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SUMMARY

The rate of energy transfer between parallel flat plates is evaluated
when the (stagnant) gas between them is polyatomic with one inert intermal
mode, Deviations of the thermal conductivity fxom the complete equilibrium
(Bucken) value are expressed in terms of the inert mode relaxation time
and the effectiveness of the walls in exciting or de-exciting this mode,
The results are obtained via a linear theory consistent with small
temperature differences between the plates,

It is found that the Eucken-value of conductivity could be exceeded
if the relaxation times are non~zero and the plates very effective in
exciting the inert mode, When relaxation times are very short the effect
of the walls on the energy transfer rate is small, but the walls meke
their presence felt by distorting the temperature profiles in "boundary
layers" adjacent to the walls which are of order VDT in thickness
(D = diffusion coefficient, 7 = relaxation time), This result is
analogous to Hirschfelder!s (1956) for the case of chemical reactions,

For experimental measurement of conductivity in a hot wire cell type
of apparatus it is shown that extrapolation of measured reciprocal
conductivities to zero reciprocal pressure should lead to the full Eucken
value, It is also shown that the slope of reciprocal apparent (measured)
conductivity versus reciprocal pressure curves is a fumction of relaxation
time as well as of the accommodation coefficients, It is quite possible
that the relaxation effect here is comparable with the temperature jump
effects, even for rotation in diatomic molecules,
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(1)

NOTATION

Specific heat of active internal modes

Specific heat of inert internal mode
Specific heat of translational mode

Diffusion coefficient

Mean internal energy per molecule

Internal energy of a molecule in J- th quantum state
Mean internal energy per molecule in active modes

Mean internal energy per molecule in inert modes

Enthalpy per molccule in j- th state
Boltzmann's Constant
Lewils number based on c(a) (Eq. 11)

Lewis number based on c( i) (Eq. 22)

Mean free path

Mass of a molecule

Nunber of molecules per unit volume

Nurmber of molecules in Jj- th state per unit volume
Number of collisions to excite inecrt modes
Pressure

Energy flux

Inert mode accommodation coefficient

Trenslational temperature accommodation coefficient




Notation (Continued)

(1)
AT
2y
y

(04

Suffixes

w

Translational temperature

Inert mode temperature

Translational temperature Jjurp

Diffusion vclocity of molccules in Je th state
Co=ordinate perpendicular fo plates

Defined in Eq. 29)

Plate separation distance

"Monatomic" thermal conductivity

A corrected to account for active modes
Relaxation time for inert mode

Mean molecular velocity

Valve at y = O
Value at y = &

Mean value in gas layer

Other symbols are defined in the text,




1. Introduction

Heat conduction through polyatomic gases is complicated by the
interchanges of energy which take place between the internal and trans-
lational modes of motion of the gas molecules, So far, the cross-
sections for these inelastic collisions have not been estimated for real-
istic molecular models (Hirschfelder, Curtiss and Bird, 1954), so that
although the formal kinetic theory for polyatomic molecules exists
(Weng Chang and Uhlenbeck, 1951) no practical use cen yet be made of it.

In the event that excitation of the internal modes is very easy,
implying a very short time lag for adjustment of the mode to a full
equilibrium state, it is reasonable to assume, at least in a first
approximation, that equilibrium prevails throughout, This is the basis
of the Eucken correction to thermal conductivity to account for the
perticipation of the internal modes (see Hirschfelder et al, loc. odt.),
However, not all intcrmal modes of motion have relaxation times short
enough to be treated in this way and it is of interest to enquire how
so=called "inert" internal modes will affect rates of heat conduction.

We consider the simple problem of the evaluation of heat transfer
rate between two horizontal, parallel flat plates, the upper being
the hotter of the two, when the intervening space between them is filled
with a pure gas whose molecules have one inert intermal mode, For example,
the gas may be nitrogen at a temperature such that both rotations and
vibrations of the molecules are excited but no dissociation or electronic
excitation is present, In that case we would assume that the rotations
were in equilibrium with the translational modes and count vibration as
the inert mode, (Rotations in nitrogen are excited in a few collisions
whilst vibrations may require several thousend eollisions), For such a
set up one may reasonably neglect changes of hydrostatic pressure across
the gas layer and, with the hot plate uppermost, natural convection is
absent, (The system is entirely the same as the one used by Hirschfelder
(1956) to study heat conduction in chemically reacting gas mixtures).



http://vd.ll

25 The Equations

Once a steady state has been established, the energy equation
yields the simple sclution

- § = constant = -QW ’ (1)

where § is the energy flux vector (with but one component, in the
y=direction, in the present instance) and = qw is the energy transfer

rate into the lower wall, In a pure gas all molecules are of the same
mass, m, and consequently there is no thermal diffusion present. However,
each molecule will not be in the same internmal quantum state and we can
use the set of quantum numbers which define an intermal state to
distinguish one molecule from another, That is, we may regard the mixture
as made up of a number of different "chemical species", In that event
kinetic theory relates the cnergy flux vector to the temperature gradients
and the appropriate diffusion velocities as follows ,

-q = - ? hj nj 'LIJ. (2)
J

In Lq.2 T refers to the temperature of the translational modes and M

is a coefficient of thermal conductivity evaluated on the assumption

that the molecules behave as monatomic particles (i.ec, their internal

degrees of freedom play no part in its evaluation), The surmation term

represents the energy flux arising from interdiffusion of the different
"species", hj is the awverage enthalpy per molecule in the j-th quantum

state, nJ. the relevant nurber density and u'j the diffusion velocity of

this particular "species",

hj can be written as

kT (int)

h, = 2._, + i

; = 3 o (3)
where ef_jmt) represents the energy of the internal modes in quantum

state j, per molecule, (k is Boltzmann's Constont), It follows that

(2)

2h.n.u, = Ze(.int) TYIRL LN
3 Jd J Jd J = s R

since all particles hawve the same mass m, and I m ng uj = 0 by definition

J
of the diffusion velocities,




The force fiecld surrounding a molecule is, strictly, dependent on
its internal quentum statec, so that a different diffusion coefficient will
arise for each of the different "species" in the mixbture, However, the
differences are usually very small and in the present treatment we will
assure that diffusion of all molecules is adequately described in terms
of the appropriate "monatomic" self-diffusion coefficient D, since we
are dealing with a pure gas here, Following Hirschfelder et al (1954) we
can then write

-n.,u, = nb%(nj/n), (5)

J J

n being the total number of molecules per unit volume, Since the egmt)

gquantities are constants it follows from egs., 4 and 5 that

ol int)
R Y. de
where
e(mt) = n"1 En‘_J (J:mt) (7

J
is thc mean internal energy per molecule, This quantity is now separated
into parts which arise from the active and inert degrees of freedom,

olint) e(a) + o(3) (8)

respectively. For simplicity the number of inert modes is restricted
to one: mno such restriction need be placed on the active degrees of
freedom although :Ln J_nklng of, say, c’l:Latom.c ms)lecules, only one such
mode will arise, can be written as j/n) and it will be

assumed that the distribution numbers n:j correspond to a Boltzmann arrange-

ment of energics among the allowed levels which is specified by the
translational temperature T, Consequently we can write

ael® a2 ap o o8 ar (9)

] = —ea ——

¥y T ® Yy T & °
c( a) (which equals Zega) d(n J/n)/dT) is the specific heat of the

active modes, and it follows at once that eq. 6 can be re-expressed
as follows,

-§ = 7_\(1+»Le(a))g§ +nDE (10)
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where
'8 .,.197:.3, (11)

is a Lewis number based on the active mode's internal specific heat,
Then

,)\(a) = 7\,(1+Le(a)) (12}

is the BEucken-corrected value of conductivity to account for the
instantaneous excitation of the active internal degrees of freedom,

Each "specics" in the gas has its own continuity equation which,
in the present simple case, has the form

a
— (n. U.) = W, , 9

dy( J J) J (1)
w;j is the volume rate of production of molecules in the J-th state as a

result of purely gas phasc encounters between molecules, With eqs, 5 and
7 it follows, on multiplication of eq., 13 by e(m'b and summaticn over

J
all quantum states j, that
(int) .
a de (int)
- P D == = 3 5 (P 3l
5Py ) ;0% 3 (1)

The term on the right hand side of eq. 14 represents the net rate
at which energy entcrs the internal states per wmit volume, and it will
be a function of the population of all the states J, the transition
probebilities between them and the rate at which melecules collide,

In writing eq. 9 we have already dealt with the active modes, albeit
approximately, so that eq, 14 must be reduced to an equation invelving
only excitation of the remaining, inert mode. Thus we write

"%} nD%\%(l)) = g(3) (15)

where R( 1) represents the rate of production of encrgy in thc inert mode
per unit volume, It should be noted that the treatment of intermal energy
from the assumption of eq, 8 onwards implies no cross-coupling betwecen
the active and inert intcrnal motions, In gencral, if such coupling

did exist, a part of the cnergy in the active mode would be a function of
the population of the incrt states, Insofar as we are assuming that

the inert modes are not instentancously excited, then at least a part

of e( a) could not be represented as being in equilibrium with the trans-
lational temperature T. This requirement of no CTOEE'B coupling is not
necessary for eq, 15 as it stands, however, since R 1) could well
include such effects,
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The treatment of R( i) in terms of the appropriate transition
probabilities, etc, would in general be very camplicated, since transitions
between any pexrmitted levels for the mode are possible. Instead we shall
assume that

(1) _ __r;l(e(i) _ eii) ). (16)

That is to say, we assume that excitation of the incrt mode is directly
prog:ortional to the difference between the actual mean energy per molecule

e/ and the mean energy which a molecule would possess if the inert

mode were in equilibrium with the actual local translational temperature,
namely eg;). This latter is thecrefore a function of T only., 7 is a

suitable relaxation time, determined by the transition p{g’snabilgt
values, etc, and the minus sign is necessary since, if e\/ > eelir

the natural process is one of de~excitation, 7T 1s essentially positive,
That results of the form 16 are valid approximations for small departures
from equilibrium has been demonstrated by Herzfeld (1955) for the case

of but two quantum states in the inert mode and also in the Landau and
Teller case of the harmonic oscillator, In the latter event the mode is
a multi-state one but transitions only occur between immediately adjacent
lovels, The validity of eq. 16 as an approximation in more gerneral kinds
of milti-state systems has recently been demonstrated by Shuler (1959).

Using the results 1, 10, 12, 15 and 16 the equations governing
energy trensfer rate between the two plates can now be written as

'A(a) -g-f—r + nD%(i)= "'éw ’ (17)
%(w-@‘&(i)) 2 (o1 - o1y (18)
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3. Ihe Linearised Problein

Egs. 17 and 18 are non-lincar; both 7\(&) and n D are functions of T
end T is a function of n and T, In general eé]ci) is a conplicated function
of T, too, TFor examplc the simple harmonic oscillator has

i - -1 _ . - A
eéq) = kO (exp(© v/1) - 1)"", where 6, is the (constant) characteristic

vibration temperaturc, However, if the difference in temperature between
upper and lower plates is small we may reasonobly teke mean values for

M%) nD, n ond T which are evaluated at, say, the arithmetic mean of Ty
and TW. We note that, since p = n k T and pressure will be constent,

n varies inversely as T,

Wle shall also assume that a temperature T( i) ocan be defined which

will specify the encrgy content of the inert mode. Then if c( i) is the
specific heat of this particular degree of freedom we can write

. (i) . .
(1) _ /T JICH I CL AN (19)
o
(1)
In the linear problem we may expect to find T( i) but little different

from T and, accordingly, it will be sufficiently accurate to use a mean

value of c(l)
of the systemn,

is replaced by T,

eé:;) will be given by a similor integral in which T

which is consistent with the general termerature level

Undcr the conditions stated, eqs. 17 and 18 arc now written in
approximate form, suffix o denoting constant mean wvalue,

7\&)&) <% + Le(i) %(1)> = -C‘JW ‘, (20)
ol c(i) '
NOERONE & SO ORI (21)
dy o

(1)

) - S
Le( ) is a Lewis numbcr based on the choscn mean specific heat 5

and 7\2&) s namely

et o Zolo (4) (22
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It should be obscrved that if o(a) is a constant, es it may well be if the
active internal mode is a rotational one, then to a good degree of

)
accuracy the group n D/ 7»( %/ is a constant without further assumptions,

Elimination of T( 1) between eqs, 20 and 21 gives an equation in T
only, namely ‘
3 ‘ : ®
-d-‘-%‘ - a® % = S ' (23)
dy
where (1)
o <Le(il+n> R 7
;:((;a ret) To 7o Do

(1)
_ qw . ' B %o 67{ o A
S LA R S TR S

It follows on elimination of T between egs., 20 and 21, that T( i)
satisfies an equation identical with eq. 23.

Lq. 23 has the solution
T = AeW +Be" W 4+ ¢ - By/at (26)
and the constants A and B can be eliminated at once by noting that

T=Tv’v vdaeny:Oo.ndT:% when y = &, (Té andT;V arec not the

well temperaturcs, but the gas temperatures immediately adjacent to
the walls). Then

T = (T@I —C+ﬁ6/az)-:~.—li2hﬁ%x +(T';v - Q) 5@};%%»7%Q+0-ﬁy/az.
vesaw k2T

” Eq. 23 is a particularly simple form of singular perturbation
equation as Ty » 0. The behaviour of the solution for very small T

values is discussed in Section 4 (iii) below,




Remembering that §_ (and hence £) is still an unknown quentity,

two more conditions arc necessary to evaluate f and C, These extra
conditions are related to the direct flux of inert mocde cnergy into the
walls which would result from de-excitation of a particle in the course

of a collision with the plates, The process may be described as follows,
The walls are being continually bombarded by goas mclecules as a result

of their thermal motions and, of these, a certain fraction moy be adsorbed
by the wall and remain there for a sufficient time for all of their
degrees of freedom to come into complete equilibrium veith the wall
terperature, Eventually these particles will be re-emitted from the

wall, having given up their excess inert mode enexrgy.

Of course this ‘lqype of procecss does not only apply to the inert
cnergy mode; if cnergy is to be transferred to a surface from a gas in
contact w:r.th it then the incident molecules must bc de-excited to some
lower energy state before they leave the surface again, and this will
apply to all the energy modes which the molecules possess, However, we
intend to separate the translational and active modes from the inert
mode in what follows,

Let us suppose that, of the number of molcoules incident on the
surface, a fraction :c'W:L have their inert mode onergy completely

accommodated to a full equilibrium state at the surface tefnpe rature TW.
In this state the mean energy per molecule is denoted 'bg/l eéfl) . The mean
energy of the incident molecules will be denoted by e(l o Then if 8
is the rate at which molccules strike unit area of the wall, the wall
gains encrgy at a rute L e( ) and loses it at a rate x

@', o)
+(1 =" (3)

)s_ e e« The nett rate of gain of inert mode energy is
w w

therefore

(1)

2
w

@) | 3

8 (e

Of the layer of gas molccules immediately adJjacent to the wall, on
the average, one half have just arrived from some distance (of the order
of a mean free path) above the wall, wh:LiLst the remaining half have Jjust

been re-—emitted by the surface, Then eaf‘; - s the awvcrage inert mode
’

energy in the layer adjaccent to the wall, must be given by

ol 1) I I R RO O S SR O A )

av,w w w .
4 I
SR

(1Y

ze
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<\ .
It follows that e( 1) in the expression above can be replaced in terms
of e.(awj;)w and ex(;vj-) s whence the nett gain of energy per unit area of wall
L

per unit time arising from de=excitation of the inert mode can be
written as

(1) ‘ '
2r i i
o _Wr‘svi) * By (egv),w - esv ) ) .

The quantity rsvi) can be called the inert mode accommodation
ooefficient at the wall y = O, ‘
Now the flux of inert mode energy into the surface can be expressed

in terms of the diffusion velocities also, It is clear that this
expression for the lower wall, y = O, is

: : (1)
-3 ef_jl)njuj = Eegl)nn-g‘—&(nj/n) = nD% :

J

vhere egl) is the inert mode cnergy in a molecule in the j-th internal
quantum state, The minus sign is nccessary because, with positive u‘_j

values, e( i) is diffusing away from the wall, Equating this expression

J

i)
to the one involving rwl’ gives the boundary condition at y = 0, namely

(1) 2 p(1) 2 -0
de o W (1) (1)
B O <dy > o o (1) S (eav,w = % ) . (28)

Now if the mean free path, 4, and the mean moleculer spced, Q,
are defined by

s VB n gt ) 0 = (8kT/mr)E, (29

the rate of bombardment s, is given by

s = +n_Q (30)




and the exact kinetic theory for rigid sphere molecules gives

DW = “izé ew QW : (31)

(see Hirschfelder, Curtiss and Bird, 1954): o dis the molecular
%
diemeter , It follows from eqs. 28, 30 and 31 that

(i I‘(i) 8 i ‘ i
). -im - w4 o

&L
w

(L) o\D) 1T be amedl, werteinly in

Since the ene junp e -
Tey J avyw w

the linearised problem, eq. 32 can be written as

- 5 .
<%( )>y=0 - P;V (T\g'l) "Tw) ’ (33)
where TW is the actual temperature of the wall, and we have written
I = mf‘svl) -, =2 (34)
o 2 - ;G'T 3mé
w W

Clearly a similar result must hold at the upper wall and we must

have
< an()

a >y=5 R GRS (35)

S

(The minus si?\ arises because the energy diffusion rate into the upper

wall is + £ ey’ n, u, , etc.),
3 J J J

mem Mo

* The molecular diameter ¢ implied in the value of D in eq. 31 can be
taken as the exact kinetic theory value at the tenperature TW. o

is introduced here simply for convenience; any numerical values for
transport coefficients etec. will be taken to be those appropriate to
a Lennard-Jones 6-12 potential for the intermolecular forces, 2 in
equation 29 is unambiguously defined and, if necessary, ¢ can be
evaluated via egs. 29 and 30 using the proper value for D,
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Egs, 20 and 21 show that

(1)
._xga) -Sf-'-% - 19-;-9 (28 _ oy, (36)
dy o

whence, remembering that T here refers to the gas translatienal
temperature, eqs. 33 and 35 cen be expressed in terms of conditions
on T, The values of T at y = 0 and y =08 have been written (sce eq. 27)

as T’W and Té regpectively, They differ from the actual wall temperature
by an amount equal to the appropriate temperature jumps, say ATW and
A T& s as follows

To= T - AT, (372)
Too= T o+ OTg (37v)

Then elimination of T( l) between eq.s 33, 35 and 36 leads to the boundary
conditions

<%> -7, K(-di!) = I“’W{ -7, x<§i§> + 0T } , (38)
& y=0 S ¥=0

y=0

3 2
(%) -7, K g—%) = I"6 {To K <-d-&—%‘-> + ATS } . (39)
y=0 &y y=0 dy y=0

where & = 7\.5’&) /no cgi) .

We will define an accormodation coefficient, r, for the translational

»
and active degrees of freedom in such a way that

r, = = , (40)

where e is the sum of the mean translational energy (3 k T/2) and mean

active internal mode energy (e( a)) . The suffixes, etc, have the following
meanings, e, is the mean energy of the molecules emitted by the walls,

¥ See the comments on Page 22,
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oy is the energy e at the wall temperature value T and e is the
energy of the molecules incident on the wall, Then em T e +(1 = rw)e' 5

end, since one half of the molecules in the layexr adjacent to the wall
have just been re-emitted by the wall and the other half have just arrived
from some distance above the wall comparable with a mean free path 2,

the average value of e in this layer, Cov? must be %iven by

(1/2)e + (1/2)em. Since we cen write ¢ -e ”é,e (de/dy) it follows

that the energy jump, e _ = S0 is given by

av

2 =1
w ,(e de
Oy = Oy = = . ‘@W ) (Ti—y> . (41)

w y=0

We can write

- fT (og + ™) a

o}

where c_, is the translational specific heat, 3k/2.

In the event that c( ) is a constant, or does not vary appreciably
over the range wa to Tw’ it follows that eq., 41 is the same as

ap = 2-=T e <am>
W W -

T = . (42)

Tw y =0

To find 65;3) we note that the wall gains energy at a rate
sw(e' - em) = s rW(e’ - ew) = 2 sw(e’ - eav) from the translational
and active modes, and that this can be equated to the appropriate part

of = c}_w in eq. 10, (for example); i.e. we write

w oW

/ I
hw (1 + Le(a)) k%f;) ) =2 sW(e' - eav) 284 0)(c + 0 a) dy}-
y:

PP .

But in terms of the rigid sphere values defined above

_ 2bwr
AN = —Zﬁ * By /&W QW °rt * (432)
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In fact, the cross section #v® implicd here is slightly different
from the value used in defining D above, and we should decrease 7»W

by a factor 1.1 approximately, for Lemmnard-Jones type moleccules,
(see Hirschfelder et al, 1954), With the corrected value for )\w it
follows from eq. 43 that

(a
e) _ o5w <c|+9.528c)>
- 83 R ORIV o

(This shows that @&Ve) is 2.23 '6W when c(a) = 0, decreasing to 1,81 3W
when o( a')= k, the value for a diatomic molecule with fully excited
rotation),

An alternative form of the ratio €$ve)/ ¢ can be fond via egs. 11,
30, 31 and L3 and gives

s 49 () 141

T, T o e

w

The temperature Jjump can now be written as

ar
AT‘W = aW 8‘W <$> _ (45)
where . (a)
0,528 ¢ 2 =X
. BT <3V‘b+ . > i
wo T 3502 oy + O3 Y

(&) (a) 2=
- F S B g @
vt

A similar result will hold for the temperature Jjump at the upper

wall, AT6 o Finally then, the required boundary conditions can be

expressed in the form

ar a , T\ -
(1 - ]_"W_) <—a—y>y=o - To Ic(;-;?>y=o - I‘W ‘ro K <g;:>y=o (4—7)

1]

| . .
{1 = Tg) _@) -T_ K <:—f> = I/ 1 K (L (48)



- Yy o

where
I, =T/ a & ;Tg =T4 o &5, (49)

Putting in the appropriate wvalues for the derivatives from eq, 27
oenables the constants f and C to be found, and hence the wvalues of energy
transfer rate and temperature distribution in the gas, The algebra
involved is rather heavy, but eventually it can be shown that

- &, 6{1 + Le(i) Q(é‘)a)"1 } = (% - T"w) ?\‘()a)(1 + Le(i)), (50)

T - TW N Le(i) By - - Q/sinh &a sinh va
Goo @ bus Lol g L Cp + coth ba=/sEh Ba \(sinh b
4 ~

B o-Q/sinhﬁa
w _&_.Li s b
* O+ cothda = 1/sinh Oa <1 - sinh o )} £ ¥ Ie )
L B (51)

It can also be shown that (T(i) - Tsvi))/(Téi) - T‘(Ni)) is given
by an expression similar to eq., 51 with the denominator Ja+ Le(i)Q
replaced by Oa=~ Q and the factor Le( 1) multiplying the curly bracket term
replaced by - 1, It can be shown in addition that

(Tgi) " Tsvi>) (1 =A™ = (15 =1 ) (1 + relHg /s )1, (52)
The quantities appearing in eqs. 50 to 52 are dofined as follows :=

. (BW + Bg)(cothda = 1/sinhda) + B_Cg + Esflv (53)
(cothda + C_)(cothda + Cg) ~ 1/sinh?8a ’

1 - I
B = n
n —iy n=wor & (54)
14+ Le'™t I‘n ’ ’
I‘n(1 o+ Le(l)) 1
C. = . (aa, €)” sn=wor?d, (55)

= 1 + Le(i)I‘
n
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It should be noted from eqs, 34, 46 and 49 that the I‘n quantities can
be written as

(a) 4, ro(a) 2 -r 1)
S ze(a)-c-";c(a) . 2_1.?5-) o ?:L' sn=word (56)
& n

(Of the remaining quentities in the ebove equetions, a is defined in
egs. 24, & in egs, L6 and ¢ in egs. 29).

L. Special Cases

The results just derived are quite complicated, despite the
simplifications introduced by linearization of the problem, and it is
therefore worthwhile to investigate some special situations in some detail,

(1) o = o,

When cgl) = 0, the inert mode can be assumed to have no communicable

energy., The addition of a constant to the rightehand side of eq. 19
does not affect the subsequent analysis, so that the energy stored in the
inert mode nced not necessarily be zero in these circumstances,

cf)l) = 0 implies that reld) g zero, whence it follows directly from

egs. 50 to 56 that

—g8 =AY (m -z ), (57)
T—T{W = (Té --TIW)(}’/6 ) . (58)

In order to f£ind qw in terms of the actual wall temperatures
TS and TW, the temperature Jjumps must be evaluated, as follows,

i
AT =& e,<§—>
w w W A\&Y/o0

with a similar result for AT

]

o, (¢/8)(1y -1 ) =g (2 /8)(= 6)/X),
Consequently we have

6'

-4 [ 1+ (a &+ o 58)/5] =x(.a) (Tg =2 « (59)
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Since the & and én quantities are essentially positive, it follows

that the temperature jump at the walls reduces the encrgy flux, a well
known result, The theory presented here is only walid for (&n/é) << 1

so that, to a first approximation, the reduction is a linecar function
of (6n/6). The mean free path can be expressed in terms of p and T

rather than n, namely,

¢ = kT/Viao® p, (60)
so that the energy flux is slightly pressurc dependent for given values
of T& ’ TW, etec,

Otherwise, in the present case, the flux only depends on the value
of conductivity corrected to account for the part played by the active
internal modes, ‘

(11) = 0 *

Eq. 24 shows that as Ty » @380 & o 0., Foting that the

C, vary as Ml s it follows on taking the proper limit as « .0 that

= &8 {1 + 1old) Q’} = =) A (ezetty L (o)

where
B_C{ _ By C
. + W (62)
7 / ' § !
CW + 05 + CW 05
(14 zelP)g
Crlx_ s n=word (63)

1+ Lelr
n

(note I‘; is defined in eq. 34). It also follows from eq, 51 and the

remaxks about T = that

W %! = __(_.TJL (64)
a1 .
TI& - T\Inr T& - TW( 1)




1] &

Examination of the various quantitics involwved here shows that the
energy transfer rate into the Wall ig a stz- g funetion of the inert
mode accommodation coefficients, rél and % Sl and also the ratio of

these coefficients to the active energy acconmodatlon coefficients Ty and

r . This is because T! is ?roport:.onal to r( )/(2 )) and T %o

the ratio |(2 -7 )/(2 l)) J(r( )/r "

Thus, if both réfi) and rél) are zero, both C;/v end Gy are zero and
B, =By = 1., It follows that Q" =1 in these circumstances, and qw is
given by precisely the same saxpre(ss;on as eq. 57. This is not surprising
(1 i

- since putting T, = and rl=rgT o= 0 is another way of saying that

the inert mode carries no conmm:.cable energy, But it should be noted
that a result like 57 also holds when Ty =2 and only one of the

rI(;L) terms is zero, Thus, suppose we put r( = 0 ; then C,w = 0 and
B, = 1. It follows that @ =1 and qw is agaln given by eq. 57. The

resason for this is clear, If only one wall can excite or de-excite the
inert mode and no excitation or de~excitation cen arise in the homogeneous
state ('ro =w), there is no mechanism whereby incrt mode energy cen

%
be transferred from one wall to the other ,

On the other hand, if neither rsv_i) nor rﬁli) are zero, Q' must be less
than one, We notice, in this case, that neither Bw nor By are unity,
(since I‘n # 0), and that it scems quite possible to find values of theI‘n
(see eq. 56) which may meke the B, < O, UWhether this con be so or not
depends on the relative megnitudes of ot®), Let®), r_ and rii), cto. but
does not seem to depend on the dimensions of the system, This latter
consideration enters via the G;l quantities which, from the definition of
Il in eq. 3k, are proportional to (5/«‘5n). This dependence of the C 111
on the ratio (& /@ ) implies that they will be large quantitics, certeinly
greater than unity, unless the appropriate r( i) is very small, If both

(1)

se’c Q' in eq, 62 almost equal to zero (by reason of the appearance of the

and rél are very near to unity then, 11: would seem rcasonable to

* It is worth noti ‘l:ha‘t ‘5110 translational temperature Jjump is the
same whether both I‘W g are zero or only onec of them,
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product C;V Cg in the denominator of Q’), This being so, oq. 61 gives
-4, 8« (f -1 )xg&) (1 + Le(l)) . (65)
Noticing that

K90+ 1) 2 e p (69 4 o) (6

from the definition of Lc,( 1) in eq. 22, it can Le scoen that the value

of conductivity appropriate to this particular case is the corrected
value which accounts for full participation by all internal modes in the
energy transfer processcs. It is intcresting to notc %hat this result is
achicved solely by the efficient transfer of inecrt mode energy to the
walls, The translational temperature Jjump at both upper and lower walls
gives rise to a term exactly similar to that in square brackets on the
left hand side of eq., 59, In fact the re t in the “erscn'b case is
similar to eq, 59 with N (a) replaced by N (1 + Le ).

The significance of the ratio 6/6 which appears in C’ can be explaincd
as follows, Let us keep Tg and T;v constant (so that A and nD are constant),
Now if & is fixed, € ocon be decreased by increasing p (sce eq. 60)

and hence  n (because p = n k T), Reference to eq. 30 shows that the
rate of bombardment of the walls by the molecules incrcases, and hence
inert mode energy can be trensferred at a greater rate,

The reason for the behaviour of the result as & increases is not
quite so simple, It follows from eq., 52 that

(i) (i) 1 ..g,’ = 1
T - L Lo Y, 67
6 W 1 IC( l;E/ ( 5 w ) ( )

Then an :anrcase in &, with corresponding decrease in Q) means that

1) :L)

rather less quickly than the active or tronslational temperature gradient

increases, Hence the inert temperature gradient, decreases

and the apparent conductivity, which is - 6_|W f)/(’.]l'g5 - T{v ) for present

purposes, increases a little,
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Let us return to the consideration of the Bn quantitics, which may

be <0 if' the I‘n are >1, If the Bn are indeed <0, then @ < 0 and

it would appear that an effective conductivity greater than the fully
corrected value Koa (1 + Le(i)) could arise, To simplify the discussion,
let us assume that o/ = 0, so that the only internal mode remaining is

the inert one. In this event one finds from eq, 56 that

L= Ov/nD o )2 - 2 e /(2 - e,

Noticing from the analogy between eqs, 32 and 41, that the quantity
3m& /8 defines a mean frce path for diffusion, it is ’slear from the
definitions of M and D otc.(. that A/n D o,y oxprosses the ratio of the
free path for conduction (6 s Sce eq. 44) to this free path for diffusion,
Thus the I'n are intimately connected with the temperaturc jumps at the
walls for the translational and inert modes. In other words, they must
indicate in a relative sense how close Té i) and T§ and T‘E’i) and T;v
approach the actual wall temperature values T5 and. T Confirmation of
this can be obtained from eq., 67 above, which shows 'bhat as the B

(1)

nearly approaches ’J"& - T;v and finally exceeds this v(,.lu.e whon the Bn

decrcase, so that Q' decrcases also (sce eq, 62), more

are negative, We note for fubture reference that eq., 52 shows this
statement to be true for any value of To and not Just as T o =

Remembering that translational energy is transforred by conduction and
internal energy by diffusion the I‘n therefore express the balance between

the effectiveness of thcse mechanisms coupled with the appropriate
efficiencies of the wallg in exciting or de-exciting these energy states,
Since (A/n D Cv-t) ~ 1,9 for the values of M and D quoted in egs. L43a

and 31 it must be concluded that the combination of diffusion and inert
energy accommodation can be more effective than that of conduction and
accommodation in some circumstances., For example, il the r, =1we

require the rfll) > -% , roughly, in order to meke this so when c( ) = 0,

When c( ) # 0 a larger velue of the r( i) then 2/3 is required, as
can be seen from cq, 56 for the I‘n. This is because, when c( a) £ 0,

a part of the encrgy being transferred according to the temperature
gradient dT/dy (i.e. looscly, by "conduction") is in fact being

transported by diffusion, (Note 3516) decrecses as o' increasecs) .
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Since the rfli)xmst be quite large to meke the B < 0 it follows
thet the C 1; , which are proportional to 5/€n, will be large quantities.

The possible gains over and above the fully coriected Hucken conductivity
are therefore likely to be small, although they should increase with
decreasing pressure (i.e. as E/@n and hence the C! decrease) .

To conclude this section we note that it is really the dimensionless
group 7_ D J 8% which governs the situation emalysed under the heading
= Ty =¥ ", (Refer to the general results in egs, 59 and 51 where the

product da appears, @ is proportional to (TODO‘)'E , See eq. 24).

Now s is frequently quoted as a "number of collisions to excite
the internfl mode", and since the time between collisions is /0 we
shall write

.= N& /0, (68)

where N is the "number of collisions",
Whence, apart from a numerical factor of order wnity 7_ D c/ 8% ~ (& 0/5)2 A

Teking a 6 of 1 cm, and molecular diameter o of about 4 x 10 cm.,
it followsthat 7 is "large" if N >> (5/4’10)2 ~1010 ot N.,T.P. This is an
unlikely state of affairs, but if the pressure falls to say 1/1000th of

an atmosphere N must only be much greater than 101" roughly., Without going
into details since these must depend on the temweraturc, type of gas ete.,
it seems reasonsble to suppose that the approximations of the present
section could apply in the low pressure regions’f Some confirmation of
this will be given in the case of nitrogen vibration, to be examined below,

(ii1) T, » O,

We now turn to the other extreme case, for which the inert mode
relaxation time becomes small ecnough to be negligible, From the previous
discussion, this would seem to be a likely state of affairs at moderately
high pressurcs for internal modes which are excited in a fow collisions,
(0f course 7, never actually cgunls zero, as can be appreciated from eq.68),

* A continuum theory based on the Navier-Stokes cquations, such as is
used here, would still be valid at these pressurcs since (£ J&) ~1072
for p = 1/1000th atm,
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In the limiting case, the C_ tend to zero (regardless of the r1(11)
values) and Q = B+ Bg, because when 7_ =+ 0, @ » », It follows at

once from eq, 50 that for vanishingly small T values
cg 8 e (1y -1) XY (1416l (69)

The appropriate conductivity velue is therefore the fully corrected one,
accounting for the complete participation by all the intecrnal modes in

the energy transfer processcs, Just as ome might expect., It is interesting
"cc(; note th?‘b the value of éw is insensitive to the values of

i

x and 1’61 s & marked contrast to the previous case, since the term

w
which contains them is proportional to (250c)"'I . (The expression for &
correct to O(&an)"Jl is written out in eq, 75 below),

This result is a little surprising, particularly if one examines
eq., 21 in the light of the condition a =+ «, Clearly in these

circumstances it must be an excellent approximation to sct T 1) =« T,
the translational temperature, and indeed this is Jjust what is implied
in the Bucken-correction to thermal conductivities, Then the lef't hand

) (ar/dy), with a similar velue at y = §,

and e’ s values are determined by T/ end T§ , which
&V, W

: (1
side of e?i)28 becomes n D o
and the e

av,w
depend only on the translational temperatures and the T values, But
the r1(11) may teke on any value between O and 1, depending on, for example,
the wall materials, and this does not seem consistent with the result
T( 1) = T, The part played by the inert mode accommodation coefficient can
be appreciated on examination of the tronslational temperature distribution
(eq. 51) for large values of a (more strictly, of af),

Vhen y + 0O, a reasoncble approximation to T is given by

T - T/ . : S
— o (8 + rel1) Q" )"1 {ya + re(i)g (1+cC )”1(1 - o~ V) j (70)
Tt - / w W

wh
o B (1+Cpo +Bg1+C)

Q" = . (7
(1 + Cw_}(1 + Cg)

¥ The G terms nm$t be retained here because eq, 66 shows that they are
roughly of order NZ ,
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andwhen y -+ & we can write

T -T

= (8o + Le(l) Q” ,)-1 { ya + Le(i)BS(“l + 05)—1e—a( &)

Té-T’ .
v 3 Le(l)B“;1 + cw)"'1 :} (72)

The correct limiting values are obtained when y = O and y = 8, but it

can be seen that rapid changes in the veriation of T with y occur in
regions which are of O a"") in thickness adjacent to each plate,
Furthermore, eqs. 70 and 72 show that the magnitude of these changes is
proportional to the value of BW at the lower plate and to Bg at the upper,

and these quantities are explicit functions of the ratio of the active
and inert mode accommodation coefficients (see eq, 56)., Comparing
egs. 33 and 42, it can be seen that the I‘n quantities are equal to the

ratio of the translational temperature jump per unit translational
temperature gradient to the inert mode temperature Jjump per unit inert
mode temperature gradient, Vhen these are exactly equal the Bn arc zero

and it follows from egs. 70 and 72 that the translational temperature
varies linearly with y and does not undergo the rapid changes indicated
by the exponential terms there, In fhegse circumstances eq. 28 is clearly
consistent with the approximation o(1) « T, since it is then identical
with eq. 42,

One may conclude then that for very small wvalues of T it is reasonable
to set T( i) = T everywhere in the gas layer except for "boumdary layers"

adjacent to the walls which are of O( cc—1) in thickness., Inside these
layers the inert mode accommodation coefficient exerts a strong influence,

distorting both the T and T( i) profiles in such a way as to satisfy the
appropriate boundary conditions, Only when the 1) and r are related
in such a way as to make the Bn zero is T 1) ~ T a good approximation
right through the layer:

e e T S s A, EER D T R R T

% This situation is entirely analogous to the onc found by Hirschfelder
(1956) for heat tremsfer through a chemically reacting gas mixture,

Note that cc—1 ~ 80 N s 50 the "bowndary layers" are several mean

- free paths in thickness., The temperature changes across them are not so
violent as to invalidate a continuum type of theory. This "boundary
layer" behaviour as S 0 is characteristic of singular perturbation

problems, of which eq, 23 is a simple example,

£ -
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Eqs, 70 and 72 show that the deviationg of the translational temperature
profile (due to the excitation of the inert mode at the walls) from the
linear form which would be predicted following em a prior assumption that

Yo 1 oare vory small, being in fact of O( 5™, This is not so of the
translational temperature gradients as y » O or 8 and these are
readily found to be given by

L JY :
@) - = aantiny, (1)
y:
it L 3
(%) - L (141 5y, (74)
-

in the limit as a » «, Consequently the translational temperature jumps
are affected by the accommodation of the inert mode, as one would expect
in this case, .

This fact points to a defect in the theory so far, for allowing T

to approach zero puts the internal mode that we have been describing

as inert, into the class of intermal modes described as active, Clearly
then, we should adopt a treatment analogous to that accorded to the inert
mode for all the internal modes, even though they be of the active class,
Only in this way can we take proper account of the full details of the
energy transfer processes, However, in the light of the results Just
discussed it does not seem unreasonable to employ a theory of the present
kind for the problem of enecrgy transfer through a gas with one internmal
mode whose relaxation time is long compared to the remaining internal
modes, The temperature profiles will be incorrect in boundary layers
near the walls whose thicknesses are proportional to the square root of
the relaxation times of the active modes, but by hypothesis, these are
very much thinner than the inert mode layers, The energy transfer

rates cannot be mich affected by the active mode accormodation coefficients,
The translational accommodation coefficients r will be functions of the
accommodation coefficients for the true translBtional energy and for the
active modes individually., To this extent, the T, values must be

regarded as some suitably weighted mean values,

If the gas molecules have only one internal mode with a communicable
energy then the present theory is exact (within the fromework of the

Linearising assumptions) provided c( 2) is put equal to zero. Such may
be the case for diatomic molecules at room temperaturcs (where only
rotation is excited) s end we shall discuss some of the implications of
the theory in these circumstances in the last section,




T

A slightly better approximation to § for large velues of St

can be found from eq, 50 and is
-§ &= (75 -1/ )7»(&) (1 + (1)) { 1el®) ¢ (8a)™" } s (75)

where Q ” is defined in eq, 71. It can be seen from this expression that
there is a possibility, as in the other extreme case of o=y that

the effective conductivity could be greater than the Eucken, fully
corrected, value, The reason is the same, namely that the B, terms

(and hence Q”) could be negative, The extent of the possible increase
is seen to increase with increasing LW and the explanation is as follows,

For any wvalue of 7o not actually equal to zero, the inert mode temperature
is always different from the translational temperature T, In the lower

parts of the layer T(l) will be greater than T (due to the lag in the
transfer of energy between the inert and translational modes), and
the larger T the larger will be this difference, (This can be confirmed

via egs., 20, 21 and 70; 4 T(l)/dy is proportional to - d°T/dy® and

eq. {0 shows that this latter quantity is positive, Them T( 1) -T >0
and proportional to L from eq, 21). This implies that as ne increases

more of the inert mode energy is available for direct conwversion by the
lover wall, via the processes of diffusion and de-cxeitation on the plate,
We have alr eady seen that tna mechanism may be more effective than
conduction, so that if the Ty values are high enough, the maximum

benefit can be derived from the "inertness" of the inert mode,

Clearly the possible gains do not increase without limit as 0a-0,
since eq, 75 ceases to be a valid approximation long before then, The
proper approximation for &z -+ O has been discussed above,

The results (eqgs, 50 to 56) show that
. a i
-4 6 =(1f =T') xg )(1 + Lol ))
exactly, if both BW end By are zero, and it follows also that

(r=-2/)8 = (% -1!)y,

in this case, no metter what the value of7 (or a) may be, This at first

sight rather surprising result can be understood in the light of the
previous arguments about the Bn quantities, particularly when it is
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observed that T( i) does not only change because of the gas=phase excitation

of the inert mode, Variations of T(l) throughout the layer also occur
as a result of the inert mode's accommodation to the appropriate wall
temperatures, TS or Tw'

To complete the present section, the translational temperature
Jumps are evaluated so that qw can be expressed in terms of the temperatures
Ty and T_, for the case ba >> 1, It readily follows from eq. 57 that
appropriate values of the temperature gradients are given by

’ <%>y=0 = (T -15) (1 - 1ol 1) Q" (8a)"1) { 1+ Le(i)BW(‘l - CW)"1}

§(4L o« (TL =T/ ) (1 - rel) Q" (8a)"1) 1+ 10t)B (1 + c:a)"‘l
dy & w §
y=
The first two terms on the right hand sides of these equations can be
eliminated in terms of £]W from eq., 75, and if products like

(68/8)(Le(i) Q"/dc) are ignored relative to unity, it follows that
-4 6{1 + (£g/8)ag ['1 + Le(i)B5(1 ¥ 05)—1J +('6v/6)aw l:l + Le(i)BW(‘I + CW)"1J}

w(rg = 1) X2 (14 )1 2 1el® qureq (76)

A,

It can be seen that temperature jump reduces the heat transfer rate, as
would be expected, and that the magnitude of the jup depends on the
rfll) terms via B end C_. The terms in square brackets on the left-

hand side of eq. 74 are never < O in practice.
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54 Vibrational Relaxation in Nitrogen

To illustrate the results derived above some values of effcctive
conductivity are given for nitrogen, assuming that Wlbrati;?_sls the ::.Sxer'b
mode, It is assumed that the accommodation coefficients Wl and r\G

are both zero and it follows from the results in ogs, 50 to 56 that

- 4.8 {1 + 2 Le(i)/f)o(coth6a+ 1/35111'1505)}: (g =T )hga) (1 + Le(i))
seees (T7)

It is noted that both DO and TO are inversely proportional to the

pressure, so that denoting the values appropriate to a pressure of one
atmosphere by Do and T01 respectively,
1

it
be = [(1+1 ) n | (29 (78)
N 01 01 _ P
The product (p8) is measured in atmosphere—centimetres,

The values of Do 2 Le( 1) and Le( ) can be evaluated from the
results given above and in Hirschfelder, Curtiss and Bird (1954-) .
Values of 7 have been estimated from the work of Blackmen (1956) .
Le( a) is given by 0.5280( a)/c e to a sufficient order of accuracy and since
the active mode is rotation in the present case, o(&)/ O & 2/3, the
rotational mode be:mg fully excited at the temperatures of interest for

vibrational relaxation, It follows that

(2)

O ICC
1 + 0.35

(1)

simple harmonic vibrator with characteristic temperature equal to 3,3)+O°K.

The inert mode specific heat c is evaluated fram the results for a

Bq., 77 shows that the term

{1 + 2 Le(i)/6a(coth6a+ 1/sinh 80) }‘1

gives a measure of the deviation of conductivity from the full Eucken-
corrected value as a result of vibrational relaxation, Writing it as
1-(Error) s the Error quontity has been evaluated and is plottcd against
temperature in Fig, 1 for thrce velues of p&, (The square bracket
tern in eq. 78 is a function of temperature only). The mexdimum possible
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(i))'d. The value

for p& = 0,01 atm,cm, in Fig, 1 corresponds almost exactly with this
moximum Error, being at most 1% less at the higher temperatures, When
pd =1 atm, cm, the Error is always less then 1%, but increascs as pd
falls,

Error occurs when da = O and is given by 1 = (1 + Le

Below 500°K nitrogen vibration is insufficiently excited to be of
any importance and above about lF,SOOOK dissocia'bigln would arise to
complicate the picture., At a temperature of 1300°K, corresponding to the
maximum Error for pd = 0,1 atm, cm, of ebout T%, the relaxation time
7, ® 3 milliseconds, The value of (© O/QO) can be found via eqs. 31 and

29 in terms of Do ete,, thereby eliminating the need to know the molecular
diameter explicitly., It then turns out that Dy % 3 milliseconds corresponds
to ean N of about 20,000 (see eq., 66)., The shape,of the Error curves

reflects the opposing effects of increase in o 01) and decrease in 7 _ D/

with increasing temmerature, (Do varies roughly as 72 /2 and T roughly
ss exp(Censt, /5l ).

We reiterate that the accommodation coefficiants for vibrational
excitation at the walls are zero for the results in Fig, 1. For any

values greater than zero the Error term will always be less at any given pd ,
and may become negative,

6, Conductivity Measurements and Accommodation Coefficicnts

The conductivity of gases is often measured in a hot wire eell
type of apparatus, recent examples being the work of Taylor and Johnston
(1946) ond Johnston and Grilly (1946), The first of these papers describes
in detail the apparatus used and gives some conductivity values for air,
whilst the second reports conductivity measurcments in the same apparatus
for nine different, pure, gases,

In its essentials the hot wire cell consists of a wire (e.g. bright
platinum) s surrounded by a concentric hollow cylinder which is immersed
in a thermostat, With the wire hotter than the cylinder encrgy is trans-
ferred between them primarily by "conduction" through the gas, and it is
possible to make extremely accurate corrections to account for end
conduction, radiation transfer, etc, It is a feature of the measurcments
that they must be carried out at comparatively low vpressures (those
in the papers cited veried from about 1 to 20 cm, Hg) in order to
minimise the effects of natural convection. As a consequence of this it
becomes important to take accoumt of the temperature Jump phenomenon:
it is in fact found that the observed conductivities vaxy with the
pressure, but we shall say more about this shortly,
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The hot wire cell problem is concerned with the radial flow of heat,
so that the present theory is not directly comparable with the experimental
results., However, qualitatively the processes occuring in the cell and
in the theoretical model studied here must be similar and some interesting
observations can be made,

We confine the discussion to gases with but onc internal mode, so
that the foregoing theory is exact (subject to the linearisations) when
c( 2) is set equal to zero. At the temperaturcs used in the measurements

(i.e. 100% = 300%K) only rotation would be excited in the diatomic
molecules and this class of internal motion generally has a small relaxation
time, Then it is approPr:Late to use an equation like eq. 76 with which to
exmn:‘me the situation, Since the mean free paths 66 and 6 , are proportional

to p~ (p is constant betwecen the upper and lower walls), and da varies as
P, Wwe shall re-write eq., 74 as

-8 801+ b/p) = (25 -2) XD(1 4 Le(l))(‘l v b’ /p) (79)
(The definitions of b and b’ are obvious on comparison of egs. 76 and 79).

In making measurements one lknows qw , & end Ay o TW (qw would have

been corrected for all the apparatus effccts except temperature jurp)

and an apparcent conductivity )‘app can be defined so that

- C.'I‘W 5 = (T6 - TW_) )\app (80)

Then egs, 79 and 80 show that

x(a) (1 + Le(l))

e s e (81
app

to a good degrce of accuracy, since both b/p and b’/p are small quantities,

The experimental technique involves taking a number of vnlues of
'I\a.pp at different pressures and then plotting ngvp against p~1. It is
some confirmation of the »present theory that Teylor and Johnston found
this plot to be an excellent straight line, The wvalucs of conductivity
which they quote were obtained by extrapolating this plot to p"'1 =20
and it is intcresting to obscrve from eq. 81 that these should be equal to

the full Eucken value h(a) (1 + Le( i))

an acceptable degrec of‘ accuracy is shown by Hirschfelder Curtiss and Bird
(195Y4) , who comparc the TayloreJ ohnston—Gr:Llly values with the Duckene
corrected kinetic theory estimotes

That this is indeed the case to
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These latter authors do not mention the effects of relaxation in
the rotational modes of the diatomic molecules used in their measurements
and eq, 81 showe that these are not of importance where conductivity is
the only quantity to be measured, If it is intended to use the slope
of the experimental plot to find accommodation cocfficients however,
eq. 81 shows that the relaxation cffects may intervene. By how much
depends on the relative magnitude of b and bV,

From eqs., 76 and 79 it is clear that

D
(68/6)&6 [_1 L Le(l)B6(1 + 06)-1.1 -+ (EV/S)avf [1 i Le‘(tl vi(1 e C.W)-1_]

p=2

! ‘
L -

parys 452

from which it can be scen that the ratio is in .5aendeil-t of the plate
separation 0 in the present problem, If the rnl quantities are both such
as to make the Bn zero, the ratio is zero and relaxation has no effect:
otherwise it has, If we consider the other extreme whcre the rnl

are zero then

-bl LO( i)
- e (83)
E ob a(1 + Le(ﬂL) ’

if we write € = @BJJ and let r_ = rg = r so that
w o w

2bar 2 -r
aw=a6 = 3‘5“.'2 « = = ’ (84)

(see eq. 46), r is the truc translational cnergy accomodation cocfficient
here, and is probably close to unity for both walls, so eq, 84 is

perhaps not a bad approximation, If we use the alucs of Do and T0

from eqs. 31 and 68 and note that Le(i) = 0,35 when c(()i) =k it follows
from eq, 83 that

b! = r

= 0,077 VN e (85)

Since r =1 we infer that b’ is an appreciasble fraction of b even if only

a few collisions (say ten) arc rcquircd to excite the intecrmal mode.

More collisions would be required to maeke b’ corparable with b if excitation
of the internal mode occurs during collision with the walls, but it seems
reagsonable to suggest that even a mode as casily excited as rotatio;ll could

strongly influence any attempt to cvaluate r from the slope of a k;pp

versus p"'Jl plot,
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