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Abstract

Earthquakes can have tremendous effects. They can result in casualties, massive
damage, and hurt the economy. Therefore, one would like to predict earthquakes as
early as possible and with the highest accuracy possible. This paper contains the
proposal for the optimal prediction-time, which is the time between the execution of a
prediction and the actual earthquake strike, for deep learning models. Only short-term
predictions and high-magnitude earthquakes are considered. A prediction means to
define whether an earthquake happens or does not happen in an upcoming amount
of seconds. A short-term prediction means a forecast to the extent of seconds. A
high-magnitude earthquake means an earthquake with a magnitude of 2.5 or higher.
This research uses the Long Short Term Memory deep learning model to test the
optimal prediction-time value for earthquake predictions. The optimal value for the
prediction-time is found by testing the model with different values for the prediction-
time and concluding when the model performs best. For prediction-times from moments
before the strike until 40 seconds, the model is performing worse compared to higher
prediction-times. The model’s performance peaks at a prediction-time of 70. When
increasing further than 70, the performance decreases until a prediction-time of one
hundred. When rising even further, the performance is stabilising. Thus, for predictions
with the highest performance, one should use a prediction-time of 70 seconds.

1 Introduction
An earthquake is one of the most dangerous and destructive natural disasters. The occur-
rence of earthquakes can result in casualties, massive damage, and a sudden downfall in the
economy [1]. They often occur without any warning in advance, which leaves not enough
time for people to take any measures. In addition, earthquakes might lead to other natu-
ral hazards such as tsunamis, snowslips, and landslides [2]. Consequently, even if one can
predict an earthquake only moments before it strikes, it could be of incredible value.

Earthquake predictions can be mainly classified into four categories according to the
employed methodologies [3]:

1. Mathematical analysis

2. Precursor signal investigation

3. Machine learning algorithms

4. Deep learning methods

Since earthquakes have an intrinsic random nature by themselves, the last two methods have
been gaining in popularity over the last couple of years [4].

In previous work, people tried to predict the magnitude of the biggest upcoming earth-
quake in the next week, in which a test accuracy of 82.0 was achieved using a decision tree
[3]. Another work tried to predict whether or not an earthquake with a magnitude six or
higher will take place in the upcoming 30 days, in which the best R score is 0.303 [5]. Xi-
angyu Du tried to predict earthquakes in the FDSN Earthquake dataset [6]. Using a Long
Short Term Memory Network, he achieved an average accuracy of 66.5.

This research paper aims to find the optimal short-term prediction-time for high-magnitude
earthquake predictions for deep learning models. The prediction-time is defined as the time
between the execution of a prediction and the actual earthquake strike. The prediction-time
will be referred to as H for the remainder of this paper. A prediction means to define whether
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an earthquake happens or does not happen in an upcoming amount of seconds. Short-term
forecasts are forecasts to the extent of seconds. An optimal number of seconds does not
mean having the most considerable accuracy when performing the predictions. Indicating
earthquakes more in advance is also considered a precious asset; therefore, this research
aims to find a good balance between the two. If an optimal value of H is found, humanity is
one step closer to being able to predict earthquakes with higher accuracies and potentially
prevent many disastrous situations.

2 Methodology
The following chapter introduces the method used to predict earthquakes, which is ultimately
required to determine H’s optimal value. In this research, the earthquakes are predicted by
a deep learning model. Various deep learning models have been considered in Section 2.1.
Deep learning models introduce performance trade-offs, described in section 2.2. The final
section 2.3 explains how the optimal value of H can be found.

2.1 Deep learning model
To predict earthquakes with deep learning methods, one must first consider which model
best fits the short-term prediction of earthquakes. During the research, the following models
have been considered:

1. Long Short Term Memory Network
The Long Short Term Memory Network (LSTM) is a recurrent neural network archi-
tecture. Xiangyu Du achieved an average accuracy of 66.5 on unseen earthquake data
coming from the New Zealand dataset using an LSTM model [6].

2. Support Vector Machine
A study has shown that the Support Vector Machine (SVM) is able to forecast financial
time series [7]. Both financial time series data and earthquakes data are very nonlin-
ear and random, which might conclude that the SVM is also suitable for earthquake
predictions.

3. Convolutional Neural Network
Convolutional Neural Network (CNN) has had groundbreaking results in various fields
related to pattern recognition. CNN has an excellent performance in machine learning
problems [8]. The most significant earthquake magnitude in Taiwan for the upcoming
30 days is predicted using convolution neural networks [5].

4. Mixture
One could also consider creating a combination of any of the above, as has been done to
detect heart rhythm disorders [9]. Combinations of other machine learning algorithms
than the aforementioned could be possible as well.

The earthquake data is a time series classification forecasting problem. For this kind of
problem, the LSTM has been used many times, such as in oil production forecasting [10].
Besides that, Xiangyu Du used exactly this model to predict earthquakes in the same dataset
that is considered during this research. Therefore, the decision has been made to use the
LSTM model.
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2.2 Performance and trade-offs
In order to determine whether or not the model is producing valuable results, the perfor-
mance has to be measured. The performance of a deep learning model can be measured in
various ways. The first one being considered is the confusion matrix. The confusion matrix
deals with the following components:

1. True Positive (TP), which means the model predicts the earthquake correctly.

2. True Negative (TN), which means the model predicts an earthquake is not about to
strike.

3. False Positive (FP), which means the model predicts that an earthquake will happen,
although it does not occur. This can be costly, for example, when authorities and first
responders start evacuating procedures while there is no harm.

4. False Negative (FN), which means the model predicts that an earthquake is not about
to strike, although it is happening. There will be no warning for an actual earthquake,
resulting in devastating outcomes. A false negative should be considered the most
costly outcome.

From the outcomes of a confusion matrix, several other performance metrics can be derived:

Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP

Recall = TP
TP+FN

F1− Score = 2∗Precision∗Recall
Precision+Recall = 2∗TP

2∗TP+FP+FN

Since the F1-Score already integrates the precision and recall metrics, the precision and
recall metrics themselves will not be considered a lot. The accuracy and F1-Score will be
the primary metrics used during this research. In addition to the metrics above, a deep
learning model attribute called loss is considered. Each deep learning model has a cost
function which is tried to be minimised. The outcome of the cost function is the loss.

The consideration of the trade-offs of the model’s performance and the value of specific
input parameters is essential. One might prefer to predict earthquakes minutes earlier with
an accuracy slightly less than the situation where one predicts the earthquake moments
before the actual strike with higher accuracy. Another essential aspect to consider is the
size of the seismological wave. It is possible to feed a very long wave to the model; however,
this requires a very high amount of storage capability and processing power. Since the input
size of the seismic waveform is not the research question of this paper, a fixed value of 60
will be picked for the input size.

2.3 The optimisation of H
Now that an optimised model exists, finding an optimal value of H is possible. Many different
values for H will be fed into the model. The model will be run multiple times and averaged
for each value of H to prevent possible outliers. After that, the performance metrics are
compared, and optimal values of H will be concluded.
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3 Implementation
In the next section, the implementation of the model will be discussed. Data is required to
train the model. How this data is retrieved, processed and evaluated will be addressed in
section 3.1. After that, details and design choices regarding the LSTM model are examined
in 3.2. Lastly, the overfitting issue will be analysed in 3.3.

3.1 Data
Considerable amounts of data are required to train an LSTM model properly. All the data
that is used to train the LSTM model is retrieved from the FDSN dataset [11]. The data
consist of earthquakes and accessory seismological waves from a particular measurement
station in the country. During this research, an earthquake with a magnitude of 2.5 or higher
is considered a high-magnitude earthquake. Earthquakes with a magnitude higher than 2.5
are often felt but only cause minor damage [12]. The threshold of 2.5 is chosen because
this value results in an approximately balanced split regarding the number of earthquakes.
In Figure 1, the distribution of over 400.000 earthquakes according to their magnitude is
visualised. Note that the distribution takes the form of a normal distribution with a mean
value of roughly 2.5.

Figure 1: Distribution of earthquakes retrieved from the FDSN dataset according to the
magnitude

Data Retrieval

The essential characteristics of earthquakes are the longitude, latitude, magnitude and depth.
Before the actual earthquake dataset is built, several actions are taken. At first, a bounding
box is defined. An earthquake is only considered if it is within this box. The bounding
box represents a rectangular outline of the mainland of New Zealand. Within the box, 38
stations are defined. These 38 stations were chosen since they did not contain as much
corrupt data as other stations. The specifications of every station can be found in Appendix
A.1. Only the seismic waveforms from these stations are considered. Table 1 shows the
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coordinates of the bounding box, and in Figure 2, the 38 measurement stations are plotted
on the New Zealand map.

Coordinate Value
Bottom-left longitude 166.104
Bottom-left latitude -47.749
Top-right longitude 178.990
Top-right latitude -33.779

Table 1: Specifications of the bounding
box

Figure 2: 38 measurement stations plotted
on the map of New Zealand

An example of a seismic wave measurement including a specification of H of one particular
station without any preprocessing is given in Figure 3.

Figure 3: Example of a seismic waveform recording with an earthquake prediction at time
step 100, the earthquake strike at time step 300, and an H-value of 200 seconds

This research tries to perform short-term earthquake predictions on high-magnitude
earthquakes. In order to retrieve data to train the classifier when it should classify to 1,
meaning that an earthquake will happen, the earthquakes with a magnitude of 2.5 or higher
are filtered. To retrieve data to train the model to classify for 0, one could consider two
options:
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1. Train the model with waveforms from earthquakes with a magnitude of 2.5 and lower.

2. Train the model with ’flat’ waveforms where no actual earthquake occurs. Flat wave-
forms are acquired by finding two consecutive earthquakes at least 5000 seconds apart
from each other and then retrieving a waveform 2000 seconds before the last of the
two earthquakes.

This research aims to find an optimal H and is not aiming to determine what kind of low-
earthquakes to use. Since it might be challenging for the model to distinguish between
seismic waveforms of an earthquake of a low-magnitude earthquake with a magnitude of 2.4
and a high-magnitude earthquake with a magnitude of 2.6, the decision has been made to
only consider the second option with flat waves.

Filtering

Filters are applied to the dataset for better prediction results. As aforementioned, the first
filtering method is to leave out the earthquakes and their corresponding waveforms that do
not reside within the bounding box.

The following filter is based on the value of the magnitude. Two datasets are created,
one consisting of earthquakes with magnitudes of 2.5 and higher and the other containing
waves where no earthquake is happening. The distribution of the earthquakes according to
their magnitude is already given in Figure 1.

The last filter is based on the depth of an earthquake. Figure 4 shows that most earth-
quakes have a depth of 200 kilometres or less. Since this research does not deal with the
difference between shallow and deep earthquakes, the decision has been made only to con-
sider earthquakes with a depth of 200 kilometres or less to avoid non-similar earthquakes in
the dataset.

Figure 4: Distribution of earthquakes retrieved from the FDSN dataset according to depth

Preprocessing

Many different preprocessing methods have been considered and will be given in an overview:
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1. Sanitize, which removes missing values and drops measurements with waveforms that
have an insufficient length and are therefore incomplete.

2. Downsampling, which reduces the number of measurements (frames) per second.

3. Normalizing, which performs a normalization between -1 and 1. Normalizing means
to scale the input vectors individually to unit form [13].

4. Scaler, which means to standardize features by removing the mean and scaling to unit
variance [14].

When testing the preprocess methods, it turns out that the sanitization deletes roughly
40 percent of a dataset on average, meaning that 40 percent of the dataset is considered
corrupted data. The downsampling did not harm the performance of the model a lot,
although it does speed up the training time significantly. It turns out that normalizing over
the whole dataset resulted in the highest performance. Using only the scaler also resulted
in decent outcomes. Combining the normalization method and the scaler gave poor results.

3.2 LSTM design
The model that is used during this research is the LSTM model. The input of the LSTM
model is a seismic waveform. The number of frames of these seismic waveforms is the input
size of the LSTM cell [15]. The hidden size is set to two and the number of layers to one.
The output of the LSTM cell is fed into a Rectified Linear Unit (ReLU) layer. A ReLU
is a piecewise linear function that will output the input directly if it is positive; otherwise,
it will output zero [16]. The output of the first ReLU layer will go into a fully connected
layer. Fully connected layers in neural networks are those layers where all the inputs from
one layer are connected to every activation unit of the next layer [17]. The fully connected
layer outputs 128 features, which go into a second ReLU layer. The ReLU outputs the 128
features into another fully connected layer, which outputs one feature. This one feature goes
into a sigmoid function. The sigmoid function is the logistic function, which maps any real
value to the range between 0 and 1. If the value is below 0.5, the classifier will classify to 0
and otherwise to 1. Dropout layers are also added between the aforementioned layers; these
will be discussed in section 3.3. In Figure 5, a schematic view of all the layers is represented.

Figure 5: Schematic overview of the layers in the LSTM neural network

In order to test and train the model, 6000 samples are extracted from the dataset. These
samples are randomly taken from the dataset built from earthquakes from 2007 until 2011.
The data is split so that a part of the samples is used for the model’s training, and the other
part validates whether the model performs well on unseen data. In Figure 6 and Figure 7,
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the accuracy and loss are plotted for training and validation data, with the H-value equal to
70. Note that the model is overfitting; thus, the model performs better on the training set
than on the validation set. Figure 8 shows the F1-score, which is retrieved using the same
data. The following hyperparameters are used when running the model: batch sizes of 50, a
down-sample rate of 2, a learning rate of 0.001 and the number of epochs equal to 100. The
Binary Cross-Entropy loss function was used because the model is a binary classifier [18].

Figure 6: Accuracy of model Figure 7: Loss of model

Figure 8: F1-Score of model

3.3 Overfitting
Like many deep learning models, the model used in this research suffers from overfitting. The
dropout method is applied to combat overfitting. Dropout is a regularization method that
approximates the training of many neural networks with different architectures in parallel
[19]. Dropout layers can be placed anywhere between the other layers. The decision is made
to put a dropout layer after every fully connected layer, as shown in Figure 9. Every value
between 0 and 1 with a step of 0.1 has been tested for the dropout to achieve the highest
performance possible. The dropout value of 0.1 resulted in the highest performance and is
therefore used for the remainder of this research.
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Figure 9: Schematic overview of the layers in the LSTM neural network, including dropout
layers

4 Results
This section reports the final results of the appliance of different values for H. In order to
train and test the model, a dataset is built from earthquakes from 2007 until 2011. From
this dataset, 6000 samples are randomly picked. After preprocessing, a remainder of 3500
samples was left.

The value of H will be iteratively increased by ten seconds to perceive how the model
behaves. This procedure is visualised for one seismic waveform in Figure 10.

Figure 10: Three iterations to find optimised value of H of a seismic wave from one station

For each value of H, the model has been run ten times. On average, one in twenty
iterations returned an outcome where all predictions were either 0 or 1. These outcomes are
skipped and not considered for the average accuracy and F1-Score calculation. The accuracy
and F1-Score of the validation data of the ten iterations are averaged and displayed in Table
4, Figure 11 and Figure 12.

H-value 0 10 20 30 40 50 60 70 80 90 100
Accuracy 0,57 0,57 0,58 0,55 0,59 0,61 0,58 0,64 0,61 0,60 0,57
F1-Score 0,56 0,57 0,61 0,58 0,57 0,61 0,58 0,63 0,61 0,58 0,56
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H-value 110 120 130 140 150 160 170 180 190 200
Accuracy 0,58 0,59 0,58 0,61 0,61 0,61 0,59 0,61 0,59 0,59
F1-Score 0,53 0,55 0,54 0,60 0,60 0,62 0,59 0,59 0,58 0,59

Table 2: Accuracy and F1-Scores of averaged iterations

Figure 11: Accuracy plotted against H-value

Figure 12: F1-Score plotted against H-value

Several main points can be concluded from the table and the graphs. Firstly, the model
does not perform very well at low values of H. The model performs with an accuracy and F1-
Score of 0,55 - 0,62 for H = 0 until H = 40. When H is raised further than 40, the performance
goes up, peaking at H = 70. When H increases even more than 70, the performance reduces
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again, and eventually, it will fluctuate around an accuracy value of 0.6 and an F1-Score
slightly lower than 0.6.

The precision and recall of the earthquake predictions are visualised in Figure 13. The
values are retrieved in the same way as aforementioned. In addition, the recall and precision
based on no-earthquake predictions graphs are visualised in Figure 14. The four charts
combined can explain what is precisely the cause of the trend of the accuracy and the
F1-Score.

Figure 13: Precision and recall for earthquake predictions plotted against H-value

Figure 14: Precision and recall for no-earthquake predictions plotted against H-value

5 Responsible Research
The most significant responsibility during this research is the matter of reproducibility and
repeatability. In the Methodology and Implementation section, every step and design choice
has been explained and motivated. By clearly explaining every step, everyone with a bit of
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background in deep learning can implement a deep learning model and follow the same steps
that have been taken in this paper. This transparency allows other researchers to adopt the
methods in this paper and improve upon them. In addition, the data used in this paper is
from the FDSN dataset. This dataset is open-source, so everyone is able to access it for free.

If other researchers consider adopting the methods explained in this paper, they should
consider that the results are not guaranteed to work on every other dataset. The FDSN
dataset was used during this research, and the methods were not tested on any different
dataset.

Besides reproducibility and repeatability, there is also a critical ethical concern. When
one implements the solutions described in this paper and tries to predict earthquakes in the
real world, one has to be absolutely sure that the software can predict earthquakes correctly.
As mentioned in Section 2.2, the price of false negatives, where an earthquake is happening
but is not predicted, can be insanely high. The software and responsible implementers will
be blamed for this.

6 Discussion
In the following section, the results of the research will be discussed. Possible flaws and
particularities will be mentioned. The hypothesis was that the higher the value of H is,
the lower the accuracy would become. This was not the case; the performance is lower for
smaller values of H. At higher values of H, the performance stabilises. This could be the
case for multiple reasons.

1. The dataset contains unexpected patterns. It could be the case that the deep learning
model recognises other patterns within the data than whether or not a seismic wave-
form is an earthquake. As an example, consider the following case: flat earthquake
seismic waveforms are retrieved 2000 seconds before the second consecutive earthquake.
It could be the case that the model can ’see’ that an earthquake will occur based on an
event that always happens 2000 seconds before an earthquake. This means that the
model is learning based on the 2000 seconds in advance of an earthquake. This could
be independent of H’s value, and therefore, the effect of changing H is less interpreted.

2. There are different forms of data in the dataset. The performance values are different
when running the model on earthquakes from other years. For example, when running
the same data using earthquakes from 2021 until 2022, the accuracy was at a maximum
of 55 percent. This might indicate that the form of the data within the FDSN dataset is
changing throughout the years, which can be very hard for a model to detect. Because
the model cannot learn the data correctly, it might result in the value of H having less
influence and, therefore, not wholly being able to capture the trend of the performance
when changing H-values.

3. It could be the case that the trend described in the Results section is correct.

The precision and recall for earthquake and no-earthquake predictions make it noticeable
what is the actual cause for the performance to increase. The peak of the performance resides
at an H-value of 70. What strikes is that at H = 70, the precision value for earthquake
predictions and recall value for no-earthquake predictions are high. The fact is that a false
positive in earthquake predictions is the same as a false negative prediction in no-earthquake
predictions. Thus, the amount of false positives in earthquake predictions is decreasing, and
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therefore the amount of false negatives in no-earthquake predictions is also decreasing. This
is the reason for the performance increase at H = 70. Since the performance increase is
primarily due to the decrease of false positives, there might be room for more performance
by getting to increase the number of true positives.

7 Conclusion and Future Work
The following section concludes the research by summarizing the findings and what is learnt
from them.

As seen in the result section, the value of T negatively influences the performance of
deep learning models when it is close to 0. The model reaches an accuracy and F1-score
of 0,55 - 0,62 for H = 0 until H = 40. When the value of H rises further, the performance
increases further, with a peak at H = 70. When the value of H is increased even further
than 70, the performance is reduced, and the performance fluctuates eventually around 0.6
for the accuracy and slightly lower than 0.6 for the F1-Score. Thus, if only performance
is considered the most important asset, an H-value of 70 should be picked for short-term
earthquake predictions. If a longer prediction time is also considered an important asset,
the most obvious H-value would be 200, the biggest value that is considered during this
research.

As explained in the Discussion section, when the performance is at its peak, the precision
for earthquake predictions is high, and the recall value for no-earthquake predictions is high.
Thus, the conclusion can be drawn that for the optimal value of H, the decrease of false
positives concerning earthquake predictions is causing an increase in performance.

As explained earlier in the Discussion section, the deep learning model performed non-
identical on different subsets of the dataset. Therefore, the results shown in this research
can not be held as completely reliable.

Regarding future work, it would be of interest to achieve higher performances. A binary
classifier with a maximum accuracy of 0.64 is very poor. An interesting first step would be
determining whether the dataset contains unexpected patterns, as explained in the Discus-
sion section. In addition, it could be of importance to figure out why the model is performing
differently on different datasets within the dataset, as described in the Discussion section.
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A Appendices

A.1

Station Longitude Latitude Site name
BFZ 176.246245 -40.679647 Birch Farm
BKZ 176.492544 -39.165666 Black Stump Farm
DCZ 167.153533 -45.464713 Deep Cove
DSZ 171.804614 -41.744961 Denniston North
EAZ 169.308253 -45.231053 Earnscleugh
HIZ 174.855686 -38.512929 Hauiti
JCZ 168.785473 -44.073210 Jackson Bay
KHZ 173.538970 -42.415980 Kahutara
KNZ 177.673669 -39.021755 Kokohu
KUZ 175.720873 -36.745229 Kuaotunu
LBZ 170.184420 -44.385553 Lake Benmore
LTZ 172.271035 -42.781667 Lake Taylor Station
MLZ 168.118407 -45.366544 Mavora Lakes
MQZ 172.653766 -43.706082 McQueen’s Valley
MRZ 175.578527 -40.660545 Mangatainoka River
MSZ 167.926399 -44.673334 Milford Sound
MWZ 177.527779 -38.334001 Matawai
MXZ 178.306631 -37.562259 Matakaoa Point
NNZ 173.379477 -41.217103 Nelson
ODZ 170.644622 -45.043982 Otahua Downs
OPRZ 176.554929 -37.844300 Ohinepanea
OUZ 173.596133 -35.219689 Omahuta
PUZ 178.257209 -38.071548 Puketiti
PXZ 176.862145 -40.030644 Pawanui
QRZ 172.529148 -40.825522 Quartz Range
RPZ 171.053865 -43.714608 Rata Peaks
SYZ 169.138823 46.536890 Scrubby Hill
THZ 172.905218 -41.762474 Top House
TOZ 175.501847 -37.730956 Tahuroa Road
TSZ 175.961124 -40.058553 Takapari Road
TUZ 169.631143 -45.953975 Tuapeka
URZ 177.110894 -38.259249 Urewera
VRZ 174.758453 -39.124341 Vera Road
WCZ 174.345043 -35.938642 Waipu Caves
WHZ 167.947031 -45.892428 Wether Hill Road
WIZ 177.189302 -37.524511 White Island
WKZ 169.017562 -44.827021 Wanaka
WVZ 170.736754 -43.074350 Waitaha Valley

Table 3: Specifications of 38 measurements stations in New Zealand
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