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summary

This thesis investigates the role of confinement on the structural performance of Concrete-Filled Steel
Pipe (CFSP) pile to concrete cap connections in the absence of dedicated force transfer provisions such
as dowels or shear rings. In current practice, Eurocode 2 provides no explicit guidance on confinement
in partially loaded areas, leading to uncertainties in the design of these widely used connections. The
central research question was: “What is the impact of confinement on the structural performance of
CFSP-pile to concrete element connections in the absence of force transfer provisions, such as dowels
or rings?”

Methods

A literature review identified two key theoretical frameworks: Mander’s model for confined concrete and
Marki¢’s Dual-Wedge Stress Field (DWSF) approach. Mander’s model describes the passive lateral
confining stress generated by reinforcement activated through lateral deformation, while the DWSF
model provides a method to capture geometric confinement and improved stress distribution through
discretised stress fields. Both models have been verified by extensive experimental research, the
results of which were used in this thesis to support the verification of the outcomes. The insights of
these models formed the basis for the analytical schematisation, in which both were combined and
slightly adjusted to make them applicable to the case study.

A numerical approach was then applied to the case study. After deriving the most comprehensive mod-
elling approach by imitating experimental campaigns and progressively modifying the input until results
aligned, it was found that a fully non-linear Finite Element Analysis (FEA) was unfeasible because of
stress singularities. A quasi-non-linear FEA model was therefore developed to simulate the pile—cap
interface. In this approach, concrete stiffness was manually reduced in high-stress regions according
to the stress—strain relationship, which enabled the model to capture the ascending branch of Man-
der’s confined concrete stress—strain curve and thus investigate confinement effects up to peak stress.
The confinement effect was artificially applied by decreasing concrete stiffness in accordance with the
confined concrete stress—strain behaviour. This meant that the FEA assumed the confining reinforce-
ment to be fully activated by the lateral deformation of the concrete caused by the pile reaction force.
Verification of this assumption would require either a fully non-linear FEA or a physical experiment,
both of which fall beyond the scope of this research. For further analysis, it was therefore assumed
that the confining reinforcement was fully activated. Analytical calculations, numerical simulations, and
comparisons with existing experimental data and Eurocode 2 guidelines were combined to provide a
comprehensive assessment of the formation of the DWSF and the corresponding bearing strength.

Results

The study found that confinement increases the bearing capacity of the pile—cap interface to 4.97 times
the uniaxial concrete compressive stress, compared to a maximum value of 1.73 according to Eurocode
2. An improved stress distribution was also observed, with a width of 60.8 mm instead of the maximum
of 30 mm proposed by Eurocode 2. In addition, the compressive stress in the strut and the inclination
of the strut within the DWSF, as obtained by both the analytical and FEA approaches, corresponded
closely with the experimental results of Markic¢ et al., while being far more favourable than Eurocode 2
predictions. At the same time, the distributed compressive stress at the end of the stress field remained
of almost identical magnitude to the Eurocode values, suggesting a similar stress distribution into un-
confined concrete. Passive confinement was assumed to be mobilised by the reinforcement net in the
cap, while geometric confinement was provided by the formation of the DWSF and the decomposition
of stress tensors along its discontinuity lines, as shown by the results. The analytical models and FEA
outcomes were consistent with the upper range of experimental findings reported in the literature by
Marki¢ et al. to verify the DWSF model. By contrast, Eurocode 2 systematically underestimated bear-
ing capacity because it does not explicitly include confinement in partially loaded areas. Although the
FEA approach could not reproduce post-peak ductility behaviour, it confirmed that confinement delayed
crushing and enhanced load transfer with a peak compressive stress of 149.05 MPa at a corresponding
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strain of 0.0075.

Discussion

The proposed confinement model is practical and broadly applicable because it relies on simple geo-
metric and material inputs, but its accuracy is limited by several assumptions. Key uncertainties include
the idealised rectangular confinement zone, omission of lateral stresses from the pile core reaction, and
the degree to which reinforcement located away from the primary load-spread is activated. Moreover,
the analytical and numerical models assume homogeneous concrete, whereas heterogeneity in mix
and aggregate size can influence behaviour in localised failure zones, creating discrepancies between
predicted and actual performance. Overall, the model offers a useful and conservative framework for
CFSP-pile to cap connections, yet targeted experiments are required to validate assumptions, refine
confinement geometry, and incorporate pile-core effects, thereby improving confidence in its reliability
and extending applicability.

Conclusion

This thesis concludes that, provided the confining reinforcement is fully activated, confinement plays
a decisive and beneficial role in CFSP-to-cap connections without additional force transfer measures.
Through the combined action of passive and geometric confinement, both strength and ductility are
enhanced, leading to safer and more efficient structural performance. In practice, this suggests that
carefully detailed confinement may reduce the need for costly supplementary transfer provisions, pro-
vided that confinement effects are reliably considered in design.
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Introduction

This chapter describes the context of the research and its main objectives. This also includes the
research questions that this thesis attempted to answer.

1.1. Research content

The concrete-filled steel tube (CFST) has long been recognized as a highly attractive option for con-
crete structures. CFSTs have been widely used in various applications including pressurized members,
such as high-rise buildings, underground tunnels, large-span bridges, and offshore structures (Wang
et al. 2021). These CFSTs are commonly used as foundation piles for such structures then also called
CFST-piles. CFST-piles consists of an inner concrete column enclosed by an outer steel tube. The
outer steel tube provides external reinforcement and protects the inner concrete column from potential
damage. Additionally, it enhances the durability of the pile foundation in harsh conditions, ensuring
a longer lifespan. In return, the inner concrete column contributes to local stability and improves the
buckling behaviour of the outer steel tube, while also providing compressive strength. The CFST-pile
benefits from the mechanical advantages of both materials (Liu et al. 2023). These piles offer nu-
merous material and mechanical benefits, such as enhanced compressive strength, improved seismic
resistance, greater ductility, and better energy absorption. The combination of steel tubes and concrete
cores mitigates the inherent brittleness of concrete, thereby providing better damping resistance capac-
ity. CFST-piles can be manufactured in a variety of cross-sectional shapes (see Figure 1.1), including
circular, square, rectangular, polygonal, and elliptical (Wang et al. 2021).

Steel Core Steel Core
Tube Congrete Tube Concrete
(a) Circular (b) Elliptical
Steel Core Steel Core

oncrete Tube Concrete

Steel Core Steel Core
C t. Tube Concrete
Tubé‘ oncrete \ 9

Iy | s

Regular Biaxial
Square Rectangular symmetric
(¢) Quadrilateral (d) Hexagonal

Figure 1.1: CFSTs cross-sectional shapes (Ami et al. 2023)
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For foundations it is common to use circular piles filled with concrete. These are named concrete filled
steel pipe (CFSP) piles for foundations and are typically installed using either impact driving or drilling
methods. The choice of installation method depends primarily on soil conditions and the presence of
surrounding structures. Drilled CFSP-piles are particularly effective when a specific penetration depth
must be achieved, when the ground contains highly impenetrable layers, when high concentrated loads
need to be transferred, and when nearby structures are sensitive to vibrations and ground heave caused
by pile driving (Leskela et al. 2005).

CFSP piles are often used in conjunction with concrete caps to form the foundations for bridge piers
columns. The concrete cap distributes the forces from the superstructure into the piles. Figure 1.2
shows a schematic representation of how such a substructure is constructed.

T S S S G R
xtenuono*\‘j\\

Pier Cap Beam Pier cap beam

/ Area of interest
Paor - /
Colurmn /
e ) Concrete cap
e e
Pile Cap Footir -‘:_// - _— ________——-"'_-____
I
Pile Foundation

Figure 1.2: Schematisation of a typical bridge substructure (Tan et al. 2019)

This thesis focuses on the connection between the piles and the pile cap, with particular emphasis on
the bearing capacity of the concrete directly above the casing of the CFSP-piles.

1.2. Research problem

Although CFSP-piles offer numerous advantages, they also present several challenges when designing
structures that utilise them. One frequently debated issue during the design phase is whether the
concrete above the steel casing will crush.

This concern arises from the significant differences in stiffness between the various components of
CFSP-piles. A CFSP-pile comprises high-stiffness steel elements, such as the pile reinforcement and
casing, alongside a relatively low-stiffness concrete core. Figure 1.1 illustrates the cross-section of
such a pile. The load is distributed among these components in proportion to their stiffness, meaning
that the stiffer elements bear a larger share of the force than the less stiff ones. In scenarios such as
the connection between the concrete cap and the CFSP-pile, a substantial amount of force is directly
transferred to the steel casing. Given that the area of the steel casing is relatively small, this results in
high stresses in that region. Eurocode 2, Article 6.7, is applied to assess the bearing capacity of the
concrete in such cases, as it provides an empirical equation for the compressive strength of concrete
in partially loaded areas. However, the Eurocode adopts a general approach and does not account for
specific factors in this type of connection, such as the high density of reinforcement and the considerable
mass of concrete surrounding the loaded area, both of which could enhance the bearing strength by
confining the concrete.
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In current design approaches, the effect of confinement is not considered; instead, a relatively simple
solution is employed to prevent excessive compressive stresses in the concrete above the steel casing.
This solution involves welding an annular ring around the top of the steel casing (see Figure 1.4) to
increase the surface area over which the force is distributed. While effective, this method is both costly
and time-consuming, particularly for piles with large diameters that require heavy rings to be attached
using long welds.

N !'ﬂ,\CF/T

Figure 1.4: Annular ring

Figure 1.3: Cut CFSP-pile

1.3. Research objectives

The objective of this study is to deepen the understanding of how confinement affects the structural per-
formance of connections between concrete-filled steel pipe piles (CFSP-piles) and concrete elements.
This research aims to explore the underlying mechanisms of confinement, assess its influence in the
context of the specific case study, and evaluate the impact of variations in dimensions and material prop-
erties. The ultimate goal is to provide a well-founded estimate for the uniaxial compressive strength
of concrete, ensuring an even distribution of load over a partially loaded area. Additionally, if it can
be demonstrated that no additional provisions are necessary for transferring forces from the concrete
to the steel pipe pile, future design discussions could be simplified, and production costs significantly
reduced.

1.4. Research scope

This thesis investigates the connection between a concrete-filled steel pipe (CFSP) pile and a reinforced
concrete cap, as designed for the foundation of the governing railway bridge in the case-study project;
background is provided in chapter 2. This study will focus exclusively on the dimensions, material
classes, and loading combinations of bridge four. The scope is limited to this particular case because
similar connections are used in various applications, which cannot all be addressed within a single
research project with limited time. All calculations and assumptions will adhere to the regulations of
Eurocode 2: Design of Concrete Structures, Eurocode 3: Design of Steel Structures, Eurocode 4:
Design of composite steel and concrete structures as well as additional principles and preconditions
set by ProRail (OVS00030-6 and OVS00030-1).
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1.5. Research questions
Based on the problem outlined in 1.2 and the problem analysis, the following research question has
been formulated:
What is the impact of confinement on the structural performance of CFSP-pile to concrete element
connections in the absence of force transfer provisions, such as dowels or rings?

To find an answer to the main question, this study will employ a structured approach to explore the
impact of confinement on the structural performance of CFSP-pile to concrete element connections.
The research begins with a comprehensive literature review to establish a theoretical foundation. This
is followed by a theoretical analysis to conceptualize the effects of confinement in the context of the case
study. Finite Element Analysis (FEA) will be used to model and simulate the structural behaviour under
different conditions, with a focus on variations in dimensions and material properties. The accuracy of
the FEA models will be assessed through sensitivity analysis, and the results will be compared with
existing literature and Eurocode guidelines. The study will conclude with recommendations based on
the findings, aiming to optimize design practices and reduce costs.

As a guide to ensure the correct steps are followed and all relevant information is considered when
answering the main research question, several sub-questions have been formulated. The tables below
presents the sub-questions, specifying the purpose, methodology, tools required, desired outputs and
sections of this report where each sub-question is answered.

Sub question 1 | What are the underlying mechanisms of confinement in structural
elements?

Purpose Establish a clear theoretical understanding of how confinement works within
structural elements, including the physics and mechanics involved.
Methodology A literature study is conducted to define the conditions under which
confinement occurs and how it affects the strength and ductility of concrete.

Products A schematisation of confinement is provided, along with an explanatory text
based on the literature.

Tools Literature sources, including both internet and books, and LaTeX for
documentation.

Section chapter 3. Literature review

chapter 4. Application and modification of the Theoretical Models

Sub question 2 | Which structural components contribute to the development of

lateral confining stress in CFSP-pile to concrete element connections?
Purpose Directly link the mechanisms of confinement to the case study, focusing on
which elements in the case study situation could possibly contribute to
improved concrete strength and ductility.

Methodology A comparative literature review was conducted to identify structural
components that contribute to lateral confinement in concrete.

Key mechanisms found in literature were then compared with the configuration
of the CFSP-to-concrete cap connection in the case study. This made

it possible to determine which confinement mechanisms are likely active

in the studied setup.

Products A schematic description from the case study is provided and the components
which could impact the strength and ductility of the connection are defined.
Also a python script is written that calculates the lateral confining

stress and increased bearing strength of the concrete.

Tools Literature review, Python for coding and AutoCAD to create drawings.
Section chapter 4. Application and modification of the Theoretical Models
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Sub question 3

What is the most comprehensive approach for modelling confinement in
CFSP-pile to concrete connections?

Purpose

Methodology

Products

Tools
Section

Sub question 4

Develop a comprehensive modelling strategy to numerically simulate the
confinement effect in connections based on the literature.

Determine the necessary parameters to accurately simulate how stresses
develop based on confinement in FEA models. Recreate FEA models from
experimental test setups and refine material parameters until the results
align.

A detailed description of the setup for the FEA simulations, including

the conditions, parameters, and their justifications.

Diana FEA software and experimental results from literature review
chapter 5. FEA

What are the effects of confinement on structural performance according
to the finite element results of the test setup?

Purpose

Methodology

Results

Products
Tools

Section

Sub question 5

Investigate and quantify the impact of confinement based on the outcomes
from the FEA.

The results of the FEA simulations are presented and evaluated, emphasizing
how confinement affects structural performance, including the reaction
forces, ductility, stiffness, and overall behaviour.

Output plots from Diana, showing displacement, normal stress, lateral stress
and principal stress to evaluate material behaviour.

A detailed explanation of outcomes including contour plots and curves.
Diana FEA software, Excel for plotting curves, python for calculations

and Latex for documentation.

chapter 5. FEA

How do the theoretical model and FEA results of the
research compare with existing literature and Eurocode guidelines?

Purpose
Methodology
Products
Tools

Section

Indicate how reliable and accurate the results of this master thesis are.
Compare the findings with those of literature research and identify any

strong overlaps or contradictions. Review the implications of these results

for the CFSP to concrete cap connection design field.

Figures and tables illustrating and describing the findings from literature and
the results of this thesis, outlining the differences/similarities between the two.
Literature review, Diana FEA software, Excel for plotting curves and latex

for documentation.

chapter 6. Comparative Analysis



Background

This chapter provides context for the study by discussing the significance of CFSP-pile to concrete
element connections in construction and the role of confinement in enhancing structural performance.
It also introduces the case study that serves as a reference for this master thesis, offering a general
overview of the project and detailing the design and load combinations related to the connection ex-
plored in this thesis. Additionally, it explains how forces are transferred from the superstructure to the
substructure, highlighting the problem that this thesis aims to address.

2.1. Case study

This master’s thesis was made possible by Dura Vermeer, one of the leading contractors in the Nether-
lands. Dura Vermeer is active in residential construction, utility construction, infrastructure and technol-
ogy. Their core activities include designing, developing and realising construction and infrastructure
projects, encompassing management and maintenance, renovation and transformation.

Owing to Dura Vermeer’s extensive experience, ProRail’ selected Dura Vermeer as the contractor for
the ’Amsterdam Oostertoegang’ project. This projectinvolves the replacement of five railway bridges on
the east side of Amsterdam Central Station as part of the broader 'Programma Hoogfrequent Spoorver-
voer’ (PHS) contract, which also includes adjustments to Amsterdam Central Station and the surround-
ing tracks. These modifications are intended to enhance the capacity, quality and robustness of the
rail infrastructure around Amsterdam Central Station in the coming years.

o)
&

&

Figure 2.1: Location of the case study project 'Oostertoegang Amsterdam Central Station’

"Railway manager of the Netherlands.
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2.1.1. Current situation

The current train entrance on the east side of Amsterdam Central Station consist of four steel through
bridges and one more recently build concrete through bridge. The bridges have reached the end of
their lifespan and from the corrosion on the outside it is visible that the bridges need to be replaced.

In the right top corner image of Figure 2.1 each bridge has been assigned a number. The bridge that
has assigned number 5 to it is the concrete bridge which was built later than the steel bridges number
1 to 4. All five bridges will be replaced for new static determined steel through bridges.

2.1.2. New situation

In the new configuration, new embankments will be constructed behind the existing embankments of
bridges 1 to 4. The embankment for bridge 5 has been deemed sufficiently strong and will be reused.
Currently, the middle pillars of the bridges are located on the quay. In the new setup, the middle pillars
will be placed next to the quay, inside the waterway. Due to the changes in support locations, the
first and third bridge segments will be longer than the middle segment. Figure 2.2 illustrates the new
positions of the bridge pillars and embankments, as well as the lengths of the new bridge spans.

z
| 2
=

Figure 2.2: Dimensions of the new bridges compared to the old bridges (light grey)

At the locations where the embankments and middle pillars are shifted a new foundation should be
built for these supports. The foundation of the bridge embankment and pillars will consist of concrete-
filled steel pipe piles with a concrete cap on top, as shown in Figure 2.3. A more detailed image of
the connection between the piles and the concrete cap is provided in Figure 3. Both figures depict
a portion of the actual design for the ‘Oostertoegang’ project. In this project, the embankments and
pillars are founded on Hekpiles. The Hekpile system consists of a steel casing tube equipped with a
detachable screw point. A drilling motor drives this screw point to the desired depth, after which the
reinforcement and concrete mix are inserted (Van 't Hek, 2024). Before the piles can be drilled into the
subsoil they have to go through a 2 meters thick layer of tamped concrete which is part of the current
bridge foundation.
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-3000
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Figure 2.3: Substructure at middle pillar in new situation of the case study project

All the installed piles will have a casing with a diameter of 508mm and a wall thickness of 10mm. The
screw point used to drive the piles to -22.00m below N.A.P. will have a diameter of 680mm. Once the
piles are in place, the reinforcement will be installed in different segments as shown in Figure 2.4. After
the reinforcement is in place the piles will be filled with concrete C30/37.

Bottomn concrete cap 1250 Casing 3cm
. embedded incap
¥ [ ol _-
| Optimization:
3000
MR:10@32 T * | 3032
Pile reinforcement Ties: 216-200
relevant to all piles from
pillars bridges 1to 4 [~ F1----}
1000
MR: 7@32 > | 5@32
- Adoaooy Ties:@16-200
MR: 5@32 — | G920
Ties: @16-300
| S

Figure 2.4: Optimization of pile reinforcement for piles at middle pillars in new situation of the case study project

The pile cap that forms the platform for the middle pillars of the bridge and the embankment are placed
on top of the piles and consist of reinforced C30/37 concrete. The pile reinforcement will have an
anchorage length of 830mm into the concrete elements on top of the piles. The cross section of the
concrete element is 4,5m wide and 2,0m high and the element is provided with longitudinal and latitu-
dinal reinforcement. A drawing of the cross section is illustrated in Figure 2.5.
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Figure 2.5: Cross section of the concrete pile cap at middle pillars in new situation of the case study project

2.2. Problem statement

During the design stage of the Amsterdam Oostertoegang project it was found that the compressive
stress in the concrete cap directly on top of the steel pipe pile casing exceeds the compressive strength
of the concrete. According to the calculations in the report ‘DO berekeningsrapport onderbouw pijlers
brug 1 t/m 4’ (Rodenhuis 2023), the governing axial compressive force found in the piles at the middle
pillars of the bridges is 2353 kN. The steel casing of the foundation piles (d508x10mm) is embedded
30mm into the concrete. The contact stress between the top of the pipe pile and the concrete (C30/37)
is checked based on EC2 — article 6.7 (2). The maximum pile reaction is taken into account, distributed
proportionally according to the stiffness over the concrete cross-section and the steel casing. Note
that the governing pile head forces do not include a bending moment. Load cases involving bending

moments will be considered later in this report.
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Figure 2.6: Horizontal and vertical cross section of CFSP-pile with load distribution over steel casing and concrete core
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To determine the ratio between the load being distributed to the steel casing and the load being dis-
tributed to the concrete core, the following calculations were made:

i EAcasing
ratiogasing = =038 =2
casing EAcasing + EArepar + E Aconcrete !
. EArebar
ratio = =010 w22
rebar EAcasing + EArebar + E Aconcrete !
EA
ratioconcrete = concrete — 0.46 Eq.2.3

EAcasing + EArebar + EAconcrete

where:

EAcasing = Ecasing X Acasing
E Arepar = Erebar X Arebar

EAconcrete = Econcrete X Aconcrete

Acasing =5 X 7 X (D3 — (Dpite — 2 X tpile)?) = 15.645 mm?

Arebar = Npars X 0.25 X 7 X Dgar = 6433.98 mm?

Aconcrete = 3 X 7 X (Dpile — 2 X tpile)* = 187.037 mm?

and:

Eecasing = 200.000 N/mm? is the modulus of elasticity of the steel casing
Erebar = 210.000N/mm? is the modulus of elasticity of the steel rebar
FEoncrete = 20.000 N/mm? is the modulus of elasticity of the concrete core
Dyile =508 mm is the outer diameter of the pile

tpile =10mm is the thickness of the steel casing

Tlbars =8 is the number of reinforcement bars

According to EC2 — article 6.7 (2), the compressive strength of the concrete may be multiplied by a
factor of 3 for an even distribution of the load over a partially loaded area. However, EC2-4 — article
7.2.1.5 states that the compressive strength could be multiplied by a factor of 7.5 in the specific case
of the pull-out resistance of headed fasteners. It is interesting to note that in comparable cases when
looking at partially loaded areas, the compressive strength of the concrete may be increased by a
significantly larger factor than that stated in EC2 — article 6.7 (2). Why is there such a difference, and
how does this impact the concrete crushing at the top of steel pile casings?
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2.2.1. Eurocode 2 - article 6.7

Eurocode 2, Article 6.7, addresses the design considerations for partially loaded areas in reinforced
concrete structures. These are regions where the applied load does not act uniformly over the entire
area but is concentrated on a portion of it, such as a load applied by a column or a concentrated point
load on a slab. The code explains how the load is distributed across the concrete surface. It takes into
account the spreading of the load within the concrete, which leads to a stress distribution that is more
favourable than the concentrated load itself.

h

Figure 2.7: Spreading of a concentrate load according to Eurocode 2 - article 6.7 (Standardization (CEN) 2011)

To account for this distribution, the article defines an “effective area” around the loaded region. The
effective area is larger than the actual loaded area and depends on the geometry and the load path
through the concrete element. The effective area, defined by dimensions b, and ds, can be up to three
times the width and three times the length of the loaded area, which is defined by dimensions b; and
d;. The maximum bearing capacity for partially loaded areas is described in the code as:

Acl

ACO

FRdu = ACO X fcd X < ACO X fcd x 3.0 Eq 24

where:

A, is the loaded area.
A1 is the maximum area over which the load is spread according to the design and which has an
equal shape as that of area A,

In this equation the factor 3.0 on the right side of the equation is directly related to the limitation of
the effective area being 3 times wider and longer than the loaded area. This is validated by a simple
calculation where b; =d; =1 and by = dy = 3:

/3 x3 9
=4/-=v9=3.0
1x1 \/I Vo

This shows that only geometrical influences are taken into account for the favourable bearing capacity
of the concrete. Besides the maximum size of the effective area (A.;) compared to the loaded area
(Acp), the effective area must also meet the following conditions:
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1. The height (h) for the distribution of the load in the load direction should correspond to the condi-
tions given in the figure above;

2. The centre of the area A.; of the arithmetic distribution should lie on the line of force through the
centre of the loaded area A.g;

3. If more than one compressive force acts on the concrete cross-section, the areas of the arithmetic
distribution should not overlap;

4. To take up any tensile forces in lateral direction due to the uniaxial loading, reinforcement should
be placed.

The main objective of Article 6.7 is to ensure that concentrated loads do not lead to excessive local
stresses that could cause failure or significant damage to the concrete element.

2.2.2. Application of EC2 - Article 6.7 to case study

When applying Eurocode 2, Article 6.7, to the case study in this thesis, the calculations are divided into
two parts, each representing stresses within their respective stress distribution zones. These zones
will eventually be combined due to the overlapping stress areas. The first set of calculations describes
the stress distribution resulting from the reaction forces of the concrete core in the CFSP piles. The
reaction force of the concrete core is equal to 46% of the total pile reaction force, as determined by the
stiffness ratio outlined in section 2.2. The compressive stress o at the level of the loaded area A, and
o atthe level of the effective area A; can be calculated by dividing the compressive load on each area
by the respective area.

30

F’U core
O0.core = — 5 = 5.73 N/mm® < 3.0 x feg = 3.0 % = = 60 N/mm? Eq. 2.5
0 )
F’U core
01 core = —2% =0.64 N/mm? < foqg = 30 _ 20 N/mm? Eq. 2.6
: A4 1.5
where:
00,core is the compressive stress at the loaded area
O1,core is the compressive stress at the effective area
Fod.core = 0.46 X Fyq pite = 1071 EN is the load distributed to the concrete core)
Fuapite = 2353 KN is the total load on the pile
Ap,core = Aconcrete = 187.037 mm? is the loaded area of the concrete core

A core = + x ™ x D} = 1.683.341 mm? is the effective area of the concrete core

Due to the Poisson’s ratio of the concrete, compressive forces within the material also generate tensile
stresses in the lateral direction. Assuming the activation of the reinforcement is negligible, the lateral
stress is not transferred to the reinforcement according to the common strut and tie model but is instead
distributed linearly through the concrete over the height of the stress zone. The lateral stress is defined
as the product of the material’s compressive strength and its Poisson’s ratio.

0L0,core = 00,core X V = 1.15 N/mm? < feq = 1.35 N/mm? Eq. 2.7
OL1.core = 01 core X V= 0.13 N/mm? < fuq = 1.35 N/mm? Eq. 2.8

where:

oro.core 1S the lateral tensile stress at the loaded area
or1,core 1S the lateral tensile stress at the effective area
v =0,2 isthe Poisson’s ratio of concrete

According to Eq. 2.5, Eq. 2.6, Eq. 2.7 and Eq. 2.8, neither the concrete compressive strength nor the
concrete tensile strength is exceeded by the compressive and tensile stresses resulting from the re-
action forces from the concrete core of the CFSP piles. The schematisation of the stress distribution
which follows from Eurocode 2 — article 6.7 and associated calculations is shown in Figure 2.8.
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Figure 2.8: Stress distribution reaction forces concrete core CFSP-piles

The second set of calculations describes the stress distribution resulting from the reaction forces of the
steel casing of the CFSP piles. The reaction force of the steel casing is equal to 38% of the total pile
reaction force, as determined by the stiffness ratio outlined in section 2.2. However, in this case the
load can only spread in one radial direction, since the reaction force acts as a closed circular line load

rather than over a finite area. Consequently, lateral spreading in the orthogonal direction is precluded
(i.e. d; = dy) and the bearing stress increases by a factor of /3 rather than 3.

de,casing

30

T.casing = — Jot = 57.24 N/mm? > V3.0 x feq = V3.0 x 5 34.64 N/mm?

F, ; 30

O1,casing — Zvd,casing = 19.08 N/mm2 < fcd =—=20 N/mm2
A 1.5

where:
00,casing is the compressive stress at the loaded area
O1,casing

Foapite = 2353 kN

Fod.casing = 0.38 X Fog pite = 895.59 kN
AO,casing = Acasing = 15.645 mm?
Al,casing =3 x Acasing = 46.935 mm2

is the compressive stress at the effective area
is the total load on the pile

is the load distributed to the steel casing

is the loaded area of the steel casing

is the effective area of the steel casing

OL0,casing = 00,casing X V = 6.93 N/mm2 > feta = 1.35 N/mm2

OL1,casing — O1,casing X V = 3.82 N/mm2 > fctd =1.35 N/mm2

where:

0ro.casing 1S the lateral tensile stress at the loaded area
OL1,casing IS the lateral tensile stress at the effective area
v=20,2 is the Poisson’s ratio of concrete

Eq. 2.9

Eq. 2.10

Eq. 2.11
Eq. 2.12
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According to Eq. 2.9, Eq. 2.10, Eq. 2.11 and Eq. 2.12, both the concrete compressive strength and
the concrete tensile strength is exceeded by the compressive and tensile stresses resulting from the
reaction forces from the steel casing of the CFSP piles, even without taking into account the overlap of
the stress regions which would even further increase the stress levels in the concrete above the steel
casing. The schematisation of the stress distribution which follows from Eurocode 2 — article 6.7 and
associated calculations is shown in Figure 2.9.

Reinforcement

|
Lateral tensile stress ——=

Steel pile casing L
t=10mm
Compression zone

olL0 = 6,93 N/fmm2

Steel pile casing
t=10mm

Figure 2.9: Stress distribution reaction forces steel casing CFSP-piles

In conclusion, only in very localised areas on the steel pile casing is the concrete compressive strength
exceeded by the axial compression. Due to this axial compression and the Poisson’s ratio of the
concrete, a lateral tensile stress develops within the concrete. The high compression force also leads
to an exceedance of the concrete’s tensile strength in the lateral direction. This lateral tensile stress
could cause the concrete to crack if there is insufficient reinforcement in the tensile zone to absorb
these stresses.

2.2.3. Eurocode 2 - article 7.2.1.5

Eurocode 2-4 — article 7.2.1.5 (Standardization (CEN) 2018) describes the pull-out failure of fasteners.
The characteristic resistance Ny, of headed fasteners is limited by the concrete pressure under the
head of the fastener which is described by the following formula:

Npgp = ka X Ap X fer Eq.2.13

where:

Ap is the load bearing area of the head of the fastener;
ko = 7.5  for fasteners in cracked concrete;
ko = 10.5 for fasteners in uncracked concrete;

The 7.5 and 10.5 factors are empirically determined based on a combination of experimental research,
field studies, and statistical analysis. They are included in Eurocode 2-4 to provide a standardized
approach to estimating the pull-out resistance of fasteners in both cracked and uncracked concrete,
ensuring safety and reliability in design.



2.3. Concrete confinement 15

Both k, factors are greater than the maximum value of 3.0, which is the highest allowable increase
in concrete bearing capacity according to EC2, Article 6.7. There is a relatively large difference in
magnitude between the two articles, and the methods used to determine the factors also appear to
differ. While k5 is determined empirically, the factor of 3.0 seems to be derived purely through an

analytical consideration of the dimensions.

This difference immediately reflects the knowledge gap in the mechanical understanding of high com-
pressive forces on concrete members over limited contact areas that arises in many engineering fields.
Previous studies have demonstrated that the maximum average contact pressure achievable across
the loaded area, often referred to as bearing capacity or bearing strength, can be several times greater
than the uniaxial compressive concrete strength (Markic et al. 2022b). One of the effects that could
contribute to this increased compressive strength is the beneficial effect of biaxial confinement just

below the loaded area.

2.3. Concrete confinement

Biaxial confinement can be attributed to two main factors: the deviation of compressive stress trajec-
tories and the restriction of lateral expansion by the surrounding, non-loaded parts of the concrete
specimen. The first factor, which depends primarily on the geometry and load concentration ratio,
functions independently of lateral deformations, akin to the transverse compression applied in triaxial
tests (active confinement). The second factor necessitates the transverse expansion of concrete for
activation, known as passive confinement. Extensive testing has shown that all forms of confinement
enhance the axial compressive strength of concrete by approximately four times the confining stress,
along with a significant increase in ductility (see Figure 2.10) ((Markic et al. 2018)).

" Confined First
concrete hoop

Compressive Stress, f-
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Figure 2.10: Stress-strain relation in confined and unconfined concrete (Mander et al. 1988b)

But to what extent does this affect imply to the situation of the case study? In most studies confinement
is found in places where stirrups are applied. However, as shown in Figure 2.11, no stirrups are located
at the location of the piles. There is only longitudinal @25-125 (purple), transverse @32-125 (blue) and
pile reinforcement 8-@32. Can the longitudinal and transverse reinforcement be considered as forming
a stirrup that creates a confined region between them?
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2.3.1. Eurocode 2 - article 3.1.9

Eurocode 2 allows for an increase in compressive strength (f.4) as a function of the confining pressure
(02) provided by the reinforcement. Volume 2 of the CEB-FIB Model Code 2010 (Structural Concrete
(fib) 2012) provides the following equation for calculating the confining pressure exerted by the rein-

forcement:
2
oy =wefeq (1= 2¢) (1= 22 o 2bi/6 Eq.2.14
Qe b. acb.
where:
O = lexe
o9 Effective confining pressure in lateral direction for rectangular
cross sections

Jed Design compressive strength of concrete
We Confinement effectiveness factor
Se Spacing of the stirrups
a., b, Dimensions of the concrete section
b; Width of confined concrete o o= o)

Figure 2.11: Reinforcement in the pile to cap connection in the situation of the case study

For rectangular cross-sections, the confinement effectiveness factor w, is calculated as:

Asyfyd Aszfyd)
we =min | w, = S Wy = Eqg. 2.15
< Y aCSCde besefed q
where:
Wy, W Confinement effectiveness factors in the y and z directions

Agy, As. Area of the steel reinforcement in the y and z directions
fya Yield strength of the steel reinforcement
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The increase in compressive strength is given by:
feke = fer (1.000 + 5.0}72 ) for o5 < 0.05f Eq. 2.16
ck
fck,c = fck (1125 + 250;2 ) for o9 > 005fck: Eq 217
ck
where:
few,e  Increased compressive strength
Jek Characteristic compressive strength of the concrete
P Effective confining pressure in lateral direction
The strain values are calculated as follows:
€c2,c = €c2 (fc}w:) Eq 2.18
fck-
Ceunc = Ecun +0.222 Eq. 2.19

fck

where:

€e2,c Compressive strain at f.y .

€euz,e  Ultimate compressive strain

£e2 Compressive strain at f.;

Ecu Ultimate compressive strain without confinement
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Figure 2.12: Compression members with confining reinforcement according to CEB-FIB Model Code 2010 volume 2 article

7.2.3.1.6 (Structural Concrete (fib) 2012)

In conclusion, Eurocode 2 Article 3.1.9 emphasizes the importance of confinement in concrete to in-
crease its strength and ductility, particularly in structural elements subjected to high compressive forces,

making it a vital consideration in structural design.

Unfortunately, it is not possible to apply EC2, Article 3.1.9, to this case study as it only involves a single
reinforcement mesh in the compression zone. This leads to s. = 0, which makes the calculation of w,.
infeasible due to division by zero. However, could a single reinforcement mesh directly located within
the compression zone still exert a passive confinement effect on the compressed concrete? Moreover,
beyond the influence of a single reinforcement mesh on confinement, what effect does a large volume
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of surrounding concrete have on the loaded area? Does this increase the uniaxial compressive strength
by a factor of up to 3, as described in Eurocode 2, Article 6.7? Or could a combination of both factors
lead to an even greater increase in the concrete’s compressive strength? To address these questions,
the theoretical principles of concrete confinement must first be explored in a literature review.



[1terature review

This chapter provides an overview of the available research on concrete confinement, with a focus on
the effects of reinforcement and the surrounding concrete volume in the loaded area. The objective of
this chapter is to gather sufficient data to develop models that yield precise results and can be validated
using the information from this literature review.

3.1. Overview of confinement in structural elements

Confinement in reinforced concrete and other structural materials refers to the use of materials or
structural designs that restrict the lateral expansion of the core material, thereby enhancing its strength
and ductility. In the context of reinforced concrete, confinement is often provided by steel reinforcement
or external wraps that prevent the concrete core from expanding outward under compressive loads. The
confinement of concrete is particularly important in earthquake-resistant design, where structures are
subjected to dynamic loads that require both strength and ductility to prevent catastrophic failure.

The concept of confinement has been widely researched, leading to various models and theories de-
scribing its effects on structural performance, especially concerning compressive strength, ductility, and
energy absorption. The most notable studies include those by researchers like Mander, Priestley, and
Park, who developed widely accepted stress-strain models for confined concrete. These models are
now integral to seismic design codes around the world.

3.1.1. Effects of Confinement on Structural Performance

Enhanced Compressive Strength

Confinement increases the compressive strength of concrete beyond its unconfined capacity. When
concrete is confined, its lateral expansion is restricted, which results in a triaxial stress state in the
concrete. This state enhances the load-bearing capacity of the concrete core, allowing it to resist higher
compressive stresses before failure (see figure 2.10). Experimental research, particularly by Mander et
al. (Mander et al. 1988a), has demonstrated that confined concrete can achieve compressive strengths
significantly higher than unconfined concrete. This increase depends on factors such as the amount,
spacing, and configuration of the transverse reinforcement (e.g., spirals or hoops) that provides the
confinement.

Improved Ductility

Ductility, defined as the capacity of a material to sustain significant plastic deformation prior to failure, is
a critical property in structural elements subject to seismic forces. Confinement enhances the ductility
of concrete, enabling it to endure larger strains without undergoing abrupt, brittle failure. As illustrated
in Figure 2.10, confined concrete achieves higher strain levels before reaching its ultimate compressive
strength (e.. > €.0). Rather than exhibiting sudden failure, confined concrete demonstrates a gradual
reduction in strength following peak stress. This behaviour is essential not only in seismic design
(particularly in columns and bridge piers where energy dissipation is crucial) but also in structures
exposed to other forms of dynamic loading. In bridge piers subjected to repeated traffic loads, impact

19
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forces, or environmental vibrations, confinement contributes to improved fatigue resistance, enhanced
damping capacity, and sustained structural integrity after cracking. Therefore, the increased ductility
resulting from confinement enhances the overall resilience of the structure in both seismic and non-
seismic dynamic scenarios.

Energy Absorption Capacity

Confinement also enhances the energy absorption capacity of structural elements, a key factor in seis-
mic design. Structures with high energy absorption capacity can absorb and dissipate the energy
released during an earthquake, thereby reducing the demand on other structural components. The en-
ergy absorption capacity is typically represented by the area beneath the stress—strain curve. Figure
2.10 illustrates that the area beneath the curve for confined concrete is significantly larger than that for
unconfined concrete, indicating an increased energy absorption capacity when the concrete is confined.
Studies have shown that confined concrete elements can absorb more energy due to their improved
strength and ductility, thereby enhancing the overall resilience of the structure under dynamic load-
ing conditions. This capacity to absorb energy is particularly important in plastic hinge zones, where
inelastic deformations are expected to concentrate during severe loading events.

3.1.2. Common Confinement Models

Mander’s Model for Confined Concrete

One of the most influential models for confined concrete was proposed by Mander, Priestley, and Park
in 1988. This model provides a comprehensive stress-strain relationship for confined concrete, ac-
counting for the increased strength and ductility due to confinement. Mander’s model is based on the
concept that the lateral pressure exerted by transverse reinforcement on concrete delays its failure and
allows for greater stress and strain capacities. This model is widely used in the design and analysis of
reinforced concrete structures and is incorporated into many design codes.

The Modified Kent-Park Model

The Kent-Park model, later modified by Scott et al. (1982), is another well-known model for confined
concrete. This model originally described the stress-strain behavior of unconfined concrete but was
adapted to account for confinement effects by modifying the post-peak behavior. The modified model
includes a descending branch that reflects the improved ductility due to confinement, allowing for more
accurate modeling of concrete behavior in regions subject to high seismic demands.

3.1.3. Applications of Confinement in Structural Design
Confinement is particularly critical in the design of certain structural components where high strength
and ductility are necessary to ensure overall structural stability and resilience.

Seismic-Resistant Columns

In earthquake engineering, columns are often confined to improve their load-bearing and ductile capac-
ities. For instance, in high-rise buildings, columns are wrapped with transverse reinforcement (such
as steel hoops or spirals) or with external materials like fiber-reinforced polymers (FRP) to ensure that
they can withstand lateral seismic forces without brittle failure. The confined columns can undergo
large deformations, allowing them to absorb and dissipate seismic energy and preventing collapse.

Bridge Piers

Bridge piers are critical in supporting bridge structures and are subject to both compressive and bend-
ing stresses, especially during seismic events. Confinement in bridge piers is typically provided by
transverse reinforcement and, in some cases, by using high-strength materials like FRP wraps. This
confinement improves the ductility and strength of the piers, enabling them to resist the dynamic forces
generated during earthquakes and reducing the likelihood of structural collapse.

Retrofit of Existing Structures

For older structures that were not originally designed to withstand seismic forces, confinement through
retrofitting provides an effective means of improving structural performance. Techniques such as jack-
eting (wrapping columns and beams with additional materials) enhance the strength and ductility of
these elements, bringing them up to modern seismic design standards. Common materials used in
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retrofitting for confinement include carbon fiber-reinforced polymers (CFRP), glass fiber-reinforced poly-
mers (GFRP), and steel jackets.

3.2. Mechanisms of confinement

This thesis focuses on passive confinement rather than active confinement, as the case study does
not involve any lateral pressure from outside the specimen. Passive confinement generally arises
from the restriction of lateral expansion in loaded concrete elements by surrounding materials, such as
enclosed steel tubes, fibre-reinforced polymer (FRP) wrapping, rigid steel plates for load introduction,
unloaded concrete outside the concentrated load area, or transverse reinforcement within the concrete.
In this case study, confinement by transverse reinforcement and by unloaded concrete beyond the
concentrated load area are relevant.

3.2.1. Passive confinement by transverse reinforcement

Several conditions are necessary for transverse reinforcement to contribute effectively to confinement.
First, in all forms of passive confinement, the concrete must undergo lateral deformation due to longi-
tudinal loading. Additionally, the transverse reinforcement must sufficiently restrain this lateral defor-
mation. One type of lateral reinforcement that inherently provides this restraint is stirrups. However,
circular stirrups are more effective at confining the concrete within than rectangular stirrups. This differ-
ence arises because rectangular stirrups tend to deform towards a circular shape under load, whereas
circular stirrups already exhibit their final, stable shape.

%
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Figure 3.1: Effective confined area in columns with different transverse reinforcement (Tabsh 2007)
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Figure 3.1 illustrates the three different types of reinforcement configurations for concrete columns
and how they confine the concrete core. The shaded regions in each diagram indicate the “effectively
confined concrete” the area where lateral confinement by the stirrups or hoops actively improves the
concrete’s strength and ductility.

In the circular section, the hoops provide confinement uniformly around the core of the column. The
circular stirrups exert even lateral pressure on the concrete, making the entire core area effectively
confined. This configuration is efficient in creating a high degree of confinement throughout the cross-
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section, which is beneficial for columns that need to resist seismic or other lateral loads. The shaded
area shows that almost the entire concrete core is effectively confined, as circular hoops distribute the
confinement evenly.

In the square section without cross ties, the confinement is provided by rectangular stirrups around the
perimeter. Due to the shape of the stirrups, the concrete in the corners is effectively confined, while the
central areas along the sides receive less lateral support and are less confined. The shaded regions
are concentrated in the corners, indicating that only these areas receive effective confinement. The
concrete along the middle sections of each side of the rectangle lacks sufficient confinement, making
it more susceptible to cracking or spalling under high loads.

The last configuration includes rectangular stirrups with additional cross ties that connect the stirrups
across the section. The cross ties improve confinement by restraining the concrete not only in the
corners but also towards the centre of each side of the section. As a result, a larger portion of the
concrete is effectively confined, as indicated by the extended shaded areas, which cover more of the
cross-sectional area compared to the rectangular section without cross ties. This design increases the
confinement efficiency, making it particularly suitable for structures exposed to high loads or seismic
forces, as it prevents buckling of the longitudinal reinforcement and enhances the concrete’s load-
bearing capacity. (Filaj et al. 2016)

3.2.2. Passive confinement by longitudinal reinforcement

In addition to the impact of transverse reinforcement, in columns, longitudinal reinforcement also con-
tributes to confinement. As the concrete attempts to expand outward under load, the longitudinal bars,
tightly held by the transverse reinforcement, also experience compression. This creates a synergistic ef-
fect, where the confined concrete core and the reinforcement work together to resist deformations (Filaj
et al. 2016). This restraint provided by the longitudinal bars enhances the confinement effect, enabling
the concrete to withstand higher stresses before failure. The quantity and distribution of longitudinal
reinforcement influence the effectiveness of confinement. When sufficient longitudinal reinforcement
is evenly distributed across the section, the concrete core is more uniformly supported by the lateral
reinforcement, increasing the confined area and improving the column’s overall capacity.

3.2.3. Passive confinement by unloaded concrete beyond the concentrated load

area
If the loaded concrete core is surrounded by additional concrete, this surrounding plain concrete resists
the lateral deformation, creating a confining pressure. This confining pressure reduces the lateral
strain in the core, thereby improving its compressive strength and ductility. According to the previous
explained square root equation in section 2.2.1 and experimental results from (Adebar et al. 1993) the
confining effect by plain concrete depends on the geometry, thickness, and relative strength of the
surrounding concrete.

3.3. Theoretical models of confinement effects

3.3.1. Mander's Model for Confined Concrete

Mander et al. developed a theoretical stress-strain model for concrete confined by transverse reinforce-
ment, such as circular hoops, spirals, or rectangular hoops with or without supplementary cross ties.
This model accounts for the influence of confinement on the strength and ductility of concrete under
uniaxial compressive loading and is applicable to monotonic, cyclic, and dynamic loading conditions.

Mander et al. performed an experiment to validate Mander’s theoretical model by observing the stress-
strain behaviour of reinforced concrete columns under axial compressive loading. Thirty-one columns
with various cross-sectional shapes (circular, square, and rectangular) were tested under quasi-static
and high strain rates to investigate how different reinforcement configurations affect the confined be-
haviour of concrete.
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Theoretical Stress-Strain Relationship
The stress-strain curve for confined concrete (see figure 2.10) is derived from an equation suggested
by Popovics (1973) and takes the form:

/

cc X T
fc_rilerT Eqg. 3.1

where:
T =¢€c/Ecc Strain ratio [-]
fe longitudinal compressive concrete stress [MPa]

- peak compressive strength of confined concrete [MPa]
e longitudinal compressive strain in concrete [-]
€ee = €coll +5((fl./flo) —1)] strain at peak stress f!_ [-]
e =0,002 Assumed strain at unconfined concrete peak strength [-]

’o Unconfined concrete strength [MPa]
r=FE./(E.— Esec) E-moudulus ratio [-]
E. =5.000/f., initial tangent modulus of elasticity of unconfined concrete [MPa]
Esee = fl./€cc secant modulus of elasticity at peak stress [MPa]

Confinement Effectiveness
The method for calculating confinement effectiveness according to Mander’s theorem differs between
circular and rectangular transverse reinforcement. Given that the longitudinal and transverse reinforce-
ment in concrete caps on CFSP piles exclusively form rectangular confining reinforcement, this thesis
only considers the confinement effectiveness of rectangular transverse reinforcement. To calculate the
effect of transverse reinforcement on the confinement of the concrete, the effective lateral confining
stress f/ is determined:

fl=1 ke Eq. 3.2

where:

fi lateral pressure from the transverse reinforcement, assumed to be uniformly distributed over the
surface of the concrete core [MPa]
k. confinement effectiveness coefficient [-]

The confinement effectiveness coefficient k. varies based on the configuration of the transverse rein-
forcement. For rectangular hoops which are relevant to the case studies application:

A
ke = == Eq. 3.3
ACC q
where:
A, area of the effectively confined concrete core [mm?]
Ace = Ac(1 — pe.) area of core within centrelines of perimeter hoops excluding area of longitudinal
steel [mm?]
A, area of the core of the section enclosed by the centrelines of the perimeter hoop
[mm?]
Pee ratio of area of longitudinal reinforcement to area of core of section [-]

In figure 3.2, the arching action is modeled as second-degree parabolas, starting with an initial tangent
slope of 45°. This arching occurs vertically between the layers of transverse hoop bars and horizontally
between the longitudinal bars. The effectively confined concrete area at the hoop level is determined
by subtracting the area of the parabolas containing the ineffectively confined concrete. For a single
parabola, the ineffectively confined area is given by (w;)?/6, where w; is the i-th clear distance between
adjacent longitudinal bars (see figure 3.2). Thus, the total plan area of the ineffectively confined core
concrete at the level of the hoops, when there are n longitudinal bars, is:

n /

(wi)2
A=) - Eq. 3.4
=1



3.3. Theoretical models of confinement effects 24

Effectively | w’
confined l )
care-—~m\\ | | i

i o - m—;»T-.—.. ——

b

Ineffectively
confined 4—
core
— ’
. i s’Is5Y
over
concrete —] 4
{Spa”S Off} - bc_sz/z

bc

Figure 3.2: Effectively confined core for rectangular hoop reinforcement (Mander et al. 1988b)

Taking into account the impact of the ineffective areas in the elevation (as shown in Fig. 3), the effectively
confined concrete core area at the midpoint between the transverse hoop reinforcement levels is:

— (w))? s' s'
Ae:<bcdc—26 1_2bc 1_2dc Eq.3.5

i=1
where:
be core width to centrelines of perimeter hoop in x direction [mm]
d. core width to centrelines of perimeter hoop in y direction [mm]
be > d.

With now the area of effectively confined concrete A, and the area of core within centrelines of perimeter
hoops A.. expressed, Equation 3.3 can be rewritten which gives:

(1-2n, él"i(l)(:—)zb) (1-3%) Eq. 3.6

Rectangular reinforced concrete members may have varying amounts of transverse confining steel in
the x and y directions. As a result, the lateral confining stress on the concrete, defined as the total
transverse bar force divided by the vertical area of the confined concrete, could differ between the x-
and y-directions due to differing transverse reinforcement ratios. This leads to the following expressions
for lateral confining stress on the concrete:

ke =
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+ lateral confining stress in x-direction:

As

Jiz = jfyh = p:vfyh Eq. 3.7
+ lateral confining stress in y-direction:
AG?
fly = jfyh = py.fyh Eq. 3.8

where:

A,. the total area of transverse bars running in x-direction [mm?]
A,y the total area of transverse bars running in y-direction [mm?]
fyn  yield strength of the transverse reinforcement [MPa]

From equation 3.2 the effective lateral confining stresses in x- and y-directions are:

+ effective lateral confining stress in x-direction:
flo = kepafyn Eq. 3.9
» effective lateral confining stress in y-direction:

flly = kepyfyh Eq 3.10

Where the confinement effectiveness coefficient k. is defined by Equation 3.6, and the lateral confining
stress in the x- and y-directions is given by Equation 3.7 and Equation 3.8, respectively.

Peak Compressive Strength

To determine the compressive strength of confined concrete f/ ., a constitutive model is utilised that
specifies an ultimate strength surface for multiaxial compressive stresses. The “five-parameter” fail-
ure surface described by William and Warnke (1975) is employed, as it shows excellent agreement
with triaxial test results. The ultimate strength surface, calculated from the triaxial tests conducted by
Schickert and Winkler (1977), serves as the foundation for this approach, with detailed calculations
provided by Elwi and Murray (1979).

The general solution to the multiaxial failure criterion is derived by incorporating the effects of the two
lateral confining stresses. This solution is depicted in Fig. 4, illustrating the relationship between the
effective lateral stresses and the enhanced compressive strength of the confined concrete.

where f/  is the unconfined compressive strength of concrete.

Ultimate Strain
The ultimate strain ¢.,, at which the transverse reinforcement fractures is calculated using an energy
balance approach:

Us‘h = Ucc + Usc - Uco Eq 3.1

where:

U, strain energy capacity of transverse reinforcement [M J/m?]
U.. strain energy stored by confined concrete [M .J/m?]

U,. energy required to maintain yield in longitudinal steel [M.J/m3]
U., strain energy of unconfined concrete [M.J/m?]

The model allows for reliable moment-curvature analysis by quantifying the enhancement in strength
and ductility provided by the transverse reinforcement.
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Figure 3.3: Confined Strength Determination from Lateral Confining Stresses for Rectangular Sections (Mander et al. 1988b)

Specimen Details and Reinforcement
The tested columns varied in geometry and reinforcement configuration:

1. Circular Sections: Reinforced with longitudinal and spiral reinforcement.

2. Square Sections: Reinforced with longitudinal bars and either square or octagonal transverse
hoops.

3. Rectangular Wall Sections: Reinforced with rectangular hoops, sometimes supplemented with
cross-ties.

Testing Setup and Procedure

The tests were conducted using a DARTEC 10 MN servohydraulically controlled testing machine, capa-
ble of applying strain rates up to 0.015/s. The specimens were concentrically loaded, and longitudinal
and transverse strains were measured using linear potentiometers and electric resistance strain gauges.
The instrumentation focused on a central 450 mm gage length to ensure accurate monitoring of failure
behaviour.

Experimental Observations and Results

Mander et al. observed distinct failure patterns in circular columns depending on the volumetric ratio
of confining reinforcement. Columns with low ratios exhibited diagonal failure planes after peak load,
while columns with higher ratios demonstrated enhanced strength and an extended falling branch of
the stress-strain curve. Notably, spiral reinforcement fractured sequentially, without unwinding. It was
found that the most significant variable in the tests was the volumetric ratio, ps, of spiral reinforcement.
An increase in p; raises the peak stress, f/ ., the strain at peak stress, ¢/, and the fracture strain,
ecu, While reducing the slope of the descending branch of the stress-strain curve. The pitch of the
spiral reinforcement, on the other hand, did not significantly affect the peak stress and strain capacity.
Although a smaller pitch resulted in a less steep descending branch, the influence remained minimal.
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Observerd Stress-Strain Curves

The experimental stress-strain curves revealed significant enhancements in strength and ductility for
confined concrete compared to unconfined samples. Increased confinement led to higher peak stress,
greater fracture strains, and a gentler slope on the falling branch (see figure 3.4).
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Figure 3.4: Typical Experimental Stress-Strain Curves for Spirally Reinforced Circular Columns by Mander et al. (Mander et al.
1988a)

Theoretical Model Comparison

The experimental results were compared with Mander’s theoretical predictions. The confined concrete
compressive strength f/_, strain at peak strength ¢..., and ultimate compressive strain ¢.,, were essential
control parameters. Effective confining stresses f; were calculated using the confinement effectiveness
coefficient k., accounting for the effectively confined concrete core area. The peak experimental and
theoretical confined concrete strengths, f/., were listed and compared. In most cases, there is very
close agreement, with experimental concrete strengths exceeding the predicted values by an average
of 1.7%. On average, the experimental confined strain at peak stress, ¢.., is 1.3% lower than the pre-
dicted strain. The experimental strain at the point of initial hoop fracture exceeded the predicted strain
by an average of 9.5%. These close agreements in average behaviour, combined with the relatively low
variation, suggest that Mander’s theoretical model provides an excellent prediction of the stress-strain
curves for concrete confined by spirals or hoops.

3.4. Stress distribution in partially loaded areas

The mechanical behaviour of partially loaded areas in concrete has been extensively studied over the
past century. These areas are subject to high, concentrated compressive forces over limited contact
regions, resulting in stress distributions that significantly influence their bearing capacity.

When a concentrated load is applied to a concrete surface over a limited area, the resulting compressive
stresses spread and approach a uniform distribution at increasing depths. A distinction can be made
between spatial cases as shown in figure 3.5(a) and plane cases of partial loading in figure 3.5(b) and

(c).
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Figure 3.5: Cases of partial area loading: (a) Spatial case; (b) plate, and (c) strip loading; (d) Strut-and-tie model for plane
cases (b) and (c). (Markic et al. 2022b)

Current design approaches for partially loaded areas are predominantly empirical, relying on simplified
models and assumptions. The commonly used square-root equation (see equation 2.4) relates the av-
erage bearing capacity to the uniaxial compressive strength. However, this empirical model often yields
conservative estimates, particularly for reinforced blocks, leading to inefficient designs This motivated
researchers to develop approaches based on stress fields.

3.4.1. Strut and tie model

The strut-and-tie model shown in figure 3.5(d) provides a simplified mechanical representation of stress
distribution in partially loaded areas of reinforced concrete. This model is used to analyse the transfer
of loads from the loaded area to the surrounding structure.

+ Struts: Represent the compressive stress paths in concrete (dashed lines).

+ Ties: Represent the tensile forces, typically carried by reinforcement in the bursting region (solid
lines).

The model assumes idealized stress trajectories and uniform stress distribution, providing a practical
yet conservative basis for designing the reinforcement in the bursting region.

This model forms the foundation for more advanced stress field solutions, such as the Markic Dual-
Wedge and Dual-Cone models, which incorporate biaxial stress states and confinement effects for
improved accuracy, both published by Markic et al. (Markic et al. 2022b). Markic et al. have built
upon the work of Chen et al., refining and simplifying these stress field solutions. Before presenting the
models, they summarised the key assumptions and simplifications, which can be found in Section 3 of
the report Partially Loaded Areas in Reinforced Concrete: Mechanical Modelling (Markic et al. 2022b).
The bearing load on the pile casing can be treated as a circular line load on the concrete, making the
Dual-Wedge stress field the appropriate model.

3.4.2. Markic Dual-Wedge stress field

The Dual-Wedge (DW) stress field provides a theoretical model for analysing partially loaded areas
in reinforced concrete under plane stress conditions. It builds upon the principles of the lower-bound
theorem of plasticity and combines the effects of geometric and passive confinement to increase the
bearing capacity.

In contrast to simple strut-and-tie models, which feature orthogonal boundaries between nodal zones
and struts and require equal compressive stresses in all directions of the (x, y)-plane, o1 = o3, the Dual-
Wedge stress field allows for general biaxial compressive stress states, o1 > o3, within the nodes. This
approach facilitates a more efficient utilization of the confined concrete’s compressive strength (Markic
et al. 2022b).
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The Dual-Wedge model divides the loaded area into three parts (see Figure 3.6): the first nodal zone
ABK, where the load is applied; the second nodal zone BEF; and the strut BFK. From the nodal zone
ABK, the load is transferred to the strut BFK. In the transition from region ABK to BFK, the load inclines
by an angle « into a direction parallel to the strut. This results in the strut being subjected to a uniaxial
compressive stress o, in the (z, y)-plane.

Geometrical confinement

The inclined uniaxial stress in the strut BFK induces a horizontal compressive stress component, o3 =
oo sin? o, which geometrically confines the nodal zone ABK and thereby increases its compressive
strength, o1 = o,9. The stress field of the strut BFK also decomposes into horizontal and vertical
components at the discontinuity line BF. However, this creates a horizontal bursting stress o.

Bursting stress

In unreinforced concrete, this bursting stress must be carried by the concrete itself, which will likely fail
due to cracking. In reinforced concrete, prior to cracking, there will be a homogeneous biaxial tension-
compression state in the (z, y)-plane. After cracking, the tensile bursting stress is redistributed into the
reinforcement, leaving only uniaxial compression within the concrete. And by vertical equilibrium of the
stress field, it is found that 0,4 = d1/d3 - 040.

So far, the region ABK is geometrically confined, and the region FJK remained stress-free. However,
if passive confinement by surrounding reinforcement is taken into account, an even larger bearing
capacity could be reached. The area influenced by passive confinement by the reinforcement depends
on the amount and location of confining reinforcement around the loaded area. The effectiveness of
the lateral reinforcement can be determined according to equation 3.2 in section 3.3.1.

Stress Transition at Discontinuity Lines

To better understand the effect of geometrical and passive confinement, a Mohr circle is constructed to
illustrate the transformation of the stress state from region BFK to region ABK via the discontinuity lines
FK and BK. A similar approach is used to analyse the stress state transition from region BFK to BEF
through discontinuity lines FK and BF taking into account the confining effect of bursting reinforcement.

Figure 3.6.b shows the forces influencing the stress state in region ABK and the corresponding Mohr
circle. The blue circle represents the stress state in region BFK without confinement. The blue line,
inclined by angle «, is parallel to the discontinuity line FK and indicates the direction of the principal
compressive stress in region BFK. The intersection of the blue Mohr circle and the blue line is marked
with a pole, which represents the combination of normal and shear stress acting along the discontinuity
line FK.

The pole is then shifted to the left (indicating increased compression) by a magnitude equal to the
confinement stress. Adding confinement stress not only shifts the circle but also reduces its diameter.
This is because the confinement alters the internal stress distribution, decreasing the shear stress (7)
required to maintain equilibrium. As a result, the radius of the new Mohr circle becomes smaller since it
is directly related to the maximum shear stress 7max, Which is reduced under confinement. The pole on
the new Mohr circle still represents the stress state parallel to discontinuity line FK, but now it accounts
for the effect of passive confinement.

Following the discontinuity line FK up to point K leads to discontinuity line BK. It is important to note
that the same stress state persists along the entire discontinuity line FK. This means that the new pole
serves as the reference point for the stress state in the new Mohr circle, and all stresses on planes
with varying orientations are derived from this pole. The line parallel to BK, departing at an angle ~,
represents the stress state in a plane parallel to BK in the physical space.

By extending the line parallel to discontinuity line BK in the Mohr circle, a new pole is located on the
new Mohr circle. Region ABK is subjected to pure compression, denoted as o,,. To determine the
ultimate normal stress capacity of ABK, a line perpendicular to BK is drawn from the pole representing
the stress state parallel to BK. The point where this line intersects the o-axis (where shear stress + = 0)
corresponds to the maximum normal stress .



3.4. Stress distribution in partially loaded areas 30

This perpendicular line reflects the transition to a plane where the shear stress is fully relieved, leaving
only the normal stress component. In the Mohr circle, points along the o-axis represent pure normal
stress states without shear stress. Therefore, the intersection of this perpendicular line with the o-axis
indicates the point of pure compression in ABK, corresponding to the maximum normal stress o the
region can withstand.
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Figure 3.6: Dual-Wedge stress field by Markic (Markic et al. 2022b)
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Mathematical formulation of the DW stress field
The stress model maximises confinement effects by superimposing stress fields:
dy 04 cos®a
Op0 =0 = =
0 1,ABK di 1 + o'akS'I:% «

where:
* 0,. Compressive stress in the diagonal strut.
* «a: Inclination angle of the compressive strut.
* ks Parameter controlling the distribution of bursting reinforcement stresses.
» 0,: Stress from bursting reinforcement.
* dq,do: Widths of the loaded and confinement areas, respectively.

Stress Field Behaviour and Optimization

Eq. 3.12

The stress trajectories are inclined at an angle o to the loading direction, allowing the compressive
stresses to be distributed uniformly over the available block width d;. The upper wedge (ABK) expe-
riences biaxial compression, with the horizontal stress component o3 = o, sin? « confining the node

and increasing its compressive strength in the vertical direction.

To maximize bearing capacity, the DW stress field combines reinforcement effects:

» Confinement reinforcement generates horizontal stresses o¢gns.

+ Bursting reinforcement extends beyond critical zones, adding to the confinement stresses in the

triangular stress field (BFH).

The resulting equilibrium conditions include:

0< Oconf < ch

OSUSSfCO
A,
ng‘sgmin{l—m,l}
4o,

sin?(a) = max {

O (ch + 4Uconf)% - 3]€505

1 1 d
ULQL = 7(.]0(:0 — Oq +40'conf)2 + U{? + kg0, (ch +4O'conf) Lo O)+oa |7 2
4 2 ds dy
1 do
- 7ks s | 7
op 2 o (d1 +3>
(do — dv)?

a2 ) =
sin (OC’rn’HL) 4w2E$mam + (dz — d1)2

0o <MIn{0q adm.BHK s Ta,adm,BFH }

1
Oa,adm(0j) = TG(GfCO + (9 + 25 cos 2a)

+/64(f0 — 05)(feo + 40,) + (6fu0 + 05(9 + 25 cos 20))?)

where:

Jeo Uniaxial compressive concrete strength
0j = 0cony Lateral confining stress in region BHK
0j =0 Lateral confining stress in region BFH

]{ZSUS %(fCO_FO-a)_(ch+40-conf)%+20-conf+0-b_0-a . 2 }
, 81N (anzin)

)

Eq. 3.13

Eq. 3.14

Eq. 3.15

Eq. 3.16

Eq. 3.17

Eq. 3.19

Eq. 3.20

Eq. 3.21
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Practical Implications
The DW stress field offers several practical advantages:

* It integrates confinement and bursting regions into a single consistent model.
+ It predicts higher bearing capacities compared to traditional empirical models.
* It provides detailed guidance on reinforcement placement and detailing for efficient load transfer.

The model’s results have been validated against experimental data, demonstrating its reliability and
accuracy in predicting bearing capacities and reinforcement requirements.

3.5. Expected influence on CFSP-pile to concrete connections

Although the case study does not incorporate follow-up stirrups or hoops, the reinforcement bars in
the lower net continuously encircle the loaded area, thereby replicating the function of hoops with
ties. In concrete caps, large-diameter reinforcement is often employed with a relatively small centre-to-
centre spacing; consequently, the reinforcement ratio should compensate for the absence of follow-up
reinforcement. It is therefore anticipated that results comparable to those observed in the experimental
campaign (Markic et al. 2022a) used to validate the Markic Dual-Wedge Stress Field theory could be
achieved. Primarily determined by the amount of reinforcement contributing to passive confinement
and the accessible height and width of the DW stress field, the resulting bearing capacity is expected
to be between 2 and 6,5 times higher than the uniaxial compressive strength of the concrete.



Application and modification of the
Theoretical Models

This chapter explains how the theoretical models found in the literature study and explained in chapter 3
are applied on the case study, and which modification were required to make the theories applicable to
the case study. It explains which assumption were made and why these assumptions are reasonable.

4.1. Principal of application

In section 2.2, it is evident that the primary objective of this thesis is to define the overcapacity of the
concrete bearing strength directly above the steel pile casing. An examination of the concrete cap, as
shown in Figure 2.11, reveals two potential sources from which this additional capacity can be derived.
The first source is the substantial volume of concrete that surrounds the loaded area of the pile, and the
second is the relatively high ratio of reinforcement present in the lower net. These components offer
opportunities to enhance the bearing strength of the concrete.

Section 2.3 outlines the fundamental principles and various types of concrete confinement, as well as
their applications in structural design according to the Eurocode. Furthermore, chapter 3 summarises
existing studies on concrete confinement, detailing its influence on different applications. In general,
concrete confinement is expected to enhance compressive strength, improve ductility, and increase
energy absorption capacity, attributes that are particularly advantageous for a connection characterised
by the high stiffness of the steel casing and the relatively lower stiffness of the concrete cap.

The challenge lies in quantifying the influence of confinement on such a connection. Here, Mander’s
theoretical model is introduced. This model describes how the effective laterally confined area is deter-
mined and, based on the amount and location of reinforcement, establishes the magnitude of the lateral
confining stress. However, Mander’'s model is primarily applied to walls, blocks, and other reinforced
concrete elements that are fully enclosed by reinforcement. The question is how to adapt this model
for a situation where only a lower reinforcement net and some pile reinforcement are present.

Therefore it is postulated that a whole or a part of the pile cross-section at the interface with the concrete
cap is in compression, thereby generating a compressive stress field accompanied by lateral tensile
stresses. The lower reinforcement net within the concrete cap, comprising both lateral and longitudinal
reinforcement bars, traverses this stress field. These bars, which surround the stress field, can be re-
garded as hoop reinforcement and the bars crossing the stress field, can be regarded as ties, akin to the
concept proposed by Mander, to confine the concrete within the hoop (see Figure 4.1). Consequently,
they may provide passive lateral confinement to the stress field, resulting in an increased normal stress
in that region. This effect applies to the entire portion of the interface between the pile and the concrete
cap that is subjected to compression. However, owing to the stiffness disparity between the concrete
cap and the pile casing, the enhanced concrete strength is observed only at this interface.

Therefore, the region of interest and hence the application of the Markic DW stress field as explained

33
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Figure 4.1: Lateral effectively confined area applied to the case study

in section 3.4.2 is concentrated on the interface between the pile casing and the concrete cap at the
location where the maximum strain, and thus the maximum compressive stress, occurs. In this way,
beyond the effect of passive confinement, the Markic DW stress field is employed on top of the casing
to account for the influence of geometric confinement resulting from the stress development via the
inclined strut. This principal is shown in figure 4.2.

Effectively confined area
Ineffectively confined area
Bearing stress field

X,y

Lower net 2xdz
reinforcement bar

‘ :

toile = 2 X ch
Concrete cap
Steel pile casing
Concrete pile core -

-— —

Figure 4.2: Principal of the application of the theory to the case study (cross section A-A in figure 4.1)
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4.2. Structural load combinations

In practice, for the application of forces to the head of the pile two specific load combinations are typically
considered as governing. In chapter 2, the first combination, where the pile is subjected solely to a
normal force, is discussed. The second combination, which frequently occurs, involves the concurrent
application of a normal force (whether in tension or compression) and a bending moment. However,
since this case study focuses on concrete compressive strength, only a compressive normal force is
taken into account. It should be noted that, in this second load combination, the bending moment may
act about both the y-axis (1) and the x-axis (1), depending on the circumstances.

To apply the established theory to the case study, the original three-dimensional problem is reformulated
into a two-dimensional analysis. This is achieved by employing the bending moment resultant (14, ,)
to determine the stress distribution within the contact area between the pile and the concrete cap. The
resulting two-dimensional load cases are illustrated in figure 4.3.

N N

l M,

Figure 4.3: Considered structural load combinations

In situations where the pile is exclusively subjected to a normal compressive force, this typically occurs
when only permanent loads act on the structure. Permanent loads include the weight of the bridge’s
superstructure and substructure, as well as any superimposed dead loads, such as rails, barriers, and
other permanent fixtures, which generally form the fundamental basis for each load combination used
to verify structural stability.

Conversely, the introduction of a bending moment at the pile head is often caused by dynamic or quasi-
static loads. In the case study project Amsterdam Oostertoegang, this is typically manifested by factors
such as trains traversing the bridge, train braking forces, pedestrian movements on the platforms, and
wind loading. While permanent loads provide the primary load combination, the dynamic and quasi-
static loads introduce variations that ensure every potential governing load case is duly considered.

According to the governing load combination for the Amsterdam Oostertoegang project, the maximum
pile head reaction forces are a compressive normal force of -2061 kN and a resultant bending moment
of 258 kNm. The following section explains how these reaction forces are converted into a strain and
stress distribution at the interface between the pile and the concrete cap.

4.3. Stress and strain distribution at the interface between pile and
the cap

Given the limited duration of this master thesis, it is not feasible to account for the varying bond capaci-
ties between the concrete core of the pile and its reinforcement and steel casing. Consequently, a fully
bonded condition is assumed to determine the strain distribution across the cross section, resulting in
a linear strain distribution.
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Considering the combined effects of bending moment and compressive normal force, three distinct
strain distribution scenarios may arise. Firstly, if the pile is subjected solely to a normal compressive
force, the strain is uniformly negative across the entire cross section. Secondly, if the bending moment
is sufficiently large, a neutral axis develops, with the cross section on one side experiencing tensile
(positive) strain and on the other side, compressive (negative) strain. Lastly, when the normal force
predominates over the bending moment, the entire cross section remains in compression, albeit with
a linear distribution that results in one side experiencing greater compression than the other.
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Figure 4.4: strain distribution scenarios

It is important to note that this case study is primarily concerned with the concrete bearing strength at
the top of the casing of a concrete-filled steel pipe pile, a focus clearly illustrated by the strain diagrams.
In every scenario, the maximum strain is observed at the outer fibre of the steel casing under compres-
sion. Given the high stiffness of the steel casing, a substantial contact stress develops at the interface
between the steel casing and the concrete cap often creating an overrun of the theoretical concrete
compressive strength.

Typically, the connection between the CFSP pile and the concrete cap is achieved using pile reinforce-
ment, which facilitates the transfer of tensile forces and, consequently, bending moments. To determine
the stress distribution across the cross-section resulting from the applied external forces, an equilibrium
must be established between the internal and external forces. In this analysis, it is crucial to recognise
that not all elements of the cross-section contribute in tension; indeed, only the pile reinforcement is
capable of resisting tensile forces, as it is anchored within both the concrete and the pile. Expressing
these considerations in the equilibrium equations yields the following:

Equilibrium conditions for normal forces:

Nezternal = Ninternal Eq 4.1
Nim‘,ernal = Ncompressv’,on + Ntension Eq 4.2
Ncompression = Neoncrete + Ncasing + Nreinforcement Eq 4.3
Ntension = IVreinforcement Eq 4.4

Equilibrium conditions for bending moments:

Meyternat = Minternal Eq 4.5
Minternat = Mcompression + Miension Eq 4.6
Mcompression = Mcon(:rete + Mcasing + Mrez'nfm’cement Eq 4.7
Mtension = rein forcement Eq 4.8

Note that compressive normal forces have a negative value and tensile normal forces have a positive
value.
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To determine the contribution of each element to the internal force, the cross-section is subdivided into
segments. The concrete core is partitioned into horizontal rectangular strips, note that this approach
introduces a slight deviation, as the sides of these segments are straight, whereas the concrete core
is circular. The steel casing is segmented by lines radiating from the centre of the pile at equal angular
intervals, ensuring that the entire area of the steel casing is covered without introducing imperfections.
Each individual pile reinforcement bar is modelled as a separate segment, with the bar’s centre repre-
senting its x and y coordinates.

Each segment is characterised by its material properties (including the modulus of elasticity and yield
or compressive strength), cross-sectional area, and strain magnitude. The strain is determined by its
position along the height of the cross-section, under the assumption of a linear strain distribution. Itera-
tive variable inputs for the strain at the bottom and top of the cross-section are utilised. Consequently,
the force and moment contributions of each segment can be calculated by:

Nseg
Netement = Z Ay x By x g Eq 4.9
Meiement = Z Nseg X Y Eq 4.10
n=i

Where y; is the distance from the element centre to the neutral axis.

Using an iterative process that considers the strains at both the bottom and top of the cross-section
as variables to achieve force and moment equilibrium, a Python script was developed (see Appendix
A.1). This script employs a numerical approach to establish force equilibrium while accounting for the
geometrical and material constraints. Given the governing reaction forces at the pile head for this
case study, the script produces the following strain and stress distribution diagrams, complete with the
neutral axis and rebar indications.
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Figure 4.5: Results python script strain- and stress distribution

In this case, the stress distribution shown in figure 4.5 indicates that the maximum compressive stress
occurs at the top of the cross-section, with a magnitude of 134 MPa. This value is 4.46 times greater
than the characteristic uniaxial compressive strength of concrete C30/37, suggesting that the concrete
at the interface is prone to crushing and that local failure is a significant concern. An additional important
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output from the Python script is the location of the neutral axis, which is determined to be at a height of
148.33 mm. The strain diagram clearly shows that the area above the neutral axis is in compression,
as evidenced by the negative strain values in that region. This finding initiates the second step: the
determination of the lateral confining stress from the lower reinforcement net, according to Mander’s
model for confined concrete as explained in section 3.3.1.

4.4. Application of Mander's model for confined concrete

To assess the impact of passive confinement provided by the lower reinforcement net, Mander’s model
for confined concrete is employed. However, to apply Mander’s model to this case study, certain modi-
fications are required. As outlined in Section 3.3.1, the original theory was developed and validated for
concrete blocks and walls reinforced with stirrups, hoops, and ties. An example of such an element is
illustrated in Figure 3.2, which differentiates between the effectively confined core and the ineffectively
confined core. The extent of effective confinement in the concrete depends on several factors, includ-
ing the spacing (s) between the hoops or stirrups, the core width in the x-direction (b..), the core width
in the y-direction (d.), and the spacing (w’) between the ties.

The application of Mander’s confined concrete model to this case study is based on the premise that the
reinforcement bars of the lower net enclosing the perimeter of the compressed zone act as hoops, while
all bars from the lower net intersecting the compressed zone function as ties. Under this consideration,
the only unknown parameter is the hoop spacing (s), as there is no successive reinforcement net along
the height of the concrete cap.

So the parameters defining the effectively confined area in the horizontal plane are:

b. s the distance between the centre of the rebars in y-direction directly outside the compression

zone;

d. is the distance between the centre of the rebars in x-direction directly outside the compression
zone;

w!, is the effective distance between the rebars in y-direction;

w; is the effective distance between the rebars in x-direction;

To define the effectively confined area in the horizontal plane, an adjustment to the theory is made
by making an assumption. The boundaries of the effectively confined region are defined by parabolic
curves extending from the outer edge of the first hoop to the outer edge of the hoop above. Notably,
these parabolas originate at an angle of 45 degrees from the rear of the hoops.

To define the effectively confined concrete using a single hoop, it is assumed that the boundary follows
a 45-degree trajectory until it intersects with the corresponding line originating from the opposite side of
the hoop. The vertical distance from the base of the concrete cap to the point of intersection represents
the total height of the effectively confined region. This height, denoted as ’s’ according to Mander,
characterises the extent of the region influenced by a single hoop.

At a certain height, the corner of the Markic Dual Wedge (DW) stress field on top of the casing intersects
with the boundary line of the effectively confined area (indicated by the point x,y in figure 4.2). At this
height, the effectively confined area of interest is identified, as the height and width of the DW stress
field are optimised, resulting in the greatest bearing capacity.

If the DW stress field extends beyond the effectively confined area, part of the stress field would remain
unconfined, causing the stress in the strut (o,,) to be limited to the uniaxial compressive strength of the
concrete. Therefore, the smallest effective area is determined at the point where the DW stress field
intersects with the boundary of the effectively confined region.

Applying the modified Mander’s model to the case study requires the following parameters, which cor-
respond to those illustrated in Figure 4.2:
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Figure 4.6: Dimension parameters required for Mander’s model

dpar.: = 25mm  Diameter of the rebars in the x-direction in the lower net;
dpar,y = 32mm  Diameter of the rebars in the y-direction in the lower net;
w, = 125 mm Spacing between the rebars in the x-direction;
wy = 125mm Spacing between the rebars in the y-direction;

b=71mm Distance between the outer fibre of the nearest rebar and the steel casing;

¢ =50mm Concrete cover;

e =30mm Embedment depth of the pile casing in the concrete cap;

o = 25.57° Inclination of the DW stress field strut, determined iteratively using a Python script for

the DW stress field.

Where the inclination of the DW stress field strut («) is a variable that optimises the interaction between
passive confinement effects on the strut within the DW stress field, the available width and height for
stress distribution, and the size of the effectively confined area.

By applying the above parameters in the Python script with the modified Mander’s model (see Appendix
A.2), the following effective lateral confining stresses, as well as the optimal width and height of the DW
stress field, are obtained:

feffiz = 6.52MPa Effective lateral confining stress in the x-direction;
fersiy = 10.25MPa  Effective lateral confining stress in the y-direction;
do = 60.80 mm Width of the available load distribution area;
XE:maz = 53.10mm  Available height for the DW stress field.

As described in the results above, a difference exists between the lateral confining stresses in the x- and
y-directions. This disparity arises primarily due to the variation in rebar diameters in these directions
(225 mm and @32 mm, respectively). Additionally, deviations could occur due to differences in centre-
to-centre spacing of the rebars in each direction; however, this is not the case for the case study. Note
that, in this case, for subsequent calculations, the effective lateral confining stress in the y-direction
should be used when determining the bearing strength, as the casing in the critical area is oriented in
the x-direction.
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4.5. Application of Markic Dual Wedge stress field

The Dual-Wedge (DW) stress field model is directly applicable to the case study without modification,
as the width of the loaded area (d;) is equal to the thickness of the pile casing, and the uniaxial concrete
compressive strength is derived from the 28-day compressive strength of the concrete mixture used.
The modified Mander’s model for confined concrete determines all dimensional input parameters by ac-
counting for the limitations imposed by the boundaries of the effectively confined area. The parameters
corresponding to the case study are:

feo = 30MPa Characteristic uniaxial compressive strength concrete C30/37;
Ocont = 0s = fertiy = 10.25 MPa  Effective lateral confining stress;

do = 30.40 mm Half the width of the available load distribution area;

XEimaz = 53.10mm Available height for the DW stress field;

di = teasing = 10mm Width of the loaded area;

do = 60.80 mm Width of the available load distribution area.

Applying the Markic DW stress field theorem to the case study (using the Python script in Appendix
A.3) yields a strut inclination angle («) of 25.57°. This value corresponds to the input for the modified
Mander’s model, resulting in the aforementioned parameters for the Markic DW stress field model and
a maximum bearing capacity of 149.05 MPa.

This resultimplies that, according to the theorem, the bearing capacity of the concrete directly above the
steel pile casing is nearly five times greater than the uniaxial compressive strength of the concrete used
(C30/37). The experimental campaign by Markic et al. (Markic et al. 2022a) indicates that, depend-
ing on the configuration of the concrete, the loaded area, and the reinforcement, the bearing strength
could reach up to 6.44 times the uniaxial compressive strength. Furthermore, Eurocode 2-1 article 6.7
and Eurocode 2-4 article 7.2.1.5, as explained in Sections 2.2.1 and 2.2.3, respectively, suggest that in-
creased compressive strengths range from three to 7.5 times the uniaxial compressive strength. These
findings indicate that the factor of five derived from the combined and modified theorem is plausible.

Although the bearing capacity of 149.05 MPa represents a design bearing strength and demonstrates
that the concrete would not be crushed by the applied load—since the maximum bearing stress de-
termined in Section 3.4 is 134 MPa, which is lower than 149.05 MPa—for design purposes this is still
insufficient. This is because the partial safety factor for concrete (+.) is 1.5, resulting in a design bear-
ing capacity of just under 100 MPa, which is inadequate to resist the bearing stress imposed by the
governing load combination.



Finite Element Analysis development
and results

This chapter presents the finite element analysis (FEA) methodology used to assess the effects of
confinement on CFSP-pile to concrete element connections in the absence of force transfer provisions
such as dowels or shear rings. The chapter first outlines the modelling approach, including the selection
of an axisymmetric geometry, the types of elements employed, and mesh refinement considerations.
It then explains the material properties used in the simulation, which were selected to replicate exper-
imental conditions found in relevant literature. Finally, the results of a case study are presented and
discussed in the context of the research objectives, offering insights into the structural response due
to confinement and validating the modelling approach through comparison with theoretical models and
design codes.

5.1. FEA Method

Diana FEA software is used to model the connection between the CFSP-pile and concrete cap as
designed for the case study project. This section describes the analysis method employed, the element
types and mesh discretisation adopted, and the rationale for these choices.

5.1.1. Axisymmetric modelling

To simulate the interaction between the CFSP pile and the surrounding concrete element with com-
putational efficiency and sufficient fidelity, a two-dimensional axisymmetric finite element model was
adopted. Axisymmetric modelling is particularly well suited for problems involving rotational symme-
try in both geometry and loading. In this approach, a two-dimensional cross-section is defined in the
radial—vertical plane (the XY-plane in DIANA), and it is numerically revolved 360 degrees around the
Y-axis, which DIANA interprets as the axis of symmetry (see Figure 5.1). Each element in the model
thus represents a ring of material, allowing the structural response of the full three-dimensional system
to be captured using a 2D representation.

In reality, however, the physical system under investigation consists of a CFSP pile embedded within a
continuous, reinforced concrete cap. This type of configuration introduces significant geometric and re-
inforcement asymmetries that cannot be directly modelled with an axisymmetric formulation. Therefore,
certain simplifications were made to enable the use of axisymmetry in the analysis.

Most notably, the continuous concrete cap was idealised as a circular concrete block centred around the
CFSP pile. This simplification assumes that the structural response in the region immediately surround-
ing the pile is governed primarily by local confinement effects, which can be reasonably approximated
by a circular domain. As such, the model does not capture global bending or shear behaviour of the
larger concrete cap but rather focuses on the local interaction and confinement mechanism that are
critical for assessing the pile-to-concrete connection.

41
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Another important simplification concerns the reinforcement detailing. In the real concrete cap, rein-
forcement is provided in the form of longitudinal bars and stirrups, typically forming an orthogonal grid
in the horizontal plane. However, in the axisymmetric model, this configuration cannot be represented
directly. To approximate the effect of reinforcement, the lower reinforcement mesh of the concrete cap
was translated into a combination of two reinforcement types:

1. Hoop reinforcement in the tangential direction, representing the circumferential action of the trans-
verse bars.

2. Spread radial reinforcement, modelled explicitly in the radial direction to account for reinforcement
crossing the pile interface.

In DIANA, the radial reinforcement is modelled as a reinforcement grid (see Figure 5.1), with zero
equivalent thickness in the local y-direction and an equivalent thickness of 3.93 mm in the local x-
direction (calculated as 0.25 x 7 x 252 /125 = 3.93) to represent 25 mm rebars at 125 mm spacing. The
hoop reinforcement is represented by embedded bar elements of 32 mm diameter, arranged at 125
mm centre-to-centre spacing.

While this transformation alters the mechanical idealisation of the reinforcement, it preserves the essen-
tial contribution of the steel in resisting radial expansion and distributing confinement-induced stress.
This makes it possible to study the effects of confinement under vertical loading while maintaining
computational efficiency and model clarity.

The axisymmetric domain consisted of the steel casing of the CFSP pile, the concrete infill, and the
idealised surrounding circular concrete region. Boundary conditions were applied to reflect symmetry
along the Y-axis and vertical restraint at the base, while allowing free deformation elsewhere. The ver-
tical interface between the CFSP-pile casing and the surrounding concrete was modelled as a contact
surface, i.e. fully unbonded, in accordance with Eurocode provisions, which mandate this assumption
for all capacity and stiffness calculations. The normal stiffness of the interface elements was set to a
high value of 10.000 N/mm? to prevent non-physical penetration of one material into the other. Con-
versely, the shear stiffness modulus was reduced to zero, permitting unrestricted tangential movement
between the components and thereby simulating a fully unbonded interface.

To verify that the effect of confinement is accurately captured in the axisymmetric finite element model,
the same cube model used for determining appropriate material parameters later in this chapter (see
section 5.2), was also employed to compare the stress-strain response across 2D, 3D, and axisymmet-
ric modelling approaches. The resulting stress-strain curves are presented in Figure 5.2. This figure
reveals that the confined 3D and axisymmetric models produce identical curves, confirming that the
axisymmetric approach effectively captures the effects of passive lateral confinement.
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Figure 5.2: Stress-strain curves for different ways of modelling in FEA

5.1.2. Element type

In the finite element analysis of the CFSP-pile to concrete element connections, the choice of element
type is critical to ensure an accurate representation of the structural behaviour, particularly in regions
where stress concentrations and confinement effects are expected. Given the axisymmetric configura-
tion of the model and the need for high-resolution stress and strain output, the CQ16A element was
selected.

The CQ16A is an eight-node isoparametric quadrilateral solid ring element designed specifically for
axisymmetric analyses within the DIANA finite element environment. It is based on quadratic interpo-
lation functions (DIANA 2017b), which allow for a more refined representation of displacement fields
compared to linear elements. The geometry of this element permits the accurate simulation of com-
plex deformation modes and stress distributions, especially in cases involving curved interfaces or
non-linear material responses, such as those present in the steel-concrete interaction zone.
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The element uses a 2x2 Gauss integration scheme, which ensures a balanced compromise between
computational efficiency and numerical precision (DIANA 2017b). This integration method is suffi-
cient to capture non-linear behaviour without introducing locking effects, which can occur in bending-
dominated regions or with poorly shaped elements.

The CQ16A element is particularly well suited for this study for several reasons:

1. Compatibility with axisymmetric modelling: It is formulated specifically for problems with rotational
symmetry around the Y-axis in DIANA, ensuring that each element represents a ring of material
upon revolution around the axis.

2. High fidelity in stress analysis: The quadratic interpolation functions allow the element to resolve
steep stress gradients near the pile—concrete interface, where confinement effects are most pro-
nounced.

3. Robustness in non-linear analysis: Its integration scheme and interpolation order are well adapted
for use in geometrically and materially non-linear problems, which are common in simulations
involving concrete cracking, steel yielding, and confinement.

7 6 >

Figure 5.3: CQ16A element (DIANA 2017b)

In line with the simplifications introduced in the axisymmetric model, the continuous concrete cap in
the real structure was idealised as a circular concrete region centred around the CFSP pile. This
required the reinforcement layout to be translated into a form compatible with axisymmetric modelling.
The lower reinforcement mesh of the cap, typically composed of orthogonally placed longitudinal bars
and stirrups, was approximated by modelling reinforcement as tangential hoops and radially distributed
bars. This allowed the principal confinement contributions of the reinforcement to be preserved within
the axisymmetric idealisation.

Both the steel casing of the CFSP pile and the surrounding concrete block were discretised using
CQ16A elements. The use of the same element type for both materials ensured numerical consistency
and avoided compatibility issues at the material interface. The reinforcement within the concrete infill,
where modelled explicitly, was incorporated using embedded reinforcement definitions, allowing the
reinforcement bars to share degrees of freedom with the surrounding CQ16A concrete mesh.

The choice of CQ16A elements thus supports the overarching goal of the analysis: to evaluate the
confinement effect in CFSP-to-concrete connections with high accuracy, particularly in the absence of
dedicated force transfer components such as dowels or shear rings.
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5.1.3. Mesh Size

The generation of a high-quality mesh is critical in finite element analysis, especially when modelling
the interaction between different materials and capturing non-linear behaviour. In this study, meshing
was conducted with particular attention to the pile—concrete interface, where steep stress gradients
were expected due to confinement effects and potential relative displacement.

A structured meshing strategy was employed, with an emphasis on maintaining square-shaped, uni-
formly sized elements wherever possible to optimise numerical stability and reduce distortion-related
errors. The mesh was refined over horizontal strips near the critical zone around the tip of the steel
casing, ensuring an adequate resolution of the contact stresses and strain localisation effects. In this
region, the element size was reduced progressively toward the interface, forming a transition zone that
avoids abrupt changes in element density.

In contrast, the mesh in regions further away from the interface (where stress gradients were expected
to be lower) was kept coarser to reduce the computational burden without compromising accuracy.

Special care was taken to ensure node alignment across material interfaces, particularly between the
steel casing and the concrete, to facilitate effective stress transfer and avoid compatibility issues. The
embedded reinforcement bars were positioned within the host concrete mesh such that DIANA's em-
bedded reinforcement functionality could accurately interpolate the surrounding displacement field, al-
lowing the bars to share strain with the concrete through embedded coupling.

Figure 5.4 shows the meshed model, including boundary conditions and domain partitioning. All sup-
ports are modelled as roller supports, restraining only translation perpendicular to the boundary plane;
in—plane translations and rotations remain free. The supports are idealised as infinitely stiff. All grey
domains resemble concrete and the steel is assigned a blue colour. Also important to not is the mesh
size of all the domains:

» Out of concrete cap section of the pile core and casing: 10 mm
* In concrete cap section of pile core and casing: 5mm

 Fine part of the concrete cap: 5mm

* Mid part of the concrete cap: 10 mm

» Coarse part of the concrete cap: 20 mm
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Figure 5.4: Meshed axisymmetric case-study model (inverted orientation; see section 5.3 for explanation)
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5.2. Material Properties

To construct a representative finite element model that accurately captures the effects of confinement,
it is essential to select an appropriate material behaviour model along with corresponding material
parameters. In this study, selected specimens from the experimental campaign by Markic et al. (Markic
et al. 2022a) were replicated in an axisymmetric finite element model. The material parameters were
calibrated such that the numerical results aligned closely with the experimentally observed behaviour.
Prior to this calibration, a suitable constitutive model and its associated input parameters were identified
and justified.

5.2.1. Material Model Selection

DIANA requires the user to specify a constitutive model for concrete, offering several predefined mate-
rial laws. An examination of the stress-strain curve obtained experimentally by Manders et al. (Mander
et al. 1988a) reveals a characteristic descending branch post peak stress (see Figure 5.5). This soft-
ening behaviour is initially steep and gradually flattens. Comparing this to DIANA’s standard material
models (see Figure 5.6) shows that the experimental curve most closely resembles the Thorenfeldt
model, as well as the CEB-FIP Model Code 1990 and 2010 formulations.

When the CEB-FIP material laws are selected, DIANA automatically assigns all relevant compressive
parameters as prescribed by the respective model codes, requiring no additional input. The Thoren-
feldt model, in contrast, necessitates manual specification of compression parameters based on its
functional formulation. The plain Thorenfeldt curve is described by the following formulation:

«

f= —fpa—p < - nk) Eq. 5.1

n=(1- (%)

where the shape parameters n and k are determined using:
n = 0.80 + Jee Eq. 5.2
17

_ 1 . ffap<o<<0 Eq.5.3
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Figure 5.5: Typical confined specimen experimental stress-strain curves (Mander et al. 1988a)
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Figure 5.6: Concrete material models in DIANA (DIANA 2015b)

5.2.2. Confined Thorenfeldt Model with Extended Softening Behaviour

In DIANA, the Thorenfeldt compressive stress—strain curve can be extended to incorporate confinement
effects using a series of formulations that adjust both the peak and post-peak behaviour (DIANA 2015a).
The confined peak strain ¢, is defined as a multiple of the initial strain ¢ by a confinement-dependent

factor K, :

Ep = K e Eq 54

where the initial strain ¢ is given by:

Eq. 55
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with n the Thorenfeldt shape parameter, f.. the confined compressive strength, and F the Young’s
modulus. These equations yield a gradual increase in strength under confinement, maintaining a linear
initial stiffness governed by the modulus of elasticity. In a fully confined triaxial stress state, the failure
surface may not be reached, resulting in a fully linear stress—strain response.

To represent the increased ductility of confined concrete, DIANA modifies the descending branch of the
Thorenfeldt curve by applying a linear compression-softening law:

Q; — Qp

fj:—fp{l—(l—r)- }S—rfp Eq. 5.6

oy — Oy

where f; is the compressive stress at strain «;, f, is the peak stress, o, is the strain at peak, «, is the
ultimate strain, and r is the residual strength factor. The ultimate strain is defined as:

_(BY :
Oy, = 7 ay, g.5.7

where + is a scalar exponent typically taken as 3. The residual strength ratio » also depends on the
peak-to-compressive strength ratio:

Jee

with ¢ an initial residual strength factor, commonly taken as 0.1. The use of this linear softening
formulation is conditional: it is only activated if the peak strength is significantly higher than the base
compressive strength (f,/f.c > 1.05). For smaller ratios, typically associated with lateral cracking
or limited confinement, the model does not artificially increase ductility. However, in the case study
presented in this thesis, the peak strength f, is assumed to be significantly higher than the confined
compressive strength f,., satisfying the condition f,/f.c > 1.05. As a result, DIANA applies the linear
softening law to increase ductility in the post-peak regime, as defined by the confined Thorenfeldt
model.

N
r = (fp> o Eq. 5.8

Figure 5.7: Confined Thorenfeldt compressive behaviour curve (DIANA 2015a)

5.2.3. Material Behaviour Evaluation in FEA

To compare the response of the CEB-FIP 1990, CEB-FIP 2010, and Thorenfeldt models under con-
finement, a simplified square specimen was analysed. A 2D plane stress model measuring 500 mm
x 500 mm was used, with translation support fixed in x- and y-direction at the base and a prescribed
vertical displacement of -2.5 mm at the top surface (see Figure 5.8).
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Figure 5.8: Plane stress 2D cube, 500 mm x 500 mm, unconfined

Identical parameters for elastic modulus, crack orientation and tensile behaviour were assigned to all
models (see Figure 5.9). The primary differences lay in the compressive behaviour. To represent the
tensile behaviour of concrete a linear-crack energy approach was applied together with a rotating crack
orientation. This setup is particularly suitable for simulating confinement effects in reinforced concrete
structures.

The tensile strength was set to 3 N/mm?, and the Mode-I fracture energy to 100 N/m, which are realistic
values for normal-strength concrete (C30/37). These parameters control the initiation and propagation
of cracks, which is essential when modelling confinement, as cracking significantly influences the stress
redistribution and stiffness degradation around confined regions.

The residual tensile strength is set to zero, meaning although conservative but also realistic no post-
peak tensile capacity is assumed. This is appropriate for concrete in tension, as it typically loses its
load-carrying capacity once cracked. The crack bandwidth specification is set to “Rots”, which aligns
the softening behaviour with the mesh size, ensuring objectivity in energy dissipation regardless of
element size which is a key requirement for realistic fracture simulation in finite element models.

The choice of the rotating crack model is particularly relevant for modelling confinement. Unlike fixed
crack models, rotating crack models allow the crack orientation to evolve with the principal strain direc-
tions during the analysis. This better reflects the actual behaviour of concrete under multiaxial stress
states, such as those present in confined zones, where load paths and crack patterns can change
significantly during loading. It results in a more stable and physically realistic representation of crack
development under complex loading conditions.
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Figure 5.9: Common input parameters for all cube models

To simulate the effect of confinement, the Selby-Vecchio confinement model was applied to each ma-
terial variant. This model introduces a continuous and physically realistic relationship between lateral
restraint and enhanced compressive behaviour, surpassing traditional multi-linear approximations.

For CEB-FIP 1990, only the uniaxial compressive strength was required. The 2010 version addition-
ally needed strain values at peak stress and failure. For the Thorenfeldt model, inputs included the
compressive strength, shape parameters n and k, residual strength, and a length scale parameter to
regulate post-peak softening (see Figure 5.10).

In constitutive models that incorporate strain-softening behaviour, such as the Thorenfeldt compression
model, the inclusion of a length scale parameter is essential to ensure mesh-independent results. After
reaching the peak compressive stress, concrete exhibits a progressive loss of strength, which, if not
properly regulated, can lead to excessive energy dissipation that is strongly dependent on the finite
element size. The length scale parameter addresses this by localising the softening behaviour over a
representative distance, typically taken as the characteristic element size in the direction of expected
crushing. This ensures that the energy dissipated during post-peak deformation remains physically
realistic and consistent across different mesh resolutions. In DIANA, this parameter effectively links the
strain-softening response to a fracture energy per unit area, allowing the model to reproduce the correct
energy absorption associated with crushing of concrete. This means that when creating a model that
consist of different size elements. Also materials with corresponding length scale parameters should
be assigned.

This means that when a model consists of elements with varying sizes, it is important to assign ma-
terial models with corresponding length scale parameters. Doing so ensures that the strain-softening
behaviour remains consistent across the mesh and that the energy dissipation associated with material
degradation is not influenced by differences in element size.

The damage-based Poisson’s ratio reduction model is applied to ensure a realistic representation of
concrete’s lateral behaviour after cracking. When concrete cracks in tension, it not only loses stiffness in
the loading direction but also exhibits reduced lateral deformation. By linking the reduction of Poisson’s
ratio to the damage variable, the model captures this effect accurately. This is particularly relevant in
confinement scenarios, where lateral expansion influences the interaction with surrounding elements.
Without this reduction, the model may overestimate confinement effects and produce unrealistic lateral
strains.
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Figure 5.10: Compressive material models used in the cube simulations

Verification of passive confinement response was done by calculating the expected lateral deformation
using Poisson’s ratio (v = 0.2). For an axial strain of 0.005, the lateral strain is 0.001, leading to an
expected lateral deformation of 0.5 mm across a 500 mm specimen for a 2.5 mm prescribed deforma-
tion. All material models produced lateral deformations in agreement with this theoretical value (see

Figure 5.11).
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Figure 5.11: Lateral deformation in the 2D cube model

Stress-strain and force-displacement curves for each model are presented in Figure 5.12 and Fig-
ure 5.13. The CEB-FIP 2010 model showed unrealistic behaviour, including stress reversal, and was
therefore excluded from further consideration. The remaining models differed mainly in ductility and
energy absorption, with the CEB-FIP 1990 exhibiting a flatter descending branch and higher strain at
peak stress.
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Figure 5.12: Force-displacement curves: unconfined 2D cube
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Figure 5.13: Stress-strain curves: unconfined 2D cube

To evaluate confinement sensitivity, a fully confined version of the cube model was created with lateral
restraints on all sides (see Figure 5.14). While the level of confinement applied is unrealistic, it serves
to highlight the upper bound effect of passive confinement.

Figure 5.14: Confined 2D cube with full lateral restraints

Results (Figure 5.15) indicate increased peak stress and strain due to confinement, with the relative dif-
ference between CEB-FIP 1990 and Thorenfeldt remaining consistent. The magnitude of improvement,
however, remains limited. This is attributed to the fundamental limitations of 2D plane stress models,
which assume zero out-of-plane stress and therefore cannot develop tangential confinement effects.
As such, true confinement mechanisms are not fully represented. In contrast, three-dimensional and
axisymmetric models allow for the development of out-of-plane stress components and can therefore
capture confinement more accurately.
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Figure 5.15: Stress-strain curves: confined 2D cube

To further investigate the compressive behaviour of the CEB-FIP 1990 and Thorenfeldt material models
under confinement, both a three-dimensional (3D) analysis and an axisymmetric finite element analy-
sis of the 500 mm x 500 mm cube were conducted (see Figure 5.16). The same material properties
as previously described were used in both simulations to ensure a consistent comparison. The result-
ing stress-strain curves for the unconfined and confined conditions in the 3D model are presented in
Figure 5.17 and Figure 5.18, respectively.

(a) 3D confined cube model (b) Axisymmetric confined cube model

Figure 5.16: FEA cube models
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Figure 5.18: Stress-strain curve confined 3D cube

The stress-strain curves obtained from the 3D finite element models demonstrate a similar relationship
between the CEB-FIP 1990 and Thorenfeldt material types as was observed in the 2D analyses. How-
ever, in contrast to the plane stress models, a significant increase in both the stress and strain capacity
is evident. Notably, the stress-strain curve for the confined CEB-FIP 1990 model exhibits a linear trend
until an abrupt termination of the analysis. Despite the application of displacement-controlled load-
ing, the simulation failed to reach convergence beyond this point. Such behaviour, characterised by a
purely linear response followed by divergence, deviates from the experimentally observed behaviour
presented in Figure 3.4, where a more gradual transition is evident.

Although the Thorenfeldt model shows strain hardening beyond the peak stress rather than the strain-
softening trend reported in the experimental results the Thorenfeldt model nonetheless appears to offer
a more realistic approximation of confined concrete behaviour. This discrepancy between hardening
and softening may be attributed to the modelling approach: in the cube models, confinement is intro-
duced through fully restrained lateral boundaries, whereas in the experimental specimens, confinement
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was achieved through reinforcement hoops. The difference in confinement mechanism likely influences
the post-peak response.

To further explore the influence of confinement stiffness on material response, a preliminary paramet-
ric study was conducted using the axisymmetric model. In this study, lateral supports were modelled
with varying stiffness levels. Three configurations were considered: a model with infinitely stiff sup-
ports (representing the initial axisymmetrical case without springs), a model with a support stiffness of
1000 N/mm? distributed along the full height, and a third model with a reduced stiffness of 100 N/mm3.
The corresponding results are shown in Figure 5.19.

Stress-strain axisymmetric Thorenfeldt
cube confined by different boundary
stiffnesses

-0,025 -0,02 -0,015 -0,01 -0,005 0

Stress [MPa]

P—— -200
-250
Strain [-]
———K=0 ——K=1000 N/mm3 ——K=100 N/mm3

Figure 5.19: Axisymmetric models with varying lateral boundary stiffness

As illustrated in Figure 5.19, the slope of the ascending branch following the initial linear phase de-
creases with reduced support stiffness. This trend is consistent with theoretical expectations: as lateral
deformation is permitted, less passive confinement develops, thereby reducing the effective compres-
sive strength of the concrete.

Based on these observations, it is concluded that the Thorenfeldt model provides the most appropriate
representation of confined concrete behaviour among the options evaluated. It not only approximates
the expected stress-strain response more accurately, but also enables investigation of the influence of
passive confinement through parametric control. In order to finalise the material parameters required
for implementation of the Thorenfeldt model in DIANA, a specimen from the experimental campaign by
Markic et al. was simulated and calibrated accordingly.

5.2.4. Imitate experimental campaign

The authors of (Markic et al. 2022a) conducted an extensive experimental campaign on partially loaded
reinforced concrete blocks, in which a total of 62 specimens were tested to failure. The test matrix in-
cluded variations in reinforcement detailing, loading type (strip, plate, and spatial), and load distribution
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configurations. To validate the selected material properties and assess the applicability of the con-
stitutive models, specimens NC-4.5, NC-18, NC-27 and HC-27 were reproduced in a finite element

model.

All specimens consists of a 350 mm x 350 mm reinforced concrete block, confined with @12 mm steel
rectangular stirrups. The concrete cover to the reinforcement is 35 mm. The blocks are subjected to
a centrally applied strip load with a width d; = 52.5 mm and a varying length b,. The yield strength of
the reinforcing steel is 546 MPa, and the compressive strength of the concrete for all NC specimens is
32.6 MPa and for the HC is 77.4 MPa. A schematic representation of the experimental setup is provided

in Figure 5.20.

(@
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Figure 5.20: Specimen NC-27 from Markic et al. experimental campaign (Markic et al. 2022a)

The experimental results were presented in a graph in which the bearing stress (¢,.), normalised by the
concrete compressive strength (f.o), is plotted against the penetration depth (4,.). The resulting curve
for all four specimens is shown in Figure 5.21.

qy / 0 l-J

Figure 5.21: Normalized stress-penetration curve Markic et al. experimental campaign (Markic et al. 2022a)
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So far, it has been demonstrated that axisymmetric modelling provides accurate results for capturing
local material behaviour, such as the stress-strain relationship. For reasons of computational efficiency
and modelling simplicity, it was therefore decided to construct axisymmetric models of the experimental
specimens. This approach introduces certain idealisations, most notably in the loading configuration:
whereas the experiment applies load over a rectangular surface, the axisymmetric model necessarily
assumes a circular loaded area. Consequently, the numerical results are not expected to replicate the
exact behaviour of the experiment, but they should fall within the range of variation observed across
the experimental programme and remain comparable to the results.

Figure 5.22: lllustration of simplified axisymmetrical model of Markic’s experimental campaign cubic specimens

According to the Marki¢ Dual-Wedge stress-field theory, bearing capacity is governed by the available
concrete volume through which the load can disperse. As specimens with identical cross-sectional
configurations but differing load-strip lengths demonstrated large variations in bearing stress capacity,
it was elected to use the boundary distance from the loaded area rather than the area of the loaded
surface itself as the key distinguishing parameter in our axisymmetric models. Accordingly, in the
numerical simulations the load is represented by a circular contact area whose diameter equals the
original strip length, thereby preserving the boundary distance while standardising the load geometry.
Due to the axisymmetric formulation, the reinforcement geometry was also adapted, the rectangular
stirrups used in the test specimen were modelled as circular hoops. This geometric change is expected
to increase the degree of passive confinement, as circular hoops provide more uniform restraint against
lateral deformation. The resulting enhancement of confinement is consistent with the mechanism de-
scribed in subsection 3.2.1.

Initially, the same material properties used in the cube model of subsection 5.2.3 were assigned to the
axisymmetric simulation of the experiment specimens. The developed finite element model is shown
in Figure 5.23. The axisymmetric replication of the experimental model is depicted in Figure 5.22, and
highlights clear deviations from the experimental specimen schematised in Figure 5.20.
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Figure 5.23: Axisymmetric FEA model imitating selected Markic et al. experimental campaign specimens

Non-linear analysis experimental specimen NC-18
First, a non-linear analysis was performed replicating specimen NC-18.

The model is subdivided into three regions, with mesh density progressively refined towards the loaded
surface. This meshing strategy permits detailed stress resolution immediately beneath the load while
preserving computational efficiency elsewhere.

To enable direct comparison with the experimental results, the vertical penetration of the loading surface
is prescribed via controlled vertical displacement in the finite element model. According to the NC-
18 curve in Figure 5.21, a vertical translation of approximately 7 mm is required to replicate the full
experimental trajectory.

When this displacement was applied using the assigned material parameters, the non-linear analysis
failed to converge prematurely (terminating after only the second of 100 incremental steps) likely due
to geometric instability, unexpected material behaviour, or a combination of both. To investigate the
model’s behaviour prior to divergence, the prescribed deformation was reduced to 0.5 mm. Under
this adjustment, DIANA successfully completed 24 load steps, corresponding to a total deformation
of 0.12 mm. Although this represents only a small fraction of the experimental penetration, it suffices
to generate meaningful contour plots and response curves that help localise the source of numerical
instability and assess the material performance.

Contour plots of the normal, lateral and shear stresses in Figure 5.24 indicate that stress concentra-
tions occur at the right side of the loaded region. Such concentrations are commonly associated with
singularities and are likely responsible for the non-convergence of the non-linear analysis. Indeed, the
stress magnitudes in the affected elements exceed the concrete’s tensile capacity (3 MPa) and signifi-
cantly surpass the material’s shear strength, causing the solver to terminate. As these concentrations
are confined to the right boundary of the load, it can be concluded that a geometric singularity at this
location prevents the model from replicating the experimental campaign.
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Figure 5.24: Stress in NC-18 FEA model

For direct comparison, Figure 5.21 plots penetration depth against average bearing stress. The pene-
tration depth at each load step is calculated by multiplying the number of completed steps by the total
prescribed deformation of 0.5 mm. The average bearing stress is obtained by dividing the sum of the
reaction forces by the area of the loaded surface. In addition, the response curve for the governing
node is shown to illustrate the local relationship between penetration depth and bearing stress.

Bearing stress NC-18 average vs governing
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Figure 5.25: Bearing stress to penetration depth NC-18 FEA model

A clear divergence between the two FEA curves is evident. The average bearing stress increases
linearly with penetration, whereas the governing node’s response increases much faster and becomes
non-linear beyond approximately 0.085 mm of penetration, confirming the singularity observed in the
contour plots. Notably, the governing node reaches a peak stress of about 128 MPa. This is comparable
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to the experimental peak stress for specimen NC-18 (3.70 times the uniaxial compressive strength of
32.6 MPa which is about equal to 120 MPa). Although the governing node attains critical stress levels
very rapidly, these findings demonstrate that stress magnitudes similar to those reported by Markic et al.
can indeed be reached. The strictly linear trend of the average stress curve also do not deny that, in the
absence of singularities, other nodes would follow a more ductile trajectory and achieve comparable
peak stresses. Preventing the singularity is therefore crucial to allow the analysis to continue and
capture the full stress distribution.

Attempts to Eliminate the Artificial Singularity
Several strategies were implemented in an attempt to eliminate the artificial singularity at the boundary
of the loaded area, but none succeeded in restoring full convergence:

1. Local mesh refinement
The mesh was further refined around the end of the load, using smaller quadratic elements to
capture steep stress gradients. Despite the increased resolution, the singularity persisted, and
the non-linear iterations continued to stall.

2. Selective linear-elastic material assignment
A purely linear-elastic concrete model was imposed on the elements nearest the end of the loaded
area, preventing them from entering the post-peak regime. This “stress-cap” approach stabilised
the very first increments but ultimately failed to eliminate the convergence breakdown as defor-
mation increased because the singularity was just shifted to nodes beyond the stress-cap.

3. Finer load increments
The total prescribed displacement was applied over a greater number of smaller steps to improve
the Newton—Raphson solver’s tracking of stiffness changes. While this allowed a few additional
increments, the analysis still terminated prematurely.

4. Steel load-spreading plate with interface restraint
A linear-elastic steel plate was introduced at the loading interface to distribute the applied load
more uniformly before it reached the concrete. An interface definition was applied between the
steel and the concrete to prevent the lateral confining stress imposed by the much stiffer steel on
the concrete’s compressive deformation. However, both realistic and unrealistic values for the
steel plate stiffness failed to prevent stress concentrations from occurring.

5. Vertical displacement interface at the load boundary
A vertical interface condition was applied through the concrete block at the boundary of the loaded
region to permit a large differential in vertical displacement between the last loaded element and
the first unloaded element. This measure was intended to prevent the development of excessive
shear stresses at that interface but also this measurement did only shift the singularity.

6. Spring boundary interfaces at supports
Elastic springs were introduced at the support locations to simulate more realistic supports. These
spring boundary interfaces aimed to mitigate rigid boundary constraints and allow more realistic
stress distribution, but convergence issues persisted.

7. Distributed force control
A distributed load was applied across the loading surface instead of a prescribed displacement,
both alone and in combination with the previously mentioned measures. This approach sought
to replicate the physical loading more accurately, but the singularity remained uneliminated.

8. Arc-length control
An arc-length algorithm was employed to follow the equilibrium path beyond limit points. While
this non-linear solution method allowed the model to capture snap-back behaviour and small
additional increments, it did not overcome the singularity.

Despite these concerted efforts, the artificial singularity persists, rendering a non-linear analysis infea-
sible. Nevertheless, a linear finite-element analysis remains possible and will enable a limited compar-
ison of the model’s linear response with the experimental data.

Linear FEA presents a simplified approach in which materials are assumed to remain elastic, stress—
strain relationships are linear, and deformations are small. While this allows for computational efficiency
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and ease of implementation, it imposes several critical limitations when modelling structural behaviour
in scenarios where material non-linearities and stress redistributions are significant, such as in the
presence of passive confinement.

One of the principal shortcomings of linear FEA is its inability to capture stress redistribution following
the onset of material non-linearity. As structural elements begin to crack, yield, or soften, internal forces
are redistributed to surrounding regions that retain residual capacity. This redistribution is essential for
accurately predicting the structural response under increasing load. The experimental results clearly
show this phenomenon in a contour plot of three different specimens at three different stages of loading
(see Figure 5.26). A linear analysis, by contrast, assumes constant stiffness and does not accommo-
date any form of load redistribution, which can result in inaccurate estimations of both strength and
deformation capacity.
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Figure 5.26: Stress redistribution at load interface (Markic et al. 2022a)
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In the context of confinement, this becomes particularly problematic. Since the beneficial effects of
confinement only emerge as materials enter non-linear ranges of behaviour, a linear FEA fails to rep-
resent the corresponding increases in strength and ductility. It treats all materials as if they respond
uniformly across all stress levels, thereby neglecting the evolving internal stress states and their inter-
action with the confining mechanisms. As a result, the structural capacity of confined members is often
significantly underestimated in a linear model.

Moreover, linear analysis is inherently unable to simulate post-elastic phenomena such as concrete
cracking, reinforcement yielding, or crushing. These behaviours are crucial for capturing the full struc-
tural response, especially under ultimate loading conditions. Confinement influences many of these
behaviours, particularly in delaying or altering failure modes. Without the ability to model non-linear
stress—strain relationships, linear FEA excludes these effects entirely, making it unsuitable for realistic
assessment in confinement-sensitive regions.

In addition, linear models cannot accommodate the strain-dependent nature of confinement. Because
confinement effects intensify with increasing lateral strain and deformation, their accurate representa-
tion requires a modelling approach that accounts for material evolution under load. Linear FEA, which
assumes strain-independent material properties, is incapable of doing so.

It is hypothesised that a linear FEA will predict significantly higher bearing stresses at a given level of
load penetration compared to a non-linear FEA while showing much smaller lateral confining effects
as reinforcement activation, lateral deformation and lateral confining stress. This discrepancy can
be attributed to the linear model's assumption of constant material stiffness, which prevents it from
accounting for stress redistribution, plastic deformations, and stiffness degradation that naturally occur
in confined concrete under increasing load. In contrast, a non-linear analysis allows for the progressive
softening and redistribution of stresses away from highly loaded regions, resulting in a more distributed
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and realistic stress field. Consequently, for the same level of penetration, the linear model concentrates
stresses unrealistically near the contact zone, leading to an overestimation of local bearing stress.

Linear axisymmetrical FEA of the selected experimental specimens

Since linear FEA cannot reproduce the post-elastic response, valid comparison must be restricted to
the purely linear elastic portion of the experimental curves. A closer inspection of Figure 5.21 reveals
an initial, gradual increase in bearing stress, which Markic et al. attribute to the settlement of the steel
brush into the surface irregularities of the concrete (Markic et al. 2022a). Once the brush has seated,
the response follows a linear path until the onset of concrete plastic deformation. By drawing a straight
“fictive” line from the point of full brush settlement to the start of plasticity, one obtains a reference line for
comparison with the FEA results. The initial, non-linear settlement phase is excluded because the FEA
model assumes a perfectly smooth contact surface, and thus its linear response begins immediately
upon load application.

In appendix B, these fictive lines are plotted and the corresponding stress and penetration values indi-
cated. These are the target outcomes for the FEA, and should validate if the FEA method is appropriate
for modelling confinement or adjustments are required. To confirm that an agreement between exper-
imental and FEA results is not coincidental for a single specimen, four specimens were simulated in
DIANA and their results compared.

The axisymmetric model employed for the non-linear analysis (Figure 5.23) was reused, with only the
width of the loaded area adjusted to match each specimen in appendix B. Some simplifications remain,
for instance, each loaded area is modelled as circular, with radius equal to half the length of the longest
side of the actual loaded surface. Although this alters the size and form of loaded area, the critical
edge distance is preserved, which is known to exert the greatest influence on the results. Additionally,
axisymmetric modelling necessitates representing the lateral confining reinforcement as continuous
hoops, rather than the rectangular stirrups used in the experimental specimens.

The load was applied using force control to avoid artificial stress concentrations at the edges of the
loaded area. Penetration was determined from the resulting vertical (y-direction) displacement. The
results are presented in Table 5.1.

Table 5.1: Experimental versus FEA linear results

SpeCimen Eassumed .ch q:E/.ch qx am,ewp Jm,FEA A
[MPa] [MPa] [-1 [MPa] [mm] [mm] [mm]
NC-4,5 30.000 -32.6 1.89 -61.61 0.25 0.09 0.16
NC-18 30.000 -32.6 2.89 -94.20 0.94 0.55 0.39
NC-27 30.000 -32.6 2.39 -77.91 0.93 0.69 0.24
HC-27 40.000 -77.4 1.41 -109.13 | 0.52 0.73 0.21

The table reveals a substantial discrepancy between the experimentally obtained and FEA-derived
normalised bearing-stress factors. Although it was expected that modelling the lateral reinforcement
as continuous hoops (instead of the rectangular stirrups used in the experiments) would elevate the
simulated bearing stresses, this alone cannot account for the magnitude of the difference. Likewise,
measurement uncertainty in defining the “fictive” linear portions of the experimental stress—penetration
curves may introduce error, but is unlikely to explain such large deviations.

Furthermore, the experimental study did not report the Young’s moduli of the concrete specimens.
Therefore values of 30 GPa were assumed for the concrete with a compressive strength of 32.6 MPa
and 40 GPa for that with 77.4 MPa, estimates drawn from comparable literature specimens and consis-
tent with Eurocode recommendations. Even allowing for reasonable variation in these moduli, the gap
between the FEA and experimental normalised factors remains substantial. This suggests that other
modelling simplifications such as the axisymmetric representation of the load area or the idealised
contact conditions may be influencing the results.
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Linear 3D FEA of the selected experimental specimens

Since the discrepancies between the axisymmetric FEA results and the experimental data proved too
large, more accurate three-dimensional models were developed. In these 3D analyses, the reinforce-
ment geometry and material properties precisely replicate the experimental specimens, and the loaded
area is defined to match the actual test configuration. The load is applied under force control, rather
than displacement control, to avoid artificial stress concentrations at the edges of the loaded zone,
thereby more faithfully capturing the real stress redistribution in regions of high concentration. The “fic-
tive” linear segments of the normalised bearing stress—penetration curves (see appendix B) yield the
normalised bearing stresses at the end of the linear regime. These values were imposed as distributed
loads in the numerical replications, with the primary outcome of interest being the penetration depth
corresponding to those loads.

Figure 5.27 illustrates the 3D FEA model. Apart from minor simplifications, this finite-element model is
identical to Marki¢ et al.’s specimens NC-4.5, NC-18, NC-27 and HC-27 (see Figure 5.20). As such,
it provides a robust basis for comparing the FEA predictions with the experimental measurements: a
close agreement of the linear-elastic trajectories will confirm the validity of the chosen input parameters.

Figure 5.27: 3D FEA Markic et al. experiment replica with reinforcement

The results of the FEA are presented in appendix B.3. For comparison, all results are summarized in
the table below (see Table 5.2).

Table 5.2: Experimental versus linear 3D FEA results

SpeCimen Eassumed .ch qw/.ch qx 6w,emp 6w,FEA 6:E,analytical
[MPa] | [MPa] [-] [MPa] | [mm] [mm] [mm]
NC-4,5 30.000 -32.6 1.89 -61.61 0.25 0.1 0.13
NC-18 30.000 -32.6 2.89 -94.20 0.94 0.29 0.28
NC-27 30.000 -32.6 2.39 -77.91 0.93 0.27 0.27
HC-27 40.000 -77.4 1.41 -109.13 | 0.52 0.28 0.28
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To assess the plausibility of the FEA results, analytical calculations were performed for all four spec-
imens using a simplified three-spring model based on the FEA stress distributions (see appendix B).
Each compressed concrete region was idealised as a spring whose stiffness was determined from
its cross-sectional area, segment length and the concrete’s Young’s modulus. By applying the same
force as in the linear portion of the experiments, the resulting spring deformations were computed and
compared with the penetrations measured experimentally and those predicted by FEA.

The analytically derived deformations correlate closely with the FEA results; however, both remain
markedly lower than the experimental values. This discrepancy indicates that the effective stiffness of
the concrete in the experiments (i.e. within partially loaded areas) is less than the initial secant modulus
of the material. Literature (Betoniek 2024) demonstrates that concrete’s Young’'s modulus decreases
once compressive stress exceeds 40 % of its uniaxial strength, yet DIANA’s outputs imply a constant
modulus of approximately 30 GPa, even under high stresses, thereby producing unrealistically small
penetrations.

A second set of hand-calculations employing reduced moduli (typically 20 GPa and, in the region clos-
est to the load, as low as 10 GPa) yields penetration values that align much more closely with the
experimental campaign of Marki¢ et al. These findings confirm that incorporating a locally reduced
Young’s modulus provides a more realistic representation of the bearing response in partially loaded
regions.

Table 5.3 compares the experimental load penetrations with those obtained analytically and by FEA
when reduced values of Young’s modulus are adopted.

Table 5.3: Comparison of experimentally and numerically obtained load penetrations using reduced Young’s moduli

Specimen Reduced E [GPa] Penetration §, [mm]
Segment 1 | Segment 2 | Segment 3 | Experiment | FEA | Analytical
NC-4.5 10 15 20 0.25 0.14 0.19
NC-18 10 15 20 0.94 0.66 0.67
NC-27 10 15 20 0.93 0.59 0.55
HC-27 20 25 30 0.52 0.55 0.42

All results, both with and without reduced Young’s modulus, are plotted in Figure 5.28. Although the
linear-elastic phase is the only regime under consideration, the bar chart clearly indicates a substan-
tial reduction in effective stiffness beneath the loaded area. In particular, for specimen NC-4.5, the
small loaded area and comparable bearing stress mean that most stress is confined to the upper 50
mm, where the lowest modulus applies; thus, reducing the modulus in the deeper regions has little ef-
fect. Nevertheless, the experimental penetration remains significantly higher than any linear prediction,
implying additional local softening directly beneath the load.
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LOAD PENETRATION (IN MM) PER CALCULATION
METHOD COMPARED TO EXPERIMENTAL RESULTS
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Figure 5.28: Load penetration with and without reduced young’s modulus compared to experimental results

In experiments on concrete under concentrated bearing loads, the initial portion of the load—penetration
curve often appears linear. However, purely linear FEA or analytical models (both assuming homoge-
neous, isotropic, perfectly elastic behaviour) systematically underestimate the measured penetrations.
This discrepancy arises because, at the local scale beneath the loading plate, stress gradients and
Poisson-induced transverse tensile stresses generate early microcracking and inelastic strain, even at
global stress levels well below the compressive strength. Such microcracking dissipates energy quanti-
fied by the fracture energy (G ¢) and reduces local stiffness before any visible damage occurs, violating
the assumptions of classical linear elasticity.

To reconcile this within a linear-FEA framework, a compliant “cushion” layer can be introduced beneath
the load plate: a thin, linear-elastic material with reduced Young’s modulus that mimics the compliance
of the damaged zone. This strategy gives the model quasi-non-linear characteristics, enabling accu-
rate replication of the observed load-penetration behaviour while retaining computational stability and
avoiding the convergence challenges of fully non-linear analyses.

These results confirm that, when a fully non-linear analysis is precluded by singularities or severe
stress concentrations, a linear finite-element analysis incorporating reduced concrete stiffness in highly
stressed regions and a compliant cushion layer to represent micro-crack-induced softening and stress
redistribution (i.e. a quasi-non-linear FEA approach) provides the most realistic approximation of the
physical behaviour.

5.2.5. Material properties for modelling confined concrete

By employing simplified cube models and replicate selected specimens from Marki¢ et al.’s experimen-
tal campaign, it was determined that a total strain based crack model combined with the Thorenfeldt
material model, featuring a linear compression-softening post-peak branch, most accurately captures
the confinement effect in a non-linear analyses. The Thorenfeldt model permits precise calibration of
material behaviour via input parameters for compressive strength, shape parameters n and k, residual
strength, and a length-scale parameter to govern post-peak softening. In addition to these compres-
sive parameters, DIANA requires tensile and crack-orientation inputs, the use of linear-crack energy
with 'Rots’ crack-bandwidth specification, together with a rotating crack orientation, produced the most
realistic results.

When singularities or stress concentrations precipitate premature non-convergence and make a fully
non-linear analysis infeasible, the preferred alternative is a quasi-non-linear analysis. This approach
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retains linear-elastic properties as the Young’s modulus, Poisson’s ratio and density, but introduces
a reduction in concrete stiffness within highly stressed regions. Such a technique enables a close
representation of the entire ascending branch of the stress—strain curve, rather than terminating at the
onset of non-linear behaviour.

While the use of a compliant layer or locally reduced modulus in a linear finite element model offers
a practical means of replicating the initial stiffness observed in experiments, this quasi-non-linear ap-
proach is based on several assumptions. It presumes that all non-linear effects are localised beneath
the load and that the remainder of the concrete behaves as a homogeneous, linear elastic material. The
compliant layer itself is a simplified representation of microcracking, stress redistribution, and contact
compliance, but does not model damage evolution or fracture mechanics. Furthermore, it assumes
constant, isotropic stiffness within the modified zone, and does not account for confinement activation
or stiffness degradation with increasing load. As such, while this method allows for improved alignment
with experimental stiffness in the pre-damage regime, it is not predictive beyond the initial elastic range
and should be interpreted accordingly.

5.2.6. Confining reinfocement in a quasi-non-linear FEA

In the quasi-non-linear finite element model, the confining reinforcement exhibits very low tensile stress,
indicating that passive confinement is not effectively activated. This contrasts with the expected be-
haviour in the experimental specimens, where confinement plays a significant role in enhancing the
bearing strength of the concrete core.

The absence of confinement activation in the linear model can be explained by the underlying mechan-
ics of passive confinement. In reality, as the concrete beneath the bearing plate is subjected to high
compressive stresses, it tends to expand laterally due to Poisson’s effect and inelastic deformation.
This lateral expansion is resisted by the surrounding transverse reinforcement, which develops tensile
forces and, in doing so, applies passive confinement pressure on the concrete core. This confinement
delays the onset of damage and increases the effective bearing capacity.

However, in a linear elastic model, the concrete material is assumed to behave homogeneously and
elastically, without any damage, cracking or plastic deformation. As a result, the lateral strains remain
very small (v x Dty) and are insufficient to engage the confining reinforcement. Because no significant
transverse dilation occurs, the ties remain essentially unstressed. Consequently, the model fails to
replicate the confinement-induced strength enhancement observed in the experimental results.

This limitation is inherent to the linear modelling approach. Without non-linear material behaviour such
as dilation, crushing or tensile cracking, the necessary conditions for activating passive confinement
are not met. While the reinforcement is present and correctly modelled geometrically, it remains me-
chanically inactive due to the lack of lateral expansion in the surrounding concrete. As such, the bearing
stress predicted by the linear model reflects an unconfined response, even in specimens that are, in
practice, confined.

By adjusting the linear material properties, it is possible to approximate the initial bearing stiffness
and make a substantiated estimate of the bearing stress corresponding to a given penetration depth.
However, capturing the full global response of the specimen, including the activation of passive con-
finement, remains feasible only through a non-linear analysis incorporating appropriate material models
and geometrical representations, as described in subsection 5.2.5.

5.3. FEA of the 'Oostertoegang’ case study project

Returning to the case study, which comprises a CFSP-pile-concrete cap connection, our point of inter-
est is the bearing stress in the concrete immediately above the steel casing. Owing to the pronounced
stress concentrations that typically develop in this region, conventional theoretical models fail to demon-
strate adequate bearing capacity. This chapter assesses whether the modified theoretical model for
bearing stress in partially loaded concrete, developed earlier in this thesis (see section 4.4), is applica-
ble to the case study. Based on prior FEA replications of experimental campaigns and comparison of
the results, best practices for FEA modelling and expected outcomes have been established.

The first section of this chapter (see section 5.1) outlines the essential modelling considerations, includ-
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ing the choice of analysis type, element type and mesh refinement in regions of interest. The second
section reviews the selected material models and properties for both linear and non-linear analyses.
Due to the geometry of the case study, a singularity is expected at the inner corner between the exte-
rior of the pile casing and the underside of the concrete cap, rendering a fully non-linear finite-element
analysis infeasible because of early non-convergence. Consequently, the research indicates that a
quasi-non-linear FEA incorporating a locally reduced Young’s modulus in highly stressed zones and
a compliant cushion layer beneath the load, provides the most realistic representation of the confined
concrete when a full non-linear analysis cannot be performed.

5.3.1. Case study FEA geometry

In the Amsterdam Oostertoegang project, the concrete cap forms a continuous beam 4.5m wide and
2 m deep, supported on multiple piles. For the purposes of this thesis, this configuration was simplified
to a single pile beneath a discrete concrete cap. A parametric study, in which the cap radius was varied
around 500 mm and the height around 400 mm, demonstrated that both increases and decreases in
these dimensions produced negligible changes in the bearing stress at the pile—cap interface. From
these analyses, it was determined that an axisymmetric cap with a radius of 500 mm and a height of
400 mm suffices to capture the full influence zone around the pile head. The concrete cap is divided
into 3 segments to apply mesh refinement and stiffness reduction.

As explained in subsection 5.1.1 the radial reinforcement in the concrete cap is modelled as a reinforce-
ment grid with zero equivalent thickness in the local y-direction and an equivalent thickness of 3.93 mm
in the local x-direction to represent 25mm rebars at 125mm spacing. The longitudinal reinforcement
is modelled as hoops by modelling embedded bar elements with a diameter of 32mm, arranged at
125mm centre-to-centre spacing.

The pile is discretised into four regions: two representing the concrete core, one with a fine mesh
refinement and one with a coarser mesh, both assigned an identical Young’s modulus equal to the
initial concrete stiffness, reflecting the assumption of full confinement by the steel casing. Likewise, the
steel casing is divided into a fine-meshed region and a coarse-meshed region to ensure accurate node
alignment at the interface. The casing steel is modelled as a linear-elastic material, since the applied
load magnitudes remain well below its yield strength.

5.3.2. Case study FEA boundary and interface conditions

Since a linear-elastic analysis is conducted, there is no need for compliant supports; therefore, simple
rigid boundary conditions are applied. Along the axis of symmetry, translation in the x-direction is
restrained, while at the base of the model, translation in the y-direction is fixed.

To simulate a fully unbonded interface (as prescribed by NEN-EN 1992-4), an interface with zero shear
stiffness and very high normal stiffness, are applied between the concrete core and the steel casing, as
described in subsection 5.1.1. The full geometry including boundary and interface conditions is shown
in Figure 5.29.
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Figure 5.29: Geometry of the case study FEA including boundary and interface conditions

Pile reinforcement has been omitted from the FEA model. This simplification does not affect the lo-
cal response under investigation, since the reinforcement, while contributing to the overall axial and
bending capacity of the connection, does not influence the confinement mechanism or the local stress
distribution at the pile—cap interface.

5.3.3. Equivalent load

From the application of the Markic dual wedge stress field (DWSF) model to the case study presented
in section 4.5, a maximum bearing capacity of 149.05 MPa was determined. However, this analytical
model does not provide the corresponding penetration of the casing into the concrete cap. To estimate
this displacement, a method based on energy conservation and Hooke’s law was employed.

It is important to note that the finite element model used in this study represents the physical system
in an inverted orientation, primarily to improve load control. That is, the load is applied at the physical
bottom of the pile but represented at the top of the model in the FEA. The interface between the steel
pile casing and the concrete core is modelled as fully unbonded, which implies that the normal stress
at the physical top of the casing is equal to the stress at the bottom, and no energy is lost along the
casing length.

Given that the casing material is modelled as linear elastic, its deformation can be determined using
Hooke’s law:

« Lenei
ALcasing = UzOE—tcz?smg Eq. 5.9
stee

where o, is the average axial stress in the casing, Lcasing is the effective length, and Ejgeq is the
Young’s modulus of the steel casing.

The axial deformation at the casing-concrete interface results in the transmission of stress into the
concrete cap through the DWSF. According to the principle of conservation of energy, the external
work applied to the system must be equal to the total internal energy dissipated or stored. In this
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case, the external work is the product of the bearing stress and the vertical displacement of the load
application surface, which corresponds to the interface between the casing and the concrete cap:

Wext = 040 * Leasing * ¢ Eq. 5.10

Once the stress is transferred into the concrete, energy dissipation occurs through different internal
mechanisms. The most significant dissipation occurs along the inclined flanks of the DWSF (discon-
tinuity line FK) due to shear deformation. Additionally, compressive stress is transmitted downward
through the DWSF into the concrete below. This results in vertical displacement at the base of the
DWSF and induces internal compressive work. However, because the region below the DWSF is mod-
elled as linear elastic and the bottom support is assumed to be rigid, this compressive work is fully
transferred to the support without internal energy loss.

Accordingly, the energy balance simplifies to include only the dissipated shear energy along the DWSF
flanks. The internal energy components can be written as:

I/Vint = WDWSF, shear + WDWSF,JM + Wcap, support EQ- 5.1

where:

Wowsr shear  ENergy dissipated by shear along the sides of the DWSF [N mm]
WbwsF,o.. Energy transmitted through the DWSF by distributed compressive stress [N mm]
Weap, support ~ COompressive energy transferred into the support from the base of the cap [N mm]

In the linear elastic FEA framework applied here, Wpwsk ., @nd Weap, support €ancel each other out due
to the assumption of full elastic transfer and perfect support. This results in a simplified energy balance
where Weyxt = Wint:

0z0 * tcasing 6= WDWSF, shear Eq- 5.12

This expression reflects that, under the stated assumptions, all external work input is dissipated through
shear along the DWSF. This is consistent with the theoretical interpretation of the DWSF in partially
loaded concrete regions.

It is important to note that all energies are expressed in Nmm, as the analysis is conducted in two
dimensions and results are interpreted per millimetre of casing perimeter.

The casing penetration u is calculated by equating the external work to the internal shear dissipation:

020 d1 - U =T - lghear - cOS(¥) Eq. 5.13

where:

* 0.0 is the average bearing stress at the casing-concrete interface [MPa],
* d; is the effective load width [mm],

* u is the vertical penetration [mm],

+ 7 is the shear stress acting along the DWSF plane [MPal],

* Ilshear IS the length of the shear plane in the DWSF [mm],

* «is the angle of the DWSF with respect to the horizontal [deg].

Solving for the penetration u gives:

UZM Eq. 5.14
00 - d1

The shear stress 7 is determined from the rotated stress state of the concrete along the discontinuity
line FK from the DWSF. The initial stress element is subjected to a uniaxial stress o, = o.onys in the
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horizontal direction, which is the confining stress at the base of the casing. To obtain the shear stress
acting along the inclined flank of the DWSF (e.g., along line FK in the stress field), the stress tensor is
rotated over an angle . The Mohr’s circle representation shows that the shear stress at an inclined
plane at angle « corresponds to a rotation of 2« in the Mohr plane.

To support the explanation visually, two figures are proposed:

» Figure 5.30: Mohr’s circle construction illustrating the stress transformation from a uniaxial stress
state to the inclined DWSF plane (rotation over 2«).

— T, =3.99

T, =—3.99

)

Figure 5.30: Mohr’s circle showing stress transformation from uniaxial stress to shear on inclined plane at angle «.

* Figure 5.31: Initial stress element subjected to horizontal stress o..,, rotated to align with the
DWSEF flank to illustrate the development of shear stress along line FK.

oy

11y

—. ©

' \°

Figure 5.31: Stress element under horizontal confinement, rotated over angle « to represent shear stress along the DWSF
plane.
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The rotated shear stress is therefore calculated as:

= _%Oy -sin(2ar) 4 74y - cos(2ar) Eq.5.15

where:

* 0, = 05 = Ocony IS the initial horizontal confining stress [MPa],
* 0, = 0 is the initial vertical stress component (initially zero) [MPal],
* Txy iS the initial shear component (initially zero) [MPal].

This results in a shear stress acting on the inclined shear planes of the DWSF that is proportional to
the applied confinement stress and the angle of the wedge. The angle « and the length of the shear
plane Ishear are known from the geometry of the DWSF:

Iehear = —& Eq. 5.16
cos(«)

where zg is the height of the DWSF.

The Python function in appendix C.1 implements this procedure numerically. This python script also
includes the linear elastic deformation of the steel casing to obtain a total corresponding prescribed
deformation of 0.46 mm for the case study.

This comprehensive energy-based approach, validated through linear elastic FEA assumptions and
consistent with the geometry of the DWSF, provides a means to estimate the load-penetration response
of the steel casing in absence of direct displacement output from the Markic analytical model.

The concrete core is also subjected to a load, but for accuracy and simplicity the core is loaded by
imposing a distributed force proportional to the relative stiffnesses of the steel casing and the concrete,
as detailed in Section 2.2. When applied to the present FEA model, this procedure yields:

Eq. 5.17

Gcore = 0z0 *

Here, o, denotes the normal stress in the steel casing, E.... the Young’s modulus of the concrete
core, and E..qne the Young’s modulus of the steel casing. Equation 5.17 is derived in Appendix D.

Substituting Ecore = 30 GPa and E.aging = 200 GPa into Equation 5.17 yields a distributed core stress
of 22.36 N/mm?.

5.3.4. Quasi-Non-linear Modelling Approach for the Concrete Cap

To approximate the non-linear mechanical behaviour of the concrete cap situated above the CFSP
pile while preserving the computational efficiency and convergence stability of a linear finite element
analysis, a quasi-non-linear modelling approach is employed. This method captures the progressive
stiffness degradation of concrete in compression (particularly near peak stress levels) without the need
for a fully non-linear material model. The principle of a quasi-non-linear analysis is illustrated by the
stress—strain curves in Figure 5.32. The dashed line represents the linear-elastic response of a material
with a Young’s modulus of 30 GPa. The curved yellow line depicts the enhanced, non-linear behaviour
of confined concrete. The straight blue line, which connects the origin to the endpoint of the non-linear
curve, defines the manipulated stress—strain path that the material follows in a quasi-non-linear analysis.
This method permits verification of the plausibility of the calculated bearing stress; however, it requires
a well-substantiated determination of the reduced Young’s modulus in those regions where stiffness is
intentionally decreased.

In this study, the technique is applied to the concrete cap directly above the CFSP pile, where vertical
loading induces the highest compressive stresses. The reduction in stiffness is governed by the analyt-
ically defined secant modulus of confined concrete, derived from a constitutive relationship based on
Mander’s model (Mander et al. 1988b).
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Predicted ascending stress-strain curve of confined concrete
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Figure 5.32: Quasi-non-linear FEA principle in a stress-strain curve

Mander's Model for reduced concrete stiffness

The stress-strain response of confined concrete is approximated using the model proposed by Man-
der et al., which was originally developed to represent the behaviour of transversely confined concrete
columns under monotonic loading. The concrete cap in this case is only confined by transverse rein-
forcement near the pile head, particularly in the region directly above the CFSP pile. This condition
resembles a partially confined state, for which Mander’s model remains applicable with appropriate
interpretation of confinement parameters.

The confined concrete stress o, at strain ¢, is defined as:

_ fcc'x'/r /)75c
UC(EC)ir—H—xT’ where L—ECC, Eq.5.18

with f.. the peak compressive strength of confined concrete, and ¢.. the corresponding peak strain.
The shape parameter r accounts for the curvature of the ascending branch and is defined as:

E
c where FEgec = &, Eq. 5.19

r=—_=—=-
Ec - Esec Ece

and E. is the initial young’s modulus of unconfined concrete.

The stiffness of confined concrete at certain stress levels is defined by the secant modulus E, which
represents the slope of the line that connects the origin of the the curve to the point in the stress-strain
curve at a given stress and strain level. The value for E; is obtained by dividing . by ¢.:

B, =2 Eq. 5.20
Ec

This expression is evaluated numerically using a discretised version of the curve, and only the ascend-
ing branch is considered to avoid post-peak softening effects which are not captured in the current
modelling framework. The Python function in appendix C.2 implements this procedure numerically and
plots the relation between the normal compressive stress, strain and secant modulus in one graph (see
Figure 5.33 for an example of unconfined concrete C30/37).
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Stress-Strain and Secant Modulus (Mander - Ascending Branch)
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Figure 5.33: Stress, strain and secant modulus relationship according to Mander

Implementation in Quasi-Non-Linear FEA

The calculated values of E, are used to define the elastic modulus of the concrete material in sequential
FEA simulations, each corresponding to a higher load level. This process allows the global stiffness
matrix to evolve in a manner that approximates the non-linear stress-strain path. The simulation aims
to replicate the progression along the ascending branch of the confined concrete response, with the
goal of confirming the analytically predicted peak strength in the confined region. This methodology
enables the assessment of local stiffness degradation and load redistribution effects in the absence of
a fully non-linear solver.

Assumptions and Limitations
The application of Mander’s model in this context is subject to several assumptions:

* The concrete is assumed to behave in a quasi-uniaxial manner under monotonic compression.
Multi-axial stress states, which may exist in reality due to the three-dimensional confinement, are
not explicitly modelled.

» Confinement is considered passive and isotropic within the zone above the CFSP casing. This
neglects potential local effects such as non-uniform restraint or microcracking.

» Only the ascending branch of the stress-strain response is used. Post-peak softening or confine-
ment degradation are not included.

* Young’'s modulus is updated manually per simulation step; full strain-dependent material models
are not implemented.

Despite these simplifications, the quasi-non-linear approach provides a rational and computationally
feasible method to simulate the stiffness evolution of confined concrete and to validate the peak strength
predictions derived from analytical models. It bridges the gap between linear elastic analysis and fully
non-linear FEA in a context where numerical convergence poses a practical limitation.
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Baseline Case Study FEA

To determine what the correct concrete stiffness for the quasi-non-linear analysis is, an iterative pro-
cess needs to be performed, starting with a baseline linear FEA in which the entire concrete cap was
assigned standard C30/37 properties: Young’s modulus £ = 30 GPa, Poisson’s ratio v = 0.2, and den-
sity p=10 kg/m? (which doesn’t align with standard C30/37 properties but is judged more appropriate
for the present, inverted (upside—down) model). The results are shown below. Note that the stresses
are too high because no stiffness reduction has been applied yet.

Linear analysis

Axial compression
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min: -555.64N/mm2 max: 188.88N/mm?2

Linear analysis

Axial compression
Displacements DtY
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Figure 5.34: Results of the case study Linear FEA with initial linear elastic material properties

Figure 5.34a shows that the concrete core deforms independently of the steel casing (note that the
displacement contours do not align across the interface) thus confirming a fully unbonded condition.
Within the pile, the contours exhibit a convex, hyperbolic pattern: deformation of the concrete adjacent
to the casing exceeds that at the pile centre, consistent with load transfer from the casing into the
cap. The corresponding normal-stress field in Figure 5.34b illustrates a pronounced concentration just
beneath and slightly to the left of the casing (green band, approximately —27.5 to —52.5 MPa), exceeding
the uniaxial compressive strength of unconfined concrete. The detailed view in Figure 5.34d reveals a
blue zone beneath the casing where compressive stresses surpass 77.5 MPa, indicating local crushing
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in an unconfined scenario and a physical tendency for load to be redirected from the casing into the
core.

In the lateral (x) direction, local stress concentrations are also evident. Outside the immediate vicinity of
the casing, the cap experiences compressive stresses generally below the uniaxial capacity; however,
the region adjacent to the casing shows compressive levels in excess of 25 MPa, which may precipitate
spalling, loss of cover and, ultimately, durability issues (e.g. early reinforcement corrosion). Although
important, such effects lie beyond the scope of this thesis. The lateral-stress detail in Figure 5.34e
further shows a red band indicating tensile stresses exceeding 5 MPa, consistent with the onset of
cracking.

The working hypothesis in this thesis is that the concrete directly beneath the casing attains an in-
creased compressive capacity due to passive confinement by the lower reinforcement net. Under this
assumption, the modified theory yields an optimal bearing stress of ¢, = 149.05 MPa. Outside this
narrowly confined zone, any confinement by the surrounding (unloaded) concrete is neglected here
because the case-study model dimensions were deliberately limited; the stiffness reduction in the bulk
of the cap can therefore be taken from the unconfined relationship in Figure 5.33. The initial (secant)
modulus is taken as E = 30 GPa throughout the cap, including the confined region beneath the casing;
as indicated by Figure 2.10 and Figure 3.4, the secant moduli of confined and unconfined concrete
coincide, with divergence occurring only in the post-linear regime. Assigning the correct secant modu-
lus to each segment requires knowledge of the average segmental stress, which is obtained from the
baseline analysis shown in Figure 5.34. The geometric segmentation used for this purpose is depicted
in Figure 5.29; an additional, thin segment is introduced immediately beneath the casing to represent
the optimally confined region, which behaves distinctly from the surrounding concrete.

The height of the optimally confined zone is determined from the Dual-Wedge stress field (DWSF). The
ultimate bearing strength is mobilised in region ABK, where both passive and geometric confinement
are most effective. The width of this region equals the loaded width; its height depends on the angle ~,
given by Markic et al. as

04 Sin o cos «

tan~y = Eq. 5.21

00 — Oq COS2 v

With 0, = 66.63 MPa the compressive stress in strut BFK, a = 25.57° the strut inclination, and
o.0 = 149.05 MPa the optimal bearing stress. Substitution gives v = 15.3°, corresponding to an
optimal confined height of 18.3 mm.

For all concrete segments other than the confined region, the initial uniaxial compressive strength is
taken as 30 MPa; in the optimally confined region ABK, the modified theory indicates a peak strength
of 149.05 MPa. Because the peak strength increases from 30 to 149.05 MPa, the peak strain is expected
to be markedly larger; a value of €. ,eax = 0.0075 is therefore adopted, consistent with the extrapolated
non-linear stress—strain curve based on a 30 GPa initial secant modulus (see Figure 5.32).

To assign appropriate secant moduli to the segments, an iterative procedure was employed. A baseline
analysis with uniform E = 30 GPa provided average normal stresses for each segment (Figure 5.35).
Using the Python routine in Appendix C.2, Mander’s model was evaluated at these average stresses to
compute the corresponding secant moduli. These moduli were then assigned to the segments and the
analysis repeated. The cycle of (i) extracting updated segmental average stresses and (ii) re-evaluating
the secant moduli was continued until the change in segmental normal stress between successive
iterations fell below a prescribed tolerance, at which point convergence was declared. Results from
the first and final iterations are reported in this appendix.
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Figure 5.35: Normal stress in different segments according to the baseline analysis

For the pile core (segments 1 and 2), no stiffness reduction was applied: full confinement by the steel
casing was assumed to elevate compressive capacity and extend the linear response. For segments 3,
5 and 6, the reduced stiffness followed Mander’s unconfined stress—strain—secant modulus relationship
(Figure 5.33). For the confined segment 4, confined concrete properties were used within Mander’s
framework to obtain the appropriate stress—strain—secant modulus relationship and, hence, the reduced
stiffness for the converged analysis. The results of the first iteration are plotted in appendix E and
summarized in Table 5.4.

Table 5.4: First iteration (baseline): segmental average normal stress and secant modulus.

Compressive Initial Average Secant
Segment strength peak strain | modulus | normal stress Modulus
fc [MPa] €c,peak ['] Er_' [GPa] Sseg,i [Mpa] Esec,i [GPa]
1 30 0.00175 30 -22.36 30
2 30 0.00175 30 -22.36 30
3 30 0.00175 30 -22.19 26.42
4 30 0.0075 149.05 -84.85 29.09
5 30 0.00175 30 -19.73 27.41
6 30 0.00175 30 -14.86 28.74

The iterative update was then initiated and continued until the change in segmental average normal
stress between successive iterations fell below 0.05 MPa. The iteration history is reported in Appendix
E.3. Convergence was achieved after seven iterations, at which point the final segment stiffnesses
were obtained. Table 5.5 summarizes the results of the final iteration.
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Table 5.5: Final iteration: segmental average normal stress and secant modulus.

Compressive Initial Average Secant
Segment strength peak strain | modulus | normal stress Modulus
fc [MPa] €c,peak ['] Ec [GPa] Sseg,i [MPa] Esec,i [GPa]
1 30 0.00175 30 -22.36 30
2 30 0.00175 30 -22.36 30
3 30 0.00175 30 -22.04 26.49
4 30 0.0075 149.05 -83.36 29.14
5 30 0.00175 30 -19.01 27.65
6 30 0.00175 30 -14.59 28.79

5.3.5. Mesh Refinement

The primary output of the FEA model is the bearing stress in the concrete directly above the steel
casing. To minimise numerical bias arising from discretisation, a systematic mesh—refinement study
was undertaken.

Because displacement control is applied to the casing, a support is introduced on the loaded side of
the casing to recover reaction forces. Owing to the fully unbonded interface, the bearing stress at
the steel-concrete interface can be obtained by dividing the casing support reaction by the casing’s
cross—sectional area. Hence, the sought FEA output is the reaction force at the casing support, and
adequate mesh refinement is required within the casing at the support location and in the adjacent
concrete elements that transfer load into the casing.

Baseline discretisation

Using the element distribution proposed in subsection 5.1.3 (see Figure 5.4), the casing support re-
action was —2.608.222 N. Assuming a uniform interface pressure, the corresponding bearing stress
is:

_ Rcasing o Rcasing
b= Acasing N 0.25 7 - (R2 R12n)

out

= —166.71 N/mm?, Eq. 5.22

Where R,,; = 508 mm and R;, = 488 mm.

Refining the casing mesh

Reducing the casing element size from 10 mm to 5 mm yielded a reaction of —2.605.958 N and a
bearing stress of 166.57 N/mm?. The negligible change indicates that refining the casing alone has
limited influence on the result.

Refining the load—transfer region

Attention then shifted to the elements directly transferring load into the casing: the confined region
(segment 4) and the fine mesh layer of the cap (segment 3) (see Figure 5.35a). With the casing held
at 5 x 5 mm, refining segments 3 and 4 from 5 x 5 mm to 2.5 x 2.5 mm increased the bearing stress
to 171.60 N/mm?. Further refinementto 1 x 1 mm gave 174.64 N/mm?. These modest increases show
that local refinement around the casing tip improves accuracy.

Element—-count constraint and segmentation update

Due to the element limit in the educational DIANA licence, further global refinement was not feasible.
Moreover, adopting 1 x 1 mm elements in segments 3 and 4 produced poor node alignment with neigh-
bouring 5 x 5 mm regions, necessitating local re—_meshing. To resolve this while respecting the element
limit, segment 3 was split, creating a seventh segment to facilitate graded transitions and better node
alignment, as shown in Figure 5.36.
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Figure 5.36: Adjusted segmentation and refined mesh of the case—study FEA model.

Refined mesh with node alignment

Re-analysis with the updated mesh, enforcing node alignment with neighbouring regions, yielded a
bearing stress of 174.62 N/mm?. All boundary conditions were checked and confirmed correct. The
difference from the pre-refinement value of 174.64 N/mm? is 0.02 N/mm? (approximately 0.01%), indi-
cating mesh-independent results. Accordingly, 174.62 N/mm? is taken as the most accurate estimate
achievable within the present discretisation and licensing element amount constraints.

5.3.6. Results and Verification

At this stage, the ingredients introduced throughout the chapter are synthesised into a single, compre-
hensive FEA model of the case study. The axisymmetric modelling approach, element formulation, and
meshing strategy are described in section 5.1, and the selected material properties in section 5.2. This
chapter has established why a fully non-linear analysis is infeasible and how a quasi-non-linear proce-
dure is implemented to estimate the peak concrete strength in the region of interest. The theoretical
framework for reducing the concrete stiffness has been derived and applied to the case study.

By invoking conservation of energy for the DWSF model of Markic et al. and applying Hooke’s law to the
case-study geometry and material properties, a load was computed that is equivalent to the predicted
increased bearing capacity of 149.05 MPa. The quasi-non-linear FEA is then used to assess whether
the concrete can indeed sustain this bearing stress under the corresponding equivalent load. This
verification assumes that the concrete follows a stress—strain trajectory consistent with Mander et al.
The mesh configuration is refined to ensure mesh-independent results (see subsection 5.3.5).
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Verification is carried out against the following criteria:

» The interface bearing stress in the concrete above the casing attains is consistent with the DWSF
model under the equivalent load.

* Principal stress trajectories and directions are consistent with the DWSF model.

* The lateral confining stress in the FEA corresponds to o.,,; obtained by Mander et al. theorem
for confined concrete.

» The reinforcement is activated similar to Markic et al. DWSF theorem reinforcement activation.
» The magnitude of shear stress along the discontinuity line F' K is within the expected range.
» The vertical normal stress at distance X is comparable to the target value o,4.

Bearing Stress

As outlined in subsection 5.3.5, the bearing stress is obtained by reading the reaction at the casing
support used to impose the prescribed deformation. Because the casing is fully unbonded along its
side face, resistance develops only at the casing tip within the optimally confined region of the cap
(segment 4). Consequently, the support reaction equals the force transferred across the steel-concrete
contact at the tip. The bearing stress is therefore computed by dividing the casing support reaction by
the steel casing’s cross-sectional area (i.e. the contact area at the tip). For the case-study model, the
recovered reaction is Reasing = —2.731.899 N.

Rcasing Rcasing 2
v = = = —174.62 N/mm~, Eq. 5.23
7 Aewing 0257 (R2, — R2) a

where Ry, = 508 mm and R;, = 488 mm.

This value is slightly higher than the analytically predicted bearing strength of 149.05 MPa, with a dif-
ference of 25.57 MPa (i.e. 17.15 %). This level of deviation is comparable to the differences observed
between experimental and FEA results for the specimens reported by Markic et al. (see Figure 5.28),
bearing in mind that their experimental outcomes closely matched the corresponding analytical predic-
tions. Given that the equivalent applied load is wholly determined by the dimensions and parameters
prescribed by Markic et al.’s DWSF model in combination with the modified Mander et al. formulation,
the close correspondence, including the expected bias, between prediction and computation supports
the applicability of these analytical models to the CFSP-pile—to—concrete-cap connection.

Dual-Wedge Stress Field and Principal Stress Evaluation

The Dual-Wedge Stress Field (DWSF) model discretises the stress distribution into wedges bounded by
discontinuity lines, within which the stress state is assumed to be uniform. Although this representation
is idealised, it provides a useful means of comparing principal stress magnitudes and orientations with
those obtained from the finite element analysis (FEA). To enable this comparison, the average stresses
within the struts of the DWSF are evaluated directly from the FEA results.

Determining the average results requires knowledge of the dimensions of the DWSF wedges. The
Python scripts provided in Appendix A.2 and Appendix A.3 generate the necessary output to establish
the wedge geometry for the case study. Figure 3.6 defines the geometric parameters that govern the
DWSEF. For the case study, the following values are obtained from the Python output:

* di/2=5mm,

* d2/2 = 30.40 mm,

* Xg =53.10 mm,

* a=25.57°,

* v = 15.30° (see Equation 5.21),
B = 41.40°.
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An annotated overview of the case study DWSF, including the relevant dimensions and stress resultants,
is presented in Figure 5.37. The manifestation of the DWSF is illustrated in the finite element model in
Figure 5.38, to verify if the discretised analytical concept is consistent with the FEA results.

di=10
d/2=5 di/2=5
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Figure 5.37: Geometry and stresses on case study DWSF.
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(a) Case study DWSF in FEA (b) Case study DWSF in FEA detail

Figure 5.38: Case study DWSF modelled in FEA.

To improve the clarity of the in-plane principal stress distribution, the FEA mesh was coarsened to a
size of 5 by 5 mm, thereby reducing the number of stress vectors. The resulting in-plane principal
stress distribution is shown in Figure 5.39.

Linear analysis

Axial compression
Cauchy Total Stresses in-plane principal components
min: -226.67N/mm?2 max: 85.76N/mm?2
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Figure 5.39: In-plane principal stress case study FEA.
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From the analytical calculations, the principal stress in the struts is known to be o, = 66.63 MPa
at an inclination of o = 25.57° from the vertical plane. Figure 5.39 shows that the principal stress
orientation differs between the left and right struts. The right strut aligns closely with the analytically
predicted inclination, whereas the left strut deviates. This deviation arises because the analytical model
assumes confinement only by reinforcement. While this assumption holds for the right-hand side, on
the left-hand side the pile core generates an additional normal compressive stress in the concrete cap,
producing lateral confinement not accounted for in the analytical model.

The FEA results therefore indicate that the effect of active confinement due to the pile core is more
significant than the passive confinement provided by the reinforcement. However, for this active con-
finement to govern the bearing stress, it must be present symmetrically on both sides of the DWSF.
Since this condition is not met, the analytical bearing stress based on passive confinement remains the
appropriate design approach.

For consistency with the analytical assumptions, the principal stresses were calculated from the FEA
results using only the right-hand strut. At each node within the strut, the global stress components S,
Syy and S, were extracted. These components were then transformed into the principal stress system.
The state of stress at a point in two dimensions can be written as

The principal stresses, corresponding to the eigenvalues of this stress tensor, are given by

2
m2=§ﬁgé@'i ¢<S”;5@> +52,, Eq. 5.24

where o, is the maximum principal stress and o5 the minimum principal stress. The corresponding
orientation of the principal axes is defined by:

25,,

tan(er) = W .

Eq. 5.25

Here, 6, is measured counter-clockwise from the y-axis. This transformation ensures that, even in
cases where one axis is in tension and the other in compression, the stress state is expressed in terms
of purely tensile and compressive principal stresses acting on orthogonal planes.

The procedure described above was applied to all nodes within the right strut of the DWSF. According
to the finite element results, the average value of the principal compressive stress was —43.89 MPa,
and the average inclination of the principal stress plane was 30.53°. These values show a deviation
from the analytically obtained results, which can be attributed to both the influence of the pile core and
the modelling assumptions used in the numerical analysis.

Although the interfaces between the casing, the pile core, and the cap were modelled as fully unbonded,
the pile core still acts as a stiff boundary that constrains the lateral expansion of the adjacent wedge.
On the side of the DWSF facing the pile core, this passive restraint reduces the lateral dilation of the
compression band and keeps the load path oriented closer to the vertical axis. Consequently, the incli-
nation of the in-plane principal stresses on this side is smaller than the analytical wedge angle. On the
opposite side, where no such restraint is present, the stresses are free to fan out more widely, and with
the stimulation from the pile core reaction force resulting in a larger inclination of the principal directions
than predicted analytically. This asymmetric confinement effect partially explains the discrepancy be-
tween the numerical and analytical outcomes: while the analytical DWSF formulation by Markic¢ et al.
assumes symmetric confinement primarily provided by reinforcement, the FEA captures the additional
stiffening influence of the pile core on one side of the wedge.

Another notable discrepancy between the expectations of the Markic et al. DWSF model and the numer-
ical results concerns the lateral principal stress components. In the FEA, the stress tensors within the
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DWSF and in the passively confined zone immediately outside it show only normal principal stresses.
By contrast, the schematic representation of the DWSF in Figure 3.6 clearly illustrates the presence of
lateral compressive stresses both within the strut and nodal regions, as well as in the effectively con-
fined area adjacent to the DWSF. This discrepancy provides further evidence of insufficient activation
of the confining reinforcement in the FEA and, consequently, an absence or near absence of passive
lateral confining stress.

This conclusion is supported by the strain results at the casing—cap interface. While the analytical
approach predicts a strain of 0.0075, the FEA yields only 0.00178. Combined with the recognition that
the quasi-non-linear FEA does not account for cracking, it follows that the lateral deformation required
to mobilise the confining reinforcement is severely underestimated. As a result, the model produces
negligible passive lateral confinement compared to what would be expected in reality, which is why no
lateral stress tensors are present in the in-plane principal stress components plot.

A further source of deviation arises from the material modelling. In the finite element analysis no dis-
tinction was made between the stiffness of the strut and that of the surrounding concrete. In reality, the
effective stiffness within the strut is increased (at increased stress levels) due to active confinement:
the lateral expansion of the compression band is restrained by the adjacent concrete and reinforcement,
thereby enhancing the local compressive strength. The analytical assessment therefore idealises the
strut as a uniform block subjected to an elevated compressive stress, whereas the FEA does not cap-
ture this mechanism and consequently produces a lower average principal stress in the strut. The
impact is expected to be limited, since the struts are already assigned a Young’s modulus of 27.65 GPa;
under optimal confinement their stiffness would not exceed 30 GPa.

Finally, the numerical simulations were carried out using a quasi-non-linear procedure rather than a
fully non-linear constitutive model. This approach does not represent several key mechanisms, such
as confinement-induced hardening, plastic stress redistribution, cracking-induced anisotropy, and non-
linear Poisson effects. A fully non-linear analysis would be expected to predict higher average principal
stresses within the strut and an inclination more closely aligned with the analytical DWSF prediction.
The present FEA therefore provides a conservative approximation, in which the beneficial influence of
confinement on the stress development within the strut is underestimated.

Passive confinement by reinforcement

Immediately outside the DWSF, Markic et al. assume that the concrete is subjected solely to lateral con-
fining stress. In the case-study FEA, however, the concrete on the left side of the DWSF is additionally
influenced by the pile—core reaction, which introduces both a normal compressive stress and lateral
tensile stress resulting in active lateral confining stress on the DWSF. This constitutes a direct depar-
ture from the assumptions of Markic et al. By contrast, the right side of the DWSF remains unloaded
by the core reaction and should therefore be affected only by passive confinement. For verification
purposes, the right side is thus adopted as the reference region, with the understanding that any lateral
stress arising from the pile-core reaction on the left would merely augment confinement and potentially
effect the bearing capacity.

Figure 4.2 delineates the effectively passive-confined zone. Extracting the horizontal stress from the
nodes within this region and taking the average yields a lateral confining stress of 5.25 MPa, which
is substantially lower than the analytically predicted 10.25 MPa. This discrepancy is expected: in the
present quasi-non-linear model the reinforcing bars do not mobilise the non-linear lateral dilatation
that, in reality, enhances confinement, and the resulting passive confinement effect is therefore under-
represented in the FEA.

Activation of the reinforcement

Since the lateral confining stress provided by the reinforcement is modest, only limited reinforcement
activation is expected. In the experimental campaign of Markic et al. (Markic et al. 2022a), Section 3.11
(Reinforcement activation) reports that the upper reinforcement layers generally reach yield. As Markic
et al. do not furnish a closed-form expression for the tensile stress in the reinforcement at peak load, it
is assumed in the present case study that the confining reinforcement attains yield at the peak bearing
stress.
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Figure 5.40: Reinforcement stresses in the case-study FEA.

According to the quasi-non-linear FEA, the maximum stress in the transverse reinforcement is 59.42
MPa; however, this peak occurs at the first node adjacent to the axis of symmetry and is therefore
interpreted as an artificial concentration arising from the effectively rigid boundary. In the region of
the cap where the pile bearing stress induces normal compression, the lateral reinforcement carries
tension (maximum is 27.78 MPa); outside the bearing-load dispersion zone, the concrete is laterally
compressed and the reinforcement correspondingly goes into compression.

Figure 5.41 illustrates this behaviour: an initial singular peak at the symmetry boundary is followed by a
tensile plateau that increases towards the casing (dashed lines in the graph represent the steel casing);
beyond the casing, the tensile stress diminishes and eventually becomes compressive. While the
curve clearly evidences activation of the lateral reinforcement by the casing’s bearing action, the stress
magnitudes remain well below yield. This confirms that reinforcement activation is under-represented
in the quasi-non-linear FEA compared with the levels implied by the DWSF model of Markic et al.,
chiefly because non-linear dilation and associated confinement effects are not fully mobilised in the
present analysis.



5.3. FEA of the 'Oostertoegang’ case study project 87

Normal stress in transverse reinforcement

70

Normal stress [MPa]

600

-20
Distance from the axisymmetric axis [mm]

Figure 5.41: Normal stress in transverse reinforcement obtained by quasi-non-linear case study FEA

The longitudinal reinforcement bars (indicated by the coloured points in Figure 5.40) are all in tension;
however, the maximum tensile stress is only 5.30 MPa, far below the yield strength of the B500B rein-
forcement. This again indicates that the present quasi-non-linear model under-represents the lateral
confinement mechanisms anticipated by the DWSF theorem of Markic et al.

Shear stress along the discontinuity line

According to the finite element analysis, the average shear stress along discontinuity line FK amounts
to 20.53 MPa. This value is significantly larger than the shear stress of 3.99 MPa that was considered
in the calculation of the prescribed deformation corresponding to the maximum bearing stress. The
discrepancy can be explained by the limitations inherent to a quasi-non-linear finite element approach.
First, the analysis assumes a purely linear-elastic material response, which implies that the material
continues to resist shear stresses proportionally to the applied load. In reality, both the concrete and
the steel reinforcement exhibit non-linear behaviour once cracking or yielding occurs, leading to a
reduction and redistribution of stresses that the linear model cannot capture. Second, the linear analysis
does not allow for any form of stress redistribution. Localised peaks in shear stress therefore remain
concentrated within the same region, while in practice these stresses would be partially redistributed
to adjacent zones once local yielding or cracking takes place. Finally, the linear model assumes that
the material can indefinitely carry tensile stresses. In concrete, however, the development of cracks
leads to a significant reduction of shear transfer across planes such as FK. Because the model does
not incorporate this mechanism, it yields shear stresses that are much higher than what the dual wedge
stress field model of Marki€ et al. predicts and what is likely to occur in reality.

It should also be noted that the magnitude of 20.53 MPa obtained from the finite element analysis is
implausible when compared with the material properties of concrete C30/37. The mean tensile strength
of this concrete is approximately 3 MPa, and its effective shear capacity is consequently only a few
megapascals. As such, the linear elastic analysis produces shear stresses far in excess of the realistic
material capacity, further underlining that the dual wedge stress field model provides a more credible
representation of the physical behaviour.
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Vertical normal stress at distance Xg

According to Markic et al.’s DWSF theorem, the bearing stress o( spreads through the stress field and
becomes uniform at the characteristic distance X, taking the value o,4. The ratio 0.4/, is governed
by the geometric ratio d, /d». For the peak bearing stress o, = 149.05 MPa,

d 10
Oud = 00 d—; = 149.05MPa x - = 24.51 MPa. Eq. 5.26

In the FEA, the average vertical normal stress evaluated over the nodes at the base of the DWSF
region is —23.67 MPa (negative sign denoting compression) indicated by the dashed line in Figure 5.42.
In magnitude, this is within approximately 3.5% of the analytical prediction, indicating that the level of
vertical stress transmission is consistent with the DWSF assumption.

However, Figure 5.42 demonstrates that the distribution of this stress is not uniform at a distance Xg
from the loaded area, contrary to the DWSF idealisation. The plot shows the normal stress along the
base of the DWSF from left to right, and the curve clearly reveals higher compressive stresses on the
left than on the right. This asymmetry confirms the influence of the pile—core reaction on the stress
field beneath the casing and explains the departure from the uniformly distributed stress assumed by
the DWSF model.
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Figure 5.42: Case study FEA obtained stress at DWSF bottom (o.4)

Verification of the DWSF in the FEA model

The verification demonstrates that the quasi-non-linear finite element model captures several key char-
acteristics of the Dual-Wedge Stress Field (DWSF) proposed by Markic et al., albeit with some devia-
tions that can be attributed to modelling assumptions and the influence of the pile core. The predicted
peak bearing stress of 149.05 MPa was reproduced with close accuracy by the FEA, confirming that the
global load—bearing capacity of the connection is consistent with the analytical framework. The orien-
tation of the principal stress trajectories within the right-hand strut also showed reasonable agreement
with the analytical inclination, whereas the left-hand strut deviated due to additional confinement effects
induced by the pile core. Similarly, the evaluation of vertical stress at the characteristic distance Xp
matched the theoretical magnitude, but its distribution was found to be asymmetric rather than uniform.

The confining stresses generated by the reinforcement and their associated activation were significantly
under-represented in the quasi-non-linear FEA, reflecting the absence of non-linear dilation and hard-
ening mechanisms in the adopted modelling approach. Likewise, the shear stresses obtained along
discontinuity line F'K were far in excess of realistic material capacities, highlighting the limitations of a
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linear elastic representation when compared with the physically consistent redistribution mechanisms
captured by the analytical DWSF model.

An overview of the comparison reveals close agreement in the vertical stress response, but pronounced
discrepancies in the horizontal (lateral) stresses (see Figure 5.43).

DWSF comparison between analytical and FEA approach
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Overall, the numerical analysis substantiates the presence of the DWSF in the case-study configura-
tion, particularly with respect to bearing capacity and stress propagation. However, discrepancies in
reinforcement activation, shear response, and stress symmetry underline that the analytical model re-
mains a more reliable predictor of confinement effects under peak load. The FEA thus provides an
incomplete representation of the mechanisms underlying the DWSF in CFSP pile—to—cap connections
leaving the question if passive confinement is actually activated.
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Figure 5.43: DWSF comparison between analytical and FEA approach

An increase in bearing capacity is clearly evident in the results. However, the material response has
been implicitly influenced by prescribing stiffness from confined—concrete stress—strain relations, while
the analysis itself does not conclusively demonstrate that passive confinement is fully mobilised. This
raises a legitimate question as to whether assuming a confined state is entirely justified. Which this
quasi-non-linear FEA is unable to answer; experimental confirmation (or a fully non-linear analysis with
explicit cracking) would be required to substantiate the degree of confinement actually achieved.

5.3.7. Sensitivity analysis

A central assumption in this study is that the peak strain in the optimally confined concrete beneath the
casing is €. peak = 0.0075. This parameter is an explicit input to Mander’s model for confined concrete
and therefore directly affects the secant modulus assigned to the concrete segments in the FEA, with
a consequent influence on the predicted bearing response.

To quantify the robustness of the results to this assumption, two additional analyses were performed
to bracket e. .k Within a plausible range. Specifically, lower and upper bounds of 0.0065 and 0.0085,
respectively, were adopted. Figure 5.44 presents three stress—strain curves: the baseline curve used
in the case-study FEA (blue), the lower-bound curve (red), and the upper-bound curve (green).

The choice of bounds is justified as follows. For concrete with a secant modulus of 30 GPa, only a mod-
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est deviation from linear elasticity is required to reach ¢ ~ 0.0065 at the target stress level, placing the
lower limit close to the onset of noticeable nonlinearity. By contrast, exceeding £ = 0.0085 would neces-
sitate a substantially more pronounced curvature of the ascending branch, implying levels of dilation
and softening that are unlikely for the confinement level considered here. The interval [0.0065, 0.0085]
is therefore regarded as a prudent, engineeringly defensible range for . eax in the present application.

Confined Concrete C30/37 with Different Peak Strains

—— Lower limit (0.0065)
—— Expected (0.0075)
—— Upper limit (0.0085)

140

120

100

80

Stress [MPa]

40}

20F

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Strain [-]

Figure 5.44: Stress-strain for confined concrete C30/37 with different strain levels at peak stress

The same segment partitioning used previously in this thesis is adopted for both sensitivity analyses
(see Figure 5.35a). As before, no stiffness reduction is applied to the pile core (segments 1 and 2): full
confinement by the steel casing is assumed to enhance compressive capacity and extend the linear
response. For segments 3, 5 and 6, the reduced stiffness follows Mander’s unconfined stress—strain—
secant modulus relationship (Figure 5.33). For the confined segment 4, confined—concrete properties
are again employed within Mander’s framework, but with the peak strain set to the respective lower
and upper limits.

Because the baseline FEA assigns a uniform Young’s modulus of E = 30 GPa to all concrete segments,
the first—iteration results for both the lower— and upper—bound strain cases coincide with those obtained
for the baseline (expected) peak—strain analysis presented earlier. These baseline secant-modulus
results are plotted in Appendix E.1 and summarised in Table 5.4.

Again the iterative update was then initiated and continued until the change in segmental average nor-
mal stress between successive iterations fell below 0.05 MPa. The iteration history for both the lower
and upper limit analysis are reported in Appendix E.4 and Appendix E.5. For both analysis, conver-
gence was achieved after five iterations, at which point the final segment stiffnesses were obtained.
Table 5.6 summarizes the results of the final iteration for the lower bound and Table 5.7 for the upper
bound.
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Table 5.6: Final iteration (lower bound): segmental average normal stress and secant modulus.

Compressive Initial Average Secant
Segment strength peak strain | modulus | normal stress Modulus
fc [MPa] €c,peak ['] Esec [GPa] Sseg,i [MPa] Etan,i [GPa]
1 30 0.00175 30 -22.36 30
2 30 0.00175 30 -22.36 30
3 30 0.00175 30 -22.04 26.49
4 30 0.0065 149.05 -83.88 29.73
5 30 0.00175 30 -19.52 27.48
6 30 0.00175 30 -14.69 28.78

Table 5.7: Final iteration (upper bound): segmental average normal stress and secant modulus.

Compressive Initial Average Secant
Segment strength peak strain | modulus | normal stress Modulus
.fc [MPa] €c,peak ['] Esec [GPa] Sseg,i [MPa] Etan,z’ [GPa]
1 30 0.00175 30 -22.36 30
2 30 0.00175 30 -22.36 30
3 30 0.00175 30 -22.04 26.49
4 30 0.0085 149.05 -82.61 28.48
5 30 0.00175 30 -19.50 27.49
6 30 0.00175 30 -14.66 28.79

Substituting the final segment stiffnesses into the case-study FEA yields interface bearing stresses of
174.12 MPa for the upper-bound peak strain and 174.75 MPa for the lower-bound peak strain.

min: 174.12 MPa expected: 174.62 MPa max: 174.75 MPa
€ = 0.0085 € = 0.0075 £ = 0.0065
174.1 174.2 174.3 174.4 1745 174.6 174.7 174.8

Bearing stress [MPa]

Figure 5.45: Sensitivity of bearing stress to the assumed strain at peak stress

The sensitivity analysis on the peak strain in the optimally confined concrete shows that the bearing
stress varies only marginally across the tested bounds, indicating low sensitivity to this parameter. This
limited influence is attributable to the relatively small extent of the optimally confined region compared
with the overall stress-transfer zone and also to the marginal difference (1.25 MPa) in secant modulus
between the upper and lower limit.



Comparative analysis

This chapter compares the analytical and FEA results with data from the experimental campaigns iden-
tified in the literature review and with the provisions of the current Eurocode. The comparison clarifies
both the agreements and the discrepancies between methods and, crucially, demonstrates the improve-
ment in force transfer achieved by the proposed theoretical method relative to the capacity implied by
the present design standard.

6.1. Comparison criteria

To enable a meaningful comparison between methods, it is first necessary to catalogue the outputs
from each approach and assess their mutual comparability. The analytical model, the FEA, and the
Eurocode provisions yield results that are directly applicable to the case study. By contrast, the experi-
mental campaigns concern specimens that exhibit similar confinement mechanisms and partial loading
conditions, but are not geometrically or procedurally identical to the case study. Accordingly, the ex-
perimental results will be used in terms of their lower and upper bounds to provide a benchmarking
envelope. The extent to which the analytical, numerical, and code-based results fall within this enve-
lope will indicate whether their magnitudes are appropriate and if capacity is increased.

The comparison is performed for the following results:
1. Normalised bearing stress, o;

Effective height of the stress distribution, Xg;

Distributed bearing stress at Xg, 0.4;

Lateral confining stress, ocont;

Reinforcement activation (tensile stress), o eins;

Strut inclination, «;

N o o~ 0w

Compressive stress in the strut, o,,.

6.1.1. Analytical results
All of the above mentioned results are analytically calculated in Appendix A.2 and Appendix A.3 specif-
ically for the case study. A summary of the results is illustrated in the bar chart plotted in Figure 5.43.

6.1.2. FEA results

The FEA results are all specific to the case study and are all described in subsection 5.3.6. A summary
of the results is illustrated in the bar chart plotted in Figure 5.43.

92



6.1. Comparison criteria 93

6.1.3. Experimental results

The enhanced bearing capacity proposed in this thesis arises from the combined effects of passive
and geometric confinement. Since Mander et al. (see (Mander et al. 1988a)) investigated only passive
confinement on concrete specimens, their results are less directly comparable to the present case
study. By contrast, the experimental programme of Markic et al. (see (Markic et al. 2022a)) explicitly
considers the joint action of passive and geometric confinement on bearing capacity. This aligns with
the analytical approach adopted here and therefore provides a more appropriate basis for comparison
with both the case-study analytics and the FEA results.

As noted in section 3.5, the experimental campaign by Markic et al. reports increases in bearing capacity
ranging from approximately 2.0 to 6.5 times the uniaxial compressive strength of concrete, depending
on the reinforcement arrangement and the dimensions of the loaded area. Normalising the bearing
capacity in this way enables comparison across different concrete strength classes: the normalised
bearing strength is defined as the measured bearing capacity divided by the material’s initial uniaxial
compressive strength.

Although defined analytically within the DWSF framework, Table C1 of (Markic et al. 2022a) reports, for
each specimen, the base width of the DWSF ds, the lateral confining stress o..,¢, and the maximum
DWSF height X max, all associated with analytically derived bearing stresses that closely match the
experimental values. From these data, the corresponding distributed bearing stress o, at distance
X g follows directly as:

dy

N T20- Eq. 6.1

Ogxd =

By contrast, the compressive stress in the strut o, the strut inclination «, and the operative DWSF
height X are not tabulated. These quantities can be obtained using the Python routine in Appendix B,
which, when supplied with the experimental inputs, returns o, «, and Xg corresponding to the state
at which the optimal bearing stress is achieved.

Given the reinforcement configuration of the case study, the preferred comparators would have been
specimens NC-4.5, NC-18 and NC-27 from Markic et al., as these exhibit the most similar reinforcement
layouts and concrete class. However, the experimental report does not provide the specific results
required for the present comparison (as outlined above), which precludes their direct use.

Instead, two specimens with broadly comparable properties were selected to define a benchmarking
envelope: one with a relatively low normalised bearing capacity and one with a relatively high value.
Specimen C8 was adopted as the lower bound (tested normalised bearing capacity = 3.01), and spec-
imen C15 as the upper bound (= 6.39).

Table 6.1 summarises the parameters reported in Table 1 of the experimental paper, Table 6.2 sum-
marises the additional quantities computed using the Python routine in Appendix B, for both specimens.

Table 6.1: Overview of experimental specimen properties reported in the experimental paper (Markic et al. 2022a)

Spec. | feo dq do Oconf/feo | Os/feo | XEmax | Qa,ustest/ fco | G u,model/ fe1
[MPa] | [mm] | [mm] [] [] [mm] [] []
Cc8 38.90 70 303 0.05 0.35 525 3.01 2.54
C15 51.50 40 303 0.54 0.54 525 6.09 6.39

Table 6.2: Overview of experimental specimen calculated parameters

Specimen XE Oa «
[mm] | [MPa] | [deg]
C8 246.06 | 45.87 | 25.33
C15 231.38 | 145.36 | 29.61
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6.1.4. Eurocode 2 results

According to Eurocode 2, the design of partially loaded areas is governed by the provisions of Article 6.7
of NEN-EN 1992-1-1:2004 (Standardization (CEN) 2011). The design bearing strength on the loaded
area A,y may be enhanced by load spreading into a larger effective area A.;, provided that the limiting
conditions set out in the code are satisfied. In the context of the present case study, this implies that
the normalised bearing stress o, is governed by the code’s limit of v/3 f.q for the loaded area. For
reasons of consistency with the analytical, numerical and experimental results, which are all expressed
in characteristic values rather than design values, the comparison will be made on the basis of the
characteristic uniaxial compressive strength f..

The maximum effective height of the stress distribution zone can equally be determined according to
Article 6.7. Assuming an optimal stress dispersion, the code specifies that the width at the bottom of the
distribution region may be taken as three times the width of the loaded area, subject to the geometric
conditions illustrated in Figure 2.7. For the case study, the loaded area is defined by the thickness of
the steel casing, tcasing = 10 mm. As the loading is transferred as a uniformly distributed line load on
the concrete cap, the stresses are assumed to disperse in a two-dimensional plane. This implies that
b1 = by, and hence the effective height depends solely on the ratio between d; and d,. With the factor
prescribed as three, the effective height becomes:

XE:3-d1—d1:2-d1:2~tcasing:20mm. Equ

The Eurocode further specifies that the maximum stress within the distributed region may not exceed
the uniaxial compressive strength of the concrete. Consequently, the normalised distributed bearing
stress 0,4 is equal to unity.

The potential enhancement of concrete strength due to confinement is formally recognised in Eu-
rocode 2, Article 3.1.9, which allows an increase in f.; when lateral pressure o5 is present. The ex-
pression for o5 is provided in Volume 2 of the CEB-FIP Model Code 2010 (Structural Concrete (fib)

2012):
2
oy = wufug (125 ) (12 %) (1 2b/6) Eq. 6.3
Qe bc acbc

The parameters in this formulation are defined in subsection 2.3.1, with guidance on their determination.
However, application of this expression requires multiple confining reinforcement layers in order to
define the spacing parameter s.. Since the case study involves only a single reinforcement mesh, no
valid value of o..,¢ can be obtained using the Eurocode approach.

Although the lateral confining stress generated by reinforcement cannot be defined within the Eurocode
framework for the present configuration, both Eurocode 2 and the CEB-FIP Model Code 2010 (Struc-
tural Concrete (fib) 2012) relate the confining action of reinforcement to the yield strength of the bars in
cases where the theory is applicable. For the purpose of comparison, it is therefore assumed that the
tensile stress in the reinforcement at peak bearing stress is equal to the yield strength of the reinforce-
ment.

The inclination of the compressive strut o can be derived from the geometry of the stress dispersion.
With a minimum stress-distribution height of 2¢.,sing = 20 mm and a distribution width of 3d;, the lower
bound of the inclination angle follows from

tana < % = % = a< arctan(%) = 26.57°. Eq. 6.4

Finally, the maximum compressive stress in the strut is defined by the strut-and-tie provisions of Arti-
cle 6.5. According to Eurocode 2, the limiting stress in a strut without transverse tension is f.;, while
with transverse tension it is reduced to 0.6/ f.4. For comparison with the analytical, FEA and exper-
imental data, which are again expressed in terms of characteristic rather than design strengths, the
maximum strut stress is normalised to the uniaxial compressive strength of concrete, i.e. o, = 1.
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6.2. Comparison

This section consolidates the results from all approaches in a single comparative table (see Table 6.3).
To enable like-for-like comparison across methods, the following normalisations are applied:

» Quantities dependent on concrete strength are normalised by the unconfined uniaxial compres-
sive strength f..

» Geometric measures of the DWSF are normalised by the loaded width d;.
+ Reinforcement-related quantities are normalised by the reinforcement yield strength f,.

The reference values used for these normalisations are listed in the first three rows of the table.

Table 6.3: Comparison of key parameters across methods

Criteria Unit | Analytical | FEA | Experiment | Eurocode
Concrete uniaxial compressive [MPa] 30 30 38.9/515 30
strength, f.o

Reinforcement yield [MPa] 500 500 528 /474 500
strength, fy.

Width of the loaded [mm] 10 10 70/40 10
area, d;

Normalised bearing stress, [-] 4.97 5.82 3.01/6.09 1.73
UwO/ch

Effective height of the stress [-] 5.31 5.31* 3.51/5.78 2.00
distribution, Xg/d;

Distributed bearing [] 0.82 0.79 0.70/0.80 1.00
stress, 0.4/ feo

Lateral confining [-] 0.34 0.18 0.20/0.54 X
stress, oconf/ feo

Reinforcement activation [-] 1.00 0.01 1.00/1.00 1.00
(tensile stress), oreint/ fy

Strut inclination, « [°] 25.57 30.53 | 25.33/29.61 26.57
Compressive stress in [-1 2.22 1.46 1.18/2.82 1.00
strut, o/ feo

Notes: ~ The tabulated value 5.31 is not a direct FEA output; rather, the FEA-derived o, values are
reported at this prescribed level. * No value is given, as the Eurocode does not provide a procedure to
determine this quantity.

To complement the table and highlight agreements and discrepancies at a glance, a bar chart is pro-
vided for visual comparison (see Figure 6.1) together with a figure illustrating the location of the com-
pared parameters in the DWSF (see Figure 6.2). To accommodate all quantities within a single plot,
the strut inclination « is normalised by the maximum observed value, 30.53° (from the FEA). The exper-
imental bounds are shown as a single, two-tone bar: the lighter red segment denotes the lower bound
and the darker red segment the upper bound.
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Figure 6.1: Comparison of the key parameters across methods in a bar chart
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Figure 6.2: Location of the compared key parameters across methods in Figure 6.1



6.3. Implications of the results 97

6.3. Implications of the results

Direct comparison with the Eurocode is inherently limited. The Eurocode results used here are an ag-
gregation of provisions drawn from different clauses that operate largely independently. In particular,
the bearing resistance (Clause 6.7 of NEN—-EN 1992-1-1) is not formulated to interact with the effects
of lateral confining reinforcement. In short, the current Eurocode offers no effective, unified procedure
to quantify the beneficial increase in bearing strength arising from lateral confinement by a single re-
inforcement layer. Consequently, the Eurocode values in the bar chart reflect only those quantities
obtainable under the present code framework—effectively assuming plain concrete for bearing (with
splitting forces to be taken by reinforcement)—whereas the analytical model, the experiments, and the
FEA explicitly include confinement effects.

The bar chart further shows that the experimental upper bound exceeds both the analytical prediction
and the lower experimental bound. This is attributable to the relatively high lateral confining stress
mobilised by the dense reinforcement in that specimen. Even after normalisation, and noting that the
corresponding uniaxial compressive strength is f. = 51.5 MPa, the normalised confinement level re-
mains markedly larger than for the other cases (o.ont/ f. = 0.54), implying an absolute lateral confining
stress of about 27.8 MPa. This magnitude is substantial and helps to explain the superior bearing
performance.

It is noteworthy that the analytical and FEA predictions lie closer to the experimental upper bound than
to the lower bound. A plausible explanation is the relatively large-diameter confining reinforcement
(@ 32 at 125 mm centre-to-centre), which provides a comparatively high volumetric confinement ratio
and stiffness. Although each bar must confine a substantial region of concrete, the large diameter
increases the steel area per unit length, thereby elevating the attainable lateral confining stress.

Overall, the results confirm a clear trend: increasing lateral confinement enhances the compressive ca-
pacity of the inclined strut and expands the effective Dual-Wedge stress field (DWSF). A larger DWSF
widens the region over which vertical stress is distributed, which in turn is associated with higher achiev-
able bearing capacity. While the Eurocode provides a conservative baseline, methods that account
explicitly for confinement (whether experimental, analytical, or numerical) consistently predict greater
bearing resistance in partially loaded regions.



Discussion

This chapter critically evaluates the findings presented in the preceding chapters, with a particular
focus on the practical applicability and robustness of the proposed theoretical confinement model for
CFSP-pile to concrete cap connections. The purpose of this discussion is to bridge the theoretical
developments and the requirements of engineering practice by examining how well the model performs
under realistic conditions, and by reflecting on its assumptions, limitations, and areas where future
research is warranted. In doing so, the discussion also highlights the degree to which the analytical
formulations and finite element analyses are able to capture the complexities of local failure phenomena
in reinforced concrete systems.

7.1. Modelling Assumptions and Idealisations

The proposed confinement model synthesises the theoretical frameworks of Mander et al. and Markic
et al. To render the Mander et al. formulation applicable to the present case, where only a single rein-
forcement net is available to mobilise passive confinement, we adopt the following idealisation of the
effectively confined region. Whereas Mander et al. bound the effectively confined area by hyperbolae
(which depart from and return to the reinforcement at 45°) between orthogonal reinforcement layers,
we assume that, in the absence of a second (orthogonal) net, the initial 45° inclination continues as a
straight line. This linearisation permits a tractable determination of the effectively confined area, after
which the Mander et al. stress—strain model can be applied and combined with the Dual-Wedge Stress
Field (DWSF) of Markic et al. to predict bearing strength.

This geometric assumption has not been verified numerically for the present geometry, as the fully non-
linear finite-element analyses did not satisfy convergence criteria. Whether this assumption ultimately
under- or over-predicts the bearing capacity is still unknown, and the direction of the error is likely
influenced by the reinforcement spacing and the amount of cover. Experimental verification is recom-
mended to validate (or refine) the assumed confinement boundary and the resulting bearing capacity,
ideally complemented by a sensitivity study on the confinement geometry and a calibrated non-linear
analysis once a robust convergence strategy is available.

Another important modelling assumption concerns the use of an axisymmetric FEA model. To man-
age computational cost and because the educational licence of DIANA limits the allowable number of
elements an axisymmetric formulation was adopted. The simplifications needed to render the physi-
cal system axisymmetric are described in subsection 5.1.1. Although subsequent checks showed no
material differences in the stress—strain response between the axisymmetric and full 3D models, the
geometric idealisations inevitably modify the global structural response and may, in turn, influence local
quantities such as the bearing stress at the steel casing. This does not invalidate the FEA for compar-
ative purposes; however, a small, systematic discrepancy relative to the physical system should be
expected and borne in mind when interpreting the results.

It is common engineering practice to neglect composite action between the pile core and the steel
casing. Accordingly, structural verification calculations typically assume no shear transfer across this
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interface. In the present study a fully unbonded condition is adopted, i.e. zero friction. In the FEA model
this is implemented via interface elements between the core and casing with zero shear stiffness and a
very high normal stiffness (10.000 N/mm?) to preclude non-physical interpenetration; this is a standard
and defensible numerical choice.

In reality, some shear transfer may occur, depending on factors such as pile diameter, concrete cur-
ing/hardening behaviour, and the loading history. Because these conditions are project-specific and
cannot be quantified reliably here, a zero-bond assumption is taken as conservative: it maximises rel-
ative slip, minimises composite action, and therefore does not overstate the bearing contribution of the
interface. This approach is appropriate for the present research focus, while recognising that a targeted
sensitivity study on interface shear stiffness could be undertaken in future work.

The adoption of a very high normal stiffness at the core—casing interface is consistent with the working
assumption that the concrete core is effectively confined by the steel casing. Under this assumption,
the core remains on the linear branch of its stress—strain response throughout loading and no stiffness
degradation need be invoked. In the present analysis the maximum compressive normal stress in the
core is only —22.36 MPa, i.e. a small fraction of the expected capacity of optimally confined concrete;
accordingly, modelling the core as linear elastic with an unchanged modulus over the full loading path
is justified.

7.2. Applicability and Versatility of the Proposed Model

The practical utility of the proposed confinement model rests on its versatility, i.e. how readily it can
be applied to differing geometries and reinforcement layouts. The governing cross-section in the case
study places the steel casing approximately midway between two transverse bars. Because the clear
distance from the casing to the confining bar is an explicit input to the modified Mander et al. formulation
(and directly influences the lateral confining stress), the bar—to—casing spacing exerts a strong influence
on the predicted bearing capacity. This sensitivity is beneficial from an application standpoint: the
spacing is a simple, measurable parameter, and the model can therefore be applied straightforwardly
to the governing cross-section.

In practice, however, the uniaxial compressive limit is commonly reached at multiple elevations along
the casing rather than solely at the outer fibre at the governing section. As indicated in Figure 4.5, the
interface stress exceeds the unconfined limit over a significant depth below the cap surface; hence,
regions of the casing that are oblique to the transverse reinforcement also become critical. In those
regions the lateral confining stress in the global z-direction (feq,1,) is smaller than in the y-direction
(ferr,1y)- For a conservative assessment of bearing capacity away from the bar line, it is therefore
appropriate to adopt the governing confinement as

Jet = min(fegr 1z, fer1y) Eq. 7.1

This choice may reduce the predicted bearing capacity locally, but it is trivial to implement within the
proposed framework and better reflects the directional character of confinement.

A further modelling idealisation concerns the geometry of the effectively confined region. The analyti-
cal model assumes that the circular pile generates a rectangular zone of effective confinement by the
reinforcement (see Figure 4.5). In reality, the reaction from the pile core produces a load-spread re-
sembling a cone (see Figure 2.8), raising the question of whether bars outside this cone are sufficiently
activated to contribute to passive confinement. Due to time constraints this could not be verified, and
it remains an open point for future work (e.g. targeted non-linear 3D simulations or testing) to quantify
the degree of participation of reinforcement located outside the principal load-spread.

Finally, as discussed in Figure 5.3.6, the lateral stress induced by the pile-core reaction modifies the
formation of the DWSF above the casing. Although this interaction was recognised in subsection 2.2.2,
it is not currently included in the closed-form confinement model. The FEA results demonstrate that a
high bearing stress on the core can bias the DWSF and, consequently, the attainable bearing capacity
at the casing. To improve applicability, the analytical model should be extended to account for this
superposed lateral stress field, e.g. by limiting the effective confinement region to the intersection of
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the reinforcement-confined zone and the load-spread cone, and by evaluating the confinement using
the local (directional) lateral stress resultant.

In summary, the method accommodates a wide range of reinforcement configurations through simple
geometric inputs and a conservative directional confinement rule. Its principal limitations arise from (i)
the assumed shape of the effectively confined region and (ii) the omission of lateral stresses generated
by the pile core’s reaction. Addressing these two aspects will further enhance the robustness and
breadth of applicability of the proposed confinement model.

7.3. Sources of Uncertainty and Limitations

Since the proposed model is not fully verified by experimental results and non-linear FEA similarities
there are still some uncertainties. As discussed above, on of the big questions still is if the reinforce-
ment required for confinement is properly activated by the lateral deformation of the concrete. The
insecurity factors are the distance between the steel casing and the confining reinforcement, if the dis-
tance becomes to big, will the reinforcement still be activated and how much would it then be activated.
And the other uncertainty about the reinforcement is if the reinforcement in the corners of the square
effective confined region are actually activated since the stress distribution above the pile is a cone and
not a rectangle. To get clear if the reinforcement in the uncertain region is activated it is recommended
to perform an experimental campaign in which concrete specimens with Fibre Optic Sensor on the
reinforcement are applied.

And than maybe the biggest uncertainty and also worry of the researcher of this thesis is that concrete
is inherently a heterogeneous material, composed of cement paste, aggregates of varying sizes, and
interfacial transition zones (ITZ) between these phases. While the analytical and finite element models
in this study treat concrete as a homogeneous continuum, such an assumption may be less valid when
the investigated region is highly localised, as is the case here with a failure zone of only 60.8 x 53.1 mm.
The concrete mix design plays an important role in this respect: a lower water-cement ratio and a higher
binder content generally result in a denser matrix and stronger ITZs, which enhance the uniformity of
stress transfer on a local scale. Conversely, higher porosity or weaker ITZs can promote microcracking,
making the actual material response deviate from the idealised homogeneous model. The maximum
aggregate size further amplifies this effect. In such a small region, only a few coarse aggregates may
dominate the stress distribution, depending on whether the load path traverses an aggregate, the sur-
rounding paste, or an ITZ. Since aggregates typically exhibit higher stiffness and strength, stress con-
centrations tend to develop in the ITZ, which often forms the weakest link. When smaller aggregates
are used, the stress field is distributed more uniformly, and the homogeneous material assumption
becomes more representative. Consequently, the discrepancy between the real behaviour of the con-
crete and the predictions of the analytical and numerical models is strongly influenced by mix design
and aggregate size, particularly when failure occurs at such a local scale.

In conclusion, the discussion has shown that the applicability of the proposed confinement model is
strengthened by its reliance on simple geometric input parameters and by the conservative treatment
of directional confinement. These features make the model versatile and relatively straightforward to
apply to a range of reinforcement configurations. At the same time, several limitations and uncertainties
remain. Key among these are the geometric assumption of a rectangular confinement zone, the neglect
of lateral stresses generated by the pile core reaction, and the uncertainty surrounding the degree of
activation of reinforcement positioned away from the primary load-spread.

A further concern arises from the intrinsic heterogeneity of concrete, which is not reflected in the ho-
mogeneous continuum assumptions of both the analytical and numerical models. In a highly localised
failure region, the concrete mix design and aggregate size may exert a pronounced influence on the
stress transfer mechanisms and ultimate capacity, leading to discrepancies between predicted and
actual behaviour.

Taken together, these findings underline that while the proposed model provides a useful and con-
servative framework for assessing confinement in CFSP-pile to cap connections, its predictive accu-
racy remains contingent on assumptions that require experimental validation. Future research should
therefore focus on refining the confinement geometry, incorporating the influence of pile-core induced
stresses, and validating the model against targeted experimental campaigns. Such efforts will enhance
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confidence in the model’s reliability and extend its applicability to a broader range of structural config-
urations.



Conclusion and Recommendations

This chapter synthesises the principal findings of the research, providing clear, evidence—based an-
swers grounded in the analytical, numerical and (where applicable) experimental results. On this basis,
the main research question is then resolved.

All conclusions are drawn under the assumption of full activation of the confining reinforcement. For
complete validation of the proposed model, this assumption should be verified experimentally. The
chapter closes with recommendations for further work, identifying opportunities to extend and refine
the present findings.

8.1. Conclusion

The conclusion is structured around the sub-questions introduced in section 1.5. By addressing these
in sequence, the final answer to the main research question — “What is the impact of confinement
on the structural performance of CFSP-pile to concrete element connections in the absence of force
transfer provisions, such as dowels or rings?” — is established.

8.1.1. Answers to the Sub-Research Questions

Sub-question 1: What are the underlying mechanisms of confinement in structural elements?
The literature review demonstrated that confinement enhances the compressive behaviour of concrete
by mobilising lateral stresses that delay cracking and increase ductility. Confinement can be passive,
provided by reinforcement or surrounding material, or active, arising from external forces inducing
lateral stress. The key mechanisms identified include the restriction of lateral strains, the activation
of passive confining reinforcement, and the beneficial effects of adjacent unloaded concrete. Together
these mechanisms explain why confined concrete exhibits increased strength and improved post-peak
behaviour compared to unconfined material.

Sub-question 2: Which structural components contribute to the development of lateral confining
stress in CFSP-pile to concrete element connections?

Application of the theoretical insights to the case study confirmed that the lower reinforcement net in the
concrete cap contribute to confinement. The steel casing of the pile, due to its high stiffness, also gov-
erns the stress distribution at the pile—cap interface. Analytical schematisation and supporting Python
calculations indicated that these components mobilise lateral confinement that enhances bearing ca-
pacity. The outcome is a connection in which the concrete directly above the casing benefits from both
passive and geometric confinement.

Sub-question 3: What is the most comprehensive approach for modelling confinement in CFSP-
pile to concrete connections?

A fully non-linear finite-element analysis (FEA) remains the most comprehensive means of modelling
concrete confinement. Where convergence cannot be achieved, a quasi-non-linear strategy (i.e. a
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nominally linear analysis augmented by stress-dependent reductions of the concrete Young’s modu-
lus in high-stress regions) offers a practical alternative. In this study that approach was benchmarked
against experimental data; mesh-refinement and sensitivity studies confirmed that the chosen discreti-
sation and material parameters capture the vertical stress—strain response with good fidelity.

The principal limitation of the quasi-non-linear approach is its treatment of lateral deformation. Be-
cause cracking, dilation and compression-softening are not represented explicitly and a single, con-
stant Poisson’s ratio was used throughout the model and loading history, the analysis under-activates
the reinforcement and thereby underestimates passive confinement effects. This explains the other-
wise favourable agreement in the vertical response: the calibrated reduction E(c) is grounded in the
verified confined-concrete stress—strain model of Mander et al., so vertical stiffness and bearing stress
are reproduced well, whereas lateral quantities (e.g. confining stress and bar stresses) are underesti-
mated. To improve lateral realism within a quasi-non-linear framework, one could introduce a stress-
or damage-dependent Poisson’s ratio v (o) that increases with confinement/damage.

In conclusion, when a fully non-linear FEA is infeasible due to singularities or severe stress concen-
trations, the quasi-non-linear approach with E (o) reduction provides a robust second-best option for
predicting vertical bearing response. Augmenting this with a mechanism for lateral dilation via v(o)
would better capture reinforcement activation and the resulting passive confinement, yielding a more
faithful representation of the stress fields in confined regions.

Sub-question 4: What are the effects of confinement on structural performance according to the
finite element results of the test setup?

The FEA results demonstrate that confinement significantly improves the structural performance of the
connection. The confined concrete sustains higher bearing stresses (0,0 = 5 - f.0), exhibits reduced
localisation of crushing, and develops a wider stress-distribution zone. The dual-wedge stress field
(DWSF) is clearly discernible in the numerical output, and the analytical and numerical predictions lie
within the range of the experimental results reported by Markic et al. This corroborates the analytical
finding that confinement increases the effective width and height of the stress-transfer region, translat-
ing into greater load-transfer capacity at the pile—cap interface and improved ductility of the connection.

Sub-question 5: How do the theoretical model and FEA results compare with existing literature
and Eurocode guidelines?

Comparisons with the experimental campaign of Marki¢ et al. and with Eurocode 2 reveal both agree-
ments and divergences. The analytically and numerically predicted DWSF dimensions and vertical
stress fields align closely with the experimental upper bound. By contrast, the FEA under-represents
lateral confinement: reinforcement activation and the resulting confining stresses are modest, as dis-
cussed in the conclusion to Sub-question 3, yielding lower lateral effects than observed experimentally.
Aside from this lateral shortfall, the agreement in trends across the analytical, numerical and experi-
mental results supports the validity of the analytical treatment of confinement. Eurocode 2, which does
not explicitly account for lateral confinement in partially loaded areas, systematically underestimates
the attainable bearing stress, underscoring the conservatism of current provisions and the added value
of approaches that incorporate confinement mechanisms.

8.1.2. Answer to the Main Research Question

Bringing together the findings from the theoretical framework, analytical models, numerical simulations,
and comparative analyses, it can be concluded that confinement exerts a decisive and beneficial influ-
ence on the structural performance of CFSP-pile to concrete element connections in the absence of
dedicated force transfer provisions such as dowels or rings.

The results of the literature review established that confinement fundamentally enhances the compres-
sive behaviour of concrete by restricting lateral strains and mobilising passive confinement through rein-
forcement and surrounding concrete. Applied to the CFSP-to-cap connection, the study demonstrated
that both passive and geometric confinement increase the load-carrying capacity of the concrete di-
rectly above the casing and improve the ductility of the connection. However, the study was unable to
demonstrate that the lower reinforcement net contributes to confinement, leaving it uncertain whether
this reinforcement layer has any influence on the bearing capacity of the concrete at the tip of the steel
casing.
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The analytical formulations, particularly the modified Mander’s model and the Dual-Wedge Stress Field
concept of Marki¢ et al., confirmed that confinement leads to higher effective compressive strength
and a larger distribution region for stresses. The quasi-non-linear finite element simulations, despite
certain limitations in reproducing lateral dilation, validated these findings by showing that confinement
raises bearing stress capacity, mitigates crushing localisation, and activates a stress field consistent
with experimental observations. Comparison across methods further revealed that both the analytical
and numerical approaches reproduce the upper bound of the experimental evidence, while Eurocode
2 systematically underestimates capacity due to its omission of confinement effects.

Overall, the thesis demonstrates that, in the absence of additional provisions for direct force transfer,
confinement mechanisms inherent to the connection substantially enhance structural performance in
case confinement is activated. The mobilised confinement results in increased bearing strength, im-
proved ductility, and a more favourable distribution of stresses within the connection. Consequently,
properly detailed confinement at the pile—cap interface can in practice reduce or even obviate the need
for costly supplementary force transfer measures, provided that the confinement effects are reliably
accounted for in design. This conclusion underscores both the structural significance of confinement
and the limitations of current design codes, highlighting the potential benefits of adopting confinement-
based design approaches in engineering practice.

8.2. Relevance for the 'Oostertoegang’ case study

For the governing load combination on the pile head, the calculations described in section 4.3 indicate
a maximum bearing stress of 134 MPa at the interface between the steel casing and the concrete cap.
In contrast, according to current Eurocode provisions outlined in subsection 2.2.2, the design value of
the maximum allowable bearing stress is limited to 34.64 MPa. This comparison highlights a substantial
exceedance of the codified bearing resistance, which, under conventional design assumptions, would
imply crushing of the concrete above the steel casing.

Although this thesis cannot provide full experimental verification, the results strongly suggest that the
reinforcement embedded in the concrete cap contributes to an enhanced bearing capacity through
passive confinement activated by the pile’s reaction force. The analytical framework developed in this
thesis predicts an increased characteristic bearing capacity of up to 149.05 MPa. Applying the Eurocode
partial safety factor for concrete of 1.5, this corresponds to a design resistance of 99.36 MPa.

From these findings, it may be concluded that although confinement effects provide a substantial in-
crease in bearing capacity, this enhancement is still insufficient to demonstrate theoretical safety of
the connection in the case study. The limitation arises primarily from the exceptionally high maximum
stress demand, rather than from a deficiency in the enhanced capacity itself. Consequently, it is of
particular importance to minimise bending moments at pile heads, as these tend to concentrate peak
stresses at the outer fibres of the steel casing. Reducing these moments would promote a more uniform
stress distribution along the casing, as would occur under predominantly axial reaction forces, thereby
reducing the risk of localised crushing and improving the overall reliability of the connection.

8.3. Recommendations for Further Research

While this thesis provides a comprehensive analysis of confinement effects in CFSP-pile to concrete
element connections, several avenues remain open for further investigation. These recommendations
are intended to extend the current knowledge base and to refine the applicability of confinement-based
design approaches in practice.

First, experimental research is required to validate the analytical and numerical findings presented
in this thesis. The conclusions rely on theoretical modelling and finite element simulations that have
been benchmarked against existing experimental data, but no direct physical testing of CFSP-to-cap
connections under representative loading was performed within this research. Full-scale laboratory
tests, in which the degree of confinement activation can be directly measured, would be invaluable to
confirm the accuracy of the dual-wedge stress field and modified Mander’s formulations, and to assess
the reliability of the finite element modelling strategies under realistic boundary conditions.

Second, further development of finite element modelling strategies should be pursued to improve the



8.3. Recommendations for Further Research 105

representation of lateral dilation and passive confinement activation. The quasi-non-linear approach
adopted here successfully captured global stress distributions but showed limitations in reproducing
local confinement phenomena. Incorporating advanced constitutive models for confined concrete, or
adopting fully non-linear analyses with damage-plasticity formulations, could enhance the predictive
capability of FEA for such connections. Parallel improvements in meshing techniques and contact
formulations may also lead to more accurate stress-transfer characterisation.

Third, parametric studies on geometric and material variations would help to systematically identify
the boundaries of confinement effectiveness. Variables such as pile casing thickness, reinforcement
configuration, concrete strength class, and cap depth could be altered to establish thresholds at which
confinement ceases to provide sufficient enhancement. These studies would not only broaden the un-
derstanding of confinement mechanics but also support the development of simplified design guidelines
tailored to CFSP-to-cap connections.

A specific research need concerns the role of passive confinement in mobilising tensile stresses within
the reinforcement. The activation of passive confinement may lead to locally increased tensile demands
in the reinforcement, potentially influencing overall structural capacity or requiring reconsideration of
reinforcement diameters. Furthermore, it remains unclear whether bending moments in the concrete
cap contribute to a pre-stressing effect on the reinforcement, thereby enhancing the mobilisation of
confinement. Investigating these mechanisms experimentally and numerically could provide valuable
guidance for reinforcement detailing in pile-to-cap interfaces.

Another important aspect is the contribution of unloaded concrete surrounding the loaded region. While
this thesis identified geometric confinement as a beneficial factor, the quantitative effect of adjacent
unloaded concrete on confinement remains insufficiently defined. Dedicated studies are needed to
determine how surrounding concrete restrains lateral expansion and how its stiffness and geometry
influence the stress distribution in the loaded zone.

In addition to strength enhancement, the potential increase in ductility due to confinement warrants
further study. Confinement is known to delay the onset of crushing and extend the deformation capacity
of concrete, yet this effect has not been systematically quantified for CFSP-to-cap connections. The
quasi-non-linear FEA approach employed in this thesis replicated only the ascending branch of the
stress—strain curve, leaving the post-peak behaviour unrevealed. Understanding how confinement
alters the ductility of the interface could significantly affect serviceability design considerations and
improve resilience against extreme loading scenarios.

Fourth, integration of confinement effects into existing design codes should be explored. Eurocode 2,
in its current form, does not explicitly incorporate confinement by a single net in partially loaded areas
and therefore likely underestimates bearing capacity. Further research should focus on developing
code-conformant design expressions that account for confinement, ensuring that engineers can reliably
and safely exploit the beneficial effects identified in this thesis without resorting to costly additional
provisions.

Finally, long-term performance under cyclic or fatigue loading, as well as environmental influences such
as corrosion of the steel casing or degradation of concrete, remain largely unaddressed. Since pile-
to-cap connections are critical structural interfaces in marine and infrastructural applications, research
into durability and time-dependent behaviour of confined regions would provide essential insights for
service-life predictions and maintenance strategies.

In summary, future research should combine experimental validation, advanced numerical modelling,
parametric exploration, and code development to fully establish the role of confinement in CFSP-pile
to cap connections. Particular attention should be devoted to reinforcement tensile stresses during
confinement activation, the influence of bending moments on passive confinement, the confinement
effect of unloaded surrounding concrete, and the quantification of ductility improvements. Addressing
these areas will not only enhance the scientific understanding of confinement but also enable its safe
and efficient application in engineering practice.
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Python Scripts for Analytical Bearing
Stress Calculations

This appendix presents the complete set of Python scripts developed to perform the analytical deter-
mination of the maximum bearing stress in the concrete directly above the steel casing, in accordance
with the modified theoretical models introduced earlier in this thesis. Each script implements the rele-
vant equations and iterative procedures required to evaluate the enhanced bearing capacity of partially
loaded concrete regions under the specified load combinations.

A.l. Python Script Stress Distribution at Pile to Cap Interface

import numpy as np
from scipy.optimize import fsolve
import matplotlib.pyplot as plt

# Input Parameters
# Geometry

d_concrete = 488 # diameter of concrete core (mm)

r_concrete = d_concrete / 2 # radius of concrete core (mm)
A_concrete = np.pi * (r_concrete ** 2) # Area of the concrete core
t_steel = 10 # thickness of steel casing (mm)

d_outer = d_concrete + 2 * t_steel # outer diameter (mm)

r_outer = d_outer / 2 # outer radius (mm)

# Reinforcement

n_bars = 8 # number of reinforcement bars

d_bar = 32 # diameter of each reinforcement bar (mm)

A_bar = np.pi * (d_bar / 2) **x 2 # area of one reinforcement bar (mm~2)
A_reinforcement = n_bars * A_bar # total area of reinforcement (mm~2)
r_bar = 162 # distance of reinforcement from center (mm)

# Steel casing area divided into compression and tension zones
A_steel_casing = np.pi * ((d_outer / 2) **x 2 - (d_concrete / 2) *x 2) # total steel casing
area (mm~2)

# Material properties

E_concrete = 20e3 # modulus of elasticity of concrete (MPa)

E_steel = 200e3 # modulus of elasticity of steel (MPa)

E_reinforcement = 210e3 # modulus of elasticity of reinforcement steel (MPa)
concrete_compressive_strength = 30 # MPa, design concrete compressive strength

steel_yield_strength = 500 # MPa, yielding limit for steel
# Applied loads
M = 2568 * 1e6 # moment (N-mm) (always positive)

N = -2061 * 1e3 # normal force (N) (negative in compression)

# Function to calculate the equivalent modulus of elasticity
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def calculate_equivalent_modulus(E_concrete, E_steel, E_reinforcement, A_concrete,
A_steel_casing, A_reinforcement):
E_equivalent = (E_concrete * A_concrete + E_steel x* A_steel_casing + E_reinforcement *

A_reinforcement) / (A_concrete + A_steel_casing + A_reinforcement)

return E_equivalent

E_equivalent

A_steel_casing,

strain_N =

= calculate_equivalent_modulus(E_concrete, E_steel, E_reinforcement, A_concrete,

A_reinforcement)

N / (E_equivalent * 0.25 * np.pi * d_outer**2)
print (f"Strain, by normal, force = {strain_N:.6f}")
print (E_equivalent)

# Stress in elements by Normal force
if strain_N < O:

stress_conc_N = max(strain_N * E_concrete, -concrete_compressive_strength)

stress_segment_N = max(strain_N * E_steel, -steel_yield_strength)

stress_rebar N = max(strain N * E_reinforcement, -steel_yield_strength)
else:

stress_conc_N = 0

stress_segment_N = min(strain_N x E_steel, steel_yield_strength)

stress_rebar_N = min(strain_N * E_reinforcement,

def calculate_forces(strain_bottom, strain_top):

# Split strain due to normal force and bending moment
strain_bottom_M = strain_bottom - strain_N
strain_top_M = strain_top - strain_N

# Initialize force and moment summations
total_force = 0
total_moment = O

# Storagearrays for stress- and strain-diagrams

steel_yield_strength)

strain_distribution = [[d_outer, strain_topl, [0, strain_bottom]]
rebar_strain_distribution = []
concrete_stress_distribution = []
casing_stress_distribution = []
rebar_stress_distribution = []
if ((strain_bottom_M + strain_top_M == 0) or (M == 0)):
na = r_outer # Neutrale as ligt halverwege
else:
na = (strain_bottom_M / (strain_bottom_M + abs(strain_top_M))) * d_outer
# Make sure to stay within the physical boundaries

na = np.clip(na, 0, d_outer)

print (f"neutraljaxis: {na:.2£f}")

# Concrete contribution (only compression zone above neutral axis)

concrete_layers = 100

each concrete strip

# Number of concrete layers (discrete strips)
strip_height = (d_concrete + t_steel - max(na, t_steel)) / concrete_layers # Height of

for i in range(concrete_layers):

y_conc = max(na, t_steel) + i * strip_height + 0.5 * strip_height

of the strip

# Calculate the width of the concrete core at height y

b_y

= 2 * np.sqrt(r_concrete**2 - (y_conc - r_outer)**2)

# Calculate strain in the strip
strain_conc = strain_bottom_M + ((strain_top_M - strain_bottom_M) / d_outer) * y_conc
# Strain in the strip (positive in compression)
if strain_conc < O:

stress_conc_M

# Only consider compression zone (strain < 0)

max ((strain_conc + strain_N) * E_concrete,

# Centre position

# Width at height y

concrete_compressive_strength) - max(strain_N * E_concrete, -
concrete_compressive_strength)

else:

stress_conc_M

0
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99 force = stress_conc_M * strip_height * b_y # Correct force in this strip

100 total_force += force

101 if strain_top == strain_bottom:

102 total_moment += 0

103 else:

104 total_moment += abs(force) * abs(y_conc - na) # Moment contribution from this

strip

105

106 # Save concrete stresses for stress diagram

107 concrete_stress_distribution.append((y_conc, stress_conc_M + stress_conc_N ))

108

109

110 # Steel casing contribution (split into small segments)

11 steel_segments = 100 # Number of segments around the steel casing circumference

12 segment_angle = 2 * np.pi / steel_segments # Angle covered by each segment

13

114 for i in range(steel_segments):

115 angle = i * segment_angle # Current angle for the segment

116 y_segment = ((d_outer + d_concrete) / (2 * 2)) * np.sin(angle) + (d_outer / 2) #
Vertical position of the segment from bottom

17 # Calculate the strain in the segment

118 strain_segment = strain_bottom_M + ((strain_top_M - strain_bottom_M) / d_outer) x*

y_segment # Strain in the segment (negative in compression)
19

120 # Determine the stress in the segment based on the strain
121 if strain_segment < 0: # Compression zone
122 stress_segment_M = max((strain_segment + strain_N) * E_steel, -

steel_yield_strength) - max(strain_N * E_steel, -steel_yield_strength)
123 else: # Tension zone

124 stress_segment_M = min(strain_segment * E_steel, steel_yield_strength)

125

126 # Calculate the force in the segment

127 segment_area = 0.25 * np.pi * (d_outer**2 - d_concretex*2) / steel_segments # Area
of the steel segment

128 force_segment = stress_segment_M * segment_area

129

130 # Add the force and moment contributions of this segment

131 total_force += force_segment

132 if strain_top == strain_bottom:

133 total_moment += 0

134 else:

135 total_moment += abs(force_segment) * abs(y_segment - na) # Moment arm is the

vertical position
136

137 # Save casing stresses for stress diagram

138 casing_stress_distribution.append((y_segment, stress_segment_M + stress_segment_N))
139

140

141 # Reinforcement contribution (assume elastic-perfectly plastic)

142 for i in range(n_bars):

143 # Calculate the angle for each rebar

144 angle_rebar = i * (2 * np.pi / n_bars)

145

146 # Determine the position of the rebar (y-coordinate)

147 y_rebar = r_bar * np.sin(angle_rebar) + (d_outer / 2) # Vertical position of the

rebar from bottom
148

149 # Calculate the strain in the rebar based on the y-position of the rebar and neutral
axis
150 strain_rebar = strain_bottom_M + ((strain_top_M - strain_bottom_M) / d_outer) *
y_rebar
151
152 # Calculate the stress in the rebar based on the strain
153 if strain_rebar < 0: # Compression zone
154 stress_rebar_M = max((strain_rebar + strain_N) * E_reinforcement,
steel_yield_strength) - max(strain_N * E_reinforcement, -steel_yield_strength
)
155 else: # Tension zone
156 stress_rebar_M = min(strain_rebar * E_reinforcement, steel_yield_strength)

157
158 # Calculate the force in the rebar
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159 force_rebar = stress_rebar_M * A_bar

160

161 # Add the force and moment contributions of this rebar
162 total_force += force_rebar

163 if strain_top == strain_bottom:

164 total_moment += 0

165 else:

166 total_moment += abs(force_rebar) * abs(y_rebar - na)

position of the rebar

167

# Moment arm is the y-

168 # Save rebar stresses and strains for stress- and strain-diagram

169 rebar_stress_distribution.append((y_rebar, stress_rebar_M + stress_rebar_N))
170 rebar_strain_distribution.append((y_rebar, strain_rebar + strain_N))

171

172 if M == O:

173 total_force = total_moment = O

174

175 return total_force, total_moment, np.array(strain_distribution), np.array(

rebar_strain_distribution), np.array(concrete_stress_distribution), np.array(

casing_stress_distribution), np.array(rebar_stress_distribution)

176

177 def iterate_strains_for_moment (target_moment, target_force):

178 nun

179 puuulterativelyysolve for the strain_bottomy,and strain_top,valuesyuntil both,the internal,

moment and theinternal forceyareyin equilibrium withthe specifiedvalues.

180
181 yuuyuParameters:

182 Luuuuu—utarget_moment: External moment,tobe matched,, (N mm)
183 Luuuuu-utarget_force: External force to be matched (N)

184
185 LuuyuReturns:

186 Luuuuu—uStrain_bottom: Resolved stretchat the bottom of the cross-section

187 yuuuuu—ustrain_top: Resolvedystretch at the,top ,0of the ,cross-section

188 uuuuu nn
189 # If M > 0 we want to guarantee that strain_bottom > strain_top.

190 # We then reparameterize with:

191 # s = (strain_bottom + strain_top) / 2

192 # delta = (strain_bottom - strain_top) / 2, met delta > O.

193 if M > O:

194 def equilibrium_transformed(vars):

195 s, delta = vars

196 # Force delta to be positive by taking the absolute value

197 strain_bottom = s + abs(delta)

198 strain_top = s - abs(delta)

199 total_force, total_moment, *_ = calculate_forces(strain_bottom, strain_top)
200 return [total_force - target_force, total_moment - target_moment]
201

202 # Choose an initial guess for s and delta (make sure delta is positive)
203 initial_guess = [0, 1le-5]

204 s, delta = fsolve(equilibrium_transformed, initial_guess)

205 strain_bottom = s + abs(delta)

206 strain_top = s - abs(delta)

207 else:

208 # If M == 0 you can use the original parameterization.

209 def equilibrium(strains):

210 strain_bottom, strain_top = strains

211 total_force, total_moment, *_ = calculate_forces(strain_bottom, strain_top)
212 return [total_force - target_force, total_moment - target_moment]
213 initial_guess = [strain_N, strain_N]

214 strain_bottom, strain_top = fsolve(equilibrium, initial_guess)

215

216 return strain_bottom, strain_top

217

218 # External moment and force

219 target_moment = M # N-mm

220 target_force = 0 # N
221
222 # Iteratively solving for strains

223 strain_bottom, strain_top, *_ = iterate_strains_for_moment(target_moment, target_force)

224
225 # findings
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total_force, total_moment, strain_distribution, rebar_strain_distribution,
concrete_stress_distribution, casing_stress_distribution, rebar_stress_distribution =
calculate_forces(strain_bottom, strain_top)

# Height of the neutral axis

if strain_bottom < 0 and strain_top < O:
neutral_axis = 0
concrete_stress_distribution = np.insert(concrete_stress_distribution, 0 , [t_steel,
strain_N * E_concretel], axis=0)
else:
neutral_axis = (strain_bottom / (strain_bottom + abs(strain_top))) * d_outer
neutral_axis = np.clip(neutral_axis, 0, d_outer)
concrete_stress_distribution = np.insert(concrete_stress_distribution, 0 , [neutral_axis,

0], axis=0)

# Show results

print (f"Strain at bottom: {strain_bottom:.12f}")

print (f"Strain at,top: {strain_top:.12f}")

print (f"Height of the neutral axis,is: {neutral_axis:.2f}mm")

total_force, total_moment, *_ = calculate_forces(strain_bottom, strain_top)
print(f"total_force: {total_force,/1e3:.2f} kN and total_moment:_ {total_moment,/,1e6:.2f}
kNm")

# Plotting the cross-section
fig, ax = plt.subplots(figsize=(6, 6))

# Outer section

outer_circle = plt.Circle((r_outer, r_outer), r_outer, color='blue', fill=False, linewidth=2,
label='0Outer_ Section')

ax.add_artist (outer_circle)

# Concrete core
concrete_circle = plt.Circle((r_outer, r_outer), r_concrete, color='red', fill=False,
linewidth=2, label='Concrete Core')

ax.add_artist (concrete_circle)
# Reinforcement bars
angles = np.linspace(0, 2 * np.pi, n_bars, endpoint=False) # Angles for bar positions
for angle in angles:
x_bar = r_bar * np.cos(angle) + r_outer
y_bar = r_bar * np.sin(angle) + r_outer

ax.plot(x_bar, y_bar, 'ko', markersize=8) # Black circles for reinforcement bars

# Neutral axis
ax.axhline (y=neutral_axis, color='green', linestyle='--', linewidth=2, label='Neutral Axis')

# Formatting the plot

ax.set_xlim([r_outer - 50, r_outer + 50])

ax.set_ylim([-50, d_outer + 50])

ax.set_aspect('equal', adjustable='datalim')

ax.set_xlabel ('Width,(mm) ')

ax.set_ylabel ('Height, (mm) ')

ax.set_title('Cross_ Section of the Pile with /Reinforcement Bars,and Neutral Axis')
ax.legend ()

# Show the plot
plt.grid(True)
plt.show ()

print (f"Height of the neutral axis:_ {neutral_axis:.2f} mm")

# Function to plot both strain and stress distributions with labels for max and min values

def plot_strain_and_stress_with_labels(strain_distribution, rebar_strain_distribution,
concrete_stress_distribution, casing_stress_distribution, rebar_stress_distribution, na) :
W

uuuuPlotsboth,thestrain andstress distributions in, separate figures, ywithlabels for they
max,and min ,values of strain and stress.

nun
Uuuy

# Extract height and strain values from the arrays
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heights_section = strain_distribution[:, 0]

strains_section = strain_distributionl[:, 1]
heights_rebar_strain = rebar_strain_distribution[:, 0]
strains_rebar = rebar_strain_distribution[:, 1]
heights_concrete_stress = concrete_stress_distribution[:, 0]
stresses_concrete = concrete_stress_distribution[:, 1]
heights_casing_stress = casing_stress_distribution[:, 0]
stresses_casing = casing_stress_distribution[:, 1]
heights_rebar_stress = rebar_stress_distribution[:, 0]
stresses_rebar = rebar_stress_distribution[:, 1]

# Find max and min values for strain and stress in concrete and casing
max_strain_concrete = np.max(strains_section)

min_strain_concrete = np.min(strains_section)

max_strain_concrete_height = heights_section[np.argmax(strains_section)]
min_strain_concrete_height = heights_section[np.argmin(strains_section)]

min_stress_concrete = np.min(stresses_concrete)
min_stress_concrete_height = heights_concrete_stress[np.argmin(stresses_concrete)]

max_stress_casing = np.max(stresses_casing)
min_stress_casing = np.min(stresses_casing)
max_stress_casing_height = heights_casing_stress[np.argmax(stresses_casing)]
min_stress_casing_height = heights_casing_stress[np.argmin(stresses_casing)]

# Create two subplots: one for strain and one for stress
fig, ax = plt.subplots(l, 2, figsize=(14, 8))

# Plot the strain distribution on the left subplot
ax [0] .plot(strains_section, heights_section, label='Strain Distribution, (Cross-section)',
color="'purple')

# Plot rebar strain distribution as horizontal lines
for i, height in enumerate(heights_rebar_strain):
ax[0] .hlines(height, xmin=0, xmax=strains_rebar[i], colors='g', label='Rebar Strain'
if i == 0 else "")
ax[0] .text (strains_rebar[i], height, f'{strains_rebar[i]:.5f}', va='top')

# Add labels for maximum and minimum strain in the concrete

ax [0] .text (max_strain_concrete, max_strain_concrete_height, f'Max: ,{max_strain_concrete
:.6f}', va='top', color='red')

ax [0].text(min_strain_concrete, min_strain_concrete_height, f'Min: {min_strain_concrete
:.56f}', va='bottom', color='blue')

# Add solid vertical line at x=0 for the strain plot
ax [0].axvline(x=0, color='black', linestyle='-")

# Add labels and grid for the strain plot

ax[0] .set_title('Strain Distribution')

ax[0] .set_xlabel('Strain')

ax[0] .set_ylabel ('Height, (mm) ')

ax [0].axhline(y=na, color='r', linestyle='--', label='Neutral Axis')
ax[0].grid(True)

ax [0].legend ()

# Mirror the x-axis: negative values now appear on the right

ax [0] .invert_xaxis ()

# Plot the stress distribution on the right subplot

ax[1] .plot(stresses_concrete, heights_concrete_stress, label='Concrete Stress(
Compression) ')

ax[1] .plot(stresses_casing, heights_casing_stress, label='Casing Stress')

# Plot rebar stress distribution as horizontal lines
for i, height in enumerate(heights_rebar_stress):
ax[1].hlines (height, xmin=0, xmax=stresses_rebar[i], colors='b', label='Rebar Stress'
if i == 0 else "")
ax[1].text(stresses_rebar[i], height, f'{stresses_rebar[i]:.2f} MPa', va='top')
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# Add labels for maximum and minimum stress in the concrete and casing

ax[1].text(min_stress_concrete, min_stress_concrete_height, f'Min:_ {min_stress_concrete

:.2f} MPa', va='bottom', color='red')

if M == 0:

ax[1].text (max_stress_casing, max_stress_casing_height, f'Min:_ {min_stress_casing:

}_MPa', va='bottom', color='red')
else:

ax[1].text (max_stress_casing, max_stress_casing_height, f'Max: {max_stress_casing:

}uMPa', va='top', color='red')

ax[1].text(min_stress_casing, min_stress_casing _height, f'Min: {min_stress_casing:

}_MPa', va='bottom', color='blue')

# Add solid vertical line at x=0 for the stress plot
ax[1].axvline(x=0, color='black',6 linestyle='-"')

# Add labels and grid for the stress plot

ax[1].set_title('Stress Distribution')

ax[1] .set_xlabel ('Stress,  (MPa)')

ax[1].set_ylabel ('Height, (mm) ')

ax[1].axhline(y=na, color='r', linestyle='--', label='Neutral Axis')
ax[1].grid(True)

ax[1].legend ()

# Mirror the x-axis: negative values now appear on the right
ax[1].invert_xaxis ()

plt.tight_layout ()
plt.show ()

# Plot both the strain and stress distributions with labels for max and min values

plot_strain_and_stress_with_labels(strain_distribution, rebar_strain_distribution,
concrete_stress_distribution, casing_stress_distribution, rebar_stress_distribution,
neutral_axis)

.2f

.2f

.2f

A.2. Python Script Modified Mander's Model for Confined Concrete

import numpy as np

import math
# Input parameters
d_outer = 0.508 # Outer diameter of the pile (m)
d_bar_x = 0.025 # Diameter of the reinforcement in x-direction (m)
d_bar_y = 0.032 # Diameter of the reinforcement in y-direction (m)
w_x = 0.125 # C.t.c. of the reinforcement in the bottom net in x-direction (m)
w_y = 0.125 # C.t.c. of the reinforcement in the bottom net in y-direction (m)
neutral_axis = 0.14833 # Height of the neutral axis from the bottom fibre (m)
f_yh = 500 # Yield strength of reinforcement (MPa)
alpha = 25.57 # DW stress field strut inclination
b = 0.071 # Distance between outer fibre reinforcement and outer fibre pile
casing (m)
c = 0.050 # Reinforcement cover (m)
= 0.030 # Embedment pile casing in concrete cap (m)

# Number of reinforcement bars contributing to lateral confinement in x- and y-direction

n_bar_x = round((d_outer - neutral_axis) / w_x) + 2 # Number of bars in x-direction of

the compressed area

n_bar_y = round(d_outer / w_y) + 2 # Number of bars in y-direction of

the compressed area

# Confined area dimensions (to centerlines of reinforcement)
b_c = (n_bar_y - 1) * w_y # Width of the compressed area
d_c = (n_bar_x - 1) * w_x # Depth of the compressed area

# Effective distance between the bars
w_eff_x = w_x - d_bar_x # Effective distance between the bars in x-direction (m)
w_eff_ y = w_y - d_bar_y # Effective distance between the bars in y-direction (m)
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# Virtual c.t.c. distance between reinforcement net

s = 0.5 * (d_c - 0.5 * w_eff_y) + ¢ + 0.5 * d_bar_x # Virtual c.t.c.

reinforcement assuming linear stress influence by 45 degrees

# Virtual ratio of area of longitudinal reinforcement to area in compression
rho_cc = 0 # No "longitudinal" reinforcement in the case of a concrete cap

def solve_for_x(w_eff_x, alpha, b, c, d_bar_x, e):
nnn

uuuuSolves theequationyyl=,y2 foryx, ywhere:

uuuuuuuuy1u=uXu'uW_eff_X/4

uuuuuuuuyY2u=u-tan (90,,-,alpha) *x,+,tan (90,-,alpha) * (b~ tan (alpha) * (c,+,d_bar/2,-,e))

uuuuParameters:

vuuuw_eff_x (float) : The ,effective weight parameter.
uuuwalpha (float) : | Theangle alpha in degrees.
uuuub,uc,ud_bar, e, (float) : ,Additional parameters.

uuuuReturns:

uuuufloat:Theysolution for x.

nun
Uuuy

# Compute the tangent values needed, converting degrees to radians.

T = math.tan(math.radians (90 - alpha))
t = math.tan(math.radians (alpha))

# From the derivation:

# x * (1 + T) = Tx(b - t*x(c + d_bar_x/2 - e)) + w_eff_x/4
numerator = T * (b - t * (c + d_bar_x / 2 - e)) + w_eff x / 4
denominator = 1 + T

if denominator ==

raise ValueError ("The_denominator_is, zero;_ cannot_ solve forx.")

return numerator / denominator
x = solve_for_x(w_eff_x, alpha, b, ¢, d_bar_x, e)

# Function describing the edge of the effectively confined area
yl1 = x - w_eff_x / 4

# Function describing the edge of the dual wedge stress field

y2 = -math.tan(math.radians(90 - alpha)) * x + math.tan(math.radians(90 - alpha)) * (b - math

.tan(math.radians (alpha)) * (c + d_bar_x / 2 - e))

def effective_lateral_conf_stress():

# Ineffectively confined concrete area at the level of the reinforcement

A_ix = (2 * (n_bar_y - 1)) * w_eff_y**2 / 6
A_iy = (2 * (n_bar_x - 1)) * w_eff_x**2 / 6
A_i = A_ix + A_iy

# Effectively confined concrete area at d2
Ae =b_c *xd.c - A_i-y1lx*x (2% (b_c+d_c -2 % yl1))

# Area of concrete within the center lines of the outer reinforcement

A_cc = b_c * d_c * (1 - rho_cc)

# Confinement effectiveness coefficient
ke =A_e / A_cc

# Ratio of transverse reinforcement in x-direction
A_sx = n_bar_x * 0.25 * np.pi * d_bar_x**2
rho_x = A_sx / (s * d_c)

# Ratio of transverse reinforcement in y-direction
A_sy = n_bar_y * 0.25 * np.pi * d_bar_y**2
rho_y = A_sy / (s * b_c)

f_eff_1x = k_e * rho_x * f_yh
f_eff_ly = k_e * rho_y * f_yh

return f_eff_1x, f_eff_ly

distance between
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f_eff 1x, f_eff_ly = effective_lateral_conf_stress()

print (£"d2:{(by-ux)*,1000:.2f} mm+,0,5,x,t_casing and,x_Emax: {(y2,+,cu+,0.5, % d_bar_x. - e
)u*,1000: .2f 3} mm")

print (£"f_eff_ 1x:,{f_eff_1x:.2f} MPaand f_eff ly: {f_eff_ly:.2f} MPa")

A.3. Python Script Markic Dual-Wedge Stress Field Model

import numpy as np
from scipy.optimize import minimize_scalar

# Given parameters

f_c = 30 # MPa, compressive strength of concrete

sigma_conf = 10.25 # MPa, confinement pressure

sigma_s = 10.25 # MPa, stress in reinforcement (equal to sigma_conf)

dli = 5 # mm, half the width of the steel strip
d2 = 30.40 # mm, width of load transfer
x_Emax = 53.10 # mm, available height for load transfer

# Function for sigma_b
def calculate_sigma_b(k_s, sigma_s, d2, di):
return 0.5 * k_s * sigma_s * (d2 / di1 + 3)

# Function for sigma_a according to equation 12 (including missing term)
def calculate_sigma_a(f_c, sigma_alpha, sigma_conf, sigma_b, k_s, sigma_s, d1, d2):

return np.sqrt(0.25 * (f_c - sigma_alpha + 4 * sigma_conf) ** 2 + sigma_b ** 2 + 0.5 *
k_s * sigma_s * ((f_c + 4 * sigma_conf) * ((d2 / d1) - 5) + sigma_alpha * (7 * (d2 /
d1) - 3)))

# Function for k_s according to equation 10
def calculate_k_s(f_c, sigma_x0, sigma_conf, sigma_s, d1, d2):
return max(min(1 - ((d1 / d2) * sigma_x0 - f_c) / (4 * sigma_s), 1), 0)

# Function for sigma_xO

def calculate_sigma_xO(sigma_alpha, alpha_rad, k_s, sigma_s, dl, d2):
denominator = 1 + (sigma_alpha * np.sin(alpha_rad) ** 2) / (k_s * sigma_s)
return (d2 / d1) * (sigma_alpha * np.cos(alpha_rad) ** 2) / denominator

# Function for minimum value of sin~2(alpha) according to equation 14
def calculate_sin2_alpha_min(dl, d2):
return (d2 - di1)**2 / (4 * x_Emax**2 + (d2 - d1)*x2)

# Function for sin~2(alpha) according to equations 11 + 14
def calculate_sin2_alpha(sigma_alpha, sigma_a, k_s, sigma_s, f_c, sigma_conf, d1, d2):
sigma_b = calculate_sigma_b(k_s, sigma_s, d2, dl)
numerator = (0.5 * (f_c + sigma_alpha) - (f_c + 4 * sigma_conf) * (d1 / d2) + 2 =*
sigma_conf + sigma_b - sigma_a)
denominator = (f_c + 4 * sigma_conf) * (d1 / d2) - 3 * k_s * sigma_s
sin2_alpha_calc = (
(k_s * sigma_s / sigma_alpha) * (numerator / denominator)
if denominator != 0 else np.inf)
sin2_alpha_min = calculate_sin2_alpha_min(dl, d2)
return max(sin2_alpha_calc, sin2_alpha_min)

# Function for sigma_alpha according to equations 15 and 16
def calculate_sigma_alpha(alpha_rad):
sigma_alpha _BHK = (1 / 16) * (6 * f_c + sigma_conf * (9 + 25 * np.cos(2 * alpha_rad)) +
np.sqrt (64 *x (f_c - sigma_conf) * (f_c + 4 * sigma_conf) + (6 * f_c + sigma_conf * (9
+ 25 * np.cos(2 * alpha_rad)))**2))
sigma_alpha BHF = (1 / 16) * (6 * f_c + sigma_s * (9 + 25 * np.cos(2 * alpha_rad)) + np.
sqrt (64 * (f_c - sigma_s) * (f_c + 4 x sigma_s) + (6 * f_c + sigma_s * (9 + 25 * np.
cos(2 * alpha_rad)))**2))
return min(sigma_alpha_BHK, sigma_alpha_BHF)

# Improved iterative calculation for sigma_xO and k_s

def fast_iterative_sigma_x0():
start_k_s_values = [1.0, 0.8, 0.6, 0.4, 0.2] # Initial guesses
tolerance = le-5 # Convergence criterion
alpha_rad = np.pi / 4 # Initial value for alpha_rad
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for initial_k_s in start_k_s_values:
k_ s = initial_k_s

for _ in range(20): # Maximum 20 iterations

sigma_alpha = calculate_sigma_alpha(alpha_rad)
sigma_b = calculate_sigma_b(k_s, sigma_s, d2, dil)

sigma_a = calculate_sigma_a(f_c, sigma_alpha, sigma_conf, sigma_b, k_s, sigma_s,

di, d2)

sin2_alpha = calculate_sin2_alpha(sigma_alpha, sigma_a, k_s, sigma_s, f_c,

sigma_conf, di, d2)
alpha_rad = np.arcsin(np.sqrt(sin2_alpha))

sigma_x0 = calculate_sigma_x0(sigma_alpha, alpha_rad, k_s,
k_s_new = calculate_k_s(f_c, sigma_x0, sigma_conf, sigma_s,
if abs(k_s - k_s_new) < tolerance:

break # Convergence reached
k_s = k_s_new
return sigma_x0, k_s, sigma_alpha, np.degrees(alpha_rad)

# Compute sigma_x0 and k_s with improved iteration
sigma_x0, k_s_opt, sigma_alpha, alpha_deg = fast_iterative_sigma_x0()

print (f"Optimised k_s: {k_s_opt:.4f}")

print (f"Optimal,sigma_alpha: {sigma_alpha:.2f} MPa")

print (f"Correspondingangleyalpha: {alpha_deg:.2f} degrees")

print (f"Calculatedsigma_x0,,(bearing capacity): {sigma_x0:.2f} MPa")

sigma_s,

d1,

d2)

d1,

d2)



Imitation of Markic et al.
Experimental Campaign

B.1. Experimentally obtained curves

This appendix presents the normalised bearing stress—penetration curves obtained from the experimen-
tal campaign by Marki¢ et al. (Markic et al. 2022a). The linear portions of each trajectory have been
highlighted and extrapolated back to the penetration axis (zero stress) to facilitate a direct comparison
with the fully linear results produced by the finite element analyses.
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Figure B.1: Extrapolated linear experimentally obtained results

B.2. Linear Axisymmetric FEA of Markic et al. specimens

This appendix details the input parameters and output results of the linear-elastic, axisymmetric finite-
element analyses conducted on the Marki¢ et al. specimens NC-4.5, NC-18, NC-27 and HC-27. Sim-
plified replications of the original reinforcement configurations and loading conditions were employed
to facilitate comparison with the experimental linear-elastic trajectories. The input section includes
a schematic of the geometry, a complete listing of the linear material properties, and a concise de-
scription of the applied loading and boundary conditions. The output section presents contour plots
of deformations and stress distributions within the specimen, and concludes with a comparison of the
FEA obtained versus experimentally observed load-penetration responses.
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Specimen NC-4.5
Axisymmetric FEA model: | Mesh: Material properties:

Top element with fine mesh:
=  Young's modulus = 30.000 MPa
=  Poisson’s ratio=0.2
= Mass density = 2400 kg/m?

—) Middle element with medium mesh:

=  Young's modulus = 30.000 MPa
=  Poisson’s ratio=0.2

= Mass density = 2400 kg/m*

Lower element with coarse mesh:
=  Young's modulus = 30.000 MPa
=  Poisson’s ratio=0.2
= Mass density = 2400 kg/m*

General info:

»  Element size: top = 175x50mm, middle = 175x50mm, bottom = 175x250mm;

* |opaded by a distributed force of -61,61 MPa in Y-direction at the left top of the model
with a radius of 22.5mm;

= Supports are considered infinitely stiff;

»  Embedded reinforcement @12-70 considered fully bonded. And made out of linear
elastic steel with a Young's modulus of 210.000 MPa;

= Analysis type is Structural Linear Static.

MNormal stress:

Lirear arsalyss
Laad case |
Caouchy Todal Stresses 5vY

min: -1, 620-02vrn mox: 3 286-03mm mmin: -0 3T e e 100 EAMN e

Output:
»  QObtained load penetration by FEA = 0,09 mm
»  Expected load penetration from experimental results = 0,25 mm




B.2. Linear Axisymmetric FEA of Markic¢ et al. specimens

121

Specimen NC-18

Axisymmetric FEA model:

Mesh:

General info:

Material properties:

Top element with fine mesh:
*  Young's modulus = 30.000 MPa
= Poisson’s ratio =0.2
=  Mass density = 2400 kg/m?*

Middle element with medium mesh:
*  Young's modulus = 30.000 MPa
»  Poisson’s ratio=0.2
= Mass density = 2400 kg/m*

Lower element with coarse mesh:
*  Young's modulus = 30.000 MPa
*  Poisson‘sratio=0.2
= Mass density = 2400 kg/m*

=  Element size: top = 175x50mm, middle = 175x50mm, bottom = 175x250mm;

= Mesh size: top = 5mm, middle = 10mm, bottom = 20mm;

= |Lopaded by a distributed force of -84,20 MPa in Y-direction at the left top of the model
with a radius of S0mm;

= Supports are considered infinitely stiff;

»  Embedded reinforcement @12-70 considered fully bonded. And made out of linear
elastic steel with a Young's modulus of 210.000 MPa;

»  Analysis type is Structural Linear Static.

Lateral
displacement:

Normal
displacement:

Liraar arciyel

Laod cate |

Displocements Dl

mire -B. 38e-0Gmm max: 4. 30e-00m

Output:

Lateral stress:

[Ny anaiyss
Load cosa |
cadcry Totol Siresses SO0
i 00, RN e s 35,68 fmm?

Py Torheal Strensses S
rin: -1 12 18N mm? max: 17 27N rerd|

= (Obtained load penetration by FEA = 0,55 mm
*  Expected load penetration from experimental results = 0,94 mm
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Specimen NC-27 with reduced Young's modulus

Axisymmetric FEA model:

Mesh:

General info:
Element size: top = 175x50mm, middle = 175x50mm, bottom = 175x250mm;

Mesh size: top = 5mm, middle = 10mm, bottom = 20mm;

Loaded by a distributed force of -77,91 MPa in Y-direction at the left top of the model

with a radius of 135mm;
Supports are considered infinitely stiff;

Embedded reinforcement @12-70 considered fully bonded. And made out of linear
elastic steel with a Young's modulus of 210.000 MPa;

Analysis type is Structural Linear Static.

Material properties:

Top element with fine mesh:
*  Young's modulus = 15.000 MPa
=» Poisson’s ratio =0.2
= Mass density = 2400 kg/m*

Middle element with medium mesh:
*  Young's modulus = 20.000 MPa
=  Poisson’s ratio=0.2
= Mass density = 2400 kg/m’*

Lower element with coarse mesh:
*  Young's modulus = 30.000 MPa
= Poisson’s ratio=0.2
=  Mass density = 2400 kg/m*

Lateral

displacement:

Normal
displacement:

Output:

Obtained load penetration by FEA= 0,87 mm
Expected load penetration from experimental results = 0,93 mm
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Specimen HC-27

Axisymmetric FEA model: | Mesh:

General info:

with a radius of 135mm;

Material properties:

Top element with fine mesh:
*  Young's modulus = 40.000 MPa
= Poisson’s ratio =0.2
=  Mass density = 2400 kg/m?*

Middle element with medium mesh:
*  Young's modulus = 40.000 MPa
»  Poisson’s ratio=0.2
= Mass density = 2400 kg/m*

Lower element with coarse mesh:
*  Young's modulus = 40.000 MPa
*  Poisson‘sratio=0.2
= Mass density = 2400 kg/m*

=  Element size: top = 175x50mm, middle = 175x50mm, bottom = 175x250mm;
= Mesh size: top = 5mm, middle = 10mm, bottom = 20mm;
= |paded by a distributed force of -109,13 MPa in Y-direction at the left top of the model

= Supports are considered infinitely stiff;

»  Embedded reinforcement @12-70 considered fully bonded. And made out of linear
elastic steel with a Young's modulus of 210.000 MPa;

»  Analysis type is Structural Linear Static.

Lateral Normal
displacement: displacement:

e analyil
oad oo |

=  (Obtained load penetration by FEA=0,73 mm
» Expected load penetration from experimental results = 0,52 mm

Lood coza
Caouchy Total Shesses v
rc « 1 2% 7N frmm® mane 230, 144 frm®

L
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B.3. Linear 3D FEA of Marki¢ et al. specimens

This appendix details the input parameters and output results of the linear-elastic, 3D finite-element
analyses conducted on the Marki¢ et al. specimens NC-4.5, NC-18, NC-27 and HC-27. Almost identi-
cal replications of the original reinforcement configurations and loading conditions were employed to fa-
cilitate the best possible comparison with the experimental linear-elastic trajectories. The input section
includes a schematic of the geometry, a complete listing of the linear material properties, and a concise
description of the applied loading and boundary conditions. The output section presents contour plots
of deformations and stress distributions within the specimen, and concludes with a comparison of the
FEA obtained versus experimentally observed load-penetration responses.



B.3. Linear 3D FEA of Marki¢ et al. specimens

125

Specimen NC-4.5

Axisymmetric FEA model:

Material —

Top element,
with fine mesh:

Middle element,

with medium mesh:

Lower element,
with coarse mesh:

=  E=230.000MPa

= [E=230.000MPa

= E=30.000MPa

over an area of 32,5x45mm;

. y=0.2 = y=0.2 v y=0.2
» p=2400kg/m* = p=2400 kg/m* *  p=2400kg/m*
General info:

= Section size: top = middle = 350x350x50mm, bottom = 350x350x250mm;
» Loaded by a distributed load of -61,61 M/mm? in Z-direction at the centroid of the model

= All supports are modelled with a really large stiffness of 10.000 N/mm;
»  Embedded reinforcement @12-70 considered fully bonded. And made out of linear elastic
steel with a Young's modulus of 210,000 MPa;

= Analysis type is Structural Linear Static.

Anchyss |

Lovaaed o |

CEuplacements CHZ

rmire -0 1 1mm max: 0.00mm

Cutput:
» Load penetration =-0.11 mm
= Expected load penetration from experimental results =-0.25 mm

MNormal stress:
Analyss |
Lood cose |
auchy Total Strasses 522
¢ =B ZGMmmT o 1127k ramd
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Specimen NC-18

Axisymmetric FEA model:

M ial P
Top element,

with fine mesh:

=  E=230.000MPa

Middle element,

with medium mesh:

= E=30.000MPa

Mesh:

Lower element,
with coarse mesh:
= E=30.000MFPa

= y=0.2 . y=0.2 v y=0.2
= p=2400kg/m* = p=2400kg/m* »  p=2400kg/m*
General info:

= Section size: top = middle = 350x350x50mm, bottom = 350x350x250mm;
*»  Loaded by a distributed load of -94,20 N/mm?® in Z-direction at the centroid of the model
owver an area of 32,5x180mm;
= All supports are modelled with a really large stiffness of 10.000 N/mm;
*  Embedded reinforcement @12-70 considered fully bonded. And made out of linear elastic
steel with a Young's modulus of 210.000 MPa;

Mormal displacement:

Qutput:
»  Load penetration =-0.29 mm
»  Expected load penetration from experimental results = -0.94 mm

®»  Analysis type is Structural Linear Static.

Couchy Total Sirasses 522
rnin: = 127 2Mmer? o 178 1MSrim?
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Specimen NC-27

Axisymmetric FEA model:

Material —
Top element,

with fine mesh:

»  E=30.000MPa

Middle element,

with medium mesh:

= E=230.000MPa

Mesh:

Lower element,
with coarse mesh:
= E=30.000MPa

v y=0.2 . y=0.2 = y=0.2
*  p=2400kg/m*® = p=2400 kg/m? = p=2400kg/m*
General info:

* Section size: top = middle = 350x350x50mm, bottom = 350x350x250mm;
» Loaded by a distributed load of -77,91 N/mm* in Z-direction at the centroid of the model
over an area of 52,5x270mm;
* Al supports are modelled with a really large stiffness of 10.000 N/mm;
* Embedded reinforcement @12-70 considered fully bonded. And made out of linear elastic
steel with a Young's modulus of 210.000 MPa;

Mormal displacement:

QOutput:
* Load penetration =-0.27 mm
* Expected load penetration from experimental results = -0.893 mm

»  Analysis type is Structural Linear Static.

5z
rnin: - 105. 3 1M,/rmm? o 14,388/ mim?
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Specimen HC-27

Axisymmetric FEA model:

M ial —
Top element,

with fine mesh:

»  E=40.000MPa

Middle element,

with medium mesh:

=  E=40.000MPa

Mesh:

Lower element,
with coarse mesh:
= E=40.000MPa

v y=0.2 . y=0.2 = y=0.2
»  p=2400kg/m* = p=2400kg/m* = p=2400kg/m*
General info:

»  Section size: top = middle = 350x350x50mm, bottom = 350x350x250mm;

* Loaded by a distributed load of -109,13 N/mm? in Z-direction at the centroid of the model
owver an area of 52,5x270mm;

= All supports are modelled with a really large stiffness of 10.000 N/mm;

*» Embedded reinforcement @12-70 considered fully bonded. And made out of linear elastic
steel with a Young's modulus of 210.000 MPa;

Dtsplocarments DiZ
in; -0.28mm max: B00mm)

Output:
* Load penetration =-0.28 mm
* Expected load penetration from experimental results = -0.52 mm

*  Analysis type is Structural Linear Static.

rire - 143510 frnm?® o 20, 16N,/mm?
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B.4. Linear 3D FEA of Markic et al. specimens with reduced E

This appendix details the input parameters and output results of the linear-elastic, 3D finite-element
analyses with reduced young’s modulus conducted on the Marki¢ et al. specimens NC-4.5, NC-18, NC-
27 and HC-27. Almost identical replications of the original reinforcement configurations and loading
conditions were employed to facilitate the best possible comparison with the experimental linear-elastic
trajectories. The input section includes a schematic of the geometry, a complete listing of the linear ma-
terial properties (note the reduced young’s modulus), and a concise description of the applied loading
and boundary conditions. The output section presents contour plots of deformations and stress distribu-
tions within the specimen, and concludes with a comparison of the FEA obtained versus experimentally
observed load-penetration responses.
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Specimen NC-4.5 with reduced Young's modulus
Axisymmetric FEA model: Mesh:

M Al —
Top element, Middle element, Lower element,
with fine mesh: with medium mesh: with coarse mesh:
* E=15.000MPa = E=20.000MPa = E=30.000MPa
= y=0.2 = y=0.2 v y=0.2

*  p=2400 kg/m?® *  p=2400 kg/m* *  p=2400kg/m?®
General info:

»  Section size: top = middle = 350x350x50mm, bottom = 350x350x250mm;

* Loaded by a distributed load of -61,61 M/mm” in Z-direction at the centroid of the model
over an area of 52, 5x45mm;

»  All supports are modelled with a really large stiffness of 10.000 N/mm;

*  Embedded reinforcement @12-70 considerad fully bonded. And made out of linear elastic
steel with a Young's modulus of 210.000 MPa;

*  Analysis type is Structural Linear Static.

Mormal displacement:

Output:
* Load penetration =-0.14 mm

» Expected load penetration from experimental results =-0.25 mm
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Specimen NC-18 with reduced Young's modulus

M ial -
Top element,

with fine mesh:

»  E=10.000MPa

Axisymmetric FEA model:

Mesh:

Middle element,

with medium mesh:

= E=15.000MPa

Lower element,
with coarse mesh:
»  E=20.000MPa

v w=0.2 = yw=0.2 w yw=0.2
»  p=2400kg/m* = p=2400kg/m* *  p=2400kg/m*
General info:

* Section size: top = middle = 350x350x50mm), bottom = 350x350x250mm;

* Loaded by a distributed load of -94,20 N/mm? in Z-direction at the centroid of the model
over an area of 52,5¢180mm;

»  All supports are modelled with a really large stiffness of 10.000 N/mm;

»  Embedded reinforcement @12-70 considered fully bonded. And made out of linear elastic
steel with a Young's modulus of 210.000 MPa;

*  Analysis type is Structural Linear Static.
Normal displacement:

QOutput:
» Load penetration =-0.66 mm
» Expected load penetration from experimental results = -0.94 mm

rrire =127 93N /mm® max: 178620 mme
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Specimen NC-27 with reduced Young's modulus

Axisymmetric FEA model:

M ial P—
Top element,

with fine mesh:

= E=10.000MPa

Mesh:

Middle element,
with medium mesh:
= E=15.000MPa

Lower element,
with coarse mesh:
= E=20.000MPa

= y=0.2 = y=0.2 = y=0.2
»  p=2400kg/m* = p=2400 kg/m® = p=2400 kg/m*
General info:

= Section size: top = middle = 350x350x50mm, bottom = 350:x350x250mm;
» Loaded by a distributed load of -77,91 N/mm? in Z-direction at the centroid of the model
over an area of 52,5x270mm;
= Al supports are modelled with a really large stiffness of 10.000 N/mm;
*»  Embedded reinforcement @12-70 considered fully bonded. And made out of linear elastic
steel with a Young's modulus of 210.000 MPa;

Mormal displacement:

Output:
*» Load penetration =-0.58 mm
=  Expected load penetration from experimental results = -0.93 mm

= Analysis type is Structural Linear Static.

Cauchy Total Srasses 527
rrire - 105.20Mmnm? o 14408 mim?
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Specimen HC-27 with reduced Young's modulus

Axisymmetric FEA model:

M ial A
Top element,

with fine mesh:

=  E=20.000MPa

Mesh:

Middle element,

with medium mesh:

= E=25.000MPa

Lower element,
with coarse mesh:
=  E=30.000MPa

= y=0.2 = y=0.2 = y=0.2
= p=2400kg/m* = p=2400kg/m?* = p=2400kg/m®
General info:

= Section size: top = middle = 350x350x50mm, bottom = 350x350x250mm;

» Loaded by a distributed load of -109,13 N/mm? in Z-direction at the centroid of the model
over an area of 52,5x270mm;

= All supports are modelled with a really large stiffness of 10.000 N/mm;

=  Embedded reinforcement @12-70 considered fully bonded. And made out of linear elastic
steel with a Young's modulus of 210.000 MPa;

Mormal displacement:

Cutput:
*» Load penetration =-0.55mm
»  Expected load penetration from experimental results =-0.52 mm

»  Analysis type is Structural Linear Static.

(Cauchy Total Stresses 512
e - |45 48N mecnd: 200 17N/
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B.5. Analytical calculations for verification

This appendix presents an analytical calculation for the 4 selected specimens from the Marki¢ et al.
experimental campaign, aimed at verifying the reduction in Young’s modulus at elevated stress levels.
As described by (Betoniek 2024), once the applied compressive stress exceeds 40% of the concrete’s
uniaxial compressive strength, the initial Young’s modulus diminishes, and the tangent modulus rather
than the secant modulus should be employed.

The figure below schematises how the axisymmetric DIANA model is abstracted to a three-spring sys-
tem that follows the trajectory of the experimental stress distribution. By applying Hooke’s law, the
stiffness of each spring is determined. Using these stiffness values, the load penetration correspond-
ing to the linear portion of the experimental bearing stress trajectory is calculated.

The analytical calculations performed with the original Young’s modulus produce penetration values
that closely match those from the corresponding FEA models. However, both methods predict much
smaller penetrations than observed experimentally. When a reduced Young’s modulus is applied in
both the analytical and numerical models, the resulting load—penetration behaviour aligns far more
closely with the experimental data. This discrepancy confirms that the test specimens exhibited an
effective stiffness significantly lower than the standard secant modulus of the concrete.

FEA normal stress Stiffness region schematisation Spring model
blnaﬂ

100 K1
100 K2
250 K3

175

Figure B.2: Schematic simplification of the 3D DIANA model and experimental specimen into an equivalent three-spring
system
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Specimen NC-4.5, Simplified analytical calculation

Prescribed deformation:

qx= -61,61 [MPa]
El1= 30000 [MPa]
L1= 50 [mm]
di= 45 [mm]
Al= 2362,50 [mm2]
K1= 1,42E+06 [N/mm]

Spring stiffness 3:

Lseg
Applied equation: m Simplified model:
Uu=———
Aload X qx
Spri iff >
E2= 30000 [MPa] K1
L2= 50 [mm]
d2= 145 [mm]
A2 = 22112,50 [mm2] K2
K2 = 13267500 [N/mm]

Combined spring stiffness:

E3= 30000 [MPa] Ktot = 1,09E+06 [N/mm]
L3= 250 [mm]
d3= 245 [mm]
A3= 61862,50 [mm2] K3
K3 = 7,42E+06 [N/mm]
Spring force and bearing force:
F= -1,46E+05 [N]
u= - [mm] 0,53
Specimen NC-4.5, Simplified analytical calculation with reduced young's modulus
Lseg
Prescribed deformation: Applied equation: X m Simplified model:
ax= 61,61 [MPa] u= T
Spring stiffness 1: Spring stiffness 2:
E1= 20000 [MPa] E2= 25000 [MPa] K1
L1= 50 [mm] L2= 50 [mm]
dl= 45 [mm] d2= 145 [mm]
Al= 2362,50 [mm2] A2= 22112,50 [mm2] K2
K1= 9,45E+05 [N/mm] K2 = 11056250 [N/mm]
Spring stiffness 3: Combined spring stiffness:
E3= 30000 [MPa] Ktot = 7,79E+05 [N/mm]
L3= 250 [mm]
d3= 245 [mm]
A3= 61862,50 [mm2] K3
K3 = 7,42E+06 [N/mm]
Spring force and bearing force:
F= -1,46E+05 [N]
u= 68 ) 0,75
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Specimen NC-18, Simplified analytical calculation

Lseg

Prescribed deformation: Applied equation: X m Simplified model:
ax= -94,2 [MPa] S ded X 0
Sori . . Spri . .
El= 30000 [MPa] E2= 30000 [MPa] K1
L1= 50 [mm] L2= 50 [mm]
di= 180 [mm] d2= 280 [mm]
Al= 9450,00 [mm2] A2 = 42700,00 [mm2] K2
K1= 5,67E+06 [N/mm] K2 = 25620000 [N/mm]
Spring stiffness 3: Combined spring stiffness:
E3= 30000 [MPa] Ktot = 3,23E+06 [N/mm]
L3= 250 [mm]
d3= 350 [mm]
A3= 88375,00 [mm2] K3
K3 = 1,06E+07 [N/mm]
Spring force and bearing force:
F= -8,90E+05 [N]
u= [mm] 0,29
Specimen NC-18, Simplified analytical calculation with reduced young's modulus
Lseg
Prescribed deformation: Applied equation: 2 m Simplified model:
ox= -94,2 [MPa] u= " Aioaa X 0x
Spring stiffness 1: Spring stiffness 2:
El1= 10000 [MPa] E2= 15000 [MPa] K1
L1= 50 [mm] L2= 50 [mm]
di= 180 [mm] d2= 280 [mm]
Al= 9450,00 [mm2] A2= 42700,00 [mm2] K2
K1= 1,89E+06 [N/mm] K2 = 12810000 [N/mm]
Spring stiffness 3: Combined spring stiffness:
E3= 20000 [MPa] Ktot = 1,34E+06 [N/mm]
L3= 250 [mm]
d3= 350 [mm]
A3= 88375,00 [mm2] K3
K3 = 7,07E+06 [N/mm]
Spring force and bearing force:
F= -8,90E+05 [N]
u= 7 (mm) 0,71
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Speciemen NC-27, Simplified analytical calculation

Lseg

Prescribed deformation: Applied equation: X m Simplified model:
ax= -77,91 [MPa] u= " Aioaa X 0x
Sori . . Spri . .
El= 30000 [MPa] E2= 30000 [MPa] K1
L1= 50 [mm] L2= 50 [mm]
di= 270 [mm] d2= 350 [mm]
Al= 14175,00 [mm2] A2 = 53375,00 [mm2] K2
K1= 8,51E+06 [N/mm] K2 = 32025000 [N/mm]
Spring stiffness 3: Combined spring stiffness:
E3= 30000 [MPa] Ktot = 4,11E+06 [N/mm)]
L3= 250 [mm]
d3= 350 [mm]
A3= 88375,00 [mm2] K3
K3 = 1,06E+07 [N/mm]
Spring force and bearing force:
F= -1,10E+06 [N]
u= [mm] 0,29
Specimen NC-27, Simplified analytical calculation with reduced young's modulus
Lseg
Prescribed deformation: Applied equation: 2 m Simplified model:
ox= -77,91 [MPa] u= " Aioaa X 0x
Spring stiffness 1: Spring stiffness 2:
El1= 10000 [MPa] E2= 15000 [MPa] K1
L1= 50 [mm] L2= 50 [mm]
di= 180 [mm] d2= 280 [mm]
Al= 9450,00 [mm2] A2= 42700,00 [mm2] K2
K1= 1,89E+06 [N/mm] K2 = 12810000 [N/mm]
Spring stiffness 3: Combined spring stiffness:
E3= 20000 [MPa] Ktot = 1,34E+06 [N/mm]
L3= 250 [mm]
d3= 350 [mm]
A3= 88375,00 [mm2] K3
K3 = 7,07E+06 [N/mm]
Spring force and bearing force:
F= -7,36E+05 [N]
u= [ 0,59
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Specimen HC-27, Simplified analytical calculation

Lseg

Prescribed deformation: Applied equation: X m Simplified model:
ax= -109,13 [MPa] u= " Aioaa X 0x
Sori . . Spri . .
El= 40000 [MPa] E2= 40000 [MPa] K1
L1= 50 [mm] L2= 50 [mm]
di= 270 [mm] d2= 350 [mm]
Al= 14175,00 [mm2] A2 = 53375,00 [mm2] K2
Ki= 1,13E+07 [N/mm] K2 = 42700000 [N/mm]
Spring stiffness 3: Combined spring stiffness:
E3= 40000 [MPa] Ktot = 5,48E+06 [N/mm)]
L3= 250 [mm]
d3= 350 [mm]
A3= 88375,00 [mm2] K3
K3 = 1,41E+07 [N/mm]
Spring force and bearing force:
F= -1,55E+06 [N]
u= [mm] 0,54
Specimen HC-27, Simplified analytical calculation with reduced young's modulus
Lseg
Prescribed deformation: Applied equation: 2 m Simplified model:
ox= -109,13 [MPa] u= " Aioaa X 0x
Spring stiffness 1: Spring stiffness 2:
El1= 20000 [MPa] E2= 25000 [MPa] K1
L1= 50 [mm] L2= 50 [mm]
di= 180 [mm] d2= 280 [mm]
Al= 9450,00 [mm2] A2= 42700,00 [mm2] K2
K1= 3,78E+06 [N/mm] K2 = 21350000 [N/mm]
Spring stiffness 3: Combined spring stiffness:
E3= 30000 [MPa] Ktot = 2,46E+06 [N/mm]
L3= 250 [mm]
d3= 350 [mm]
A3= 88375,00 [mm2] K3
K3 = 1,06E+07 [N/mm]
Spring force and bearing force:
F= -1,03E+06 [N]
u= G2 () 0,80




Python Scripts for Quasi-Non-Linear
FEA Verification

This appendix provides the complete Python scripts developed to perform the quasi-non-linear finite-
element analyses used to verify the analytically derived results from the modified confinement models
presented in this thesis.

The first script computes the load penetration corresponding to the analytically obtained bearing stress,
incorporating energy dissipation through the Marki¢ Dual-Wedge stress-field model. The second script
automates the reduction of local concrete stiffness and the implementation of a compliant cushion layer
beneath the loading area.

C.1. Python script corresponding load penetration

import numpy as np
import math

def calculate_penetration(sigma_x0, k_s_opt, sigma_s, d1, x_Emax, alpha_deg):
nnn

uuuuCalculatesthe penetration  (vertical displacement) at maximum,support

uuuustressbasedon energy dissipationyinthe Dual Wedge Stress Field model.

uuuuReturns:

vuuu—uPenetration u,in mm

nun
Uuuuy

alpha_rad = math.radians(alpha_deg)
1_shear = x_Emax / math.cos(alpha_rad)
sigma_x = sigma_s

sigma_y = 0
tau_xy = 0

sigma_avg = 0.5 *x (sigma_x + sigma_y)

sigma_diff = 0.5 * (sigma_x - sigma_y)

tau =

Wdiss = tau * 1l_shear * math.cos(alpha_rad)
F = sigma_x0 * di

Wdiss / F
return u

u =

sigma_x0 = 149.05
k_s_opt =1
sigma_s = -10.25
di =5

x_Emax = 53.10
alpha_deg = 25.57

139

# length shearplane (mm)

-sigma_diff * np.sin(2 * alpha_rad) + tau_xy * np.cos(2 * alpha_rad)

# total dissipation (N-mm per mm width)
# Force per mm width (N/mm)

# penetration in mm
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u_shear = calculate_penetration(sigma_x0, k_s_opt, sigma_s, d1, x_Emax, alpha_deg)
print (f"Estimated penetration caused by shear along wedge: {u_shear:.2f} mm")

E_steel = 200000
L_casing = 230
u_casing = sigma_x0 * L_casing / E_steel

u_tot = u_shear + u_casing
print (f"Corresponding prescribed,deformation on the steel casing: {u_tot:.2f} mm")

C.2. Python script secant moduli

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# === Parameters (confined concrete - Mander model) ===
f_cc = 30e6 # Peak stress of confined concrete [Pa]
eps_cc = 0.00175 # Strain at peak stress [-]
E_c = 30e9 # Initial modulus of elasticity [Pal
# === Derived parameters for Mander ===
E_sec_peak = f_cc / eps_cc
r = E_.c / (E_c - E_sec_peak)
# === Mander stress-strain function (ascending branch) ===
def mander_stress(eps):
x = eps / eps_cc
# Avoid 0/0 at eps=0 by returning O stress there
sig = np.zeros_like(eps, dtype=float)
mask = eps > O
x_m = x[mask]
sig[mask] = (f_cc * x_m *x r) / (r - 1 + x_m ** r)
return sig
# === Discretize strain range up to peak (ascending branch only) ===
# Start slightly above zero to avoid division by zero in E_sec = sigma/eps
eps_vals = np.linspace(le-10, eps_cc, 1000)
stress_vals = mander_stress(eps_vals)
# === Secant modulus E_sec = sigma / eps ===
secant_modulus = stress_vals / eps_vals # [Pal]
# === Compute average SECANT modulus per 5 MPa stress range ===
stress_ranges = [(i, i + 5e6) for i in range(0, int(f_cc), int(5e6))]

avg_moduli = []
for s_min, s_max in stress_ranges:
mask = (stress_vals >= s_min) & (stress_vals < s_max)
if np.any(mask):
Esec_avg = np.mean(secant_modulus[mask]) / 1e9 # GPa
avg_moduli.append ((£f"[{s_min/1e6:.1f}, {s_max/1e6:.1£f})", f"{Esec_avg:.2f}"))

else:
avg_moduli.append ((£"[{s_min/1e6:.1f}, {s_max/le6:.1£f})", "-"))
# === Print table as DataFrame (optional) ===
df _avg = pd.DataFrame (avg_moduli, columns=["Stress Range (MPa)", "Avg Secant Modulus,(GPa)"])
# === Plot 1: -Stressstrain and SECANT modulus curve ===

fig, axl = plt.subplots(figsize=(10, 6))
axl.set_xlabel("Strain, [-]", fontsize=12)
axl.set_ylabel ("Stress [MPal", fontsize=12)

axl.plot(eps_vals, stress_vals / le6, label="-StressStrain")
axl.tick_params(axis='y', labelsize=12)

axl.tick_params(axis='x', labelsize=12)

ax2 = axl.twinx()

ax2.set_ylabel ("Secant Modulus[GPal", fontsize=12)

ax2.plot(eps_vals, secant_modulus / 1e9, linestyle='--', label="Secant Modulus")

ax2.tick_params(axis='y', labelsize=12)
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plt.title("-StressStraingand, Secant Modulus,,(Mander - Ascending Branch)", fontsize=14)

fig.tight_layout ()

# Build a combined legend

linesl, labelsl = axl.get_legend_handles_labels()

lines2, labels2 = ax2.get_legend_handles_labels ()

fig.legend(linesl + lines2, labelsl + labels2, loc="upperyright", bbox_to_anchor=(0.92, 0.92)
)

plt.show()

# === Plot 2: Formatted table with matplotlib ===
fig, ax = plt.subplots(figsize=(6, max(3, len(avg_moduli)*0.3)))
ax.axis('off')
table = ax.table(cellText=avg_moduli,
colLabels=["Stress_ Range,(MPa)", "Avg, Secant Modulus,(GPa)"],
loc="'center',
celllLoc='center',
colLoc="'center"')
table.auto_set_font_size(False)
table.set_fontsize (12)
table.scale(2, 1.5)
plt.title("Average Secant Modulus per Stress, Range", pad=20)
plt.show ()

# === Plot 3: Secant modulus and secant line at a specific stress level ===
target_stress = 20e6 # e.g., 20 MPa in Pascal

# Find closest point on curve to target stress

idx_target_candidates = np.where(stress_vals >= target_stress) [0]
if len(idx_target_candidates) ==
idx_target = len(stress_vals) - 1 # default to last point if target exceeds f_cc on

ascending branch
else:
idx_target = idx_target_candidates[0]

eps_target = eps_vals[idx_target]

sigma_target = stress_vals[idx_target]

Esec_target = (sigma_target / eps_target) / 1e9 # GPa
stress_target_MPa = sigma_target / 1le6

fig, ax = plt.subplots(figsize=(10, 6))

ax.set_xlabel("Strain [-]", fontsize=12)

ax.set_ylabel ("Stress,[MPal", fontsize=12)

ax.plot(eps_vals, stress_vals / 1le6, label="-StressStrain")

ax.scatter ([eps_target], [stress_target_MPal)

ax.axhline(y=stress_target_MPa, linestyle=':', label=f"{stress_target_MPa:.1f} MPa")

# Draw the secant line from origin to the target point
ax.plot ([0.0, eps_target], [0.0, stress_target_MPal], linestyle='-.', label=f"Secant: {
Esec_target:.2f} GPa")

plt.title(f"Secant Modulus at {stress_target_MPa:.1f} MPa,=_ {Esec_target:.2f} ,GPa", fontsize
=14)

ax.legend(loc="lower right")

fig.tight_layout ()

plt.show ()



Derivation of the Distributed Force
Function on the Pile Core

This appendix derives the expression for the distributed axial force in the pile core, based on the stiffness
ratio between the steel casing and the concrete core, and relates it to the known normal stress in the
casing, 0.

Under the assumption that all connection components behave linear elastic, the total force is partitioned
according to relative stiffness. The axial force carried by the casing is

Feasing = 0x0 Acasing s Eq. DA

where A..qing is the cross-sectional area of the steel casing.

Similarly, the axial force in the core is
Feore = @z Acore » Eq.D.2

where ¢, is the unknown bearing stress in the concrete core and A..,. its cross-sectional area.

Denote the total pile reaction by R.. The force in both components is related to Ry via

Fcasin
— _ g
Fcasing = Tcasing Rpile - Rpile = ’ Eq D.3

Tcasing

Feore = Tcore Bpile - Eq.D4

The stiffness ratios are defined as

Ecasing Acasing r _ Ecore Acore
) core — )
casing Acasing + Ecore Acore Ecasing Acasing + Ecore Acore

Eq.D.5

Tcasing = E

where Egaging and Ecoye are the respective Young’s moduli.

Substituting Rpile = Feasing/Tcasing, DOth stiffness ratio equations and both equations for total normal
force in the segments Feaging = 020 Acasing @Nd Feore = ¢z Acore iNto the expression for Fi,.. gives

Ecorc Acorc 00 Acasing

Ecasing Acasing + Ecore Acore Beasing Acasing
Ecasing Acasing+Ecore Acore

qx Acore = 5 Eq D.6

Rewriting the equation by cancelling out the term Eaging Acasing + Ecore Acore iN the numerator and the
denominator after moving this term in the second part to the numerator. And finally, dividing by Acore
and Ac.sing Yields the distributed core stress,
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ECOTE

Ecasing

Eq.D.7

4z = 0z0

as required.



o —

Secant Modulus according to
Mander's Model for Confined Concrete

To determine appropriate stiffnesses for the concrete segments in the case-study FEA, an iterative pro-
cedure was adopted. First, a baseline analysis was performed in which a uniform Young’s modulus of
30 GPa was assigned to the entire concrete domain, irrespective of the prevailing compressive stress.
The average stress in each segment was then extracted from this baseline. Using the Python script
in section C.2, Mander’s model for confined concrete was applied to compute the corresponding se-
cant moduli for those average stress levels. These secant moduli were subsequently assigned to the
respective segments, and the analysis was repeated with the reduced stiffnesses. The process was
iterated until the change in segmental normal stress between iterations fell below a prescribed toler-

ance, at which point the solution was deemed converged. The results from the first and final iterations
are presented in this appendix:
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E.1. Secant Modulus according to the First Iteration

Mander Confined Concrete — Stress-Strain and Secant Modulus (Ascending)
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Mander Confined Concrete — Stress-Strain and Secant Modulus (Ascending)
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E.2. Secant modulus according to the final iteration

Mander Confined Concrete — Stress-Strain and Secant Modulus (Ascending)
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Mander Confined Concrete — Stress-Strain and Secant Modulus (Ascending)
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E.3. Iteration history for the Expected Stress—Strain Behaviour
The table below shows the progress of the iterations and the steps that were performed to obtain the
final concrete segment stiffness.

Table E.1: Iteration history of the case study FEA model

Segments
Iteration Metric 1 2 3 4 5 6
Sseg [MPa] -22.36 -22.36 -2219 -84.85 -19.73 -14.86
1 Esec [GPa] 30.00 30.00 26.42 29.09 2741 28.74
ASseg [MPa] n.v.t. n.v.t. n.v.t. n.v.t. n.v.t. n.v.t.
Sseg [MPa] -22.36 -22.36 -22.04 -81.39 -19.18 -14.54
2 Esec [GPa] 30.00 30.00 2649 29.20 27.60 28.80
ASseg [MPa] 0.00 0.00 0.15 3.46 0.54 0.32
Sseg [MPa] -22.36 -22.36 -22.04 -83.41 -19.52 -14.59
3 Esec [GPa] 30.00 30.00 2649 29.14 2748 28.79
ASseg [MPa] 0.00 0.00 0.00 2.02 0.33 0.05
Sseg [MPa] -22.36 -22.36 -22.04 -83.28 -19.51 -14.58
4 Esec [GPa] 30.00 30.00 2649 29.15 2748 28.80
ASseg [MPa] 0.00 0.00 0.00 0.13 0.00 0.00
Sseg [MPa] -22.36 -22.36 -22.04 -83.30 -19.01 -14.59
5 Esec [GPa] 30.00 30.00 2649 29.15 27.65 28.79
ASseg [MPa] 0.00 0.00 0.00 0.02 0.51 0.00
Sseg [MPa] -22.36 -22.36 -22.04 -83.37 -19.01 -14.59
6 Esec [GPa] 30.00 30.00 2649 29.14 27.65 28.79
ASseq [MPa] 0.00 0.00 0.00 0.07 0.00 0.00
Sseg [MPa] -22.36 -22.36 -22.04 -83.36 -19.01 -14.59
7 Esec [GPa] 30.00 30.00 2649 29.14 27.65 28.79
ASseg [MPa] 0.00 0.00 0.00 0.09 0.00 0.00
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E.4. Iteration history for the lower limit Stress—Strain Behaviour

The table below summarises the iteration history and the steps taken to obtain the final segmental
concrete stiffnesses consistent with the lower-bound stress—strain behaviour.

Table E.2: Iteration history of the lower strain bound case study FEA model

Segments
Iteration Metric 1 2 3 4 5 6

Sseg [MPa] -22,36  -22,36 -22,19 -84,85 -19,73 -14,86

1 Esec [GPa] 30 30 26,42 29,72 27,41 28,74
ASseg [MPa] n.v.t. n.v.t. n.v.t. n.v.t. n.v.t. n.v.t.

Sseg [MPa] -22,36  -22,36 -22,03 -83,82 -19,57 -14,68

2 Esec [GPa] 30 30 26,49 29,73 27,47 28,78
ASseq [MPa] 0 0 0,16 1,03 0,15 0,18

Sseg [MPa] -22,36 -22,36 -22,04 -83,86 -19,52 -14,59

3 Esec [GPa] 30 30 26,49 29,73 27,48 28,79
ASseq [MPa] 0 0 0,00 0,05 0,05 0,09

Sseg [MPa] -22,36  -22,36 -22,04 -83,88 -19,52 -14,69

4 Esec [GPa] 30 30 26,49 29,73 27,48 28,78
ASseq [MPa] 0 0 0,00 0,02 0,00 0,10
Sseg [MPa] -22,36 -22,36 -22,04 -83,88 -19,52 -14,69

5 Esec [GPa] 30 30 26,49 29,73 27,48 28,78
ASseq [MPa] 0 0 0,00 0,00 0,00 0,00

E.5. Iteration history for the upper limit Stress—Strain Behaviour

The table below summarises the iteration history and the steps taken to obtain the final segmental
concrete stiffnesses consistent with the upper-bound stress—strain behaviour.

Table E.3: lteration history of the upper strain bound case study FEA model

Segments
Iteration Metric 1 2 3 4 5 6

Sseg [MPa] -22,36  -22,36 -22,19 -84,85 -19,73 -14,86

1 Esec [GPa] 30 30 26,42 29,09 27,41 28,74
ASseg [MPa] n.v.t. n.v.t. n.v.t. n.v.t. n.v.t. n.v.t.
Sseg [MPa] -22,36 -22,36 -22,04 -82,41 -19,54 -14,65

2 Esec [GPa] 30 30 26,49 28,48 27,48 28,79
ASseq [MPa] 0 0 0,15 2,44 0,19 0,21
Sseg [MPa] -22,36 -22,36 -22,04 -82,59 -19,50 -14,57

3 Esec [GPa] 30 30 26,49 28,48 27,49 28,80
ASseq [MPa] 0 0 0,01 0,18 0,05 0,09
Sseg [MPa] -22,36 -22,36 -22,04 -82,61 -19,50 -14,66

4 Esec [GPa] 30 30 26,49 28,48 27,49 28,79
ASseq [MPa] 0 0 0,00 0,02 0,00 0,10
Sseg [MPa] -22,36 -22,36 -22,04 -82,61 -19,50 -14,66

5 Esec [GPa] 30 30 26,49 28,48 27,49 28,79
ASseq [MPa] 0 0 0,00 0,00 0,00 0,00
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