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ABSTRACT

Recent advancements in hardware and software systems have been driven by the deployment of emerging smart
health and mobility applications. These developments have modernized the traditional approaches by replacing
conventional computing systems with cyber-physical and intelligent systems combining the Internet of Things
(IoT) with Edge Artificial Intelligence. Despite the many advantages and opportunities of these systems within
various application domains, the scarcity of energy, extensive computing needs, and limited communication
must be considered when orchestrating their deployment. Inducing savings in these directions is central to
the Approximate Computing (AxC) paradigm, in which the accuracy of some operations is traded off with
energy, latency, and/or communication reductions. Unfortunately, the dynamics of the environments in which
AxC-equipped IoT systems operate have been paid little attention. We bridge this gap by surveying adaptive
AxC techniques applied to three emerging application domains, namely autonomous driving, smart sensing and
wearables, and positioning, paying special attention to hardware acceleration. We discuss the challenges of
such applications, how adaptive AxC can aid their deployment, and which savings it can bring based on traits
of the data and devices involved. Insights arising thereof may serve as inspiration to researchers, engineers,

and students active within the considered domains.

1. Introduction

Computing contributes significantly to the world’s rising energy
consumption. In 2018, data centers in the EU accounted for 76.8 TWh
or 2.7% of the total electricity demand, and this number is predicted to
increase to 98.5 TWh (a 28% increase) or 3.2% of the total demand by
2030 [1]; others predicting the total energy spent on computing will
exceed world energy production by 2040 [2], as illustrated in Fig. 1.
This increase is dictated by the rising number of data centers in the
Cloud (e.g., computing, storage), and it only adds fuel to the current
world energy crisis [3]. In particular, the growing number of Internet
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of Things (IoT) devices is predicted to exceed 30 billion by 2027,
challenging the scalability of Cloud computing [4], as these devices
rely on offloading data for processing, incurring communication latency
and energy consumption, thereby compounding the aforementioned
compute energy. Not only does this increase force the data centers
themselves to suddenly manage many more user requests, but it also
burdens the network backhaul that communicates data back and forth
between various processing elements [5].

The Edge and Fog computing paradigms were introduced to deal
with the increased network bandwidth [25], aiming at limiting the
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Table 1
Overview and comparison of related surveys.
Authors Reference Year Technologies Applications
AxC Edge ML/AI Comms. Auto. driving Smart sensing Positioning
Han et al. [7] 2013 v
Xu et al. [8] 2015 v
Mittal [9] 2016 v
Shi et al. [10] 2016 v v
Betzel et al. [11] 2018 v v
Ibrahim et al. [12] 2018 v v
Yousefpour et al. [13] 2019 v
Ma et al. [14] 2019 v v v v 4
Cococcioni et al. [15] 2020 v v v
Shi et al. [16] 2020 v v v
Pascacio et al. [17] 2021 v v
Kiran et al. [18] 2021 v v
Ometov et al. [19] 2021 v v v v
Ding et al. [20] 2022 v v v
Damsgaard et al. [21] 2022 v v
Badran et al. [22] 2023 v v
Katare et al. [23] 2023 v v v v
Grenier et al. [24] 2023 v v
Our work — 2024 v v v v v 4
1022 World's energy production Point of or imperfect models [21,29,30]. Such applice.\tions. employ. algorithms
no return that aggregate large (redundant) data sets, iteratively refine outputs
0 ; .
10? P thereby attenuating errors, or produce ranges of outputs considered
18 - to be equally acceptable [31]. These characteristics are present in,
10 J among others, image and video processing, positioning, analytics, and
g 108 Pre especially in Machine Learning (ML), for which even drastic approx-
> |~ imations (e.g., binarization) have limited quality implications on the
% 10" results [32].
S 2
10 1.1. Focus areas
10" . . .
In this paper, we focus on adaptive AxC as a technological enabler
108 of more energy-efficient, smarter applications at the intersection of
2010 2015 2020 2025 2030 2035 2040 2045 IoT and Edge AI. For this purpose, we consider adaptive AxC as a

Fig. 1. Historic and predicted energy consumption of computing systems compared to
the world energy production (reproduced from [6]).

communicated data and increasing the data processing in the network
Edge devices [26]. Recent technological advances, such as the increased
popularity of smartphones, have enabled this form of processing [13],
which has been shown to potentially improve energy efficiency [27]
and improve the overall communications quality balance [28]. While
the Edge and Fog domains differ in some details, as will be seen later,
for ease of explanation they are considered as one mid-tier computing
layer that facilitates offloading with reduced overheads here. Executing
applications closer to the user end devices can reduce communication
latency and backhaul contention, opening research avenues focusing
on the design of new intelligent applications that can be executed on
low-power, but enhanced Edge devices, commonly referred to as Edge
Artificial Intelligence (AI) [10,16]. The intersection of IoT and Edge Al
is particularly interesting as it enables responsiveness and privacy at
low power consumption [20].

Designing applications for low power consumption involves op-
timizations at different levels: (1) at the device level, as embedded
devices’ access to energy is often constrained; (2) at the communication
level, as the energy required to offload data needs to be compared
against onboard processing; and (3) at the Cloud level, with accelerators
tailored for specific applications to optimize efficiency. The emerg-
ing Approximate Computing (AxC) domain that has been increasingly
reviewed over the past decade spans all these levels and involves
trading off numerical accuracy or functional correctness for lower
energy consumption, communication latency, circuit area, etc. [8,9,21].
In contrast to conventional precision-oriented developments, it exploits
the observation that many applications are error-resilient and have
user requirements that can be satisfied with a lower-grade system

collection of techniques for improving the performance and energy
efficiency of computing systems by optimizing their energy-latency-
accuracy trade-offs dynamically with respect to their instantaneous
quality constraints. We divide computing systems into two layers:
L1 comprising applications and algorithms and L2 comprising hard-
ware architectures and devices. Each layer possesses its requirements
and opportunities for making effective use of AxC: at L1, mathematical
models, and algorithmic understanding are needed to highlight areas
where approximations may be applied, and at L2, hardware should
implement arithmetic and logic circuitry to support preceding layer
extensions of software. Binding the two together requires support for
managing approximations according to error resilience characteristics
for performance enhancement, power and energy savings, reliability,
lifetime, or other parameters at run time with low overhead [21].

As this field of survey is large, we narrow down the scope to focus on
three IoT and Edge Al-related application domains in which we believe
AxC can make a difference: autonomous driving, smart sensing and
wearables, and positioning; and the adaptive AxC techniques relevant
to these. These domains are popular and have been subject to consid-
erable research effort for some years now; yet significant challenges
remain to satisfy their energy requirements, as we will see later. Fig. 2
highlights our appreciation of the landscape of these applications and
the hardware on which they are executed by mapping the L1 to the Ap-
plications and Algorithms in Software classes and L2 to the Algorithms in
Hardware and Hardware classes. Naturally, the separation of algorithms
and techniques across these classes is not trivial, and some exist at the
intersections; for example, edge detection algorithms may just as well
be executed purely in software as in hardware.

1.2. Contributions

There exist several surveys and reviews in the fields of AxC and
the three covered application domains. Two papers, for example, focus
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Fig. 2. Overview of AxC techniques throughout layers and their application domains.

on circuit- and architecture-level AxC techniques [7,8]; another gives a
broader but mostly application-agnostic survey of AxC techniques [9];
and yet another considers only techniques for Edge computing hard-
ware, providing examples of applications that can benefit from AxC
but without covering their application-level approximations [21]. This
particular emphasis on use-case-agnostic techniques limits the existing
works’ articulation on exploiting application-specific characteristics.
Similarly, existing surveys on Edge computing or Edge AI do not
consider AxC in detail [10,13,16,20]. We summarize the differences
between the present survey and the existing literature in Table 1.

This survey bridges these gaps in the existing literature by consid-
ering the intersection of AxC with three emerging Edge AI and IoT-
related application domains. We describe application-, architecture-,
and circuit-level AxC techniques and survey and highlight recent pub-
lications on their use in the three domains. Our main contributions are
(1) a discussion of the challenges of applications within these emerging
domains; (2) a description of how AxC techniques can be applied to
these applications; and (3) an outline of the potential benefits that
arise from using AxC based on the properties of the processed data
and the devices involved in these application domains. With this, we
aim to showcase the vast amount of existing work on AxC in the three
domains and to highlight the importance of combining AxC techniques
across the system levels to maximize its benefits. Moreover, we hope to
instigate further research in three directions: (1) application of adaptive
AxC to new application domains, (2) development of new techniques
suitable for application-specific or generic use, and (3) implementation
of these techniques in software and hardware.

1.3. Methodology

As the topic of the present survey is rather broad, conducting a
comprehensive, systematic review of its related literature is infeasible.
Instead, we performed an integrative review [33] by collating papers
within each of the authors’ research domains and filtering them to
avoid multiple references to the same topic or use case. The resulting
set of publications was reviewed by the senior authors and adjusted as
needed to sufficiently cover the surveyed techniques and domains.

1.4. Paper structure

The paper is structured as follows. Section 2 provides a brief back-
ground of Edge computing and ML needed to follow the next sections.
Section 3 covers circuit-level AxC techniques and architectures at L2
and application- or algorithm-level techniques at L1 relevant in the
present context. Next, Section 4 presents the three application domains,
outlines relevant algorithms, and describes their approximation op-
portunities. We put little emphasis on techniques for binding L1 and
L2 together, considering them as mere communication links between
applications and hardware. Section 5 discusses observations made in
the paper and suggests directions for future work. Section 6 concludes
the survey.

IoT Applications

=~

S"’art Sensi d Wea\’%"\es = Present link
sing an

4= Future link

Fig. 3. Overview of the main computing paradigms and their devices and
communication links relevant within the three application domains considered.

2. Background

Before surveying state-of-the-art publications related to the afore-
mentioned three considered application domains, we provide a brief
motivation and introduction to related general technologies and trends.
Specifically, we cover Edge computing and ML. We aim to maintain a
high abstraction level for better accessibility to a broader readership,
referring interested readers to consider the following sections for more
details.

2.1. Edge computing

The number of connected devices has exploded over several decades
[4,25]. These devices drastically increase network bandwidth require-
ments as more data are produced at the end devices but offloaded for
storage and processing in Cloud datacenters [13]. Moreover, growing
interest in the IoT indicates the continuation of this trend beyond
network requirements sustainable by existing infrastructure [13,25,27].

The Edge and Fog computing paradigms were introduced to address
these challenges. Both paradigms are centered around sinking Cloud
computing capabilities from the network core to the geographical
edges (e.g., base stations, routers, access points, smartphones, etc.),
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Type Model description

Regression is a model trained to predict the value of some (continuous) variable given a number of (continuous or discrete) features [34].

Nearest Neighbor models are non-parametric and do not require training. Instead, at inference time, the model’s output is the value or the class of
the known example nearest to the input by some distance metric [34].

Supervised

k-Nearest Neighbors (k-NN) implements k nearest neighbor models in ensemble, merging their outputs by majority voting or averaging. With large
training sets, k-NN models can achieve good capacity but do so at high computational costs [34].

Decision Trees are, like the name hints at, tree-like models that comprise decision nodes and classification labels. During training, the model assigns
features and thresholds to its decision nodes and labels to its leaf nodes. At inference time, the resulting class is identified by following decision
nodes from the root to a leaf [35]. Unconstrained decision trees may grow arbitrarily large and, thus, become unwieldy. This may be avoided with

special training algorithms [34].

Random Forests implement several decision trees in ensemble, merging their outputs by majority voting or averaging. Individual trees can be
trained either on different data subsets or only on poorly-classified data (i.e., boosting) to improve overall accuracy [35].

Support Vector Machines (SVMs) are trained to map input data to an n-dimensional hyperspace-n being the number of features-to maximize the
distance between disparate categories, essentially computing a distinguishing hyperplane. An input example is classified by which side of the
hyperplane it is at [34,36]. SVMs inherently perform binary classification but may be used in ensemble to form multi-class classifiers [37].

Bayesian Models are statistical models based on Bayes’ theorem. Given a prior distribution and an observation, the corresponding posterior

distribution can be computed [38].

Neural Networks mimic biological brains, implementing networks of artificial, non-linear neurons and weighted synapses. Typical models comprise
several layers of neurons: an input layer, a number of optional hidden layers, and an output layer. Non-linearity is introduced by passing the
accumulated values of each neuron through an activation function like sigmoid, softmax, or ReLU. NN architectures show great variety from DNNs
with multiple hidden layers, CNNs with neurons organized in convolutional filters, RNNs with integrated memory elements, to transformers with
attention modules that assign context-specific soft weights to their inputs [39]. During training, the synaptic weights are updated, while they remain

frozen during inference [34,40].

Clustering algorithms group unlabeled data such that grouped data points are more similar to each other than to other groups according to some

Unsupervised metric [34,41].

Association Rules are frequently used in data analysis for understanding relations between features according to some metric of interest [41,42].

Dimension reduction techniques aim at reducing data dimensionality with minimal information loss, essentially implementing a lossy compression of
inputs [43-45]. Recently popular methods are based on autoencoders, i.e., models that comprise mirrored, but otherwise often identical, encoder and
decoder NNs to learn a low-dimensional intermediate representation from which they can reproduce input examples [34,46].

Reinforcement

Markov Decision Processes are sequential decision-making models comprising a present state from which an action can be performed. The action’s

quality is evaluated based either on a model of the environment or on samples gathered from a physical/virtual environment directly. During
training, high quality actions are rewarded (reinforced) and low quality actions are penalized. This ensures the model converges towards an optimal

behavior within its environment [40].

performing computations closer to the end devices [32,47,48]. As
such, they are intermediate to traditional local and Cloud computing,
differing in where computation and storage are performed. CISCO
coined the Fog computing term, referring to a paradigm in which Fog
nodes-small-scale servers capable of managing tasks for many users
simultaneously-are distributed around the internet [49]. Edge com-
puting refers to a paradigm in which computational nodes are more
numerous, smaller, and further distributed close to the end users [10].
Both paradigms revert to Cloud computing when tasks cannot be per-
formed in their distributed devices. Owing to their similar distributed
nature, we consider the two paradigms as one and provide an overview
of them in Fig. 3.

Understanding the difference between the Cloud and Edge
paradigms is crucial. In the present survey, we focus on compute-
capable devices belonging to the bottom two categories — IoT and
Edge - and consider resource-constrained IoT devices with little-to-
no computational capabilities outside our scope. Our focus on Edge
Al necessitates this distinction as related ML algorithms tend to be
compute-heavy. Moreover, like prior work [21], we expect the benefits
of AxC to be more pronounced in the related devices — autonomous
cars, smart sensors and wearables, and positioning systems — than in
the upper network layers’ devices. Yet, despite vast amounts of Edge
systems research, only little work focuses on its practical implementa-
tion. Supporting frameworks must implement primitives for local data
collection and processing, wireless and secure data transmission, and
task offloading, as well as a flexible Edge-Cloud server backend to man-
age the processed data [50,51]. Everything needs to be interconnected
by well-defined Application Programming Interfaces (APIs) [52]. We
assume the existence of such a framework with minimal overheads.
Now, as a basic understanding of ML is necessary to follow the survey’s
technical sections, we briefly introduce it.

2.2. Machine learning for edge AI

The autonomous driving, smart sensing, and positioning systems
that we consider in this survey are expected to grow increasingly
intelligent, aggregating data from multiple sensors to navigate traffic,
detect seizures, or accurately locate a device [53]. This kind of AI is
commonly implemented using ML algorithms that can learn patterns —
probability distributions — from data or actions and later be used to infer
information from new data or act in new environments [34]. Despite
being widely known and applied, we find it suitable to provide a brief
introduction to the field’s components and refer readers interested in
details to more comprehensive texts [34,38,53].

ML algorithms are typically used following a two-stage flow con-
sisting of an (offline) training phase, during which their weights are
updated according to training data, followed by an (online) deployment
phase, during which their weights are frozen and the models are used
only for inference [34]. Table 2 outlines and summarizes popular ML
techniques, of which especially variations of Neural Networks (NNs) are
popular in the literature, as we will see later. We relate these models to
their learning models: Supervised, Unsupervised, Semi-supervised, and
Reinforcement Learning (RL), described below. In addition to these, we
cover Federated Learning (FL), which is a distributed, online learning
model popularized by advances in Edge computing and the growing
need for adaptability [53].

Supervised Learning is an approach to train ML models with
labeled data to correctly detect, classify, or predict its labels. During
training, a model is adjusted to minimize a pre-determined loss func-
tion most often using some variant of gradient descent, for example,
backpropagation in NNs. Backpropagation works by estimating the
contribution of each neuron to the current loss and subsequently ad-
justing the weights according to the loss function’s gradient, gradually
approaching one of its minima [34,38].
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Unsupervised Learning can be applied to synthesize new informa-
tion from unlabeled data, useful to discover patterns and groupings by
similarity or difference in examples without needing human interven-
tion. Depending on the use case, models are adjusted during training
according to a pre-determined metric of similarity or interest [34,42].
In systems with high-dimensional inputs, unsupervised techniques like
autoencoding [44,45] can be used to pre-process data before they are
passed to a supervised model.

Viewing ML models as ways to learn probability distributions over a
dataset renders the lines between supervised and unsupervised learning
rather blurry [34]. The fact that some ML models, like NNs, may be
used both for supervised and unsupervised tasks further adds to this
blur. The Semi-supervised Learning hybrid model also originates from
this. It is motivated by the time-consuming, cost-intensive need for ex-
pert supervision to maintain the labeling quality of datasets [40]. Semi-
supervised techniques combine characteristics from both supervised
and unsupervised techniques, even extending upon their functionality
enabling dynamic performance maintenance or adaptation to new data,
for example through pseudo-labeling [40,54].

Reinforcement Learning distinguishes itself from the above tech-
niques by being environment-driven rather than data-driven. An agent
will attempt to learn the optimal behavior by being rewarded or penal-
ized based on actions performed to its environment, i.e., its beneficial
actions will be reinforced. It is particularly useful in complex robotics
and autonomous driving scenarios [40].

Federated Learning is a relatively new field in ML, specifically
designed for collaborative or joint learning in the distributed computing
paradigms of today. Its related models are closely linked to those of
supervised and unsupervised learning, but its training algorithms are
federated, and a centralized server aggregates model updates rather
than training data. This preserves system privacy but requires powerful
end devices, e.g., autonomous cars and wearables [53].

Datasets used for ML tasks are often split (randomly) into two or
three subsets: a training set, a test set, and optionally a validation set [34,
38]. A model is trained on the largest of these subsets: the training
set, and evaluated periodically during training on the validation set. Its
eventual performance, however, is measured on the test set, meaning
the model needs capacity not only to minimize its training error but
also the gap between its training and test errors [34]. Too low capacity
may lead a model to underfit and fail to minimize its training error,
while too high capacity can make it overfit and fail to generalize to the
test set [34]. Designing an ML algorithm, thus, means deciding on or
determining an adequate capacity as well as a suitable set of hypotheses
about the underlying statistical processes of the dataset [34].

AxC opportunities in ML are numerous. In addition to operating
on noisy input data, most of the models outlined in Table 2 rely on
compute- and memory-heavy linear algebra and non-linear activation
functions. In many cases, such models are designed with a larger capac-
ity than their targeted task requires [55,56]. The combination of these
operations and the over-provisioning of capacity, particularly in NNs,
makes models inherently resilient to small computational errors [57].
This trait can be exploited to reduce their demands, rendering them
more suitable for execution at the Edge, as we will see later in the

paper.
3. Approximate computing

In parallel with the development in the number of connected
devices, the applications they execute have also changed. The vast
amounts of produced data require massive computational efforts to
process and aggregate. Such recent applications are user-centric and
can provide results evaluated on their acceptability rather than their
correctness [21]; illustrated in our context by, e.g., how well an ML
model performs on the road, the data quality from a smart sensor, or the
precision of a positioning device. As a result, these applications show
inherent error resilience that can be exploited using approximation

Journal of Systems Architecture 150 (2024) 103114

100%

Resilient execution time

Fig. 4. Percentage of execution time spent on resilient computations (i.e., candi-
dates for approximation) in some ML applications. Numerical values extracted for
visualization from [31].
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Fig. 5. Highlighted AxC software and hardware techniques. Techniques extracted
from [9,21].

to achieve interesting trade-offs between energy, latency, and output
quality. Recent research has revealed that many applications spend
most of their execution time performing resilient computations that,
with care, can be approximated with little-to-no quality degradation,
as highlighted for some ML applications, in Fig. 4. Some of which may
be executed in a smart sensor.

In the AxC domain, approximations are used to reduce applica-
tions’ computational complexity, memory demands, or communication
bandwidth [30]. Techniques range from generic circuit-level ones to
application-specific algorithm- or software-level ones, the latter often
bringing greater benefits. Fig. 5 outlines some generic techniques. We
return to select hardware and software techniques later. At the soft-
ware level, a developer can either introduce approximations that are
hardware-agnostic (e.g., loop/code perforation, quantization, pruning)
or ones that require hardware support (e.g., branch misprediction roll-
back skipping) [9]. Similarly, a hardware designer can introduce static
application-agnostic (e.g., inexact arithmetic) or application-driven ap-
proximations (e.g., instruction set extensions) [8,9], or dynamic ap-
proximations to facilitate Voltage Over-Scaling (VOS) and avoid any
resultant timing or memory errors for more aggressive energy sav-
ings [58-60].

Managing approximations at run time is essential to satisfy quality
constraints. Blindly applying AxC is simple but may lead to under-
utilization or inadequate results [8,29]. Being too cautious leads to
the former and results in sub-optimal savings, while being too gen-
erous leads to the latter and results in too large quality degradation.
Striking a balance between the two is difficult and demands either
developer intervention or run-time quality control in hardware [61,62].
Alternatively, the error impact of certain techniques can be established
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Table 3 Table 4
Comparison of the papers on inexact arithmetic. Comparison of the papers on circuit-level techniques.
Type Architecture Adaptive? References Type Parameter Adaptive? References
Non-segmented No [67-70] Truncation Yes [58,98-100]
Adder 8 Yes [71,72] Precision Voltage Yes [100,101]
Seemented No [73-76] scaling® Refresh Rate Yes [591]
€ Yes [77] Strategy Level
a Logarithmic No [78] . HLS [102-104]
Approximate Pruning Gate [105,106]
Multiplier Tree No [79,80] pp ' )
synthesis” ith . HLS [107]
Arra No [67,81-86] Inexact arithmetic RTL [108,109]
y Yes [87,88]
No [89-91] 2 We exclude two papers [60,110] that survey and study precision scaling in general
MAC Yes [92] terms.

2 We exclude three works [93-95] that present libraries of multipliers rather than
individual designs.

with formal or probabilistic model checking tools preemptively [63].
Formal tools can be used to compute characteristics like worst-case
error [64], while probabilistic tools use randomized simulation to
infer with some degree of confidence the presence of some given
properties in a system [63,65,66]. Both these types of analyses are
relevant at design time when various approximate operating points
of a system must be determined. Our focus on adaptive AxC also
involves a particular interest in controlling approximations according
to changing application requirements [29] and varying operands during
execution [58]. We present some techniques for this later.

As a broad spectrum of techniques exists within the AxC paradigm,
we limit this introduction to the commonly applied ones relevant to our
surveyed application domains. We follow a bottom-up approach: first,
we consider circuit-level techniques; then, their integration into various
computing architectures; and last, some application- or algorithm-level
techniques.

3.1. Circuit-level techniques

We first focus on two prevalent categories of techniques: inex-
act arithmetic and circuit-level approximations. Depending on their
adaptability and the target application’s quality requirements, these
techniques are generally applicable. More details on them are avail-
able in other surveys [8,9,21]. We summarize the covered work in
Tables 3 and 4.

3.1.1. Inexact arithmetic

Functional approximation of arithmetic units is a particularly pop-
ular and active area of research. This branch mainly deals with the de-
sign of adders and multipliers at different abstraction levels, i.e., tran-
sistor, gate, or register-transfer level. Some notable approximate adders
include speculative adders, segmented adders, and approximate Full
Adders (FAs). Significant research effort has also been spent on ap-
proximating multipliers — the most power-hungry components in ML
accelerators. We focus on these two units and their combination: the
Multiply-Accumulate (MAC) unit that is essential for NN accelerators.

Adders play a crucial role in computing systems. Demands for high
speed and energy efficiency have promoted the design of approximate
adders that save area and power consumption and increase perfor-
mance at the expense of accuracy [69]. Adders calculate the sum
of two binary numbers and come in different layouts, the two most
common are the Ripple-Carry Adder (RCA) and the Carry-Lookahead
Adder (CLA) [96,97]. Briefly, an n-bit RCA cascades n FAs, propagating
the carry from each FA to the next, giving it a linear delay. A CLA
instead computes and propagates carries in slices of bits, operating
these modules in parallel to produce a sum, giving them logarithmic
delay yet a considerably greater area than an RCA.

Many approximate adders have been proposed. The simplest ones
employ approximate FAs in the Least-Significant Bits (LSBs) of an RCA

b Gircuits generated through approximate synthesis are by default not adaptive, so we
use a different third column to categorize the associated work.
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Fig. 6. Boolean equations and Karnaugh maps. Red digits indicate errors. Outputs are
in order of significance.

to reduce the carry chain’s length and area [7,67,68]. Examples of
such include substituting FAs with simple OR-gates [67] and various
logically inexact FAs [73] or so-called mirror adders [69], illustrated
by the Karnaugh map in Fig. 6(a). Alternatively, an adder can be
segmented into several smaller adders that operate in parallel. Exact
Carry-Select Adders and CLAs already integrate this technique, and
their approximate counterparts cut their carry chains [74]. Speculative
adders generalize this segmentation to predict each sum bit from its
k < n less significant bits [73,75]. The majority of these adders
are designed for Application-Specific Integrated Circuit implementation
and integrating them on Field-Programmable Gate Array (FPGA) does
not necessarily bring comparable savings [111]. There are, however,
also FPGA-specific designs [70,76]. These adders reduce latency by
cutting their carry chains and later reducing the arising errors by
feeding Look-Up Tables (LUTs) with duplicated inputs.

Within our scope of adaptive AxC, some authors have explored
complementing the aforementioned adders with extra logic to select
the degree of approximation. This concept may be integrated into an
RCA by inserting multiplexers at each carry, enabling fine-grained qual-
ity control at the expense of high overheads [71]. Reduced-overhead
alternatives to this design include the RCA of [72], which dynamically
selects the number of bits used in carry prediction, and the CLA of [77],
which approximates every fourth carry through power gating.

Multipliers are another crucial component in computing systems. As
for adders, several different approximate designs exist, including ones
that apply the speculative adders described above [75]. However, using
adders directly to implement multipliers may be inefficient in trading
off accuracy for area and energy savings. Instead, multiplication is often
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implemented by a cascaded array of adders that reduce partial products
into the final results. Approximations often target reducing the critical
path of this array by truncating some number of LSBs [67,81], by
approximating the adders [95], or by reducing the number of partial
products through (hybrid) high-radix encodings [82]. Some authors
have also explored using genetic algorithms to generate libraries of
inexact multipliers [93].

Other designs implement combinations of the above techniques.
One work notices that rounding operands to their nearest power-
of-two means multiplication turns into simple shift operations [78],
while another performs multiplication recursively based on simple
inexact 2 x 2 multipliers [79], whose logical behavior is given in
Fig. 6(b). Some designs integrate error compensation [67,81] or input
pre-processing [83] to reduce output errors, while others aggressively
approximate both partial product generation and reduction to reduce
energy consumption further [84,85]. Again, implementing these mul-
tipliers on FPGA does not guarantee any savings [94]. In recognition
of this, some work constructs partial product reduction with approxi-
mate compressors [86], while others utilize inexact 4 x 4 multipliers
or partial product generation circuits that map well to the fabric’s
primitives [80,94]. The latter is even collected in a library similar to
that of [93].

In addition to the above, there also exist run-time configurable
inexact multipliers. Two such designs are proposed in [87] and [88].
The multiplier of [87] can perform either one wide multiplication
or two narrow multiplications, both of whose results are inexactly
compressed, while that of [88] combines inexact compression with
dynamic input truncation to enable greater control of output quality.

MACs are usually constructed by a multiplier and an adder fused
to maintain precision. Therefore, integer designs can be approximated
both in their adders and multipliers using units like the above, while
floating-point ones require being conservative, particularly concerning
the exponent logic. Four publications explore integer MACs: one that
approximates accumulation by early termination [112], one focused on
customizability in FPGAs [89], one using sign prediction and a special
input encoding [90], and another that supports integer operations by
dynamically disabling the exponent logic of a floating-point MAC [92].
Another paper simplifies a floating-point MAC by removing its overflow
and underflow circuits and approximating its mantissa multiplier [91].
Most papers in this category target CNN acceleration.

3.1.2. Circuit-level approximations

For some applications, static precision scaling, like quantization, has
already been applied in commercial hardware such as [113]. Though
the benefits of this are clear, one must be conservative to guarantee
output quality when applying static techniques. This has brought at-
tention to adaptive dynamic precision scaling techniques that can tailor
computational precision to the temporal changes in an application’s
error resilience [98,114]. As outlined above, this style of adaptability
is possible to implement in inexact arithmetic, e.g., with selective error
compensation [67,73,81], disabled carry propagation [71,72,77], or
early-terminated accumulation [112]. However, these techniques fail
to exploit the benefits of low-level circuit characteristics: voltage and
frequency.

The voltage and frequency knobs are commonly adjusted in Dy-
namic Voltage and Frequency Scaling to maximize energy efficiency
when the computational load is low and performance when it is
high [115,116]. Still, they may analogously be used for approximation
to adjust circuit precision [98]. Over-scaling the voltage or frequency
will significantly increase the risk of timing failures in a circuit — some
of which other approximations can counter — while potentially leading
to vast energy savings [58,60,117].

Several papers explore VOS. Their proofs-of-concept are mainly
floating-point arithmetic units compared with statically truncated ones
to highlight potential benefits [58,98]. The approach appears to be
mostly used for NN acceleration, for which it involves keeping track
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Fig. 7. Abstract illustration of a heterogeneous SoC with two processor cores, two
accelerator cores, a distributed last-level cache, a memory controller, and a peripheral
controller; interconnected by a mesh-style NoC.

of good-enough precision and adjusting the word length of weights and
activations [99,100]. In some instances, the approach is taken to the
extreme near-threshold case at which significant reductions in static
and dynamic power can be achieved at the cost of longer computation
time [101,117]. Unlike inexact arithmetic, voltage over-scaling can be
applied to FPGAs, though its effects may be difficult to predict and vary
greatly across a chip. Errors may be mitigated by mapping sensitive
logic to the most fault-resilient parts of the FPGA [110]; a strategy
similar to that, which is often applied to reduced refresh-rate Dynamic
RAM (DRAM) [59].

Earlier we described how, e.g., inexact arithmetic units can de-
crease the area and power consumption of a system. However, in some
cases, it is unnecessary to limit the Design Space Exploration (DSE)
only to these units. Instead, to broaden their scope and avoid costly
iterative simulation and synthesis runs, a large pool of work considers
introducing approximations during synthesis [107]. Some authors pro-
pose integrating approximate circuits characterized at design time into
High-Level Synthesis (HLS) flows [102-104], while others introduce
approximations at the Register-Transfer Level [108,109] and even at
the gate level [105,106]. While a more fine-grained granularity can
lead to greater savings, it has synthesis time overheads [106].

3.2. Architectures

Having introduced circuit-level AxC techniques, we turn our atten-
tion to compute architectures. We distinguish between general-purpose
and application-specific architectures, though the techniques described
in Section 3.1 are often equally applicable in either [21]. The applica-
tion domains we consider often demand a high energy efficiency that
can be only achieved with bespoke accelerators. This is particularly
true in ML and image and video processing, which are crucial in
autonomous driving and smart sensing, and in Digital Signal Processing
(DSP) tasks, which are the cornerstone of positioning. Therefore, we
focus mainly on architectures relevant to these domains. We again
summarize our findings in Tables 5 and 6.

3.2.1. General-purpose architectures

As described in Section 2.1, extremely constrained Edge devices may
not permit the implementation of several different application-specific
accelerators [13]. Instead, they implement only the absolute essentials:
a highly optimized General-Purpose Processor (GPP) flanked by a few
accelerators [118]. Such systems are often collected as a System on
Chip (SoC) and interconnected by a Network on Chip (NoC), see Fig. 7.
AxC may be applied to all these parts, as we will now detail.
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Table 5 Table 6
Comparison of the papers on general-purpose architectures. Comparison of the papers on application-specific architectures.
Type Target Technique References Sub-domain Application Technique References
Arithmetic Truncation [119] NNsP Truncation [57]
Cache Cache line overlapping [121] Inexact arlthmetl? [136]
Processors - CNNs® Voltage over-scaling  [100]
Speculation [124] Machine learning® Dot product encoding [137]
Core Memoization [120] g Early termination [138]
Neural approximation [122,123] Hyperdimensional computing Approximate similarity [139,140]
. 1 Inexact arithmetic [126,127] SVMs Inexact arithmetic [141]
Generic accelerators  PE Voltage over-scaling [29] k-NN Partitioning [142]
Router Voltage over-scaling [128] DCT Inexact arithmetic [143]
Networks-on-chip Dropping, compression [129] Voltage over-scaling ~ [144,145]
Network intert b - - . [130] Multimedia HEVC Inexact arithmetic [146]
etwork interface Dropping, compression, etc. Early termination [147]
Edge detection Inexact arithmetic [148]

GPPs generally require some form of instruction set changes to
support AxC. Yet with such changes implemented, developers can uti-
lize inexact arithmetic units and approximate loads/stores, as explored
by Ndour et al. [119]. Other work proposes using memoization and
approximate caches [120,121]. A memoization module may keep track
of inputs and outputs of blocks of instructions to skip their execution
if similar inputs re-appear, while the cache may exploit the similarity
between cache lines to effectively increase cache size. Others suggest
approximating compute-heavy kernels by small NNs in custom accel-
erators [122,123]. Lastly, it is possible to approximate the processor’s
control flow by, e.g., selectively disabling roll-back on a branch or
load-value misprediction in out-of-order cores [124]. The common no-
tion is that approximations should target several instructions, memory
operations, or control flow to be effective; in line with observations
in [125].

Generic accelerators may also integrate approximations while focus-
ing on striking a good balance between reconfigurability and its over-
heads. Most surveyed designs resemble Coarse-Grained Reconfigurable
Arrays (CGRAs) suitable for accelerating compute-heavy kernels. Yet,
despite many similarities, they vary in how approximations are applied:
one applies effort scaling by combining VOS and clock gating-based
truncation [29], and another applies dynamic operand truncation [58].
Others integrate inexact arithmetic units and either adjust the error
correction applied to one or select between multiple units at run
time [126,127]. Both techniques can induce great energy savings and
offer a wide range of options for run-time adaptation to be established
at design time.

NoCs interconnect processors, accelerators, and various controllers
(see Fig. 7), carrying packets of data or synchronization messages
between pairs of nodes. Being either wired or wireless, they also offer
opportunities for approximation, including selective VOS of links [128],
adaptive packet truncation or dropping [129], approximate locks or
lock coarsening, and skipping low-impact updates to shared memory
locations [130]. This not only reduces network traffic (and contention),
but it can also significantly speed up particularly parallel applications
at the expense of reduced synchronization with varying degrees of
output error [130]. Similar strategies can be applied to networks on
a larger scale, though we do not cover such techniques in the present
survey [11].

3.2.2. Application-specific architectures

Accelerator architectures are often costly in area and power con-
sumption, meaning a certain level of utilization is demanded to justify
their integration. However, if well-utilized, they offer much higher en-
ergy efficiency and exploit approximation opportunities in their target
applications better than general-purpose architectures [21].

ML is, by far, the most popular application for which approximate
architectures are implemented. This is highlighted by work such as [20]
and its relevance to both autonomous driving (e.g., in Simultaneous Lo-
calization and Mapping (SLAM) [131]) and smart sensing [132] (e.g., in
emotion detection [133]). Due to its computational demands, most ML

General

. . Voltage over-scaling [118]
Signal processing WT

Distributed arithmetic [149]

2 Four works on k-NN and decision tree accelerators do not explicitly apply any AxC
techniques but are included in the survey for completeness [150-153].
b All works on NN and CNN accelerators utilize quantization.

research is done using floating-point arithmetic on GPP or Graphics
Processing Unit architectures but quantized and implemented with,
e.g., 8-bit integer operations in resource-constrained devices [134,135].

NNs are the main focus of many papers. For example, one work
[136] proposes a highly efficient keyword spotting accelerator employ-
ing binary-weighted NNs and custom delay-based analog multipliers.
Another [57] describes the entirety of IBM’s research and develop-
ment of a general DNN accelerator (like [29]) with corresponding
tool flows, which enable both software- and hardware-level approx-
imations. Another three papers propose accelerator architectures for
CNNs, exploiting kernel size reductions and inexact arithmetic [138],
a custom bit-level dot product implementation [137], and layer-wise
quantization combined with VOS [100]. The latter motivates its design
by targeting resource-constrained Edge devices.

Despite their prominence in related work, NNs are not the main
focus of all papers: some instead implement SVMs or hyperdimen-
sional computing with inexact arithmetic units or in-memory architec-
tures [139-141]. To minimize accuracy degradation arising from ap-
proximations, some propose re-training networks with approximation
awareness [57,137].

When ultra-low power operation is required, NNs and even SVMs
may be too complex. Therefore, another set of papers focuses on
low-complexity implementations of k-NN and decision tree models on
FPGA. In [150], the authors propose two highly parallel k-NN accel-
erator cores, targeting models with many narrow example vectors and
ones with few wide vectors, respectively. The former of these designs
is made dynamically reconfigurable in [151], while the accelerator
of [142] integrates search optimizations specific to a Light Detection
and Ranging (LiDAR) localization application. The accelerator of [152]
stores many parallel per-class decision trees in block RAM internal
to designated cores and iterates over them before outputting final
inference results. The authors of [153] instead optimize the decision
trees themselves to be shallow and store them in distributed RAM
within the FPGA’s LUTs.

Image and video processing and other multimedia applications are
frequently found in autonomous driving and smart sensing systems [95,
132,154] and are often approximated in custom hardware. Example
designs include high-efficiency Discrete Cosine Transform implemen-
tations for which Almurib et al. [143] describe three design steps: (1)
selecting a low-complexity algorithm, (2) filtering out high-frequency
components, and (3) employing approximations in, e.g., arithmetic.
Others employ significance-driven approximations, showing that it is
possible to facilitate VOS with minor quality loss but ensuring that
significant operations are executed correctly, while the rest are ap-
proximated [60,144,145]. Others implement various edge detection
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and do not take retraining into account.

algorithms with reduced-complexity filters [148]. For video process-
ing, most publications explore architectures for approximating encod-
ing and decoding steps to and from the HEVC (or H.265) format,
particularly using inexact arithmetic units [146,147].

DSP tasks, as we have seen, are relevant both in wearables and in
positioning. Keeping our focus on bio-related applications, examples
of such architectures include a SoC-style design that incorporates a
CGRA for vector operations with an array of small GPP cores [118] and
different implementations of the discrete Wavelet Transform (WT) with
error compensation [149]. At the time of writing, we are not aware of
any architectures for positioning that exploit AxC techniques, yet we
expect many hardware techniques to be portable to these algorithms
too.

3.3. Application- and algorithm-level techniques

Though the hardware AxC techniques of Sections 3.1 and 3.2 can
bring significant benefits, the greatest gains may often be achieved by
applying high-level approximations tailored to a particular application.
With the prevalence of NN models in both autonomous driving and
smart sensing, as we will see later, we focus on techniques relevant
to these algorithms here, while we cover algorithmic approximations
specific to particular applications in the following sections.

As we will see later, NNs suffer from scaling issues that may prevent
their efficient implementation and execution in resource-constrained
Edge devices. Motivated by this, we consider model compression or
sparsification techniques that can reduce model size [155]. Four fre-
quent examples are quantization, pruning, knowledge distillation, and
low-rank approximation. We illustrate their functionality in simplified
form in Fig. 8 and briefly introduce them below. We summarize our
findings in Tables 7, 8, 9, and 10.

3.3.1. Quantization
Quantization is likely the most commonly applied AxC technique for
NNs. It involves reducing the bit-width of weights and/or activations

Table 7
Comparison of the papers on quantization.
Type Components Precision® References
. 2-bit [156,157]
Weights only L-bit [158]
Uniform 8-bit [159]
Weights and activations 4-bit [160,161]
2-bit [45,55]
. 4-bit [162]
Weights only 1-bit [163,164]
Non-uniform 4-bit [165-168]
Weights and activations 2-bit [169,170]
1-bit [171]

2 We report the minimal permissible precision for non-zero model components in the
surveyed works.

and transforming floating-point operations to fixed-point equivalents in
NNs. First shown to be a viable strategy in [159], subsequent work has
demonstrated reductions of weights and/or activations to 8-bit [165],
4-bit [165], 2-bit [156,157], and even binary [158] widths. Differ-
ent strategies either uniformly assign the same number format to all
network components of the same type (e.g., weights) [45,160] or non-
uniformly select optimal formats for different components [169,170].
Alternative strategies apply different quantization levels to individual
layers in DNNs [171], individual channels in CNNs [166,167], or
groups of network components [162-164].

Fig. 8(a) illustrates weights-only quantization to 3-bit signed in-
tegers. First, the real-valued weight matrix is scaled by a factor s
to bring its elements within the target format’s range. Second, the
scaled elements are rounded, or quantized, to the precision of the
target format. This process can be applied after training — post-training
quantization — but doing so may degrade model performance greatly
as errors accumulate in the forward pass [161]. Instead, the quanti-
zation effects can be modeled [55,161] or even trained [168] during
quantization-aware training. Models generally retain a higher accuracy
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Table 8 Table 9
Comparison of the papers on pruning. Comparison of the papers on knowledge distillation.
Type Model type Target References Optimization References
Filters [56,172,173] Maximum mutual information in activations [175]
Structured CNNs Filter weights [32] Minimum Frobenius norm on quantized weights [162]
Neurons [174] Minimum squared norm on international correlation [176]
Unstructured CNNs Weights [174] We exclude one work [177] that presents a comparison of knowledge distillation
Transformers Weight rows [39] strategies.

when quantization is applied in a non-uniform, fine-grained style, but
identifying such optimal configurations is computationally demanding,
albeit performed only once during training [163].

3.3.2. Pruning

Pruning is a common technique applied in DNNs and CNNs involv-
ing the removal of low-significance or redundant model components,
i.e., either weights [39] or neurons [56,172,173], known as unstruc-
tured and structured pruning [32,174]. Fig. 8(b) exemplifies unstruc-
tured pruning of the 50% least significant weights of a fully-connected
layer. We use the absolute value as our metric of significance and show
the effects of pruning in a histogram. The degree of approximation
correlates well with how aggressively these components are removed.

Fully exploiting the benefits of pruning may require dedicated
hardware support for sparse matrix operations. In the first category,
Yang et al. [56] propose a method for CNNs in which filters are pruned
softly thus enabling them to be updated until the model converges on
some filters being consistently near-zero. Their scheme achieves greater
reductions in computations incurring lower accuracy loss than compet-
ing schemes, including that in [172]. The work of Xiao et al. [174] is
in the second category and the authors propose an automatic scheme
for pruning neurons based on auxiliary variables, or indicators, that
help select the most appropriate network structure during training like
Jin et al. [168] do for quantization. This allows them to achieve high
compression ratios and fewer computations than other state-of-the-art
schemes.

3.3.3. Knowledge distillation

The core idea of knowledge distillation is to transfer knowledge
from one model (the teacher) to a smaller model (the student) [162,
175]. The approach is orthogonal to reducing a model’s size by cutting
away redundant information through quantization or pruning. It is a
two-step process: first, training a large model over a complete dataset;
and second, training a small model over a subset of the data while
minimizing some metric of difference in knowledge between pairs of
layers in the two models. This metric may be the correlation [176] or
mutual information [175].

Fig. 8(c) shows an abstract representation of this concept applied
to a pair of CNNs of which the student is significantly smaller than
the teacher. In practical scenarios, there may be a metric of difference
¢ per layer or even channel [176], but for simplicity, we show only
one between the networks’ outputs. Extreme versions of knowledge
distillation aim to directly transfer soft probabilities from one model
to another, reducing the time required to retrain the small model to
achieve satisfactory accuracy. Such schemes, however, have yet to
achieve similar compression ratios as the above techniques [177].

3.3.4. Low-rank approximation

The large matrices that constitute NNs can also be reduced in size
through factorization [178] and decomposition [179,180]. In prac-
tice, this may be implemented through Singular-Value Decomposition
(SVD) [179,180], Tucker decomposition [181], and Canonical Polyadic
Decomposition [43], suitable for reducing matrix size by removing
low-significance sub-matrices not only in NNs. Without diving into
mathematics, Fig. 8(d) illustrates this technique using the SVD on a
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Table 10

Comparison of the papers on low-rank approximation.
Strategy References
Truncated singular value decomposition [178]
Depthwise convolution decomposition [179]
Learned sparse “sketches” [180]
Tucker decomposition [181]
Canonical polyadic decomposition [43]

weight matrix. Guo et al. [179] focus on CNNs and propose an algo-
rithm that transforms models with regular convolutions to equivalents
with simpler, depth-wise convolutions that need no re-training. The
resulting models incur some accuracy loss but require much fewer
computations. Part of this accuracy loss can be restored or prevented
through sparse regularization during training [182].

Applying these techniques statically may bring some benefits but
might also lead to insufficient model accuracy. This can be mitigated
to some extent through approximation-aware training [161] or simple
iterative re-training after approximation [183]. State-of-the-art schemes
combine several of the above techniques; e.g., pruning, quantization,
and compressive coding in Han et al.’s Deep Compression [48].

As can be seen from the above, there are vast opportunities for
applying different AxC techniques across the system stack. Moreover,
these techniques can be utilized in ways that enable adaptivity with
relatively limited overheads through, e.g., error compensation in in-
exact adders [68,72,77], dynamic run time truncation in inexact mul-
tipliers [87,88], or run time tuning in various architectures [29,126]
or applications [164,184]. In the following discussion, we will refer
back to these sections when relevant. In tables, we will also only
report the nine most commonly applied AxC techniques: quantiza-
tion, pruning, knowledge distillation, low-rank approximation, lossy
compression,' various algorithmic approximations, inexact arithmetic,
voltage over-scaling, and approximate synthesis.

4. Applications and algorithms

With the fundamentals of AxC in place, we now turn our attention
to the three selected, emerging application domains: autonomous driv-
ing, smart sensing and wearables, and positioning. All three domains
comprise algorithms whose energy efficiency may be improved through
approximation. Contrary to other work [21], we do not consider Al
or ML as standalone application domains but rather as enablers of,
especially, autonomous driving and smart sensing and wearables. De-
spite apparent overlaps between the three domains, we cover them
separately in this section. For each domain, we describe relations to
our overall focus on IoT and Edge Al, outline underlying algorithms,
and survey papers that apply AxC to them. When relevant, we provide
references to background (Section 2) and AxC techniques (Section 3).

1 Though we do not explicitly introduce lossy compression as an AxC
technique, we find that it is frequently applied in combination with other
techniques.
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AxC techniques applied in the included papers that explicitly list autonomous driving as a use case. References sorted by publication year.
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4.1. Autonomous driving

As vehicles are extended with several simple or complex services
to assist drivers and easier mobility, they gradually become more like
other IoT devices [185], requiring either local or low-latency offloaded
data processing. Services such as braking assistance, lane departure
warning, adaptive cruise control, and Global Navigation Satellite Sys-
tems (GNSS)-based navigation have seen wide adoption by automotive
manufacturers [186], some are even already instances of Edge Al,
relying on ML techniques [154]. Other services, such as High-definition
Map and onboard internet-supported audio and video streaming appli-
cations (e.g., Spotify and BMW'’s iDrive), are still undergoing develop-
ment [187]. Combining these services and extending them further is
expected to enable fully autonomous driving. We start by reviewing the
levels of autonomy laid out by the Society of Automotive Engineers:

L1
L2

No Automation: The driver performs all driving tasks.

Driver Assistance: Driving tasks are performed by the driver
with little input from vehicle sensors and driving assistance
features.

Partial Automation: An in-vehicle compute unit can perform
some driving tasks — adaptive cruise control, emergency braking,
etc. — based on environment sensing, but the driver is required
to maintain control and monitor vehicle surroundings.
Conditional Automation: An in-vehicle compute unit can per-
form all driving tasks, but the driver must be able to take control
of the vehicle on demand.

High Automation: An in-vehicle compute unit can perform all
driving tasks and negotiate with other vehicles and infrastruc-
ture under certain conditions. The driver can take control of the
vehicle.

Full Automation: An in-vehicle compute unit can perform all
driving tasks and negotiate with other vehicles and infrastruc-
ture under all conditions. The driver can, potentially, take control
of the vehicle.

L3

L4

L5

L6

As expected, the computation and networking requirements grow
with increasing autonomy. At present, Level 3 autonomy exists and
has been regularly tested by manufacturers such as Tesla, Volvo, and
Volkswagen [186]. The progression of these manufacturers’ systems
is towards the integration of real-time sensing with statistical learn-
ing algorithms to replicate or imitate the driving process carried out
by humans, aiming either to assist human drivers or replace them
altogether [186,187]. Commonly, the systems rely on sensor data orig-
inating from cameras, LiDARs, radars, GNSS receivers, and networking
devices, which must be processed to enable intelligent decision-making,
illustrated in [23, Fig. 13]. As shown, the autonomous vehicle data-flow
consists of three modules: a SENSE module comprising the aforemen-
tioned sensors, a THINK module implementing the algorithms neces-
sary to process sensor data to enable intelligent decisions on which the
ACT module can base its actuation [188,189].
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According to several reports, the sensor data required for au-
tonomous driving will constitute 30 to 40 terabytes per day [190].
This mere volume puts great pressure on onboard data management
services. It also implies a need for powerful processing pipelines.
Moreover, connected vehicles are projected to rely on frequent com-
munication to share data with other vehicles. The driving services
might also incur competition over computing and networking resources
with advanced, connected multimedia services [191]. In general, in-
fotainment systems have evolved from simple radios to Cloud-driven
multimedia platforms that allow for audio and video streaming. This
evolution is likely to continue as vehicles become more autonomous,
keeping their drivers less occupied. Maintaining a low energy con-
sumption of these systems is crucial for maximizing the primary goal
when designing electric cars: driving range. Maximizing the range
also ensures minimal carbon emissions and energy costs. However,
current predictions point in another direction: energy consumption
may increase from 750 Wh to 2000 Wh per 100 km driven in the
minimal, efficient networking scenario that assumes short-range com-
munication and prioritizes essential services over onboard multimedia
processing [191].

4.1.1. Driving services at the edge

Naturally, the increasing amounts of data and computations re-
quired for autonomous driving raise the question of whether processing
is more efficiently done in the vehicle or offloaded to external servers.
This avenue enables interesting trade-offs between available computing
resources, communication demands, and achievable latency. While the
Cloud provides vast resources, it is infeasible to execute sensitive
services within it due to its bandwidth and latency constraints [192,
193]. Executing these services at the Edge appears as a reasonable
compromise retaining the benefits of offloading while providing fewer
computational resources. This concept is explored by Zhou et al. [53]
who list its many benefits, e.g., low latency, privacy preservation,
and energy efficiency. Computations can be distributed between all
participating devices, including other vehicles that have under-utilized
resources [194,195].

Regardless of the platform targeted, offloading introduces some
requirements on the systems involved. Firstly, the vehicle needs to
implement wireless networking devices with suitable protocols, as high-
lighted by Shi et al. [16]. Secondly, the distributed nature of au-
tonomous vehicles demands an equally distributed, i.e., decentralized
control structure. Several frameworks already implement this based
on function virtualization: Feng et al.’s AVE [196] and Tang et al.’s
rn-Edge [197] are initial examples of such, implementing real-time
task scheduling and resource allocation algorithms. More recently,
Tang et al. proposed LoPECS [198] that extends the communication
functionalities of z-Edge. Santa et al. describe another two frameworks
that virtualize available computing resources, including other vehi-
cles, and consider them in a multi-access Edge computing layer [194,
195]. They report improved device access latency and overall system
speedup. Ibn-Khedher et al. [199] consider a similar scenario but
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Fig. 9. Illustration of (left) a generic smart sensor’s internals, some transducers, and potential built-in actuator, and (right) an example of how adaptive AxC enables trading off

output quality for energy savings.

offload non-critical services to the Cloud, using reinforcement learning
for offloading decision-making, as described in Section 2.2. As energy
consumption constraints remain tight, some services may benefit from
AxC; we consider this direction later.

4.1.2. Enabling autononty

In addition to SLAM algorithms for environment modeling [154],
the SENSE-THINK-ACT model indicates that modern autonomous driv-
ing mostly relies on Al, particularly models from ML and deep learn-
ing. Several such models have been proposed as replacements for the
traditionally used algorithms for vision-based detection [167], for-
ward collision warning [200], and path planning and control [201].
Various types of NNs — including DNNs [200], CNNs [41,167], and
RNNs [201] - are most frequently used in the reviewed literature and
are already implemented in existing Level 3-autonomous vehicles, such
as Tesla’s [201]. These models are expected to be key to achieving
full autonomy, but their computational requirements pose a significant
challenge if they are to be performed at the Edge [167].

Depending on the ML models used and available computing and
energy resources, the autonomous driving models may be trained in-
vehicle in a federated style. Enabling such features requires a deep
understanding of, e.g., driving patterns such that model training does
not take away from the vehicle’s main purpose: driving. Adaptive
approximation could be an interesting strategy to achieve a good
balance in this aspect, for example, by allocating fewer resources to
driving tasks in simple scenarios, such as highway driving in sunny
weather. Moreover, an FL system is complex not only because its mod-
els may vary across vendors or vehicle models with different sensors
and compute resources available, but also because of unpredictable net-
working conditions for communicating models [191,202]. Nonetheless,
the concept of dynamic model adaptation is appealing.

Given the prevalence of NN models and anticipating the possibil-
ity of in-vehicle training of such, the model compression techniques
described in Section 3.3 are highly relevant for autonomous driving
applications. This observation resonates well with the literature, as
shown in Table 11, which highlights the techniques that have been
applied explicitly to autonomous driving-related applications in the in-
cluded publications. The columns list the nine AxC techniques selected
in Section 3.

Quantization and pruning are the most popular techniques. This
is likely due to them being well-established in both research and
production environments (even Google’s TPU and Tesla’s FSD chip
execute quantized NNs [113,134,203]) as they are known for bringing
very high savings with relatively little impact on model accuracy, as
we will see later. This latter point may be particularly important for
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autonomous driving systems whose decision-making may be fatal for
human beings.

Safety is of utmost importance in autonomous driving systems [204],
as laid out in international standards [205], and cannot be com-
promised with any sort of approximation, adaptive or not. Yet, the
applications outlined above have vastly different impacts on driving
safety: SLAM is crucial for the vehicle’s environmental understanding,
while automatic windshield wipers represent more of a convenience
to the driver and passengers. Hence, it may be difficult to convince
manufacturers to integrate potentially non-deterministic techniques
like VOS and approximate synthesis (see Section 3.1), despite initial
academic efforts showing good results [88,106,108]. On the other
hand, some established techniques have been shown to improve system
reliability [22], but using these would in any case require vast testing
to ensure the intended, safe functionality in all scenarios.

Moreover, despite not yet being explicitly covered in the surveyed
literature, we envision that compression techniques as well as AxC-
equipped architectures for audio and video processing (see Section 3.2)
may also prove useful in reducing the energy consumption of info-
tainment systems. There are also several non-critical services in cars
whose processing of noisy sensor data can be more aggressively approx-
imated for greater energy savings. Examples of such include automatic
windshield wipers and high-beam headlight control.

4.2. Smart sensing and wearables

Having reviewed publications relevant to autonomous driving —
a domain that has some energy headroom owing to the mere size
of its platforms — we shift our attention to smart sensing and wear-
ables for which energy is even more scarce. Smart sensors are ubiqui-
tous, energy-constrained, often mobile devices that implement sensors
and low-power computing and networking hardware [206,207]. Wear-
ables are instances of such devices. We focus particularly on biomed-
ical wearables that are the fundamental building blocks of modern
health technologies, characterized by energy and memory constraints
yet expected to perform compute-heavy detection and classification
tasks [208,209]. As a result, the focus is on developing ultra-low-power
solutions that efficiently execute these tasks, providing sufficiently
timely and accurate results despite their limited computing resources.

Fig. 9 illustrates the functionality of a smart sensor that inte-
grates adaptive AxC. An incoming signal is first sensed and converted
to an analog, electrical signal that is conditioned, or pre-processed,
before it is converted to digital. Next, a signal processing unit, typ-
ically comprising standard processor cores, memory, and potentially
some accelerators [118,210], performs the desired detection and clas-
sification tasks on the signal. Finally, the results are serialized to a
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Table 12
AxC techniques applied in the included papers that explicitly list smart sensing as a use case. References sorted by publication year.
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[223] v
local store or offloaded [206,211]. As shown in the figure, an AxC- The adaptive AxC techniques described above represent one way of
equipped smart sensor extends upon this functionality by applying decreasing reliance on the Cloud. Related methods have already been
and managing adaptive AxC techniques itself [212], for example’ by used to reduce the effects of network latency variations [225], and
monitoring computational load, battery level, or network latency and approximate aggregation of data from many distributed sources [226,
selecting (approximate) operating points thereupon. We show the con- 2271, but they are equally applicable to healthcare monitoring [228]
cept’s energy-saving effects for a system with four modes resulting in and seizure detection [212]. For both these applications, approximation

can reduce the amounts of data needing to be transferred to the Cloud

different output qualities, visualized with images of reduced quality. ‘
and thereby extend battery life.

The achievable performance of a smart sensor is mainly limited
by its power constraints, affecting the signal processing step’s perfor-
mance [213], and the complexity and dynamics of its environment,
affecting the algorithms that it is to execute [214]. Attaining satisfac-
tory energy consumption, and thus lifetime, means balancing these. The

4.2.2. Effective processing of sensor data

Two components of a smart sensor or wearable alter the input
signals: a conditioner may apply filters and amplification, doing so
directly in hardware with minimal overhead, and a signal processor

sensor’s signal processing step dominates the power consumption when can perform more complex algorithms on the signals [211]. Due to the
the sensor is operating as a standalone device, i.e., performing tasks complex, dynamic environments in which these devices operate, ML
without communicating with external devices. Reducing this step’s algorithms are particularly popular in this domain [132]. As described
power consumption may be achieved in mostly the same ways as earlier, ML algorithms are inherently insensitive to noisy input data
described in the previous section, i.e., by maximally utilizing available (and approximations), rendering them suitable for systems with analog
computing resources and lower-level (cache) memories, minimizing sensors and digital processing engines [229].

power consumption from idle hardware and operations reaching costly While autonomous driving relies on DNNs, the energy and latency
higher-level storage that consumes two-three orders of magnitude more constraints of smart sensors and wearables prohibit the use of such
power per operation than arithmetic [125]. large models. Therefore, although DNNs remain relevant [132], this

motivates the use of alternative, lower-complexity ML models such
as k-NN or SVM [229], as introduced in Section 2.2. Regardless of
the model applied, using ML imposes some requirements on the pre-
processing, or extraction, steps required to bring sensor data into a
format suitable for digital processing [229]. For biomedical applica-

4.2.1. Smart sensing at the edge
Motivated by many of the same reasons as for autonomous driving,
when signals require too much processing to be carried out locally, a

smart sensor can instead choose to offload all or parts of the processing tions, some example extraction techniques are Electroencephalogram
to an external device. Yet, while networking poses a challenge for  (EEG), Electrocardiogram (ECG), Somatosensory Evoked Potential, and
autonomous vehicles due mostly to its latency, reducing its power Visual Evoked Potentials.

consumption is more challenging for low-power, embedded devices Once pre-processed, the data undergoes a feature extraction pro-
such as smart sensors and wearables [220], especially if long range is cess to extract statistics relevant to a particular application and to
required. Balancing these effects is difficult but can be rewarding for reduce their size. Examples of such extraction techniques include the
the device’s lifetime [224]. following:

Contrary to autonomous driving, traditional smart sensing appli-
cations, such as biomedical wearables, have little risk of impacting
their surroundings and, thus, a lower criticality in terms of latency.
Until now, this has motivated offloading of processing in the Cloud

+ Principal Component Analysis extracts principal components —
linearly uncorrelated vectors — by orthogonal transformation of
correlated vectors in an observation set [34]. For EEG enhance-
ment and seizure detection, it is useful for extracting frequency

whose drawbacks we have already outlined in Section 2.1. Thus, Edge features [216,230].

processing once again represents an interesting alternative for meeting - Independent Component Analysis is an artifact removal strat-
the privacy and reliability demands of smart sensing applications [132]. egy that decomposes signals to separate data and noise [231]. It
In this domain, a sensor is considered smart when it is capable of ac- is also useful for EEG processing [216], yet, despite being effec-
quiring, processing, and interpreting data to perform decision-making tive, its computational complexity renders low-power realizations
without relying on Cloud offloading [210]. difficult.
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 Fast Fourier Transform (FFT) is likely the most well-known
algorithm for converting time-domain signals to the frequency
domain. It is useful for example in Chronic Neurological Disor-
der (CND) [218]. The FFT cannot be applied directly to non-
stationary signals like EEG, but assuming that the signal is locally
stationary, the windowed Short-Time Fourier Transform [212] or
derived, FFT-based methods [221] may be applied instead.
Wavelet Transform applies variably sized windows generated by
a wavelet to a signal to extract both time- and frequency-domain
features. The windowing feature makes it suitable for applications
with non-stationary signals like EEG [215,219] and ECG [217].

While we avert further descriptions of the aforementioned ML
models, we find it relevant to exemplify their applicability. Demand-
ing ultra-low complexity, k-NN is frequently applied in this domain,
e.g., for CND detection [232], despite suffering from inaccuracy when
processing redundant data. SVMs perform well in Electrocardiogram
classification [229], being especially good at handling multi-dimens-
ional inputs when a clear boundary exists between distinct classes.
Unfortunately, SVMs scale poorly with dataset size [37]. Various NNs
are often used for Keyword Spotting or general speech recognition,
typically being implemented in custom hardware accelerators [136].

For biomedical smart sensing applications, it is often infeasible
to compute fully exact models in real-time when the battery level is
low and safety considerations permit so. In such cases, adaptive AxC
techniques can relieve the system of some of its demands at the expense
of some errors [217,223], for example, by switching to an approximate
mode when the battery level is low [212,228], as shown in Fig. 9. The
safety requirements of the particular application targeted by the wear-
able play a significant role in determining how far such approximations
can be applied: simple fitness monitoring tasks may, for example, be of
lesser importance than cardiac arrhythmia detection [229] or various
workplace safety tasks [233].

To maximize their energy efficiency, wearables and smart sensors
often implement application-specific accelerator hardware. This en-
ables them to, for example, benefit fully from the model compression
techniques described in Section 3.3 when executing NN-based appli-
cations. As was outlined in Section 3.2.2, such architectures may also
make more broad use of circuit-level AxC techniques than general-
purpose ones; again, assuming compliance with the applications’ safety
requirements.

We highlight the AxC techniques applied to smart sensing and
wearable use cases in Table 12. As for autonomous driving, NN-based
designs frequently make use of either quantization or pruning to reduce
module size [136,222], while they have yet to explore the more ad-
vanced techniques of knowledge distillation and low-rank approxima-
tion. Regardless, algorithmic approximations are vastly more popular
in this domain. These approximations target the pre-processing and
feature extraction stages, whose hardware implementations may also be
approximated [149,222]. We see that, contrary to autonomous driving,
VOS and approximate synthesis have been applied to smart sensing and
wearable applications, albeit only to a limited extent thus far.

For adaptability, other work has also proposed letting the smart
sensor or wearable execute light-weight models of its hardware to
dynamically select between (inexact) arithmetic units (or entire ML
models [234]) at run-time as per the application requirements; an
example being low-complexity decision trees [95]. In dynamic envi-
ronments, such systems may even implement RL techniques to better
adapt to changes in input data [132]. This is explored in two general
schemes by Maity et al. [235] for managing approximate memory
architectures and by Lin et al. [184] for dynamically pruning convo-
lutional filters. Both techniques achieve significant improvements in
power consumption and execution time.
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Fig. 10. Processing chain inside a GNSS receiver. Notice the similarity with the generic
smart sensor shown in Fig. 9.

4.3. Positioning

An application relevant to both previously surveyed domains is po-
sitioning. For autonomous vehicles, navigation requires both precision
and reliability, achieved today by the fusion of many sensors [236]. Ad-
ditionally, though indoor and outdoor positioning sensors also fall into
the scope of smart sensing, we detail them as standalone applications.
Miniaturization of electronics has led to new use cases in position-
ing, e.g., navigation in consumer products (e.g., smartphones) using
satellite-based positioning systems. Yet, receivers for such systems, as
illustrated in Fig. 10, are known to be energy-hungry [237] and, thus,
challenging to integrate into energy-constrained devices (e.g., IoT).
Additionally, they do not offer positioning in certain environments such
as indoors. As a result, we focus on two main scenarios: satellite-based
outdoor positioning and mesh network-based indoor positioning.

4.3.1. Outdoor positioning

Outdoor positioning can include a multitude of positioning sensors
and techniques. The most widely used technique today is satellite-based
positioning, as it offers global coverage with no additional infrastruc-
ture required while providing accurate absolute positioning. Satellite
positioning systems are also referred to as Global Navigation Satel-
lite Systems (GNSS), specifically one or more global constellations:
GPS (USA), GLONASS (Russia), Galileo (EU), and BeiDou (China),
or regional constellations: IRNSS (India) and QZSS (Japan). GPS and
GLONASS may be considered legacy systems, the others having been
developed to gain independence in satellite positioning, as such systems
were originally designed for military purposes. All these systems, while
different in their implementations, are built around the same principle:
a very precise clock orbiting the Earth, continuously transmitting its
current time over a radio signal. A receiver located on Earth receiving
this signal will decode its time of transmission and compare it to its
time of reception to obtain pseudoranges. By receiving pseudoranges
from at least four satellites and using the principles of trilateration, the
receiver can compute its position [238].

Since their launches, the legacy systems and their new global or
regional counterparts have been equipped with modernized signals
designed to increase performance in challenging environments and an-
swer the current challenges of satellite-based positioning. These signals
enable higher resistance to intentional and unintentional interference,
Safety-of-Life services, positioning in complex signal environments,
and increased positioning accuracy and precision [238]. Yet, decoding
them comes with a computational cost, expected due to their higher
complexity. Significant research efforts over the last decade have been
spent on mitigating these costs, yet they remain more energy-intensive
than legacy GPS signals [239]. The integration of GNSS receivers in
even more energy-constrained devices necessitates exploring new ways
of processing the signals with less energy. As we will review later, AxC
could be a suitable approach to answer such problems.
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AxC techniques applied in the included papers that explicitly list positioning as a use case. References sorted by publication year.
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Fig. 11. IoT mesh network for indoor positioning.

4.3.2. Indoor positioning

Where GNSS-based solutions cannot provide sufficient accuracy,
due to their limited reception power or difficult environment (e.g., ur-
ban canyoning, inside buildings, etc.), other techniques are needed.
Indoors is one of the most tedious environments to navigate due
to its complex geometry [17]. As such, many techniques have been
proposed to provide a reliable and precise positioning solution [240].
Yet, contrary to outdoor systems that are well-developed and integrated
into many existing devices, indoor systems have yet to see broad appli-
cation. Nonetheless, the number of applications is tremendous - includ-
ing, e.g., efficient warehouse maintenance — which explains research
interest in it [241].

As indoor systems operate on much shorter distances than their
satellite-based counterparts, they also apply other techniques, for ex-
ample, Received Signal Strength Indicator (RSSI) and Angle-of-Arrival
(AOA) that estimate the position of (battery-powered) tags relative
to known positions of (mains-connected) anchors [17]. As transmitted
signals are attenuated by the air and obstacles they pass, measuring
RSSI allows for a receiver to estimate its distance to the transmitter.
AOA-based localization systems instead employ arrays of antennas that
enable them to estimate the angle of arrival of an incoming signal.
AOA techniques have gained popularity in the IoT industry since 2019
as devices supporting Bluetooth Low-Energy were shown to achieve
centimeter-level precision [253]. Such results are a great improvement
over RSSI-based solutions [254].

Recently, AOA methods have also found application in IoT (mesh)
networks, illustrated in Fig. 11. Such networks function as described
above, but may need to rely on multi-hop links to pass a packet from
an anchor to the network gateway due to low transmission range of
individual nodes [255]. In such networks, AOA techniques can be
prohibitively expensive, especially if they are executed outside the
Cloud, i.e., in the anchors [252]. For this case, numerical algorithms
and AxC may be combined to reduce the algorithmic complexity [251].
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4.3.3. Positioning at the edge

While outdoor and indoor positioning applications face different
challenges for signal processing, the devices involved closely resemble
smart sensors (see Fig. 9) and the energy available on-board is similarly
limited. This leads to common solutions like offloading the processing
operations at the Edge. Thus, understanding the factors that increase
energy consumption is paramount to designing solutions adapted to
application needs and constraints. Even though GNSS receivers are
generally implemented in battery-powered, embedded platforms, many
applications (e.g., surveying and construction) do not prioritize en-
ergy consumption reductions. While these applications cannot afford
reduced precision, they constitute a decreasing part of a market set
to be dominated by low-power IoT devices [249]. Consequently, low-
power GNSS is increasingly being used in low-cost applications, where
the quality of positioning constraints can be relaxed: meter-level po-
sitioning is sufficient, e.g., for smartphones. The algorithms should be
adapted to answer this goal to the accuracy level required [24].

Offloaded processing has been considered in both applications with
varying degrees of acceptance. For indoor positioning, transferring raw
signal measurements to, e.g., the Cloud for processing would rapidly
drain the mesh nodes’ batteries and delay measurements unaccept-
ably [252]. Therefore, the preferred solution is to perform processing
in the anchor nodes, further reducing energy consumption by dis-
abling the otherwise periodic transmissions from stationary tags. A
similar possibility exists in GNSS-based systems that require a high
sampling rate to capture signal bandwidth. This means that near-sensor
(or Edge) processing often is cheaper than re-transmission, making
offloading suitable only for applications that need infrequent position
updates [256]. We note that the energy consumption effects of the
channel used, the distance from the remote server, and interference
linked to the environment are yet to be evaluated.

4.3.4. Efficient signal processing

Regardless of the point of computation, both indoor and outdoor
positioning applications rely on DSP algorithms. Specifically, GNSS
processing involves the steps outlined in Fig. 10. The acquisition and
tracking steps require the most computations. A GNSS receiver ex-
tracts the aforementioned pseudoranges from tracked signals to com-
pute a position. Most often, this processing is implemented in a ded-
icated hardware accelerator whose real energy impact is caused by
the required tracking time. Many studies have looked into reducing
the acquisition and tracking complexity, specifically for modernized
signals [250,257].

Some work also considers offloading for GNSS, though naively
applying such an architecture would require large amounts of data
transfers for uploading raw Radio Frequency signals. As the data rate
of GNSS signals is quite low (e.g., 50 bps for GPS L1 Coarse/Acquisition
Code [238]), several seconds are usually required to successfully extract
the transmission time, and since these signals must be sampled at the
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order of M Hz to be successfully tracked, this constitutes too large an
amount of data to be efficiently uploaded by an IoT device [246].

Instead, offloaded GNSS only partially integrates the steps in Fig. 10
onboard. Reducing the data transfers can be done in two ways: Coarse-
Time Navigation (CTN) and Compressive Sensing (CS). CTN as in-
troduced by [243] requires only a few milliseconds of data to pro-
duce a position at much degraded precision. This is explored by
Ramos et al. [258] who offload the results of acquisition and tracking,
and by Liu et al. [245] who offload the raw data. Unfortunately,
neither study considers the energy consumption of transmitting the
data. CS, which is not related specifically to GNSS, aggressively sub-
samples a signal well below the Nyquist rate before reconstructing it
using well-defined mathematics. Misra et al. [246] combine this with
CTN after signal reconstruction, successfully computing a position with
minimal data transfers required. However, details on the experiment’s
parameters are missing, so an exhaustive analysis of this technique
cannot be undertaken.

Whilst several acquisition and tracking algorithms exist for GNSS,
there are also many AOA methods suitable for indoor positioning use
cases. Examples include SAGE [259], MVDR [260], ESPRIT [261], and
MUSIC [262], of which we focus on the latter two. These methods
rely on In-Phase and Quadrature samples from Uniform Linear Arrays
and are known to attain great accuracy [263], outperforming even
beamforming alternatives such as MVDR [244].

Roy and Kailath’s ESPRIT and Schmidt’s MUSIC require computa-
tion of Eigenvectors of the measured signals’ covariance [261,262], a
mathematically complex and computationally heavy task that should
be carried out only when necessary. Thus, while it is possible to
extend these algorithms to a dynamic case, i.e., for tracking moving
objects rather than localizing static ones, naive repeated application
rarely leads to good results. Instead, most proposed implementations
complement skipping executions by so-called subspace tracking that
involves an unbounded optimization problem [242].

When an application’s accuracy requirements permit, AxC tech-
niques may be employed to reduce the energy consumption of both
outdoor and indoor positioning systems. Unlike autonomous driving
and smart sensing applications, the positioning systems we have sur-
veyed do not currently employ ML techniques. This is reflected in
the AxC techniques applied to positioning use cases, highlighted in
Table 13. We see that, apart from compression (including CS), only al-
gorithmic approximations are applied in the current literature. Notably,
however, we only cover positioning algorithms and, therefore, may
have overseen studies on advancements in wireless communication sys-
tems and relevant hardware enabled by AxC. Nevertheless, comparing
Table 13 to Tables 11 and 12 shows a clear lack of research in applying
AxC to positioning systems.

Examples of such techniques are plenty. For GNSS-based systems,
these include [247,256]: adapting measurement frequency and quality
to just meet application needs [247]; reducing acquisition/tracking
algorithm complexity, even in the context of modernized signals [250,
257]; implementing duty cycling, for example, in the tracking step
[247]; and reducing the sampling rate to the Nyquist rate (or below)
based on band-pass theory [248], though modernized signals have a
wider frequency spread, requiring higher sampling rates for successful
tracking. All these strategies naturally lend themselves to adaptation
dependent on, for example, momentary signal conditions.

While some of these may be adapted to indoor positioning al-
gorithms, other relevant techniques are more involved and closely
linked to the aforementioned algorithms, ESPRIT and MUSIC. As these
are based on linear algebra, reducing matrix size [244], converting
complex matrices to real ones with unitary transforms [264], and
substituting the Singular-Value Decomposition of one matrix with the
cheaper Eigendecomposition of another are examples of such. For MU-
SIC in particular, approximations target its compute-heavy peak finding
step by using more coarse-grained angle intervals or by replacing the
step with polynomial root finding [265].
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5. Discussion and open directions

We have now surveyed a wide range of papers in Sections 3.1,
3.2, and 3.3 and outlined the use of AxC within the three application
domains in Sections 4.1, 4.2, and 4.3. While non-comprehensive, this
survey has led us to observe several directions for future work, which
we highlight here. We consider open directions in each of the three
application domains individually and refer to AxC techniques when ap-
plicable. Finally, we suggest research into cross-layer approximations.
We summarize our findings in Table 14.

Before diving into the application domains, however, we highlight
the potential gains of applying the surveyed AxC techniques. These
savings are highly dependent on the application or algorithm the AxC
techniques are applied to, its error tolerance, and even its imple-
mentation. We notice that relatively few papers state clear energy
and area savings over an exact baseline, reporting instead reductions
in model size (in ML-focused papers) or algorithmic complexity (in
positioning-related papers). We combine these two metrics in the com-
pound computational cost metric. Moreover, as many of the surveyed
papers are application-agnostic by nature, their reported savings may
not translate 1-to-1 into our considered domains.

Despite the substantial number of papers surveyed herein, only
relatively few report savings in terms of the same, or similar, metrics.
For example, just three covered papers that use low-rank approxi-
mation alone describe computational cost savings [43,178,181], and
a mere four papers that use inexact arithmetic alone detail energy
savings [69,78,79,212]. This limited number of experiments instills
little confidence in estimates of the effectiveness of each technique
in general as well as within any particular application domain, and
it renders a comprehensive quantitative comparison of the results
reported in the surveyed papers statistically infeasible. Therefore, we
restrain this discussion to a qualitative comparison in Table 15. We
notice that relatively few papers state clear energy and area savings
over an exact baseline, reporting instead reductions in model size (in
ML-focused papers) or algorithmic complexity (in positioning-related
papers). Table 15 illustrates a point highlighted throughout our survey:
ML algorithms common to both autonomous driving and smart sensing
are highly tolerant even to aggressive approximations. As mentioned
earlier, the negative effects thereof on accuracy can often be mitigated
through re-training [155].

5.1. Autonomous driving

5.1.1. Insights

Despite autonomous vehicles having come a long way over the last
decade and several car manufacturers offering Level 3 autonomy [186],
the underlying technologies need further improvements to mature and
allow for safe operation at Level 4 and, eventually, Level 5 [41].
This development will likely involve - if not require - intelligent
connectivity (so-called vehicle-to-X or V2X) and external computing,
for example in infrastructure, to satisfy rising compute demands [187],
e.g., in ML and SLAM applications [185,236]. Such a system will need
new networking and computing architectures [199], new intelligent au-
tomobile frameworks [154,197,198], in addition to new algorithms for
scheduling and resource allocation [196]. Additionally, as new devices
are connected, the system heterogeneity grows and new algorithms
are needed to constrain the inevitable overheads of such to sustain
real-time operation [187].

5.1.2. Future directions

We forecast autonomous driving to increasingly rely on Edge Al
and expect its underlying ML algorithms to remain popular and, thus,
obvious targets of AxC. There is plenty of potential for future work in
this direction: quantization algorithms can be taken to the extreme,
binarized case [156] or applied to smaller network elements than
layers [171] with more modeling and experiments to follow [162,169].
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Table 14
Summarized directions of future work extracted from surveyed works.
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Applications and algorithms

Architectures and circuits

Domain References Challenges Domain References Challenges

Autonomous [154,185,187, New networking and computing architectures, Architectures [8,21,65,119, Better sensitivity analysis and probabilistic

Driving 196-199,236] automobile frameworks, and scheduling and 121,124,128] model checking tools to enable easier AxC
resource allocation algorithms to support integration into GPPs and other architectures
intelligent (V2X) connectivity. with guaranteed effects.

[32,43,56,156, Novel quantization, pruning, knowledge [126,127] Greater architectural reconfigurability to enable

171,175,178, distillation, and low-rank approximation energy-efficient acceleration of various

180] techniques and their combination with AxC. applications with low overheads, for example

in FPGAs or CGRAs.
Smart [211,234] Offloading-enabled approximations in data [21,71,79,141] Development of inexact arithmetic units,
Sensing and transmission and Edge execution of multiple Circuits including the use of under-design and
Wearables sensing models in parallel. accuracy-configurability.

[218,220] Generalization of ML models and supporting [59,60,115,117] Understanding and mitigating negative effects
hardware for Al-capable IoT across different of voltage over-scaling, or exploiting its
applications. combination with non-volatile memories for

efficient parallel computing.

[118,212] Low-power signal processing with intrinsic [102,103,105, Scalable inexact (high-level) synthesis
approximate effects or reconfigurability. 106,108,109, algorithms, for example using genetic mutation

266] or heuristics.
[244,247] Porting of AxC techniques used in smart [21,30,57,60-62, Cross-layer AxC and low-overhead quality
Positioning sensing applications and their combination with  Cross-layer 144,145] management techniques to support efficient
reduced sampling rate, algorithmic runtime adaptation with quality guaranteed.
approximations, etc.

[17,241,267, Development and sharing of common, [10,13,16,50,53, Secure hardware technologies, resource

268] heterogeneous datasets, testing environments, 192] management algorithms, programming and
and performance metrics, for example as software platforms, and real-world frameworks
simulations or SDRs. for Edge computing management for scalable

Edge Al and IoT.
Design space exploration in [20,53,57] Further development of Edge-suitable Al

[246,252,268] . . . i i i
combining different algorithms, models and their synergies with AxC.
signals, processing platforms, and Our work Comprehensive and systematic establishment of

AxC techniques for low-power
operation, for example with SDRs.

the impact of different AxC techniques on the
power consumption, performance, safety, and
reliability of various applications.

Similarly, pruning and knowledge distillation algorithms can be altered
to better utilize the information of network elements [32,175] and
allow for a theoretical understanding of their effects [56] prior to
experiments [173]. And despite quantization and pruning leading to
some reduction in model size, further research into compression by
low-rank approximation is needed [43,178,180]. Lastly, it is relevant
to quantify the effects of combining these techniques [56].

This broad dependence on large-scale ML algorithms will require
further research into application-specific accelerators like the ones
described in Section 3.2.2. These accelerators must take AxC tech-
niques that are well-established in the field, i.e., the ones marked in
Table 11, into account. However, even the unmarked techniques are
relevant so long as their use complies with the restrictions set out
in Section 4.1.2. The autonomous driving use case allows for some
headroom in terms of circuit area, meaning the accelerators may not
need but can benefit from various circuit-level techniques beyond
inexact arithmetic. There are plenty of open research directions for such
techniques [9,21,31], including adapting existing under-design and
accuracy-configurability techniques applied in adders and multipliers
to other arithmetic units [71,79]. With the safety constraints of the
application in mind, AxC techniques can also be used to reduce the
overheads of modular redundancy used to ensure proper functionality
even under (partial) system failure [21,269,270].

5.2. Smart sensing and wearables

5.2.1. Insights

We have described how smart sensors and wearables are rapidly
evolving and gaining traction in the public. As a result, they have
received significant research attention and must be expected to keep
receiving such. The range of applications these types of devices are
expected to execute is very broad and includes DSP and ML tasks within
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the health information domain [212,228]. To match the energy and
latency constraints of these tasks, the devices must increasingly rely on
Edge offloading [132,220].

5.2.2. Future directions

In addition to the AxC techniques pertinent to ML models outlined
above, offloading enables new trade-offs in data transmissions [211]
and in executing multiple models in parallel in Edge hardware [234]
that need further exploration. This may be necessary to satisfy scala-
bility and latency constraints [132], which also require further analy-
sis [223]. Adoption of Al-capable IoT will require a generalization of
devices and algorithms, e.g., using common ML models in similar hard-
ware for different applications, be it EEG classification [218] or neuro-
logical disease detection [220]. Such devices can benefit from mixed-
signal implementations that naturally operate approximately [212]
or architectural reconfigurability [118]. The algorithms, on the other
hand, may benefit from currently unmarked techniques in Table 12,
knowledge distillation and low-rank approximation, especially in com-
bination with quantization and pruning.

Smart sensors’ sizes prohibit the implementation of several appli-
cation-specific accelerators. This implies a need for general-purpose
programmability or hardware reconfigurability. Programmability is a
common trait of traditional general-purpose processors, possibly mod-
ified to support approximate instructions like those described in Sec-
tion 3.2.1. Future research in this direction may explore approximating
other instruction classes than arithmetic and load/store [119], better
index functions and replacement policies for approximate caches [121],
and in general easier integration of AxC into GPP architectures [8,
21]. Several authors highlight a need for better sensitivity analysis
tools for understanding the effects of and selection of approximations
with guaranteed impact [124,128]. Reconfigurability can, as we have
seen, be provided using CGRAs [126,127], but the functionality is
also available in FPGAs [70,94,131,153]. Identifying the sweet spot of
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Table 15
Qualitative savings arising from using the surveyed AxC techniques on their own.
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AxC Tech. Quantization® Pruning?® Knowledge Low-rank Compression” Algorithmic Inexact Voltage Approx.
Distillation® Approx.? Approx. Arithmetic® Over-Scaling® Synthesis®

aRa oy WA cRNNS % cYRIAC AR & AT - -

savings

- - A AN o WA WS WA o AR S

savings

- - - - - - ™R - R

savings

References [156-158,160, [39,56,125, [175] [43,178,181] [220,246] [221,245,247- [69,78,79,95, [118,217,235] [103-105,108,
163,165-167, 172-174,184] 249,252,257] 212] 109]

170,171]
Legend Low m Medium M High m Very high m

2 AxC techniques, like quantization, pruning, knowledge distillation, and low-rank approximation, rarely directly affect the hardware area but rather permit fitting more computation

into the budgeted resources.

b Compression is often complementary to computational offloading [246]; it can decrease data transmissions at the expense of increased local computation.

¢ Inexact arithmetic, VOS, and approximate hardware synthesis techniques do not directly affect run-time computational costs.

reconfigurability and its related overheads while exploiting AxC is an
interesting research avenue.

In the above, we have seen how VOS has already been applied
to several smart sensing systems [101,118,217]. While it may find
application in general-purpose processors [8], its benefits are likely
better exploited in application-specific circuits. There are plenty of
opportunities for future research in this direction [8,59,60], including
a need for a better understanding of system-wide effects, especially of
volatile memories, e.g., caches [115]. This has led some to suggest us-
ing non-volatile, emerging technology-based memories both for storage
and parallel computing [117], thus inherently integrating AxC.

5.3. Positioning

5.3.1. Insights

We have already highlighted the close similarity between devices
used for positioning and those used for generic smart sensing applica-
tions. With this in mind, many AxC techniques relevant in this domain
can be carried over to positioning as well, especially the ones used in
DSP algorithms, e.g., reduced sampling rate, inexact arithmetic, and
various algorithmic alterations [244,247].

Despite the domain split between indoor and outdoor positioning
algorithms as described in Section 4.3, papers on both outline a need
for more standardized experiments to ensure comparability and repro-
ducibility. Such schemes involve the creation and sharing of repos-
itories of heterogeneous datasets [17], the development of common
testing environments as simulations [241] or Software-Defined Radios
(SDRs) [267,268], and the selection of common performance metrics.
In practice, this implies sharing code and simulation environments in
open source [268].

5.3.2. Future directions

As outlined in Section 4.3.4 and shown in Table 13, there is little
work applying AxC to positioning applications. Moreover, despite low-
power operation being a goal for next-generation Galileo-capable chips,
no approximation is mentioned as a potential direction for future re-
search [249]. Similarly, publications on indoor positioning suggest only
developing new algorithms [241,252]. We argue that some AxC tech-
niques can help improve energy efficiency in positioning applications,
but that using them involves identifying the elements of positioning
systems that consume the most energy — an aspect that SDRs and more
real-world experiments can help solve [246,252,268]. The interesting
points in this direction include algorithms, signal selection, processing
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platform (onboard or offloaded), and AxC techniques; combinations of
which are bound to have interesting trade-offs. We find that techniques
related particularly to the ML domain are irrelevant to positioning
applications so long as they do not rely on such algorithms. Conversely,
circuit-level techniques can be highly relevant, especially in hardened
DSP algorithms.

Considering the lifetime requirements of positioning systems, focus-
ing solely on inexact arithmetic and VOS when pursuing the aforemen-
tioned direction may unnecessarily narrow the scope of approximations
and give rise to unsatisfactory savings. Instead, AxC may be considered
in a broader scope and applied to general hardware designs through
inexact (high-level) synthesis [266]. Existing work introduces and com-
bines various AxC techniques algorithmically, showing promising re-
sults but also describing many directions for future work. These include
new genetic mutation algorithms and heuristics for optimization during
DSE [103,108,109] and the inclusion of new AxC techniques into
existing flows [102,109]. The general notion in these papers is that
existing algorithms suffer from poor scalability and must be adapted
to fit common design toolchains [105,106]. The latter is a particularly
relevant research direction [266] as a well-integrated inexact synthesis
flow may find application also when designing smart sensors or even
accelerators for autonomous driving.

5.4. Cross-layer research

5.4.1. Insights

With the many open challenges within the application domains
in mind, it is worth mentioning that combining AxC techniques can
lead to even greater gains than they can individually. Implementing
optimizations or approximations across layers from software to circuits
can drastically improve overall system performance [30,57]. This is
especially interesting when accounting for the distributed nature of the
three application domains, we consider. As they rely on offloading, new
approximation opportunities arise both in the data-producing devices,
the data-processing devices, as well as their communication. Neverthe-
less, existing work only combines relatively few AxC techniques, as
illustrated in Table 16. As noted before, ML applications are particu-
larly tolerant and most frequently approximated with more than one
technique, e.g., using quantization, pruning, compression, and inexact
arithmetic [136]. Positioning algorithms, on the other hand, have so
far only been approximated algorithmically.
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Table 16
Cross-product of the surveyed AxC techniques. Tick marks indicate
which techniques have been applied concurrently.

AxC tech. Q P KD IA C AA

Q oV v v
P VR
KD

LA v

1A VOS

v

AS

AN

1A v/ v
Vos v
AS

Abbreviations: Quantization, Pruning, Knowledge Distillation, Low-Rank
Approximation, Compression, Algorithmic Aapproximation, Inexact
Arithmetic, Voltage Over-Scaling, and Approximate Synthesis.

5.4.2. Future directions

Introducing and managing approximations across system layers
requires the development of hardware/software co-design tools and
frameworks for DSE [21], for example with HLS as described above.
Unfortunately, such tools are not enough; to safely apply approx-
imations within an application requires intimate knowledge of its
tolerance or resilience to errors. This metric varies across domains
just as much as between individual applications within a domain.
While sensitivity analysis may help in estimating numerical tolerances,
establishing higher-level, domain-specific constraints may require the
involvement of legal and ethical considerations: what classification
accuracy is sufficient for an automatic emergency braking system in a
car, for example? How precise should a heart rate monitor wearable
be? And what positioning precision should a smartphone provide?
Unfortunately, such safety constraints are not well-established in the
literature, yet we find them to be crucial for the broader adoption of
AxC and, in fact, even for the use of AxC within a particular application.

Returning to numerical constraints, it is especially challenging to
ensure output quality under environmental variations. We have tried
to highlight adaptive AxC as a potential solution to this throughout
the paper. Unfortunately, its adoption thus far is limited by existing
sensitivity analysis tools [29,31,124,128] and overheads from run-time
adaptation [61,62], implementations of which mostly fail to provide
quality guarantees [21].

In parallel with the development of new adaptive AxC solutions,
researchers must focus on maturing the Edge computing domain fur-
ther. Scalable Edge Al and IoT demand new hardware technologies [13,
16], novel algorithms for resource management to minimize energy
and task execution time [53,192], and programming and software
platforms for managing them [10,16,53], continuously maintaining
security, privacy, and reliability [10,53]. More progress is needed in
Edge computing framework development [50] as well as in resource-
friendly, Edge-suitable AI models [20,53] and their synergies with
(adaptive) AxC [57]. The wide range of functionalities to be offered
by an Edge computing framework means plenty of opportunities for
adaptive approximation with interesting trade-offs to follow but implies
a need for practical experimentation. Once all these elements are
well-established, they will enable much easier integration of future
connected applications.

6. Conclusion

The number of connected IoT devices and the computational de-
mands needed to intelligently process the data they produce are rising
exponentially. This trend renders traditional Cloud offloading and ex-
isting communication technologies insufficient as they fail to meet the
devices’ and applications’ latency constraints. The solution is to perform
more processing at the Edge of the Internet, where energy and compute
power are sparse and must be optimally utilized. This is highly relevant
in the three application domains of autonomous driving, smart sensing
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and wearables, and positioning. In these domains, it is necessary to
exploit the applications’ inherent error resilience through adaptive AxC
to save energy and efficiently perform processing at the Edge.

In this paper, we have presented a survey of literature spanning
these three application domains and AxC techniques relevant to them.
We have covered these topics bottom-up, first describing AxC tech-
niques from the circuit level to the application level, and later de-
scribing their applicability in each domain. Our discussion has focused
on nine different AxC techniques: quantization, pruning, knowledge
distillation, low-rank approximation, lossy compression, various algo-
rithmic approximations, inexact arithmetic, voltage over-scaling, and
approximate synthesis.

Our key findings are that all three application domains offer op-
portunities for exploiting AxC, particularly the ML-based applications
in autonomous driving and smart sensing, but also the DSP-based
tasks in positioning; that not every surveyed AxC technique has been
applied in all the application domains or in combination with other
techniques, and that the reasons therefore not always are clear; that
each application domain’s sensitivity to approximations is not well es-
tablished, rendering the evaluation of proposed AxC techniques difficult
or impossible to carry out; and that adaptive AxC can be a powerful
tool for improving energy efficiency, but that it faces several chal-
lenges concerning low-overhead quality management and sensitivity
analysis.

Achieving scalable Edge Al and IoT means many challenges must
be solved and existing techniques must be improved. We expect adap-
tive AxC to be crucial in this development. To spark further initia-
tive in this direction, we have highlighted many open challenges,
including novel algorithms and application-level AxC techniques for
autonomous driving; low-power signal processing and ML algorithms
for offloading-capable IoT devices; adaptation and experimentation
with various AxC techniques in positioning algorithms; further exper-
imentation with combinations of AxC techniques in all three covered
application domains; and greater reconfigurability and low-overhead
quality management of architecture- and circuit-level AxC techniques.
Additionally, we wish to emphasize the importance of establishing
the quality or safety constraints within the three application domains.
Without such, one may blindly approximate critical elements of such
systems, causing unnecessary and avoidable harm.

Acronyms

Al Artificial Intelligence

AOA Angle-of-Arrival

API Application Programming Interface
ASIC Application-Specific Integrated Circuit
AxC Approximate Computing

BLE Bluetooth Low-Energy

C/A Coarse/Acquisition Code

CNN Convolutional Neural Network
CGRA Coarse-Grained Reconfigurable Array
CLA Carry-Lookahead Adder

CND Chronic Neurological Disorder

CPD Canonical Polyadic Decomposition
CS Compressive Sensing

CSA Carry-Select Adder

CTN Coarse-Time Navigation

DNN Deep Neural Network

DRAM Dynamic RAM

DCT Discrete Cosine Transform

DSE Design Space Exploration

DSP Digital Signal Processing

DVFS Dynamic Voltage and Frequency Scaling
ECG Electrocardiogram

EEG Electroencephalogram
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ESPRIT Estimation of Signal Parameters via Rotational Invariant
Techniques

EVD Eigendecomposition

FA Full Adder

FFT Fast Fourier Transform

FL Federated Learning

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

GLONASS  Global Navigation Satellite System

GNSS Global Navigation Satellite Systems

GPP General-Purpose Processor

GPS Global Positioning System

HD Map High-definition Map

HEVC High-Efficiency Video Coding

HLS High-Level Synthesis

IC Integrated Circuit

ICA Independent Component Analysis

IoT Internet of Things

IQ In-Phase and Quadrature

IRNSS Indian Regional Navigation Satellite System

k-NN k-Nearest Neighbors

KWS Keyword Spotting

LiDAR Light Detection and Ranging

LSB Least-Significant Bit

LUT Look-Up Table

MAC Multiply-Accumulate

ML Machine Learning

MUSIC Multiple Signal Classification

MVDR Minimum Variance Distortion-less Response

NN Neural Network

NoC Network on Chip

PCA Principal Component Analysis

PE Processing Element

PU Processing Unit

QZSS Quasi-Zenith Satellite System

RNN Recurrent Neural Network

RAM Random Access Memory

RCA Ripple-Carry Adder

ReLU Rectified Linear Unit

RF Radio Frequency

RL Reinforcement Learning

RSSI Received Signal Strength Indicator

RTL Register-Transfer Level

SAE Society of Automotive Engineers

SAGE Space Alternating Generalized Expectation-Maximization

SDR Software-Defined Radio

SEP Somatosensory Evoked Potential

SLAM Simultaneous Localization and Mapping

SoC System on Chip

STFT Short-Time Fourier Transform

SVD Singular-Value Decomposition

SVM Support Vector Machine

TPU Tensor Processing Unit

ULA Uniform Linear Array

VEP Visual Evoked Potentials

VOS Voltage Over-Scaling

WT Wavelet Transform
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