performance improvements across all tested formats and datasets, with varying
degrees of enhancement depending on the comparison format and dataset characteristics.

e Processing time: Processing time improvements represent the primary objective of this
research. Compared to CityJSONSeq, FlatCityBuf achieved speedups ranging from 8.6 x
(3DBAG) to 256.8x (PLATEAU bridge model). Against CBOR, improvements ranged
from 11.2x (3DBAG) to 194.7x (PLATEAU bridge model). For BSON, the most dra-
matic gains were observed, ranging from 17.8x (3DBAG) to 541.8x (PLATEAU bridge
model). Generally, smaller datasets exhibit higher performance ratios, while larger
datasets show significant absolute time savings despite lower ratios.

e Memory consumption: Memory efficiency improvements varied significantly across for-
mats. Compared to CityJSONSeq, FlatCityBuf achieved reductions ranging from 1.9x
(Rotterdam) to 6.3x (PLATEAU bridge model). Against CBOR, memory consumption
was reduced by factors of 27.3x to 1011.2x, with the largest improvements in datasets
like Helsinki and Ziirich. For BSON, memory reductions ranged from 38.9x to 1409.0x,
with exceptional efficiency gains in large datasets. It should be noted that memory
consumption comparisons with CBOR and BSON formats are not entirely equitable,
as these formats require encoding and loading entire datasets into memory, while both
FlatCityBuf and CityJSONSeq support streaming operations that enable incremental
data processing without full memory allocation.

72

5.5. Benchmark over the web

5.5. Benchmark over the web

To evaluate FlatCityBuf’s performance in real-world web scenarios, we compared it with the
3DBAG API [3DBAG, 2023]. The 3DBAG API currently supports two query types: feature ID
query for retrieving CityJSONFeature by identifier (e.g., identificatie attribute of 3DBAG)
and bounding box query for spatial queries with configurable result limits via the 1imit pa-
rameter.

While network-based benchmarking provides more realistic performance insights, it introduces
additional complexity due to variable network latency and server-side factors. As discussed
in Section 5.1.3, FlatCityBuf operates without server-side processing, requiring only static file
storage, contrasting with traditional application and database servers.

We acknowledge that this comparison is not entirely equitable due to fundamental architec-
tural differences and the 3DBAG API being a public service potentially handling concurrent
requests. However, this comparison remains valuable as API-based access represents the cur-
rent standard approach for CityJSON data consumption in web applications.

5.5.1. Benchmark environment

For the web-based benchmark, we used the 3DBAG dataset. The FlatCityBuf implementation
utilised a static file encoding the entire Netherlands dataset, resulting in a 70.4 GB file con-
taining all features, attribute indices for all attributes, and spatial indexing. Data retrieval was
performed using a Rust program with HTTP range requests (browser-based testing was avoided
due to disk caching effects). The 3DBAG API, publicly available at https://api.3dbag.nl/,
operates on a Flask backend with PostgreSQL and PostGIS extension for database manage-
ment [Powalka et al., 2023].

To account for network variability and potential outliers, we collected 100 samples for each
method with 10 warmup samples.

5.5.2. Feature ID query

Both FlatCityBuf files and the SDBAG API database organise features according to technical
implementation decisions (e.g., FlatCityBuf features are typically sorted by Hilbert curve). To
ensure fair comparison by identifier, we selected 5 features distributed across different regions
of the Netherlands, representing landmark or well-known buildings. The benchmark results
represent the average performance across 100 samples for all 5 features.

Table 5.9 presents the performance comparison between FlatCityBuf and the 3DBAG API for
feature ID queries. Overall, FlatCityBuf demonstrates approximately 2.1x faster performance
than the 3DBAG API for identifier-based feature retrieval. Performance ranged from 2.7x
faster (Groningen station) to 1.5x faster (Eindhoven station).

73

https://api.3dbag.nl/

5. Result

Table 5.9.: Feature ID query performance comparison between FlatCityBuf and 3DBAG API

Feature ID Location FCB API Ratio
(ms) (ms)
NL.IMBAG.Pand.0503100000032914 TU Delft BK building 935.8 2412.5 2.6x
NL.IMBAG.Pand.0363100012185598 Amsterdam Central Station 858.0 2106.7 2.5%
NL.IMBAG.Pand.0014100010938997 Groningen Station 821.7 2254.8 2.7x
NL.IMBAG.Pand.0772100000295227 Eindhoven Station 1378.7 2013.4 1.5x%
NL.IMBAG.Pand.0153100000261851 Enschede Station 1070.4 2058.8 1.9%x
Average 1012.9 2169.2 2.1x

FCB = FlatCityBuf
API = 3DBAG API
Ratio = 3DBAG API / FlatCityBuf (higher values indicate better FlatCityBuf performance)

5.5.3. Bounding box query

For spatial query performance comparison, we selected a 2km x 2km bounding box around
the Delft University of Technology campus, requesting the first 10 features within the area
(matching the 3DBAG API’s default limit). The benchmark results represent the average of 100
samples. The bounding box coordinates were (84000.0, 444000.0, 86000.0, 446000.0) in
the Amersfoort / RD New + NAP height (EPSG:7415) coordinate system.

FlatCityBuf demonstrated approximately 15.1x faster performance than the 3SDBAG API for
bounding box queries. This significant improvement over feature ID queries likely results from
FlatCityBuf’s Hilbert curve-based feature sorting, which enables spatially proximate features
to be retrieved in batched operations.

Table 5.10.: Bounding box query performance comparison between FlatCityBuf and 3DBAG
API

Query Type FlatCityBuf 3DBAG API Ratio
(ms) (ms)
Bounding box (2km x 2km) 492.6 7420.3 15.1x

Ratio = 3DBAG API / FlatCityBuf (higher values indicate better FlatCityBuf performance)

Despite the architectural differences between FlatCityBuf and the 3DBAG API, FlatCityBuf
demonstrated superior performance across both query patterns. Notably, FlatCityBuf does
not distinguish between identifier-based and attribute-based queries, as both utilize the same
underlying mechanism. Consequently, we can expect similar performance characteristics for
other attribute-based queries as well. These performance results highlight FlatCityBuf’s po-
tential for web application deployment.

74

6. Discussion

This chapter discusses the implications of our experimental results and their broader signifi-
cance for 3D city modelling applications.

6.1. Use Cases of FlatCityBuf

This section examines the most appropriate application scenarios for the FlatCityBuf format
based on its demonstrated performance characteristics.

6.1.1. Flexible Data Download

Providing users with the ability to download specific data of interest represents one of the
most valuable applications of 3D city models, particularly within open data initiatives. Exist-
ing services such as SDBAG offer download functionality for CityJSON data in various formats
including CityJSON, OBJ, and GeoPackage. However, these services typically constrain users
to downloading predefined tiles rather than precisely the data matching their specific require-
ments. This web prototype demonstrates that users can download precisely the data they
require. This implementation successfully showcases FlatCityBuf’s capability to facilitate tar-
geted data retrieval. Through its attribute indexing mechanism, users can download filtered
datasets based on specific criteria, such as features exceeding 100 metres in height.

6.1.2. Data Processing

As demonstrated by the performance benchmarks, FlatCityBuf excels in read operations com-
pared to alternative data formats, making it particularly suitable for analysing large-scale
datasets. This performance advantage is especially valuable in data processing pipelines where
I/O operations constitute a significant bottleneck.

A compelling example is the 3DBAG generation pipeline, which involves multiple stages that
require reading and writing CityJSONSeq files. In such workflows, 1/0 performance directly
impacts overall processing time. This efficiency becomes increasingly important when process-
ing large urban datasets containing millions of building features.

The format also simplifies analytical workflows. Conventional approaches to large-scale data
processing often require chunking data across multiple files, necessitating additional program-
ming to manage file aggregation. In contrast, FlatCityBuf encapsulates data in a single file
that can be efficiently loaded and accessed, even in web-based environments, streamlining an-
alytical processes. This unified approach reduces the complexity of data management while
maintaining high performance for both selective queries and full dataset processing.

(0]

https://fcb-web-prototype.netlify.app

6. Discussion
6.2. Impact on Server Architecture

FlatCityBuf introduces significant opportunities for simplifying server architectures for 3D city
model delivery.

6.2.1. Traditional Server Architecture

Conventional server architectures for 3D city models typically employ both application and
database servers. For example, Technical University of Munich [2003] utilises PostgreSQL or
Oracle as the database server with PostgREST API [PostgREST, 2017] providing data access
through its toolchain. Similarly, the 3DBAG API uses PostgreSQL as its database server and
Flask (Python web framework) as the application server.

In contrast, FlatCityBuf operates as a static file, requiring only a basic HTTP server such as
Nginx [Sysoev, 2004] for data distribution. This approach aligns with modern cloud service
offerings, where providers like AWS S3 [Amazon Web Services, 2006] and Google Cloud Storage
[Google Cloud, 2010] offer optimised solutions for serving static content.

6.2.2. Cloud Architecture Advantages
Scalability

Scalability presents a significant challenge in traditional server architectures. These systems
typically employ Relational Database Management System (RDBMS) that often encounter
scaling limitations. Common mitigation strategies include sharding and replication (horizon-
tal scaling) or resource expansion (vertical scaling), both requiring additional computational,
memory, and storage resources.

FlatCityBuf circumvents these challenges by functioning as a static file that can leverage cloud
providers’ inherent scalability and high availability infrastructure. This characteristic offers
substantial benefits for applications built on 3D city model data. Service providers can host
static FlatCityBuf files on standard servers, allowing unrestricted access for various use cases
without implementing the rate-limiting mechanisms often necessary with traditional server
architectures.

Cost-effectiveness

FlatCityBuf contributes significantly to operational cost-effectiveness. Although precise server
costs vary according to specific use cases, hosting static files through cloud service providers is
generally substantially more economical than maintaining dedicated database and application
servers. For example, Google Cloud’s storage service, Cloud Storage, costs $0.020 USD per
GB per month in the Netherlands (europe-west4) region'. In contrast, computing services
such as Compute Engine cost $0.25 USD per vCPU hour for on-demand instances in the same
region (4 vCPU, 16 GiB memory, 375 GiB SSD)?. While direct cost comparisons between
storage and compute services are complex due to their different pricing models, storage services

LGoogle Cloud Storage Pricing, https://cloud.google.com/storage/pricing#europe, accessed January 2025
2Google Cloud Compute Engine Pricing, https://cloud.google.com/compute/all-pricing?hl=en, accessed
January 2025

76

https://cloud.google.com/storage/pricing#europe
https://cloud.google.com/compute/all-pricing?hl=en

6.3. Limitations

offer inherently unlimited scalability, whereas compute services require provisioning additional
server instances to achieve substantial scalability. This fundamental difference in architecture
demonstrates that hosting static files is considerably more cost-effective than traditional server
architectures requiring continuous compute resources.

HTTP Client Static file server

HTTP Client API Server

HTTP client

(Rust native
HTTP client HTTP Roquests — —feend - HTTP requests —> | p city model
JavaScript with WASM bilt) (FlatCityBuf)

AP server Database management system Static server

(a) Traditional server architecture with database
and application servers (b) Simplified FlatCityBuf architecture

Figure 6.1.: Comparison between traditional and FlatCityBuf server architectures. The pro-
posed method eliminates the need for complex database infrastructure by leveraging static
file hosting with built-in spatial and attribute indices.

6.3. Limitations

Despite its advantages in simplicity, scalability, and cost-effectiveness, FlatCityBuf does present
certain limitations that warrant consideration.

6.3.1. Query Flexibility

While FlatCityBuf supports both spatial and attribute indexing, its query capabilities re-
main more constrained than those of specialised spatial database applications. Traditional
approaches employing RDBMS with spatial indexing provide more comprehensive query func-
tionality. For instance, 3DCityDB enables filtering by LoD, CityObject type [Technical Univer-
sity of Munich, 2003], and various other parameters, whereas FlatCityBuf primarily supports
attribute-based filtering. Similarly, regarding spatial functions, 3DCityDB can utilise the
extensive spatial capabilities of PostGIS [PostGIS, 2001], while FlatCityBuf currently only
implements bounding box queries, nearest neighbour queries, and point intersection queries.
Consequently, FlatCityBuf is optimised for scenarios requiring relatively straightforward fil-
tering conditions.

6.3.2. Client-side Application Complexity

Although FlatCityBuf simplifies server architecture, it introduces additional complexity in
client-side applications, which must implement logic for loading and processing the format.
This shift in computational responsibility follows the client-server architecture spectrum de-
scribed by Alesheikh et al. [2002], who categorised systems ranging from "Thin Client" (where
clients primarily handle display) to "Thick Client" (where clients perform most processing
tasks).

7

6. Discussion

Figure 6.2a illustrates the original model proposed by Alesheikh et al. [2002], while Figure 6.2b
demonstrates where FlatCityBuf fits within this framework. As these figures show, FlatCity-
Buf represents an extreme case of the "Thick Client" architecture. Since the client assumes
responsibility for filtering services in addition to other processing tasks, the complexity exceeds
that of traditional architectures where such operations are handled server-side.

This architectural choice has implications for interoperability. OGC API [OGC, 2019d] and
equivalent Web API services adhere to standardised designs that enable universal client ac-
cess—whether through command-line interfaces, web browsers, or mobile applications. While
FlatCityBuf supports cross-platform deployment, it requires language-specific or platform-

specific library implementations, potentially limiting its accessibility compared to standard
web APIs.

Display Thin Client

\l/ Display Thin Client
Render Medium Client \l/ | |

\l/ Render Medium Client

. Thick Client %
Display Element . hick Client
i Display Element
Generator Service .
Generator Service

v N

FlatCityBuf Client

Filter Service Filter Service
(a) Client architecture model modified from (b) FlatCityBuf architecture with Alesheikh
Alesheikh et al. [2002] et al. [2002]’s model

Figure 6.2.: Comparison of client complexity with Alesheikh et al. [2002]’s model and FlatCi-
tyBuf’s architecture.

6.3.3. Update Complexity

Zero-copy data formats like FlatCityBuf generally present challenges for data updates due
to their relatively rigid structure. Fixed-size data types such as integers or floating-point
numbers cannot be dynamically converted to alternative types. Furthermore, since the format
contains immutable spatial and attribute indices, updating the data necessitates rewriting
the entire file. This characteristic renders FlatCityBuf less suitable for frequently updated
datasets, positioning it instead as an optimal solution for data analysis and efficient download
services.

78

7. Conclusion and Future Work

7.1. Research Summary and Limitations

This research addressed the limitations of existing 3D city model formats in cloud environ-
ments by optimising CityJSONSeq encoding through FlatCityBuf, a binary format leveraging
FlatBuffers serialization with spatial and attribute indexing mechanisms.

The main contributions of this research include:

o A hierarchical FlatBuffers schema with five components (magic bytes, header section,
spatial index, attribute index, and features section) enabling zero-copy access and 10-
20x faster retrieval times while maintaining CityJSON compatibility

e Dual indexing mechanisms: Packed Hilbert R-tree for spatial queries with logarithmic-
time retrieval, and Static B4+Tree (S+Tree) for attribute-based queries supporting exact
matches, ranges, and complex filtering

e HTTP Range Request optimisation through explicit file alignment boundaries, enabling
efficient retrieval of specific data subsets without downloading entire datasets

Benchmarks confirmed sub-second performance even with datasets containing hundreds of
thousands of features. The approach eliminates complex database infrastructure, reduces
operational costs through static file hosting, and maintains fast response times across large
datasets.

Despite its advantages, FlatCityBuf has several limitations. The query capabilities are more
constrained than specialised spatial database applications, lacking advanced spatial opera-
tions available in systems like 3DCityDB [Technical University of Munich, 2003] with PostGIS
[PostGIS, 2001]. The format introduces complexity in client-side applications requiring custom
loading logic, presenting potential adoption barriers. Additionally, FlatCityBuf’s rigid struc-
ture presents challenges for data updates, requiring rewriting entire files when modifying data,
making it more suitable for read-intensive applications than dynamic content management
systems.

7.2. Future Work

Based on the research findings and identified limitations, several promising directions for future
work emerge.

Expanding language support beyond Rust would enhance the format’s accessibility and ecosys-
tem integration. For some languages, implementing binding libraries to the existing Rust
implementation could provide an efficient path to broader adoption. Languages with garbage
collection mechanisms—such as Python, JavaScript, and Java—present particularly interesting

79

7. Conclusion and Future Work

implementation targets. These languages manage memory differently than Rust, which could
impact performance characteristics of zero-copy operations. Implementation in Python would
enable seamless integration with geospatial analysis workflows, while JavaScript support would
facilitate web-based visualisation without WebAssembly. Testing performance across these
languages would provide valuable insights into optimisation strategies for different memory
management approaches.

Investigating alternative serialization frameworks could reveal different efficiency patterns.
Column-oriented formats like Apache Parquet warrant exploration, particularly for analytical
workloads involving selective attribute access. Such formats excel at accessing specific fields
across many records, potentially offering significant advantages for city-scale analytics where
only certain properties (like building heights or energy consumption) are needed. Future
research should quantify these trade-offs through comparative benchmarks across various query
patterns and datasets sizes.

While a web prototype for FlatCityBuf exists, it currently only displays data as JSON without
geometric visualisation. Developing specialised web viewers would demonstrate the format’s
practical benefits in interactive contexts. Progressive loading strategies could enable smooth
navigation of massive datasets on bandwidth-constrained devices by initially loading lower-
detail geometries and enhancing detail as users zoom, significantly improving user experience
while leveraging the format’s efficient partial data retrieval mechanisms.

80

A. FlatCityBuf Schema

A.1. Header

include '"geometry.fbs";
include "extension.fbs";

enum ColumnType: ubyte {

Byte, // Signed 8—bit integer

UByte, // Unsigned 8—Dbit integer

Bool, // Boolean

Short , // Signed 16—bit integer

UShort , // Unsigned 16—bit integer

Int , // Signed 32—Dbit integer

Ulnt , // Unsigned 32—bit integer

Long, // Signed 64—Dbit integer

ULong, // Unsigned 64—bit integer

Float , // Single precision floating point
number

Double // Double precision floating point
number

String , // UTF8 string

Json , // General JSON type intended to be

application specific
DateTime,
Binary
application specific
// Array

}

table Column {
index: ushort;

//

ISO 8601 date time
General binary type intended to be

// Array of values

Column index (0 = first column) This

index is used to identify the column in the FlatBuffer. The reason
why index is used instead of column name is to save more space on

attribute field.

name: string (required);

type: ColumnType;
title: string;
description: string;
free form long text)
precision: int = —1;

= unknown) as defined by SQL

scale: int = —1;

unknown) as defined by SQL
nullable: bool = true;

Column name

Column type

Column title

Column description (intended for
Column values expected precision (—1

Column values expected scale (—1 =

Column values expected nullability

81

40

A.

82

FlatCityBuf Schema

unique: bool = false; // Column values expected uniqueness
primary_key: bool = false; // Indicates this column has been (part
of) a primary key

metadata: string; // Column metadata (intended to be

application specific and suggested to be structured fx. JSON)

}

table ReferenceSystem {

authority: string; // Case—insensitive name of the
defining organization e.g. EPSG or epsg (NULL = EPSG)

version: int; // Version of the Spatial Reference
System assigned by the organization (0 = not defined)

code: int; // Numeric ID of the Spatial Reference
System assigned by the organization (0 = unknown)

code_string: string; // Text ID of the Spatial Reference

System assigned by the organization in the (rare) case when it is not
an integer and thus cannot be set into code
}

struct Vector {
x:double;
y:double;
z:double;

}

struct Transform {
scale: Vector;
translate: Vector;

}

struct GeographicalExtent {
min: Vector;
max: Vector;

}

struct Attributelndex {
index: ushort;
length: uint;
branching_factor: ushort;
num_ unique_ items: uint;

}

struct Vec2 {
u: double;
v: double;

}

table Material {
name: string (required);
ambient intensity: double = null; // from 0.0 to 1.0
// Expected to contain 3 items from 0.0 to 1.0 for (RGB);
implementations MUST check length.
diffuse__color: [double];
emissive__color: [double];

99

100

101

102

103

104

A.1. Header

specular__color: [double];

shininess: double = null; // from 0.0 to 1.0
transparency: double = null; // from 0.0 to 1.0
is_smooth: bool = null;

}

enum TextureFormat:ubyte {
PNG,
JPG

}

enum WrapMode: ubyte {
None,
Wrap,
Mirror ,
Clamp,
Border

}

enum TextureType:ubyte {
Unknown ,
Specific ,
Typical

}

table Texture {
type: TextureFormat; // NOTICE: "type' fields refers to TextureFormat
while "textureType' refers to TextureType.

image: string (required); // Image file name / URL

wrap_mode: WrapMode = null;

texture_type: TextureType = null; // e.g., "unknown', "specific"', or
"typical"

// Expected to contain 4 items (RGBA)
border_color: [double]; // from 0.0 to 1.0 for (RGBA)

}

table Appearance {
materials: [Material];
textures: [Texture];

vertices texture: [Vec2]; // List of UV coordinates, each coordinate
must be between 0.0 and 1.0
default__theme_texture: string; // Default theme name for textures

when multiple themes exist
default__theme_material: string; // Default theme name for materials
when multiple themes exist

}

struct DoubleVertex {

x: double;
y: double;
z: double;

}

table Header {

83

132

159

160

161

162

A. FlatCityBuf Schema

}

transform: Transform;
appearance: Appearance;
materials and textures

// Transformation vectors
// Appearance object for

columns: [Column]; // Attribute columns schema
(can be omitted if per feature schema)
semantic_ columns: [Column]; // Semantic columns schema (

can be omitted if per feature schema)

features_count: ulong; // Number of features in

the dataset (0 = unknown)
index_node_size: ushort = 16; // Index node size (0 = no
index)

attribute index: [Attributelndex];
// metadata
geographical extent: GeographicalExtent; // Bounds

reference__system: ReferenceSystem; // Spatial Reference System
identifier: string; // Dataset identifier
reference date: string; // Reference date

title: string; // Dataset title

// geometry templates

templates: [Geometry];

templates__vertices: [DoubleVertex];

// extensions

extensions: [Extension];

// Point of contact

poc_contact _name: string; // Point of contact name
poc_ contact_type: string; // Point of contact type
poc_role: string; // Point of contact role
poc_phone: string; // Point of contact phone
poc_email: string; // Point of contact email
poc__website: string; // Point of contact website
poc_address_thoroughfare number: string; // Point of contact address
thoroughfare number

poc_address_ thoroughfare_ name: string; // Point of contact address

thoroughfare name

poc_address_locality: string; // Point of contact address

locality

poc_address_ postcode: string; // Point of contact address
postcode

poc__address_ country: string; // Point of contact address
country

attributes: [ubyte]; // Other attributes that
are stored in root CityJSON object

version: string (required); // CityJSON version

root__type Header;

Listing A.1: Header schema of FlatCityBuf

A.2. Geometry

84

49

A.2. Geometry

enum SemanticSurfaceType:ubyte {

}

// Building
RoofSurface ,
GroundSurface ,
WallSurface ,
ClosureSurface ,
OuterCeilingSurface ,
OuterFloorSurface ,
Window ,

Door,
InteriorWallSurface ,
CeilingSurface ,
FloorSurface ,

// WaterBody
WaterSurface ,
WaterGroundSurface ,
WaterClosureSurface ,

// Transportation ("Road", "Railway', "TransportSquare")
TrafficArea ,
AuxiliaryTrafficArea ,

TransportationMarking ,
TransportationHole ,

// Extension objects. In the JSON data, it’s written like "+
ThermalSurface". However as we can’t expect the extended semantic
surface type, just mark it as "ExtraSemanticSurface".

ExtraSemanticSurface

enum GeometryType:ubyte {

}

MultiPoint ,
MultiLineString ,
MultiSurface ,
CompositeSurface ,
Solid ,

MultiSolid ,
CompositeSolid ,
GeometrylInstance

table MaterialMapping {

theme: string;
solids: [uint];
shells: [uint];

vertices: [uint]; // flat list of vertex indices.

// The depth of material indices will be boundaries depth minus 2:

// — For MultiSurface/CompositeSurface: one material index per surface

// — For Solid: one material index per surface in each shell

// — For MultiSolid /CompositeSolid: one material index per surface in
each shell of each solid

value: uint = null; // used only when it uses the shared material of
CityJSON

85

61

81

A. FlatCityBuf Schema

table TextureMapping {
theme: string;
solids: [uint];
shells: [uint];
surfaces: [uint];
strings: [uint];

vertices: [uint]; // flat list of vertex indices.
// The depth of texture indices matches the boundaries array:
// — For each ring: first vertex is texture index, remaining vertices

are UV coordinate indices
// — UV coordinates must be between 0.0 and 1.0 and reference
vertices_texture array
}

table Geometry {
type: GeometryType;
lod:string;

// these are lengths in the

// depending on the geometry type, different fields are used
solids : [uint |;

shells : [uint |;

surfaces :[uint];

strings :[uint |; // Rings or LineStrings
boundaries : [uint |; // flat list of vertex indices
semantics : [uint | ; // flat list of semantic object indices

semantics_objects:[SemanticObject |;

material: [MaterialMapping]; // Maps each surface/shells to an index in

appearance. materials .
texture: [TextureMapping]; // Maps each primitives to an index in
appearance. textures.

}

table SemanticObject {

type:SemanticSurfaceType;

attributes :[ubyte];

children : [uint |;

parent :uint = null; // default is null, important to be able to
check if this field is set

extension_type: string; // extension type of the semantic object. e.g.
"+ ThermalSurface"

}

> struct TransformationMatrix {

mO00: double ;
mO1: double ;
m02: double;
mO03: double ;
ml0: double ;
mll: double;
ml2: double;

86

A.3. Extension

100 ml3: double;
101 m20: double;
102 m21:double;
103 m22: double;
104 m23: double;
105 m30: double;
106 m31: double 5
107 m32: double;
108 m33: double;

109 }

111 table GeometryInstance {

112 // "type": "Geometrylnstance"' isn’t written in the file as it’s obvious
113 transformation: TransformationMatrix;

114 template: uint;

115 boundaries: [uint]; //contains only one vertex index of vertices. '

referencePoint" of CityGML
116 }
Listing A.2: Geometry schema of FlatCityBuf

A.3. Extension

1 // Extension is a struct that contains schema of the extension.

> // To simplify FlatBuffers schema, we just store stringified JSON schema .

5 // This Extension can be derived from ExtensionMeta’s url.

+ table Extension {

// "type": "CityJSONExtension" isn’t written in the file as it’s

obvious

¢ mname: string; // name of the extension. It’s the same as ExtensionMeta’
S name.

7 description: string; // description of the extension. It’s the same as
ExtensionMeta’s description.

8 url: string; // url of the extension. It’s the same as ExtensionMeta’s
url .

9 version: string; // version of the extension. It’s the same as
ExtensionMeta’s version.

10 version_ cityjson: string; // version of the extension in CityJSON
format .

11 extra_ attributes: string; // extra attributes of the extension.
stringified JSON object .

12 extra_city__objects: string; // extra city objects of the extension.
stringified JSON object.

extra_root_properties: string; // extra root properties of the

extension. stringified JSON object.

14 extra_semantic_surfaces: string; // extra semantic surfaces of the
extension. stringified JSON object.

15 }

Listing A.3: Extension schema of FlatCityBuf

87

A. FlatCityBuf Schema

A.4. Feature

include "header.fbs";
include "geometry.fbs";

// namespace FlatCityBuf;

enum CityObjectType:ubyte {
Bridge ,
BridgePart ,
Bridgelnstallation ,
BridgeConstructiveElement ,
BridgeRoom ,
BridgeFurniture ,

Building ,

BuildingPart ,
Buildinglnstallation ,
BuildingConstructiveElement ,
BuildingFurniture ,
BuildingStorey ,
BuildingRoom ,

BuildingUnit ,

CityFurniture ,
CityObjectGroup ,
GenericCityObject ,
LandUse,
OtherConstruction ,
PlantCover ,
SolitaryVegetationObject ,
TINRelief ,

// Transportation objects
Road,

Railway ,

Waterway ,

TransportSquare ,

Tunnel ,

TunnelPart ,
Tunnellnstallation ,
TunnelConstructiveElement ,
TunnelHollowSpace ,
TunnelFurniture ,

WaterBody ,
// Extension objects. Since we can’t expect the extended city object

type, just mark it as "ExtensionObject".
ExtensionObject

}

88

A.4. Feature

struct Vertex {
x:int ;
y:int;
z:int ;

}

table CityFeature {
id:string (key, required);
objects :[CityObject |;
vertices :[Vertex |;
appearance: Appearance;

}

table CityObject {
type: CityObjectType;

extension type: string; // extension type of the city object. e.g.

NoiseCityFurnitureSegment

id:string (key, required);

geographical extent: GeographicalExtent ;

geometry : [Geometry | ;

geometry_instances: [Geometrylnstance] ;

attributes :[ubyte];

columns : [Column | ; // Attribute columns schema (optional,
set it should be used instead of the header columns)
children :[string];

children roles:[string]; // for CityObjectGroup only
parents:[string|;

}

root__type CityFeature;
Listing A.4: Feature schema of FlatCityBuf

if

+

89

Bibliography

3DBAG. 3dbag api, 2023. URL https://3dbag.nl/api/. Accessed: 2025-01-20.

Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-stores vs. row-stores: how
different are they really? In Proceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’08, page 967-980, New York, NY, USA, 2008.
Association for Computing Machinery. ISBN 9781605581026. doi: 10.1145/1376616.1376712.
URL https://doi.org/10.1145/1376616.1376712

A. O. Abayomi, A. A. Olukayode, and G. O. Olakunle. An overview of cache memory in
memory management. Automation Control and Intelligent Systems, 8(3), 2020. doi: 10.
11648 /j.acis.20200803.11.

Vladimir Agafonkin. Flatbush: A very fast static spatial index for 2D points and rectangles in
JavaScript, 2010. URL https://github.com/mourner/flatbush. Accessed: 2025-06-08.

Ahn. Actueel Hoogtebestand Nederland, 2007. URL https://www.ahn.nl/. Accessed: 2025-
06-08.

A. A. Alesheikh, H. Helali, and H. A. Behroz. Web gis: technologies and its applications.
ISPRS Symposium on Geospatial Theory, Processing and Applications, pages 1-9, 2002.

Amazon Web Services. Amazon S3, 2006. URL https://aws.amazon.com/s3/. Accessed:
2025-06-08.

Amazon Web Services. Amazon Redshift, 2012. URL https://aws.amazon.com/redshift/.
Accessed: 2025-06-08.

Apache Parquet Contributors. Parquet Format Specification, 2013. URL https://github.
com/apache/parquet-format. Accessed: 2025-06-08.

Apache Software Foundation. Apache Parquet, 2013. URL https://parquet.apache.org/.
Accessed: 2025-06-08.

J. L. Bentley. Multidimensional binary search trees used for associative searching. Communi-
cations of the ACM, pages 509-517, 1975.

F. Biljecki, J. Stoter, H. Ledoux, S. Zlatanova, and A. Coltekin. Applications of 3d city models:
State of the art review. ISPRS International Journal of Geo-Information, 4(4):2842, 2015.
doi: 10.3390/ijgi4042842.

F. Biljecki, K. Kumar, and C. Nagel. CityGML Application Domain Extension (ADE):
overview of developments. Open Geospatial Data Software and Standards, 3(13), 2018. doi:
10.1186/s40965-018-0055-6.

Eduard Brose. ZeroCopy: Techniques, Benefits and Pitfalls, 2008. URL
https://www.semanticscholar.org/paper/ZeroCopy-%3A-Techniques-Y%
2C-Benefits-and-Pitfalls-washuu/4931bbb1b96d10£89b7406bb38757dcc2a10a435
Accessed: 2025-06-08.

91

https://3dbag.nl/api/
https://doi.org/10.1145/1376616.1376712
https://github.com/mourner/flatbush
https://www.ahn.nl/
https://aws.amazon.com/s3/
https://aws.amazon.com/redshift/
https://github.com/apache/parquet-format
https://github.com/apache/parquet-format
https://parquet.apache.org/
https://www.semanticscholar.org/paper/ZeroCopy-%3A-Techniques-%2C-Benefits-and-Pitfalls-washuu/4931bbb1b96d10f89b7406bb38757dcc2a10a435
https://www.semanticscholar.org/paper/ZeroCopy-%3A-Techniques-%2C-Benefits-and-Pitfalls-washuu/4931bbb1b96d10f89b7406bb38757dcc2a10a435

Bibliography

BuildZero.Org. Open City Model, 2025. URL https://github.com/opencitymodel/
opencitymodel. Accessed: 2025-06-08.

CityJSON. CityJSON, 2019a. URL https://cityjson.org/. Accessed: 2024-11-26.

CityJSON. Cityjson dataset, 2019b. URL https://www.cityjson.org/datasets/. Accessed:
2025-06-08.

CityJSON. CityJSON Specification 2.0.1, 2024. URL https://www.cityjson.org/specs/2.
0.1/. Accessed: 2024-11-26.

ClickHouse. Columnar databases explained, 2025. URL https://clickhouse.com/
engineering-resources/what-is-columnar-database. Accessed: 2025-06-08.

Google Cloud. Cloud storage, 2010. URL https://cloud.google.com/storage?hl=en. Ac-
cessed: 2025-06-08.

Cloud-Native Geospatial Foundation. Cloud-Optimised Geospatial Formats Guide, 2023. URL
https://guide.cloudnativegeo.org/. Accessed: 2024-12-17.

Danny Cohen. On holy wars and a plea for peace. IFEE Computer, October 1981. URL
https://ieeexplore.ieee.org/document/1667115.

Ulrich Drepper. What every programmer should know about memory, 2007. URL https:
//people.freebsd.org/~1lstewart/articles/cpumemory.pdf. Accessed: 2025-06-08.

ECMA International. JSON, 2013. URL https://www.json.org/json-en.html. Accessed:
2024-12-17.

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems. Pearson plc,
2015.

Esri. About web gis, 2025. URL https://enterprise.arcgis.com/en/server/10.8/
create-web-apps/windows/about-web-gis.htm. Accessed: 2025-06-08.

R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval on composite keys.
Acta Informatica, pages 1-9, 1974. doi: 10.1007/bf00288933.

FlatGeobuf. FlatGeobuf, 2020a. URL https://flatgeobuf.org/. Accessed: 2024-12-17.

FlatGeobuf. FlatGeobuf GitHub Repository, 2020b. URL https://github.com/flatgeobuf/
flatgeobuf. Accessed: 2024-12-17.

GeoParquet Contributors. Geoparquet, 2024. URL https://geoparquet.org/. Accessed:
2025-06-08.

Google. Google maps platform, 2005. URL https://mapsplatform.google.com/. Accessed:
2025-06-08.

Google. Protocol Buffers, 2008. URL https://protobuf.dev/. Accessed: 2024-12-17.
Google. BigQuery, 2011. URL https://cloud.google.com/bigquery. Accessed: 2024-12-18.
Google. FlatBuffers, 2014a. URL https://flatbuffers.dev/. Accessed: 2024-12-17.

Google. Flatbuffers annotation, 2014b. URL https://flatbuffers.dev/annotation. Ac-
cessed: 2025-06-08.

Google. C++ Benchmarks, 2014c. URL https://flatbuffers.dev/flatbuffers_
benchmarks.html. Accessed: 2025-01-13.

92

https://github.com/opencitymodel/opencitymodel
https://github.com/opencitymodel/opencitymodel
https://cityjson.org/
https://www.cityjson.org/datasets/
https://www.cityjson.org/specs/2.0.1/
https://www.cityjson.org/specs/2.0.1/
https://clickhouse.com/engineering-resources/what-is-columnar-database
https://clickhouse.com/engineering-resources/what-is-columnar-database
https://cloud.google.com/storage?hl=en
https://guide.cloudnativegeo.org/
https://ieeexplore.ieee.org/document/1667115
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://www.json.org/json-en.html
https://enterprise.arcgis.com/en/server/10.8/create-web-apps/windows/about-web-gis.htm
https://enterprise.arcgis.com/en/server/10.8/create-web-apps/windows/about-web-gis.htm
https://flatgeobuf.org/
https://github.com/flatgeobuf/flatgeobuf
https://github.com/flatgeobuf/flatgeobuf
https://geoparquet.org/
https://mapsplatform.google.com/
https://protobuf.dev/
https://cloud.google.com/bigquery
https://flatbuffers.dev/
https://flatbuffers.dev/annotation
https://flatbuffers.dev/flatbuffers_benchmarks.html
https://flatbuffers.dev/flatbuffers_benchmarks.html

Bibliography

Google. Flatbuffers: Memory efficient serialization library, 2014. URL https://google.
github.io/flatbuffers/. Accessed: 2024-12-17.

Google. Flatbuffers schema, 2024a. URL https://flatbuffers.dev/schema/. Accessed:
2025-05-06.

Google. Flatbuffers language support, 2024b. URL https://flatbuffers.dev/support/.
Accessed: 2025-05-06.

Google Cloud. Cloud storage, 2010. URL https://cloud.google.com/storage?hl=en. Ac-
cessed: 2025-06-08.

A. Guttman. R-trees: A dynamic index structure for spatial searching. SIGMOD Rec., 14(2):
47-57, 1984. doi: 10.1145/971697.602266.

IEEE SA. Ieee standard for floating-point arithmetic, 2019. URL https://standards.ieee.
org/ieee/754/6210/. Accessed: 2025-06-08.

Internet Engineering Task Force). Hypertext Transfer Protocol (HTTP/1.1): Range Requests,
2014. URL https://datatracker.ietf.org/doc/html/rfc7233. Accessed: 2025-01-13.

Internet Engineering Task Force. GeoJSON, 2016. URL https://geojson.org/. Accessed:
2025-05-30.

ISO. Iso 8601 — date and time format, 2017. URL https://www.iso.org/
iso-8601-date-and-time-format.html. Accessed: 2025-06-08.

ISO. ISO/IEC 12113:2022 Information technology — Runtime 3D asset delivery format —
Khronos glTF 2.0, 2022. URL https://www.iso.org/standard/83990.html. Accessed:
2025-06-08.

Pirmin Kalberer. Http client for http range requests with a buffer optimized for sequential
requests, 2021. URL https://github.com/pka/http-range-client. Accessed: 2025-06-
08.

I. Kamel and C. Faloutsos. On packing r-trees. Proceedings of the Second International
Conference on Information and Knowledge Management, page 490-499, 1993. doi: 10.1145/
170088.170403.

Khronos Group. gltf: Gl transmission format, 2015. URL https://www.khronos.org/gltf/.
Accessed: 2025-06-08.

Ragnar Groot Koekamp. Static search trees: 40x faster than binary search, 2024. URL
https://curiouscoding.nl/posts/static-search-tree/. Accessed: 2025-06-08.

Hugo Ledoux, Ken Arroyo Ohori, Kavisha Kumar, Baldzs Dukai, Anna Labetski, and Stelios
Vitalis. Cityjson: a compact and easy-to-use encoding of the citygml data model. Open
Geospatial Data, Software and Standards, 4, 12 2019. doi: 10.1186/340965-019-0064-0.

Hugo Ledoux, Gina Stavropoulou, and Balazs Dukai. Streaming cityjson datasets. In Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
- ISPRS Archives, volume 48, pages 57—63. International Society for Photogrammetry and
Remote Sensing, 6 2024. doi: 10.5194/isprs-archives- XLVIII-4-W11-2024-57-2024.

Mapbox. Vector tile specification, 2014. URL https://github.com/mapbox/
vector-tile-spec. Accessed: 2025-06-08.

93

https://google.github.io/flatbuffers/
https://google.github.io/flatbuffers/
https://flatbuffers.dev/schema/
https://flatbuffers.dev/support/
https://cloud.google.com/storage?hl=en
https://standards.ieee.org/ieee/754/6210/
https://standards.ieee.org/ieee/754/6210/
https://datatracker.ietf.org/doc/html/rfc7233
https://geojson.org/
https://www.iso.org/iso-8601-date-and-time-format.html
https://www.iso.org/iso-8601-date-and-time-format.html
https://www.iso.org/standard/83990.html
https://github.com/pka/http-range-client
https://www.khronos.org/gltf/
https://curiouscoding.nl/posts/static-search-tree/
https://github.com/mapbox/vector-tile-spec
https://github.com/mapbox/vector-tile-spec

Bibliography

P. Mell and T. Grance. The NIST Definition of Cloud Computing. National Institute of
Science and Technology, Special Publication, 800(800), 2011.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt
Tolton, and Theo Vassilakis. Dremel: Interactive analysis of web-scale datasets. Proceedings

of the VLDB Endowment, 3(1-2):330-339, 2010. doi: 10.14778/1920841.1920886. URL
https://dl.acm.org/doi/10.14778/1920841.1920886.

Mozilla Foundation. Endianness, 2025. URL https://developer.mozilla.org/en-US/docs/
Glossary/Endianness. Accessed: 2025-06-08.

Claus Nagel. Citygml tools, 2018. URL https://github.com/citygml4j/citygml-tools.
Accessed: 2025-06-08.

ndjson. JSON Newline Delimited, 2013. URL https://github.com/ndjson/ndjson-spec/.
Accessed: 2024-12-17.

OGC. OGC, 1994. URL https://www.ogc.org/. Accessed: 2024-11-26.

OGC. Geography markup language (gml) standard, 2000. URL https://www.ogc.org/
standards/gml/. Accessed: 2025-06-08.

OGC. Tile Map Service (TMS) Standaard, 2006. URL https://www.ogc.org/nl/standards/
tms. Accessed: 2025-06-08.

OGC. Filter Encoding Standard, 2010. URL https://www.ogc.org/standards/filter/.
Accessed: 2025-06-08.

OGC. Simple Features Access, 2011. URL https://www.ogc.org/publications/standard/
sfa/. Accessed: 2025-06-08.

OGC. GeoPackage Standard, 2014. URL https://www.ogc.org/standards/geopackage.
Accessed: 2025-05-30.

OGC. 3D Tiles, 2019a. URL https://www.ogc.org/standards/3dtiles. Accessed: 2025-
01-13.

OGC. CityGML, 2019b. URL https://www.ogc.org/standards/citygml. Accessed: 2024-
11-26.

OGC. GeoTIFF Standard, 2019c. URL https://www.ogc.org/standards/geotiff. Ac-
cessed: 2025-05-30.

OGC. OGC API - Features Standard, 2019d. URL https://www.ogc.org/standards/

ogcapi-features.

OGC. OGC API - Features 1.0 - Part 1: Core, 2019e. URL https://docs.ogc.org/is/
17-069r3/17-069r3.html#_items_.

OGC. Common Query Language (CQL2), 2024. URL https://docs.ogc.org/is/21-065r2/
21-065r2.html. Accessed: 2025-06-08.

Open Source Geospatial Foundation. Geoserver, 2001. URL https://geoserver.org/. Ac-
cessed: 2025-06-08.

Ravi Peters. CityBuf: Experimental CityJSON encoding using FlatBuffers, 2024. URL https:
//github.com/3DBAG/CityBuf. Accessed: 2025-06-08.

94

https://dl.acm.org/doi/10.14778/1920841.1920886
https://developer.mozilla.org/en-US/docs/Glossary/Endianness
https://developer.mozilla.org/en-US/docs/Glossary/Endianness
https://github.com/citygml4j/citygml-tools
https://github.com/ndjson/ndjson-spec/
https://www.ogc.org/
https://www.ogc.org/standards/gml/
https://www.ogc.org/standards/gml/
https://www.ogc.org/nl/standards/tms
https://www.ogc.org/nl/standards/tms
https://www.ogc.org/standards/filter/
https://www.ogc.org/publications/standard/sfa/
https://www.ogc.org/publications/standard/sfa/
https://www.ogc.org/standards/geopackage
https://www.ogc.org/standards/3dtiles
https://www.ogc.org/standards/citygml
https://www.ogc.org/standards/geotiff
https://www.ogc.org/standards/ogcapi-features
https://www.ogc.org/standards/ogcapi-features
https://docs.ogc.org/is/17-069r3/17-069r3.html#_items_
https://docs.ogc.org/is/17-069r3/17-069r3.html#_items_
https://docs.ogc.org/is/21-065r2/21-065r2.html
https://docs.ogc.org/is/21-065r2/21-065r2.html
https://geoserver.org/
https://github.com/3DBAG/CityBuf
https://github.com/3DBAG/CityBuf

Bibliography

Ravi Peters, Balazs Dukai, Stelios Vitalis, Jordi van Liempt, and Jantien Stoter. Automated
3d reconstruction of lod2 and lod1l models for all 10 million buildings of the netherlands.
Photogrammetric Engineering and Remote Sensing, 88(3):165-170, 2022. ISSN 0099-1112.
doi: 10.14358 /PERS.21-00032R2.

PLATEAU. PLATEAU, 2020. URL https://www.mlit.go.jp/plateau/. Accessed: 2025-
01-13.

PostGIS. PostGIS, 2001. URL https://postgis.net/. Accessed: 2025-06-08.

PostgREST. PostgREST: REST API for any Postgres database, 2017. URL https://github.
com/PostgREST/postgrest. Accessed: 2025-06-08.

L. Powalka, C. Poon, Y. Xia, S. Meines, L. Yan, Y. Cai, G. Stavropoulou, B. Dukai,
and H. Ledoux. cjdb: A simple, fast, and lean database solution for the citygml data
model. Lecture notes in geoinformation and cartography, pages 781-796, 2023. doi:
10.1007/978-3-031-43699-4_ 47.

Daniel Persson Proos and Niklas Carlsson. Performance comparison of messaging protocols
and serialization formats for digital twins in lov. IFEE, 2020.

Protomaps. PMTiles: Cloud-native Protocol for Map Tiles, 2022. URL https://docs.
protomaps.com/pmtiles/. Accessed: 2025-06-08.

Python Software Foundation. pickle — Python object serialization, 2025. URL https://
docs.python.org/3/library/pickle.html#module-pickle. Accessed: 2025-06-08.

N. Rawlinson and C. Toth. Fast Hilbert Curves, 2016. URL https://github.com/
rawrunprotected/hilbert_curves. Accessed: 2025-06-08.

RFC. HTTP/1.1, part 5: Range Requests and Partial Responses, 2010. URL https://www.
ietf.org/archive/id/draft-ietf-httpbis-p5-range-09.html. Accessed: 2025-06-08.

N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases using packed
r-trees. ACM SIGMOD Record, 14(4):17-31, 1985. doi: 10.1145/971699.318900.

SemVer. Semantic Versioning, 2013. URL https://semver.org/. Accessed: 2025-06-08.

Sergey Slotin. Binary search, 2021a. URL https://en.algorithmica.org/hpc/
data-structures/binary-search/. Accessed: 2025-05-06.

Sergey Slotin. Static B-Trees, 2021b. URL https://en.algorithmica.org/hpc/
data-structures/s-tree/. Accessed: 2025-06-08.

Snowflake Inc. Snowflake, 2015. URL https://www.snowflake.com/. Accessed: 2025-06-08.

Jia Song and Jim Alves-Foss. Performance review of zero copy techniques. International
Journal of Computer Science and Security (IJCSS), 6(4):256, 2012.

Standard C++ Foundation. Serialization and unserialization, c++ faq, 2025. URL https:
//isocpp.org/wiki/faq/serialization#serialize-overview. Accessed: 2025-06-08.

Swiss Federal Office of Topography. SwissBUILDINGS3D 3.0 Beta, 2024. URL https:
//www.swisstopo.admin.ch/en/landscape-model-swissbuildings3d-3-0-beta. Ac-

cessed: 2025-06-08.
Igor Sysoev. nginx, 2004. URL https://nginx.org/. Accessed: 2025-06-08.

95

https://www.mlit.go.jp/plateau/
https://postgis.net/
https://github.com/PostgREST/postgrest
https://github.com/PostgREST/postgrest
https://docs.protomaps.com/pmtiles/
https://docs.protomaps.com/pmtiles/
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#module-pickle
https://github.com/rawrunprotected/hilbert_curves
https://github.com/rawrunprotected/hilbert_curves
https://www.ietf.org/archive/id/draft-ietf-httpbis-p5-range-09.html
https://www.ietf.org/archive/id/draft-ietf-httpbis-p5-range-09.html
https://semver.org/
https://en.algorithmica.org/hpc/data-structures/binary-search/
https://en.algorithmica.org/hpc/data-structures/binary-search/
https://en.algorithmica.org/hpc/data-structures/s-tree/
https://en.algorithmica.org/hpc/data-structures/s-tree/
https://www.snowflake.com/
https://isocpp.org/wiki/faq/serialization#serialize-overview
https://isocpp.org/wiki/faq/serialization#serialize-overview
https://www.swisstopo.admin.ch/en/landscape-model-swissbuildings3d-3-0-beta
https://www.swisstopo.admin.ch/en/landscape-model-swissbuildings3d-3-0-beta
https://nginx.org/

Bibliography

Technical University of Munich. 3dcitydb database, 2003. URL https://www.3dcitydb.org/
3dcitydb/. Accessed: 2025-06-08.

The Draco author. Draco, 2017. URL https://google.github.io/draco/. Accessed: 2025-
06-08.

The Linux Information Project (LINFO). Binary File Definition, 2006. URL https://www.
linfo.org/binary_file.html. Accessed: 2025-06-08.

the Mozilla Foundation. WebAssembly, 2025. URL https://developer.mozilla.org/
en-US/docs/WebAssembly. Accessed: 2025-06-08.

Jordi Van Liempt. Cityjson: does (file) size matter? Master’s thesis, Delft University of
Technology, 2020.

Juan Cruz Viotti and Mital Kinderkhedia. A survey of JSON-compatible binary serialization
specifications, 2022. URL https://arxiv.org/abs/2201.02089. Accessed: 2025-06-08.

W3C. WebAssembly Core Specification, 2019. URL https://www.w3.org/TR/wasm-core-1/.
Accessed: 2025-06-08.

W3C. WebAssembly Core Specification, 2022. URL https://www.w3.org/TR/wasm-core-2/.
Accessed: 2025-06-08.

Frank Warmerdam, Even Rouault, et al. MVT: Mapbox Vector Tiles, 2025. URL https:
//gdal.org/en/stable/drivers/vector/mvt.html. Accessed: 2025-06-08.

H. S. Warren. Hacker’s Delight, Second Edition, 2012. URL https://www.oreilly.com/
library/view/hackers-delight-second/9780133084993/. Accessed: 2025-06-08.

Wavefront Technologies. Wavefront OBJ, 1990. URL https://paulbourke.net/
dataformats/obj/. Accessed: 2025-06-08.

Horace Williams. Flatgeobuf: Implementer’s Guide, 2022a. URL https://worace.works/
2022/03/12/flatgeobuf-implementers-guide. Accessed: 2024-12-18.

Horace Williams. Kicking the Tires: Flatgeobuf, 2022b. URL https://worace.works/2022/
02/23/kicking-the-tires-flatgeobuf/. Accessed: 2025-01-13.

96

https://www.3dcitydb.org/3dcitydb/
https://www.3dcitydb.org/3dcitydb/
https://google.github.io/draco/
https://www.linfo.org/binary_file.html
https://www.linfo.org/binary_file.html
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://arxiv.org/abs/2201.02089
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-2/
https://gdal.org/en/stable/drivers/vector/mvt.html
https://gdal.org/en/stable/drivers/vector/mvt.html
https://www.oreilly.com/library/view/hackers-delight-second/9780133084993/
https://www.oreilly.com/library/view/hackers-delight-second/9780133084993/
https://paulbourke.net/dataformats/obj/
https://paulbourke.net/dataformats/obj/
https://worace.works/2022/03/12/flatgeobuf-implementers-guide
https://worace.works/2022/03/12/flatgeobuf-implementers-guide
https://worace.works/2022/02/23/kicking-the-tires-flatgeobuf/
https://worace.works/2022/02/23/kicking-the-tires-flatgeobuf/

Colophon

This document was typeset using I¥TEX, using the KOMA-Script class scrbook. The main
font is Palatino.

%
TUDelft

	Introduction
	Problem Statement
	Research Objectives
	Scope of the Research
	Structure of the Thesis

	Theoretical background
	Strategies for Cloud-native GIS
	Binary files
	WebAssembly
	Row-based and column-based data storage
	CPU Caches
	Serialisation and Deserialisation
	Zero-copy
	Endianness
	Binary Search
	Eytzinger Layout

	S+tree
	B-Tree/B+Tree Layout
	S+tree

	FlatBuffers Framework
	Schema-Based Serialisation
	Data Type System
	Schema Organisation Features
	Binary Structure and Memory Layout

	Related Work
	Cloud-Optimised Geospatial Formats
	CityGML, CityJSON and Its Enhancements
	CityGML
	CityJSON
	CityJSON Text Sequences (CityJSONSeq)
	3DBAG API
	Enhancements to CityJSON Performance

	Non-Geospatial Formats in Cloud Environments
	FlatBuffers
	Protocol Buffers (Protobuf)
	Apache Parquet
	Comparison of Non-Geospatial Formats

	Cloud-Optimised Geospatial Implementations
	Mapbox Vector Tiles (MVT)
	PMTiles
	FlatGeobuf
	GeoParquet
	3D Tiles
	Comparative Analysis of Cloud-Optimised Geospatial Formats

	Research Gaps

	Methodology
	Overview
	Methodology Approach
	Outcomes of the Methodology
	File Structure Overview
	Note on Binary Encoding

	Magic Bytes
	Header Section
	CityJSON Metadata Fields
	Appearance Information
	Geometry Templates
	Extension Support
	Attribute Schema and Indexing Metadata
	Implementation Considerations

	Spatial Indexing
	The packed Hilbert R-tree
	Feature sorting
	Index structure
	2D vs 3D Indexing Considerations

	Attribute Indexing
	Query Requirements Analysis
	S+tree Design and Modifications
	Attribute Index Implementation
	Construction of the Attribute Index
	Serialisation of Keys in the Tree
	Query Strategies
	Streaming S+tree over HTTP

	Feature Encoding
	CityJSONFeature and CityObject Structure
	Geometry Encoding
	Materials and Textures
	Attribute Encoding
	Extension Mechanism

	HTTP Range Requests and Cloud Optimisation
	Principles of Partial Data Retrieval
	Range Request Workflow
	Optimisation Techniques

	Result
	Overview
	Web Prototype
	Cross-Platform Implementation
	Integration with Cloud Infrastructure

	Datasets
	File Size Comparison
	File size results
	Analysis of file size results

	Benchmark on Local Environment
	Test Environment
	Measurement Parameters
	Read Performance FlatCityBuf vs CityJSONSeq
	Read performance FlatCityBuf vs CBOR
	Read performance FlatCityBuf vs BSON
	Summary of local environment benchmark

	Benchmark over the web
	Benchmark environment
	Feature ID query
	Bounding box query

	Discussion
	Use Cases of FlatCityBuf
	Flexible Data Download
	Data Processing

	Impact on Server Architecture
	Traditional Server Architecture
	Cloud Architecture Advantages

	Limitations
	Query Flexibility
	Client-side Application Complexity
	Update Complexity

	Conclusion and Future Work
	Research Summary and Limitations
	Future Work

	FlatCityBuf Schema
	Header
	Geometry
	Extension
	Feature

