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Abstract

Semantic segmentation of aerial images is the ability to assign labels to all pixels of an im-
age. It proves to be essential for various applications such as urban planning, agriculture and
real-estate analysis. Deep Learning techniques have shown satisfactory results in perform-
ing semantic segmentation tasks. Training a deep learning model is an expensive operation,
while most of the time manually labelled images are required. Additionally, a bottleneck in
semantic segmentation projects concerns the annotation of images. Consequently, synthetic
data, which consists of images from a virtual world that simulates the real world, can be used
as training data for segmentation tasks to improve the classification results. Therefore, this
thesis aims to create a pipeline that generates synthetic images with semantic segmentation
labels to be used in an existing deep learning model and discuss how the generated synthetic
data improves the semantic segmentation of aerial images. In this research work, an exist-
ing model (FuseNet), which in previous works achieved satisfactory results, is trained with
solely synthetic data and a mix of real data in different training and testing scenarios to clas-
sify true ortho imagery from Haaksbergen, Netherlands and Potsdam, Germany. In addition,
a benchmark of domain adaptation techniques is performed to close the domain gap between
the synthetic and real imagery. The semantic maps include building, road and other classes.
Experiments are performed to test the performance of the synthetic data using 1) Different
3D models of the virtual world, 2) Different quantities of synthetic and real training data, 3)
Different cross-geographical scenarios, and 4) Different domain adaptation techniques. The
assessment is based on the (mean) intersection over union (IoU), F1 score, precision and re-
call and an extensive visual assessment. The virtual world is created through a pipeline in
CityEngine using procedural modelling techniques and then rendered in Blender to create
the training dataset. The results show that the synthetic data has a mIoU of 0.48, which is
lower compared to cases when solely real data (0.75) are used, when the segmentation is per-
formed in the same training and testing area. In addition, the 3D models partly affect the
segmentation results. When using a mix of real and synthetic data, the results are maintained
to a mIoU of 0.75. On the contrary, when training and testing in different areas, the use of
synthetic data seems to improve the results on average by 21.5, 12.5, 1.5 and 2 percentage
points on the mIoU, IoU for classes building, road and other respectively. Additionally, domain
adaptation techniques such as Cycle GAN and Cycada improve the performance of synthetic
datasets by 4 percentage points. Overall, this thesis shows that when the domain difference
between the training and testing datasets is big, the addition of the synthetic data helps to
improve the performance of the semantic segmentation of aerial images. Synthetic datasets
improve the segmentation results by using a mix of existing labelled imagery from different
geographical regions when a project lacks labelled imagery. In contrast, when labelled im-
agery is present in the same testing area, the real training data obtains robust results, thus the
addition of synthetic data does not improve the segmentation results.
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1. Introduction

Image semantic segmentation is one of the fundamental tasks in remote sensing. Semantic
segmentation is the ability to assign labels to all pixels of an image [Garcia-Garcia et al., 2017].
Semantic segmentation proves to be an essential prerequisite for various applications such
as urban planning, agriculture, and real-estate [Kampffmeyer et al., 2016; Zhu et al., 2015].
For instance, classification between roads and buildings from aerial images is important for
change detection and for updating cartography in the built environment [Saito et al., 2016].
Traditionally, unsupervised and supervised methods are used to tackle semantic segmenta-
tion problems with the use of statistical properties on the feature space of the image [Rosen-
berger et al., 2006]. Recently, automated segmentation of aerial imagery has been addressed
with deep learning techniques that present satisfactory results for targeted classification tasks
[Yuan et al., 2021]

Most deep learning models consist of four phases. The first phase is to obtain a representative
input data for the problem to solve. Second, the input data is annotated according to their
semantics to acquire the desired output dataset. Third, the model is trained to learn to infer
the desired output from the input dataset. Finally, the trained model is applied to a real-
image target in the inference phase [Nikolenko, 2021; Liu et al., 2017]. During the process of
developing a deep learning model, with insufficient open datasets, around 80% of the project
time can be spend on the annotation phase, which is done manually or is manually checked
after an automatic process [Nikolenko, 2021]. In addition, the acquisition of labelled data is
expensive for vast geographic regions [Kong et al., 2019]. Several approaches have been made
to tackle this problem. For instance, Maggiori et al. [2017] created an extensive dataset with
labelled data for five cities across the world, which helped scientists to lower the time of the
annotation phase. Nevertheless, despite being a large dataset, this dataset lacks geographical
variability in real-world scenarios [Kong et al., 2019].

Another way to tackle the problem of annotation is to create synthetic data for training deep
learning models. Synthetic data refers to imagery from a virtual world that simulates the
real-world [Nikolenko, 2021; Kong et al., 2019; Ros et al., 2016]. Compared to real imagery
data, synthetic images have several significant advantages, such as simulating different con-
ditions (e.g., lighting, camera positions), lowering production costs and producing unlimited
possibilities of images with pixel-wise annotations [Nikolenko, 2021]. Nevertheless, the use
of synthetic data has led to new challenges, such as the difference of domains between the
real and virtual world [Nikolenko, 2021; Kong et al., 2019]. For this problem, various domain
adaptation techniques have been developed to adapt the domain of synthetic imagery to the
real imagery domain.

Synthetic training data allows for improving models, as well as lower the production time
and costs [Nikolenko, 2021; Kong et al., 2019]. Consequently, the current thesis aims to create
a benchmark to produce and evaluate synthetic data for automated aerial image segmenta-
tion.

For this research, ESRI CityEngine is employed to create and use virtual cities with proce-
dural architecture techniques that enable design parameters such as type of roofs and road
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1. Introduction

designs. The next step is the renderization of depth and RGB images from a simulated cam-
era. In this process, the pixel-perfect annotations are made automatically. Afterwards, an
existing deep learning model is trained to evaluate the performance in real-world imagery.
Finally, a domain adaptation technique exploration is performed on the synthetic images to
further improve the results and minimize the domain differences between the real and the
virtual world. The images in which the model will be evaluated are True Orthophoto (TO)
and a Digital Surface Model (DSM) provided by READAR 1 for the case of the Netherlands.
Additionally, the model is tested on a public dataset of Potsdam, Germany ISPRS [2020].

1.1. Objectives & research questions

The main objective of this thesis is to show a proof of concept to use synthetic imagery for
semantic segmentation on aerial images. For this concept, we built an automated pipeline
that generates a virtual city to render synthetic imagery. The output of the virtual city con-
sists of three imagery types; a labelled image with the pixel-perfect annotation, a DSM and a
RGB image. Furthermore, this thesis focuses on evaluating the performance of the synthetic
images as training data for real imagery segmentation models.

The second objective is to evaluate different design parameters of the virtual city. We do this
to investigate how the design of the 3D models affects the quality of the synthetic imagery. As
the virtual world enables different design characteristics, it is possible to assess the inference
of training data characteristics in the segmentation model’s performance.

Finally, the last objective of this thesis is to evaluate, according to the prediction performance,
different algorithms of domain adaptation capable of reducing the gap between the synthetic
and the real-world domain.

To achieve the aforementioned objectives, this thesis is answering the following main research
question:

To what extent can synthetic data improve the current Deep Learning-based models for automated
semantic segmentation of aerial images?

The following sub-questions are listed to solve the previous question:

• How to build an automatic virtual city for creating synthetic imagery used as training
data?

• How do the entities of 3D models ( e.g. buildings, roads or trees) of a virtual city affect
the results of semantic segmentation of aerial images?

• What is the most suitable quantity ratio between real and virtual training data for se-
mantic segmentation of aerial images?

• Does synthetic data improve automated semantic segmentation of aerial images in
cross-geographical scenarios? Cross-geographical is using real data from a particular
area and testing data of a completely different area.

• Which domain adaptation technique is more effective for adapting synthetic imagery
to real imagery domain?

1readar.com
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1. Introduction

1.2. Scope of research

This research aims to create a pipeline that generates synthetic images with semantic segmen-
tation labels to be used in existing deep learning models. This thesis will focus on creating
synthetic training data and how it improves semantic segmentation model which is used on
real-world imagery. Moreover, this study will focus only on aerial images, specifically true
orthophotos plus a DSM. This thesis will only focus on two geographical domains in the
Netherlands, the cities of Haaksbergen for training and testing data and Haarlem, for testing
data. In addition, Potsdam in Germany, for training and testing. Nevertheless, the use of syn-
thetic data imagery could potentially be used in other locations if the true orthophotos and
the DSM are available. Furthermore, this thesis will not evaluate the performance of different
deep learning architectures. Instead, it will use a current, well-known model to assess the
quality of the synthetic imagery.

1.3. Thesis outline

The research is organized as follows:

• Chapter 2 is an overview of the theoretical background and related work going from
semantic segmentation with deep learning, synthetic data, and procedural modelling
to domain adaptation models.

• Chapter 3 is the methodology of the pipeline to create synthetic imagery, including
the design of the 3D models from procedural modelling, the experiment design, the
renderization process and the evaluation steps.

• Chapter 4 describes the implementation details, the different testing scenarios and the
performance measurements to analyze each synthetic dataset.

• Chapter 5 presents the results of the experiments with the analysis and the relevant
discussion about synthetic data in automated semantic segmentation of aerial images.

• Chapter 6 gives the conclusions of this study and presents the main limitations along-
side the recommendations for future work.
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2. Theoretical Background and Related
Work

2.1. Deep Learning for Automated Image Semantic
Segmentation

Semantic segmentation is one of the main tasks for remote sensing, giving each pixel a mean-
ingful class in an image according to human perception [Zhu et al., 2015]. Semantic segmen-
tation is a supervised model trained by labelled data. Next, a model learns to predict the
conditional probability of a pixel to be labelled as a fixed and unique class [Marmanis et al.,
2016].

In the case of remote sensing data, semantic segmentation is essential to give meaning to the
image, recognize it as an urban or rural environment or segment the image into meaningful
classes (e.g. buildings, roads or vegetation). Another capability of semantic segmentation is
to divide the building roofs into their semantics (e.g.dormers, chimneys or solar panels). Due
to this variability, complexity, and heterogeneity of the remote sensing data, it is a complex
problem to do semantic segmentation on these images [Kampffmeyer et al., 2016]. Never-
theless, compared with traditional methods, deep learning models have shown outstanding
performance for semantic segmentation [Yuan et al., 2021], making an impact in remote sens-
ing.

2.1.1. Deep Learning for images

Deep Learning is a machine learning technique that consists of methods that work by learn-
ing complex representations from raw data input [Goodfellow et al., 2016]. A deep learning
model includes several sets of layers, called neural networks, which are non-linear functions
that compute meaningful mappings between the input and the output layer [LeCun et al.,
2015]. A neural network is composed of an input layer that contains the observable data, one
or multiple hidden layers that extract features from the input data, and an output layer that
includes the requested information of the input data [Goodfellow et al., 2016].

A Deep Learning method that learns features of images using filter layers through backprop-
agation is called Convolutional Neural Networks CNN. These networks are designed to deal
with data in the form of arrays using convolutional filters to depict features of these images.
A CNN is a neural network that uses convolutional operations. Traditional CNNs consist of
four main types of layers: Convolutional layers, non-linear function layers, spatial pooling
layers and either fully connected layers in traditional CNN, or transposed convolutional layers
in semantic segmentation tasks [Liu et al., 2017].

The main characteristic of CNNs are the convolutional layers ( Figure 2.2a), which are filters
with learnable parameters. These filters help depict features of the image, from basic types
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2. Theoretical Background and Related Work

Figure 2.1.: Example of a Deep Learning Architecture with the neurons as the kernels inside
the circles. The hidden layers extracts different features of the image to the final layer that
identifies the object in the input layer. Image taken from: [Goodfellow et al., 2016]

such as edges or curvatures to more complex representations such as bicycles or a person.
The operation includes an input image X with a size of W × H and a filter operation of size
w × h called kernel as initial data. The filter operation performs the dot product between
the kernel’s and the corresponding part of the image, resulting in an output of size W2 × H2
that is the convolution of the input. The resulting number of pixels depends on the stride S,
which is the step that will be used in the next slide of the input and padding, which can be
considered as an additional pixel in the borders of the input matrix, to be sure that features in
the borders are into consideration [Liu et al., 2017]. Thus, the dimensions of the output are:

W2 = (W1 − w + 2P)/S + 1, H2 = (H1 − h + 2P)/S + 1 (2.1)

After performing a convolutional layer a non-linear function layer is used to introduce non-
linearity to the network and be able to learn complex features. The most common function
used in deep learning is the rectified linear unit ReLu function, f(x) = max(0,x) ( Figure 2.2b)
[Liu et al., 2017]. The spatial pooling layers are for filtering the input to reduce its size and
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(a) (b)

Figure 2.2.: (a) Example of a Convolutional layer: the input size is W1 = H1 = 5; the con-
volution is performed with stride S = 1 and no padding (P = 0). The output Y is of size
W2 = H2 = 3. Image taken from: [Liu et al., 2017]. (b) The Rectified Linear Unit Rectified
Linear Unit (ReLu) activation function produces as an output when x < 0, and then pro-
duces a linear with slope of 1 when x > 0. Image taken from: [Agarap, 2018].

the number of parameters. The most common pooling functions are max, mean, and sum
functions [Liu et al., 2017].

Last are the fully connected layers that create the class scores from the activation by reducing
the dimension of the 2D input to 1D for the classification. These layers are mainly used when
the classification task is to detect one class in an image. For semantic segmentation with more
than one class, the transposed convolutional layer is used for upsampling operations of the
input to be able to be the same size as the input image. It is the inverse operation of the
convolution with the same sampled factors of stride and padding. Filter parameters can be
either learned or manually implemented [Liu et al., 2017].

These upsampling operations output a vector score for each class in which then the highest
score is taken [LeCun et al., 2015]. Afterwards, a loss function is used in the mask layer to
calculate the error between the output scores and the ground truth. An optimizer is applied
to minimize the cost function to reduce the loss. Next, the loss is multiplied by a learning rate
to adapt the weights in the direction opposite to the gradient vector [LeCun et al., 2015].

2.1.2. CNNs Architectures for image semantic segmentation

Different architectures have been made to improve CNNs for semantic segmentation in re-
mote sensing. For instance, Kampffmeyer et al. [2016] and Maggiori et al. [2017] used a
Fully Convolutional Network (FCN) for semantic image segmentation. This study obtained
87% accuracy in both ISPRS datasets, taken from the cities of Potsdam and Vaihingen [ISPRS,
2020]. FCNs are composed of three phases: multi-layer convolution, deconvolution and fu-
sion. Specifically, FCNs use convolutional layers to get a score for each class. As pooling is
used in the convolutional processes, the output size is smaller than the original. Thus, the
deconvolution step returns the size but loses spatial detail in the class score. An unsampled
deep layer is extracted to get the spatial details back and then fused with a shallow layer by
an additional element-sum operation. The deconvolution step enables the model to perform
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semantic segmentation as it returns the score to the original size of the image. [Yuan et al.,
2021; Long et al., 2014] (see Figure 2.3).

Figure 2.3.: Visual description on how FCNs can perform semantic segmentation by using a
deconvolutional layers to get the scores back to the size of the original output. Image taken
from: [Long et al., 2014]

Another architecture is U-Net, which consists of convolutional and deconvolutional layers
and aims to use little training data. The U-Net is made of a contracting path to get the context
of an image and a symmetric expanding path to get precise localization of features [Ron-
neberger et al., 2015]. This architecture plus fusion layer with a DSM is used by Xu et al.
[2018] using very high-resolution aerial images. For the Vaihingen dataset, the U-Net has an
accuracy of 96% and, for Potsdam dataset, 98%.

The SegNet architecture [Badrinarayanan et al., 2017] consists of two sub-networks. An en-
coder and a decoder. The encoder is a structure of convolutional and pooling layers to extract
features. However, spatial information detail is lost. In the following network, the decoder
is used to recuperate the lost spatial information using an upsampling process [Yuan et al.,
2021]. Audebert et al. [2017] uses this architecture for the Vaihingen dataset, resulting in an
accuracy of 89%. From SegNet, a new architecture was created called FuseNet, which uses
three sub-networks, two encoders, the RGB values and depth values and the decoder with a
fusion layer that processes the RGB-D values [Hazirbas et al., 2015]. Audebert et al. [2017]
uses FuseNet with a DSM and very high-resolution images as input data, getting an accuracy
for both Potsdam and Vaihingen datasets of 90%. On the other hand, Mulder [2020], in an im-
plementation of a FuseNet model with 4-band images (RGB-Z), obtained mean Intersection
over Union (mIoU) of 0.87 on experiments in the city of Haarlem in the Netherlands. These re-
sults were better than using SegNet architecture using the same training data and evaluation
method.

FuseNet Architecture

FuseNet architecture is the one chosen to use in the current study because the fusion ap-
proach, in which is used an extra encoder rather than stacking an extra band (U-Net, SegNet,
FCN), performs better for semantic segmentation of aerial images [Mulder, 2020] (see Chap-
ter 3). This architecture is explained in further detail. FuseNet is based on two parts. First, the
encoder part, which extracts the features of the image and second, the decoder part, which
upsamples the feature maps back to the original input resolution [Hazirbas et al., 2015]. An-
other encoder is added to the architecture to consider the depth band. The name of fusion is
because the feature maps from the depth data are constantly combined into the RGB feature
maps. The encoder parts follows the 16-layer CNN based on [Simonyan and Zisserman, 2014]

7



2. Theoretical Background and Related Work

which use a very deep CNNs that is suited to perform in large-scale image classification. In
the encoder part, networks are in the following order: Convolutional layers, batch normal-
ization of the feature maps and ReLu function to reduce the covariance shift [Hazirbas et al.,
2015]. On the other hand, the decoder part uses unpooling layers to upsample the feature
maps and uses the same structure as the encoder part. Furthermore, to combine the depth
and RGB encoders, a fusion block is used. This layer is an element-wise summation, which
allows for enhancing the mapping features of the RGB with the discontinuity of depth images
extracted in the encoder networks. In Figure 2.4 shows a graphic summary of the FuseNet
architecture.

Figure 2.4.: FuseNet architecture, consisting in two encoder and one decoder. In the encoder
part of RGB, fusions layer is added to constantly taking into account the depth feature
maps. Image taken from: [Hazirbas et al., 2015]

2.2. Benchmarking of Synthetic Imagery to train Deep
Learning Models

Synthetic imagery is defined as ”imagery that has been captured from a simulated camera
operating over a virtual world” [Kong et al., 2019]. Instead of training deep learning models
with costly aerial or satellite images, a synthetic imagery approach can have several benefits,
such as free labelled data as classes are defined by design, simulation of different seasons
or adjustable lighting conditions. In addition, the variability of the images can be set in the
design process of the virtual world. [Nikolenko, 2021; Kong et al., 2019].

2.2.1. Synthetic Imagery to train semantic segmentation networks

One of the first approaches of synthetic imagery for training deep learning models was the
Synthetic collection of Imagery and Annotations of urban scenarios (SYNTHIA) dataset [Ros
et al., 2016]. This dataset was created to have pixel-perfect semantic segmentation for au-
tomated car navigation. SYNTHIA images are created automatically in a virtual environment
using Unity, and it uses a virtual array of cameras throughout the city that simulates a real
car. The research provides two sets, one for training data for deep learning and another
to analyze spatio-temporal constraints of objects [Ros et al., 2016]. The first set consists of
13400 images trained in a FCN model and evaluated in Cambridge-driving Labeled Video
Database (CamVid). The results showed an accuracy of 78% only with CamVid dataset and,
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with the addition of the SYNTHIA dataset, the accuracy increased to 84% [Ros et al., 2016].
Nevertheless, for the Street Scenes Challenge Framework (CBCL) dataset from Chicago, USA,
an initial 79% of accuracy was observed using only their dataset, and 75% with SYNTHIA. They
believe the decrement is due to the combination of early and late layers during upsampling,
but no further evaluation was made [Ros et al., 2016].

Figure 2.5.: Examples of SYNTHIA images plus the depth image. SYNTHIA dataset is for un-
manned vehicles purposes. Image taken from: Ros et al. [2016]

Another example of a synthetic dataset is Procedural Synthetic Dataset (ProcSy) [Khan et al.,
2019], which is a synthetic dataset from ESRI CityEngine; it is used for automatic driving
semantic segmentation. They applied different weather conditions like clouds and rain and
created 8000 images for experiments. The training data is input to a DeepLab v3+ model into
the real-world dataset called CityScapes, obtaining favourable results with mIoU between 70
and 75% [Khan et al., 2019]. The virtual city is based on a real city in Canada, and they used
the dataset to study the effect of different conditions in the current deep learning algorithms.
This study did not show how the dataset will perform in another location and how it adapts
from the virtual to the real domain.

In the case of synthetic data for aerial or satellite images, Kong et al. [2019] created a dataset
called Synthinel. Using ESRI CityEngine, a virtual city was created from the program’s de-
fault settings. They used 1640 images to train a DeepLab v3+ and a U-net model for building
classification. The models were performed with real and synthetic training data to evaluate
it on the Aerial Image Labeling Dataset (INRIA) [Maggiori et al., 2017] and ISPRS [ISPRS, 2020]
datasets. For U-net, using INRIA dataset, the improvement of mIoU was 0.3%, from 69.0 to
69.3%. For DeepLab v3+ the improvement was greater (1.1%) from 72.2 to 73.3%. Neverthe-
less, the research also performed blind segmentation, which evaluates the ISPRS dataset with
training data from both the Synthinel and INRIA datasets. As the domain changed, the results
decreased, but the impact of the synthetic imagery increased. Using a U-net without the Syn-
thinel, the mIoU was 45.0%, and with the synhtetic imagery, was 47.7%. On the other hand,
for DeepLab v3+ the increment was greater, going from 58.1% to 63.5% [Kong et al., 2019].

2.2.2. Design of Synthetic Imagery

There are two approaches in the design of synthetic imagery for training Deep Learning net-
works. The first and most commonly followed method is to produce synthetic imagery with
realistic features. As the domain difference is smaller with realistic features, the model learns
easier, the context of the real world in a synthetic scene [Nikolenko, 2021]. Nevertheless,
problems arise in designing a realistic synthetic world. First, the design process is complex
as the variability of real environments is high (e.g.amount of different layouts, textures and
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Figure 2.6.: Synthetic city from ESRI City Engine used in [Kong et al., 2019]. Default settings
from City Engine creates this city. Image taken from: Kong et al. [2019]

shapes). In addition, hardware requirements for detailed virtual worlds are higher and costly.
Moreover, making a real-world environment involves focusing on a specific area. Thus, cross-
domain applications will require the creation of another virtual world [Kong et al., 2019].

The second approach is domain randomization. It aims to make the domain of the synthetic
data distribution wider and with high variability to reach a robust training that takes into ac-
count the real domain [Nikolenko, 2021]. The design phase can achieve the variety needed by
creating more objects and setting different textures and distractors that can work as negative
training. Similarly, different lighting conditions, camera parameters, and render quality can
obtain enough randomization [Nikolenko, 2021].

In contrast to indoor or car navigation semantic segmentation tasks, where the area of the
virtual worlds is smaller and with more focus on small objects, in remote sensing tasks, the
virtual worlds have to be bigger to achieve the real imagery resolution [Kong et al., 2019].

2.3. Procedural Modelling for creating a synthetic world

The creation of a synthetic dataset is not trivial. It has to be realistic and random to have gen-
eralization. The abstraction of the real world in computer features involves the creation of 3D
model representations usually involving geometric, topological and semantic representations
[Ohori et al., 2020]. In practice, according to the topic, balance decisions between these repre-
sentations are made in order to be flexible and structured [Ohori et al., 2020]. In the case of the
built environment, buildings can be modelled in high detail by hand with both indoor and
outdoor specifications. Nevertheless, memory and time consumption can be important vari-
ables to consider. Procedural modelling comes at hand in creating a synthetic world which
images can be used for training deep learning networks. Procedural modelling comes from
Lindenmayer Systems (L-systems) where there is an ”initial axiom string from which the pat-
tern propagates, and there exist rules to translate the string into generated structures after
every iteration” [Khan et al., 2019; Prusinkiewicz et al., 2013; Lindenmayer, 1968]. Müller
et al. [2006] adapts the L-systems to the modelling of 3D representations of the real world with
a set of rules [Ebert et al., 2002]. Procedural modelling features an abstraction of the scene.
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Rather than pointing out every detail, the scene is generated by an algorithm or a function.
Moreover, procedural modelling gives parametric control to the scene (e.g. angle of roofs)
[Ebert et al., 2002]. With procedural techniques, one can transform a simple square shape into
a highly detailed building, as seen in Figure 2.7.

Figure 2.7.: Example of how procedural modeling can transform from a simple 2D shape to a
3D high detailed building. Image taken from [Schwarz and Müller, 2015]

2.3.1. Computed Generated Architecture Shaped Grammar

From the idea of the L-systems, a similar approach of procedural modelling was made by
[Müller et al., 2006] in creating CGA grammar language. This grammar language was bought
by ESRI and used in CityEngine. The primary purpose of this program is to rapidly create
large urban environments that can be used as analytical information on different subjects
such as urban planning, video games, and 3D cadasters, among others [ESRI, 2022].

Computed Generated Architecture CGA is a grammar-based programming language which
sets a configuration of shapes, consisting of three orthogonal vectors to represent coordinates
and an additional vector to represent the size. Each shape can be terminal or non-terminal,
depending on the shape’s capability to transform into a different one. CGA language consists
of a series of ”production processes” in which a rule X is performed into a predecessor shape
A to create a successor shape B. The notation of these rules is the following:

id : A : cond −→ B : prob (2.2)

where id is the unique identifier, the cond is a logical expression to perform the rule, and prob
is the probability of executing the rule. This procedure enables the creation of a hierarchical
shape structure for the storage of the geometry, semantics and topology of all shapes [Müller
et al., 2006].

CGA consists of two types of basic rules named scope and split rules. The scope rules modify the
shape with basic geometric and semantic operations such as translation, rotation or scale, or
by adding an id to the shape, and the split rules perform a division of a shape into two or more
sub-shapes [Müller et al., 2006]. As CGA focuses on the built environment, it has simple build-
ing structures with common roof shapes integrated. In Figure 2.8 a basic grammar example
is explained with the final output and the hierarchical tree that is inside the program.
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Figure 2.8.: Example of a grammar (a), showcasing labels and operations using other shapes.
The according derivation process defines a shape tree hierarchy (b), whose leaf nodes de-
termine the final result (c) [Schwarz and Müller, 2015]. Image taken from [Schwarz and
Müller, 2015]

2.3.2. International CGA rule

Knowing the basic structure of how the CGA rules work. ESRI RD Center Zurich developed
a CGA [Müller et al., 2006; Schwarz and Müller, 2015] rule that creates a random city for City
Wizard’s 1 tool in CityEngine. The input of this rule are 2D planes called lots (see Chapter 3),
which are formed by the street network (see Figure 2.9). The international rule works with
the following types of lots; open space, residential, apartment block, office block and high-
rise block. One of these types is selected depending on the distance between the origin of the
whole scene and the lots. The first main rule of the script is the lot preparation in which the
area is divided into different footprints for the building and the ground area. Then splitting
and scope rules are performed to transform the 2D footprint into a 3D model. At the same
time, the texturing from the facades and the roof is performed. The shape of the building is
created with a stochastic mass model that combines different basic shapes (see Figure 2.8).
The creation of the whole city, including models of trees, roads, buildings and some other 3D
objects, takes minutes for a large area (see Figure 2.10). These default models will be used to
set a starting point for this research.

2.4. Domain Adaptation

Synthetic data is different from the real data as the source; randomness and environment con-
ditions are different. The main drawback of synthetic data to be used to train segmentation
networks is the domain difference between the synthetic training data and the real testing
data [Nikolenko, 2021]. Domain Adaptation is a set of techniques to close the domain differ-
ence between synthetic and real data [Nikolenko, 2021]. In the case of the current work, some
Domain Adaptation techniques will be performed to close the domain difference between

1https://doc.arcgis.com/en/cityengine/2019.0/get-started/get-started-workflows.htm
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Figure 2.9.: Creation of lots and street shapes from a graph network. Image taken from [ESRI,
2022]

(a) (b)

Figure 2.10.: (a) View of the international city model using CGA rules (b) Overhead view of the
same city of (a). Image taken from CityEngine.

the imagery taken from the virtual world and the real imagery to which the model will be
applied.

2.4.1. Domain Adaptation to close domain difference between synthetic
and real-world domain

Real and synthetic imagery have different distributions, leading to a shift in their domains.
This shift decreases the performance of the models. DA techniques come handily [Wang and
Deng, 2018; Sankaranarayanan et al., 2017] to reduce domain differences. One DA method is
transfer learning. The main objective of these methods is to reduce the shift difference be-
tween source and target domains with statistical approaches. On the other hand, Generative
Adversarial Networks Generative Adversarial Networks (GAN) are methods of DA that con-
sist of a generative model and an adversarial model to transfer the domain from the target to
the source dataset. The generative model depicts the domain distribution from both datasets,
and the adversarial model creates a binary label to distinguish between the training and the
real images [Wang and Deng, 2018; Liu and Tuzel, 2016].
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2.4.2. Transfer Learning

The primary purpose of transfer learning is to reduce the domain difference between the
source and the target domain. Sun et al. [2016] brings a ”frustratingly easy” implementation
called Correlation Alignment (CORAL) which uses the correlation, a second-order statistic, to
align the domain between the source and the target set. For this alignment, the objective is to
apply a A transformation to the covariance of the source image Cs that the difference between
Cs and the target covariance Ct is 0.

minA∥ATCs A − Ct∥2
F (2.3)

In visual terms, CORAL aligns the domain distribution by re-colouring whitened source fea-
tures with the covariance of the target distribution [Sun et al., 2016]. This method consists of
two steps. The first one is to get the covariance for both source and target domains and then
apply the whitening and re-colouring transformations to the source image.

2.4.3. GANs

Generative Adversarial Networks GAN are a class of neural networks that combine a gen-
erative model with a discriminative model. Generative models create new instances from
the source data, and adversarial models discriminate between the source and the target data.
Formally, generative models extract the joint probability of both datasets P(S, T) being S the
source images and T the target images. In contrast, discriminative models depict the condi-
tional probability of P(T|S) [Goodfellow et al., 2014; Shor, 2022].

GANs have a discriminator that learns to distinguish real from fake instances. It learns through
backpropagation by updating the weights from a discriminator loss function that penalizes
the discriminator for misclassifying fake as real data. The input for the discriminator is the
instance created by the generator. The generator consists of a random input that goes to a
generator that forms the first instance to be classified in the discriminator network. Then, a
generator loss function penalizes the generative network for failing to mislead the discrim-
inator. In Figure 2.11, it is observed that the generative model includes the discriminator to
produce the generative loss function as it needs the classifier [Goodfellow et al., 2014; Shor,
2022]. Training two models at the same time brings difficulties to convergence as the genera-
tive model becomes better for creating fake data that looks real, and the discriminative model
fails to classify the generated instance [Shor, 2022]

The use of GANs for domain adaptation between synthetic and real data is extensive and
includes different approaches. For example, Cycle GAN learns to adapt from unpaired images.
In the standard version of GAN, there is always an input X that is manually mapped with the
distribution Y to be able to transform its domain. With unpaired images, X does not have any
meaningful map with Y. Thus, this mapping is created by the Cycle GAN [Zhu et al., 2017]
which adds another generator that not only maps X with Y but also maps Y with X. Formally,
an image X is a generator’s input to create a new image Z in the Y domain. Then this Z image
is an input of another generator that covers it back to the X domain, creating a cycle. Now,
the image X can be mapped with the distribution of Z using cycled loss functions between
these two sets.
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Figure 2.11.: Visual representation of a typical GAN architecture. Image adapted from [Shor,
2022]

Furthermore, Cycle Consistent GAN (Cycada) is developed with a CNN along with a Cycle
consistency GAN [Zhu et al., 2017]. The GAN is to transfer feature maps between domains and
CNN is to enforce consistency for the relevant semantics (i.e. segmentation labels). In more
detail, a pixel-level adaptation is obtained with the training of the generator, from the source
to the target domain, that tries to fool the adversarial discriminator that attempts to classify
between source and target images. A cycle-consistency method is introduced (i.e.Cycle GAN
by [Zhu et al., 2017]) to preserve the source content. With the use of the semantic labels, a
pretrained classification model is incorporated to encourage the generated image to be clas-
sified in the same way as the source image after the style transferring [Hoffman et al., 2018].
Cycada is evaluated to adapt from GTA5 [Richter et al., 2016] to CityScapes with a mIoU of 34.8
using a FCN to perform semantic segmentation.

Other approaches, such as [Tsai et al., 2018] use the source domain label data to be the input
of a generator that creates labels of the target domain. Next, GAN with the weight knowledge
of the target label data is performed using the source domain image. This approach generates
a mIoU of 35.0, adapting from GTA5 to CityScapes. Moreover, having extra info like DSM could
be beneficial to the GAN model as it constrains the learning for semantic segmentation. This
architecture has an mIoU of 36.8 in adapting from SYNTHIA to CityScapes.
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3. Methodology

This chapter explains the methodology to perform an automated semantic segmentation of
aerial images from synthetic imagery in the following main phases. (1) Synthetic city creation,
(2) Experiment design to evaluate synthetic city, (3) Rendering training data from synthetic
city, (4) Training CNN model for semantic segmentation and (5) Model assessment. In Fig-
ure 3.2 the main steps of the methodology are described.

Figure 3.1.: General Methodology of the current thesis

3.1. Synthetic City Creation

The first objective of this thesis is to develop an automatic pipeline to create a synthetic city
for the semantic segmentation of aerial images. This city should be generated in a random
way so that it can be applied for testing different geographical environments [Kong et al.,
2019]. For this reason, producing a digital twin of the testing city could result in satisfactory
results. However, their quality might decrease considerably due to the variability of shapes
and textures when different areas are tested [Nikolenko, 2021; Kong et al., 2019]. In addition,
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in the virtual city, one should be able to build relatively easy, large urban areas with realis-
tic visuals such as the colours, textures, roads and building layouts. Thus, realistic settings
should be set, such as the length of roads, height of buildings and trees, and roof angle. These
parameters can be retrieved from the real world. ESRI CityEngine 1 is used in this research
because it uses simple rules to create random large-scaled virtual worlds which can be easily
customised, either manually or automatically through a python Application Programming
Interface (API). In addition, the software focuses mainly on urban planning and urban mod-
elling, which makes it suitable for creating a virtual city with different building models.

Figure 3.2 shows the pipeline of CityEngine to create the virtual city. This thesis adjusts
the pipeline by implementing changes to customise the city’s design to answer the research
questions.

Figure 3.2.: Overview of the CityEngine modelling pipeline. Black boxes illustrate data types
(layers), and white boxes the operations to create them. In the first step, the street network
is created. Afterwards, the resulting blocks are subdivided into lots. Finally, the 3D models
of the buildings are generated using the CGA rules. The output of CityEngine is polygonal
building models. Image and reference taken from: [ESRI, 2022]

3.1.1. Geographical and Control Maps

Since we want a random city that can simulate realistically and randomly any city, geograph-
ical maps are not needed in this research. A terrain model is generally used for the control
maps to adapt the 3D models to the terrain with different heights. For this thesis, a height
approach is used in the real training and testing data (more details in Section 4.3.2) where
mostly all the ground/terrain parts are normalised to an elevation of 0m. Hence, a terrain
control map is not needed. Furthermore, in the street network (Section 3.1.2), the default ap-
proach creates empty spaces in the surrounding areas of the virtual city, which does not help
to capture images in these areas (i.e.there is no empty space in real world). For this problem,

1https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
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a control map, that consist on a boolean raster, is created to extend the city’s area by a square
of 1.5 by 1.5km ( see Figure 4.1a).

3.1.2. Street Network

The next step of the methodology is to create the street network. A street network is com-
posed of a graph network and blocks. For the street network, some parameters such as length
and width of the roads are set (see Chapter 4 for more details). Then, the road growing pat-
tern is performed. In CityEngine there are three types of patterns for roads. Namely, organic,
raster and radial. These patterns can be applied both on main and secondary roads. The or-
ganic pattern consists of a road network without a geometrical pattern. Raster pattern is a
grid-based network with mostly 90 degrees intersection. Last, radial pattern consist of curvi-
linear network. All patterns can be seen in Figure A.1. Moreover, the second component of
the street network is the blocks which are the areas formed between the roads. These areas
are subdivided into lots with different algorithms. City engine offers three types of subdi-
visions. During this research, the offset subdivision is applied as it creates lots only within a
given distance from the street edges of the block. For further details go to Chapter 4.

Figure 3.3.: Different street patterns for the creation of roads in CityEngine. Left is Organic;
Center is Raster; Right is Radial. Image taken from: [Kelly, 2021]

3.1.3. River Creation

Water bodies are an essential part of the built environment. Unfortunately, there is no built-in
approach or rule to make rivers or canals in CityEngine. For this purpose, a technique to
create a river without affecting the composition of the virtual city is developed. For further
details see Chapter 4.

3.1.4. Procedural Urban Models

After the creation of the road graph, the next step of the methodology is to apply textures to
the roads. In this case the CGA built-in rule of AdvancedStreet.cga is used. It consists of rules to
form the main road, sidewalks, intersections and junctions, trees along sidewalks, bike lanes,
cars and population.
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Furthermore, the 3D modelling of trees is based on a public library made by ESRI [ESRI,
2022]. It consists of 80 different models of trees, plants, flowers, and shrubs. These vegetation
models are divided into three types of models according to their level of detail. The basic
model for trees is the fan model, which is two intersecting images from a front view of the
tree. The second type of tree, with more level of detail, is the schematic tree. This model is a
generalised canopy of the real tree. The third model is the realistic that is a highly detailed,
realistic tree (see Figure 3.4). According to Ortega-Córdova [2018], and ESRI [2022], these
three models can be used according to the extent of the virtual world. For instance, for a large
to a medium extent, the fan model is preferably used as it only has 12 points. In addition to
the fan model, they mentioned that low polycount models are also an alternative to these large
extents. Hence, two poly tree tree models are added to this study.

First, the low polytree, with a low number of points and no texture and the low dead polytree
which is a model of a tree without leaves to simulate different times of the year. The main
drawback of these types of trees is the non-realistic visuals. Nevertheless, the rendering per-
formance in CityEngine is not affected by these types of tree models. More details about the
file size and performance of tree models can be found in Chapter 4. Moreover, for medium
to small extents of virtual worlds, the schematic models are used. Finally, for small and very
detailed scenes, the realistic models are recommended. As we produce large worlds to sim-
ulate aerial images, it is not possible to render the highly detailed trees in CityEngine with
the current hardware. Nevertheless, it was created medium-sized worlds with only trees and
roads that could be used in addition to the normal worlds. Further details in Section 3.2.

Figure 3.4.: Trees from ESRI [2022] public library. The different trees models are based on the
same type of tree. Left: fan; Center: schematic; Right: realistic

The final step of the procedural models is the creation of 3D models of buildings. With the
lots created in the street network, a CGA rule is applied to the lot depending on the distance
from the centre of the virtual city. In the current thesis, two different rules are applied. The
first rule is international city rule explained in Chapter 2. For the second rule, a new script was
created so that the created environment resembles a Dutch urban area as much as possible.
Buildings are visualised realistically and randomly to apply this technique in any Dutch city.
The new CGA rule is called Procedural Dutch City. It is mainly based on the international city
rule but adapted to the Dutch characteristics.
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Variables Source Explanation

Type of building Own To build a procedural model and have a va-
riety of buildings, we decided to divide the
buildings into three groups. Office buildings,
single buildings, and grouped buildings

Height of Building 3D BAG The height of the buildings. It is the height of
the wall surface

Type of roof 3D BAG In 3D BAG, there are three types of roofs.
Slanted, multiple horizontal, and single hori-
zontal.

Roof Angle 3D BAG The roof angle can be set in CityEngine
Garage Own We made a garage in the house which is a cube

overlapping the main building
Dormers Own Dormers are structures above the roofs, giving

more detail to plane roofs. Dormers can con-
tain either flat or slanted roofs.

Solar Panel Own Solar panels give more realism to the roofs
Storage Room Own Most Dutch houses have in the backside of the

little building rooms that should be detected in
the semantic segmentation

Table 3.1.: Details concerning the datasets used for the experiments.

Now the question is what is a typical Dutch building environment?

To answer this question, the Register of Buildings and Addresses (BAG) [Kadaster, 2022] and
3D Register of Buildings and Addresses (3D BAG) [Peters et al., 2022] are used, where infor-
mation about the registration and geometrical features of all buildings in the Netherlands
are stored, respectively. This information is depicted from a municipality of the country
(i.e.Haaksbergen) to perform some statistics and make the stochastic procedural modelling.
Some design decisions are considered to enhance the learning of the deep learning model to
detect the buildings. Details of how the variables were computed are in Chapter 4. In addi-
tion, Table 3.1 describes the variables used to make the stochastic model for the CGA rule.

3.2. Experimental Design Overview

Creating training data is advantageous in assessing the performance of semantic segmenta-
tion in deep learning models. Naturally, it is always better to train the model with data in
the same domain. In the case of aerial images, the same domain is the same geographical
area. In the case of the Netherlands, a cleaned rasterised version of BGT [PDOK, 2021] gives
relatable ground truth data to achieve good results in the semantic segmentation, despite
having numerous artifacts [Mulder, 2020]. As a consequence, the use of manual labelling is
still important. In real applications, manual labelling is constantly required. The quality of
the model depends on the annotation quality, the number of training data and the difference
of domains between the training and testing data [Castillo-Navarro et al., 2019]. The cur-
rent work’s annotation quality is pixel-perfect as the computer makes it. The problem with
synthetic data is the difference between real and virtual domains. To test these differences,
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one can assess the number of images, the composition of the virtual worlds and the lighting
parameters. This chapter explains the design steps to assess the quality of synthetic data as
training data for automated semantic segmentation of aerial images in the Netherlands and
Germany. The design of the experiments aims to answer the research questions mentioned in
Chapter 1.

• The first experiment includes the quality of the building’s 3D models in the training
data. For this purpose, two CGA rules are used, being the international city which is the
pre-built rule in CityEngine and the dutch city made for this thesis. The objective of this
test is to see the ability of the model to detect buildings or, on the contrary, help to detect
objects that are not buildings. In this experiment, the main difference between the two
rules is their shape features. The textures are the same.

• Test different configurations of roads. As explained in Section 3.1.2 there are three dif-
ferent types of roads. In this test, the different patterns plus a combination of organic
and raster patterns are used. This test aims to observe the ability to detect roads with
different spatial patterns.

• The model has to detect vegetation as other correctly, regardless that the model is not set
to classify vegetation. In addition, because the DSM is used as data fusion and the main
objects that have height values in the real environment are buildings and vegetation
(not counting bridges, cars, persons), the model should learn to classify trees as other
and not as roads or buildings. For this purpose, different models of trees are tested. As
mentioned in Section 3.1.4, there are different types of tree models. First are the low poly
models which can be rendered in CityEngine. Then, the fan models and finally, testing
as an augmented data, a city only with realistic trees and roads with a small extent of
100 by 100 meters.

• The quantity of training data has been a key variable in deep learning projects [Castillo-
Navarro et al., 2019]. For this purpose, different quantities of synthetic data will be
trained to compute the learning curve of the model. The first test will be with 378
images; the second test is with 756, the third test with 1512 and the last test with 3024
images. It is important to mention that the components of all these datasets are the
same.

• Another approach towards reducing the domain difference between the real and syn-
thetic imagery is to mix it with real training data when it is available [Kong et al., 2019].
In the current thesis, we will use real labelled training data taken from the BGT in the
Netherlands and mix it with the synthetic imagery to find the best ratio between real
and synthetic data for automated semantic segmentation. The tests include different
combinations of real and synthetic data. These are, 100% real data; 80% real - 20% syn-
thetic; 50% real - 50% synthetic, 20% real - 80% synthetic and 100% synthetic.

• In real-life applications, there is a lack of labelled data [Kong et al., 2019]. As a result,
labelled data from different areas is frequently used. The use of these images creates a
domain difference. It is believed that synthetic data can help close this difference with
domain randomisation as the model can learn a broader domain taking the testing do-
main into account. This test is equal to the previous testing approach with different real
and synthetic data ratios. However, the training data will now be in the Netherlands,
and the testing data will be in Germany and vice versa.

• The final tests will be a benchmark within different DA techniques using as an input the
synthetic data. The first test consists in performing the CORAL technique. The second
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test is the same CORAL but by classes. The third test is Cycle GAN to transform the
synthetic image to the style of the real one. Finally, is Cycada which performs the style
transfer with semantic consistency.

In addition to the mentioned tests, different lighting conditions and different weights be-
tween classes are tested. Since aerial images have as metadata the date in which the picture
was taken, this information can be set when rendering the synthetic world. Nevertheless, dif-
ferent lighting parameters are tested to see if the real lighting conditions are necessary when
the model is in the learning phase. On the other hand, a weighted loss function is used for
the class imbalance for both training and test data which reduces the domain difference. In
addition, the weighted composition of the synthetic data can be set to mimic the real compo-
sition. Different datasets with different class-weight are rendered to see if the class imbalance
affects the results. Results can be seen in Table A.5.

3.3. Rendering

After setting the synthetic city, the model is exported as a whole mesh to Blender 2 to be
rendered. Three types of images have to be rendered to produce synthetic imagery; RGB,
depth image and labelled image. In blender the mesh is divided into different parts according
to the texture, and then the class is assigned as an attribute. Moreover, the locations for every
image are computed following a real path of an aeroplane. For each location, a built-in camera
in Blender is added, and the camera parameters are set according to the image input size of
the semantic segmentation model (512,512). The resolution is the same as the real imagery
(i.e.10 cm.).

3.4. Training CNN using Synthetic Images for Automated
Semantic Segmentation

The first step towards performing semantic segmentation is training the CNN. The input im-
agery of the model is one RGB image, one 1-band image with height information (depth
image or DSM), and one labelled image, also with 1-band with the ground truth of the seg-
mentation. In the current thesis, the semantic segmentation is based in detecting three classes
being, (1) buildings, (2) roads, (3) other. The main focus is to detect buildings as they are the
instances in which more urban applications are based, such as [Kong et al., 2019; Maggiori
et al., 2017] for updating cadastres or solar potential, respectively. Then, another important
instance in the built environment are roads [Yucong Lin and Saripalli, 2012; Saito and Aoki,
2015] for emergency routing or navigation. Moreover, instances that are also detected in dif-
ferent semantic segmentation studies, such as cars [Benjdira et al., 2019; Yang et al., 2018] or
vegetation [Kattenborn et al., 2021; Ichim and Popescu, 2020] are not taken into consideration
in this study as more classes are included in the model, the analysis of the training data be-
comes nonviable as it will bring more depended variables. In addition, training more classes
needs more training data [Castillo-Navarro et al., 2019]. Thus, rendering and training the
model will take more time. Furthermore, the labelled data for vegetation in the real training

2https://www.blender.org/
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set presents some inconsistencies, which make the segmentation of this class nonviable [Mul-
der, 2020]. As a consequence, in the current study. all the other objects present in the imagery,
such as cars, vegetation, people or street utilities, are considered as other.

In this thesis, two types of training data are used, synthetic and real data. The synthetic data
is taken from CityEngine world and rendered in Blender, and the real training data consists
of a TO, a DSM, and the labelled images from the city of Haaksbergen. On the other hand, to
perform the experiments for cross-geographical domains, a public dataset of ISPRS from the
city of Potsdam is used. This dataset also consists of TO, a normalised DSM and a ground truth
with different classes that were changed to be aligned with the classes used in this thesis. It is
important to mention that the quality of the segmentation from the BGT could be improved as
it misses some small buildings, shows some deviations with the TO image, and presents some
overlapping objects [Mulder, 2020]. However, performing and assessing the deep learning
model is sufficiently correct.

To train the model, 80% of the data goes to training the model, and the other 20% goes to
validation. The training data is to enable the CNN to learn its features and set the model
parameters, the validation data for assessment of model performance during the training
and prevents overfitting of the model on the training data [Mulder, 2020].

The CNN architecture is FuseNet which is publicly available but adapted to the study context
by READAR. To assess the training data is used the same hyper-parameters in all experi-
ments. Details of the hyper-parameters can be seen in Table 4.5.

3.5. Domain Adaptation

An important section of the study is to apply different DA techniques to translate the synthetic
images to the real domain. CORAL closes the synthetic domain covariance to the real domain
by a covariance adaptation (see Figure 3.5 and Algorithm 3.1).

Algorithm 3.1: Coral Algorithm. Adapted from [Sun et al., 2016]
Input: Synthetic Data DS, Real Data DT
Output: Transferred Synthetic Data DS

∗

1 CS = cov(DS) + λ * I
2 CT = cov(DT) + λ * I
3 DS = DS * CS

−1/2

4 DS
∗ =DS * CT

1/2

Since the problem each class of the image has different distribution and in most cases of se-
mantic segmentation problems with synthetic imagery, real training data is commonly used.
The CORAL is adapted for each class by mapping it with the existing labelled data. These
approaches were chosen because they are not difficult to implement and the results achieved
by Sun et al. [2016] are significant.

On the other hand, a Cycle GAN is performed with the synthetic and real data to transfer
the real style to the synthetic imagery. Cycle GAN is chosen because it is widely used for
image map transferring and especially in style transfer from synthetic and real domains. In
addition, this architecture is available as an open-source with different courses, papers and
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(a) (b)

Figure 3.5.: (a) Distribution by band for the synthetic imagery (b) distribution by band for the
real imagery. Red = Red band, Blue = Blue band and Green = Green band.

documentation. Similar as CORAL, Cycle GAN does not transfer the domain by class as, for
example, some features and colours of the building class are wrongly transferred to the class
roads. To correct this problem, the Cycada model uses the labelled data of the synthetic imagery
to transfer the real domain while having consistency in every class.

3.6. Model Assessment

3.6.1. Overlap Processing in the Inference step

To assess the performance of the deep learning model, the inference has to be performed in
a different area from the training images. The approach of inference will be the overlapping
methodology which consists in cutting the whole imagery in overlapping tiles in order to
get rid of inconsistencies in the border pixels of the tile [Mulder, 2020; Audebert et al., 2017].
This means that the area is cut into overlapping tiles of 512 by 512 pixels with overlapping
of 256 pixels. Then, the outer pixels of each image are removed to eliminate the overlapping.
Finally, the images are merged to have a single image with the original size. The network’s
output is one 2D array per class with a score of how likely the pixels belong to that class.
As a consequence, this output is changed into one 2D array with a label of the highest score
between classes for each pixel [Mulder, 2020].

3.6.2. Performance Measures

The main idea of this project is to evaluate all different training datasets with the same model
parameters to study the importance of the design of the synthetic city depending on the class.
Thus, the models will be assessed globally and by class. Performance measures per class are
precision, recall, [Tempfli et al., 2009] and Intersection over Union (IoU) [Garcia-Garcia et al.,
2017] and global measure are mIoU and F1 statistic.

For assessing each class separately, the following measures are explained:
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• Precision: It is the ability of the classifier to mislabel as positive a sample that is negative
Buitinck et al. [2013]. For example, in this context is the ability of the model to not
classify a pixel that is other as building. This measure is important as the model tends
to classify as buildings, trees that are part of the class other because of the use of the
height value. Precision is the ratio between true positives and false positives FP plus
true positives TP:

Precision = TP/(TP + FP) (3.1)

• Recall: It reflects how the model identifies positive samples. In the context of the cur-
rent thesis is important to reflect, for instance, the ability of the model to classify all the
building pixels as building. The model can learn to classify buildings perfectly with a
particular layout or size, but the recall gives a score on how it is classifying all types
of buildings. The recall is the ratio between true positives TP to true positives TP plus
false negatives FN.

Recall = TP/(TP + FN) (3.2)

• Intersection over Union IoU: It is the ratio between the intersection and the union of
the predicted samples and the ground truth for each class. It can also be the mean
ratio between true positives TP and the sum of true positives TP , false negatives FN
and false positives FP. [Garcia-Garcia et al., 2017]. This measure is the standard for
semantic segmentation and on which most of the related work is based.

IoU = TP/(TP + FN + FP) (3.3)

Moreover, evaluating the model is not as straightforward as evaluating each class due to the
problem of class imbalance [Kazakeviciute-Januskeviciene et al., 2020]. To avoid the imabal-
ance problem, mean intersection over union mIoU and the average F1 statistic are used. These
two measures are used to compare them with the related work.

• mean Intersection over Union: It is the average of the IoU. Often is named as Jaccard
index.

mIoU =
1

Classes ∑ (TP/(TP + FN + FP)) (3.4)

• average F1 score: It is often interpreted as ”the harmonic mean of the precision and
recall” [Buitinck et al., 2013]. The relative contribution of recall and Precision are equal.
Several studies for semantic segmentation present this score.

F1 = 2 ∗ (precision × recall/precision + recall) (3.5)
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This chapter is an overview of the implementation of every step mentioned in Chapter 3 with
details about the datasets and tools used.

4.1. Synthetic City in City Engine

4.1.1. Street Network

The synthetic city is implemented in ESRI CityEngine program following the proposed
pipeline (see Figure 3.2). The first step is to make the control map to restrict the extent of
the virtual city. A control map consists of a boolean raster where 1 is the area to build, and 0 is
the restricted area. Because the extent of the city is set of 1.5 by 1.5km. the control map has to
be bigger in order to set the restricted area. Thus, the extent of the control area is 2 by 2km.,
with 0.25km. of restricted length in all sides (see Figure 4.1a). The resolution of this control
map is set to 5 meters to be easy to handle. The control map is made in Python with an output
file as ESRI ASCII1.

The next step is to create a street network. The patterns are set through a Python file executed
in CityEngine environment. In this case, all patterns are tested, radial, restar, and organic.
Moreover, CityEngine divides the roads into two groups, primary and secondary streets, and
sets the length of a new street according to a Gaussian distribution given by the mean and
standard deviation. In order to have a realistic length, we used the Transport Networks (RWS)
which is the dataset of streets in the Netherlands and took the city of Haaksbergen to compute
the statistics for the street network in this municipality. Some cleaning was made because the
RWS can take as a street feature, multiple segments and for CityEngine a street is a simple
segment composed of two points. The process is implemented in QGIS 3.14 2 with exploding
tool, to get single part from multipart polygons, and then the length is computed to get the
statistics in a table. Because the number of short segments is much higher than the longer
ones, we name as long streets the ones that are higher than the third quartile and short those
lower. Then, the average and the standard deviation are computed. Results are shown in
Table 4.1. On the other hand, the street width and the sidewalk width can only be set with
one value for each primary and secondary street. Thus, the default values are used. It is
important to note that these variables can be set in the process if a new city is being built by
taking the values of a different city.

The final step of the street creation is to assign the CGA rule, AdvancedStreet for the street 3D
model and textures. The final result can be seen in Figure 4.1b

Once the street graph is created, the blocks between the streets are subdivided according to
different algorithms in CityEngine. There are three types of subdivisions; recursive, offset,

1https://desktop.arcgis.com/es/arcmap/10.3/manage-data/raster-and-images/esri-ascii-raster-format.htm
2https://qgis.org/es/site/index.html
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Variables Source Value

Primary Street Length Mean RWS 136 m.
Primary Street Length Standard Deviation RWS 30 m.
Secondary Street Length Mean RWS 70 m.
Secondary Street Length Standard Deviation RWS 19 m.
Primary Street Width CityEngine 12 m.
Secondary Street Width CityEngine 8 m.
Sidewalk Width CityEngine 1.5 m.

Table 4.1.: Details concerning the datasets used for the experiments.

(a) (b)

Figure 4.1.: (a) boolean control map (b) Street network with organic pattern for primary streets
and raster for secondary streets
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(a) (b) (c)

(d)

Figure 4.2.: (a) recursive subdivision creates rectangular lots by repeatedly splitting the block
(b) offset subdivision creates lots only within a given distance from the street edges of the
block. (c) skeleton creates street-aligned lots that always have access (d) example of parcel
subdivision in real life (Haaksbergen). Images taken from [ESRI, 2022] and [PDOK, 2021].

skeleton (Figure 4.2). The best option for the parcel subdivision is the skeleton (Figure 4.2c).
Nevertheless, as each parcel is modelled randomly, it is not possible to have parcels that share
the same building (grey shapes in Figure 4.2). As a consequence, it is decided to work with
the offset approach with a distance of 20 meters from the street, which is enough to have a
storage or a garden at the back of the parcels.

4.1.2. Procedural Models

For the international city rule, the type of trees is set before generating the models. As dis-
cussed in the Chapter 3, for the customised size of 1,5 by 1,5 kilometres of the synthetic city,
models such as the realistic and schematic take much space, considering that there should be
around 2000 trees in the city’s extent. Table 4.2 shows the size and number of points of every
tree model in a GBL format.
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Type size points

Fan 565 KB 12
Realistic 3916 KB 10332
Schematic 107 KB 3396
Poly Tree 50 KB 932
Poly Tree no leaves 60 KB 1738

Table 4.2.: Types of trees and size

For the implementation of the Dutch City rule, a stochastic model with similar values and
shapes to the real world is created. For this purpose, the 3D BAG from the municipality of
Haaksbergen is taken as CityJson 3 format.

To create the CGA rule, the buildings are divided into three groups:

• Office Building: This type of building occupies most of the area of the lot. Their roof
is composed of different flat surfaces, and parking lots exist around them. This group
was created in order to handle big buildings present in the built environment, such as
schools, commercial venues and office buildings. This building’s type is essential to
learn by the model as sometimes they take the whole input training image.

• Single Buildings: The single buildings are built to imitate different types of houses with-
out intersecting other buildings. They are mostly centred on their lot. Important fea-
tures are modelled on the roof, such as dormers, solar panels and chimneys. The roof
can have different shapes, and sometimes they contain a garage and a storage room at
the back of the main building.

• Grouped Buildings: In a significant part of the Netherlands, one building is divided
into different apartments (see Figure 4.2d). They can contain different types of roofs
and structures above them, and the area of these buildings is bigger than the single
ones. These types of buildings are also referred as terraced houses.

To divide these buildings, some assumptions are made. First, because the office buildings
are mostly flat and have a big area, those buildings in which their area is higher than the
third quartile and present a flat roof, are assigned as office buildings. Then, for the grouped
buildings, those higher than the median and have slanted roofs and flats between the mean
and the third quarter are taken. Flat and slanted roofs below the median are considered
grouped buildings.

In Python, the height information is retrieved from the difference of h dak 50p, which is the
median elevation above sea level from all roof parts, and the h Smaaiveld that is the elevation
above sea level at the ground level of the building. Then, the roof angle is depicted by com-
puting the normal of each roof plane. Depending on the angle, the buildings are divided into
two types, flat roof if the angle is below 10◦ and slanted roof if the building has a roof angle
above 10◦. For all the variables, the mean and the standard deviation are the values used to
make the stochastic rule model. Table 4.3 shows the three types of buildings. The percentage
of appearance of each type of building is according to a weighted ratio between the roof area
and the number of buildings.

3https://www.cityjson.org/
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(a) (b)

Figure 4.3.: (a) aerial view of the three types of buildings On the left is the office building;
center is single buildings; right grouped building (b) aerial image of the three types of
buildings.

Type of Buildings Type of Roof Angle (◦) Height (m) Weighted of total (%)

Office Flat 0 5.8 ±2.0 38
Single Flat 0 2.6 ±3.8 7
Single Slanted 32.5 ±9.3 5.4 ±1.8 14
Grouped Flat 0 6.0 ±1.2 7
Grouped Slanted 36.9 ±11.0 5.7 ±1.4 48

Table 4.3.: Stochastic values for Dutch City.cga
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4.2. Rendering Synthetic Training Dataset

When the model in CityEngine is exported, it is then opened in Blender 4 which is an open-
source 3D suite with a Python pipeline for automation. Having the synthetic city in Blender,
the first step is to label each part after the category they belong to. As the whole city is a
unique mesh, it has to be divided into different parts. Blender has two ways to implement
this; division by material and parts. The division by material works for the goal of assigning
a class to each part because all the textures in the design of the synthetic city are stored by
category in CityEngine. After each part is divided, the class is assigned as an attribute. The
assignment of the class consists of first creating a database to store the name and class of every
texture. In this step, Blender reads from the database and, depending on the texture, the class
is assigned. The class depends on the folder where it is stored when using CityEngine. If the
user wants to add a new texture, it should be stored accordingly with the class.

Since each part of the model is assigned to a category, the next step is to render all three
types of images. The first phase is to set the camera positions in the virtual world. For this,
we simulate a real trajectory of an aeroplane. Figure 4.4 shows the planning for the cameras
in the synthetic city. The camera’s locations are set not to have empty spaces on the city’s
borders. In addition, there is an overlap of 30% for every image as the actual flights are
doing the same to recreate pose estimations with photogrammetry techniques. The camera
resolution is 0.1, which is taken from the real world imagery used for training and testing.

Figure 4.4.: Camera location planning. Every orange dot is a location of one camera in the
extent of the synthetic city.

In the rendering process, the lighting conditions are set according to the real scenario. Pa-
rameters such as the sun intensity and the sun angle can also be set. Furthermore, when the

4https://www.blender.org/
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Segmentation Class BGT class

Building Gebouw installatie
Overig bouwwerk
Pand

Road Overbruggingsdeel
Wegdeel

Other Waterdeel
Kunstwerkdeel
Onbegroeid terreindeel
Ondersteunend waterdeel
Ondersteunend wegdeel
Openbare ruimte

Table 4.4.: BGT class layers to make the ground truth. Adapted from [Mulder, 2020]

camera locations and parameters are set, the rendering starts using BlenderProc 5 procedural
pipeline, which generates real looking images for training CNNs from a scene in Blender us-
ing different approaches such as labelling, depth, normal and pose estimation. First, the RGB
images are rendered with a ray-tracing production-based engine called cycles, used widely
in Blender. Secondly is the depth rendering, where the DSM of the synthetic world is ren-
dered. The third step is the labelled image renderization, where each class is rendered with
one colour.

4.3. Real Datasets

4.3.1. Basisregistratie Grootschalige Topografie BGT

The BGT is used as the ground truth data for the real training data and the inference imagery.
The dataset is a base map of the Netherlands with the location of physical objects such as
buildings, roads, water, railway lines and agricultural areas [PDOK, 2021]. Following the
steps of Mulder [2020], the layers used for making the ground truth are in Table 4.4.

The dataset presents some errors on the boundaries of the classes, especially in buildings;
also, some layers are wrongly classified [Mulder, 2020]. Nevertheless, for the area of Haaks-
bergen and Haarlem, the quality is enough to perform segmentation with buildings, roads and
other classes. The methodology of [Mulder, 2020] was used to create the mask layer. First,
the layers are merged in QGIS 3.14, assigning the name of the initial layer as an attribute.
Then, with a field calculator, the layers were re-classified to the ones used for classification.
Herewith, rasterisation is performed with a resolution of 8cm. Then, mask layer was clipped
to the wanted extents [Mulder, 2020].

5https://github.com/DLR-RM/BlenderProc
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4.3.2. True Orthophotos and Digital Surface Model from Netherlands

In the current work, TOs from the cities of Haaksbergen and Haarlem are used. The images
are provided by READAR and have a pixel size of 8 and 10 cm. The 8 cm resolution images
are then scaled to 10 cm for consistency. An area of 1km square is used for training, and
another area of the same size, for testing. For the case of Haarlem, these images are taken
from an area of 2 km. the same area used by [Mulder, 2020]. The TO is provided by RADAR,
and is created from stereo imagery using a deep learning model for dense matching. For
colouring the parts that are occluded in the stereo imagery, an interpolation is applied. The
TO is an RGB image with the addition of an extra boolean band indicating if the pixel was
interpolated.

Furthermore, for the DSM, as a result of the stereo matching algorithm, a point cloud is ob-
tained. These points represent the height of the pixel, which is later converted into a DSM. To
be able to use the model in cross-domain scenarios, the DSM is normalised by taking the mean
of the height values of the class road using the ground truth created with the BGT.

4.3.3. ISPRS Potsdam dataset

The 2D semantic labelling challenge by ISPRS [2020] contains a mosaic of TO, the ground
truth and DSM from the city of Potsdam, Germany. The resolution of the TO is 5cm, which is
later resized to 10cm using GDAL 6 which is a translator library for raster and vector data.
The DSM is generated by the Trimble INPHO 5.6 software and Trimble INPHO OrthoVista
7 to correct the relief displacement of the orthophoto. The occlusion parts from the relief
displacement are also interpolated. Similarly to the DSM from the Netherlands, Potsdam’s
DSM is normalised by filtering the ground height for each pixel.

Moreover, the ground truth consists of six categories; impervious surfaces, buildings, low
vegetation, tree, car and background. Because this study uses only three classes, all the classes
are re-classified to building, road and other.

4.4. FuseNet Implementation

As the scope of this research work is to test and analyse the quality of training data in segmen-
tation models, the only model used in this thesis is FuseNet with a fusion of height values,
as it was the best performing model in [Mulder, 2020]. The model was given by READAR
and uses the open source machine learning framework PyTorch 8. To encode the inputs and
outputs of the model, PyTorch uses Tensors, a data structure similar to an array structure in
Numpy library but with the ability to run on GPU’s. The model is adapted to work with
spatial data to extract the exact location of the input data [Mulder, 2020]. With the use of Py-
Torch, sufficient computational power is needed. The models are trained using a single GPU
(rtx2080ti 12 GB). The model is ran in a Docker container 9. A container is a standard unit of
software that packages up code and all its dependencies, so the application runs quickly and
reliably from one computing environment to another.

6https://gdal.org/
7https://geospatial.trimble.com/products-and-solutions/trimble-inpho
8https://pytorch.org/
9https://www.docker.com/
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Parameters Value

Loss Function Weighted Cross Entropy
Optimizer Adam
Optimizer Learning Rate 0.0001
Batch Size 4
Number of epochs of no improvement 20

Table 4.5.: Parameters of FuseNet model

Training and inference of the model work in three steps. The first step is the preparation
of the training data. The training data is split into training and validation data in this step.
Validation data is used to tune the hyperparameters and to assess the model during training
to prevent overfitting of the model [Mulder, 2020]. Then, the inverse weights are calculated
and incorporated into the weighted cross-entropy loss function. Furthermore, the training
step begins by selecting the parameters in Table 4.5. It is important to mention that these
parameters are selected according to Mulder [2020] as they bring the best performing results
for the study case. These parameters are not changed in the tests of this work to be able to
analyse only the influence of the training data.

Once the training step has 20 consecutive epochs without improving the mIoU, the five best
performing models are saved for later use in the inference step. This step is to process the
model in unseen imagery (i.e.testing imagery). The inference also is based according to Mul-
der [2020] overlap inference strategy. This strategy is based on cutting the testing image into
overlapping tiles. Next, make the inference for each tile and remove the outer overlapping
part to eliminate border inconsistencies and finally merge all the cutting tiles. Is important
to mention that the inference is an average of the five best performance models during the
training process for robustness purposes.

4.5. Domain Adaptation

The first approach of domain adaptation is CORAL. It is implemented in Python using Numpy
arrays. First, the real and synthetic images are imported as an array with a size of 512 by 512
pixels for each image. That means for a dataset of 756 images, 198 million pixels are used to
compute the covariance. The computer crashes due to the amount of data processing when
the covariance is calculated with Numpy cov. Schubert [2018] compares different methods
on stable computational algorithms for the covariance. One of them is the two-pass algorithm
that consists of computing first the two sample means and then the covariance.

CORAL algorithm (Algorithm 3.1) is performed after the calculation of the covariance of the
real dataset.

The second approach is CORAL by classes. The implementation of this method was made in
Python using the ground truth and the real image dataset. First, we take the location of one
class in the ground truth and extract the positions of this class. Then, the RGB values are
depicted according to the location of the ground truth. When this step is made with all the
classes, the covariance is calculated for each class in both real and synthetic images. Next,
CORAL is performed for each class and finally every transformed class is located back to the
original image positions according to the ground truth.
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CycleGan implementation is downloaded from Github 10 as a PyTorch implementation that
enables to work with different types of images. Then, the real and synthetic datasets are used
as input for the model. The model has its own Docker file which enables the download of all
the requirements in a controlled environment.

Finally, Cycada implementation was downloaded from JoliBrain Github 11. JoliBrain is a
group of veterans of software development with open-source implementations for different
models of Deep Learning. For running the Cycada model, the input is the ground truth and
RGB images from both real and synthetic datasets. The parameters are tweaked, especially
for the lambda parameter, which is the tradeoff between the reconstruction loss and the visual
style loss [Hoffman et al., 2018]. The final lambda is set to 5, which gives the best reconstruc-
tion.

4.6. Evaluation

The evaluation process starts with the inferred image and the ground truth. The performance
measures are computed in Python with the library scikit-learn 12 by computing the confusion
matrix. On the other hand, the visual assessment is done with the help of QGIS.

10https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
11https://github.com/jolibrain/joliGAN
12https://scikit-learn.org
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In this chapter, the results of the experiments are presented. First, the results between the
two different CGA rules for buildings are presented. The second is a comparison between
different road patterns, followed by a comparison of different types of tree models. Then, the
tests between different quantities of images and the mix with real training data are presented.
Next, a comparison with related work is presented, and finally, the results of DA techniques
are shown.

5.1. Building Models Experiment

The first dataset tested contains the default settings of CityEngine with the rule International
Cities and with the default settings of height values (Figure 5.1). The test is performed in
the city of Haaksbergen. The mIoU and average F1 scores are presented in Table 5.1, and the
results by class are presented in Table 5.2. In addition, a visual assessment of the results is
important to get the first ideas of how the synthetic data works for semantic segmentation of
aerial images (Figure 5.2c).

Figure 5.1.: Sample Image from the default settings of CityEngine. Left: RGB image; center:
segmented image; Right depth image. Red = Building, Gray = Road and Green = Other.

Building Rule mIoU F1

International City (Default City Engine) 0.40 0.52
Dutch City (Own) 0.46 0.52

Table 5.1.: Global results for International City and Dutch City predicting in the city of Haaks-
bergen
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building road other

IoU prec. recall IoU prec. recall IoU prec. recall

International City 0.57 0.62 0.88 0.04 0.55 0.08 0.59 0.69 0.80
Dutch City 0.58 0.62 0.90 0.20 0.60 0.23 0.59 0.73 0.76

Table 5.2.: Results for Dutch City predicting in the city of Haaksbergen

(a) (b)

(c) (d)

Figure 5.2.: (a) TO test image of Haaksbergen (b) Ground Truth from BGT (c) International city
prediction (d) Dutch City prediction. Red = Building, Gray = Road and Green = Other.
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(a) (b) (c) (d)

Figure 5.3.: (a) TO small building example (b) Ground Truth (c) International city prediction
(d) Dutch City prediction. It is seen that both approaches miss the small buildings in the
backyards of the houses. Red = Building, Gray = Road and Green = Other.

(a) (b) (c) (d)

Figure 5.4.: (a) TO big building example (b) Ground Truth (c) International city prediction (d)
Dutch City prediction. It is seen that Dutch city predict more pixels in big buildings than
international city . Red = Building, Gray = Road and Green = Other.

First, the model detects buildings better than roads due to the height difference and the well-
defined edges. Different objects on the roads, such as trees, cars and shades, make road
detection more difficult. The model can detect 88% of the building pixels. Nevertheless, it is
not detecting small buildings and some big buildings. Small buildings with grey-ish textures
are not detected as it confuses building pixels as road or other because the lower difference
of height and the similarity of colour (Figure 5.3). On the other hand, big buildings are not
detected because they have multiple levels with different heights and textures (Figure 5.4),
which confuses the model. Missing these types of buildings affect the intersection between
the prediction and the ground truth, reducing the IoU of building class. Moreover, the IoU and
the precision are considerably low as the model detects the trees as buildings because they
have height values greater than the ground level (Figure 5.5).

Furthermore, the model confuses road with other. This problem could be because the ground
and streets have the same height values. As a consequence, the values of IoU for other are low
as the union increases with detecting road pixels as other.

In order to detect smaller buildings and more prominent buildings with multiple floors, the
model is trained with the Dutch city CGA rule with the same road structure as international city
rule but with different building model specifications.

The results of Dutch city are also presented in Table 5.1 and Table 5.2. Despite having more
detailed buildings and specifications of the real environment, the IoU of building increases only
1 Percentage Points (p.p.). This increment is because it detects more pixels in the big buildings,
which are not detected in international city (Figure 5.4). Is believed that that is caused because
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(a) (b) (c)

(d) (e)

Figure 5.5.: (a) TO with trees present (b) DSM (c) Ground Truth (d) International city prediction
(e) Dutch City prediction. It is seen that both Dutch city international city are predicting trees
as buildings due the height presence is trees. Red = Building, Gray = Road and Green =
Other.
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mIoU F1

Organic 0.42 0.59
Radial 0.35 0.61
Raster 0.44 0.63
Organic Raster 0.39 0.57

Table 5.3.: Global Results for different road patterns

building road other

IoU prec. recall IoU prec. recall IoU prec. recall

Organic 0.45 0.55 0.71 0.28 0.44 0.43 0.54 0.74 0.66
Radial 0.46 0.47 0.99 0.36 0.41 0.74 0.22 0.82 0.24
Raster 0.49 0.54 0.86 0.36 0.49 0.58 0.48 0.78 0.55
Organic Raster 0.43 0.52 0.72 0.30 0.40 0.56 0.43 0.55 0.60

Table 5.4.: Results by class for different road patterns

dutch city follows to height distribution of the real context which enables the model to detect
more building pixels. In contrast, the model also fails to detect small buildings. The precision
is still the same as the Dutch city is also incorrectly detecting trees as buildings.

For the mIoU and F1 score, the differences are higher as the Dutch city learns better to classify
roads. It is believed that this is since the Dutch city has more roof details such as the dormers,
chimneys and solar panels that could make the model more sensitive to changes in height
values as the difference of height between the roads and the ground truth are minimal (0.2
m. in both real and synthetic domain). On the other hand, despite that models being trained
three times to consider the model’s randomness, the results persisted. Finally, for the mIoU
and F1 score is clear the ability of the synthetic data to classify buildings as it is presenting a
recall of 0.9. More details about the synthetic road behaviour are presented in the following
section.

5.2. Road Experiments

In this section, different types of road patterns are tested to see the influence of road shapes
on the model. The textures of the roads and the building modelling rule are the same in all
experiments. In addition, tree models are not present. In this experiment we use four types
of road patterns explained in Chapter 4. Table 5.3 presents the global results, and in Table 5.4,
the results by class. Figure A.3 shows the visual results.

For the global results, it is believed that none of the road patterns has sufficient ability to
classify properly road shapes in the real domain. Values of IoU are below 0.36 for all cases.
However, there are some differences between the results of each experiment. Most notably,
the raster pattern presents the best results. The main difference between this pattern and the
others is the number of intersections and that most of these intersections have an angle of
90 degrees. Since the pattern is the only variable that is different in these experiments, it is
believed that the model could focus more on detecting defined shapes of roads than the other
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(a) (b) (c)

(d) (e) (f)

Figure 5.6.: The different patterns detect differently a big building with multiple levels (a) TO
(b) Ground Truth (c) Organic pattern (d) Organic Raster pattern (e) Raster pattern (f) Radial
pattern. Red = Building, Gray = Road and Green = Other.

patterns. As a single model is used of all experiments, the ability to detect the roads affects
both the buildings and other classes.

In more detail, the best pattern to detect the class road is the raster with an IoU of 0.36. The radial
approach has the same value, but it has more incorrect predictions of road class, lowering the
precision. In the case of the radial pattern, the model is believed to be very sensitive to heights
because every object with a height greater than the ground height is classified as building and
the rest as road with some clear green textures that are classified as other. As a result, the
recall of radial pattern for building is approximately 1.0 and for road is higher than the other
patterns. Organic pattern seems to be very influenced by the texture of roads, labelling more
building pixels as road or other as it is seen in most of big buildings (Figure 5.6c). The organic
and raster pattern detects more of these pixels, but the raster pattern seems to be more sensitive
to height than the other two, detecting almost all of the area of the big buildings. A model
that is sensitive to heights will detect more trees as buildings.

Moreover, road shapes in the ground truth have a well-defined shape of a segment. Never-
theless, in the TO, they have cars, building or tree shades that make changes in the shape and
height of the roads. When training with synthetic cities, only shades of buildings are present.
As a consequence, the model occludes cars and objects present on the roads, labelling it as
building or other (Figure 5.7). The ability of the synthetic model to learn different textures of
roads is limited since it uses some textures simulating the grey pavement. However, the raster
pattern can learn to detect red pavement and other colours, mainly because the model focus
more on learning shapes and edges that defines a road (Figure 5.8).

5.3. Tree Experiments

Although the trees do not belong to any of the classes for this research, they are essential
for detecting other classes. For instance, as seen in previous experiments, models which are
sensitive to height values may confuse trees with buildings. Modelling trees may help the
model to detect irregular shapes with height values as other instead of building. As a result,
the precision should increase, and the union between prediction and ground truth should
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(a) (b) (c)

(d) (e) (f)

Figure 5.7.: Road prediction when cars are present on the roads (a) TO (b) Ground Truth (c)
Organic pattern (d) Organic Raster pattern (e) Raster pattern (f) Radial pattern. Red = Build-
ing, Gray = Road and Green = Other.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 5.8.: Road prediction when coloured road textures (a) TO (b) Ground Truth (c) DSM
(d) Organic pattern (e) Organic Raster pattern (f) Raster pattern (g) Radial pattern. Red =
Building, Gray = Road and Green = Other.
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mIoU F1

No Trees 0.39 0.57
Poly Tree 0.39 0.57
Fan Tree 0.30 0.53
Realistic Tree 0.38 0.61

Table 5.5.: Results for different types of trees

building road other

IoU prec. recall IoU prec. recall IoU prec. recall

No Trees 0.43 0.52 0.72 0.30 0.40 0.56 0.43 0.55 0.60
Poly Tree 0.43 0.54 0.69 0.30 0.38 0.59 0.42 0.72 0.51
Fan Tree 0.40 0.67 0.50 0.22 0.24 0.71 0.29 0.75 0.33
Realistic Tree 0.57 0.66 0.81 0.29 0.31 0.79 0.29 0.80 0.31

Table 5.6.: Results by class for different types of trees

decrease to improve the IoU for building class. Three types of trees are tested, plus a synthetic
dataset without any trees for comparison. The visual results can be found in Figure A.4.

For the global results (Table 5.5), the mIoU is equal for no trees, poly trees and realistic trees, and
similar F1 scores with realistic approach being the best result as the precision and recall for
each class is higher. Mainly, because the recall of the class building is significantly higher (0.81)
than the other approaches. Whereas no trees and poly tree are classifying more precisely the
class road, the fan trees and realistic trees models have a higher precision in the class other.

In more detail, the effect of the trees on the model results is significant. First, the model with-
out trees appears to be sensitive to height values, labelling tree pixels and cars as building
(Figure 5.9d). Second, not only having irregular shapes with height values works for detect-
ing trees as poly tree approach cannot help to classify trees correctly. Also, because of the time
when the TOs were taken, the trees are not green (Figure 5.9e). In other words, the texture of
trees is as important as the height values. Third, the fan approach, which is two intersecting
planes, helps to detect green fences with regular shapes or canopies with continuous foliage
of trees. However, the sensitivity of height is decreased, affecting the detection of buildings
(Figure 5.9f). Finally, the best approach is with the realistic trees as it helps the model to detect
the trees as other with an IoU of 0.57. Nevertheless, some drawbacks appear with the addition
of trees, as the model starts only detecting high vegetation as other and lower vegetation as
roads, decreasing the IoU of this class and affecting the mIoU taking it to similar levels as the
other approaches ( Figure 5.9g).

5.4. Quantity of Images

To study the ability of the CNN to perform semantic segmentation of aerial images with syn-
thetic images as training data, the learning curve of the model is investigated (Figure A.9).
For this, different quantities of training data are tested with the same design settings of the
virtual world. Beforehand, it is known that because the maximum variability of scenes that
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5.9.: (a) TO (b) DSM (c) Ground Truth (d) no trees (e) poly trees (f) fan trees (g) realistic
augmentation. Tree detection when a canopy of trees is present. Also a green fence is
present. Red = Building, Gray = Road and Green = Other.

# Images mIoU F1

188 0.31 0.46
376 0.44 0.62
756 0.45 0.61
1512 0.48 0.65
3024 0.46 0.64

Table 5.7.: Results for different quantities of synthetic images

are generated as synthetic images is limited, the model will arrive at a certain limit that the
evaluation measures will be constant as it has learnt the whole domain of the synthetic im-
ages. In Table 5.7 the global results for every dataset are presented. In Table 5.8 the values
per class are presented and in Figure A.5 the visual prediction results are presented.

The results suggest that the synthetic images converge between 756 and 1512 images with
approximate maximum mIoU of 0.50. The model cannot learn more visual cues to perform
semantic segmentation at this quantity of images. The reason could be the limited samples
of textures and shapes generated in the synthetic city. In the IoU for building class, with the
addition of more images, more pixels are classified as building, increasing the recall. However,
on the contrary, the precision decreases. This phenomena suggests that the addition of more
images, enables the model correctly classify building but also classify other and road pixels as
building such as trees, ultimately keeping the IoU constant.
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building road other

# Image IoU prec. recall IoU prec. recall IoU prec. recall

188 0.47 0.61 0.67 0.24 0.26 0.76 0.21 0.71 0.22
378 0.52 0.63 0.76 0.31 0.40 0.56 0.51 0.76 0.60
756 0.56 0.62 0.84 0.26 0.41 0.42 0.53 0.75 0.65
1512 0.52 0.60 0.81 0.33 0.58 0.43 0.57 0.75 0.71
3024 0.50 0.56 0.84 0.32 0.60 0.40 0.56 0.75 0.69

Table 5.8.: Results by class for different quantities of synthetic images

Ratio # Images mIoU F1

100% Real 1444 0.75 0.86
100% Real 722 0.75 0.86
100% Real 288 0.72 0.84
100% Real 144 0.70 0.82
20% Synthetic - 80% Real 1444 0.76 0.86
50% Synthetic - 50% Real 1444 0.75 0.86
80% Synthetic - 20% Real 1444 0.71 0.83
90% Synthetic - 10% Real 1444 0.70 0.81
100% Synthetic 1444 0.35 0.51

Table 5.9.: Results for different ratios between Synthetic and Real training data

5.5. Training with a mix of Real and Synthetic Training data

Additional real data can be used as a booster, primarily when using synthetic data to close the
domain gap. This section presents the results when training with a mix of real and synthetic
data with different ratios (Table 5.9 and Figure A.6). In addition, some analysis of the quantity
of real data is presented.

The results show that for a fixed number of real images, adding synthetic data does not ei-
ther improve or decrease the mIoU and F1 average score. When taking a model trained on
synthetic data as basis, adding real images shows a sharp increase in performance. However,
training with the same amount of real images only gives similar results. Moreover, with 20%
of synthetic data, the mIoU improves by 1%, mainly because the recall for the class other is a
little better in areas of pavement textures that are not labelled as road.

The real data seems to converge at approximately 700 images, which could be why the syn-
thetic data is not helping to improve the model. Despite the real training data coming from
an uncleaned version of the BGT, the model can detect new buildings that are not included.
Moreover, real training data fails to detect buildings with green roofs because the original roof
texture is lost (Figure 5.10). On the other hand, small buildings, mainly located at the back of
the properties, are also not detected by the model. In these cases, the visual results suggest
that synthetic data helps detect green roofs as buildings. For the second case, the synthetic
data does not seem to help.

When taking as a reference training with 144 real images, the improvement of adding more
images is 5 p.p. when training with 1444. This indicates that the model is able to learn with a
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building road other

# Image IoU prec. recall IoU prec. recall IoU prec. recall

100% Real 1444
Im.

0.82 0.87 0.93 0.66 0.73 0.87 0.79 0.93 0.84

100% Real 722 Im. 0.81 0.86 0.93 0.65 0.75 0.83 0.79 0.91 0.85

100% Real 288 Im. 0.79 0.85 0.93 0.61 0.74 0.77 0.77 0.89 0.85

100% Real 144 Im. 0.79 0.84 0.93 0.58 0.74 0.73 0.76 0.88 0.85

20% Synthetic -
80% Real 1444 Im.

0.81 0.87 0.93 0.67 0.75 0.86 0.79 0.92 0.85

50% Synthetic -
50% Real 1444 Im.

0.81 0.87 0.93 0.65 0.74 0.84 0.79 0.92 0.85

80% Synthetic -
20% Real 1444 Im.

0.79 0.85 0.91 0.60 0.73 0.77 0.76 0.88 0.85

90% Synthetic -
10% Real 1444 Im.

0.75 0.84 0.84 0.58 0.69 0.74 0.75 0.87 0.85

100% Synthetic
1444 Im.

0.49 0.50 0.99 0.39 0.44 0.75 0.31 0.85 0.33

Table 5.10.: Results by class for different ratios of synthetic and real images
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(a) (b) (c) (d)

Figure 5.10.: (a) TO green roof (b) Ground Truth (c) Prediction with 100% real training data
(d) Prediction with 50% real training data and 50% synthetic data. Synthetic data seems to
help real data to detect green roofs. Red = Building, Gray = Road and Green = Other.

small number of images the main characteristics of the data to perform semantic segmenta-
tion. In more detail, the addition of more real data only significantly improves the road, which
could be due to the variability of shapes that this class has.

Furthermore, in the case of roads, both the real and the synthetic training datasets are sensi-
tive to pavement textures. As a consequence, pavement inside properties is classified as road,
but in BGT the pavement inside the properties is classify as other decreasing the IoU in roads.
In practice, these areas should be classified as roads. Hence, the IoU should be higher.

5.6. Cross-Domain Inference

This section uses the results of inference with cross-domain scenarios where different ge-
ographic areas are taken in the training and testing data. In Figure 5.11, Figure 5.12 and
Table 5.11 the results for different scenarios are presented.

Synthetic data improves semantic segmentation when the training and the testing data are
from different areas. In both cases, Potsdam - Haaksbergen and Haaksbergen - Potsdam,
the results of mIoU improve 4 p.p. and 8 p.p., respectively. In the case of training in Potsdam
and testing in Haaksbergen, the model confuses some trees with buildings because of the
height values (Figure 5.13). On the other hand, for the case of Haaksbergen and Potsdam for
training and testing, respectively, the Synthetic data helps the model detect more structures
like dormers and other different textures not present in the Haaksbergen dataset. Visually,
the texture variety of Potsdam seems more exhaustive than the one in Haaksbergen. Hence,
the results are better when trained on Potsdam and test in Haaksbergen than vice versa. In
addition, the synthetic city helps to add more variety of textures which the model can learn,
helping in the generalisation of it (Figure 5.14). The domain generalisation could potentially
work for roads as the amount of textures in Haaksbergen are less varied than in Potsdam,
which makes the real training data from Haaksbergen fail in detecting roads.

Synthetic data improves the results in cross-domain scenarios, and the improvement depends
on how big is the domain difference. In scenarios in which the domain difference is big
(i.e. Haaksbergen to Potsdam), the improvement is double that in the scenario where the
difference is smaller. In addition, the average F1 score also improves considerably, 0.7 p.p.
and 0.5 p.p. for Potsdam to Haaksbergen and for Haaksbergen to Potsdam, respectively.

In more detail, for classes road and other , the reduced performance is primarily due to the
definitions of what is a road and what is other. For instance, a road in Potsdam can be a
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(a) (b) (c)

(d) (e)

Figure 5.11.: (a) Haaksbergen TO (b) Haaksbergen DSM (c) Haaksbergen Ground Truth (d)
Prediction with Potsdam training data (e) Prediction with training 50% Potsdam and 50%
synthetic. It is seen that the addition of synthetic data improves the model results.

(a) (b) (c)

(d) (e)

Figure 5.12.: (a) Potsdam TO (b) Potsdam DSM (c) Potsdam Ground Truth (d) Prediction with
Haaksbergen training data (e) Prediction with training 50% Haaksbergen and 50% Syn-
thetic data. It is seen that the addition of synthetic data improves the model results. Red =
Building, Gray = Road and Green = Other.
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Training Images Test mIoU F1

Potsdam 1156 Haaksbergen 0.45 0.61
50% Potsdam - 50% Synthetic 1156 Haaksbergen 0.49 0.68

Haaksbergen 1444 Potsdam 0.34 0.63
50% Haaksbergen - 50% Synthetic 1444 Potsdam 0.42 0.68

Table 5.11.: Results for cross-domain scenarios

building road other

Scenario IoU prec. recall IoU prec. recall IoU prec. recall

Potsdam →
Haaksbergen

0.62 0.64 0.97 0.35 0.39 0.77 0.39 0.89 0.41

50% Potsdam -
50% Synthetic →
Haaksbergen

0.75 0.79 0.94 0.31 0.34 0.75 0.40 0.83 0.43

Haaksbergen →
Potsdam

0.54 0.96 0.56 0.13 0.89 0.13 0.35 0.35 0.98

50% Haaksbergen
- 50% Synthetic
→ Potsdam

0.66 0.95 0.69 0.20 0.93 0.20 0.38 0.39 0.96

Table 5.12.: Results by class for different quantities of synthetic images

backyard of a house or a parking spot. Whilst in Haaksbergen, these cases are considered as
other. Another difference is that the annotation for Potsdam is specially made for that specific
image. Thus, the current shape of trees are considered as other and in Haaksbergen is only the
base of the tree that is consider other. For building class, it is clear that it is easier to adapt from
Potsdam to train in Haaksbergen than to train the other way around. Furthermore, for the
case of training in Potsdam and testing in Haaksbergen, the precision increases when adding
synthetic data. This is mainly due to the increased precision of the building class.

5.7. Comparison with other studies

First, a comparison with [Mulder, 2020] research in the city of Haarlem is presented, followed
by a comparison with other synthetic datasets created by [Kong et al., 2019].

The study of Mulder [2020] consists of the semantic segmentation with the addition of one
more class (water) in comparison to this research. However, the definitions of the classes
building and road are the same. The inference of Haarlem was made by training the deep
learning model with a mix of real datasets located in Haaksbergen and with the synthetic
dataset developed in this research. In Table 5.15 and Figure A.7 the results are presented.
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(a) (b) (c)

(d) (e)

Figure 5.13.: (a) TO Haaksbergen (b) DSM Haaksbergen (c) Ground Truth (d) Prediction with
Potsdam training data (e) Prediction with training 50% Potsdam and 50% synthetic. It is
seen that the addition of synthetic data improves the model results as it helps not to detect
trees as buildings. Red = Building, Gray = Road and Green = Other.

(a) (b) (c) (d) (e)

Figure 5.14.: Potsdam TO (b) Potsdam DSM (c) Potsdam Ground Truth (d) Prediction with
Haaksbergen training data (e) Prediction with training 50% Haaksbergen and 50% Syn-
thetic data. It is seen that the addition of synthetic data improves the model results by
detecting a wider variety of textures. Red = Building, Gray = Road and Green = Other.
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Training Images Test mIoU F1

Haarlem [Mulder, 2020] 1444 Haarlem 0.82 0.90
Haaksbergen 1444 Haarlem 0.68 0.81
Haaksbergen 722 Haarlem 0.62 0.76
50% Haaksbergen - 50% Synthetic 1444 Haarlem 0.63 0.77
Synthetic 1444 Haarlem 0.50 0.70

Table 5.13.: Results in Haarlem with a comparison with Mulder [2020] research

Scenario IoU Building IoU Road IoU Other

Haarlem [Mulder, 2020] 0.88 0.79 0.81
Haaksbergen (1444 im.) 0.78 0.57 0.70
Haaksbergen (722 im.) 0.76 0.44 0.65
50% Haaksbergen - 50% Synthetic (1444 im.) 0.75 0.49 0.66
Synthetic (1444 im.) 0.57 0.50 0.44

Table 5.14.: Results by class in Haarlem with a comparison with Mulder [2020] research

The cross-domain training data shows a decrease in performance with respect to the origi-
nal study. When the mix is half real and half synthetic, the model under-performed in big
buildings with flat roofs. On the other hand, the synthetic data helps the model to detect
buildings with different height levels. Nevertheless, for continuous blocks of buildings, the
model presents some errors, and it is believed that this is because of the lack of this type of
buildings in the training data.

The quantity of training data, in this case, seems important as the mIoU decreases six p.p.. from
training with 1444 to 722 images. Consequently, compared with inferring in Haaksbergen,
where the saturation point is with fewer images (approximately 700), the saturation point
is higher when performing cross-domain inference, indicating that the saturation point also
depends on the testing data. This could be due to the fact that domain matching, when
training and testing in the same area, is better than in a cross-domain scenario. Moreover, the
addition of synthetic images in cross-domain inference helps the generalisation of the model
to encompass the domain of the testing images.

As mentioned in the mix analysis before, adding synthetic data improves the model when
the number of real images is less than the saturation point. Likewise, in this scenario, when
adding synthetic images to the 722 images dataset, the model improves compared with only
722 real images. However, the improvements are more significant when adding real data
than synthetic data.

The results of cross-domain and synthetic imagery are far from the ones in Mulder [2020].
The difference in training in the same domain with sufficient domain matching still proves
better results than generalising training data to work in different domains.

Furthermore, Kong et al. [2019] uses synthetic data in combination with real data to detect
buildings. Similarly to the current research, they test the data in ISPRS [2020] dataset but
the train with a different dataset. They obtain an IoU of 0.67 with the addition of synthetic
data and an improvement of 1 p.p. with respect to training with only real data. This research
work accomplishes similar results with an IoU of 0.66 and an improvement of 12 p.p. with
the addition of synthetic data. The training dataset in Kong et al. [2019] consists of several
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Training Test IoU
Building

4 Different cities [Kong et al., 2019] Potsdam + Vaihingen [ISPRS, 2020] 0.67

4 Different cities [Kong et al., 2019]
+ Synthetic Data [Kong et al., 2019]

Potsdam + Vaihingen [ISPRS, 2020] 0.68

Haaksbergen Potsdam [ISPRS, 2020] 0.54
50% Haaksbergen - 50% Synthetic Potsdam [ISPRS, 2020] 0.66

Table 5.15.: Results in Potsdam with a comparison with Kong et al. [2019] research

cities across the world, which makes the generalisation higher and makes the addition of
synthetic data less significant. Due to this research only used real training data from one city,
the improvement with the addition of synthetic imagery is greater.

5.8. Domain Adaptation

In the current section, the results of different DA techniques are presented. The domain adap-
tation was performed on the same synthetic dataset for these experiments. Figure 5.15 shows
an example of the final transformation for each technique and Figure A.8 shows the predic-
tion results. In addition, the results for semantic segmentation are presented in Table 5.16.

Despite that CORAL shortens the difference of the domain covariance between the synthetic
and real dataset, the results decrease considerably. Mainly because with CORAL the model
stops detecting roads and labels most of these pixels as other. Similarly, relatively small and
big buildings are not detected. Despite that the general covariance is closer to the real data,
road and building covariance are still different, which causes more confusion for the model. In
the visual assessment, the building class detects more defined edges than the original synthetic
dataset.

When performing the CORAL alignment by each class, the mIoU decreases more than the gen-
eral CORAL. Interestingly, these experiments show that even though the domain covariance is
closer to the real covariance for every class, the models fail to perform in real distributions.

On the other hand, the mIoU increases from 0.45, with the original synthetic dataset to 0.49
with Cycle GAN. However, for the class building it decreases from 0.56 to 0.50. Mainly because
with Cycle GAN, the model does not predict well in big buildings. Visually, with the style
transfer, building’s edges are lost even though the distribution domain is similar. The style
transfer seems to work for the class roads as they have a more defined shape. Nevertheless,
some flat roofs with grey textures are labelled as road, reducing the precision for this class and
the recall for building. The style transfer for trees seems not to be working as it detects most
of the trees as building.

Finally, the results of Cycada where the style transfer is consistent by class, has an improve-
ment of 0.4 p.p. in the mIoU in comparison to the original synthetic dataset. Similarly to Cycle
GAN, the big buildings with flat surfaces are not predicted correctly, and the roads improve the
overall IoU. Despite the results being similar to Cycle GAN, the visual assessment shows that
Cycada detects road with more defined edges and the difference between the class other and
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(a) (b)

(c) (d)

(e)

Figure 5.15.: (a) Original Synthetic city image (b) Synthetic image with CORAL alignment (c)
Synthetic image with CORAL by class alignment (d) Synthetic image with Cycle GAN transfer
(e) Synthetic image with Cycada transfer. It is seen that CORAL approaches seems to be
synthetic. Whilst, Cycle GAN appears more realistic but with more noise. Finally Cycada
seems more realistic than the synthetic but not as realistic as Cycle GAN
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Domain Adaptation Technique mIoU F1

Synthetic City 0.45 0.61
CORAL 0.36 0.48
CORAL by classes 0.36 0.47
Cycle GAN 0.49 0.65
Cycada 0.49 0.66

Table 5.16.: Results for different types of DA techniques

road is clearly visible. Thus, the style transfer by class seems to work to differentiate between
these two classes. On the other hand, for both Cycada and Cycle GAN, the models seem to be-
come more sensitive to textures than to height. Big buildings with grey roofs are not correctly
detected, and these types of buildings should be detectable with the height values.

building road other

Domain Adaptation
Technique IoU prec. recall IoU prec. recall IoU prec. recall

Synthetic City 0.56 0.62 0.84 0.26 0.41 0.42 0.53 0.75 0.65
CORAL 0.46 0.62 0.64 0.05 0.33 0.05 0.58 0.65 0.83
CORAL by classes 0.44 0.62 0.61 0.04 0.44 0.04 0.59 0.65 0.86
Cycle GAN 0.51 0.61 0.76 0.40 0.49 0.69 0.55 0.82 0.63
Cycada 0.52 0.63 0.76 0.39 0.49 0.69 0.56 0.81 0.65

Table 5.17.: Results by class for different types of DA techniques
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This chapter presents the conclusions of the study. The research questions are answered.
Next, this study’s main contributions and limitations are provided, and finally, some recom-
mendations for future work are discussed.

6.1. Conclusion

The objective of this research was to create a pipeline that generates synthetic images with
semantic segmentation labels that can be used in existing deep learning models. A synthetic
city was generated to produce images for training a semantic segmentation algorithm, achiev-
ing a significant improvement in scenarios in which the domain gap between the training and
testing datasets is big. In real applications, labelling real data with a minimal gap is costly. For
these applications, synthetic data improves the segmentation results with a combination of
existing sets of public images. On the other hand, the use of synthetic data does not improve
the results on inference with small domain gap between the training and testing datasets.

6.2. Research Overview

This study addressed the main question with multiple sub-questions on this topic are re-
viewed below.

Main research question: To what extent can synthetic data improve the current Deep Learning-
based models for automated semantic segmentation for aerial images?

The results and analysis have shown that synthetic imagery can potentially improve segmen-
tation problems of aerial images in contexts where a lack of labelled data is present. Since this
labelling process is extensive and expensive, synthetic data can help perform such segmenta-
tion problems. With the addition of already generated real training data, synthetic data can
help the model in generalization and, thus, perform better in unseen scenarios. Nevertheless,
the domain and visual mismatch between real and synthetic data can be significant as the ran-
domization of scenes and the texture library are limited. This can make it difficult for a model
trained on synthetic data to detect objects in real imagery. On the other hand, designing syn-
thetic data with procedural methods helps create different virtual scenarios to understand
further how deep learning algorithms learn different features present in the training sets.

a: How to build an automatic virtual city to create synthetic imagery which can be used as
training data?

Building a virtual city is not trivial as it needs to be sufficiently random to imitate any urban
environment. Also, it should be realistic as possible to make the learning process of a deep
learning model. We used ESRI CityEngine to create random cities with procedural modelling
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in this research. This program brings several advantages to freely design 3D models in urban
environments. Using random parameters to create buildings brings more randomization to
the image. In addition, its pipeline allows to generate realistic urban networks in which
parcels, open space and roads are distributed accordingly. To increase realism, the procedural
rules were changed to adapt better to a real environment.

CityEngine capabilities such as different road patterns, 3D modelling rules, and parcel dis-
tributions are adapted to the pipeline to create different virtual cities. In this thesis, approx-
imately 22.000 synthetic areas were created, and distributed in different datasets to assess
their use in semantic segmentation problems.

b: How do the specifications of 3D models (trees, buildings or roads) of a virtual city affect
the results of semantic segmentation of aerial images?

Deep learning models not only learn from texture but also from spatial features present in
the image. Consequently, 3D models have an important role in building synthetic imagery
for semantic segmentation. For the case of buildings, a default virtual city from CityEngine
was tested alongside a built procedural city with stochastic specifications of real buildings
in the testing imagery. This experiment aimed to see if having similar features to the real
environment improves the model while maintaining the same texture library. Results showed
a minimum difference between the two models, but the level of detail in the models can help
the model learn smaller features.

Furthermore, for the case of roads, different patterns showed different results. Patterns with
regular distribution such as raster (Figure 5.6a), performs slightly better to detect roads. The
road patterns seem to partly define the model’s sensitivity to heights, shape or texture values.
If the shape of roads have different intersection angles or more curvilinear edges, the model
tends to focus more on height values. In contrast, in the other case, the model focuses more
on the shape, even learning to detect textures not present in the synthetic dataset.

Finally, the presence of trees in the virtual city, even though it is not defined as a class to
detect, is important as the model detects trees as buildings. Having more realistic trees helps
the model to detect them as other.

c: What is the most suitable quantity ratio between real and virtual training data for semantic
segmentation of aerial images?

The most suitable radio depends highly on the ability of the real dataset for generalization.
In other words, the synthetic dataset improves the model performance only if the amount
of the real dataset is less than the saturation point. This saturation point depends on the
randomization of the real world and the variety of shapes and textures. In general, the model
will perform better with more real training data, but with a ratio of 50% for each real and
synthetic dataset, the results maintained their quality.

d: Does synthetic data improve automated semantic segmentation of aerial images in cross-
geographical scenarios? Cross-geographical is using real data from a particular area and
testing data of a completely different area.

In real-world applications, it is a common issue not to have labelled data in the area of in-
ference. Training with real data from different areas is an option for these scenarios. Adding
synthetic data improves the results as more generalization is added to the training process.
Nevertheless, the results depend highly on the real data used and its ability to generalize in
other domains.
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e: Which domain adaptation technique is more effective for adapting from synthetic imagery
to real imagery domain.

Different domain adaptation techniques were implemented in the current study. The correla-
tion alignment CORAL performed in the whole image, and the CORAL by class do not improve
the results for these synthetic datasets. On the other hand, style transfer approaches such as
Cycle GAN and Cycada improve the overall results, especially in road class which is the one
with a lesser variety of textures. The main drawback of these models is that the shapes of
buildings become less defined during the style transfer.

6.3. Discussion

6.3.1. Contributions

This thesis is built upon previous studies where the segmentation performance is already
high. Nevertheless, from the development of more robust software to create synthetic cities,
such as game engines, this research gives a initial point to comprehend synthetic data better.
Overall, there are three main areas where these results are helpful for semantic segmentation
of aerial images:

• Cross-Domain Projects: Synthetic data can play an essential role in cross-domain appli-
cations where labelling data is not available. Since the only cost for a synthetic dataset is
a licence for CityEngine and some needed hardware memory capabilities, it is cheaper
than manual labelling. In addition, if some variables in the real environment are known,
different configurations can be set to enhance the contribution of the synthetic data.
Synthetic datasets can be constantly improve with creating new datasets with different
characteristics.

• Understanding the learning of Deep Learning models: Since the synthetic imagery
can be fully designed, testing with different settings of 3D models, quantity and textures
is helpful to a better understanding of artificial learning. This study shows how the
models become more sensitive to height or texture values or even defined or random
shapes with certain road parameters or style transferring. This understanding, along
with the ability to choose parameters in the making of the virtual city, gives the option
to improve the design of the training data. For instance, the height distribution of the
buildings, the pattern of the street network, or the type of trees can be set according to
the target domain to be able to improve the current segmentation.

• Starting point to produce synthetic aerial imagery: Despite the results not being as
good as using real training data, the potential of synthetic data is significant. A model
trained solely on synthetic data and applied on synthetic imagery can detect almost
95% of the building pixels. This means that with more realistic trees and city utilities
and more variety of textures, the precision could improve to the point that it is better
than the real training data. Throughout the different experiments performed in the
study, it is clear that the domain gap is smaller with more realistic synthetic cities, and
the results will be better.
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6.3.2. Limitations

The most important limitations of this study are:

• Graphic Computation for the creation of virtual world: Due the high quantity of trees
in a real environment, it is important to model them in the virtual world. However, with
the rendering times with the current approach of rendering in Blender it was not possible
to have realistic trees in the synthetic datasets. As mentioned in the results, trees are an
essential aspect for detecting buildings. Thus, more graphic capabilities would enable
the rendering of more realistic worlds.

• Realism for Synthetic City: The built synthetic city could have lacked realism, which is
essential to close the domain gap between the real and synthetic environments. How-
ever, designing a realistic city requires a lot of manual work and graphic memory, pri-
marily because of the bigger scale of synthetic data. Complete textured models are
available on the internet and are costly. In addition, another challenge is to label these
models according to the classification task.

• Texture Library: Even thought that more textures were added to the standard
CityEngine’s library, the library was still limited. For more generalization of the training
data, it is important to have a broader texture library.

• Training and testing data quality : Results could be lower than real results due to the
limitations of the BGT layer. A manual check on the test area of Haaksbergen showed
that the ground truth of BGT has an mIoU of about 0.95. Mostly, new buildings and
small storage buildings are not present in the BGT. Furthermore, in both Potsdam and
Haaksbergen datasets, some errors in the DSM are present. Some areas are occluded
because of their point cloud origin, and another seems to have a temporal misalignment
with the image and the ground truth, which confuses the model.

6.3.3. Recommendations and Future Work

In the different chapters of this study, new ideas surged which are recommended for future
work. Firstly, gaming worlds seem to be a key player in creating synthetic cities since one
of the main objectives in the gaming industry is the realism of the gaming world. Gaming
engines such as Unreal Engine 1 can achieve the desired realism for synthetic imagery with
bigger texture libraries to replace CityEngine and with a broader camera and rendering possi-
bilities to replace blender. Secondly, improvements in the virtual world storage model. Even
thought this step seems trivial, several 3D models come in the form of a unique mesh. Ap-
proaches such as CityGML 2 or CityJSON 3 clearly define every object present in the virtual
city, making the labelling process more straightforward. Thirdly, a review of different deep
learning architectures using synthetic data is important as this type of data is becoming more
common. In addition, rather than focusing on roads or buildings, the other class, which is
composed of tall and low vegetation, water bodies, and car, among others, are important for
the creation of a synthetic city. Moreover, the ground textures represent a challenge in the
design of synthetic data as the real environment presents a wide variety of textures. Finally,

1https://www.unrealengine.com/
2https://www.ogc.org/standards/citygml
3https://www.cityjson.org/about/
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adding extra classes such as cars, vegetation or water bodies could improve the classification
if they are modelled in the synthetic world.
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A.1. River Creation

A.1.1. River in Synthetic City

Water bodies are an essential part of the built environment. Unfortunately, there is no built-in
approach or rule to make rivers or canals in CityEngine. For this purpose, a technique to
create a river without affecting the composition of the virtual city is developed.

A Python script in CityEngine’s environment is made to create the river. First, a random
segment of a street is taken. With the topological information of this segment, one can gather
the following segment until the next segment exceeds a threshold angle of 40 degrees. Then,
we set the width of the river or canal according to a random value between 8 and 40 meters.
Finally, a realistic texture is applied to this set of segments through a simple CGA rule.

For testing the use of the river in the performance of the semantic segmentation, the model
was tested in Haarlem. Figure A.2 shows the visual results for the addition of the river and is
observed that the dark texture of the river helps the model to detect the river. Nevertheless,
as the DSM is used, due to the occlusion of water, the height values are not precise which
affects the segmentation in detecting water bodies as buildings. Using real data does not seem
to affect as both DSM between the training and testing data have these height errors.

Figure A.1.: Aerial imagery of the river in CityEngine
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(a) (b)

(c) (d)

(e)

Figure A.2.: Prediction with different patterns of roads (a) TO (b) DSM (c) Ground Truth (d)
Synthetic dataset as training data (e) Real dataset as training data. Red = Building, Gray =
Road and Green = Other.

A.2. Model Results for the different experiments
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(a) (b) (c)

(d) (e) (f)

(g)

Figure A.3.: Prediction with different patterns of roads (a) TO (b) DSM (c) Ground Truth (d)
Organic Road (e) Organic-Raster Road (f) Radial Road (g) Raster Road. Red = Building,
Gray = Road and Green = Other.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure A.4.: Prediction results for different types of tree models (a) TO (b) DSM (c) Ground
Truth (d) no trees (e) poly trees (f) fan trees (g) realistic augmentation. Red = Building, Gray =
Road and Green = Other.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure A.5.: Prediction with different amount of synthetic data (a) TO (b) DSM (c) Ground Truth
(d) 378 images (e) 756 images (f) 1512 images (g) 3024 images. Red = Building, Gray = Road
and Green = Other.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure A.6.: Prediction with different combinations of synthetic and real data (a) TO (b) DSM
(c) Ground Truth (d) 100% real and 1444 images (e) 100% real and 722 images (f) 100% real
and 288 images (g) 20& Synthetic - 80% real and 1444 images (h) 50% Synthetic - 50% real
and 1444 images (i) 80% Synthetic - 20% real and 1444 images (j) 100% Synthetic and 1444
images. Red = Building, Gray = Road and Green = Other.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure A.7.: Prediction results in the city of Haarlem (a) TO (b) DSM (c) Ground Truth (d)
100% Training real data from Haaksbergen. 1444 images (e) 100% Training real data from
Haaksbergen 722 images (f) 50% Training real data from Haaksbergen - 50% Synthetic data.
1444 images (g) 100% synthetic images. 1444 images. Red = Building, Gray = Road and
Green = Other.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure A.8.: Prediction results for different techniques of domain adaptation (a) TO (b) DSM (c)
Synthetic City (d) CORAL (e) CORAL by class (f) Cycle GAN (g) Cycada. Red = Building, Gray
= Road and Green = Other.
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Figure A.9.: Synthetic imagery learning curve
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(a) (b)

(c) (d)

Figure A.10.: Prediction results for different angles of sun position (a) No shading (b) angle at
13-14 hours (c) horizon angle 18-19 hours (d) fake angle.

A.3. Testing Different Lighting Parameters

Different lighting parameters are tested as follows: a synthetic dataset without shading, an
angle between 13-14 hours, a horizon angle between 18-19 hours and a fake angle for the
northern hemisphere pointing from north to south, see Figure A.10. In addition, the results
are shown in Table A.1 and Table A.2. The results show that using a sun angle that simu-
lates the real image’s sun angle gives the best results than not setting any angle or setting
different angle values. The ability of setting different lighting parameters is beneficial to the
synthetic datasets in order to close the domain between real and synthetic data and also helps
to generalize the synthetic data that contains different real domains.
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Training mIoU F1

No shading 0.42 0.60
Angle 13-14 hours 0.45 0.59
Angle Horizon 18-19 hours 0.31 0.53
Fake angle, north to south 0.41 0.46

Table A.1.: Results with different lighting parameters

building road other

Scenario IoU prec. recall IoU prec. recall IoU prec. recall

No shading 0.50 0.60 0.76 0.34 0.39 0.75 0.42 0.82 0.47
Angle 13-14 hours 0.56 0.62 0.84 0.26 0.41 0.42 0.53 0.75 0.65
Angle Horizon
18-19 hours

0.48 0.58 0.73 0.26 0.28 0.79 0.19 0.73 0.21

Fake angle, north
to south

0.51 0.60 0.76 0.34 0.39 0.75 0.42 0.60 0.66

Table A.2.: Results by class for different quantities of synthetic images

A.4. Testing different weighting compositions between classes

Different parameters can be set when creating the synthetic datasets, such as defining the
compositions of the virtual city. For instance, more roads can be added to have more pres-
ence on the ground truth map. In addition, the density of the buildings can also be set to
have more building or other presence. In Table A.3 shows the different weight distributions of
the synthetic data, and in Table A.4 shows the results for the different weight distributions.
The results show that the best weighting distribution is when the same distribution is taken
as the real testing data. We suggest implementing these values in the synthetic data when
these values are known. Nevertheless, when this information is not known, using the default
settings in the creating of the synthetic data results in similar values.

Training Model Building Road Other

A Default CityEgnine City 26% 33% 40%
B with parking lots in inner parcels 33% 43% 23%
C with less roads 28% 24% 48%
D Real imagery configuration 18% 25% 57%

Table A.3.: Weighting distribution tests
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Training Model IoU Building IoU Road IoU Other mIoU

A Default CityEgnine City 0.55 0.20 0.52 0.42
B with parking lots in inner parcels 0.45 0.44 0.25 0.38
C with less roads 0.38 0.46 0.30 0.37
D Real imagery configuration 0.56 0.26 0.53 0.45

Table A.4.: Results of different weighting distribution tests
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Performance Measure Building Road Other

IoU 1.00 0.98 0.97
Precision 1.00 0.99 0.99
Recall 1.00 0.99 0.99

Table A.5.: Results of training and testing in Synthetic Data

A.5. Training and Testing with synthetic data

To see if the synthetic data is able to perform semantic segmentation, we built two different
virtual cities with the same parameters. The first city is used to train the model and the second
to perform the inference. The results are 0.98 of mIoU and 0.99 for the F1 score In Table A.5
shows the results of the semantic segmentation. The results shows that the performance are
almost to 1 in all classes. The results are outstanding as the parameters are the same and the
variability of textures and shapes of the synthetic data is lesser than the real world.
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B.1. Marks for each of the criteria

Figure B.1.: Reproducibility criteria to be assessed.

Grade/evaluate yourself for the 5 criteria (giving 0/1/2/3 for each):

1. input data: 1

2. preprocessing: 1

3. methods: 1

4. computational environment: 1

5. results: 1

B.2. Self-reflection

This work was made with the collaboration of READAR, which provided high quality and
cleaned data and external software. For the input data, the imagery and the DSM maps are
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developed by READAR. Thus, it cannot be made openly available. On the other hand, the
use of ISPRS [2020] imagery of Potsdam is openly available and documented. The prepro-
cessing of the data is explained in the document to be able to reproduce. For the methods and
analysis, the creation of the synthetic city is described in the report, and the code is openly
available with the restriction of having a licence for CityEngine software. In addition, for the
rendering process, an open source pipeline of Blender Proc and open rendering software of
Blender is used and described in the report. On the other hand, despite being described in the
report, the deep learning model cannot be openly available as this belongs to READAR.

Finally, the classification results are obtained with the use of the deep learning model so
reproducibilityis not possible. Nevertheless, the steps are explained in Chapter 3. The images
were created and manually adjusted in QGIS, which makes them not easy to recreate. The
images are openly available for the synthetic dataset and can be used for future works.
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