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Abstract

We demonstrate that Andreev modes that propagate along a transparent Josephson junc-
tion have a perfect transmission at the point where three junctions meet. The chirality
and the number of quantized transmission channels is determined by the topology of
the Fermi surface and the vorticity of the superconducting phase differences at the tri-
junction. We explain this chiral adiabatic transmission (CAT) as a consequence of the
adiabatic evolution of the scattering modes both in momentum and real space. The dis-
persion relation of the junction then separates the scattering trajectories by introducing
inaccesible regions of phase space. We expect that CAT is observable in nonlocal con-
ductance and thermal transport measurements. Furthermore, because it does not rely
on particle-hole symmetry, CAT is also possible to observe directly in metamaterials.
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Unlike particles that follow deterministic trajectories, waves, both quantum and classi-
cal, may split and follow multiple paths. Under special conditions, however, waves follow
a deterministic path, transmitting perfectly from source to target. The simplest mechanism
that protects such transmission is the adiabaticity of the potential landscape: if the potential
changes slowly enough, the wave functions adjust to the local changes of the potential with-
out splitting into partial waves. In a quantum point contact [1], for example, the adiabaticity
of the constriction ensures that an integer number of modes pass through, while the rest of
the modes reflect. Another mechanism that protects quantized transmission is the topology
of a gapped Hamiltonian, which prohibits scattering between channels due to a combination
of their symmetry structure and spatial separation. For example, the chiral edge transport
of a quantum Hall insulator [2] is protected because the channels propagating in opposite
directions occupy different edges of the sample, and are separated by a gapped bulk.

Topological protection, however, extends beyond the bulk properties of an insulator.
Specifically, the number of electron- and hole-like Fermi surfaces give rise to the quantized
transmission of Andreev modes propagating in a superconductor – normal metal – supercon-
ductor (SNS) junction at a π phase difference [3]. While these modes are dispersionless
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within the Andreev approximation (the linearization of the Hamiltonian at the Fermi level)
they acquire charge and velocity due to the nonlinearity of the normal dispersion. At positive
voltage bias, the nonlocal conductance measures the number of electron-like critical points:
Fermi surface points where the velocity is parallel to the interface between the superconduc-
tors. Likewise, negative bias conductance counts the number of hole-like critical points. The
difference between electron and hole-like critical points is the Euler characteristic of the Fermi
surface—a topological invariant [4].

To highlight our main result, we refer the reader to Fig. 1: a multiterminal short SNS
junction has quantized chiral transmission of Andreev modes (see App. A and Ref. [5] for
the details of numerical simulations). In this device, pairs of superconductors form waveg-
uides for Andreev modes, which occupy an energy range below the superconducting gap and
above a minimal energy determined by the phase difference across the junction. At the point
where multiple junctions meet, the Andreev modes from different waveguides perfectly trans-
mit clockwise or counterclockwise, depending on the winding of the superconducting phases.

While protected chiral transport also exists in quantum Hall systems, the modes in the
SNS junction occupy the same spatial region, and therefore the mechanism is distinct. Fur-
thermore, the different scattering trajectories are not distinguished by any quantum number,
which excludes symmetry-based protection. In the following, we examine this phenomenon
and explain how chiral transmission emerges from the dispersion of the Andreev states beyond
the Andreev approximation and the topology of the Fermi surface. Because the scattering is
protected by the adiabaticity of the wave function evolution, we name this phenomenon chiral
adiabatic transmission (CAT).

To understand the origin of CAT, we consider a Josephson junction: a normal metal be-
tween two superconductors, as shown in Fig. 2(a). We generalize the result of Ref. [3] to
an arbitrary phase difference between the superconductors, as necessary to analyze a trijunc-
tion. To identify the role of corrections to the Andreev approximation, we consider a parabolic
dispersion in the direction y , perpendicular to the interface between the superconductors.
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∆, φT

∆, φL ∆, φR

−1 −1/2 0 1/2 1

E/∆

0

1T

T11

T21
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Figure 1: A three-terminal Josephson junction has quantized chiral transmission of
Andreev modes. Left: Three superconductors with an infinitesimally narrow ballistic
metal in between (N). The superconductors have the same normal Hamiltonian with
chemical potential µ. The gap∆ is constant, but the superconducting phasesφT , φL ,
andφR differ, such that all the phase differences are 2π/3. Andreev modes propagate
along the junctions as shown by the arrows. Right: Transmission of Andreev modes
from lead 1 into itself (T11), lead 2 (T21), and lead 3 (T31), for a Y-shaped three-
fold symmetric junction. Transmissions from leads 2 and 3 are not shown, but are
likewise quantized and chiral. Above the superconducting gap the scattering modes
are not confined to the junctions and all transmission become enabled.
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This is a good approximation close to a critical point and still gives a qualitatively valid descrip-
tion of the dispersion away from the critical point. We consider two s-wave superconductors
with a gap ∆ and a phase difference δφ, with an infinitesimally narrow metal between them.
At a fixed momentum kx parallel to the junction, the Bogoliubov-de Gennes Hamiltonian reads:

H(y) = [−a∂ 2
y − Ex]τz +∆ cos(δφ/2)τx + sign (y)∆ sin(δφ/2)τy , (1)

where τx ,y,z are Pauli matrices acting on the particle-hole degree of freedom, 2a is the inverse
effective mass, and Ex is the position of the band bottom. Considering the dispersion near
a critical point with kx = kc + δkx gives Ex = −vxδkx , and reproduces the Hamiltonian of
Ref. [3] when δφ = π. For a parabolic band, on the other hand, Ex = µ − ak2

x , with µ the
chemical potential.

The Andreev approximation follows from linearizing the dispersion around the Fermi mo-
mentum ky0 = ±

p

Ex/|a| in the y-direction and using the Ansatz |Ψ(y)〉 = exp(iky0 y) |ψ〉,
where |ψ〉 is a two-component spinor that only changes slowly with y . This approximation is
valid when ∆≪ Ex . Applying Eq. (1) to |Ψ(y)〉 and neglecting ∂ 2

y |ψ〉, we find that |ψ〉 is an
eigenstate of the linearized Hamiltonian

H(0)± (y) = ∓2iaky0∂yτz +∆ cos(δφ/2)τx + sign (y)∆ sin(δφ/2)τy . (2)

This Hamiltonian has one bound state for each sign of ±ky0, which we use to construct the
approximate eigenstates of H(y):

|Ψ(0)± (y)〉=

√

√

√
∆ sin |δφ/2|

vy

�

±1
1

�

exp

�

±iky0 y −
∆ sin |δφ/2|

vy
|y|
�

, (3)

where vy = 2aky0. The corresponding eigenvalues E(0)± = ±∆ cos(δφ/2) are the result of the
Andreev approximation. To go beyond the linear approximation, we project the full Hamil-
tonian H(y) onto the basis states |Ψ(0)± (y)〉, keep only terms up to O(∆2), and obtain the
effective Hamiltonian

H± =∆

�

cos(δφ/2) ∆
2Ex

sin2 (δφ/2)
∆

2Ex
sin2 (δφ/2) − cos(δφ/2)

�

. (4)

This yields the dispersion of the Andreev modes

E± = ±∆
q

(∆/2Ex)2 sin4 (δφ/2) + cos2 (δφ/2) , (5)

and the corresponding eigenstates

N± |Ψ±(y)〉=
�

cos (δφ/2)±
E±
∆

�

|Ψ(0)+ (y)〉+
∆

2Ex
sin2 (δφ/2) |Ψ(0)− (y)〉 , (6)

where N± is a normalization factor. The relative weights of the momenta ±ky0 contributed by

|Ψ(0)± (y)〉 depend on δφ and Ex/∆, and are only equal at δφ = π. Away from δφ = π, the
Andreev modes are asymmetric superpositions of the states at ±ky0, and the average momen-
tum of the Andreev modes is misaligned with the junction. Figure 2(b) shows the orientation
θ = arctan
�

kx/〈ky〉
�

of the average Andreev mode momentum as a function of kx . At the
lowest available energy, the momentum of the Andreev modes is perpendicular to the inter-
face (θ ∈ {0,π}). Modes with kx close to the critical value have θ ≈ ±π/2, and additionally
their energy increases and eventually exceeds the superconducting gap. There are no modes
with momentum parallel to the junction.
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Figure 2: The quadratic dispersion of the Andreev modes hybridize states at oppo-
site momenta, enabling the propagation of the Andreev modes along the junction.
(a) SNS short junction with arbitrary φL − φR phase difference. (b) Spectrum of
the junction in (a) for a normal dispersion with circular electron Fermi surface, and
φL −φR = 2π/3 computed numerically (gray lines). The inset shows the Fermi sur-
face with the critical points (black dots) of the Fermi surface have kx = ±kF , the
Fermi wave vector. The perturbative dispersion of the Andreev modes (5) is colored
according to the angle of the momentum expectation value θ = arctan

�

kx/〈ky〉
�

.

In the arms of the trijunction the average momentum of the Andreev modes is slightly
misaligned with the junction’s direction. Near the intersection, the momentum of the scat-
tering states changes continuously because the superconducting pairing—the only position-
dependent Hamiltonian term—is small. While some scattering processes at the trijunction
may occur without aligning the momentum of the Andreev modes with the arms of the tri-
junction (see Fig. 3(left)), others necessarily require the momentum to be aligned with the
arms at some point during the propagation (see Fig. 3(right)). We therefore observe that the
dispersion of the arms of the junction forms prohibited regions in the phase space of the scat-
tering modes. To confirm the phase space separation of different scattering trajectories, we
perform the Wigner-Weyl transform of the scattering wave functions in the trijunction:

Φ(r,k) =

∫

dr′ e−ik·r′/ħhψ∗
�

r+
r′

2

�

ψ

�

r−
r′

2

�

, (7)

This transform gives the Wigner quasiprobability distribution Φ(r,k) of the wave functionψ in
phase space. We use that the Wigner distribution is peaked near the Fermi surface and further
simplify it by only considering k= (kF (E) cosθ , kF (E) sinθ ), with kF (E) the Fermi momentum
at the energy of interest. We show in Fig. 4(a) the resulting Wigner distributions Φi(x , y,θ )
of the scattering wave functions ψi injected from lead i in the Y-shaped junction shown in
Fig. 1, and confirm that Φi indeed do not overlap. Because the asymptotic values of θ depend
on the orientation of the trijunction arms, we also expect that the semiclassical trajectories
overlap if we decrease the relative angle between any two arms. We confirm this by com-
puting the Wigner distribution of scattering modes in an arrow-shaped trijunction shown in
Fig. 4(b), where the angle between two pairs of arms is acute. In this geometry the separation
of the scattering wave functions in phase space is lost, and therefore the transmission of An-
dreev quasiparticles is no longer quantized, as shown in Fig. 4(c). The separation of modes in
momentum space is reminiscent of the mechanism protecting quasi-Majorana modes: approx-
imate zero modes appearing in topologically trivial superconductors with broken time-reversal
symmetry in presence of smooth confining potentials [6–8].
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Figure 3: Allowed (left) and prohibited (right) scattering processes at the trijunction.
The energy of a mode in each of the three metallic arms of the trijunction is as a
function of its orientation θ and the phase difference δφ. The orientation of the
arrows depict the momentum of the modes at each position and at an energy that
lies within the superconducting gap.

Our arguments rely exclusively on the phase space separation of the scattering wave func-
tions and the adiabatic evolution of the momentum. Therefore, it is natural to expect that
CAT does not depend on the details of the junction, the shape of the Fermi surface, or even
the presence of particle-hole symmetry. To confirm this assumption, we simulate a trijunction
with the following modifications:

• The phase differences across the three junctions are unequal.

• The junction has unequal angles between its arms.

• The Fermi surface is anisotropic.

• Particle-hole symmetry is artificially broken.

The resulting transmissions are shown in Fig. 5 (see Appendix A for the details of the numerical
simulations). Despite the modifications, the only qualitative difference from the symmetric
trijunction is that the different channels are open at different energy ranges due to the different
phase differences. At the energy where modes only exist in one arm, the only allowed process
is a reflection of the Andreev modes. At the energy when a conduction channel opens in
another arm, the Andreev modes perfectly transmit between the two arms. Finally, only when
the three arms have open channels, chiral and quantized transmission is possible and realized.

To prove that CAT is protected by the topology of the Fermi surface, rather than the num-
ber of open channels, we consider a model with a next-nearest neighbor hopping in the y-
direction, such that it has a peanut-shaped Fermi surface. The resulting transport simulations
are shown in Fig. 6. The additional critical points of the Fermi surface that appear in two out
of three arms of the trijunction create extra particle-like and hole-like channels [3]. At the
trijunction the additional channels couple in a way that is sensitive to the junction shape and
may either reflect or partially transmit. Despite that, examining the individual transmission
eigenvalues—eigenvalues of t ji t

†
ji with t ji the transmission matrix from lead i to j—reveals

that one of the eigenvalues stays quantized and chiral. This once again follows from the phase
space separation of the scattering modes: at least one of the chiral scattering channels in each
arm is separated from other all other modes.

So far we focused on the transmission of Andreev modes, without considering the electrical
conductance. Our work differs from Ref. [3] in that we consider finite phase differences, and
therefore do not rely on time-reversal symmetry. On the other hand, the electrical conductance
in Ref. [3] is quantized because it is impossible to couple opposite sides of the Fermi surface
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x
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E/∆

0

1

T T11 T21 T31

(a) (b)

(c)

lead 1
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lead 3

Figure 4: Wigner distribution of the scattering wave functions in two trijunctions
with all phase differences equal to 2π/3. For clarity, we only show points where the
probability density is above 0.2 times the maximum value. The colors label the leads
from which the scattering wave functions are injected. In a Y-shaped junction the
scattering wave functions are separated in phase space (a), and their transmission
is protected (shown in Fig. 1). In contrast, in a junction with acute angles between
the arms, the Wigner distributions of the scattering wave functions overlap (b). The
overlap in the phase space destroys the quantization of the transmissions Ti1 from
lead 1 (c). Transmissions from leads 2 and 3 are not shown.

in the absence of large momentum scattering. To confirm the robustness of the electrical
conductance quantization at arbitrary phase differences, we simulate the interface between
a Josephson junction and a normal lead, and compute the transmissions from the Andreev
mode to the electron modes Tea and hole modes Tha, with the result being shown in Fig. 7(a).
The electrical conductance in a symmetric NSN geometry equals to (e2/h)Tea(Tea − Tha). We
observe that similarly to Ref. [3], the Andreev mode perfectly couples to electron modes at
positive bias voltage, and hole modes at negative bias voltage, despite breaking time-reversal
symmetry. This generalization to arbitrary phase differences can be understood by thinking of
the interface as an SNS junction whose metallic region increases in width until it becomes a
normal lead, so that each Andreev mode adiabatically evolves into an electron or hole mode.
The perfect injection of electrons into Andreev modes followed by chiral adiabatic transmission
and perfect emission of Andreev modes into electrons, results in a quantized nonlocal electrical
conductance. This enables a purely electric measurement of chiral adiabatic transmission.

The coupling between the two approximate eigenstates |Ψ(0)± 〉 is∝∆
2/Ex , and it is similar

to the energy ∆2/µ of a Caroli-de Gennes-Matricon (CdGM) bound state in a superconduct-
ing vortex [9], where µ is the distance between the band bottom and the Fermi level. This
similarity is not accidental: like the Andreev modes, the momentum distribution of the CdGM
states is confined to a cross-section of the Fermi surface and their wave functions possess a
similar electron-hole asymmetry. In Fig. 7(b), we show that transmission from a CdGM mode
to electrons and holes has the same quantized conductance as that of the Andreev modes.
We compute the transmissions between two semi-infinite leads: one a superconductor with
a vortex and the other a normal metal. Differently from Andreev modes, however, higher
energy CdGM modes contribute the same conductance as the lowest energy mode, so that
the total number of quantized conductance channels in a vortex is proportional to µ/∆. The
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Figure 5: Dispersion and quantized chiral transmission of Andreev modes in an asym-
metric trijunction with unequal phase differences δφ1,δφ2,δφ3. Left: Dispersion of
each lead along the junction’s direction. The dispersion of modes confined in the
junction is colored according to the lead, and the bulk states’ dispersion is shown in
grey. The leads have the same normal Hamiltonian with an anisotropic Fermi surface
(inset), but the critical points are at different momenta, schematically shown with
the dots. Right: Transmission of Andreev modes from leads 1, 2, and 3, respectively,
into the other leads or themselves. The colors label the outgoing leads.

conductance quantization of CdGM modes, together with the unexplained quantization of the
rectified conductance in a superconducting quantum point contact [4] hints at a more univer-
sal description of the underlying protection.

An experimental observation of CAT requires a ballistic Josephson junction. While we
considered a position-independent normal Hamiltonian, we expect that a sufficiently smooth
potential landscape will not affect the transmission. Thus, candidate platforms must have
high mobility and smooth normal-superconductor interfaces, potentially realizable in several
platforms. Devices with these properties have been fabricated using two-dimensional elec-
tron gases [10–12] and stackings of graphene with superconducting transition metal dical-
chogenides [13–15]. Alternatively, twisted bilayer graphene and Bernal bilayer graphene
offer gate-defined Josephson junctions with intrinsic superconductivity tunable by electric
fields [16–19]. The ability to measure nonlocal electrical conductance while the supercon-
ductors are grounded poses an additional challenge to observe the imprint of the Fermi sur-
face topology on the Andreev transport. To suppress the contribution of the supercurrent to
nonlocal conductance, many experiments operate in the tunneling regime [10,20–22], which
breaks the quantization of nonlocal conductance. On the other hand, because CAT produces
asymmetry of transmission rather than only quantization, it becomes easier to observe. For
instance, in addition to purely 2D systems, we expect chiral transport to manifest in high qual-
ity films of crystalline superconductors such as aluminum, where the Josephson junctions are
formed by narrowing the film thickness. Finally, the chiral nature of the transport makes it
observable in thermal transport measurements, which are less sensitive to supercurrent.
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Figure 6: CAT in a trijunction with a peanut-shaped Fermi surface, with Euler char-
acteristic χF = 1 equal to that of a circular Fermi surface. The panels show the
transmission eigenvalues of Andreev modes from lead 1, 2, and 3, respectively, into
the other leads, while reflections are not shown. Only one of the eigenvalues per
panel is quantized and chiral, process shown by the arrows from critical points in the
incoming lead (black dots) to the critical points in the outgoing lead (colored dots).
Unprotected transmissions are those not quantized for ∆/2< E <∆.

Metamaterials offer another platform to observe CAT. Because introducing phase differ-
ences requires breaking time-reversal symmetry, single valley transport in photonic or acous-
tic honeycomb crystals [23–26] is a promising starting point. In such a system coupling an
electron-like and a hole-like band that coexist in a single valley mimics the effect of the super-
conducting pairing. A displacement of the valleys in momentum space then shifts the relative
phase difference, implementing an analog of the superconducting phase difference. In addi-
tion to microscopic control over the effective Hamiltonian, metamaterials naturally allow local
high resolution probes and therefore make the chiral nature of the scattering modes directly
observable.

−1 0 1

E/∆

0

1

2

T

(a)
∆, φT

∆, φB
N

Tea Tha

−1 0 1

E/∆

T

(b)

SN

Tea Tha

Figure 7: Quantization of coupling between Andreev modes and electrons and holes
at a normal metal – Josephson junction interface. (a) Transmission of Andreev modes
into electron (Tea) and hole (Tha) modes from an infinitesimally narrow Josephson
junction lead into a metallic one. (b) Transmission of Andreev modes into electron
(Tea) and hole (Tha) modes from a superconducting vortex with a finite metallic core
into a metallic lead.
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In summary, we have analyzed the transport of Andreev modes in a three terminal Joseph-
son junction. We demonstrated that the Fermi surface topology and adiabaticity enable quan-
tized chiral transmission by separating different channels in momentum space. The chiral
nature of the transport makes it observable in thermal, rather than only electrical, transport
measurements. Furthermore, because the transmission only relies on the adiabaticity, rather
than particle-hole symmetry, this phenomenon is also observable in metamaterials. That the
same phenomenology applies to superconducting vortices suggests a more general underlying
description, which we leave for future work.

Acknowledgments

We are grateful to T. Vakhtel for insightful discussions. We thank A. Bordin and A. Young for
useful discussions regarding the experimental implementation of the trijunction.

Data availability The code used to produce the reported results and the generated data are
available on Zenodo [5].

Author contributions I. A. D., K. V., A. M., and A. A. performed the numerical simulations.
I. A. D., K. V., and A. A. prepared the figures. I. A. D., K. V., A. M., and A. A. wrote the manuscript
with input from M. B. and V. F. All authors analyzed the results and participated in defining
the project scope. A. A. oversaw the project.

Funding information This work was supported by the Netherlands Organization for Scien-
tific Research (NWO/OCW) as part of the Frontiers of Nanoscience program, an NWO VIDI
grant 016.Vidi.189.180, and OCENW.GROOT.2019.004. We also acknowledge funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation program grant agreement №828948 (AndQC).

A Numerical simulations

The content in the figures of this paper was computed simulating the following tight-binding
Hamiltonian using Kwant [27]:

H = Hsuperconductor +Hnormal , (A.1)

Hsuperconductor =
∑

n

�

∆eiφn c†
n,↑c

†
n,↓ +∆e−iφn cn,↓cn,↑

�

, (A.2)

Hnormal =
∑

σ=↑,↓

∑

n

�

�

2t x + 2t y −µ
�

c†
n,σcn,σ −
�

t x c†
n+ex ,σcn,σ + t y c†

n+ey ,σcn,σ + h.c.
�

�

, (A.3)

where c†
n,σ (cn,σ) creates (annihilates) an electron with spin σ at site n = (nx , ny) on a square

lattice. The superconducting phase φn is site-dependent, while the superconducting gap ∆,
chemical potential µ ∈ R, and the hopping amplitudes t x , t y are uniform.

To compute the transmission in the three-fold symmetric trijunction of Fig. 1 we use a
square lattice of size L = 100, with parameters µ = 0.5, ∆ = 0.1, t x = t y = 1, and phases
φL = 2π/3, φR = −2π/3, and φT = 0 for the left, right, and top regions respectively. The
system for the trijunction is shown in Fig. 8(a), where β = 2π/3 for the three-fold symmetric
system. We use the same parameters to compute the band structure in Fig. 2 and the Wigner
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(a)

φT

φL φR
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Figure 8: The trijunction geometry. The system is composed of three superconducting
regions (left, right, and top) of superconducting phase φL , φR, and φT , respectively.
The metallic region between them is not present, because it is infinitesimally thin.
The left and right leads (red) are periodic in the x-direction, and the bottom lead
(red) is periodic in the y-direction. The angle β between the left and right arms of
the junction is 2π/3 in (a), 7π/6 in (b), and π/2 in (c).

distribution in Fig. 4(a). To compute the Wigner distribution in Fig. 4(b) and the wavefunc-
tions’ transmissions in Fig. 4(c) we use the same parameters, but we change decrease the angle
between the arms such that β = 7π/6, as shown in Fig. 8(b). The code used to compute the
transmission is available at [5], together with the code used to generate all the other figures
in this paper.

In Fig. 5 we make Fermi surface anisotropic by adding the diagonal hoppings to the Hamil-
tonian:

Hanisotropy =
∑

σ=↑,↓

∑

n

�

2t x y c†
n,σcn,σ −
�

t x y c†
n+ex+ey ,σcn,σ + h.c.

�

�

. (A.4)

To compute the spectrum and transmissions in Fig. 5, we use a square lattice of size L = 100,
with parameters µ = 0.5, ∆ = 0.1, t x = t y = 1, and phases φL = 2π/3+ 1/2, φR = −2π/3,
and φT = 0 for the left, right, and top regions respectively. Moreover, we double the electron
block of the Hamiltonian Hee → 2Hee to artificially break particle-hole symmetry, and we
change the angle between the left and right arms of the junction to β = π/2, as shown in
Fig. 8(c).

In Fig. 6 we introduce the peanut-shaped Fermi surface by adding the next-nearest neigh-
bor hoppings to the Hamiltonian:

Hpeanut = −
∑

σ=↑,↓

∑

n

�

t y y c†
n+2ey ,σcn,σ + h.c.

�

. (A.5)

To compute the transmissions in Fig. 6, we use a square lattice of size L = 100, with param-
eters µ = 0.5, ∆ = 0.1, t x = 1.2, t y = 0.8, t x y = 0, t y y = −0.5, and phases φL = 2π/3,
φR = −2π/3, and φT = 0 for the left, right, and top regions respectively.

To compute the electrical conductance between a normal region and a Josephson junction
in Fig. 7(a) we use a square lattice of size L = 60, and uniform parameters µ = 0.5 and
t x = t y = 1 for the whole system. In the superconducting regions we use∆= 0.1 and a phase
differenceφL−φR = π/3. To compute the electrical conductance between a normal region and
a superconducting vortex in Fig. 7(b) we set up a three-dimensional system with additional
nearest-neighbor tz hoppings in the z-direction and an onsite potential of 2tz . We use a lattice
of size L = 30 and uniform parameters µ= 0.9 and t x = t y = tz = 1 for the whole system. In
the superconducting region the superconducting phase forms a vortex with φ = arctan(y/z),
and the superconducting gap is position-dependent, ∆(y, z) = 0.25× tanh(

p

y2 + z2/5).
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